[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20100300671A1 - Heat sink and method for manufacturing same - Google Patents

Heat sink and method for manufacturing same Download PDF

Info

Publication number
US20100300671A1
US20100300671A1 US12/828,724 US82872410A US2010300671A1 US 20100300671 A1 US20100300671 A1 US 20100300671A1 US 82872410 A US82872410 A US 82872410A US 2010300671 A1 US2010300671 A1 US 2010300671A1
Authority
US
United States
Prior art keywords
heat transfer
base plate
transfer promoting
heat sink
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/828,724
Inventor
Hiromi Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/828,724 priority Critical patent/US20100300671A1/en
Publication of US20100300671A1 publication Critical patent/US20100300671A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/10Heat sinks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • This invention relates to a heat sink for promoting heat dissipation from a large-scaled integrated circuit or the like, and more particularly to a heat sink exhibiting enhanced cooling efficiency and a method for effectively and economically manufacturing the same.
  • Heat sinks for enhancing heat dissipation of a large-scaled integrated circuit or the like are formed by subjecting, for example, an aluminum material to plastic working, to thereby raise a number of fins from a base section.
  • a configuration of the heat sink such as a height of the radiation fins or the like which directly affects cooling performance of the heat sink permits the heat sink to exhibit novelty and originality which are never anticipated from the prior art.
  • Such a heat sink is mainly used as a heat dissipation element for a CPU of a personal computer or the like.
  • a personal computer tends to be requested to exhibit a further increased processing speed, therefore, currently an increase in generation of heat from a CPU or the like due to increases in clock frequency and the number of gates is unavoidable.
  • a heat sink having a bottom surface area several times as large as an upper surface area of a package of a CPU or the like, which is so constructed that a metal plate made of a metal material increased in thermal conductivity as compared with a material for the heat sink is interposed between the upper surface of the package and a bottom surface of a base plate of the heat sink.
  • a heat sink 1 ′ includes a base plate 2 ′, which is fixedly mounted on a bottom surface thereof with a metal plate 6 ′ having the same shape as the bottom surface of the base plate 2 ′ by any suitable techniques such as brazing, screwing or the like. Then, the heat sink 1 ′ is securely fixed through the metal plate 6 ′ to an upper surface of a package of an electronic component E′ such as a CPU or the like while being kept in contact with the upper surface of the package.
  • an electronic component E′ such as a CPU or the like
  • Such construction permits heat generated from the electronic component E′ to be diffused or dispersed over a whole region of the metal plate 6 ′ and then transferred to the whole bottom surface of the heat sink 1 ′, resulting in heat dissipation of the heat sink 1 ′ being carried out with improved efficiency.
  • the brazing taking place for the fixing requires a pretreatment prior to the brazing. More particularly, prior to the brazing, it is required to subject a joint surface of the base plate 2 ′ of the heat sink 1 ′ made of an aluminum material to a surface treatment such as plating, metal spraying or the like to permit the joint surface of the heat sink to be ready for the brazing.
  • a pretreatment with respect to the heat sink 1 ′ having the radiation fins 3 ′ already formed thereon causes not only a manufacturing cost to be highly increased but a reduction in strength of the radiation fins 3 ′ and deformation thereof due to softening of the radiation fins 3 ′ by heating during the brazing.
  • fixing of the metal plate 6 ′ to the bottom surface of the base plate 2 ′ is often carried out by post-attaching the metal plate 6 ′ to the heat sink 1 ′ after formation of the heat sink 1 ′.
  • this frequently causes inadvertent bending of the radiation fins 3 ′ which are inherently delicate, leading to a deterioration in yields of the heat sink.
  • the present invention has been made in view of the foregoing disadvantages of the prior art.
  • a heat sink in accordance with one aspect of the present invention, includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate.
  • the base plate includes a main base plate section made of a main material of which the radiation fins are made and a base plate section for promoting heat transfer (hereinafter referred to as “heat transfer promoting base plate section”) made of a heat transfer promoting material different from the material for the main base plate section.
  • the heat transfer promoting material is previously integrated with the main material at a stage at which working of a workpiece is started.
  • the above-described construction of the heat sink permits heat generated from an electronic component to be diffused or dispersed over the whole heat transfer promoting base plate section and then transferred through the whole main base plate section to the radiation fins, so that the heat sink may be increased in heat dissipation efficiency.
  • the heat transfer promoting material is previously integrated with the main material at a stage at which working of the workpiece is started. This ensures that the heat transfer promoting base plate section is formed integrally with the main base plate section concurrently with forming of the heat sink, to thereby eliminate parts such as screws or the like for fixing of the heat transfer promoting base plate section to the main base plate section and operation for the fixing, resulting in a manufacturing cost of the heat sink being reduced and inadvertent bending of the radiation fins which are intrinsically delicate being prevented.
  • a heat sink in accordance with this aspect of the present invention, includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate.
  • the base plate is constituted by only a heat transfer base plate section made of a heat transfer promoting material.
  • the radiation fins are made of a main material and arranged so as to project from the heat transfer promoting base plate section.
  • the heat transfer promoting material is previously integrated with the main material at a stage at which working of a workpiece is started.
  • the heat sink thus constructed permits heat generated from the electronic component to be efficiently dissipated from the radiation fins.
  • the main material is aluminum alloy and the heat transfer promoting material is a material having thermal conductivity larger than that of aluminum.
  • the heat transfer promoting material is a material having thermal conductivity larger than that of aluminum.
  • the heat transfer promoting material is selected from the group consisting of copper and an alloy thereof. Such construction permits heat generated from the electronic component to be efficiently dispersed or diffused over the whole heat transfer promoting base plate section.
  • the main material and heat transfer promoting material are coupled together by techniques selected from the group consisting of brazing, pressure welding by forging, deformation together with intermeshing and any combination thereof.
  • Such construction permits the heat transfer promoting material to be in intimate or close contact with the main material, so that heat generated from the electronic component may be effectively dispersed or diffused over the whole heat transfer promoting base plate section.
  • the heat transfer promoting material is coupled to the main material by plating the heat transfer promoting material on the main material.
  • Such construction permits the heat transfer promoting material to be in more intimate contact with the main material, so that heat generated from the electronic component may be dispersed or diffused over the whole heat transfer promoting base plate section with enhanced efficiency.
  • the main material and heat transfer promoting material are formed at a joint portion thereof through which both materials are coupled together with a means for increasing a contact area therebetween.
  • a method for manufacturing a heat sink includes the step of subjecting a workpiece to forging under pressure in a die to form a base plate and radiation fins projecting from the base plate.
  • the workpiece is made of a main material and a heat transfer promoting material having thermal conductivity larger than that of the main material.
  • the radiation fins are constituted of the main material.
  • the base plate may be constituted of the main material depending on a form of the heat sink as desired.
  • the heat transfer promoting material is integrally provided on a surface of the main material opposite to a surface of the main material on which the radiation fins are formed.
  • the method of the present invention thus constructed permits the heat transfer promoting base plate section to be formed integrally with the main base plate section concurrently with forming of the heat sink, to thereby eliminate parts such as screws or the like for fixing of the heat transfer base plate section to the main base plate section and operation for the fixing, resulting in a manufacturing cost of the heat sink being reduced and inadvertent bending of the radiation fins which are intrinsically delicate being prevented.
  • the main material and heat transfer promoting material are previously formed integrally with each other by brazing. This ensures that the heat transfer promoting material is kept in intimate or close contact with the main material, so that heat generated from the electronic component may be effectively dispersed over the whole heat transfer promoting base plate section.
  • the main material and heat transfer promoting material are previously formed integrally with each other by plating of the heat transfer material on the main material. This permits the heat transfer promoting material to be kept in more intimate contact with the main material, so that heat generated from the electronic component may be dispersed or diffused over the whole heat transfer promoting base plate section with enhanced efficiency.
  • the main material and heat transfer promoting material are previously formed integrally with each other by temporarily coupling the main material and heat transfer promoting material to each other at the time working of the workpiece is started and subjecting at least one of the main material and heat transfer promoting material to plastic deformation, to thereby permit both materials to bite or intermesh with each other.
  • This ensures that the heat transfer promoting material is kept in close contact with the main material, resulting in heat generated from the electronic component being efficiently dispersed over the whole heat transfer promoting base plate section.
  • this permits the main base plate section and heat transfer promoting base plate section of the base plate to be integrally constructed together during forging under pressure, to thereby eliminate a separate step of coupling both sections to each other, leading to a reduction in manufacturing cost of the heat sink.
  • FIG. 1 is a schematic perspective view showing a manner of operation of an embodiment of a heat sink according to the present invention
  • FIG. 2A is a schematic side elevation view in section of the heat sink shown in FIG. 1 ;
  • FIG. 2B is a schematic plan view of the heat sink shown in FIG. 1 ;
  • FIG. 3A is a front elevation view in section showing an apparatus for manufacturing a heat sink according to the present invention by way of example;
  • FIG. 3B is an enlarged view showing a region 3 B enclosed with a circle in FIG. 3A ;
  • FIGS. 4A to 4D each are a perspective view showing coupling a main material and a heat transfer promoting material to each other to form a starting workpiece material;
  • FIG. 5A is a front elevation view in section showing start of forming of radial fins in a method of the present invention
  • FIG. 5B is a front elevation view in section showing forming of the radiation fins in the method of the present invention.
  • FIG. 6A is a front elevation view in section showing completion of the forming in the method of the present invention.
  • FIG. 6B is a front elevation view in section showing release of a die member from a forming die member in the method of the present invention
  • FIG. 7 is a perspective view showing forming a starting workpiece material by plating a heat transfer promoting material on a main material
  • FIG. 8 is a side elevation view in section showing a heat sink which is so constructed that radiation fins are arranged so as to project directly from a heat transfer promoting base plate section;
  • FIG. 9A is a side elevation view in section showing a conventional heat sink in which a heat transfer promoting metal plate is mounted on a base plate;
  • FIG. 9B is a plan view of the conventional heat sink shown in FIG. 9A .
  • FIGS. 1 to 8 Now, the present invention will be described with reference to FIGS. 1 to 8 .
  • a heat sink of the illustrated embodiment which is generally designated by reference numeral 1 includes a base plate 2 and is so arranged that the base plate 2 is kept in intimate or close contact with an electronic component E increased in heat generation and mounted on a wiring substrate B.
  • the heat sink 1 is kept in close contact with the electronic component E, so that heat generated from the electronic component E is received by the base plate 2 and then discharged or dissipated through the base plate 2 from radiation fins 3 , resulting in the electronic component E being cooled.
  • the heat sink 1 as shown in FIGS. 2A and 2B , is formed by plastic forming in such a manner that a number of the radiation fins 3 are arranged on the base plate 2 of a rectangular shape so as to substantially perpendicularly extend therefrom.
  • the base plate 2 includes a main base plate section 5 on which the radiation fins 3 are formed and a heat transfer promoting base plate section 6 arranged on a surface of the main base plate section 5 opposite to a surface thereof on which the radiation fins 3 are arranged.
  • the radiation fins 3 and main base plate section 5 are made of a main material H and the heat transfer promoting base plate section 6 is made of a heat transfer promoting material C.
  • the main material H may be aluminum alloy and the heat transfer promoting material C may be a material increased in thermal conductivity as compared with aluminum such as copper or alloy thereof.
  • the main material H may be copper or alloy thereof.
  • the heat transfer promoting material C is a material having thermal conductivity larger than copper or alloy thereof.
  • the main material H and heat transfer promoting material C are kept previously integrally coupled to each other at a stage at which working of a starting material for a workpiece (starting workpiece material) is started, which workpiece is designated by reference character W o .
  • workpiece used herein indicates a metal material constituted by the main material H and heat transfer promoting material C which is at each of a starting stage, an intermediate stage during forging under pressure and a final stage.
  • the workpieces include the starting workpiece material W o , an intermediate workpiece material W 1 and a final workpiece material W 2 .
  • Coupling the main material H and the heat transfer promoting material C to each other may be carried out using brazing, pressure welding by forging, deformation together with intermeshing or any combination thereof, which will be described in detail hereinafter.
  • the radiation fins 3 are formed to have a surface area tens of times as large as an area of the surface of the base plate 2 on which the radiation fins 3 are formed, so that the heat sink 1 may be highly increased in heat radiation or dissipation efficiency.
  • the base plate 2 is so constructed that a bottom surface area thereof is several times as large as an upper surface area of a package of the electronic component E to be cooled, so that the heat sink 1 may exhibit highly enhanced heat dissipation efficiency.
  • the heat sink manufacturing apparatus includes a die 10 .
  • the die 10 as shown in FIG. 3A , includes a force die member 12 for extruding the starting workpiece material W o and a forming die member 13 for forming the radiation fins 3 .
  • the forming die member 13 is formed therein with a receiving recess 14 in which the starting workpiece material W o is received.
  • the receiving recess 14 has a bottom acting as a press surface 16 .
  • the press surface 16 is formed with a number of forming holes 15 .
  • the receiving recess 14 is configured in the form of a continuous surface free from any seam or juncture.
  • the forming die member 13 may be integrally formed.
  • the forming die member 13 may be made by securely connecting a plurality of separate blocks to each other without defining any gap therebetween.
  • the forming holes 15 are each so constructed that a side thereof initially abutted against the starting workpiece member W o or an upper side thereof in FIG. 3A functions as a constriction 15 a determining a planar dimension of each of the radiation fins 3 like a flat plate. Also, the forming holes 15 are each formed so that a portion deep therein which is away from the constriction 15 a or a lower portion thereof in FIG. 3A is increased in width as compared with the constriction 15 a , resulting in an enlargement 15 b being defined. The enlargement 15 b is formed so as to extend from a lower end of the constriction 15 a to a position near a lower surface of the forming die member 13 .
  • the constriction 15 a is formed to have a shape corresponding to or depending on a configuration of each radiation fin 3 of the heat sink 1 .
  • the force die member 12 includes a forcing portion formed with a forcing contact surface 17 .
  • the forcing portion of the force die member 12 is fitted in the receiving recess 14 of the forming die member 13 , so that the forcing contact surface 17 forces a part of the starting workpiece material W o into each of the forming holes 15 .
  • a metal plate in the form of a flat plate-like shape or a block-like shape is made of a metal material such as aluminum or the like, resulting in the main material H being provided.
  • another metal plate of a flat plate-shape or a block-like shape is made of copper or alloy thereof which is a material having thermal conductivity larger than aluminum, to thereby provide the heat transfer promoting material C.
  • the main material H and heat transfer promoting material C are integrally joined or coupled to each other, so that the starting workpiece material W o to be filled in the receiving recess 14 of the heat sink manufacturing apparatus may be obtained.
  • Such coupling the main material H and the heat transfer promoting material C to each other is carried out using brazing, pressure welding by forging, deformation together with intermeshing or any combination thereof.
  • the brazing as shown in FIG. 4A , may be attained by bringing the main material H and heat transfer promoting material C into close contact with each other and then placing molten metal at a boundary between the materials H and C, to thereby join both materials to each other using flow and wetting characteristics of the molten metal without melting the main material H and heat transfer promoting material C.
  • the main material H may be previously subjected to copper plating, nickel plating or the like to render a surface of the main material H solderable. Then, both materials are joined together by soldering.
  • the pressure welding by forging is accomplished by bringing the main material H and heat transfer promoting material C into close or intimate contact with each other and then subjecting both to pressure welding using any suitable pressing machine.
  • the pressure welding may be carried out in such a manner that the main material H and heat transfer promoting material C are kept temporarily coupled to each other when working by the heat sink manufacturing apparatus is started, so that at least one of the main material H and heat transfer promoting member C may be subjected to plastic deformation during forming by the die 10 , resulting in both materials being press-bonded together.
  • the deformation together with intermeshing may take place by forming the main material H and heat transfer promoting material C with one of cylindrical projections 7 and recesses 8 like through-holes and the other, respectively, and fitting the projections 7 in the recesses 8 to closely contact the materials C and H with each other. Then, the projections 7 are subjected to plastic deformation by means of any suitable pressing machine, resulting in pressure welding between both materials C and H being carried out in a manner like riveting.
  • the deformation together with intermeshing may be attained by forming the main material H and heat transfer promoting material C with one of a dovetail projection 7 and a dovetail groove 8 and the other, respectively, and then fitting the dovetail projection 8 in the dovetail groove 8 . Then, both materials C and H are subjected to pressure welding using a pressing machine, resulting in them being press-bonded together.
  • the deformation together with intermeshing may be carried out in such a manner that the main material H and heat transfer promoting material C are kept temporarily coupled to each other when working by the heat sink manufacturing apparatus described above is started and then at least one of the main material H and heat transfer promoting member C is subjected to plastic deformation during forming by the die 10 , resulting in both being securely joined or coupled to each other.
  • the main material H and heat transfer promoting material C each may be formed so as to permit a joint portion thereof to be increased in contact area, as shown in, for example, FIG. 4D .
  • the main material H and heat transfer promoting material C are formed on a whole joint surface thereof with one of elongated projections 7 and elongated recesses 8 and the other, respectively. Engagement between the projections 7 and the recesses 8 permits a contact surface between the main material H and the heat transfer promoting material C to be substantially increased.
  • the projections 7 and recesses 8 cooperate with each other to provide a means for increasing a contact area.
  • the starting workpiece material W o is placed in the receiving recess 14 of the forming die member 13 of the die 10 . Thereafter, the forcing portion of the force die member 12 of the die 10 is fitted in the receiving recess 14 , to thereby compress the starting workpiece material W o while forcing the forcing contact surface 17 against the material W o .
  • the deformed material is downwardly moved, so that the radiation fins 3 may be formed.
  • Extension of the radiation fins 3 to a position near the lower surface of the forming die member 13 permits the radiation fins 3 to be formed to have a predetermined length, so that the final workpiece material W 2 may be obtained as shown in FIG. 6A .
  • the final workpiece material W 2 is released from the forming die member 13 , it is subjected to working or processing ends of the radiation fins 3 , painting and the like, resulting in the heat sink 1 which is a final product being obtained.
  • manufacturing of the heat sink 1 by the illustrated embodiment eliminates a separate step of fixing the heat transfer promoting base plate section 6 on the main base plate section 5 and parts for the fixing such as screws or the like; because the heat transfer promoting material C is previously integrated with the main material H at a stage of the starting workpiece material W a , to thereby ensure that the heat transfer promoting base plate section 6 is formed integrally with the main base plate section 5 concurrently with forming of the final workpiece material W 2 .
  • the present invention is not limited to the embodiment described above. Thus, it may be varied in various ways.
  • coupling the main material H and heat transfer C to each other may be attained by plating of the heat transfer promoting material C on the main material H, as shown in FIG. 7 .
  • the radiation fins 3 may be formed in a manner to project directly from the heat transfer promoting base plate section 6 or heat transfer promoting material C.
  • Such construction may be realized, for example, by adjusting a volume of the heat transfer promoting material C so as to permit all the heat transfer promoting material C to be allocated to formation of the radiation fins 3 by plastic deformation. This permits heat generated from the electronic component E to be more efficiently dissipated from the radiation fins 3 .
  • the present invention permits heat transfer from a heat generating source to the heat sink to be effectively promoted while reducing a manufacturing cost of the heat sink and increasing yields thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heat sink capable of permitting heat transfer from an electronic component to the heat sink to be effectively promoted while reducing a manufacturing cost of the heat sink and increasing yields thereof. The heat sink includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate. The base plate includes a main base plate section made of a main material of which the radiation fins are made and a heat transfer promoting base plate section made of a heat transfer promoting material different from the material of which the main base plate section is made. The heat transfer promoting material is integrated with said main material at a stage at which working of a workpiece. This permits heat generated from the electronic component to be dispersed over the whole heat transfer base plate section and then transferred through the whole main base plate section to the radiation fins, so that the heat sink may be increased in heat dissipation efficiency.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 10/007,918, filed on Dec. 7, 2001, which is a divisional of application Ser. No. 09/613,737 filed Jul. 11, 2000, which claims priority from Japanese Application No. 11-199001 filed on Jul. 13, 1999, the disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • This invention relates to a heat sink for promoting heat dissipation from a large-scaled integrated circuit or the like, and more particularly to a heat sink exhibiting enhanced cooling efficiency and a method for effectively and economically manufacturing the same.
  • Heat sinks for enhancing heat dissipation of a large-scaled integrated circuit or the like are formed by subjecting, for example, an aluminum material to plastic working, to thereby raise a number of fins from a base section. A configuration of the heat sink such as a height of the radiation fins or the like which directly affects cooling performance of the heat sink permits the heat sink to exhibit novelty and originality which are never anticipated from the prior art.
  • Such a heat sink is mainly used as a heat dissipation element for a CPU of a personal computer or the like. In the market, a personal computer tends to be requested to exhibit a further increased processing speed, therefore, currently an increase in generation of heat from a CPU or the like due to increases in clock frequency and the number of gates is unavoidable.
  • In order to further enhance heat dissipation efficiency from an electronic component in view of such current circumstances, it is carried out to use a heat sink having a bottom surface area several times as large as an upper surface area of a package of a CPU or the like, which is so constructed that a metal plate made of a metal material increased in thermal conductivity as compared with a material for the heat sink is interposed between the upper surface of the package and a bottom surface of a base plate of the heat sink.
  • Now, such construction will be described with reference to FIGS. 9A and 9B by way of example. A heat sink 1′ includes a base plate 2′, which is fixedly mounted on a bottom surface thereof with a metal plate 6′ having the same shape as the bottom surface of the base plate 2′ by any suitable techniques such as brazing, screwing or the like. Then, the heat sink 1′ is securely fixed through the metal plate 6′ to an upper surface of a package of an electronic component E′ such as a CPU or the like while being kept in contact with the upper surface of the package.
  • Such construction permits heat generated from the electronic component E′ to be diffused or dispersed over a whole region of the metal plate 6′ and then transferred to the whole bottom surface of the heat sink 1′, resulting in heat dissipation of the heat sink 1′ being carried out with improved efficiency.
  • However, the above-described screwing which takes place for fixing of the metal plate 6′ to the bottom surface of the base plate 2′ causes the number of parts for the fixing and the number of steps therefor to be increased, leading to an increase in manufacturing cost of the heat sink. Also, it is highly difficult to carry out the fixing while keeping the whole metal plate 6′ in intimate or close contact with the whole bottom surface of the base plate 2′, to thereby cause loss in heat transfer, resulting in it failing in a satisfactory improvement in performance of the heat sink.
  • Also, the brazing taking place for the fixing requires a pretreatment prior to the brazing. More particularly, prior to the brazing, it is required to subject a joint surface of the base plate 2′ of the heat sink 1′ made of an aluminum material to a surface treatment such as plating, metal spraying or the like to permit the joint surface of the heat sink to be ready for the brazing. Unfortunately, the pretreatment with respect to the heat sink 1′ having the radiation fins 3′ already formed thereon causes not only a manufacturing cost to be highly increased but a reduction in strength of the radiation fins 3′ and deformation thereof due to softening of the radiation fins 3′ by heating during the brazing.
  • Further, fixing of the metal plate 6′ to the bottom surface of the base plate 2′ is often carried out by post-attaching the metal plate 6′ to the heat sink 1′ after formation of the heat sink 1′. Unfortunately, this frequently causes inadvertent bending of the radiation fins 3′ which are inherently delicate, leading to a deterioration in yields of the heat sink.
  • SUMMARY OF TEE INVENTION
  • The present invention has been made in view of the foregoing disadvantages of the prior art.
  • Accordingly, it is an object of the present invention to provide a heat sink which is capable of promoting heat transfer from a heat generating element to the heat sink while realizing a reduction in manufacturing cost of the heat sink and an increase in yields thereof.
  • It is another object of the present invention to provide a method for manufacturing a heat sink which method is capable of providing a heat sink realizing the above-described object.
  • In accordance with one aspect of the present invention, a heat sink is provided. The heat sink includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate. The base plate includes a main base plate section made of a main material of which the radiation fins are made and a base plate section for promoting heat transfer (hereinafter referred to as “heat transfer promoting base plate section”) made of a heat transfer promoting material different from the material for the main base plate section. The heat transfer promoting material is previously integrated with the main material at a stage at which working of a workpiece is started.
  • The above-described construction of the heat sink permits heat generated from an electronic component to be diffused or dispersed over the whole heat transfer promoting base plate section and then transferred through the whole main base plate section to the radiation fins, so that the heat sink may be increased in heat dissipation efficiency.
  • The heat transfer promoting material is previously integrated with the main material at a stage at which working of the workpiece is started. This ensures that the heat transfer promoting base plate section is formed integrally with the main base plate section concurrently with forming of the heat sink, to thereby eliminate parts such as screws or the like for fixing of the heat transfer promoting base plate section to the main base plate section and operation for the fixing, resulting in a manufacturing cost of the heat sink being reduced and inadvertent bending of the radiation fins which are intrinsically delicate being prevented.
  • In accordance with this aspect of the present invention, a heat sink is provided. The heat sink includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate. The base plate is constituted by only a heat transfer base plate section made of a heat transfer promoting material. The radiation fins are made of a main material and arranged so as to project from the heat transfer promoting base plate section. The heat transfer promoting material is previously integrated with the main material at a stage at which working of a workpiece is started. The heat sink thus constructed permits heat generated from the electronic component to be efficiently dissipated from the radiation fins.
  • In a preferred embodiment of the present invention, the main material is aluminum alloy and the heat transfer promoting material is a material having thermal conductivity larger than that of aluminum. Such construction promotes that heat generated from the electronic component is diffused or dispersed over the whole heat transfer promoting base plate section and then transferred through the main base plate section to the radiation fins, to thereby enhance heat dissipation efficiency of the heat sink.
  • In a preferred embodiment of the present invention, the heat transfer promoting material is selected from the group consisting of copper and an alloy thereof. Such construction permits heat generated from the electronic component to be efficiently dispersed or diffused over the whole heat transfer promoting base plate section.
  • In a preferred embodiment of the present invention, the main material and heat transfer promoting material are coupled together by techniques selected from the group consisting of brazing, pressure welding by forging, deformation together with intermeshing and any combination thereof. Such construction permits the heat transfer promoting material to be in intimate or close contact with the main material, so that heat generated from the electronic component may be effectively dispersed or diffused over the whole heat transfer promoting base plate section.
  • In a preferred embodiment of the present invention, the heat transfer promoting material is coupled to the main material by plating the heat transfer promoting material on the main material. Such construction permits the heat transfer promoting material to be in more intimate contact with the main material, so that heat generated from the electronic component may be dispersed or diffused over the whole heat transfer promoting base plate section with enhanced efficiency.
  • In a preferred embodiment of the present invention, the main material and heat transfer promoting material are formed at a joint portion thereof through which both materials are coupled together with a means for increasing a contact area therebetween. Thus, efficient heat transfer from the heat transfer promoting base plate section to the main base plate section may be ensured.
  • In accordance with another aspect of the present invention a method for manufacturing a heat sink is provided. The method includes the step of subjecting a workpiece to forging under pressure in a die to form a base plate and radiation fins projecting from the base plate. The workpiece is made of a main material and a heat transfer promoting material having thermal conductivity larger than that of the main material. The radiation fins are constituted of the main material. Also, the base plate may be constituted of the main material depending on a form of the heat sink as desired. The heat transfer promoting material is integrally provided on a surface of the main material opposite to a surface of the main material on which the radiation fins are formed.
  • The method of the present invention thus constructed permits the heat transfer promoting base plate section to be formed integrally with the main base plate section concurrently with forming of the heat sink, to thereby eliminate parts such as screws or the like for fixing of the heat transfer base plate section to the main base plate section and operation for the fixing, resulting in a manufacturing cost of the heat sink being reduced and inadvertent bending of the radiation fins which are intrinsically delicate being prevented.
  • In a preferred embodiment of the present invention, the main material and heat transfer promoting material are previously formed integrally with each other by brazing. This ensures that the heat transfer promoting material is kept in intimate or close contact with the main material, so that heat generated from the electronic component may be effectively dispersed over the whole heat transfer promoting base plate section.
  • In a preferred embodiment of the present invention, the main material and heat transfer promoting material are previously formed integrally with each other by plating of the heat transfer material on the main material. This permits the heat transfer promoting material to be kept in more intimate contact with the main material, so that heat generated from the electronic component may be dispersed or diffused over the whole heat transfer promoting base plate section with enhanced efficiency.
  • In a preferred embodiment of the present invention, the main material and heat transfer promoting material are previously formed integrally with each other by temporarily coupling the main material and heat transfer promoting material to each other at the time working of the workpiece is started and subjecting at least one of the main material and heat transfer promoting material to plastic deformation, to thereby permit both materials to bite or intermesh with each other. This ensures that the heat transfer promoting material is kept in close contact with the main material, resulting in heat generated from the electronic component being efficiently dispersed over the whole heat transfer promoting base plate section. Also, this permits the main base plate section and heat transfer promoting base plate section of the base plate to be integrally constructed together during forging under pressure, to thereby eliminate a separate step of coupling both sections to each other, leading to a reduction in manufacturing cost of the heat sink.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings; wherein:
  • FIG. 1 is a schematic perspective view showing a manner of operation of an embodiment of a heat sink according to the present invention;
  • FIG. 2A is a schematic side elevation view in section of the heat sink shown in FIG. 1;
  • FIG. 2B is a schematic plan view of the heat sink shown in FIG. 1;
  • FIG. 3A is a front elevation view in section showing an apparatus for manufacturing a heat sink according to the present invention by way of example;
  • FIG. 3B is an enlarged view showing a region 3B enclosed with a circle in FIG. 3A;
  • FIGS. 4A to 4D each are a perspective view showing coupling a main material and a heat transfer promoting material to each other to form a starting workpiece material;
  • FIG. 5A is a front elevation view in section showing start of forming of radial fins in a method of the present invention;
  • FIG. 5B is a front elevation view in section showing forming of the radiation fins in the method of the present invention;
  • FIG. 6A is a front elevation view in section showing completion of the forming in the method of the present invention;
  • FIG. 6B is a front elevation view in section showing release of a die member from a forming die member in the method of the present invention;
  • FIG. 7 is a perspective view showing forming a starting workpiece material by plating a heat transfer promoting material on a main material;
  • FIG. 8 is a side elevation view in section showing a heat sink which is so constructed that radiation fins are arranged so as to project directly from a heat transfer promoting base plate section;
  • FIG. 9A is a side elevation view in section showing a conventional heat sink in which a heat transfer promoting metal plate is mounted on a base plate; and
  • FIG. 9B is a plan view of the conventional heat sink shown in FIG. 9A.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Now, the present invention will be described with reference to FIGS. 1 to 8.
  • The following description will be first made in connection with a heat sink of the present invention and then made in connection with a method for manufacturing the same according to the present invention.
  • Referring first to FIG. 1, the manner of operation of a heat sink according to an embodiment of the present invention is illustrated. A heat sink of the illustrated embodiment which is generally designated by reference numeral 1 includes a base plate 2 and is so arranged that the base plate 2 is kept in intimate or close contact with an electronic component E increased in heat generation and mounted on a wiring substrate B. Thus, the heat sink 1 is kept in close contact with the electronic component E, so that heat generated from the electronic component E is received by the base plate 2 and then discharged or dissipated through the base plate 2 from radiation fins 3, resulting in the electronic component E being cooled.
  • Now, the heat sink 1 of the illustrated embodiment will be described with reference to FIGS. 1 to 2B. The heat sink 1, as shown in FIGS. 2A and 2B, is formed by plastic forming in such a manner that a number of the radiation fins 3 are arranged on the base plate 2 of a rectangular shape so as to substantially perpendicularly extend therefrom.
  • The base plate 2 includes a main base plate section 5 on which the radiation fins 3 are formed and a heat transfer promoting base plate section 6 arranged on a surface of the main base plate section 5 opposite to a surface thereof on which the radiation fins 3 are arranged.
  • The radiation fins 3 and main base plate section 5 are made of a main material H and the heat transfer promoting base plate section 6 is made of a heat transfer promoting material C.
  • In the illustrated embodiment, the main material H may be aluminum alloy and the heat transfer promoting material C may be a material increased in thermal conductivity as compared with aluminum such as copper or alloy thereof.
  • Of course, the main material H may be copper or alloy thereof. In this instance, the heat transfer promoting material C is a material having thermal conductivity larger than copper or alloy thereof.
  • The main material H and heat transfer promoting material C are kept previously integrally coupled to each other at a stage at which working of a starting material for a workpiece (starting workpiece material) is started, which workpiece is designated by reference character Wo.
  • The term “workpiece” used herein indicates a metal material constituted by the main material H and heat transfer promoting material C which is at each of a starting stage, an intermediate stage during forging under pressure and a final stage. Thus, the workpieces include the starting workpiece material Wo, an intermediate workpiece material W1 and a final workpiece material W2.
  • Coupling the main material H and the heat transfer promoting material C to each other may be carried out using brazing, pressure welding by forging, deformation together with intermeshing or any combination thereof, which will be described in detail hereinafter.
  • In the heat sink 1 of the illustrated embodiment, the radiation fins 3 are formed to have a surface area tens of times as large as an area of the surface of the base plate 2 on which the radiation fins 3 are formed, so that the heat sink 1 may be highly increased in heat radiation or dissipation efficiency. Also, the base plate 2 is so constructed that a bottom surface area thereof is several times as large as an upper surface area of a package of the electronic component E to be cooled, so that the heat sink 1 may exhibit highly enhanced heat dissipation efficiency.
  • Now, an apparatus for manufacturing the heat sink 1 will be described with reference to FIGS. 3A and 3B. The heat sink manufacturing apparatus includes a die 10. The die 10, as shown in FIG. 3A, includes a force die member 12 for extruding the starting workpiece material Wo and a forming die member 13 for forming the radiation fins 3.
  • The forming die member 13 is formed therein with a receiving recess 14 in which the starting workpiece material Wo is received. The receiving recess 14 has a bottom acting as a press surface 16. The press surface 16 is formed with a number of forming holes 15. The receiving recess 14 is configured in the form of a continuous surface free from any seam or juncture. For formation of such a receiving recess 14 defined by the continuous surface, the forming die member 13 may be integrally formed. Alternatively, the forming die member 13 may be made by securely connecting a plurality of separate blocks to each other without defining any gap therebetween.
  • The forming holes 15, as shown in FIG. 3B, are each so constructed that a side thereof initially abutted against the starting workpiece member Wo or an upper side thereof in FIG. 3A functions as a constriction 15 a determining a planar dimension of each of the radiation fins 3 like a flat plate. Also, the forming holes 15 are each formed so that a portion deep therein which is away from the constriction 15 a or a lower portion thereof in FIG. 3A is increased in width as compared with the constriction 15 a, resulting in an enlargement 15 b being defined. The enlargement 15 b is formed so as to extend from a lower end of the constriction 15 a to a position near a lower surface of the forming die member 13.
  • The constriction 15 a is formed to have a shape corresponding to or depending on a configuration of each radiation fin 3 of the heat sink 1.
  • The force die member 12 includes a forcing portion formed with a forcing contact surface 17. The forcing portion of the force die member 12 is fitted in the receiving recess 14 of the forming die member 13, so that the forcing contact surface 17 forces a part of the starting workpiece material Wo into each of the forming holes 15.
  • Now, manufacturing of the heat sink by the heat sink manufacturing apparatus thus constructed will be described hereinafter.
  • Production of Starting Workpiece Material
  • First, in the illustrated embodiment, a metal plate in the form of a flat plate-like shape or a block-like shape is made of a metal material such as aluminum or the like, resulting in the main material H being provided.
  • Then, another metal plate of a flat plate-shape or a block-like shape is made of copper or alloy thereof which is a material having thermal conductivity larger than aluminum, to thereby provide the heat transfer promoting material C.
  • Subsequently, the main material H and heat transfer promoting material C are integrally joined or coupled to each other, so that the starting workpiece material Wo to be filled in the receiving recess 14 of the heat sink manufacturing apparatus may be obtained.
  • Such coupling the main material H and the heat transfer promoting material C to each other is carried out using brazing, pressure welding by forging, deformation together with intermeshing or any combination thereof.
  • The brazing, as shown in FIG. 4A, may be attained by bringing the main material H and heat transfer promoting material C into close contact with each other and then placing molten metal at a boundary between the materials H and C, to thereby join both materials to each other using flow and wetting characteristics of the molten metal without melting the main material H and heat transfer promoting material C.
  • More specifically, for example, when brazing is carried out by joining the heat transfer promoting material C made of copper and the main material H made of aluminum to each other by soldering, the main material H may be previously subjected to copper plating, nickel plating or the like to render a surface of the main material H solderable. Then, both materials are joined together by soldering.
  • It should be understood that a cost for the above-described plating made on the main material H is substantially reduced as compared with that for plating carried out after formation of radiation fins as described above in connection with the prior art and the plating is readily attained substantially without any trouble.
  • The pressure welding by forging is accomplished by bringing the main material H and heat transfer promoting material C into close or intimate contact with each other and then subjecting both to pressure welding using any suitable pressing machine.
  • Alternatively, the pressure welding may be carried out in such a manner that the main material H and heat transfer promoting material C are kept temporarily coupled to each other when working by the heat sink manufacturing apparatus is started, so that at least one of the main material H and heat transfer promoting member C may be subjected to plastic deformation during forming by the die 10, resulting in both materials being press-bonded together.
  • The deformation together with intermeshing, as shown in FIG. 4B, may take place by forming the main material H and heat transfer promoting material C with one of cylindrical projections 7 and recesses 8 like through-holes and the other, respectively, and fitting the projections 7 in the recesses 8 to closely contact the materials C and H with each other. Then, the projections 7 are subjected to plastic deformation by means of any suitable pressing machine, resulting in pressure welding between both materials C and H being carried out in a manner like riveting.
  • Alternatively, the deformation together with intermeshing, as shown in FIG. 4C, may be attained by forming the main material H and heat transfer promoting material C with one of a dovetail projection 7 and a dovetail groove 8 and the other, respectively, and then fitting the dovetail projection 8 in the dovetail groove 8. Then, both materials C and H are subjected to pressure welding using a pressing machine, resulting in them being press-bonded together.
  • Also, the deformation together with intermeshing may be carried out in such a manner that the main material H and heat transfer promoting material C are kept temporarily coupled to each other when working by the heat sink manufacturing apparatus described above is started and then at least one of the main material H and heat transfer promoting member C is subjected to plastic deformation during forming by the die 10, resulting in both being securely joined or coupled to each other.
  • The main material H and heat transfer promoting material C each may be formed so as to permit a joint portion thereof to be increased in contact area, as shown in, for example, FIG. 4D. In FIG. 4D, the main material H and heat transfer promoting material C are formed on a whole joint surface thereof with one of elongated projections 7 and elongated recesses 8 and the other, respectively. Engagement between the projections 7 and the recesses 8 permits a contact surface between the main material H and the heat transfer promoting material C to be substantially increased. Thus, it will be noted that in the illustrated embodiment, the projections 7 and recesses 8 cooperate with each other to provide a means for increasing a contact area.
  • Forming
  • Then, the starting workpiece material Wo, as shown in FIG. 5A, is placed in the receiving recess 14 of the forming die member 13 of the die 10. Thereafter, the forcing portion of the force die member 12 of the die 10 is fitted in the receiving recess 14, to thereby compress the starting workpiece material Wo while forcing the forcing contact surface 17 against the material Wo. This permits a part of the main material H of the starting workpiece material Wo to be drawn into the forming holes 15 of the forming die member 13, to thereby be deformed, so that forming may be carried out as shown in FIG. 5B. Then, the deformed material is downwardly moved, so that the radiation fins 3 may be formed.
  • Completion of Forming
  • Extension of the radiation fins 3 to a position near the lower surface of the forming die member 13 permits the radiation fins 3 to be formed to have a predetermined length, so that the final workpiece material W2 may be obtained as shown in FIG. 6A.
  • Release of Forming Die Member
  • After the final workpiece material W2 is formed as described above, pressing by the force die member 12 is stopped and the force die member 12 is upwardly moved as shown in FIG. 6B.
  • Release of Die Member
  • After the final workpiece material W2 is released from the forming die member 13, it is subjected to working or processing ends of the radiation fins 3, painting and the like, resulting in the heat sink 1 which is a final product being obtained.
  • As will be noted from the above, manufacturing of the heat sink 1 by the illustrated embodiment eliminates a separate step of fixing the heat transfer promoting base plate section 6 on the main base plate section 5 and parts for the fixing such as screws or the like; because the heat transfer promoting material C is previously integrated with the main material H at a stage of the starting workpiece material Wa, to thereby ensure that the heat transfer promoting base plate section 6 is formed integrally with the main base plate section 5 concurrently with forming of the final workpiece material W2. This leads to a reduction in manufacturing cost of the heat sink and prevents inadvertent bending of the radiation fins 3 which are inherently delicate.
  • The present invention is not limited to the embodiment described above. Thus, it may be varied in various ways. For example, coupling the main material H and heat transfer C to each other may be attained by plating of the heat transfer promoting material C on the main material H, as shown in FIG. 7. This permits the heat transfer promoting material C to be highly intimately bonded or joined to the main material H, so that heat generated from the electronic component E may be more efficiently diffused or dispersed over the whole heat transfer promoting base plate section 6.
  • Also, the radiation fins 3, as shown in FIG. 8, may be formed in a manner to project directly from the heat transfer promoting base plate section 6 or heat transfer promoting material C. Such construction may be realized, for example, by adjusting a volume of the heat transfer promoting material C so as to permit all the heat transfer promoting material C to be allocated to formation of the radiation fins 3 by plastic deformation. This permits heat generated from the electronic component E to be more efficiently dissipated from the radiation fins 3.
  • As can be seen from the foregoing, the present invention permits heat transfer from a heat generating source to the heat sink to be effectively promoted while reducing a manufacturing cost of the heat sink and increasing yields thereof.
  • While preferred embodiments of the invention have been described with a certain degree of particularity with reference to the drawings, obvious modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims (25)

1. A heat sink for dissipating heat from an electronic component, comprising:
a base plate formed of a heat transfer promoting material, said base plate being adaptable to be kept in direct contact with said electronic component; and
radiation fins formed of a main material and projecting from said base plate;
2. A heat sink as defined in claim 1, wherein said main material is aluminum alloy and said heat transfer promoting material has a thermal conductivity larger than the thermal conductivity of aluminum.
3. A heat sink as defined in claim 2, wherein said heat transfer promoting material is selected from the group consisting of copper and copper alloy.
4. A heat sink as defined in claim 2, wherein said main material and heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing and any combination thereof.
5. A heat sink as defined in claim 2, wherein said heat transfer promoting material is coupled to said main material by plating said heat transfer promoting material on said main material.
6. A heat sink as defined in claim 2, wherein said main material and said heat transfer promoting material define a joint portion where said main material and said heat transfer material are coupled together increase a contact area therebetween.
7. A heat sink as defined in claim 1, wherein said heat transfer promoting material is selected from the group consisting of copper and copper alloy.
8. A heat sink as defined in claim 1, wherein said main material and heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing, and any combination thereof.
9. A heat sink as defined in claim 1, wherein said heat transfer promoting material is coupled to said main material by plating said heat transfer promoting material on said main material.
10. A heat sink as defined in claim 1, wherein said main material and said heat transfer promoting material define a joint portion where said main material and said heat transfer material are coupled together increase a contact area therebetween.
11. A heat sink for dissipating heat from an electronic component comprising a base plate and radiation fins projecting from said base plate, said base plate in detachable contact with said electronic component, said base plate comprising a composite material including a main material comprising a main base plate portion located adjacent to said radiation fin and a heat transfer promoting material which have been coupled to each other, said base plate including at least a portion located on the side thereof opposite from said radiation fins comprising said heat transfer promoting material comprising a heat transfer promoting base plate portion located on a side thereof opposite from said radiation fins and being in direct contact with said electronic component, said radiation fins and said main material being integrally formed as a seamless one-piece structure, and said main material and said heat transfer promoting material define a joint portion where said main material and heat transfer material are coupled together so as to increase a contact area therebetween;
said main material comprising an aluminum alloy and said heat transfer promoting material having a thermal conductivity larger than the thermal conductivity of said aluminum alloy;
said main base plate portion and said heat transfer promoting base plate portion having respective opposing surfaces of the same shape when viewed in plan view and bonded through the entire opposing surfaces thereof.
12. A heat sink as defined in claim 11, wherein said heat transfer promoting material is selected from the group consisting of copper and copper alloy.
13. A heat sink as defined in claim 11, wherein said main material and heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing, and any combination thereof.
14. A heat sink as defined in claim 11, wherein said heat transfer promoting material is coupled to said main material by plating said heat transfer promoting material on said main material.
15. A heat sink as defined in claim 11 wherein said base plate comprises said heat transfer promoting material.
16. A heat sink for dissipating heat from an electronic component comprising a base plate having a first surface in detachable contact with said electronic component and a second surface opposite from said first surface, and radiation fins projecting from said second surface of said base plate, said base plate and said radiation fins being integral and formed of a composite material including a main material comprising an aluminum alloy and a heat transfer promoting material which have been coupled to each other, said heat transfer promoting material having a thermal conductivity greater than the thermal conductivity of said aluminum alloy, said base plate including a main base plate portion located adjacent to said radiation fins to form said second surface thereof, and a heat transfer promoting base portion located on a surface opposite from said radiation fins to form said first surface thereof and being in direct contact with said electronic component, said main base plate portion and said radiation fins comprising said main material and said heat transfer promoting base plate portion comprising a heat transfer promoting material, and wherein said main material and said heat transfer promoting material define a joint portion where said main material and said heat transfer promoting material are coupled together so as to increase a contact area therebetween;
said main base plate portion and said heat transfer promoting base plate portion having respective opposing surfaces of the same shape when viewed in a plan view and being bonded through the entire opposing surfaces thereof.
17. A heat sink as defined in claim 16 wherein said main material comprises an aluminum alloy, and said heat transfer promoting material comprises a material having thermal conductivity greater than the thermal conductivity of aluminum.
18. A heat sink as defined in claim 16 wherein said heat transfer promoting material comprises a material selected from the group consisting of copper and copper alloy.
19. A heat sink as defined in claim 16 wherein said main material and said heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing, and combinations thereof.
20. A heat sink as defined in claim 16 wherein said heat transfer promoting material is coupled to said main material by plating said heat transfer promoting material on said main material.
21. A heat sink for dissipating heat from an electronic component comprising a base plate and radiation fins projecting from said base plate, said base plate being maintained in direct contact with said electronic component, said base plate comprising a composite material including a main material comprising an aluminum alloy and a heat transfer promoting material which have been coupled to each other said heat transfer promoting material having a thermal conductivity larger than the thermal conductivity of aluminum, said base plate including at least a portion located on the side thereof opposite from said radiation fins comprising said heat transfer promoting material in direct contact with said electronic component, said radiation fins and said main material being unitarily formed as a seamless one-piece structure, said radiation fins being formed by plastic deformation of said main material;
said main material and said heat transfer promoting material having respective opposing surfaces of the same shape when viewed in plan view and being bonded through the entire opposing surfaces thereof.
22. A heat sink as defined in claim 21, wherein said main material is an aluminum alloy and said heat transfer promoting material has a thermal conductivity larger than the thermal conductivity of aluminum.
23. A heat sink as defined in claim 21, wherein said heat transfer promoting material is selected from the group consisting of copper and copper alloy.
24. A heat sink as defined in claim 21, wherein said main material and heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing, and any combination thereof.
25. A heat sink for dissipating heat from an electronic component comprising a base plate having a first surface in detachable contact with said electronic component and a second surface opposite from said first surface, and radiation fins projecting from said second surface of said base plate, said base plate and said radiation fins being integral and formed of a composite material including a main material made of aluminum alloy and a heat transfer promoting material which have been coupled to each other, said heat transfer promoting material being in direct contact with said electronic component and having a thermal conductivity greater than the thermal conductivity of said aluminum alloy, said base plate including a main base plate portion including a first joining surface opposite from said opposite from said second surface of said base plate, and located adjacent to said radiation fins to form said second surface thereof, and a heat transfer promoting base portion including a second joining surface in contact with said first joining surface located on a surface opposite from said radiation fins to form said first surface thereof, said main base plate portion and said radiation fins being unitarily formed as a seamless one-piece structure, said radiation fins being formed by plastic deformation of said main material, and said heat transfer promoting base plate portion comprising a heat transfer promoting material;
said first and second joining surfaces having the same outer configuration whereby said main base plate portion and said heat transfer promotion base portion are coupled together through the entire joining surfaces thereof.
US12/828,724 1999-07-13 2010-07-01 Heat sink and method for manufacturing same Abandoned US20100300671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/828,724 US20100300671A1 (en) 1999-07-13 2010-07-01 Heat sink and method for manufacturing same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP11-199001 1999-07-13
JP19900199A JP3517831B2 (en) 1999-07-13 1999-07-13 Heat sink and manufacturing method thereof
US09/613,737 US6367152B1 (en) 1999-07-13 2000-07-11 Method for manufacturing a heat sink
US10/007,918 US20020050339A1 (en) 1999-07-13 2001-12-07 Heat sink and method for manufacturing same
US12/828,724 US20100300671A1 (en) 1999-07-13 2010-07-01 Heat sink and method for manufacturing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/007,918 Continuation US20020050339A1 (en) 1999-07-13 2001-12-07 Heat sink and method for manufacturing same

Publications (1)

Publication Number Publication Date
US20100300671A1 true US20100300671A1 (en) 2010-12-02

Family

ID=16400458

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/613,737 Expired - Lifetime US6367152B1 (en) 1999-07-13 2000-07-11 Method for manufacturing a heat sink
US10/007,918 Abandoned US20020050339A1 (en) 1999-07-13 2001-12-07 Heat sink and method for manufacturing same
US12/828,724 Abandoned US20100300671A1 (en) 1999-07-13 2010-07-01 Heat sink and method for manufacturing same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/613,737 Expired - Lifetime US6367152B1 (en) 1999-07-13 2000-07-11 Method for manufacturing a heat sink
US10/007,918 Abandoned US20020050339A1 (en) 1999-07-13 2001-12-07 Heat sink and method for manufacturing same

Country Status (2)

Country Link
US (3) US6367152B1 (en)
JP (1) JP3517831B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202303B1 (en) * 1999-04-08 2001-03-20 Intel Corporation Method for producing high efficiency heat sinks
JP3529358B2 (en) * 2001-02-07 2004-05-24 古河電気工業株式会社 Finned heat sink
JP3946018B2 (en) * 2001-09-18 2007-07-18 株式会社日立製作所 Liquid-cooled circuit device
US6698500B2 (en) 2002-01-22 2004-03-02 The Furukawa Electric Co., Ltd. Heat sink with fins
US7108055B2 (en) * 2002-03-29 2006-09-19 Advanced Energy Technology Inc. Optimized heat sink using high thermal conducting base and low thermal conducting fins
US20030188848A1 (en) * 2002-04-08 2003-10-09 Yu-Chen Kuo Complex heat-radiator
US6784102B2 (en) 2002-10-09 2004-08-31 Lsi Logic Corporation Laterally interconnecting structures
US6851186B2 (en) * 2002-11-13 2005-02-08 Malico, Inc. Environmental protection concerned method for manufacturing heat sink
TW200604781A (en) * 2004-07-30 2006-02-01 Via Tech Inc Expandable heat sink
US20070271787A1 (en) * 2006-05-23 2007-11-29 Malico Inc. Methods for manufacturing heat sink having relatively high aspects ratio thereof
US20080073070A1 (en) * 2006-09-26 2008-03-27 Chin-Hu Kuo Highly efficient heat dissipating composite material and a heat dissipating device made of such material
TW200906286A (en) * 2007-07-30 2009-02-01 Jiing Tung Tec Metal Co Ltd Magnesium alloy compound type heat dissipation metal
TW200919160A (en) * 2007-10-26 2009-05-01 Delta Electronics Inc Heat dissipation module and base and manufacturing method thereof
US7731079B2 (en) * 2008-06-20 2010-06-08 International Business Machines Corporation Cooling apparatus and method of fabrication thereof with a cold plate formed in situ on a surface to be cooled
TW201135429A (en) * 2010-04-07 2011-10-16 Hon Hai Prec Ind Co Ltd Heat sink
AT514053A1 (en) * 2013-02-26 2014-09-15 Neuman Aluminium Fliesspresswerk Gmbh Method for producing a heat sink and heat sink for electrical components
US10914539B2 (en) 2013-05-15 2021-02-09 Osram Sylvania Inc. Two piece aluminum heat sink
JP6137153B2 (en) * 2014-12-05 2017-05-31 トヨタ自動車株式会社 Method for forming pin-shaped fins
JP6555374B1 (en) * 2018-03-13 2019-08-07 日本電気株式会社 Cooling structure, mounting structure
EP4209289B1 (en) * 2022-01-10 2024-06-19 Benteler Automobiltechnik GmbH Method and hot forming tool for manufacturing a heat exchanger plate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312277A (en) * 1965-03-22 1967-04-04 Astrodyne Inc Heat sink
US4917179A (en) * 1987-05-22 1990-04-17 Beckman Instruments, Inc. Thermoelectric cooling design
US5199164A (en) * 1991-03-30 1993-04-06 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor package
US5448107A (en) * 1989-12-29 1995-09-05 Sumitomo Electric Industries, Ltd. Radiating fin having an improved life and thermal conductivity
US5689404A (en) * 1995-03-17 1997-11-18 Fujitsu, Ltd. Heat sink having air movement device positioned among tins and between heating elements
US6032362A (en) * 1996-08-09 2000-03-07 Hitachi Metals, Ltd. Method for producing a heat spreader and semiconductor device with a heat spreader
US6085833A (en) * 1996-06-06 2000-07-11 Furukawa Electric Co., Ltd. Heat sink
US6088917A (en) * 1997-12-26 2000-07-18 Hon Hai Precision Ind. Co., Ltd. Method for making heat sink device and a heat sink made thereby
US6134783A (en) * 1997-10-29 2000-10-24 Bargman; Ronald D. Heat sink and process of manufacture
US6202303B1 (en) * 1999-04-08 2001-03-20 Intel Corporation Method for producing high efficiency heat sinks

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3312277A (en) * 1965-03-22 1967-04-04 Astrodyne Inc Heat sink
US4917179A (en) * 1987-05-22 1990-04-17 Beckman Instruments, Inc. Thermoelectric cooling design
US5448107A (en) * 1989-12-29 1995-09-05 Sumitomo Electric Industries, Ltd. Radiating fin having an improved life and thermal conductivity
US5199164A (en) * 1991-03-30 1993-04-06 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor package
US5689404A (en) * 1995-03-17 1997-11-18 Fujitsu, Ltd. Heat sink having air movement device positioned among tins and between heating elements
US6085833A (en) * 1996-06-06 2000-07-11 Furukawa Electric Co., Ltd. Heat sink
US6032362A (en) * 1996-08-09 2000-03-07 Hitachi Metals, Ltd. Method for producing a heat spreader and semiconductor device with a heat spreader
US6134783A (en) * 1997-10-29 2000-10-24 Bargman; Ronald D. Heat sink and process of manufacture
US6088917A (en) * 1997-12-26 2000-07-18 Hon Hai Precision Ind. Co., Ltd. Method for making heat sink device and a heat sink made thereby
US6202303B1 (en) * 1999-04-08 2001-03-20 Intel Corporation Method for producing high efficiency heat sinks

Also Published As

Publication number Publication date
JP3517831B2 (en) 2004-04-12
US6367152B1 (en) 2002-04-09
JP2001024119A (en) 2001-01-26
US20020050339A1 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
US20100300671A1 (en) Heat sink and method for manufacturing same
US6637109B2 (en) Method for manufacturing a heat sink
US5419041A (en) Process for manufacturing a pin type radiating fin
US5771966A (en) Folded conducting member heatsinks and method of making same
US9233438B2 (en) Heat sink and method for manufacturing
US7950447B2 (en) Heat dissipation module
JP2006114688A (en) Heat sink
US6861293B2 (en) Stacked fin heat sink and method of making
JP2002118211A (en) Radiator of electronic component and manufacturing method of the radiator
JP2002184922A (en) Composite heat dissipating member
US20040010912A1 (en) Method for making a heat sink device and product made thereby
JP2797978B2 (en) Channel type heat radiation fin and method of manufacturing the same
JPH0682767B2 (en) Heat sink manufacturing method
US7468554B2 (en) Heat sink board and manufacturing method thereof
JPS5846660A (en) Manufacture of heat sink
JPH1071462A (en) Radiation fin and its manufacture
RU184729U1 (en) RADIATOR FOR COOLING ELECTRONIC DEVICES
JP2004022830A (en) Heat sink
CN110461130B (en) Mosaic type heat dissipation structure and manufacturing method thereof
JPH10163388A (en) Heat sink and its manufacture
JP4429519B2 (en) heatsink
JP2002299864A (en) Corrugated fin type heat sink
JP4513236B2 (en) Joining method for dissimilar metal joints
JP2000315755A (en) Manufacture of lead frame material
JP4494662B2 (en) Leg heat sink and manufacturing method thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION