US20100258712A1 - Optical sensors that reduce spectral reflections - Google Patents
Optical sensors that reduce spectral reflections Download PDFInfo
- Publication number
- US20100258712A1 US20100258712A1 US12/499,723 US49972309A US2010258712A1 US 20100258712 A1 US20100258712 A1 US 20100258712A1 US 49972309 A US49972309 A US 49972309A US 2010258712 A1 US2010258712 A1 US 2010258712A1
- Authority
- US
- United States
- Prior art keywords
- light
- barrier
- light source
- optical sensor
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 95
- 230000003595 spectral effect Effects 0.000 title description 2
- 230000004888 barrier function Effects 0.000 claims abstract description 137
- 239000000758 substrate Substances 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 37
- 239000000463 material Substances 0.000 description 99
- 239000004593 Epoxy Substances 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000003698 laser cutting Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49171—Fan-out arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
Definitions
- Optical sensors such as optical proximity sensors, may include one or more light emitting elements (e.g., LEDs) and an adjacent photosensitive light detector, where the sensor can estimate proximity of an object based on the magnitude of reflected light from the one or more LEDs returning to the sensor.
- LEDs light emitting elements
- an adjacent photosensitive light detector where the sensor can estimate proximity of an object based on the magnitude of reflected light from the one or more LEDs returning to the sensor.
- the value of these sensors has become more important in the recent past with the advent of battery-operated handheld devices, such as mobile phones. For example, a fair amount of the energy from a mobile phone battery is used to drive the display, and there is value in turning off the display or backlight when the mobile phone or other device is brought to the user's ear (where it cannot be viewed anyway).
- Optical proximity sensors have been used for this, and many other applications.
- an optical proximity sensor can also be used as a simple touch or near-touch activated switch, and could be implemented in applications like keyboards or devices that have a plastic housing that is sealed but which allows the light from the source to pass through and be sensed by the detector on the return.
- a light barrier is often used to isolate the light source from the light detector.
- current techniques for manufacturing optical proximity sensors are relatively complex, costly and often results in sensors that are larger than desired.
- the optical proximity sensor components except the light source are often produced by one vendor, while the light source is produced by another vendor, resulting in the light source being installed separately from the rest of the components of the optical proximity sensor, which increases the overall footprint of the device, and the complexity and the cost of the assembly.
- Optical sensors are often used with (e.g., placed behind or covered by) a cover plate that is glass, plastic, or some other protective light transmissive material.
- the cover plate can be the glass covering a screen of a mobile phone, portable music player or personal data assistant (PDA), or the plastic covering a screen of a laptop computer.
- PDA personal data assistant
- the optical sensor is often susceptible to specular reflections. Just as it is desirable to minimize light being transmitted directly from the source to the detector, it is also desirable to minimize the specular reflections because such reflections similarly reduce the capability of the overall device to sense distance, since specular reflections are essentially noise that contain no information.
- Embodiments of the present invention are believed to provide such simple and cost effective sensors. Further embodiments of the present invention reduce a sensor's susceptibility to specular reflections.
- An optical sensor device includes a light detector die and a light source die attached to the same or different die attachment substrates so that there is a space between the light source die and the light detector die.
- a light transmissive material e.g., a clear epoxy
- a groove that is formed (e.g., saw, blade or laser cut, or cast) in the light transmissive material, between the light detector die and the light source die, is occupied by an opaque material (e.g., a black epoxy) that provides a light barrier between the light detector die and the light source die.
- an opaque material e.g., a black epoxy
- a method for providing an optical sensor device includes attaching a light detector die and a light source die to the same or different die attachment substrate(s), so that there is a space between the light detector die and the light source die.
- the method also includes covering the light detector die, the light source die and the space between the light detector die and the light source die with a light transmissive material, as well as forming a groove in the light transmissive material between the light detector die and the light source die. Further, an opaque material is put (e.g., dispensed) within the groove to form a light barrier between the light detector die and the light source die.
- Specific embodiments relate to a method for providing a plurality of optical sensor devices.
- the method includes attaching a plurality of light detector dies and a plurality of light source dies to one or more die attachment substrate(s) such that there is a predetermined amount of space between each one of the light detector dies and a corresponding one of the light source dies.
- the method also includes covering the light detector dies, the light source dies and the spaces therebetween with a light transmissive material, as well as forming grooves in the light transmissive material so that a groove is formed between each one of the light detector dies and the corresponding one of the light source dies.
- the grooves can alternatively be formed when the light transmissive material is formed, e.g., using features of a mold.
- the method also includes putting an opaque material within the grooves so that each one of the light detector dies and the corresponding one of the light source dies are separated by the opaque material.
- the method includes cutting through the light transmissive material and the die attachment substrate(s), to which the light detector dies and the light source dies are attached, to thereby provide a plurality of separated optical sensor devices that each include one of the light detector dies and a corresponding one of the light source dies with a light barrier formed by the opaque material therebetween.
- an optical sensor device comprises a light source including one or more light emitting elements, a light detector including one or more light detecting elements, and an opaque light barrier.
- the opaque light barrier includes a first portion between the light source and the light detector.
- a second portion of the light barrier extends from the first portion of the light barrier, in a direction towards the light source, such that at least a portion of the second portion of the light barrier covers a portion of at least one of the one or more light emitting elements of the light source.
- the first portion of the light barrier is configured to block light from being transmitted directly from the light source to the light detector.
- the second portion of the light barrier is configured to reduce an amount of specular reflections, if a light transmissive cover plate were placed over the optical sensor device.
- the optical sensor device can also include a lens (e.g., a convex lens) covering at least a portion of the light source, where the lens is off-centered relative to a center of the one or more light emitting elements of the light source, such that the center of the lens is offset in a direction away from the first portion of the opaque light barrier.
- a lens e.g., a convex lens
- Such a lens is configured to reduce an amount of specular reflections that would be detected by the light detector, if a light transmissive cover plate were placed over the optical sensor device.
- the opaque light barrier can also (or alternatively) include a portion (e.g., a third portion) that extends from the first portion of the light barrier, in a direction towards to the light detector, such that at least a portion of the third portion of the light barrier covers at least a portion of at least one of the one or more light detecting elements of the light detector.
- a third portion of the light barrier is configured to reduce an amount of specular reflections that would be detected by the one or more light detecting elements of the light detector, if a light transmissive cover plate were placed over the optical sensor device.
- Embodiments of the present invention are also directed to methods for providing an optical sensor device that include the first portion and the second portion and/or third portion described above.
- a method includes attaching a light detector to a substrate and attaching a light source to the same substrate to which the light detector is attached, or to another substrate, so that there is a space between the light detector and the light source.
- the light detector can include one or more light detecting elements
- the light source can include one or more light emitting elements.
- the method also includes forming an opaque light barrier having a first portion and a second portion, so that the first portion of the opaque light barrier is between the light detector and the light source, and so that at least a portion of the second portion of the light barrier covers at least a portion of at least one of the one or more light emitting elements of the light source.
- a method can also include covering at least a portion of the light source with a lens that is off-centered relative to a center of the one or more light emitting elements of the light source, such that the center of the lens is offset in a direction away from the first portion of the opaque light barrier.
- the forming of the opaque light barrier also includes forming a third portion of the opaque light barrier that extends from the first portion of the light barrier, in a direction towards to the light detector, such that at least a portion of the third portion of the light barrier covers at least a portion of at least one of the one or more light detecting elements of the light detector.
- FIG. 1 a top view of an optical sensor device (e.g., a proximity sensor device), according to certain embodiments of the present invention.
- an optical sensor device e.g., a proximity sensor device
- FIG. 2A is a side view of the device of FIG. 1 , according to a first embodiment of the present invention.
- FIG. 2B is a cross-sectional view of the device of FIGS. 1 and 2A , along dashed line B-B in FIG. 1 , according to the first embodiment of the present invention.
- FIG. 3A is a side view of the device of FIG. 1 , according to a second embodiment of the present invention.
- FIG. 3B is a cross-section view of the device of FIGS. 1 , along dashed line B-B in FIGS. 1 and 3A , according to the second embodiment of the present invention.
- FIG. 4A is a side view of the device of FIG. 1 , according to a third embodiment of the present invention.
- FIG. 4B is a cross-section view of the device of FIGS. 1 and 4A , along dashed line B-B in FIG. 1 , according to the third embodiment of the present invention.
- FIG. 5 is a high level flow diagram that is used to summarize various methods for providing an optical sensor device, in accordance with embodiments of the present invention.
- FIG. 6 is a high level flow diagram that is used to summarize various methods for providing a plurality of optical sensor devices, in accordance with embodiments of the present invention.
- FIG. 7 is a high level block diagram of a system that includes an optical sensor of an embodiment of the present invention.
- FIG. 8 illustrates how an optical sensor can be placed behind a cover plate that can cause specular reflections.
- FIG. 9A is a cross-sectional view of an optical sensor device including an L-shaped barrier, according to an embodiment of the present invention.
- FIG. 9B is a cross-sectional view of an optical sensor device including an L-shaped barrier, according to another embodiment of the present invention.
- FIG. 9C is a cross-sectional view of an optical sensor device including a T-shaped barrier, according to an embodiment of the present invention.
- FIG. 9D is a cross-sectional view of an optical sensor device including a T-shaped barrier, according to another embodiment of the present invention.
- FIG. 10 is a cross-sectional view of an optical sensor device including an off-centered lens, according to an embodiment of the present invention.
- FIGS. 11 and 12 are high level flow diagrams that are used to summarize specific embodiments of the present invention that can be used to provide optical sensor devices.
- FIG. 1 is a top view of an optical sensor device 102 (e.g., a proximity sensor device), according to specific embodiments of the present invention.
- FIG. 2A is a side view of the device 102 of FIG. 1
- FIG. 2B is a cross-sectional view of the device 102 of FIGS. 1 and 2A (along dashed line B-B in FIG. 1 ), according to a first embodiment of the present invention.
- the optical sensor device 102 includes a die attachment substrate 110 , which in FIG. 1 is shown as being a die attachment leadframe substrate, but can alternatively be a circuit board substrate, or a ceramic substrate, but is not limited thereto.
- a leadframe substrate can typically be made thinner than a circuit board substrate or a ceramic substrate, which can reduce the overall thickness of the device 102 , which may be desirable, depending on the application in which the device 102 is used.
- a leadframe substrate can have a thickness of about 0.2 mm, whereas a circuit board substrate would likely have a thickness of at least 0.3 or 0.4 mm.
- a leadframe substrate provides for better heat dissipation than a circuit board substrate. Additionally, a leadframe substrate, if metallic, is opaque to light, whereas a typical circuit board substrate is somewhat light transmissive (unless a black circuit board is used, which is difficult to obtain). Also, a leadframe substrate is typically less expensive than a circuit board substrate and a ceramic substrate.
- the light detector die 120 (which can also be referred to as a photosensor die, a photodetector die or an optical detector die) includes one or more light detecting elements, such as, but not limited to, a photoresistors, photovoltaic cells, photodiodes, phototransistors, charge-coupled devices (CCD), or the like, that can be used to produce a current or voltage indicative of the magnitude of detected light.
- the one or more light detecting elements form an active area 122 of the light detector die 120 .
- the active area 122 While an exemplary location of the active area 122 relative to the remainder of the light detector die 120 is shown in the FIGS., alternative locations for the active area 122 are also within the scope of the present invention.
- the active area 122 can be located further from (or closer to) the light source die 130 than is shown in the FIGS.
- the light source die 130 (which can also be referred to as a light emitter die) includes one or more light emitting elements, such as, but not limited to, light emitting diodes (LEDs), organic LEDs (OLEDs), bulk-emitting LEDs, surface-emitting LEDs, vertical-cavity surface-emitting lasers (VCSELs), superluminescent light emitting diodes (SLEDs), laser diodes, pixel diodes, or the like.
- An LED type light detector die 120 can include, for example, an n-type Silicon substrate with a p-type layer (e.g., a Gallium Arsenide (GaAs) layer) deposited on the n-type Silicon substrate.
- GaAs Gallium Arsenide
- An electrode attached to the p-type layer provides one of the terminals of the LED die, and another electrode attached to the n-type substrate provides the other terminal of the LED die.
- the electrode attached to the p-type layer can be, or can be attached to, a wire bond (e.g., the wire bond 116 attached to the top of the light source die 130 in FIG. 1 ).
- the electrode attached to the n-type substrate can be, e.g., a conductive (e.g., silver) epoxy.
- the conductive epoxy can attach the bottom of the n-type substrate to a die attachment leadframe substrate (e.g., 110 in FIG. 1 ).
- the die attachment leadframe substrate 110 is shown as including leadframe arms 112 a and 112 b, that extend from the main body of the die attachment leadframe 110 , and which can increase the light blocking capability of a light barrier that is formed in manners explained below. Also shown are leadframe bond pads 114 a - h, that are electrically isolated from the die attachment leadframe 110 , and wire bonds 116 that attach the light detector die 120 and the light source die 130 to the bond pads 114 a - h.
- a light transmissive material 140 covers the light detector die 120 , the light source die 130 and the die attachment substrate 110 (except where a groove 145 , discussed below, is formed).
- the light transmissive material 140 can be a light transmissive epoxy (e.g., a clear epoxy), or other light transmissive resin or polymer that is molded (e.g., transfer molded or cast molded) or otherwise formed over the light detector die 120 , the light source die 130 and the die attachment substrate 110 .
- a groove 145 (which can also be referred to as a channel) is formed in the light transmissive material between the light detector die and the light source die.
- the groove 145 can be saw cut, blade cut, or laser cut, or cut in another manner.
- the groove can be formed (e.g., cast) using a feature in the mold that is used to form the light transmissive material over the dies 120 and 130 and the space therebetween.
- the groove 145 can be formed by a thin fin machined to project from a mold surface.
- the opaque material 150 that provides a light barrier between the light detector die and the light source die.
- the opaque material can be an opaque epoxy (e.g., a black epoxy) or other opaque resin or polymer that does not allow the wavelength(s) of light produced by the light emitter die 130 to pass therethrough.
- the light barrier, formed by the opaque material 150 within the groove 145 prevents light produced by the one or more light emitting elements of the light source die 130 from being transmitted directly to and detected by the one or more light detecting elements of the light detector die 120 .
- the groove 145 is formed in the light transmissive material 140 preferably such that the groove 145 extends to the die attachment substrate 110 , as shown in FIGS. 2A and 2B . If the groove 145 does not extend all the way to the die attachment substrate 110 , the groove 145 should still be deep enough such that when the groove is occupied by the opaque material 150 , an adequate light barrier is provided between the light source die 130 and the light detector die 120 .
- FIGS. 3A and 3B are side and cross sections views respectfully of the light sensor device 102 ′, according to a second embodiment of the present invention.
- a strip of opaque material 154 is formed on the die attachment substrate 110 , and the groove 145 is formed in the light transmissive material 140 such that the groove 145 preferably extends to or in the strip of opaque material 154 .
- the strip of opaque material 154 can comprise the same opaque material as material 150 , or a different material.
- the strip 154 forms part of the light barrier between the light source die 130 and the light detector die 120 .
- the strip 154 can be deposited and cured prior to the light transmissive material 140 being cast or otherwise formed.
- FIGS. 4A and 4B are side and cross sections views respectfully of the light sensor device 102 ′′, according to a third embodiment of the present invention.
- a groove 152 is formed in the die attachment substrate 110 below where the groove 145 is formed (or more accurately, is thereafter formed) in the light transmissive material 140 .
- a strip of opaque material 154 is within the groove 152 and extends above a planar surface of the die attachment substrate 110 .
- the groove 145 formed in the light transmissive material 140 preferably extends to or into the strip of opaque material 154 .
- the strip 154 forms part of the light barrier between the light source die 130 and the light detector die 120 .
- the strip 154 can be deposited and cured prior to the light transmissive material 140 being cast or otherwise formed.
- the strip 154 not be included, but that the groove 145 is formed in the light transmissive material 140 so that the groove 145 as adjacent and continuous with the groove 152 in the die attachment substrate 110 , so that when the groove 152 is filled with the opaque material 140 , the groove 152 in the substrate 110 is also filled with the same opaque material 140 .
- the groove 145 if the groove 145 does not extend all the way to the strip 154 of opaque material, or all the way to the die attachment substrate 110 , the groove 145 should still be deep enough such that when occupied by the opaque material 150 , an adequate light barrier is provided between the light source die 130 and the light detector die 120 .
- the optical devices 102 , 102 ′ and 102 ′′ were shown as including a single die attachment substrate to which both the light detector die 120 and the light source die 130 are attached.
- the optical devices 102 , 102 ′ and 102 ′′ can include more then one die attachment substrate, e.g., such that the light detector die 120 is attached to one die attachment substrate and the light source die 130 is attached to another (e.g., an adjacent ) die attachment substrate.
- the groove 145 should still be formed between the light detector die 120 and the light source die 130 .
- the resulting sensor devices 102 , 102 ′ and 102 ′′ are dual row flat no lead (DFN) devices, as can be seen from FIGS. 2A , 3 A and 4 A.
- the exposed leadframe bond pads 114 enable the sensor devices to be connected to other circuitry.
- other pads, pins, ball grids, or the like can be provided to enable the optical sensors 102 , 102 ′ and 102 ′′ to be connected to other circuitry, as is well known in the art.
- the light transmissive material 140 can have shallow optical structures cast or otherwise formed therein to direct the emission of the light, as well as to direct or restrict the acceptance angle of the detector die.
- the optical structures may include, but are not limited to, small prisms, diffusers, smooth flat surfaces, lenses, shutters, or holographic elements, as well as combinations of these.
- the optical structures could be machined into a surface of a mold and replicated in a light transmissive material which is cast or otherwise formed using the mold.
- a light detector die e.g., 120
- a die attachment substrate e.g., 110
- a light source die e.g., 130
- the dies 120 and 130 can be attached to the die attachment substrate 110 , e.g., using an epoxy, which depending upon implementation, can be a non-conducting or a conducting (e.g., a silver filled) epoxy. Other attachment techniques are also possible, and within the scope of the present invention.
- an epoxy which depending upon implementation, can be a non-conducting or a conducting (e.g., a silver filled) epoxy.
- Other attachment techniques are also possible, and within the scope of the present invention.
- the light detector die, the light source die and the space between the light detector die and the light source die are covered with a light transmissive material (e.g., 140 ). This can be accomplished by covering the entire side of the substrate(s), to which the dies are attached, with the light transmissive material.
- the light transmissive material can be can be a clear or other light transmissive epoxy or other resin or polymer.
- the light transmissive material can be formed, e.g., using cast molding or transfer molding, but is not limited thereto.
- a groove (e.g., 145 ) is formed in the light transmissive material between the light detector die and the light source die.
- the groove can be formed by saw cutting, blade cutting or laser cutting, but is not limited thereto.
- the groove can be formed (e.g., cast) by a feature in a mold used to form the light transmissive material over the dies 120 and 130 and the space therebetween.
- the groove 145 can be formed by a thin fin machined to project from a mold surface.
- the groove is formed by cutting into the light transmissive material
- the entire space between the light detector die and the light source die can be covered with the light transmissive material at step 504 , which will thereafter be cut into at step 506 .
- the groove is formed by a feature in a mold, a portion of the space between the light detector die and the light source die will not be covered by the light transmissive material (due to the feature in the mold), with such portion forming the groove.
- an opaque material (e.g., 150 ) is put within the groove to form a light barrier between the light detector die and the light source die.
- the opaque material can be, e.g., an opaque epoxy, such as a black epoxy, or some other resin or polymer that is opaque to the wavelength(s) of light of produced by the light emitter die 130 .
- the formed light barrier prevents light produced by the one or more light emitting elements of the light source die (e.g., 130 ) from being transmitted directly to and detected by the one or more elements that detect light of the light detector die (e.g., 120 ).
- the opaque material can be placed within the groove in a precise and controlled manner, or can be spread over the entire surface of the light transmissive material to fill the groove and the excess can be wiped or otherwise cleaned away, similar to how tile is grouted.
- the opaque material can be squirted or otherwise dispensed, e.g., using positive pressure from an applicator (e.g., similar to a hollow needle) to fill or substantially fill the groove in a single pass or a multi-pass process, and excess opaque material can be wiped away or otherwise removed.
- an applicator e.g., similar to a hollow needle
- an automated dispensing system such as those available from Asymtek of Carlsbad, Calif., can be used to dispense the opaque material.
- Other techniques can also be used and are within the scope of the present invention.
- the opaque material fills or at least substantially fills the groove, preferably in a manner that prevents or minimizes the amount air bubbles therein, to maximize the opaqueness of the formed light barrier.
- the channel can be filled with the opaque material, and then the material can be cured so that air bubble collapse. Thereafter, one or more further layer/coating of the opaque material can be applied to fill in a dent or well that results after the air bubbles collapse.
- wire bonding or the like can be performed to connect the dies (e.g., 120 and 130 ) to bond pads (e.g., 114 ).
- a strip of opaque material e.g., 154
- a strip of opaque material e.g., 154
- an automated dispensing system such as those available from Asymtek of Carlsbad, Calif. Also, as was discussed above with reference to FIGS.
- a groove (e.g., 152 ) can be formed in the die attachment substrate 110 (e.g., etched into the substrate 110 ), and the groove may or may not be covered with a strip of opaque material (e.g., 154 ).
- the groove (e.g., 152 ) can also be used to increase the tolerance in the groove cut depth.
- An advantage of certain embodiments of the present invention is that a plurality of optical sensors can be produced in a cost and time effective manner, as will now be summarized with reference to the high level flow diagram of FIG. 6 .
- a plurality of light detector dies and a plurality of light source dies are attached to one or more die attachment substrates such that there is a predetermined amount of space between each one of the light detector dies and a corresponding one of the light source dies.
- 1000 light detector dies and 1000 corresponding light source dies can be attached to a 2 ⁇ 6 inch leadframe die attachment substrate in rows and columns (e.g., 20 rows ⁇ 50 columns) such that there is a predetermined amount of space (e.g., 1 mm) between each one of the light detector dies and a corresponding one of the light source dies.
- a predetermined amount of space e.g. 1 mm
- the light detector dies, the light source dies and at least a portion of the spaces therebetween are covered with a light transmissive material, using one of the techniques described above with reference to step 504 .
- a light transmissive material For example, all of the dies and the spaces therebetween can be covered using the same molding process at the same time. This can be accomplished by covering the entire side of the substrate(s), to which the dies are attached, with the light transmissive material.
- grooves in the light transmissive material are formed so that a groove is formed between each one of the light detector dies and the corresponding one of the light source dies.
- saw, blade or laser cutting, or the like can be used to form such grooves.
- relatively few cuts would need to be made to form the grooves between all of the light sources and the corresponding light detectors. For example, where there are 20 rows ⁇ 50 columns of die pairs (where a die pair is one of the light detector dies and a corresponding one of the light source dies), as few as 20 cuts would need to be made to form the grooves for all 1000 die pairs.
- the precise number of cuts would depend on the arrangement of the die pairs on the die attachment substrate(s).
- features of a mold used to form the light transmissive material over the dies
- relatively few mold features would be needed to form the grooves between all of the light sources and the corresponding light detectors. For example, where there are 20 rows ⁇ 50 columns of die pairs, as few as 20 thin fins machined to project from a mold surface can be used to form the grooves for all 1000 die pairs.
- the precise number of mold features would depend on the arrangement of the die pairs on die attachment substrate(s).
- the grooves are formed by cutting into the light transmissive material, the entire space between each die pair can be covered with the light transmissive material at step 604 , which will thereafter be cut into at step 606 .
- the grooves are formed by features of a mold, a portion of the space between each die pair will not be covered by the light transmissive material (due to a feature in the mold), with such portion forming the groove.
- an opaque material (e.g., 150 ) is put within the grooves to form a light barrier between each one of the light detector dies and the corresponding one of the light source dies.
- Exemplary techniques for putting the opaque material within the grooves is provided above in the discussion of step 508 . If a precision dispensing machine were used to dispense the opaque material into the grooves, relatively few passes of the dispensing machine would be needed to fill the grooves between all of the light sources and the corresponding light detectors. For example, where there are 20 rows ⁇ 50 columns of die pairs, as few as 20 passes of the dispensing machine can be used to fill the grooves for all 1000 die pairs. The precise number of passes would depend on the arrangement of the die pairs on die attachment substrate(s).
- wire bonding or the like can be performed to connect the dies to bond pads (e.g., 114 ).
- bond pads e.g., 114 .
- strips of opaque material e.g., 154
- grooves e.g., 152
- the grooves can be formed in the die attachment substrate(s) 110 (e.g., etched into the substrate 110 ), and the grooves may or may not be covered with strips of opaque material (e.g., 154 ), to increase the tolerance in the groove cut depth.
- relatively few grooves in the die attachment substrate(s) would need to be made to formed. For example, where there are 20 rows ⁇ 50 columns of die pairs, as few as 20 grooves in the die attachment substrate(s) would need to be formed for all 1000 die pairs.
- the optical sensors described above can provide proximity sensing capabilities, as well as other capabilities, such as, but not limited to, ambient light detection.
- the light detector die 120 can include circuitry to detect ambient light when the optical sensor is not being used to detect proximity.
- the light detector die 120 may also include circuitry to discriminate between light emitted from the light source die 130 that was reflected back toward the light detector die and ambient light, e.g., produced by the sun or an artificial light source intended to light a room.
- optical sensors 102 , 102 ′ and 102 ′′ described above can be used in various systems, including, but not limited to, mobile phones, portable computers, portable video players, handheld devices, and the like.
- an optical sensor 102 , 102 ′ or 102 ′′ can be used as a proximity sensor to control whether a subsystem 706 (e.g., a touch-screen, backlight, virtual scroll wheel, virtual keypad, navigation pad, etc.) is enabled or disabled.
- a subsystem 706 e.g., a touch-screen, backlight, virtual scroll wheel, virtual keypad, navigation pad, etc.
- the optical sensor 102 , 102 ′ or 102 ′′ can detect when an object 708 , such as a person's finger, is approaching, and based on the detection either enable (or disable) a subsystem 706 .
- light emitted from the light emitting element(s) of the light source die 130 When used as a proximity sensor, light emitted from the light emitting element(s) of the light source die 130 (or at least a portion of such light) will be reflected by an object (e.g., 708 ) when there is any, and be received by the light detector element(s) of light detector die 120 .
- the light detector die 120 can convert the reflected light (and potentially also ambient light) to a current, and a resistor and/or other component(s), e.g., a transimpedance amplifier, can be used to convert such a current to a voltage.
- the intensity of the reflected light received by the light source die 120 is generally decreased at a rate of about 1/(4*X ⁇ 2), where X is the distance between the object 708 and the sensor 102 , 102 ′ or 102 ′′.
- the total light received can also includes ambient light, which may be from sun light, halogen light, incandescent light, fluorescent light, etc.
- ambient light which may be from sun light, halogen light, incandescent light, fluorescent light, etc.
- Various techniques can be used to filter or separate out the ambient light response, some examples of which are disclosed in U.S.
- the system 700 can include one or more drivers 702 (e.g., an LED driver or laser driver) that drives the light emitting elements of the light source die 130 .
- drivers 702 e.g., an LED driver or laser driver
- the processor and/or circuitry 704 can, for example, compare the output(s) of the sensor 102 , 102 ′ or 102 ′′ to one or more thresholds to determine whether the object is within a range where the subsystem 706 should be enabled (or disabled, depending on what is desired), or to determine whether a touch key (e.g., of a touch keyboard) has been pressed.
- Multiple thresholds can be used, and more than one possible response can occur based on the detected proximity of an object. For example, a first response can occur if an object is within a first proximity range, and a second response can occur if the object is within a second proximity range. Other responses to the proximity of an object are also possible.
- the system 700 can additionally, or alternatively, use the optical sensor (e.g., 102 , 102 ′ or 102 ′′) to detect transient motion of an object, which is useful to distinguish a stationary object (e.g., a chair) within the range of the sensor from a non-stationary object.
- Time multiplexing and/or filtering may also be used so that the optical sensor 102 , 102 ′ or 102 ′′ can also be used as an ambient light sensor.
- the optical sensor 102 , 102 ′ or 102 ′′ can be used, e.g., to control the brightness of a display, to control the lighting within a room or other space, etc.
- optical sensors may be used with (e.g., placed behind or covered by) a cover plate 802 , which can be made, e.g., of glass, plastic, or some other protective light transmissive material.
- a cover plate 802 includes a close surface 804 and far a surface 806 , with a thickness of the plate 802 therebetween. While the close surface 804 is shown as being a distance from the top surface of the optical sensor (e.g., 102 , 102 ′ or 102 ′′), it is also possible that the close surface is in contact with (i.e., abuts against) the top surface of the optical sensor.
- the cover plate 802 can be, e.g., the glass covering a screen of a mobile phone, personal music player or personal data assistant (PDA), or the plastic covering the screen of a laptop computer, but is not limited thereto.
- Exemplary light rays 803 are also shown in FIG. 8 .
- at least some of the light rays, or portions thereof, can be reflected back toward the active area 122 of the light detector die 120 due to specular reflections.
- it is also desirable to minimize the specular reflections because such reflections similarly reduce the capability of the overall device to sense distance since they are essentially noise that contain no information.
- alternative light barriers can be used, in accordance with certain embodiments of the present invention, as will be described below.
- a light barrier 950 a includes a first portion 952 (similar to barrier 150 ) that prevents light produced by the light source die 130 from travelling directly to the light detector die 120 , in the same manner as did light barrier 150 . Additionally, the light barrier 950 a includes a second portion 954 that reduces specular reflections. This second portion 954 , which extends from the first portion, forms a shelf over the light source die 120 , and in an embodiment, covers at least a portion of a light emitting element(s) of the light source die 120 , as shown in FIG. 9 . As also shown in FIG.
- the light barrier 950 a can be considered “L-shaped” because the first and second portions 952 and 954 collectively resemble the letter “L”.
- the second portion 954 of the light barrier 950 a is perpendicular to the first portion 952 .
- the second portion 954 of the light barrier 950 a reduces the amount of specular reflections, and thereby reduces (and preferably minimizes) the amount of light detected by the active area 122 of light detector die 120 that would otherwise be due to specular reflections, if the sensor is used with a cover plate (e.g., 802 ). In this manner, the second portion 954 of the light barrier 950 a increases the sensitivity of the sensor 902 a.
- the second portion 954 of the light barrier 950 a increases the percentage of light that will be detected by the active area 122 of light detector die 120 that is actually due to reflections by an object on the far side of the cover plate 902 (as opposed to reflections from the cover plate 802 itself).
- a light barrier 950 b includes the first portion 952 (similar to barrier 150 ), the second portion 954 (that reduces specular reflections in the same manner described with reference to FIG. 9A ), and a third portion 956 that reduces the detection of specular reflections.
- This third portion 956 forms a shelf over the light detector die 130 , and in an embodiment, covers at least a portion of the active area 122 , as shown in FIG. 9B .
- such a light barrier 950 b can be considered “T-shaped” because the first, second and third portions 952 , 954 and 956 collectively resemble the letter “T”.
- the second portion 952 and the third portion 954 of the light barrier 950 b are each perpendicular to the first portion 952 .
- a barrier includes the portion 952 and 956 , but not the portion 952 , in which case, the barrier could be L-shaped.
- the third portion 956 of the light barrier 950 b reduces the amount of specular reflections that are detected by the active area 122 of the light detector die 120 , and thereby, increases the sensitivity of the sensor. Stated another way, the third portion 956 of the light barrier 950 b blocks at least some specular reflections that would otherwise be detected by the active area 122 of the light detector die 120 if the third portion 956 were not included.
- the L-shaped light barrier 950 a can be used in place of the barrier 150 shown in any of the previously discussed FIGS., and thus can be used with or without the groove 152 (formed in the die attachment substrate 110 ) and/or the strip of opaque material 154 (formed below the barrier).
- the L-shaped light barrier 950 a, or the T-shaped light barrier 950 b can be at least partially formed during steps 506 and 508 (or steps 606 and 608 ).
- an adjacent shallow groove can also be formed on one side (or both sides) of the groove 145 , where the adjacent groove(s) have the desired dimensions of the second and/or third portions 954 and/or 956 .
- the groove 145 corresponding to the first portion 952 , and an adjacent groove corresponding to the second portion 954 (and optionally also another adjacent groove corresponding to the third portion 956 ) of the barrier 950 a (or 950 b ) can be formed by corresponding features of the mold.
- the forming of the barrier 950 a (or 950 b ) can be completed at steps 508 or 608 when the opaque material is put within the formed groove(s).
- the outermost surface of the second portion 954 (and optionally also the third portion 956 ) of the light barrier 950 a (or 950 b ) is shown as being substantially flush with the outermost (i.e., top) surface of the light transmissive material 140 .
- the first portion 952 of the barrier 950 c (or 950 d ) can be formed in the same manner that the barrier 150 was formed, as described above, and the second portion 954 (and optionally also the third portion 956 ) can be formed above the outermost (i.e., top) surface of the light transmissive material 140 .
- the same opaque material used to form the first portion 952 of the barrier can be used to form the second portion 954 (and optionally also the third portion 956 ), or a different opaque material can be used.
- the second portion 954 (and optionally also the third portion 956 ) of the barrier 950 c (or 950 d ) can be formed above the outermost (i.e., top) surface of the light transmissive material 140 in a single or multi-pass process, e.g., using an automated dispensing system, such as those available from Asymtek of Carlsbad, Calif., and/or using a mask (similar to a lithography mask) or screen (similar to a silk screen), but is not limited thereto.
- the second portion 954 (and optionally also the third portion 956 ) of the barrier 950 c (or 950 d ) can essentially be painted or otherwise deposited in the desired pattern onto the outermost (i.e., top) surface of the light transmissive material 140 , with portions of the pattern overlapping the outermost (i.e., top) surface of the first portion 952 of the barrier 950 c (or 950 d ). In such embodiments, the second portion 954 (and optionally also the third portion 956 ) still extend from the first portion 952 .
- the second portion 954 (and optionally also the third portion 956 ) can be formed above the outermost (i.e., top) surface of the light transmissive material 140 after step 508 (of FIG. 5 ), or between steps 608 and 610 (of FIG. 6 ).
- a lens 1010 is placed at least partially over the light emitting element(s) of the light source die 130 , off-centered relative to the center of the light emitting element(s). More specifically, the center of the lens 1010 is offset in a direction away from the first portion 952 of the barrier 950 , as shown in FIG. 10 , where line 1012 represents the center of the light emitting element(s).
- the off-centered lens 1010 By re-directiong the light output by the light source die 130 (or at least a portion of such light) in a direction away the light detector die 120 , the off-centered lens 1010 reduces the amount of specular reflections (and thereby reduces the amount of light detected by the active area 122 of light detector die 120 that would otherwise be due to specular reflections), and thereby, increases the sensitivity of the sensor. As shown in FIG. 10 , the off-centered lens 1010 can be used with the L-shaped barrier 950 a of FIG. 9A , or can alternatively be used with the L-shaped barrier 950 c of FIG. 9C .
- the off-centered lens 1010 can be used together with the T-shaped barriers 950 b and 950 d of FIGS. 9B and 9D . In still other embodiments, the off-centered lens 1010 can be used with the barrier 150 shown in FIGS. 3A , 3 B, 4 A, 4 B, 7 and 8 .
- the lens 1010 is shown as being convex. However, alternative positive or converging lens may be used.
- the lens 1010 can be formed as part of, or after, step 504 (or 604 ) when the light detector die, the light source die and the space therebetween are covered with a light transmissive material (e.g., 140 ).
- a light transmissive material e.g. 140
- the lens can be formed by a feature of the mold.
- the lens is machined into the top surface of the light transmissive material 140 .
- the lens is formed separately, and attached to the top surface of the light transmissive material 140 , e.g., using a clear or other light transmissive epoxy.
- an L-shaped barrier e.g., 950 a or 950 c
- a T-shaped barriers e.g., 950 b or 950 d
- an off-centered lens e.g., 1010
- Specific techniques for forming the various opaque light barriers have also be described above.
- FIG. 1010 Further embodiments of the present invention are directed to the use of an L-shaped barrier (similar to 950 a or 950 c ), a T-shaped barrier (similar to 950 b or 950 d ), and/or the use of an off-centered lens (e.g., similar to 1010 ), with any optical sensor including a light source and a light detector, regardless of how the barrier and the remainder of the sensor is manufactured.
- an L-shaped barrier similar to 950 a or 950 c
- FIG. 1010 Further embodiments of the present invention are directed to the use of an L-shaped barrier (similar to 950 a or 950 c ), a T-shaped barrier (similar to 950 b or 950 d ), and/or the use of an off-centered lens (e.g., similar to 1010 ), with any optical sensor including a light source and a light detector, regardless of how the barrier and the remainder of the sensor is manufactured.
- an L-shaped barrier (similar to 950 a or 950 c ) or a T-shaped barrier (similar to 950 b or 950 d ) can be formed using injection molding, or some other molding process, before or after a light source and a light detector are placed on opposing sides of a first portion (similar to 952 ) of the barrier.
- at least a portion of a light source can be covered with a lens that is off-centered (relative to a center of the one or more light emitting elements of the light source), such that the center of the lens is offset in a direction away from the first portion (similar to 952 ) of the opaque light barrier, regardless of how the barrier and the remainder of the sensor is manufactured.
- FIGS. 11 and 12 are used to summarize specific embodiments of the present invention that can be used to provide an optical sensor device.
- the steps can be performed in a different order and/or certain steps can be performed while other(s) are not.
- step 1106 can be performed after step 1108 , or not at all.
- steps 1202 , 1204 and 1206 can be performed at the same time.
- steps 1204 , 1206 and 1208 can be performed.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Led Device Packages (AREA)
Abstract
Description
- This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/169,236, entitled OPTICAL SENSORS AND METHODS FOR PROVIDING OPTICAL SENSORS, which was filed Apr. 14, 2009 (Attorney Docket No. ELAN-01227US0), and U.S. Provisional Patent Application No. 61/218,867, entitled OPTICAL SENSORS THAT REDUCE SPECTRAL REFLECTIONS, which was filed Jun. 19, 2009 (Attorney Docket No. ELAN-01235US0), both of which are incorporated herein by reference.
- This application is related to commonly invented and commonly assigned U.S. patent application Ser. No. 12/499,693 (Attorney Docket No. ELAN-01227US1), entitled OPTICAL SENSORS AND METHODS FOR PROVIDING OPTICAL SENSORS, which is filed the same day as the present application, and which is incorporated herein by reference.
- Optical sensors, such as optical proximity sensors, may include one or more light emitting elements (e.g., LEDs) and an adjacent photosensitive light detector, where the sensor can estimate proximity of an object based on the magnitude of reflected light from the one or more LEDs returning to the sensor. The value of these sensors has become more important in the recent past with the advent of battery-operated handheld devices, such as mobile phones. For example, a fair amount of the energy from a mobile phone battery is used to drive the display, and there is value in turning off the display or backlight when the mobile phone or other device is brought to the user's ear (where it cannot be viewed anyway). Optical proximity sensors have been used for this, and many other applications.
- For other examples, there are many other applications in which the presence of an object can be detected with an optical proximity sensor to advantage. These range from sensing when protective covers have been opened on machinery, paper has been positioned correctly in a printer, or an operator's hands are at risk near an operating machine. An optical proximity sensor can also be used as a simple touch or near-touch activated switch, and could be implemented in applications like keyboards or devices that have a plastic housing that is sealed but which allows the light from the source to pass through and be sensed by the detector on the return.
- Light from the source to the detector that does not project out of the package to the target, but rather is transmitted directly from the source to the detector, reduces the capability of the overall device to sense distance. Such light essentially propagates sideways within the package and is considered noise or “light leakage”, and contains no information. To reduce and preferably prevent light leakage, a light barrier is often used to isolate the light source from the light detector. However, current techniques for manufacturing optical proximity sensors are relatively complex, costly and often results in sensors that are larger than desired. Further, the optical proximity sensor components except the light source are often produced by one vendor, while the light source is produced by another vendor, resulting in the light source being installed separately from the rest of the components of the optical proximity sensor, which increases the overall footprint of the device, and the complexity and the cost of the assembly.
- Optical sensors are often used with (e.g., placed behind or covered by) a cover plate that is glass, plastic, or some other protective light transmissive material. For example, the cover plate can be the glass covering a screen of a mobile phone, portable music player or personal data assistant (PDA), or the plastic covering a screen of a laptop computer. When such a cover plate is placed over an optical sensor, the optical sensor is often susceptible to specular reflections. Just as it is desirable to minimize light being transmitted directly from the source to the detector, it is also desirable to minimize the specular reflections because such reflections similarly reduce the capability of the overall device to sense distance, since specular reflections are essentially noise that contain no information.
- Many of the applications described above would benefit from a sensor of reduced form factor, with a simple structure that can be mass-produced at low cost. Embodiments of the present invention are believed to provide such simple and cost effective sensors. Further embodiments of the present invention reduce a sensor's susceptibility to specular reflections.
- An optical sensor device, according to an embodiment, includes a light detector die and a light source die attached to the same or different die attachment substrates so that there is a space between the light source die and the light detector die. A light transmissive material (e.g., a clear epoxy) covers the light detector die, the light source die and at least a portion of the space between the light detector die and the light source die. A groove that is formed (e.g., saw, blade or laser cut, or cast) in the light transmissive material, between the light detector die and the light source die, is occupied by an opaque material (e.g., a black epoxy) that provides a light barrier between the light detector die and the light source die. Embodiments of the present invention are also directed to systems that include such an optical sensor device.
- A method for providing an optical sensor device, according to an embodiment, includes attaching a light detector die and a light source die to the same or different die attachment substrate(s), so that there is a space between the light detector die and the light source die. The method also includes covering the light detector die, the light source die and the space between the light detector die and the light source die with a light transmissive material, as well as forming a groove in the light transmissive material between the light detector die and the light source die. Further, an opaque material is put (e.g., dispensed) within the groove to form a light barrier between the light detector die and the light source die.
- Specific embodiments relate to a method for providing a plurality of optical sensor devices. The method includes attaching a plurality of light detector dies and a plurality of light source dies to one or more die attachment substrate(s) such that there is a predetermined amount of space between each one of the light detector dies and a corresponding one of the light source dies. The method also includes covering the light detector dies, the light source dies and the spaces therebetween with a light transmissive material, as well as forming grooves in the light transmissive material so that a groove is formed between each one of the light detector dies and the corresponding one of the light source dies. This can include forming the grooves by cutting into the light transmissive material, wherein each one of the cuts forms a groove between a plurality of the light detector dies and the corresponding light source dies. The grooves can alternatively be formed when the light transmissive material is formed, e.g., using features of a mold. The method also includes putting an opaque material within the grooves so that each one of the light detector dies and the corresponding one of the light source dies are separated by the opaque material. Additionally, the method includes cutting through the light transmissive material and the die attachment substrate(s), to which the light detector dies and the light source dies are attached, to thereby provide a plurality of separated optical sensor devices that each include one of the light detector dies and a corresponding one of the light source dies with a light barrier formed by the opaque material therebetween.
- In accordance with a specific embodiment, an optical sensor device comprises a light source including one or more light emitting elements, a light detector including one or more light detecting elements, and an opaque light barrier. The opaque light barrier includes a first portion between the light source and the light detector. A second portion of the light barrier extends from the first portion of the light barrier, in a direction towards the light source, such that at least a portion of the second portion of the light barrier covers a portion of at least one of the one or more light emitting elements of the light source. The first portion of the light barrier is configured to block light from being transmitted directly from the light source to the light detector. The second portion of the light barrier is configured to reduce an amount of specular reflections, if a light transmissive cover plate were placed over the optical sensor device.
- In an embodiment, the optical sensor device can also include a lens (e.g., a convex lens) covering at least a portion of the light source, where the lens is off-centered relative to a center of the one or more light emitting elements of the light source, such that the center of the lens is offset in a direction away from the first portion of the opaque light barrier. Such a lens is configured to reduce an amount of specular reflections that would be detected by the light detector, if a light transmissive cover plate were placed over the optical sensor device.
- In accordance an embodiment, the opaque light barrier can also (or alternatively) include a portion (e.g., a third portion) that extends from the first portion of the light barrier, in a direction towards to the light detector, such that at least a portion of the third portion of the light barrier covers at least a portion of at least one of the one or more light detecting elements of the light detector. Such a third portion of the light barrier is configured to reduce an amount of specular reflections that would be detected by the one or more light detecting elements of the light detector, if a light transmissive cover plate were placed over the optical sensor device.
- Embodiments of the present invention are also directed to methods for providing an optical sensor device that include the first portion and the second portion and/or third portion described above. In an embodiment, a method includes attaching a light detector to a substrate and attaching a light source to the same substrate to which the light detector is attached, or to another substrate, so that there is a space between the light detector and the light source. The light detector can include one or more light detecting elements, and the light source can include one or more light emitting elements. The method also includes forming an opaque light barrier having a first portion and a second portion, so that the first portion of the opaque light barrier is between the light detector and the light source, and so that at least a portion of the second portion of the light barrier covers at least a portion of at least one of the one or more light emitting elements of the light source.
- A method can also include covering at least a portion of the light source with a lens that is off-centered relative to a center of the one or more light emitting elements of the light source, such that the center of the lens is offset in a direction away from the first portion of the opaque light barrier.
- In an embodiment, the forming of the opaque light barrier also includes forming a third portion of the opaque light barrier that extends from the first portion of the light barrier, in a direction towards to the light detector, such that at least a portion of the third portion of the light barrier covers at least a portion of at least one of the one or more light detecting elements of the light detector.
- This summary is not intended to summarize all of the embodiments of the present invention. Further and alternative embodiments, and the features, aspects, and advantages of the embodiments of invention will become more apparent from the detailed description set forth below, the drawings and the claims.
-
FIG. 1 a top view of an optical sensor device (e.g., a proximity sensor device), according to certain embodiments of the present invention. -
FIG. 2A is a side view of the device ofFIG. 1 , according to a first embodiment of the present invention. -
FIG. 2B is a cross-sectional view of the device ofFIGS. 1 and 2A , along dashed line B-B inFIG. 1 , according to the first embodiment of the present invention. -
FIG. 3A is a side view of the device ofFIG. 1 , according to a second embodiment of the present invention. -
FIG. 3B is a cross-section view of the device ofFIGS. 1 , along dashed line B-B inFIGS. 1 and 3A , according to the second embodiment of the present invention. -
FIG. 4A is a side view of the device ofFIG. 1 , according to a third embodiment of the present invention. -
FIG. 4B is a cross-section view of the device ofFIGS. 1 and 4A , along dashed line B-B inFIG. 1 , according to the third embodiment of the present invention. -
FIG. 5 is a high level flow diagram that is used to summarize various methods for providing an optical sensor device, in accordance with embodiments of the present invention. -
FIG. 6 is a high level flow diagram that is used to summarize various methods for providing a plurality of optical sensor devices, in accordance with embodiments of the present invention. -
FIG. 7 is a high level block diagram of a system that includes an optical sensor of an embodiment of the present invention. -
FIG. 8 illustrates how an optical sensor can be placed behind a cover plate that can cause specular reflections. -
FIG. 9A is a cross-sectional view of an optical sensor device including an L-shaped barrier, according to an embodiment of the present invention. -
FIG. 9B is a cross-sectional view of an optical sensor device including an L-shaped barrier, according to another embodiment of the present invention. -
FIG. 9C is a cross-sectional view of an optical sensor device including a T-shaped barrier, according to an embodiment of the present invention. -
FIG. 9D is a cross-sectional view of an optical sensor device including a T-shaped barrier, according to another embodiment of the present invention. -
FIG. 10 is a cross-sectional view of an optical sensor device including an off-centered lens, according to an embodiment of the present invention. -
FIGS. 11 and 12 are high level flow diagrams that are used to summarize specific embodiments of the present invention that can be used to provide optical sensor devices. -
FIG. 1 is a top view of an optical sensor device 102 (e.g., a proximity sensor device), according to specific embodiments of the present invention.FIG. 2A is a side view of thedevice 102 ofFIG. 1 , andFIG. 2B is a cross-sectional view of thedevice 102 ofFIGS. 1 and 2A (along dashed line B-B inFIG. 1 ), according to a first embodiment of the present invention. - As shown in
FIG. 1 , theoptical sensor device 102 includes adie attachment substrate 110, which inFIG. 1 is shown as being a die attachment leadframe substrate, but can alternatively be a circuit board substrate, or a ceramic substrate, but is not limited thereto. A benefit of using one or more leadframes as the die attachment substrate(s) is that a leadframe substrate can typically be made thinner than a circuit board substrate or a ceramic substrate, which can reduce the overall thickness of thedevice 102, which may be desirable, depending on the application in which thedevice 102 is used. For example, a leadframe substrate can have a thickness of about 0.2 mm, whereas a circuit board substrate would likely have a thickness of at least 0.3 or 0.4 mm. Further, a leadframe substrate provides for better heat dissipation than a circuit board substrate. Additionally, a leadframe substrate, if metallic, is opaque to light, whereas a typical circuit board substrate is somewhat light transmissive (unless a black circuit board is used, which is difficult to obtain). Also, a leadframe substrate is typically less expensive than a circuit board substrate and a ceramic substrate. - Attached to the
die attachment substrate 110 is a light detector die 120 and a light source die 130. The light detector die 120 (which can also be referred to as a photosensor die, a photodetector die or an optical detector die) includes one or more light detecting elements, such as, but not limited to, a photoresistors, photovoltaic cells, photodiodes, phototransistors, charge-coupled devices (CCD), or the like, that can be used to produce a current or voltage indicative of the magnitude of detected light. The one or more light detecting elements form anactive area 122 of the light detector die 120. While an exemplary location of theactive area 122 relative to the remainder of the light detector die 120 is shown in the FIGS., alternative locations for theactive area 122 are also within the scope of the present invention. For example, theactive area 122 can be located further from (or closer to) the light source die 130 than is shown in the FIGS. - The light source die 130 (which can also be referred to as a light emitter die) includes one or more light emitting elements, such as, but not limited to, light emitting diodes (LEDs), organic LEDs (OLEDs), bulk-emitting LEDs, surface-emitting LEDs, vertical-cavity surface-emitting lasers (VCSELs), superluminescent light emitting diodes (SLEDs), laser diodes, pixel diodes, or the like. An LED type light detector die 120 can include, for example, an n-type Silicon substrate with a p-type layer (e.g., a Gallium Arsenide (GaAs) layer) deposited on the n-type Silicon substrate. An electrode attached to the p-type layer provides one of the terminals of the LED die, and another electrode attached to the n-type substrate provides the other terminal of the LED die. The electrode attached to the p-type layer can be, or can be attached to, a wire bond (e.g., the
wire bond 116 attached to the top of the light source die 130 inFIG. 1 ). The electrode attached to the n-type substrate can be, e.g., a conductive (e.g., silver) epoxy. For example, the conductive epoxy can attach the bottom of the n-type substrate to a die attachment leadframe substrate (e.g., 110 inFIG. 1 ). - The die
attachment leadframe substrate 110 is shown as includingleadframe arms die attachment leadframe 110, and which can increase the light blocking capability of a light barrier that is formed in manners explained below. Also shown are leadframe bond pads 114 a-h, that are electrically isolated from thedie attachment leadframe 110, andwire bonds 116 that attach the light detector die 120 and the light source die 130 to the bond pads 114 a-h. - As best seen in
FIGS. 2A and 2B , alight transmissive material 140 covers the light detector die 120, the light source die 130 and the die attachment substrate 110 (except where agroove 145, discussed below, is formed). In accordance with specific embodiments, thelight transmissive material 140 can be a light transmissive epoxy (e.g., a clear epoxy), or other light transmissive resin or polymer that is molded (e.g., transfer molded or cast molded) or otherwise formed over the light detector die 120, the light source die 130 and thedie attachment substrate 110. A groove 145 (which can also be referred to as a channel) is formed in the light transmissive material between the light detector die and the light source die. Thegroove 145 can be saw cut, blade cut, or laser cut, or cut in another manner. Alternatively, the groove can be formed (e.g., cast) using a feature in the mold that is used to form the light transmissive material over the dies 120 and 130 and the space therebetween. For example, thegroove 145 can be formed by a thin fin machined to project from a mold surface. - Within the
groove 145 is anopaque material 150 that provides a light barrier between the light detector die and the light source die. In accordance with specific embodiments, the opaque material can be an opaque epoxy (e.g., a black epoxy) or other opaque resin or polymer that does not allow the wavelength(s) of light produced by the light emitter die 130 to pass therethrough. In other words, the light barrier, formed by theopaque material 150 within thegroove 145, prevents light produced by the one or more light emitting elements of the light source die 130 from being transmitted directly to and detected by the one or more light detecting elements of the light detector die 120. - In accordance with an embodiment, the
groove 145 is formed in thelight transmissive material 140 preferably such that thegroove 145 extends to thedie attachment substrate 110, as shown inFIGS. 2A and 2B . If thegroove 145 does not extend all the way to thedie attachment substrate 110, thegroove 145 should still be deep enough such that when the groove is occupied by theopaque material 150, an adequate light barrier is provided between the light source die 130 and the light detector die 120. - Reference is now made to
FIGS. 3A and 3B , which are side and cross sections views respectfully of thelight sensor device 102′, according to a second embodiment of the present invention. In this embodiment, a strip ofopaque material 154 is formed on thedie attachment substrate 110, and thegroove 145 is formed in thelight transmissive material 140 such that thegroove 145 preferably extends to or in the strip ofopaque material 154. The strip ofopaque material 154 can comprise the same opaque material asmaterial 150, or a different material. In this embodiment, thestrip 154 forms part of the light barrier between the light source die 130 and the light detector die 120. Thestrip 154 can be deposited and cured prior to thelight transmissive material 140 being cast or otherwise formed. - Reference is now made to
FIGS. 4A and 4B , which are side and cross sections views respectfully of thelight sensor device 102″, according to a third embodiment of the present invention. In this embodiment, agroove 152 is formed in thedie attachment substrate 110 below where thegroove 145 is formed (or more accurately, is thereafter formed) in thelight transmissive material 140. As shown inFIGS. 4A and 4B , a strip ofopaque material 154 is within thegroove 152 and extends above a planar surface of thedie attachment substrate 110. As also shown, thegroove 145 formed in thelight transmissive material 140 preferably extends to or into the strip ofopaque material 154. In this embodiment, thestrip 154 forms part of the light barrier between the light source die 130 and the light detector die 120. Thestrip 154 can be deposited and cured prior to thelight transmissive material 140 being cast or otherwise formed. - Still referring to
FIGS. 4A and 4B , it is also possible that thestrip 154 not be included, but that thegroove 145 is formed in thelight transmissive material 140 so that thegroove 145 as adjacent and continuous with thegroove 152 in thedie attachment substrate 110, so that when thegroove 152 is filled with theopaque material 140, thegroove 152 in thesubstrate 110 is also filled with the sameopaque material 140. - In the embodiments of
FIGS. 2A and 2B , and 3A and 3B, if thegroove 145 does not extend all the way to thestrip 154 of opaque material, or all the way to thedie attachment substrate 110, thegroove 145 should still be deep enough such that when occupied by theopaque material 150, an adequate light barrier is provided between the light source die 130 and the light detector die 120. - In the embodiments described above, the
optical devices optical devices groove 145 should still be formed between the light detector die 120 and the light source die 130. - In accordance with an embodiment, the resulting
sensor devices FIGS. 2A , 3A and 4A. InFIGS. 2A , 3A and 4A, the exposed leadframe bond pads 114 enable the sensor devices to be connected to other circuitry. Alternatively, other pads, pins, ball grids, or the like, can be provided to enable theoptical sensors - In each of the above described embodiments, the
light transmissive material 140 can have shallow optical structures cast or otherwise formed therein to direct the emission of the light, as well as to direct or restrict the acceptance angle of the detector die. The optical structures may include, but are not limited to, small prisms, diffusers, smooth flat surfaces, lenses, shutters, or holographic elements, as well as combinations of these. For example, the optical structures could be machined into a surface of a mold and replicated in a light transmissive material which is cast or otherwise formed using the mold. - The high level flow diagram of
FIG. 5 will now be used to describe methods for providing an optical sensor, in accordance with various embodiments of the present invention. Referring toFIG. 5 , atstep 502, a light detector die (e.g., 120) is attached to a die attachment substrate (e.g., 110) and a light source die (e.g., 130) is attached to the same die attachment substrate to which the light detector die is attached, or to another die attachment substrate, so that there is a space between the light detector die and the light source die. The dies 120 and 130 can be attached to thedie attachment substrate 110, e.g., using an epoxy, which depending upon implementation, can be a non-conducting or a conducting (e.g., a silver filled) epoxy. Other attachment techniques are also possible, and within the scope of the present invention. - At
step 504, the light detector die, the light source die and the space between the light detector die and the light source die are covered with a light transmissive material (e.g., 140). This can be accomplished by covering the entire side of the substrate(s), to which the dies are attached, with the light transmissive material. As explained above, the light transmissive material can be can be a clear or other light transmissive epoxy or other resin or polymer. The light transmissive material can be formed, e.g., using cast molding or transfer molding, but is not limited thereto. - At
step 506, a groove (e.g., 145) is formed in the light transmissive material between the light detector die and the light source die. As explained above, the groove can be formed by saw cutting, blade cutting or laser cutting, but is not limited thereto. Alternatively, the groove can be formed (e.g., cast) by a feature in a mold used to form the light transmissive material over the dies 120 and 130 and the space therebetween. For example, thegroove 145 can be formed by a thin fin machined to project from a mold surface. - Where the groove is formed by cutting into the light transmissive material, the entire space between the light detector die and the light source die can be covered with the light transmissive material at
step 504, which will thereafter be cut into atstep 506. Where the groove is formed by a feature in a mold, a portion of the space between the light detector die and the light source die will not be covered by the light transmissive material (due to the feature in the mold), with such portion forming the groove. - At
step 508, an opaque material (e.g., 150) is put within the groove to form a light barrier between the light detector die and the light source die. As explained above, the opaque material can be, e.g., an opaque epoxy, such as a black epoxy, or some other resin or polymer that is opaque to the wavelength(s) of light of produced by the light emitter die 130. In this manner the formed light barrier prevents light produced by the one or more light emitting elements of the light source die (e.g., 130) from being transmitted directly to and detected by the one or more elements that detect light of the light detector die (e.g., 120). - The opaque material can be placed within the groove in a precise and controlled manner, or can be spread over the entire surface of the light transmissive material to fill the groove and the excess can be wiped or otherwise cleaned away, similar to how tile is grouted. The opaque material can be squirted or otherwise dispensed, e.g., using positive pressure from an applicator (e.g., similar to a hollow needle) to fill or substantially fill the groove in a single pass or a multi-pass process, and excess opaque material can be wiped away or otherwise removed. For example, an automated dispensing system, such as those available from Asymtek of Carlsbad, Calif., can be used to dispense the opaque material. Other techniques can also be used and are within the scope of the present invention.
- In specific embodiments, the opaque material fills or at least substantially fills the groove, preferably in a manner that prevents or minimizes the amount air bubbles therein, to maximize the opaqueness of the formed light barrier. In an embodiment the channel can be filled with the opaque material, and then the material can be cured so that air bubble collapse. Thereafter, one or more further layer/coating of the opaque material can be applied to fill in a dent or well that results after the air bubbles collapse.
- After
step 502, but beforesteps steps FIGS. 3A , 3B, 4A and 4B, to allow for some slop (i.e., to increase the tolerance) of the depth control when saw, blade or laser cutting the groove in light transmissive material (e.g., 140), while still allowing for a complete optical barrier so long as the groove is cut such that it extends to or into the strip of opaque material. Such a strip of opaque material (e.g., 154) can be formed, e.g., using an automated dispensing system, such as those available from Asymtek of Carlsbad, Calif. Also, as was discussed above with reference toFIGS. 4A and 4B , a groove (e.g., 152) can be formed in the die attachment substrate 110 (e.g., etched into the substrate 110), and the groove may or may not be covered with a strip of opaque material (e.g., 154). The groove (e.g., 152) can also be used to increase the tolerance in the groove cut depth. - An advantage of certain embodiments of the present invention is that a plurality of optical sensors can be produced in a cost and time effective manner, as will now be summarized with reference to the high level flow diagram of
FIG. 6 . Referring toFIG. 6 , atstep 602, a plurality of light detector dies and a plurality of light source dies are attached to one or more die attachment substrates such that there is a predetermined amount of space between each one of the light detector dies and a corresponding one of the light source dies. For example, 1000 light detector dies and 1000 corresponding light source dies can be attached to a 2×6 inch leadframe die attachment substrate in rows and columns (e.g., 20 rows×50 columns) such that there is a predetermined amount of space (e.g., 1 mm) between each one of the light detector dies and a corresponding one of the light source dies. - At
step 604, the light detector dies, the light source dies and at least a portion of the spaces therebetween are covered with a light transmissive material, using one of the techniques described above with reference to step 504. For example, all of the dies and the spaces therebetween can be covered using the same molding process at the same time. This can be accomplished by covering the entire side of the substrate(s), to which the dies are attached, with the light transmissive material. - At
step 606, grooves in the light transmissive material are formed so that a groove is formed between each one of the light detector dies and the corresponding one of the light source dies. As was explained above, saw, blade or laser cutting, or the like, can be used to form such grooves. Where the light detector dies and the light source dies are attached in rows and columns, relatively few cuts would need to be made to form the grooves between all of the light sources and the corresponding light detectors. For example, where there are 20 rows×50 columns of die pairs (where a die pair is one of the light detector dies and a corresponding one of the light source dies), as few as 20 cuts would need to be made to form the grooves for all 1000 die pairs. The precise number of cuts would depend on the arrangement of the die pairs on the die attachment substrate(s). As was explained above, features of a mold (used to form the light transmissive material over the dies) can alternatively be used to form the grooves. Where the light detector dies and the light source dies are attached in rows and columns, relatively few mold features would be needed to form the grooves between all of the light sources and the corresponding light detectors. For example, where there are 20 rows×50 columns of die pairs, as few as 20 thin fins machined to project from a mold surface can be used to form the grooves for all 1000 die pairs. The precise number of mold features would depend on the arrangement of the die pairs on die attachment substrate(s). - Where the grooves are formed by cutting into the light transmissive material, the entire space between each die pair can be covered with the light transmissive material at
step 604, which will thereafter be cut into atstep 606. Where the grooves are formed by features of a mold, a portion of the space between each die pair will not be covered by the light transmissive material (due to a feature in the mold), with such portion forming the groove. - At
step 608, an opaque material (e.g., 150) is put within the grooves to form a light barrier between each one of the light detector dies and the corresponding one of the light source dies. Exemplary techniques for putting the opaque material within the grooves is provided above in the discussion ofstep 508. If a precision dispensing machine were used to dispense the opaque material into the grooves, relatively few passes of the dispensing machine would be needed to fill the grooves between all of the light sources and the corresponding light detectors. For example, where there are 20 rows×50 columns of die pairs, as few as 20 passes of the dispensing machine can be used to fill the grooves for all 1000 die pairs. The precise number of passes would depend on the arrangement of the die pairs on die attachment substrate(s). - After
step 602, but beforesteps steps FIGS. 3A , 3B, 4A and 4B, to allow for some slop (i.e., to increase the tolerance) of the depth control when saw, blade or laser cutting the groove in light transmissive material (e.g., 140), while still allowing for a complete optical barrier so long as the grooves are cut such that it extends to or into the strip of opaque material. Where the light detector dies and the light source dies are attached in rows and columns, relatively few strips would need to be made to formed. For example, where there are 20 rows×50 columns of die pairs, as few as 20 strips of opaque material would need to be formed for all 1000 die pairs. The precise number of strips would depend on the arrangement of the die pairs on the die attachment substrate(s). Also, as was discussed above with reference toFIGS. 4A and 4B , grooves (e.g., 152) can be formed in the die attachment substrate(s) 110 (e.g., etched into the substrate 110), and the grooves may or may not be covered with strips of opaque material (e.g., 154), to increase the tolerance in the groove cut depth. Where the light detector dies and the light source dies are attached in rows and columns, relatively few grooves in the die attachment substrate(s) would need to be made to formed. For example, where there are 20 rows×50 columns of die pairs, as few as 20 grooves in the die attachment substrate(s) would need to be formed for all 1000 die pairs. - The optical sensors described above can provide proximity sensing capabilities, as well as other capabilities, such as, but not limited to, ambient light detection. For example, the light detector die 120 can include circuitry to detect ambient light when the optical sensor is not being used to detect proximity. The light detector die 120 may also include circuitry to discriminate between light emitted from the light source die 130 that was reflected back toward the light detector die and ambient light, e.g., produced by the sun or an artificial light source intended to light a room.
- The
optical sensors FIG. 7 , for example, anoptical sensor optical sensor - When used as a proximity sensor, light emitted from the light emitting element(s) of the light source die 130 (or at least a portion of such light) will be reflected by an object (e.g., 708) when there is any, and be received by the light detector element(s) of light detector die 120. The light detector die 120 can convert the reflected light (and potentially also ambient light) to a current, and a resistor and/or other component(s), e.g., a transimpedance amplifier, can be used to convert such a current to a voltage. The intensity of the reflected light received by the light source die 120 is generally decreased at a rate of about 1/(4*X̂2), where X is the distance between the object 708 and the
sensor - The system 700 can include one or more drivers 702 (e.g., an LED driver or laser driver) that drives the light emitting elements of the light source die 130. One or more output of the
optical sensor sensor optical sensor optical sensor optical sensors - Referring now to
FIG. 8 , optical sensors (e.g., 102, 102′ and 102″) may be used with (e.g., placed behind or covered by) acover plate 802, which can be made, e.g., of glass, plastic, or some other protective light transmissive material. Such acover plate 802 includes aclose surface 804 and far asurface 806, with a thickness of theplate 802 therebetween. While theclose surface 804 is shown as being a distance from the top surface of the optical sensor (e.g., 102, 102′ or 102″), it is also possible that the close surface is in contact with (i.e., abuts against) the top surface of the optical sensor. Thecover plate 802 can be, e.g., the glass covering a screen of a mobile phone, personal music player or personal data assistant (PDA), or the plastic covering the screen of a laptop computer, but is not limited thereto. - Exemplary light rays 803 are also shown in
FIG. 8 . As can be appreciated fromFIG. 8 , at least some of the light rays, or portions thereof, can be reflected back toward theactive area 122 of the light detector die 120 due to specular reflections. Just as it is desirable to minimize light being transmitted directly from the source to the detector, it is also desirable to minimize the specular reflections because such reflections similarly reduce the capability of the overall device to sense distance since they are essentially noise that contain no information. To reduce and preferably prevent the detection of specular reflections by the light detector die 120 (and more specifically, by theactive area 122 of the light detector die 120), alternative light barriers can be used, in accordance with certain embodiments of the present invention, as will be described below. - Referring to
FIG. 9A , in accordance with an embodiment of the present invention, alight barrier 950 a includes a first portion 952 (similar to barrier 150) that prevents light produced by the light source die 130 from travelling directly to the light detector die 120, in the same manner as didlight barrier 150. Additionally, thelight barrier 950 a includes asecond portion 954 that reduces specular reflections. Thissecond portion 954, which extends from the first portion, forms a shelf over the light source die 120, and in an embodiment, covers at least a portion of a light emitting element(s) of the light source die 120, as shown inFIG. 9 . As also shown inFIG. 9A , thelight barrier 950 a can be considered “L-shaped” because the first andsecond portions second portion 954 of thelight barrier 950 a is perpendicular to thefirst portion 952. - As can be appreciated from a comparison between
FIG. 8 andFIG. 9A , thesecond portion 954 of thelight barrier 950 a reduces the amount of specular reflections, and thereby reduces (and preferably minimizes) the amount of light detected by theactive area 122 of light detector die 120 that would otherwise be due to specular reflections, if the sensor is used with a cover plate (e.g., 802). In this manner, thesecond portion 954 of thelight barrier 950 a increases the sensitivity of thesensor 902 a. Stated another way, thesecond portion 954 of thelight barrier 950 a increases the percentage of light that will be detected by theactive area 122 of light detector die 120 that is actually due to reflections by an object on the far side of the cover plate 902 (as opposed to reflections from thecover plate 802 itself). - Referring to
FIG. 9B , in accordance with an embodiment of the present invention, alight barrier 950 b includes the first portion 952 (similar to barrier 150), the second portion 954 (that reduces specular reflections in the same manner described with reference toFIG. 9A ), and athird portion 956 that reduces the detection of specular reflections. Thisthird portion 956 forms a shelf over the light detector die 130, and in an embodiment, covers at least a portion of theactive area 122, as shown inFIG. 9B . As also shown inFIG. 9B , such alight barrier 950 b can be considered “T-shaped” because the first, second andthird portions second portion 952 and thethird portion 954 of thelight barrier 950 b are each perpendicular to thefirst portion 952. In another embodiment, a barrier includes theportion portion 952, in which case, the barrier could be L-shaped. - As can be appreciated from a comparison between
FIG. 8 andFIG. 9B , thethird portion 956 of thelight barrier 950 b reduces the amount of specular reflections that are detected by theactive area 122 of the light detector die 120, and thereby, increases the sensitivity of the sensor. Stated another way, thethird portion 956 of thelight barrier 950 b blocks at least some specular reflections that would otherwise be detected by theactive area 122 of the light detector die 120 if thethird portion 956 were not included. - The L-shaped
light barrier 950 a, or the T-shapedlight barrier 950 b, can be used in place of thebarrier 150 shown in any of the previously discussed FIGS., and thus can be used with or without the groove 152 (formed in the die attachment substrate 110) and/or the strip of opaque material 154 (formed below the barrier). The L-shapedlight barrier 950 a, or the T-shapedlight barrier 950 b, can be at least partially formed duringsteps 506 and 508 (or steps 606 and 608). For example, at step 506 (or step 606), before, after or while the groove (e.g., 145) is formed in the light transmissive material between the light detector die and the light source die (e.g., by saw cutting, blade cutting or laser cutting) an adjacent shallow groove can also be formed on one side (or both sides) of thegroove 145, where the adjacent groove(s) have the desired dimensions of the second and/orthird portions 954 and/or 956. Alternatively, where a mold is used, thegroove 145 corresponding to thefirst portion 952, and an adjacent groove corresponding to the second portion 954 (and optionally also another adjacent groove corresponding to the third portion 956) of thebarrier 950 a (or 950 b) can be formed by corresponding features of the mold. The forming of thebarrier 950 a (or 950 b) can be completed atsteps - In
FIGS. 9A and 9B , the outermost surface of the second portion 954 (and optionally also the third portion 956) of thelight barrier 950 a (or 950 b) is shown as being substantially flush with the outermost (i.e., top) surface of thelight transmissive material 140. Referring now to thesensors FIGS. 9C and 9D , in alternative embodiments, thefirst portion 952 of thebarrier 950 c (or 950 d) can be formed in the same manner that thebarrier 150 was formed, as described above, and the second portion 954 (and optionally also the third portion 956) can be formed above the outermost (i.e., top) surface of thelight transmissive material 140. The same opaque material used to form thefirst portion 952 of the barrier can be used to form the second portion 954 (and optionally also the third portion 956), or a different opaque material can be used. The second portion 954 (and optionally also the third portion 956) of thebarrier 950 c (or 950 d) can be formed above the outermost (i.e., top) surface of thelight transmissive material 140 in a single or multi-pass process, e.g., using an automated dispensing system, such as those available from Asymtek of Carlsbad, Calif., and/or using a mask (similar to a lithography mask) or screen (similar to a silk screen), but is not limited thereto. In other words, the second portion 954 (and optionally also the third portion 956) of thebarrier 950 c (or 950 d) can essentially be painted or otherwise deposited in the desired pattern onto the outermost (i.e., top) surface of thelight transmissive material 140, with portions of the pattern overlapping the outermost (i.e., top) surface of thefirst portion 952 of thebarrier 950 c (or 950 d). In such embodiments, the second portion 954 (and optionally also the third portion 956) still extend from thefirst portion 952. - For the embodiments of
FIGS. 9C and 9D , the second portion 954 (and optionally also the third portion 956) can be formed above the outermost (i.e., top) surface of thelight transmissive material 140 after step 508 (ofFIG. 5 ), or betweensteps 608 and 610 (ofFIG. 6 ). - In further embodiments, a
lens 1010 is placed at least partially over the light emitting element(s) of the light source die 130, off-centered relative to the center of the light emitting element(s). More specifically, the center of thelens 1010 is offset in a direction away from thefirst portion 952 of the barrier 950, as shown inFIG. 10 , whereline 1012 represents the center of the light emitting element(s). By re-directiong the light output by the light source die 130 (or at least a portion of such light) in a direction away the light detector die 120, the off-centeredlens 1010 reduces the amount of specular reflections (and thereby reduces the amount of light detected by theactive area 122 of light detector die 120 that would otherwise be due to specular reflections), and thereby, increases the sensitivity of the sensor. As shown inFIG. 10 , the off-centeredlens 1010 can be used with the L-shapedbarrier 950 a ofFIG. 9A , or can alternatively be used with the L-shapedbarrier 950 c ofFIG. 9C . In other embodiments, the off-centeredlens 1010 can be used together with the T-shapedbarriers FIGS. 9B and 9D . In still other embodiments, the off-centeredlens 1010 can be used with thebarrier 150 shown inFIGS. 3A , 3B, 4A, 4B, 7 and 8. - In
FIG. 10 , thelens 1010 is shown as being convex. However, alternative positive or converging lens may be used. Thelens 1010, or an alternative lens, can be formed as part of, or after, step 504 (or 604) when the light detector die, the light source die and the space therebetween are covered with a light transmissive material (e.g., 140). For example, where the light transmissive material is formed using cast molding or transfer molding, the lens can be formed by a feature of the mold. In other embodiments, the lens is machined into the top surface of thelight transmissive material 140. In still other embodiments, the lens is formed separately, and attached to the top surface of thelight transmissive material 140, e.g., using a clear or other light transmissive epoxy. - Explained above with reference to
FIGS. 8-10 are how an L-shaped barrier (e.g., 950 a or 950 c), a T-shaped barriers (e.g., 950 b or 950 d), and an off-centered lens (e.g., 1010) can be used to improve the performance of theoptical sensors FIGS. 1-7 (e.g., improve sensitivity be reducing the potential effects of specular reflections). Specific techniques for forming the various opaque light barriers have also be described above. Further embodiments of the present invention are directed to the use of an L-shaped barrier (similar to 950 a or 950 c), a T-shaped barrier (similar to 950 b or 950 d), and/or the use of an off-centered lens (e.g., similar to 1010), with any optical sensor including a light source and a light detector, regardless of how the barrier and the remainder of the sensor is manufactured. For example, an L-shaped barrier (similar to 950 a or 950 c) or a T-shaped barrier (similar to 950 b or 950 d) can be formed using injection molding, or some other molding process, before or after a light source and a light detector are placed on opposing sides of a first portion (similar to 952) of the barrier. For another example, at least a portion of a light source can be covered with a lens that is off-centered (relative to a center of the one or more light emitting elements of the light source), such that the center of the lens is offset in a direction away from the first portion (similar to 952) of the opaque light barrier, regardless of how the barrier and the remainder of the sensor is manufactured. In other words, the techniques for reducing specular reflections, and reducing the amount of specular reflections that would be detected by a light detector if a light transmissive cover is placed over an optical sensor, can be applied to alternative optical sensors, while still being with the scope of specific embodiments of the present invention.Systems including sensors FIG. 7 , but are not limited thereto. -
FIGS. 11 and 12 are used to summarize specific embodiments of the present invention that can be used to provide an optical sensor device. In these FIGS., depending upon the embodiment, the steps can be performed in a different order and/or certain steps can be performed while other(s) are not. For example, referring toFIG. 11 ,step 1106 can be performed afterstep 1108, or not at all. For another example, it is possible to form the so called first and third portions of the light barrier, without forming the second portion. For another s example, inFIG. 12 ,steps FIG. 12 , only one or two ofsteps - The forgoing description is of the preferred embodiments of the present invention. These embodiments have been provided for the purposes of illustration and description, but are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to a practitioner skilled in the art. Embodiments were chosen and described in order to best describe the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention. Slight modifications and variations are believed to be within the spirit and scope of the present invention. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Claims (24)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/499,723 US8232541B2 (en) | 2009-04-14 | 2009-07-08 | Optical sensors that reduce specular reflections |
US12/643,831 US8324602B2 (en) | 2009-04-14 | 2009-12-21 | Optical sensors that reduce specular reflections |
PCT/US2010/030606 WO2010120650A2 (en) | 2009-04-14 | 2010-04-09 | Optical sensors and methods for providing optical sensors |
KR1020117026905A KR101652556B1 (en) | 2009-04-14 | 2010-04-09 | Optical sensors that reduce specular reflections |
DE112010001886T DE112010001886T5 (en) | 2009-04-14 | 2010-04-09 | Optical sensors that reduce specular reflections |
PCT/US2010/030609 WO2010120651A2 (en) | 2009-04-14 | 2010-04-09 | Optical sensors that reduce specular reflections |
CN201080017298.7A CN102395859B (en) | 2009-04-14 | 2010-04-09 | Optical sensors that reduce specular reflections |
JP2012506085A JP2012524274A (en) | 2009-04-14 | 2010-04-09 | Optical sensor to reduce specular reflection |
TW099111230A TW201104902A (en) | 2009-04-14 | 2010-04-12 | Optical sensors and methods for providing optical sensors |
TW099111231A TWI496311B (en) | 2009-04-14 | 2010-04-12 | Optical sensors that reduce specular reflections |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16923609P | 2009-04-14 | 2009-04-14 | |
US21886709P | 2009-06-19 | 2009-06-19 | |
US12/499,723 US8232541B2 (en) | 2009-04-14 | 2009-07-08 | Optical sensors that reduce specular reflections |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/643,831 Continuation-In-Part US8324602B2 (en) | 2009-04-14 | 2009-12-21 | Optical sensors that reduce specular reflections |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100258712A1 true US20100258712A1 (en) | 2010-10-14 |
US8232541B2 US8232541B2 (en) | 2012-07-31 |
Family
ID=42933606
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/499,723 Expired - Fee Related US8232541B2 (en) | 2009-04-14 | 2009-07-08 | Optical sensors that reduce specular reflections |
US12/499,693 Abandoned US20100259766A1 (en) | 2009-04-14 | 2009-07-08 | Optical sensors and methods for providing optical sensors |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/499,693 Abandoned US20100259766A1 (en) | 2009-04-14 | 2009-07-08 | Optical sensors and methods for providing optical sensors |
Country Status (3)
Country | Link |
---|---|
US (2) | US8232541B2 (en) |
TW (1) | TW201104902A (en) |
WO (1) | WO2010120650A2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110186736A1 (en) * | 2010-01-31 | 2011-08-04 | Avago Technologies Ecbu (Singapore) Pte. Ltd. | Optical Proximity Sensor Package with Lead Frame |
US20110297831A1 (en) * | 2010-06-08 | 2011-12-08 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Small Low-Profile Optical Proximity Sensor |
US20120146058A1 (en) * | 2010-12-14 | 2012-06-14 | Hon Hai Precision Industry Co., Ltd. | Light emitting diode module providing stable color temperature |
US20130020665A1 (en) * | 2011-07-19 | 2013-01-24 | Vage Oganesian | Low Stress Cavity Package For Back Side Illuminated Image Sensor, And Method Of Making Same |
GB2494479A (en) * | 2011-10-19 | 2013-03-13 | St Microelectronics Res & Dev | A proximity sensor with a cover for directing radiation from a radiation source to a reference radiation detector |
WO2013151507A1 (en) * | 2012-04-05 | 2013-10-10 | Heptagon Micro Optics Pte. Ltd. | Opto-electronic module |
US20130327931A1 (en) * | 2012-06-06 | 2013-12-12 | Pixart Imaging Incorporation | Package structure of optical apparatus |
US20140117383A1 (en) * | 2012-10-30 | 2014-05-01 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Optocoupler Having Lens Layer |
US8742350B2 (en) | 2010-06-08 | 2014-06-03 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Proximity sensor |
US9667900B2 (en) | 2013-12-09 | 2017-05-30 | Optiz, Inc. | Three dimensional system-on-chip image sensor package |
US9746349B2 (en) | 2013-09-02 | 2017-08-29 | Heptagon Micro Optics Pte. Ltd. | Opto-electronic module including a non-transparent separation member between a light emitting element and a light detecting element |
US20180031728A1 (en) * | 2015-02-24 | 2018-02-01 | Lg Innotek Co., Ltd. | Proximity Sensor, Camera Module Comprising Same, and Mobile Terminal Comprising Same |
DE102016114483A1 (en) * | 2016-08-04 | 2018-02-08 | Ic-Haus Gmbh | Optoelectronic component |
WO2018215435A3 (en) * | 2017-05-23 | 2019-01-17 | Osram Opto Semiconductors Gmbh | Optical sensor and biosensor |
US11035723B2 (en) * | 2016-12-29 | 2021-06-15 | Silergy Semiconductor Technology (Hangzhou) Ltd | Optical sensor package assembly, manufacturing method thereof and electronic devices |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201117408A (en) * | 2009-11-12 | 2011-05-16 | Everlight Electronics Co Ltd | Small type photo-interrupter and fabrication method thereof |
WO2012098981A1 (en) | 2011-01-20 | 2012-07-26 | ローム株式会社 | Optical apparatus |
JP2012174799A (en) | 2011-02-18 | 2012-09-10 | Sony Corp | Solid state image pickup device and method for manufacturing the same |
FR2977715A1 (en) * | 2011-07-08 | 2013-01-11 | St Microelectronics Grenoble 2 | OPTICAL ELECTRONIC HOUSING |
FR2977714B1 (en) * | 2011-07-08 | 2013-07-26 | St Microelectronics Grenoble 2 | OPTICAL ELECTRONIC HOUSING |
US8677605B2 (en) * | 2011-07-22 | 2014-03-25 | Lite-On Singapore Pte. Ltd. | Method for manufacturing sensor unit |
US9366752B2 (en) | 2011-09-23 | 2016-06-14 | Apple Inc. | Proximity sensor with asymmetric optical element |
JP5950618B2 (en) * | 2012-02-24 | 2016-07-13 | キヤノン株式会社 | Method for forming light transmitting member and method for manufacturing imaging apparatus |
US20140021491A1 (en) * | 2012-07-18 | 2014-01-23 | Carsem (M) Sdn. Bhd. | Multi-compound molding |
TW201419496A (en) * | 2012-11-02 | 2014-05-16 | Standard Technology Service Inc | Sensor in substrate package and manufacturing method thereof |
US9263618B2 (en) * | 2013-03-05 | 2016-02-16 | Apple Inc. | Proximity sensor module with light reflector |
KR20140112607A (en) * | 2013-03-11 | 2014-09-24 | 삼성디스플레이 주식회사 | Optical sensor assembly for inspecting knife and Apparatus for cutting substrate including the same |
US10884551B2 (en) * | 2013-05-16 | 2021-01-05 | Analog Devices, Inc. | Integrated gesture sensor module |
US9891100B2 (en) | 2013-10-10 | 2018-02-13 | Apple, Inc. | Electronic device having light sensor package with diffuser for reduced light sensor directionality |
EP2908436B1 (en) * | 2014-02-17 | 2020-06-24 | ams AG | Optical sensor arrangement for proximity detection |
US9590129B2 (en) | 2014-11-19 | 2017-03-07 | Analog Devices Global | Optical sensor module |
US10061057B2 (en) | 2015-08-21 | 2018-08-28 | Stmicroelectronics (Research & Development) Limited | Molded range and proximity sensor with optical resin lens |
JP2017092352A (en) * | 2015-11-13 | 2017-05-25 | ローム株式会社 | Light-receiving/emitting device and manufacturing method of light-receiving/emitting device |
US9927553B2 (en) * | 2015-12-08 | 2018-03-27 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Miniaturized optical proximity sensor |
US10712197B2 (en) | 2018-01-11 | 2020-07-14 | Analog Devices Global Unlimited Company | Optical sensor package |
CN108711566B (en) * | 2018-05-25 | 2024-05-24 | 南京矽力微电子技术有限公司 | Optical sensing system, optical sensing assembly and manufacturing method thereof |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4051365A (en) * | 1973-08-08 | 1977-09-27 | Omron Tateisi Electronics Co. | Photoelectric detector having an indicator for indicating the operating condition thereof |
US5698975A (en) * | 1996-04-10 | 1997-12-16 | Allen-Bradley Company, Inc. | Mounting and coupling arrangement for a proximity sensor |
US5783815A (en) * | 1995-10-24 | 1998-07-21 | Sony Corporation | Light receiving device having lens fitting element |
US5883386A (en) * | 1996-09-17 | 1999-03-16 | Seiko Precision Inc. | Light-receiving apparatus having a position detectable portion on a sealing frame and its manufacturing method |
US20010035450A1 (en) * | 2000-03-17 | 2001-11-01 | Eugen Mannhart | Apparatus for mounting semiconductor chips on a substrate |
US6369380B1 (en) * | 1998-08-07 | 2002-04-09 | Asahi Kogaku Kogyo Kabushiki Kaisha | Light receiver unit having a light receiving element and a packaging cover |
US6541762B2 (en) * | 2001-08-14 | 2003-04-01 | Samsung Electro-Mechanics Co., Ltd. | Sub chip on board for optical mouse |
US20030189213A1 (en) * | 2002-04-05 | 2003-10-09 | Masahiko Igaki | Package for optical semiconductor |
US20050087681A1 (en) * | 2003-10-28 | 2005-04-28 | Chin Yee L. | Reflective imaging encoder |
US6977645B2 (en) * | 2001-03-16 | 2005-12-20 | Agilent Technologies, Inc. | Portable electronic device with mouse-like capabilities |
US7045775B2 (en) * | 2002-11-01 | 2006-05-16 | Avago Technologies, Ltd. | Optical navigation sensor with integrated lens |
US20060158887A1 (en) * | 2004-12-23 | 2006-07-20 | Holder Ronald G | Light zoom source using light emitting diodes and an improved method of collecting the energy radiating from them |
US20060180888A1 (en) * | 2005-02-14 | 2006-08-17 | Advanpack Solutions Pte Ltd | Optical sensor package and method of manufacture |
US20060237540A1 (en) * | 2005-04-25 | 2006-10-26 | Saxena Kuldeep K | Integrated optical module for reflectance sensing |
US20060266938A1 (en) * | 2005-05-05 | 2006-11-30 | Stats Chippac Ltd. | Optical Die-Down Quad Flat Non-Leaded Package |
US7161136B1 (en) * | 2005-07-06 | 2007-01-09 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Light modulating input device for capturing user control inputs |
US7196316B2 (en) * | 2004-09-22 | 2007-03-27 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Portable electronic device with activation sensor |
US20070210267A1 (en) * | 2006-02-27 | 2007-09-13 | Sharp Kabushiki Kaisha | Optical ranging sensor and warm water wash toilet seat |
US7309855B2 (en) * | 2004-07-26 | 2007-12-18 | Sharp Kabushiki Kaisha | Reflective encoder with light shield and electronic device using such reflective encoder |
US20080006762A1 (en) * | 2005-09-30 | 2008-01-10 | Fadell Anthony M | Integrated proximity sensor and light sensor |
US7362419B2 (en) * | 2004-09-17 | 2008-04-22 | Matsushita Electric Works, Ltd. | Range image sensor |
WO2008126836A1 (en) * | 2007-04-10 | 2008-10-23 | Olympus Corporation | Optical type encoder |
US20080296478A1 (en) * | 2007-06-01 | 2008-12-04 | Thierry Hernoult | Methods for reducing cross talk in optical sensors |
US7486386B1 (en) * | 2007-09-21 | 2009-02-03 | Silison Laboratories Inc. | Optical reflectance proximity sensor |
US7485842B2 (en) * | 2004-10-25 | 2009-02-03 | Societe Bic | Optical proximity sensor for a liquid-jet instrument, and a liquid-jet instrument equipped with such a sensor |
US20100181578A1 (en) * | 2009-01-21 | 2010-07-22 | Pixart Imaging Inc. | Package structure |
US7785024B2 (en) * | 2005-07-25 | 2010-08-31 | Olympus Corporation | Imaging apparatus and method of manufacturing the same |
US20100282951A1 (en) * | 2009-05-08 | 2010-11-11 | Avago Technologies Ecbu (Singapore) Pte. Ltd. | Metal Shield and Housing for Optical Proximity Sensor with Increased Resistance to Mechanical Deformation |
US7842957B2 (en) * | 2007-03-08 | 2010-11-30 | Avago Technologies Ecbu Ip (Singapore) Pte, Ltd. | Optical transceiver with reduced height |
US20100327164A1 (en) * | 2009-06-30 | 2010-12-30 | Avago Technologies Ecbu (Singapore) Pte. Ltd. | Optical Proximity Sensor Package with Molded Infrared Light Rejection Barrier and Infrared Pass Components |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000269544A (en) | 1999-03-19 | 2000-09-29 | Stanley Electric Co Ltd | Light emitting/receiving element and manufacture of the same |
JP2002267498A (en) | 2001-03-14 | 2002-09-18 | Olympus Optical Co Ltd | Photodetector |
JP2004071734A (en) | 2002-08-05 | 2004-03-04 | New Japan Radio Co Ltd | Method of manufacturing light receiving and emitting device |
JP2005037451A (en) | 2003-07-15 | 2005-02-10 | Sharp Corp | Manuscript size sensor |
JP2008051764A (en) * | 2006-08-28 | 2008-03-06 | Sharp Corp | Range finding sensor, and electronic device having sensor mounted |
EP2067119A2 (en) * | 2006-09-08 | 2009-06-10 | Exbiblio B.V. | Optical scanners, such as hand-held optical scanners |
-
2009
- 2009-07-08 US US12/499,723 patent/US8232541B2/en not_active Expired - Fee Related
- 2009-07-08 US US12/499,693 patent/US20100259766A1/en not_active Abandoned
-
2010
- 2010-04-09 WO PCT/US2010/030606 patent/WO2010120650A2/en active Application Filing
- 2010-04-12 TW TW099111230A patent/TW201104902A/en unknown
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4051365A (en) * | 1973-08-08 | 1977-09-27 | Omron Tateisi Electronics Co. | Photoelectric detector having an indicator for indicating the operating condition thereof |
US5783815A (en) * | 1995-10-24 | 1998-07-21 | Sony Corporation | Light receiving device having lens fitting element |
US5698975A (en) * | 1996-04-10 | 1997-12-16 | Allen-Bradley Company, Inc. | Mounting and coupling arrangement for a proximity sensor |
US5883386A (en) * | 1996-09-17 | 1999-03-16 | Seiko Precision Inc. | Light-receiving apparatus having a position detectable portion on a sealing frame and its manufacturing method |
US6369380B1 (en) * | 1998-08-07 | 2002-04-09 | Asahi Kogaku Kogyo Kabushiki Kaisha | Light receiver unit having a light receiving element and a packaging cover |
US20010035450A1 (en) * | 2000-03-17 | 2001-11-01 | Eugen Mannhart | Apparatus for mounting semiconductor chips on a substrate |
US6977645B2 (en) * | 2001-03-16 | 2005-12-20 | Agilent Technologies, Inc. | Portable electronic device with mouse-like capabilities |
US6541762B2 (en) * | 2001-08-14 | 2003-04-01 | Samsung Electro-Mechanics Co., Ltd. | Sub chip on board for optical mouse |
US20030189213A1 (en) * | 2002-04-05 | 2003-10-09 | Masahiko Igaki | Package for optical semiconductor |
US7045775B2 (en) * | 2002-11-01 | 2006-05-16 | Avago Technologies, Ltd. | Optical navigation sensor with integrated lens |
US20050087681A1 (en) * | 2003-10-28 | 2005-04-28 | Chin Yee L. | Reflective imaging encoder |
US7309855B2 (en) * | 2004-07-26 | 2007-12-18 | Sharp Kabushiki Kaisha | Reflective encoder with light shield and electronic device using such reflective encoder |
US7362419B2 (en) * | 2004-09-17 | 2008-04-22 | Matsushita Electric Works, Ltd. | Range image sensor |
US7196316B2 (en) * | 2004-09-22 | 2007-03-27 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Portable electronic device with activation sensor |
US7485842B2 (en) * | 2004-10-25 | 2009-02-03 | Societe Bic | Optical proximity sensor for a liquid-jet instrument, and a liquid-jet instrument equipped with such a sensor |
US20060158887A1 (en) * | 2004-12-23 | 2006-07-20 | Holder Ronald G | Light zoom source using light emitting diodes and an improved method of collecting the energy radiating from them |
US20060180888A1 (en) * | 2005-02-14 | 2006-08-17 | Advanpack Solutions Pte Ltd | Optical sensor package and method of manufacture |
US20060237540A1 (en) * | 2005-04-25 | 2006-10-26 | Saxena Kuldeep K | Integrated optical module for reflectance sensing |
US20060266938A1 (en) * | 2005-05-05 | 2006-11-30 | Stats Chippac Ltd. | Optical Die-Down Quad Flat Non-Leaded Package |
US7161136B1 (en) * | 2005-07-06 | 2007-01-09 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Light modulating input device for capturing user control inputs |
US7785024B2 (en) * | 2005-07-25 | 2010-08-31 | Olympus Corporation | Imaging apparatus and method of manufacturing the same |
US20080006762A1 (en) * | 2005-09-30 | 2008-01-10 | Fadell Anthony M | Integrated proximity sensor and light sensor |
US20070210267A1 (en) * | 2006-02-27 | 2007-09-13 | Sharp Kabushiki Kaisha | Optical ranging sensor and warm water wash toilet seat |
US7842957B2 (en) * | 2007-03-08 | 2010-11-30 | Avago Technologies Ecbu Ip (Singapore) Pte, Ltd. | Optical transceiver with reduced height |
WO2008126836A1 (en) * | 2007-04-10 | 2008-10-23 | Olympus Corporation | Optical type encoder |
US8035079B2 (en) * | 2007-04-10 | 2011-10-11 | Olympus Corporation | Optical encoder |
US20080296478A1 (en) * | 2007-06-01 | 2008-12-04 | Thierry Hernoult | Methods for reducing cross talk in optical sensors |
US7486386B1 (en) * | 2007-09-21 | 2009-02-03 | Silison Laboratories Inc. | Optical reflectance proximity sensor |
US20100181578A1 (en) * | 2009-01-21 | 2010-07-22 | Pixart Imaging Inc. | Package structure |
US20100282951A1 (en) * | 2009-05-08 | 2010-11-11 | Avago Technologies Ecbu (Singapore) Pte. Ltd. | Metal Shield and Housing for Optical Proximity Sensor with Increased Resistance to Mechanical Deformation |
US20100327164A1 (en) * | 2009-06-30 | 2010-12-30 | Avago Technologies Ecbu (Singapore) Pte. Ltd. | Optical Proximity Sensor Package with Molded Infrared Light Rejection Barrier and Infrared Pass Components |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110186736A1 (en) * | 2010-01-31 | 2011-08-04 | Avago Technologies Ecbu (Singapore) Pte. Ltd. | Optical Proximity Sensor Package with Lead Frame |
US8502151B2 (en) * | 2010-01-31 | 2013-08-06 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Optical proximity sensor package with lead frame |
US8492720B2 (en) * | 2010-06-08 | 2013-07-23 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Small low-profile optical proximity sensor |
US20110297831A1 (en) * | 2010-06-08 | 2011-12-08 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Small Low-Profile Optical Proximity Sensor |
US8742350B2 (en) | 2010-06-08 | 2014-06-03 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Proximity sensor |
US8269231B2 (en) * | 2010-12-14 | 2012-09-18 | Hon Hai Precision Industry Co., Ltd. | Light emitting diode module providing stable color temperature |
US20120146058A1 (en) * | 2010-12-14 | 2012-06-14 | Hon Hai Precision Industry Co., Ltd. | Light emitting diode module providing stable color temperature |
US20130020665A1 (en) * | 2011-07-19 | 2013-01-24 | Vage Oganesian | Low Stress Cavity Package For Back Side Illuminated Image Sensor, And Method Of Making Same |
US8604576B2 (en) * | 2011-07-19 | 2013-12-10 | Opitz, Inc. | Low stress cavity package for back side illuminated image sensor, and method of making same |
US20140065755A1 (en) * | 2011-07-19 | 2014-03-06 | Optiz, Inc. | Method Of Making A Low Stress Cavity Package For Back Side Illuminated Image Sensor |
US8895344B2 (en) * | 2011-07-19 | 2014-11-25 | Optiz, Inc. | Method of making a low stress cavity package for back side illuminated image sensor |
GB2494479A (en) * | 2011-10-19 | 2013-03-13 | St Microelectronics Res & Dev | A proximity sensor with a cover for directing radiation from a radiation source to a reference radiation detector |
US9151829B2 (en) | 2011-10-19 | 2015-10-06 | Stmicroelectronics (R&D) Ltd | Packaged radiation source and detector |
US8975108B2 (en) | 2012-04-05 | 2015-03-10 | Heptagon Micro Optics Pte. Ltd. | Opto-electronic module |
WO2013151507A1 (en) * | 2012-04-05 | 2013-10-10 | Heptagon Micro Optics Pte. Ltd. | Opto-electronic module |
US8791489B2 (en) | 2012-04-05 | 2014-07-29 | Heptagon Micro Optics Pte. Ltd. | Opto-electronic module |
US10514477B2 (en) * | 2012-06-06 | 2019-12-24 | Pixart Imaging Incorporated | Package structure of optical apparatus |
US10816692B2 (en) * | 2012-06-06 | 2020-10-27 | Pixart Imaging Incorporation | Package structure of optical apparatus |
US20130327931A1 (en) * | 2012-06-06 | 2013-12-12 | Pixart Imaging Incorporation | Package structure of optical apparatus |
US9599745B2 (en) * | 2012-06-06 | 2017-03-21 | Pixart Imaging Incorporation | Package structure of optical apparatus |
US20170082734A1 (en) * | 2012-06-06 | 2017-03-23 | Pixart Imaging Incorporation | Package structure of optical apparatus |
US20200081151A1 (en) * | 2012-06-06 | 2020-03-12 | Pixart Imaging Incorporation | Package structure of optical apparatus |
US9236521B2 (en) * | 2012-10-30 | 2016-01-12 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Optocoupler having lens layer |
US20140117383A1 (en) * | 2012-10-30 | 2014-05-01 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Optocoupler Having Lens Layer |
US9746349B2 (en) | 2013-09-02 | 2017-08-29 | Heptagon Micro Optics Pte. Ltd. | Opto-electronic module including a non-transparent separation member between a light emitting element and a light detecting element |
US9667900B2 (en) | 2013-12-09 | 2017-05-30 | Optiz, Inc. | Three dimensional system-on-chip image sensor package |
US20180031728A1 (en) * | 2015-02-24 | 2018-02-01 | Lg Innotek Co., Ltd. | Proximity Sensor, Camera Module Comprising Same, and Mobile Terminal Comprising Same |
US10539710B2 (en) * | 2015-02-24 | 2020-01-21 | Lg Innotek Co., Ltd. | Proximity sensor, camera module comprising same, and mobile terminal comprising same |
DE102016114483A1 (en) * | 2016-08-04 | 2018-02-08 | Ic-Haus Gmbh | Optoelectronic component |
US11035723B2 (en) * | 2016-12-29 | 2021-06-15 | Silergy Semiconductor Technology (Hangzhou) Ltd | Optical sensor package assembly, manufacturing method thereof and electronic devices |
WO2018215435A3 (en) * | 2017-05-23 | 2019-01-17 | Osram Opto Semiconductors Gmbh | Optical sensor and biosensor |
US11607158B2 (en) * | 2017-05-23 | 2023-03-21 | Osram Oled Gmbh | Sensor and biosensor |
Also Published As
Publication number | Publication date |
---|---|
US20100259766A1 (en) | 2010-10-14 |
WO2010120650A3 (en) | 2011-01-13 |
WO2010120650A2 (en) | 2010-10-21 |
US8232541B2 (en) | 2012-07-31 |
TW201104902A (en) | 2011-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8232541B2 (en) | Optical sensors that reduce specular reflections | |
US8324602B2 (en) | Optical sensors that reduce specular reflections | |
US9372264B1 (en) | Proximity sensor device | |
US9305967B1 (en) | Wafer Level optoelectronic device packages and methods for making the same | |
JP5647726B2 (en) | Finger sensor including capacitive lens and method related thereto | |
US9570648B2 (en) | Wafer level optical proximity sensors and systems including wafer level optical proximity sensors | |
US9721837B2 (en) | Wafer level optoelectronic device packages with crosstalk barriers and methods for making the same | |
US9065025B2 (en) | Optoelectronic apparatuses with post-molded reflector cups | |
US8564012B2 (en) | Optoelectronic apparatuses and methods for manufacturing optoelectronic apparatuses | |
JP2012506586A (en) | Arrangement for touch screen and associated manufacturing method | |
TWM454627U (en) | Partitioned parallel type light sensor chip package structure | |
KR20090010059A (en) | Detection circuit for detecting movements of a movable object | |
KR20120027313A (en) | Electroluminescent device | |
JP7381961B2 (en) | Optical module and optical encoder | |
CN102707814B (en) | There is the optical finger navigation device of light-guiding film | |
CN115812250A (en) | Display and method for manufacturing display | |
US20130015334A1 (en) | Optical inputting module and its light source unit | |
CN218568839U (en) | Light emitting device | |
WO2022255942A1 (en) | Semiconductor sensor device and method for manufacturing a semiconductor sensor device | |
WO2023113980A8 (en) | Light-emitting array with dielectric light collection structures | |
JP2009059980A (en) | Led light emitting device | |
JPH0697595A (en) | Semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERSIL AMERICAS INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WIESE, LYNN K.;KELKAR, NIKHIL;PATWARDHAN, VIRAJ;REEL/FRAME:023005/0335 Effective date: 20090722 |
|
AS | Assignment |
Owner name: MORGAN STANLEY & CO. INCORPORATED, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:INTERSIL CORPORATION;TECHWELL, INC.;INTERSIL COMMUNICATIONS, INC.;AND OTHERS;REEL/FRAME:024335/0465 Effective date: 20100427 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: INTERSIL AMERICAS LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:INTERSIL AMERICAS INC.;REEL/FRAME:033119/0484 Effective date: 20111223 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240731 |