US20100300671A1 - Heat sink and method for manufacturing same - Google Patents
Heat sink and method for manufacturing same Download PDFInfo
- Publication number
- US20100300671A1 US20100300671A1 US12/828,724 US82872410A US2010300671A1 US 20100300671 A1 US20100300671 A1 US 20100300671A1 US 82872410 A US82872410 A US 82872410A US 2010300671 A1 US2010300671 A1 US 2010300671A1
- Authority
- US
- United States
- Prior art keywords
- heat transfer
- base plate
- transfer promoting
- heat sink
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 236
- 230000001737 promoting effect Effects 0.000 claims abstract description 130
- 230000005855 radiation Effects 0.000 claims abstract description 63
- 238000005219 brazing Methods 0.000 claims description 17
- 238000007747 plating Methods 0.000 claims description 14
- 238000003466 welding Methods 0.000 claims description 13
- 229910000838 Al alloy Inorganic materials 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 238000005242 forging Methods 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 238000005304 joining Methods 0.000 claims description 6
- 229910000881 Cu alloy Inorganic materials 0.000 claims 5
- 239000002131 composite material Substances 0.000 claims 4
- 230000001965 increasing effect Effects 0.000 abstract description 16
- 230000017525 heat dissipation Effects 0.000 abstract description 9
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000010276 construction Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/26—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4871—Bases, plates or heatsinks
- H01L21/4882—Assembly of heatsink parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P2700/00—Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
- B23P2700/10—Heat sinks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
Definitions
- This invention relates to a heat sink for promoting heat dissipation from a large-scaled integrated circuit or the like, and more particularly to a heat sink exhibiting enhanced cooling efficiency and a method for effectively and economically manufacturing the same.
- Heat sinks for enhancing heat dissipation of a large-scaled integrated circuit or the like are formed by subjecting, for example, an aluminum material to plastic working, to thereby raise a number of fins from a base section.
- a configuration of the heat sink such as a height of the radiation fins or the like which directly affects cooling performance of the heat sink permits the heat sink to exhibit novelty and originality which are never anticipated from the prior art.
- Such a heat sink is mainly used as a heat dissipation element for a CPU of a personal computer or the like.
- a personal computer tends to be requested to exhibit a further increased processing speed, therefore, currently an increase in generation of heat from a CPU or the like due to increases in clock frequency and the number of gates is unavoidable.
- a heat sink having a bottom surface area several times as large as an upper surface area of a package of a CPU or the like, which is so constructed that a metal plate made of a metal material increased in thermal conductivity as compared with a material for the heat sink is interposed between the upper surface of the package and a bottom surface of a base plate of the heat sink.
- a heat sink 1 ′ includes a base plate 2 ′, which is fixedly mounted on a bottom surface thereof with a metal plate 6 ′ having the same shape as the bottom surface of the base plate 2 ′ by any suitable techniques such as brazing, screwing or the like. Then, the heat sink 1 ′ is securely fixed through the metal plate 6 ′ to an upper surface of a package of an electronic component E′ such as a CPU or the like while being kept in contact with the upper surface of the package.
- an electronic component E′ such as a CPU or the like
- Such construction permits heat generated from the electronic component E′ to be diffused or dispersed over a whole region of the metal plate 6 ′ and then transferred to the whole bottom surface of the heat sink 1 ′, resulting in heat dissipation of the heat sink 1 ′ being carried out with improved efficiency.
- the brazing taking place for the fixing requires a pretreatment prior to the brazing. More particularly, prior to the brazing, it is required to subject a joint surface of the base plate 2 ′ of the heat sink 1 ′ made of an aluminum material to a surface treatment such as plating, metal spraying or the like to permit the joint surface of the heat sink to be ready for the brazing.
- a pretreatment with respect to the heat sink 1 ′ having the radiation fins 3 ′ already formed thereon causes not only a manufacturing cost to be highly increased but a reduction in strength of the radiation fins 3 ′ and deformation thereof due to softening of the radiation fins 3 ′ by heating during the brazing.
- fixing of the metal plate 6 ′ to the bottom surface of the base plate 2 ′ is often carried out by post-attaching the metal plate 6 ′ to the heat sink 1 ′ after formation of the heat sink 1 ′.
- this frequently causes inadvertent bending of the radiation fins 3 ′ which are inherently delicate, leading to a deterioration in yields of the heat sink.
- the present invention has been made in view of the foregoing disadvantages of the prior art.
- a heat sink in accordance with one aspect of the present invention, includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate.
- the base plate includes a main base plate section made of a main material of which the radiation fins are made and a base plate section for promoting heat transfer (hereinafter referred to as “heat transfer promoting base plate section”) made of a heat transfer promoting material different from the material for the main base plate section.
- the heat transfer promoting material is previously integrated with the main material at a stage at which working of a workpiece is started.
- the above-described construction of the heat sink permits heat generated from an electronic component to be diffused or dispersed over the whole heat transfer promoting base plate section and then transferred through the whole main base plate section to the radiation fins, so that the heat sink may be increased in heat dissipation efficiency.
- the heat transfer promoting material is previously integrated with the main material at a stage at which working of the workpiece is started. This ensures that the heat transfer promoting base plate section is formed integrally with the main base plate section concurrently with forming of the heat sink, to thereby eliminate parts such as screws or the like for fixing of the heat transfer promoting base plate section to the main base plate section and operation for the fixing, resulting in a manufacturing cost of the heat sink being reduced and inadvertent bending of the radiation fins which are intrinsically delicate being prevented.
- a heat sink in accordance with this aspect of the present invention, includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate.
- the base plate is constituted by only a heat transfer base plate section made of a heat transfer promoting material.
- the radiation fins are made of a main material and arranged so as to project from the heat transfer promoting base plate section.
- the heat transfer promoting material is previously integrated with the main material at a stage at which working of a workpiece is started.
- the heat sink thus constructed permits heat generated from the electronic component to be efficiently dissipated from the radiation fins.
- the main material is aluminum alloy and the heat transfer promoting material is a material having thermal conductivity larger than that of aluminum.
- the heat transfer promoting material is a material having thermal conductivity larger than that of aluminum.
- the heat transfer promoting material is selected from the group consisting of copper and an alloy thereof. Such construction permits heat generated from the electronic component to be efficiently dispersed or diffused over the whole heat transfer promoting base plate section.
- the main material and heat transfer promoting material are coupled together by techniques selected from the group consisting of brazing, pressure welding by forging, deformation together with intermeshing and any combination thereof.
- Such construction permits the heat transfer promoting material to be in intimate or close contact with the main material, so that heat generated from the electronic component may be effectively dispersed or diffused over the whole heat transfer promoting base plate section.
- the heat transfer promoting material is coupled to the main material by plating the heat transfer promoting material on the main material.
- Such construction permits the heat transfer promoting material to be in more intimate contact with the main material, so that heat generated from the electronic component may be dispersed or diffused over the whole heat transfer promoting base plate section with enhanced efficiency.
- the main material and heat transfer promoting material are formed at a joint portion thereof through which both materials are coupled together with a means for increasing a contact area therebetween.
- a method for manufacturing a heat sink includes the step of subjecting a workpiece to forging under pressure in a die to form a base plate and radiation fins projecting from the base plate.
- the workpiece is made of a main material and a heat transfer promoting material having thermal conductivity larger than that of the main material.
- the radiation fins are constituted of the main material.
- the base plate may be constituted of the main material depending on a form of the heat sink as desired.
- the heat transfer promoting material is integrally provided on a surface of the main material opposite to a surface of the main material on which the radiation fins are formed.
- the method of the present invention thus constructed permits the heat transfer promoting base plate section to be formed integrally with the main base plate section concurrently with forming of the heat sink, to thereby eliminate parts such as screws or the like for fixing of the heat transfer base plate section to the main base plate section and operation for the fixing, resulting in a manufacturing cost of the heat sink being reduced and inadvertent bending of the radiation fins which are intrinsically delicate being prevented.
- the main material and heat transfer promoting material are previously formed integrally with each other by brazing. This ensures that the heat transfer promoting material is kept in intimate or close contact with the main material, so that heat generated from the electronic component may be effectively dispersed over the whole heat transfer promoting base plate section.
- the main material and heat transfer promoting material are previously formed integrally with each other by plating of the heat transfer material on the main material. This permits the heat transfer promoting material to be kept in more intimate contact with the main material, so that heat generated from the electronic component may be dispersed or diffused over the whole heat transfer promoting base plate section with enhanced efficiency.
- the main material and heat transfer promoting material are previously formed integrally with each other by temporarily coupling the main material and heat transfer promoting material to each other at the time working of the workpiece is started and subjecting at least one of the main material and heat transfer promoting material to plastic deformation, to thereby permit both materials to bite or intermesh with each other.
- This ensures that the heat transfer promoting material is kept in close contact with the main material, resulting in heat generated from the electronic component being efficiently dispersed over the whole heat transfer promoting base plate section.
- this permits the main base plate section and heat transfer promoting base plate section of the base plate to be integrally constructed together during forging under pressure, to thereby eliminate a separate step of coupling both sections to each other, leading to a reduction in manufacturing cost of the heat sink.
- FIG. 1 is a schematic perspective view showing a manner of operation of an embodiment of a heat sink according to the present invention
- FIG. 2A is a schematic side elevation view in section of the heat sink shown in FIG. 1 ;
- FIG. 2B is a schematic plan view of the heat sink shown in FIG. 1 ;
- FIG. 3A is a front elevation view in section showing an apparatus for manufacturing a heat sink according to the present invention by way of example;
- FIG. 3B is an enlarged view showing a region 3 B enclosed with a circle in FIG. 3A ;
- FIGS. 4A to 4D each are a perspective view showing coupling a main material and a heat transfer promoting material to each other to form a starting workpiece material;
- FIG. 5A is a front elevation view in section showing start of forming of radial fins in a method of the present invention
- FIG. 5B is a front elevation view in section showing forming of the radiation fins in the method of the present invention.
- FIG. 6A is a front elevation view in section showing completion of the forming in the method of the present invention.
- FIG. 6B is a front elevation view in section showing release of a die member from a forming die member in the method of the present invention
- FIG. 7 is a perspective view showing forming a starting workpiece material by plating a heat transfer promoting material on a main material
- FIG. 8 is a side elevation view in section showing a heat sink which is so constructed that radiation fins are arranged so as to project directly from a heat transfer promoting base plate section;
- FIG. 9A is a side elevation view in section showing a conventional heat sink in which a heat transfer promoting metal plate is mounted on a base plate;
- FIG. 9B is a plan view of the conventional heat sink shown in FIG. 9A .
- FIGS. 1 to 8 Now, the present invention will be described with reference to FIGS. 1 to 8 .
- a heat sink of the illustrated embodiment which is generally designated by reference numeral 1 includes a base plate 2 and is so arranged that the base plate 2 is kept in intimate or close contact with an electronic component E increased in heat generation and mounted on a wiring substrate B.
- the heat sink 1 is kept in close contact with the electronic component E, so that heat generated from the electronic component E is received by the base plate 2 and then discharged or dissipated through the base plate 2 from radiation fins 3 , resulting in the electronic component E being cooled.
- the heat sink 1 as shown in FIGS. 2A and 2B , is formed by plastic forming in such a manner that a number of the radiation fins 3 are arranged on the base plate 2 of a rectangular shape so as to substantially perpendicularly extend therefrom.
- the base plate 2 includes a main base plate section 5 on which the radiation fins 3 are formed and a heat transfer promoting base plate section 6 arranged on a surface of the main base plate section 5 opposite to a surface thereof on which the radiation fins 3 are arranged.
- the radiation fins 3 and main base plate section 5 are made of a main material H and the heat transfer promoting base plate section 6 is made of a heat transfer promoting material C.
- the main material H may be aluminum alloy and the heat transfer promoting material C may be a material increased in thermal conductivity as compared with aluminum such as copper or alloy thereof.
- the main material H may be copper or alloy thereof.
- the heat transfer promoting material C is a material having thermal conductivity larger than copper or alloy thereof.
- the main material H and heat transfer promoting material C are kept previously integrally coupled to each other at a stage at which working of a starting material for a workpiece (starting workpiece material) is started, which workpiece is designated by reference character W o .
- workpiece used herein indicates a metal material constituted by the main material H and heat transfer promoting material C which is at each of a starting stage, an intermediate stage during forging under pressure and a final stage.
- the workpieces include the starting workpiece material W o , an intermediate workpiece material W 1 and a final workpiece material W 2 .
- Coupling the main material H and the heat transfer promoting material C to each other may be carried out using brazing, pressure welding by forging, deformation together with intermeshing or any combination thereof, which will be described in detail hereinafter.
- the radiation fins 3 are formed to have a surface area tens of times as large as an area of the surface of the base plate 2 on which the radiation fins 3 are formed, so that the heat sink 1 may be highly increased in heat radiation or dissipation efficiency.
- the base plate 2 is so constructed that a bottom surface area thereof is several times as large as an upper surface area of a package of the electronic component E to be cooled, so that the heat sink 1 may exhibit highly enhanced heat dissipation efficiency.
- the heat sink manufacturing apparatus includes a die 10 .
- the die 10 as shown in FIG. 3A , includes a force die member 12 for extruding the starting workpiece material W o and a forming die member 13 for forming the radiation fins 3 .
- the forming die member 13 is formed therein with a receiving recess 14 in which the starting workpiece material W o is received.
- the receiving recess 14 has a bottom acting as a press surface 16 .
- the press surface 16 is formed with a number of forming holes 15 .
- the receiving recess 14 is configured in the form of a continuous surface free from any seam or juncture.
- the forming die member 13 may be integrally formed.
- the forming die member 13 may be made by securely connecting a plurality of separate blocks to each other without defining any gap therebetween.
- the forming holes 15 are each so constructed that a side thereof initially abutted against the starting workpiece member W o or an upper side thereof in FIG. 3A functions as a constriction 15 a determining a planar dimension of each of the radiation fins 3 like a flat plate. Also, the forming holes 15 are each formed so that a portion deep therein which is away from the constriction 15 a or a lower portion thereof in FIG. 3A is increased in width as compared with the constriction 15 a , resulting in an enlargement 15 b being defined. The enlargement 15 b is formed so as to extend from a lower end of the constriction 15 a to a position near a lower surface of the forming die member 13 .
- the constriction 15 a is formed to have a shape corresponding to or depending on a configuration of each radiation fin 3 of the heat sink 1 .
- the force die member 12 includes a forcing portion formed with a forcing contact surface 17 .
- the forcing portion of the force die member 12 is fitted in the receiving recess 14 of the forming die member 13 , so that the forcing contact surface 17 forces a part of the starting workpiece material W o into each of the forming holes 15 .
- a metal plate in the form of a flat plate-like shape or a block-like shape is made of a metal material such as aluminum or the like, resulting in the main material H being provided.
- another metal plate of a flat plate-shape or a block-like shape is made of copper or alloy thereof which is a material having thermal conductivity larger than aluminum, to thereby provide the heat transfer promoting material C.
- the main material H and heat transfer promoting material C are integrally joined or coupled to each other, so that the starting workpiece material W o to be filled in the receiving recess 14 of the heat sink manufacturing apparatus may be obtained.
- Such coupling the main material H and the heat transfer promoting material C to each other is carried out using brazing, pressure welding by forging, deformation together with intermeshing or any combination thereof.
- the brazing as shown in FIG. 4A , may be attained by bringing the main material H and heat transfer promoting material C into close contact with each other and then placing molten metal at a boundary between the materials H and C, to thereby join both materials to each other using flow and wetting characteristics of the molten metal without melting the main material H and heat transfer promoting material C.
- the main material H may be previously subjected to copper plating, nickel plating or the like to render a surface of the main material H solderable. Then, both materials are joined together by soldering.
- the pressure welding by forging is accomplished by bringing the main material H and heat transfer promoting material C into close or intimate contact with each other and then subjecting both to pressure welding using any suitable pressing machine.
- the pressure welding may be carried out in such a manner that the main material H and heat transfer promoting material C are kept temporarily coupled to each other when working by the heat sink manufacturing apparatus is started, so that at least one of the main material H and heat transfer promoting member C may be subjected to plastic deformation during forming by the die 10 , resulting in both materials being press-bonded together.
- the deformation together with intermeshing may take place by forming the main material H and heat transfer promoting material C with one of cylindrical projections 7 and recesses 8 like through-holes and the other, respectively, and fitting the projections 7 in the recesses 8 to closely contact the materials C and H with each other. Then, the projections 7 are subjected to plastic deformation by means of any suitable pressing machine, resulting in pressure welding between both materials C and H being carried out in a manner like riveting.
- the deformation together with intermeshing may be attained by forming the main material H and heat transfer promoting material C with one of a dovetail projection 7 and a dovetail groove 8 and the other, respectively, and then fitting the dovetail projection 8 in the dovetail groove 8 . Then, both materials C and H are subjected to pressure welding using a pressing machine, resulting in them being press-bonded together.
- the deformation together with intermeshing may be carried out in such a manner that the main material H and heat transfer promoting material C are kept temporarily coupled to each other when working by the heat sink manufacturing apparatus described above is started and then at least one of the main material H and heat transfer promoting member C is subjected to plastic deformation during forming by the die 10 , resulting in both being securely joined or coupled to each other.
- the main material H and heat transfer promoting material C each may be formed so as to permit a joint portion thereof to be increased in contact area, as shown in, for example, FIG. 4D .
- the main material H and heat transfer promoting material C are formed on a whole joint surface thereof with one of elongated projections 7 and elongated recesses 8 and the other, respectively. Engagement between the projections 7 and the recesses 8 permits a contact surface between the main material H and the heat transfer promoting material C to be substantially increased.
- the projections 7 and recesses 8 cooperate with each other to provide a means for increasing a contact area.
- the starting workpiece material W o is placed in the receiving recess 14 of the forming die member 13 of the die 10 . Thereafter, the forcing portion of the force die member 12 of the die 10 is fitted in the receiving recess 14 , to thereby compress the starting workpiece material W o while forcing the forcing contact surface 17 against the material W o .
- the deformed material is downwardly moved, so that the radiation fins 3 may be formed.
- Extension of the radiation fins 3 to a position near the lower surface of the forming die member 13 permits the radiation fins 3 to be formed to have a predetermined length, so that the final workpiece material W 2 may be obtained as shown in FIG. 6A .
- the final workpiece material W 2 is released from the forming die member 13 , it is subjected to working or processing ends of the radiation fins 3 , painting and the like, resulting in the heat sink 1 which is a final product being obtained.
- manufacturing of the heat sink 1 by the illustrated embodiment eliminates a separate step of fixing the heat transfer promoting base plate section 6 on the main base plate section 5 and parts for the fixing such as screws or the like; because the heat transfer promoting material C is previously integrated with the main material H at a stage of the starting workpiece material W a , to thereby ensure that the heat transfer promoting base plate section 6 is formed integrally with the main base plate section 5 concurrently with forming of the final workpiece material W 2 .
- the present invention is not limited to the embodiment described above. Thus, it may be varied in various ways.
- coupling the main material H and heat transfer C to each other may be attained by plating of the heat transfer promoting material C on the main material H, as shown in FIG. 7 .
- the radiation fins 3 may be formed in a manner to project directly from the heat transfer promoting base plate section 6 or heat transfer promoting material C.
- Such construction may be realized, for example, by adjusting a volume of the heat transfer promoting material C so as to permit all the heat transfer promoting material C to be allocated to formation of the radiation fins 3 by plastic deformation. This permits heat generated from the electronic component E to be more efficiently dissipated from the radiation fins 3 .
- the present invention permits heat transfer from a heat generating source to the heat sink to be effectively promoted while reducing a manufacturing cost of the heat sink and increasing yields thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
A heat sink capable of permitting heat transfer from an electronic component to the heat sink to be effectively promoted while reducing a manufacturing cost of the heat sink and increasing yields thereof. The heat sink includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate. The base plate includes a main base plate section made of a main material of which the radiation fins are made and a heat transfer promoting base plate section made of a heat transfer promoting material different from the material of which the main base plate section is made. The heat transfer promoting material is integrated with said main material at a stage at which working of a workpiece. This permits heat generated from the electronic component to be dispersed over the whole heat transfer base plate section and then transferred through the whole main base plate section to the radiation fins, so that the heat sink may be increased in heat dissipation efficiency.
Description
- This application is a continuation of application Ser. No. 10/007,918, filed on Dec. 7, 2001, which is a divisional of application Ser. No. 09/613,737 filed Jul. 11, 2000, which claims priority from Japanese Application No. 11-199001 filed on Jul. 13, 1999, the disclosures of which are incorporated herein by reference.
- This invention relates to a heat sink for promoting heat dissipation from a large-scaled integrated circuit or the like, and more particularly to a heat sink exhibiting enhanced cooling efficiency and a method for effectively and economically manufacturing the same.
- Heat sinks for enhancing heat dissipation of a large-scaled integrated circuit or the like are formed by subjecting, for example, an aluminum material to plastic working, to thereby raise a number of fins from a base section. A configuration of the heat sink such as a height of the radiation fins or the like which directly affects cooling performance of the heat sink permits the heat sink to exhibit novelty and originality which are never anticipated from the prior art.
- Such a heat sink is mainly used as a heat dissipation element for a CPU of a personal computer or the like. In the market, a personal computer tends to be requested to exhibit a further increased processing speed, therefore, currently an increase in generation of heat from a CPU or the like due to increases in clock frequency and the number of gates is unavoidable.
- In order to further enhance heat dissipation efficiency from an electronic component in view of such current circumstances, it is carried out to use a heat sink having a bottom surface area several times as large as an upper surface area of a package of a CPU or the like, which is so constructed that a metal plate made of a metal material increased in thermal conductivity as compared with a material for the heat sink is interposed between the upper surface of the package and a bottom surface of a base plate of the heat sink.
- Now, such construction will be described with reference to
FIGS. 9A and 9B by way of example. Aheat sink 1′ includes abase plate 2′, which is fixedly mounted on a bottom surface thereof with ametal plate 6′ having the same shape as the bottom surface of thebase plate 2′ by any suitable techniques such as brazing, screwing or the like. Then, theheat sink 1′ is securely fixed through themetal plate 6′ to an upper surface of a package of an electronic component E′ such as a CPU or the like while being kept in contact with the upper surface of the package. - Such construction permits heat generated from the electronic component E′ to be diffused or dispersed over a whole region of the
metal plate 6′ and then transferred to the whole bottom surface of theheat sink 1′, resulting in heat dissipation of theheat sink 1′ being carried out with improved efficiency. - However, the above-described screwing which takes place for fixing of the
metal plate 6′ to the bottom surface of thebase plate 2′ causes the number of parts for the fixing and the number of steps therefor to be increased, leading to an increase in manufacturing cost of the heat sink. Also, it is highly difficult to carry out the fixing while keeping thewhole metal plate 6′ in intimate or close contact with the whole bottom surface of thebase plate 2′, to thereby cause loss in heat transfer, resulting in it failing in a satisfactory improvement in performance of the heat sink. - Also, the brazing taking place for the fixing requires a pretreatment prior to the brazing. More particularly, prior to the brazing, it is required to subject a joint surface of the
base plate 2′ of theheat sink 1′ made of an aluminum material to a surface treatment such as plating, metal spraying or the like to permit the joint surface of the heat sink to be ready for the brazing. Unfortunately, the pretreatment with respect to theheat sink 1′ having theradiation fins 3′ already formed thereon causes not only a manufacturing cost to be highly increased but a reduction in strength of theradiation fins 3′ and deformation thereof due to softening of theradiation fins 3′ by heating during the brazing. - Further, fixing of the
metal plate 6′ to the bottom surface of thebase plate 2′ is often carried out by post-attaching themetal plate 6′ to theheat sink 1′ after formation of theheat sink 1′. Unfortunately, this frequently causes inadvertent bending of theradiation fins 3′ which are inherently delicate, leading to a deterioration in yields of the heat sink. - The present invention has been made in view of the foregoing disadvantages of the prior art.
- Accordingly, it is an object of the present invention to provide a heat sink which is capable of promoting heat transfer from a heat generating element to the heat sink while realizing a reduction in manufacturing cost of the heat sink and an increase in yields thereof.
- It is another object of the present invention to provide a method for manufacturing a heat sink which method is capable of providing a heat sink realizing the above-described object.
- In accordance with one aspect of the present invention, a heat sink is provided. The heat sink includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate. The base plate includes a main base plate section made of a main material of which the radiation fins are made and a base plate section for promoting heat transfer (hereinafter referred to as “heat transfer promoting base plate section”) made of a heat transfer promoting material different from the material for the main base plate section. The heat transfer promoting material is previously integrated with the main material at a stage at which working of a workpiece is started.
- The above-described construction of the heat sink permits heat generated from an electronic component to be diffused or dispersed over the whole heat transfer promoting base plate section and then transferred through the whole main base plate section to the radiation fins, so that the heat sink may be increased in heat dissipation efficiency.
- The heat transfer promoting material is previously integrated with the main material at a stage at which working of the workpiece is started. This ensures that the heat transfer promoting base plate section is formed integrally with the main base plate section concurrently with forming of the heat sink, to thereby eliminate parts such as screws or the like for fixing of the heat transfer promoting base plate section to the main base plate section and operation for the fixing, resulting in a manufacturing cost of the heat sink being reduced and inadvertent bending of the radiation fins which are intrinsically delicate being prevented.
- In accordance with this aspect of the present invention, a heat sink is provided. The heat sink includes a base plate adaptable to be kept in direct contact with an electronic component which requires that heat be dissipated therefrom during operation thereof and radiation fins arranged so as to project from the base plate. The base plate is constituted by only a heat transfer base plate section made of a heat transfer promoting material. The radiation fins are made of a main material and arranged so as to project from the heat transfer promoting base plate section. The heat transfer promoting material is previously integrated with the main material at a stage at which working of a workpiece is started. The heat sink thus constructed permits heat generated from the electronic component to be efficiently dissipated from the radiation fins.
- In a preferred embodiment of the present invention, the main material is aluminum alloy and the heat transfer promoting material is a material having thermal conductivity larger than that of aluminum. Such construction promotes that heat generated from the electronic component is diffused or dispersed over the whole heat transfer promoting base plate section and then transferred through the main base plate section to the radiation fins, to thereby enhance heat dissipation efficiency of the heat sink.
- In a preferred embodiment of the present invention, the heat transfer promoting material is selected from the group consisting of copper and an alloy thereof. Such construction permits heat generated from the electronic component to be efficiently dispersed or diffused over the whole heat transfer promoting base plate section.
- In a preferred embodiment of the present invention, the main material and heat transfer promoting material are coupled together by techniques selected from the group consisting of brazing, pressure welding by forging, deformation together with intermeshing and any combination thereof. Such construction permits the heat transfer promoting material to be in intimate or close contact with the main material, so that heat generated from the electronic component may be effectively dispersed or diffused over the whole heat transfer promoting base plate section.
- In a preferred embodiment of the present invention, the heat transfer promoting material is coupled to the main material by plating the heat transfer promoting material on the main material. Such construction permits the heat transfer promoting material to be in more intimate contact with the main material, so that heat generated from the electronic component may be dispersed or diffused over the whole heat transfer promoting base plate section with enhanced efficiency.
- In a preferred embodiment of the present invention, the main material and heat transfer promoting material are formed at a joint portion thereof through which both materials are coupled together with a means for increasing a contact area therebetween. Thus, efficient heat transfer from the heat transfer promoting base plate section to the main base plate section may be ensured.
- In accordance with another aspect of the present invention a method for manufacturing a heat sink is provided. The method includes the step of subjecting a workpiece to forging under pressure in a die to form a base plate and radiation fins projecting from the base plate. The workpiece is made of a main material and a heat transfer promoting material having thermal conductivity larger than that of the main material. The radiation fins are constituted of the main material. Also, the base plate may be constituted of the main material depending on a form of the heat sink as desired. The heat transfer promoting material is integrally provided on a surface of the main material opposite to a surface of the main material on which the radiation fins are formed.
- The method of the present invention thus constructed permits the heat transfer promoting base plate section to be formed integrally with the main base plate section concurrently with forming of the heat sink, to thereby eliminate parts such as screws or the like for fixing of the heat transfer base plate section to the main base plate section and operation for the fixing, resulting in a manufacturing cost of the heat sink being reduced and inadvertent bending of the radiation fins which are intrinsically delicate being prevented.
- In a preferred embodiment of the present invention, the main material and heat transfer promoting material are previously formed integrally with each other by brazing. This ensures that the heat transfer promoting material is kept in intimate or close contact with the main material, so that heat generated from the electronic component may be effectively dispersed over the whole heat transfer promoting base plate section.
- In a preferred embodiment of the present invention, the main material and heat transfer promoting material are previously formed integrally with each other by plating of the heat transfer material on the main material. This permits the heat transfer promoting material to be kept in more intimate contact with the main material, so that heat generated from the electronic component may be dispersed or diffused over the whole heat transfer promoting base plate section with enhanced efficiency.
- In a preferred embodiment of the present invention, the main material and heat transfer promoting material are previously formed integrally with each other by temporarily coupling the main material and heat transfer promoting material to each other at the time working of the workpiece is started and subjecting at least one of the main material and heat transfer promoting material to plastic deformation, to thereby permit both materials to bite or intermesh with each other. This ensures that the heat transfer promoting material is kept in close contact with the main material, resulting in heat generated from the electronic component being efficiently dispersed over the whole heat transfer promoting base plate section. Also, this permits the main base plate section and heat transfer promoting base plate section of the base plate to be integrally constructed together during forging under pressure, to thereby eliminate a separate step of coupling both sections to each other, leading to a reduction in manufacturing cost of the heat sink.
- These and other objects and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings; wherein:
-
FIG. 1 is a schematic perspective view showing a manner of operation of an embodiment of a heat sink according to the present invention; -
FIG. 2A is a schematic side elevation view in section of the heat sink shown inFIG. 1 ; -
FIG. 2B is a schematic plan view of the heat sink shown inFIG. 1 ; -
FIG. 3A is a front elevation view in section showing an apparatus for manufacturing a heat sink according to the present invention by way of example; -
FIG. 3B is an enlarged view showing aregion 3B enclosed with a circle inFIG. 3A ; -
FIGS. 4A to 4D each are a perspective view showing coupling a main material and a heat transfer promoting material to each other to form a starting workpiece material; -
FIG. 5A is a front elevation view in section showing start of forming of radial fins in a method of the present invention; -
FIG. 5B is a front elevation view in section showing forming of the radiation fins in the method of the present invention; -
FIG. 6A is a front elevation view in section showing completion of the forming in the method of the present invention; -
FIG. 6B is a front elevation view in section showing release of a die member from a forming die member in the method of the present invention; -
FIG. 7 is a perspective view showing forming a starting workpiece material by plating a heat transfer promoting material on a main material; -
FIG. 8 is a side elevation view in section showing a heat sink which is so constructed that radiation fins are arranged so as to project directly from a heat transfer promoting base plate section; -
FIG. 9A is a side elevation view in section showing a conventional heat sink in which a heat transfer promoting metal plate is mounted on a base plate; and -
FIG. 9B is a plan view of the conventional heat sink shown inFIG. 9A . - Now, the present invention will be described with reference to
FIGS. 1 to 8 . - The following description will be first made in connection with a heat sink of the present invention and then made in connection with a method for manufacturing the same according to the present invention.
- Referring first to
FIG. 1 , the manner of operation of a heat sink according to an embodiment of the present invention is illustrated. A heat sink of the illustrated embodiment which is generally designated byreference numeral 1 includes abase plate 2 and is so arranged that thebase plate 2 is kept in intimate or close contact with an electronic component E increased in heat generation and mounted on a wiring substrate B. Thus, theheat sink 1 is kept in close contact with the electronic component E, so that heat generated from the electronic component E is received by thebase plate 2 and then discharged or dissipated through thebase plate 2 fromradiation fins 3, resulting in the electronic component E being cooled. - Now, the
heat sink 1 of the illustrated embodiment will be described with reference toFIGS. 1 to 2B . Theheat sink 1, as shown inFIGS. 2A and 2B , is formed by plastic forming in such a manner that a number of theradiation fins 3 are arranged on thebase plate 2 of a rectangular shape so as to substantially perpendicularly extend therefrom. - The
base plate 2 includes a mainbase plate section 5 on which theradiation fins 3 are formed and a heat transfer promotingbase plate section 6 arranged on a surface of the mainbase plate section 5 opposite to a surface thereof on which theradiation fins 3 are arranged. - The
radiation fins 3 and mainbase plate section 5 are made of a main material H and the heat transfer promotingbase plate section 6 is made of a heat transfer promoting material C. - In the illustrated embodiment, the main material H may be aluminum alloy and the heat transfer promoting material C may be a material increased in thermal conductivity as compared with aluminum such as copper or alloy thereof.
- Of course, the main material H may be copper or alloy thereof. In this instance, the heat transfer promoting material C is a material having thermal conductivity larger than copper or alloy thereof.
- The main material H and heat transfer promoting material C are kept previously integrally coupled to each other at a stage at which working of a starting material for a workpiece (starting workpiece material) is started, which workpiece is designated by reference character Wo.
- The term “workpiece” used herein indicates a metal material constituted by the main material H and heat transfer promoting material C which is at each of a starting stage, an intermediate stage during forging under pressure and a final stage. Thus, the workpieces include the starting workpiece material Wo, an intermediate workpiece material W1 and a final workpiece material W2.
- Coupling the main material H and the heat transfer promoting material C to each other may be carried out using brazing, pressure welding by forging, deformation together with intermeshing or any combination thereof, which will be described in detail hereinafter.
- In the
heat sink 1 of the illustrated embodiment, theradiation fins 3 are formed to have a surface area tens of times as large as an area of the surface of thebase plate 2 on which theradiation fins 3 are formed, so that theheat sink 1 may be highly increased in heat radiation or dissipation efficiency. Also, thebase plate 2 is so constructed that a bottom surface area thereof is several times as large as an upper surface area of a package of the electronic component E to be cooled, so that theheat sink 1 may exhibit highly enhanced heat dissipation efficiency. - Now, an apparatus for manufacturing the
heat sink 1 will be described with reference toFIGS. 3A and 3B . The heat sink manufacturing apparatus includes adie 10. Thedie 10, as shown inFIG. 3A , includes aforce die member 12 for extruding the starting workpiece material Wo and a formingdie member 13 for forming theradiation fins 3. - The forming
die member 13 is formed therein with a receivingrecess 14 in which the starting workpiece material Wo is received. The receivingrecess 14 has a bottom acting as apress surface 16. Thepress surface 16 is formed with a number of formingholes 15. The receivingrecess 14 is configured in the form of a continuous surface free from any seam or juncture. For formation of such areceiving recess 14 defined by the continuous surface, the formingdie member 13 may be integrally formed. Alternatively, the formingdie member 13 may be made by securely connecting a plurality of separate blocks to each other without defining any gap therebetween. - The forming
holes 15, as shown inFIG. 3B , are each so constructed that a side thereof initially abutted against the starting workpiece member Wo or an upper side thereof inFIG. 3A functions as aconstriction 15 a determining a planar dimension of each of theradiation fins 3 like a flat plate. Also, the formingholes 15 are each formed so that a portion deep therein which is away from theconstriction 15 a or a lower portion thereof inFIG. 3A is increased in width as compared with theconstriction 15 a, resulting in anenlargement 15 b being defined. Theenlargement 15 b is formed so as to extend from a lower end of theconstriction 15 a to a position near a lower surface of the formingdie member 13. - The
constriction 15 a is formed to have a shape corresponding to or depending on a configuration of eachradiation fin 3 of theheat sink 1. - The force die
member 12 includes a forcing portion formed with a forcingcontact surface 17. The forcing portion of the force diemember 12 is fitted in the receivingrecess 14 of the formingdie member 13, so that the forcingcontact surface 17 forces a part of the starting workpiece material Wo into each of the forming holes 15. - Now, manufacturing of the heat sink by the heat sink manufacturing apparatus thus constructed will be described hereinafter.
- Production of Starting Workpiece Material
- First, in the illustrated embodiment, a metal plate in the form of a flat plate-like shape or a block-like shape is made of a metal material such as aluminum or the like, resulting in the main material H being provided.
- Then, another metal plate of a flat plate-shape or a block-like shape is made of copper or alloy thereof which is a material having thermal conductivity larger than aluminum, to thereby provide the heat transfer promoting material C.
- Subsequently, the main material H and heat transfer promoting material C are integrally joined or coupled to each other, so that the starting workpiece material Wo to be filled in the receiving
recess 14 of the heat sink manufacturing apparatus may be obtained. - Such coupling the main material H and the heat transfer promoting material C to each other is carried out using brazing, pressure welding by forging, deformation together with intermeshing or any combination thereof.
- The brazing, as shown in
FIG. 4A , may be attained by bringing the main material H and heat transfer promoting material C into close contact with each other and then placing molten metal at a boundary between the materials H and C, to thereby join both materials to each other using flow and wetting characteristics of the molten metal without melting the main material H and heat transfer promoting material C. - More specifically, for example, when brazing is carried out by joining the heat transfer promoting material C made of copper and the main material H made of aluminum to each other by soldering, the main material H may be previously subjected to copper plating, nickel plating or the like to render a surface of the main material H solderable. Then, both materials are joined together by soldering.
- It should be understood that a cost for the above-described plating made on the main material H is substantially reduced as compared with that for plating carried out after formation of radiation fins as described above in connection with the prior art and the plating is readily attained substantially without any trouble.
- The pressure welding by forging is accomplished by bringing the main material H and heat transfer promoting material C into close or intimate contact with each other and then subjecting both to pressure welding using any suitable pressing machine.
- Alternatively, the pressure welding may be carried out in such a manner that the main material H and heat transfer promoting material C are kept temporarily coupled to each other when working by the heat sink manufacturing apparatus is started, so that at least one of the main material H and heat transfer promoting member C may be subjected to plastic deformation during forming by the
die 10, resulting in both materials being press-bonded together. - The deformation together with intermeshing, as shown in
FIG. 4B , may take place by forming the main material H and heat transfer promoting material C with one ofcylindrical projections 7 and recesses 8 like through-holes and the other, respectively, and fitting theprojections 7 in therecesses 8 to closely contact the materials C and H with each other. Then, theprojections 7 are subjected to plastic deformation by means of any suitable pressing machine, resulting in pressure welding between both materials C and H being carried out in a manner like riveting. - Alternatively, the deformation together with intermeshing, as shown in
FIG. 4C , may be attained by forming the main material H and heat transfer promoting material C with one of adovetail projection 7 and adovetail groove 8 and the other, respectively, and then fitting thedovetail projection 8 in thedovetail groove 8. Then, both materials C and H are subjected to pressure welding using a pressing machine, resulting in them being press-bonded together. - Also, the deformation together with intermeshing may be carried out in such a manner that the main material H and heat transfer promoting material C are kept temporarily coupled to each other when working by the heat sink manufacturing apparatus described above is started and then at least one of the main material H and heat transfer promoting member C is subjected to plastic deformation during forming by the
die 10, resulting in both being securely joined or coupled to each other. - The main material H and heat transfer promoting material C each may be formed so as to permit a joint portion thereof to be increased in contact area, as shown in, for example,
FIG. 4D . InFIG. 4D , the main material H and heat transfer promoting material C are formed on a whole joint surface thereof with one ofelongated projections 7 andelongated recesses 8 and the other, respectively. Engagement between theprojections 7 and therecesses 8 permits a contact surface between the main material H and the heat transfer promoting material C to be substantially increased. Thus, it will be noted that in the illustrated embodiment, theprojections 7 and recesses 8 cooperate with each other to provide a means for increasing a contact area. - Forming
- Then, the starting workpiece material Wo, as shown in
FIG. 5A , is placed in the receivingrecess 14 of the formingdie member 13 of thedie 10. Thereafter, the forcing portion of the force diemember 12 of the die 10 is fitted in the receivingrecess 14, to thereby compress the starting workpiece material Wo while forcing the forcingcontact surface 17 against the material Wo. This permits a part of the main material H of the starting workpiece material Wo to be drawn into the formingholes 15 of the formingdie member 13, to thereby be deformed, so that forming may be carried out as shown inFIG. 5B . Then, the deformed material is downwardly moved, so that theradiation fins 3 may be formed. - Completion of Forming
- Extension of the
radiation fins 3 to a position near the lower surface of the formingdie member 13 permits theradiation fins 3 to be formed to have a predetermined length, so that the final workpiece material W2 may be obtained as shown inFIG. 6A . - Release of Forming Die Member
- After the final workpiece material W2 is formed as described above, pressing by the force die
member 12 is stopped and the force diemember 12 is upwardly moved as shown inFIG. 6B . - Release of Die Member
- After the final workpiece material W2 is released from the forming
die member 13, it is subjected to working or processing ends of theradiation fins 3, painting and the like, resulting in theheat sink 1 which is a final product being obtained. - As will be noted from the above, manufacturing of the
heat sink 1 by the illustrated embodiment eliminates a separate step of fixing the heat transfer promotingbase plate section 6 on the mainbase plate section 5 and parts for the fixing such as screws or the like; because the heat transfer promoting material C is previously integrated with the main material H at a stage of the starting workpiece material Wa, to thereby ensure that the heat transfer promotingbase plate section 6 is formed integrally with the mainbase plate section 5 concurrently with forming of the final workpiece material W2. This leads to a reduction in manufacturing cost of the heat sink and prevents inadvertent bending of theradiation fins 3 which are inherently delicate. - The present invention is not limited to the embodiment described above. Thus, it may be varied in various ways. For example, coupling the main material H and heat transfer C to each other may be attained by plating of the heat transfer promoting material C on the main material H, as shown in
FIG. 7 . This permits the heat transfer promoting material C to be highly intimately bonded or joined to the main material H, so that heat generated from the electronic component E may be more efficiently diffused or dispersed over the whole heat transfer promotingbase plate section 6. - Also, the
radiation fins 3, as shown inFIG. 8 , may be formed in a manner to project directly from the heat transfer promotingbase plate section 6 or heat transfer promoting material C. Such construction may be realized, for example, by adjusting a volume of the heat transfer promoting material C so as to permit all the heat transfer promoting material C to be allocated to formation of theradiation fins 3 by plastic deformation. This permits heat generated from the electronic component E to be more efficiently dissipated from theradiation fins 3. - As can be seen from the foregoing, the present invention permits heat transfer from a heat generating source to the heat sink to be effectively promoted while reducing a manufacturing cost of the heat sink and increasing yields thereof.
- While preferred embodiments of the invention have been described with a certain degree of particularity with reference to the drawings, obvious modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
Claims (25)
1. A heat sink for dissipating heat from an electronic component, comprising:
a base plate formed of a heat transfer promoting material, said base plate being adaptable to be kept in direct contact with said electronic component; and
radiation fins formed of a main material and projecting from said base plate;
2. A heat sink as defined in claim 1 , wherein said main material is aluminum alloy and said heat transfer promoting material has a thermal conductivity larger than the thermal conductivity of aluminum.
3. A heat sink as defined in claim 2 , wherein said heat transfer promoting material is selected from the group consisting of copper and copper alloy.
4. A heat sink as defined in claim 2 , wherein said main material and heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing and any combination thereof.
5. A heat sink as defined in claim 2 , wherein said heat transfer promoting material is coupled to said main material by plating said heat transfer promoting material on said main material.
6. A heat sink as defined in claim 2 , wherein said main material and said heat transfer promoting material define a joint portion where said main material and said heat transfer material are coupled together increase a contact area therebetween.
7. A heat sink as defined in claim 1 , wherein said heat transfer promoting material is selected from the group consisting of copper and copper alloy.
8. A heat sink as defined in claim 1 , wherein said main material and heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing, and any combination thereof.
9. A heat sink as defined in claim 1 , wherein said heat transfer promoting material is coupled to said main material by plating said heat transfer promoting material on said main material.
10. A heat sink as defined in claim 1 , wherein said main material and said heat transfer promoting material define a joint portion where said main material and said heat transfer material are coupled together increase a contact area therebetween.
11. A heat sink for dissipating heat from an electronic component comprising a base plate and radiation fins projecting from said base plate, said base plate in detachable contact with said electronic component, said base plate comprising a composite material including a main material comprising a main base plate portion located adjacent to said radiation fin and a heat transfer promoting material which have been coupled to each other, said base plate including at least a portion located on the side thereof opposite from said radiation fins comprising said heat transfer promoting material comprising a heat transfer promoting base plate portion located on a side thereof opposite from said radiation fins and being in direct contact with said electronic component, said radiation fins and said main material being integrally formed as a seamless one-piece structure, and said main material and said heat transfer promoting material define a joint portion where said main material and heat transfer material are coupled together so as to increase a contact area therebetween;
said main material comprising an aluminum alloy and said heat transfer promoting material having a thermal conductivity larger than the thermal conductivity of said aluminum alloy;
said main base plate portion and said heat transfer promoting base plate portion having respective opposing surfaces of the same shape when viewed in plan view and bonded through the entire opposing surfaces thereof.
12. A heat sink as defined in claim 11 , wherein said heat transfer promoting material is selected from the group consisting of copper and copper alloy.
13. A heat sink as defined in claim 11 , wherein said main material and heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing, and any combination thereof.
14. A heat sink as defined in claim 11 , wherein said heat transfer promoting material is coupled to said main material by plating said heat transfer promoting material on said main material.
15. A heat sink as defined in claim 11 wherein said base plate comprises said heat transfer promoting material.
16. A heat sink for dissipating heat from an electronic component comprising a base plate having a first surface in detachable contact with said electronic component and a second surface opposite from said first surface, and radiation fins projecting from said second surface of said base plate, said base plate and said radiation fins being integral and formed of a composite material including a main material comprising an aluminum alloy and a heat transfer promoting material which have been coupled to each other, said heat transfer promoting material having a thermal conductivity greater than the thermal conductivity of said aluminum alloy, said base plate including a main base plate portion located adjacent to said radiation fins to form said second surface thereof, and a heat transfer promoting base portion located on a surface opposite from said radiation fins to form said first surface thereof and being in direct contact with said electronic component, said main base plate portion and said radiation fins comprising said main material and said heat transfer promoting base plate portion comprising a heat transfer promoting material, and wherein said main material and said heat transfer promoting material define a joint portion where said main material and said heat transfer promoting material are coupled together so as to increase a contact area therebetween;
said main base plate portion and said heat transfer promoting base plate portion having respective opposing surfaces of the same shape when viewed in a plan view and being bonded through the entire opposing surfaces thereof.
17. A heat sink as defined in claim 16 wherein said main material comprises an aluminum alloy, and said heat transfer promoting material comprises a material having thermal conductivity greater than the thermal conductivity of aluminum.
18. A heat sink as defined in claim 16 wherein said heat transfer promoting material comprises a material selected from the group consisting of copper and copper alloy.
19. A heat sink as defined in claim 16 wherein said main material and said heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing, and combinations thereof.
20. A heat sink as defined in claim 16 wherein said heat transfer promoting material is coupled to said main material by plating said heat transfer promoting material on said main material.
21. A heat sink for dissipating heat from an electronic component comprising a base plate and radiation fins projecting from said base plate, said base plate being maintained in direct contact with said electronic component, said base plate comprising a composite material including a main material comprising an aluminum alloy and a heat transfer promoting material which have been coupled to each other said heat transfer promoting material having a thermal conductivity larger than the thermal conductivity of aluminum, said base plate including at least a portion located on the side thereof opposite from said radiation fins comprising said heat transfer promoting material in direct contact with said electronic component, said radiation fins and said main material being unitarily formed as a seamless one-piece structure, said radiation fins being formed by plastic deformation of said main material;
said main material and said heat transfer promoting material having respective opposing surfaces of the same shape when viewed in plan view and being bonded through the entire opposing surfaces thereof.
22. A heat sink as defined in claim 21 , wherein said main material is an aluminum alloy and said heat transfer promoting material has a thermal conductivity larger than the thermal conductivity of aluminum.
23. A heat sink as defined in claim 21 , wherein said heat transfer promoting material is selected from the group consisting of copper and copper alloy.
24. A heat sink as defined in claim 21 , wherein said main material and heat transfer promoting material are coupled together by a technique selected from the group consisting of brazing, pressure welding by forging, deformation with intermeshing, and any combination thereof.
25. A heat sink for dissipating heat from an electronic component comprising a base plate having a first surface in detachable contact with said electronic component and a second surface opposite from said first surface, and radiation fins projecting from said second surface of said base plate, said base plate and said radiation fins being integral and formed of a composite material including a main material made of aluminum alloy and a heat transfer promoting material which have been coupled to each other, said heat transfer promoting material being in direct contact with said electronic component and having a thermal conductivity greater than the thermal conductivity of said aluminum alloy, said base plate including a main base plate portion including a first joining surface opposite from said opposite from said second surface of said base plate, and located adjacent to said radiation fins to form said second surface thereof, and a heat transfer promoting base portion including a second joining surface in contact with said first joining surface located on a surface opposite from said radiation fins to form said first surface thereof, said main base plate portion and said radiation fins being unitarily formed as a seamless one-piece structure, said radiation fins being formed by plastic deformation of said main material, and said heat transfer promoting base plate portion comprising a heat transfer promoting material;
said first and second joining surfaces having the same outer configuration whereby said main base plate portion and said heat transfer promotion base portion are coupled together through the entire joining surfaces thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/828,724 US20100300671A1 (en) | 1999-07-13 | 2010-07-01 | Heat sink and method for manufacturing same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-199001 | 1999-07-13 | ||
JP19900199A JP3517831B2 (en) | 1999-07-13 | 1999-07-13 | Heat sink and manufacturing method thereof |
US09/613,737 US6367152B1 (en) | 1999-07-13 | 2000-07-11 | Method for manufacturing a heat sink |
US10/007,918 US20020050339A1 (en) | 1999-07-13 | 2001-12-07 | Heat sink and method for manufacturing same |
US12/828,724 US20100300671A1 (en) | 1999-07-13 | 2010-07-01 | Heat sink and method for manufacturing same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/007,918 Continuation US20020050339A1 (en) | 1999-07-13 | 2001-12-07 | Heat sink and method for manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100300671A1 true US20100300671A1 (en) | 2010-12-02 |
Family
ID=16400458
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/613,737 Expired - Lifetime US6367152B1 (en) | 1999-07-13 | 2000-07-11 | Method for manufacturing a heat sink |
US10/007,918 Abandoned US20020050339A1 (en) | 1999-07-13 | 2001-12-07 | Heat sink and method for manufacturing same |
US12/828,724 Abandoned US20100300671A1 (en) | 1999-07-13 | 2010-07-01 | Heat sink and method for manufacturing same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/613,737 Expired - Lifetime US6367152B1 (en) | 1999-07-13 | 2000-07-11 | Method for manufacturing a heat sink |
US10/007,918 Abandoned US20020050339A1 (en) | 1999-07-13 | 2001-12-07 | Heat sink and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
US (3) | US6367152B1 (en) |
JP (1) | JP3517831B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6202303B1 (en) * | 1999-04-08 | 2001-03-20 | Intel Corporation | Method for producing high efficiency heat sinks |
JP3529358B2 (en) * | 2001-02-07 | 2004-05-24 | 古河電気工業株式会社 | Finned heat sink |
JP3946018B2 (en) * | 2001-09-18 | 2007-07-18 | 株式会社日立製作所 | Liquid-cooled circuit device |
US6698500B2 (en) | 2002-01-22 | 2004-03-02 | The Furukawa Electric Co., Ltd. | Heat sink with fins |
US7108055B2 (en) * | 2002-03-29 | 2006-09-19 | Advanced Energy Technology Inc. | Optimized heat sink using high thermal conducting base and low thermal conducting fins |
US20030188848A1 (en) * | 2002-04-08 | 2003-10-09 | Yu-Chen Kuo | Complex heat-radiator |
US6784102B2 (en) | 2002-10-09 | 2004-08-31 | Lsi Logic Corporation | Laterally interconnecting structures |
US6851186B2 (en) * | 2002-11-13 | 2005-02-08 | Malico, Inc. | Environmental protection concerned method for manufacturing heat sink |
TW200604781A (en) * | 2004-07-30 | 2006-02-01 | Via Tech Inc | Expandable heat sink |
US20070271787A1 (en) * | 2006-05-23 | 2007-11-29 | Malico Inc. | Methods for manufacturing heat sink having relatively high aspects ratio thereof |
US20080073070A1 (en) * | 2006-09-26 | 2008-03-27 | Chin-Hu Kuo | Highly efficient heat dissipating composite material and a heat dissipating device made of such material |
TW200906286A (en) * | 2007-07-30 | 2009-02-01 | Jiing Tung Tec Metal Co Ltd | Magnesium alloy compound type heat dissipation metal |
TW200919160A (en) * | 2007-10-26 | 2009-05-01 | Delta Electronics Inc | Heat dissipation module and base and manufacturing method thereof |
US7731079B2 (en) * | 2008-06-20 | 2010-06-08 | International Business Machines Corporation | Cooling apparatus and method of fabrication thereof with a cold plate formed in situ on a surface to be cooled |
TW201135429A (en) * | 2010-04-07 | 2011-10-16 | Hon Hai Prec Ind Co Ltd | Heat sink |
AT514053A1 (en) * | 2013-02-26 | 2014-09-15 | Neuman Aluminium Fliesspresswerk Gmbh | Method for producing a heat sink and heat sink for electrical components |
US10914539B2 (en) | 2013-05-15 | 2021-02-09 | Osram Sylvania Inc. | Two piece aluminum heat sink |
JP6137153B2 (en) * | 2014-12-05 | 2017-05-31 | トヨタ自動車株式会社 | Method for forming pin-shaped fins |
JP6555374B1 (en) * | 2018-03-13 | 2019-08-07 | 日本電気株式会社 | Cooling structure, mounting structure |
EP4209289B1 (en) * | 2022-01-10 | 2024-06-19 | Benteler Automobiltechnik GmbH | Method and hot forming tool for manufacturing a heat exchanger plate |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3312277A (en) * | 1965-03-22 | 1967-04-04 | Astrodyne Inc | Heat sink |
US4917179A (en) * | 1987-05-22 | 1990-04-17 | Beckman Instruments, Inc. | Thermoelectric cooling design |
US5199164A (en) * | 1991-03-30 | 1993-04-06 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor package |
US5448107A (en) * | 1989-12-29 | 1995-09-05 | Sumitomo Electric Industries, Ltd. | Radiating fin having an improved life and thermal conductivity |
US5689404A (en) * | 1995-03-17 | 1997-11-18 | Fujitsu, Ltd. | Heat sink having air movement device positioned among tins and between heating elements |
US6032362A (en) * | 1996-08-09 | 2000-03-07 | Hitachi Metals, Ltd. | Method for producing a heat spreader and semiconductor device with a heat spreader |
US6085833A (en) * | 1996-06-06 | 2000-07-11 | Furukawa Electric Co., Ltd. | Heat sink |
US6088917A (en) * | 1997-12-26 | 2000-07-18 | Hon Hai Precision Ind. Co., Ltd. | Method for making heat sink device and a heat sink made thereby |
US6134783A (en) * | 1997-10-29 | 2000-10-24 | Bargman; Ronald D. | Heat sink and process of manufacture |
US6202303B1 (en) * | 1999-04-08 | 2001-03-20 | Intel Corporation | Method for producing high efficiency heat sinks |
-
1999
- 1999-07-13 JP JP19900199A patent/JP3517831B2/en not_active Expired - Fee Related
-
2000
- 2000-07-11 US US09/613,737 patent/US6367152B1/en not_active Expired - Lifetime
-
2001
- 2001-12-07 US US10/007,918 patent/US20020050339A1/en not_active Abandoned
-
2010
- 2010-07-01 US US12/828,724 patent/US20100300671A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3312277A (en) * | 1965-03-22 | 1967-04-04 | Astrodyne Inc | Heat sink |
US4917179A (en) * | 1987-05-22 | 1990-04-17 | Beckman Instruments, Inc. | Thermoelectric cooling design |
US5448107A (en) * | 1989-12-29 | 1995-09-05 | Sumitomo Electric Industries, Ltd. | Radiating fin having an improved life and thermal conductivity |
US5199164A (en) * | 1991-03-30 | 1993-04-06 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor package |
US5689404A (en) * | 1995-03-17 | 1997-11-18 | Fujitsu, Ltd. | Heat sink having air movement device positioned among tins and between heating elements |
US6085833A (en) * | 1996-06-06 | 2000-07-11 | Furukawa Electric Co., Ltd. | Heat sink |
US6032362A (en) * | 1996-08-09 | 2000-03-07 | Hitachi Metals, Ltd. | Method for producing a heat spreader and semiconductor device with a heat spreader |
US6134783A (en) * | 1997-10-29 | 2000-10-24 | Bargman; Ronald D. | Heat sink and process of manufacture |
US6088917A (en) * | 1997-12-26 | 2000-07-18 | Hon Hai Precision Ind. Co., Ltd. | Method for making heat sink device and a heat sink made thereby |
US6202303B1 (en) * | 1999-04-08 | 2001-03-20 | Intel Corporation | Method for producing high efficiency heat sinks |
Also Published As
Publication number | Publication date |
---|---|
JP3517831B2 (en) | 2004-04-12 |
US6367152B1 (en) | 2002-04-09 |
JP2001024119A (en) | 2001-01-26 |
US20020050339A1 (en) | 2002-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100300671A1 (en) | Heat sink and method for manufacturing same | |
US6637109B2 (en) | Method for manufacturing a heat sink | |
US5419041A (en) | Process for manufacturing a pin type radiating fin | |
US5771966A (en) | Folded conducting member heatsinks and method of making same | |
US9233438B2 (en) | Heat sink and method for manufacturing | |
US7950447B2 (en) | Heat dissipation module | |
JP2006114688A (en) | Heat sink | |
US6861293B2 (en) | Stacked fin heat sink and method of making | |
JP2002118211A (en) | Radiator of electronic component and manufacturing method of the radiator | |
JP2002184922A (en) | Composite heat dissipating member | |
US20040010912A1 (en) | Method for making a heat sink device and product made thereby | |
JP2797978B2 (en) | Channel type heat radiation fin and method of manufacturing the same | |
JPH0682767B2 (en) | Heat sink manufacturing method | |
US7468554B2 (en) | Heat sink board and manufacturing method thereof | |
JPS5846660A (en) | Manufacture of heat sink | |
JPH1071462A (en) | Radiation fin and its manufacture | |
RU184729U1 (en) | RADIATOR FOR COOLING ELECTRONIC DEVICES | |
JP2004022830A (en) | Heat sink | |
CN110461130B (en) | Mosaic type heat dissipation structure and manufacturing method thereof | |
JPH10163388A (en) | Heat sink and its manufacture | |
JP4429519B2 (en) | heatsink | |
JP2002299864A (en) | Corrugated fin type heat sink | |
JP4513236B2 (en) | Joining method for dissimilar metal joints | |
JP2000315755A (en) | Manufacture of lead frame material | |
JP4494662B2 (en) | Leg heat sink and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |