US20100236732A1 - Use of fluorescence to monitor hydrophobic contaminants in a papermaking process - Google Patents
Use of fluorescence to monitor hydrophobic contaminants in a papermaking process Download PDFInfo
- Publication number
- US20100236732A1 US20100236732A1 US12/405,797 US40579709A US2010236732A1 US 20100236732 A1 US20100236732 A1 US 20100236732A1 US 40579709 A US40579709 A US 40579709A US 2010236732 A1 US2010236732 A1 US 2010236732A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- contaminants
- dye
- papermaking process
- hydrophobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 83
- 239000000356 contaminant Substances 0.000 title claims abstract description 63
- 230000008569 process Effects 0.000 title claims abstract description 47
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 33
- 238000005259 measurement Methods 0.000 claims abstract description 15
- 238000012544 monitoring process Methods 0.000 claims abstract description 10
- 239000012530 fluid Substances 0.000 claims description 55
- 239000000126 substance Substances 0.000 claims description 23
- 229920001131 Pulp (paper) Polymers 0.000 claims description 9
- 239000000835 fiber Substances 0.000 claims description 7
- 239000000706 filtrate Substances 0.000 claims description 5
- 239000011295 pitch Substances 0.000 claims description 4
- 239000000945 filler Substances 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 239000011230 binding agent Substances 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 claims description 2
- 239000000834 fixative Substances 0.000 claims description 2
- 230000014759 maintenance of location Effects 0.000 claims description 2
- 239000013055 pulp slurry Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 239000001993 wax Substances 0.000 claims description 2
- 239000000975 dye Substances 0.000 abstract description 24
- 239000000523 sample Substances 0.000 description 16
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000004537 pulping Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 239000012223 aqueous fraction Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 238000004401 flow injection analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011306 natural pitch Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/34—Paper
- G01N33/343—Paper pulp
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
Definitions
- This invention pertains to the measurement and control of hydrophobic contaminants.
- Hydrophobic/organic contaminants such as natural pitch, stickies, tackies and white pitch are major obstacles in paper manufacturing because these materials when liberated during a papermaking process can become both undesirable components of papermaking furnishes and troublesome to the mill equipment by preventing proper operation of mechanical parts when these materials deposit.
- the present invention provides for a method of monitoring one or more types of hydrophobic contaminants in a papermaking process comprising: (a) obtaining a bulk sample of fluid from said papermaking process; (b) selecting a hydrophobic dye that is capable of interacting with said contaminants in said fluid and fluorescing in said fluid; (c) adding said dye to said fluid and allowing a sufficient amount of time for said dye to interact with said contaminants in said fluid; (d) measuring the fluorescence of the dye in said fluid; (e) correlating the fluorescence of the dye with the concentration of said contaminants; and (f) optionally controlling the amount of one or more chemicals that reduce or inactivate said contaminants which are added to said papermaking process.
- the present invention also provides for a method for measuring the effectiveness of one or more chemicals that decrease the amount of one or more hydrophobic contaminants in a papermaking process: (a) monitoring one or more types of contaminants in a papermaking process comprising: obtaining a bulk sample of fluid from said papermaking process; selecting a hydrophobic dye that is capable of interacting with said contaminants in said fluid and fluorescing in said fluid; adding said dye to said fluid and allowing a sufficient amount of time for said dye to interact with said contaminants in said fluid; measuring the fluorescence of the dye in said fluid; and correlating the fluorescence of the dye with the concentration of said contaminants; (b) adding one or more chemicals to said papermaking process that decrease the amount of said hydrophobic contaminants; and (c) re-measuring the amount of contaminants in said papermaking process by performing step (a) at least one more time; and (d) optionally controlling the amount of said chemicals that are added to said papermaking process.
- the present invention also provides for a method of monitoring one or more types of hydrophobic contaminants in a papermaking process consisting essentially of: (a) obtaining a bulk sample of fluid from said papermaking process; (b) selecting a hydrophobic dye that is capable of interacting with said contaminants in said fluid and fluorescing in said fluid; (c) adding said dye to said fluid and allowing a sufficient amount of time for said dye to interact with said contaminants in said fluid; (d) measuring the fluorescence of the dye in said fluid; (e) correlating the fluorescence of the dye with the concentration of said contaminants; and (f) optionally controlling the amount of one or more chemicals that reduce or inactivate said contaminants which are added to said papermaking process.
- Papermaking process means a method of making any kind of paper products (e.g. paper, tissue, board, etc.) from pulp comprising forming an aqueous cellulosic papermaking furnish, draining the furnish to form a sheet and drying the sheet The steps of forming the papermaking furnish, draining and drying may be carried out in any manner generally known to those skilled in the art.
- the papermaking process may include a pulping stage, e.g. making pulp from woody raw material and bleaching stage, e.g. chemical treatment of the pulp for brightness improvement. Furnishes can contain fillers and/or other contaminants.
- Bulk sample means a sample whose constituents have not been specifically separated, except bulk sample may include, a separation based upon size. For example, bulk sample does not include separating e.g. a resin particle from a suspension.
- Fluid includes an aqueous papermaking suspension from a papermaking process, e.g. a fluid containing fibers in a pulping stage, a thin stock, a thick stock, aqueous suspensions drawn from the papermaking process, e.g. various locations from a papermaking machine or pulping process, aqueous fluid in a uhl box, press dewatering section, and/or any part of the papermaking process that one of ordinary skill in the art can think of where one would need to monitor hydrophobic contaminants.
- aqueous papermaking suspension from a papermaking process e.g. a fluid containing fibers in a pulping stage, a thin stock, a thick stock, aqueous suspensions drawn from the papermaking process, e.g. various locations from a papermaking machine or pulping process, aqueous fluid in a uhl box, press dewatering section, and/or any part of the papermaking process that one of ordinary skill in the art can think of where one would need to monitor hydrophobic
- the present invention provides for a method of monitoring one or more types of hydrophobic contaminants in a papermaking process via the use of fluorescence.
- the dyes, which are added to the sample must be able to stain or interact with the hydrophobic contaminants, e.g. pitch particles.
- the turbidity of the fluid is also measured. In a further embodiment, the turbidity of said fluid is measured before and after the addition of said chemicals.
- the fluid is filtered or diluted or a combination thereof prior to said addition of said dye or said fluorescent measurement of said dye, wherein said filtering or dilution of said fluid permits said fluid to be fluorometrically monitored.
- the sample is taken from a dilute sample point off a papermaking process, e.g. a paper machine.
- the sample point is the white water of a papermaking process. The reasoning postulated for this collection/sample point is that there is no long fiber present/substantially any fiber present, and filtration may not be necessary.
- one or more samples undergo a sieving/separation step to separate the long fiber from the suspended contaminants in a sample solution.
- the degree of dilution that the filtrate/aqueous fraction undergoes from the separation process relies on two main factors, both relating to turbidity. If the filtrate/aqueous fraction is too turbid for the turbidimeter, dilution is required to bring the turbidity into a measurable range for the meter. This is the case unless you want a less accurate and “quick and dirty” test, which is one embodiment of the claimed invention.
- turbidity is above 2000 NTU (nephelometric turbidity units)
- a sample from a papermaking process is diluted/further separated prior to the addition of a dye and fluorescent measurement.
- the value of 2000 NTU may be instrument or measurement technique dependent.
- the fluid is an aqueous filtrate of a pulp slurry.
- the dye does not include N-(n-butyl)4-(n-butylamino)-naphthalimide.
- the fluid is obtained from a wet end of said papermaking process.
- the dye added to a sample must have a sufficient amount of time for said dye to interact with said contaminants in said fluid prior to its fluorescent measurement.
- One of ordinary skill in the art could determine a sufficient amount of time for said interaction without undue experimentation.
- the dye is mixed with a solvent prior to its addition to said fluid.
- a solvent prior to its addition to said fluid.
- the contaminants are selected from the group consisting of: pitch, fiber, filler, fines, coated broke, mill broke, recycle, groundwood, thermal mechanical pulp, chemi-thermal mechanical pulp, chemical pulp, deinked pulp, ink, adhesives, stickies, tackies, waxes, binders and dissolved and/or colloidal substances, and a combination thereof.
- the method is an on-line method and/or batch sample method.
- the fluorometric measurement is performed at a pre-set basis, intermittent basis, and/or continuous basis.
- a flow cell can be utilized as a means for measuring the fluorescence of said hydrophobic contaminants.
- a process for measurement comprises: the addition of one or more fluorescent tracers to a sample obtained from a papermaking process prior to its fluorescent measurement in said flow cell.
- the fluorometric measurement is performed with a handheld fluorometer.
- a fluorescent measurement may be carried out with other types of fluorometers.
- the present invention also provides for a method of measuring the effectiveness of one or more chemicals that decrease the amount of one or more hydrophobic contaminants in a papermaking process.
- the information on the amount of hydrophobic contaminants in a fluid can be utilized to form a control loop for the addition of one or more chemicals, which can be used to control the amount of hydrophobic contaminants.
- the methodology for monitoring the hydrophobic contaminants can be measured by the above-stated fluorescence methodology and its various embodiments.
- a determination of the amount of fluorescence is measured by the above-mentioned protocol, then subsequent to this step, an addition of one or more chemicals to the papermaking process to treat the hydrophobic contaminants, e.g. increase/decrease in the same chemistry for hydrophobic contaminant inhibition or change in the chemistry treatment program for hydrophobic contaminant inhibition, and then subsequent to the treatment step, a re-measurement of the amount of contaminants in said papermaking process by the above-mentioned protocol.
- the chemicals are at least one of the following: a fixative; a detackifier; a dispersant; a surfactant; and a retention aid.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Paper (AREA)
Abstract
Description
- This invention pertains to the measurement and control of hydrophobic contaminants.
- Hydrophobic/organic contaminants, such as natural pitch, stickies, tackies and white pitch are major obstacles in paper manufacturing because these materials when liberated during a papermaking process can become both undesirable components of papermaking furnishes and troublesome to the mill equipment by preventing proper operation of mechanical parts when these materials deposit.
- Increased use of secondary fiber, coated broke and mechanical pulp in the papermaking process contributes to the accumulation of organic contaminants. These contaminants can form deposits that affect machine runability and final product quality. Control of the contaminants is typically managed through chemical fixation, and its effectiveness is therefore dependent on the ability to determine the proper program and application. Historically, a common method used to assess program performance has been filtrate turbidity reduction. This method, however, is not entirely adequate because it often yields an incomplete picture of the furnish demands from hydrophobic particles. More recently, flow cytometry has been used in the industry for monitoring hydrophobic contaminants. Disadvantages of this method are that it is both labor and capital intensive.
- A rapid and accurate method of measuring organic contaminants is therefore desired. Chemical control programs are often used to passivate or remove deposit-forming contaminants. For that reason, a method of screening the efficacy of chemical treatments that reduce the overall content of hydrophobic contaminants in a papermaking process is also desired.
- The present invention provides for a method of monitoring one or more types of hydrophobic contaminants in a papermaking process comprising: (a) obtaining a bulk sample of fluid from said papermaking process; (b) selecting a hydrophobic dye that is capable of interacting with said contaminants in said fluid and fluorescing in said fluid; (c) adding said dye to said fluid and allowing a sufficient amount of time for said dye to interact with said contaminants in said fluid; (d) measuring the fluorescence of the dye in said fluid; (e) correlating the fluorescence of the dye with the concentration of said contaminants; and (f) optionally controlling the amount of one or more chemicals that reduce or inactivate said contaminants which are added to said papermaking process.
- The present invention also provides for a method for measuring the effectiveness of one or more chemicals that decrease the amount of one or more hydrophobic contaminants in a papermaking process: (a) monitoring one or more types of contaminants in a papermaking process comprising: obtaining a bulk sample of fluid from said papermaking process; selecting a hydrophobic dye that is capable of interacting with said contaminants in said fluid and fluorescing in said fluid; adding said dye to said fluid and allowing a sufficient amount of time for said dye to interact with said contaminants in said fluid; measuring the fluorescence of the dye in said fluid; and correlating the fluorescence of the dye with the concentration of said contaminants; (b) adding one or more chemicals to said papermaking process that decrease the amount of said hydrophobic contaminants; and (c) re-measuring the amount of contaminants in said papermaking process by performing step (a) at least one more time; and (d) optionally controlling the amount of said chemicals that are added to said papermaking process.
- The present invention also provides for a method of monitoring one or more types of hydrophobic contaminants in a papermaking process consisting essentially of: (a) obtaining a bulk sample of fluid from said papermaking process; (b) selecting a hydrophobic dye that is capable of interacting with said contaminants in said fluid and fluorescing in said fluid; (c) adding said dye to said fluid and allowing a sufficient amount of time for said dye to interact with said contaminants in said fluid; (d) measuring the fluorescence of the dye in said fluid; (e) correlating the fluorescence of the dye with the concentration of said contaminants; and (f) optionally controlling the amount of one or more chemicals that reduce or inactivate said contaminants which are added to said papermaking process.
- “Papermaking process” means a method of making any kind of paper products (e.g. paper, tissue, board, etc.) from pulp comprising forming an aqueous cellulosic papermaking furnish, draining the furnish to form a sheet and drying the sheet The steps of forming the papermaking furnish, draining and drying may be carried out in any manner generally known to those skilled in the art. The papermaking process may include a pulping stage, e.g. making pulp from woody raw material and bleaching stage, e.g. chemical treatment of the pulp for brightness improvement. Furnishes can contain fillers and/or other contaminants.
- “Bulk sample” means a sample whose constituents have not been specifically separated, except bulk sample may include, a separation based upon size. For example, bulk sample does not include separating e.g. a resin particle from a suspension.
- “Fluid” includes an aqueous papermaking suspension from a papermaking process, e.g. a fluid containing fibers in a pulping stage, a thin stock, a thick stock, aqueous suspensions drawn from the papermaking process, e.g. various locations from a papermaking machine or pulping process, aqueous fluid in a uhl box, press dewatering section, and/or any part of the papermaking process that one of ordinary skill in the art can think of where one would need to monitor hydrophobic contaminants.
- As stated above, the present invention provides for a method of monitoring one or more types of hydrophobic contaminants in a papermaking process via the use of fluorescence.
- The dyes, which are added to the sample must be able to stain or interact with the hydrophobic contaminants, e.g. pitch particles.
- In another embodiment, the turbidity of the fluid is also measured. In a further embodiment, the turbidity of said fluid is measured before and after the addition of said chemicals.
- In another embodiment, the fluid is filtered or diluted or a combination thereof prior to said addition of said dye or said fluorescent measurement of said dye, wherein said filtering or dilution of said fluid permits said fluid to be fluorometrically monitored.
- In another embodiment, the sample is taken from a dilute sample point off a papermaking process, e.g. a paper machine. In a further embodiment, the sample point is the white water of a papermaking process. The reasoning postulated for this collection/sample point is that there is no long fiber present/substantially any fiber present, and filtration may not be necessary.
- In another embodiment, one or more samples undergo a sieving/separation step to separate the long fiber from the suspended contaminants in a sample solution. For example, the degree of dilution that the filtrate/aqueous fraction undergoes from the separation process relies on two main factors, both relating to turbidity. If the filtrate/aqueous fraction is too turbid for the turbidimeter, dilution is required to bring the turbidity into a measurable range for the meter. This is the case unless you want a less accurate and “quick and dirty” test, which is one embodiment of the claimed invention.
- In another embodiment, if the turbidity is above 2000 NTU (nephelometric turbidity units), then it is a preferred embodiment that a sample from a papermaking process is diluted/further separated prior to the addition of a dye and fluorescent measurement. The value of 2000 NTU may be instrument or measurement technique dependent.
- In another embodiment, the fluid is an aqueous filtrate of a pulp slurry.
- In another embodiment, the dye does not include N-(n-butyl)4-(n-butylamino)-naphthalimide.
- In another embodiment, the fluid is obtained from a wet end of said papermaking process.
- As stated above, the dye added to a sample must have a sufficient amount of time for said dye to interact with said contaminants in said fluid prior to its fluorescent measurement. One of ordinary skill in the art could determine a sufficient amount of time for said interaction without undue experimentation.
- In one embodiment, the dye is mixed with a solvent prior to its addition to said fluid. One of ordinary skill in the art could determine an adequate time for mixing without undue experimentation.
- In another embodiment, the contaminants are selected from the group consisting of: pitch, fiber, filler, fines, coated broke, mill broke, recycle, groundwood, thermal mechanical pulp, chemi-thermal mechanical pulp, chemical pulp, deinked pulp, ink, adhesives, stickies, tackies, waxes, binders and dissolved and/or colloidal substances, and a combination thereof.
- In another embodiment, the method is an on-line method and/or batch sample method.
- In another embodiment, the fluorometric measurement is performed at a pre-set basis, intermittent basis, and/or continuous basis. For example, a flow cell can be utilized as a means for measuring the fluorescence of said hydrophobic contaminants. More specifically, in one embodiment, a process for measurement comprises: the addition of one or more fluorescent tracers to a sample obtained from a papermaking process prior to its fluorescent measurement in said flow cell. One of ordinary skill in the art would be able to carry out this process without undue experimentation. For example, one could utilize flow injection analysis and/or sequence injection analysis techniques to carry out the above-referenced measurement protocol.
- In another embodiment, the fluorometric measurement is performed with a handheld fluorometer. A fluorescent measurement may be carried out with other types of fluorometers.
- The present invention also provides for a method of measuring the effectiveness of one or more chemicals that decrease the amount of one or more hydrophobic contaminants in a papermaking process. The information on the amount of hydrophobic contaminants in a fluid can be utilized to form a control loop for the addition of one or more chemicals, which can be used to control the amount of hydrophobic contaminants.
- In one embodiment, the methodology for monitoring the hydrophobic contaminants can be measured by the above-stated fluorescence methodology and its various embodiments.
- In another embodiment, a determination of the amount of fluorescence is measured by the above-mentioned protocol, then subsequent to this step, an addition of one or more chemicals to the papermaking process to treat the hydrophobic contaminants, e.g. increase/decrease in the same chemistry for hydrophobic contaminant inhibition or change in the chemistry treatment program for hydrophobic contaminant inhibition, and then subsequent to the treatment step, a re-measurement of the amount of contaminants in said papermaking process by the above-mentioned protocol.
- In another embodiment, the chemicals are at least one of the following: a fixative; a detackifier; a dispersant; a surfactant; and a retention aid.
Claims (15)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/405,797 US20100236732A1 (en) | 2009-03-17 | 2009-03-17 | Use of fluorescence to monitor hydrophobic contaminants in a papermaking process |
TW099105147A TW201035538A (en) | 2009-03-17 | 2010-02-23 | Use of fluorescence to monitor hydrophobic contaminants in a papermaking process |
ARP100100747A AR075742A1 (en) | 2009-03-17 | 2010-03-11 | USE OF FLUORESCENCE TO MONITOR HYDROPHOBIC POLLUTANTS IN A PAPER MANUFACTURING PROCESS |
PCT/US2010/027391 WO2010107731A1 (en) | 2009-03-17 | 2010-03-16 | Use of fluorescence to monitor hydrophobic contaminants in a papermaking process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/405,797 US20100236732A1 (en) | 2009-03-17 | 2009-03-17 | Use of fluorescence to monitor hydrophobic contaminants in a papermaking process |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100236732A1 true US20100236732A1 (en) | 2010-09-23 |
Family
ID=42216853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/405,797 Abandoned US20100236732A1 (en) | 2009-03-17 | 2009-03-17 | Use of fluorescence to monitor hydrophobic contaminants in a papermaking process |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100236732A1 (en) |
AR (1) | AR075742A1 (en) |
TW (1) | TW201035538A (en) |
WO (1) | WO2010107731A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160245757A1 (en) * | 2013-09-29 | 2016-08-25 | Ecolab Usa Inc. | A Method of Controlling Hydrophobic Contaminants by Utilizing a Fluorescent Dye |
US9562861B2 (en) | 2011-04-05 | 2017-02-07 | Nalco Company | Method of monitoring macrostickies in a recycling and paper or tissue making process involving recycled pulp |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130078730A1 (en) * | 2011-09-23 | 2013-03-28 | Michael J. Murcia | Method for monitoring and control of a wastewater process stream |
CN103743610A (en) * | 2014-01-16 | 2014-04-23 | 陕西科技大学 | Method for detecting content of micro-stickies in paper pulp |
ES2955184T3 (en) * | 2017-11-21 | 2023-11-29 | Solenis Tech Lp | Method of measuring contaminants in a pulp slurry or papermaking system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5246547A (en) * | 1992-07-14 | 1993-09-21 | Nalco Chemical Company | Hydrophobic polyelectrolyte coagulants for the control of pitch in pulp and paper systems |
US5486904A (en) * | 1990-12-18 | 1996-01-23 | Basf Aktiengesellschaft | Method for determining resin particles in paper stocks |
US5940177A (en) * | 1997-01-10 | 1999-08-17 | Basf Aktiengesellschaft | Method and apparatus for determining the size distribution of different types of particles in a sample |
US20090084510A1 (en) * | 2007-05-16 | 2009-04-02 | Buckman Laboratories International, Inc. | Methods To Detect Organic Contaminants In Pulp and Fiber |
US20100012284A1 (en) * | 2007-03-01 | 2010-01-21 | Basf Se | Method for determining hydrophobic organic particles in a paper stock |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7909963B2 (en) * | 2006-01-18 | 2011-03-22 | Cascades Canada Inc. | Method for measuring hydrophobic contaminants in paper pulp |
-
2009
- 2009-03-17 US US12/405,797 patent/US20100236732A1/en not_active Abandoned
-
2010
- 2010-02-23 TW TW099105147A patent/TW201035538A/en unknown
- 2010-03-11 AR ARP100100747A patent/AR075742A1/en unknown
- 2010-03-16 WO PCT/US2010/027391 patent/WO2010107731A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486904A (en) * | 1990-12-18 | 1996-01-23 | Basf Aktiengesellschaft | Method for determining resin particles in paper stocks |
US5246547A (en) * | 1992-07-14 | 1993-09-21 | Nalco Chemical Company | Hydrophobic polyelectrolyte coagulants for the control of pitch in pulp and paper systems |
US5940177A (en) * | 1997-01-10 | 1999-08-17 | Basf Aktiengesellschaft | Method and apparatus for determining the size distribution of different types of particles in a sample |
US20100012284A1 (en) * | 2007-03-01 | 2010-01-21 | Basf Se | Method for determining hydrophobic organic particles in a paper stock |
US20090084510A1 (en) * | 2007-05-16 | 2009-04-02 | Buckman Laboratories International, Inc. | Methods To Detect Organic Contaminants In Pulp and Fiber |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9562861B2 (en) | 2011-04-05 | 2017-02-07 | Nalco Company | Method of monitoring macrostickies in a recycling and paper or tissue making process involving recycled pulp |
US20160245757A1 (en) * | 2013-09-29 | 2016-08-25 | Ecolab Usa Inc. | A Method of Controlling Hydrophobic Contaminants by Utilizing a Fluorescent Dye |
JP2016535244A (en) * | 2013-09-29 | 2016-11-10 | エコラブ ユーエスエイ インク | Method for controlling hydrophobic contaminants by using fluorescent dyes |
Also Published As
Publication number | Publication date |
---|---|
AR075742A1 (en) | 2011-04-20 |
TW201035538A (en) | 2010-10-01 |
WO2010107731A1 (en) | 2010-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010226846B2 (en) | Use of hydrophobic dyes to monitor hydrophobic contaminants in a papermaking process | |
CA2831874C (en) | Method of monitoring macrostickies in a recycling and paper or tissue making process involving recycled pulp | |
RU2628862C2 (en) | Method of automatic determination of content of liptic inclusions in the process of secondary processing of fibers | |
US20100012284A1 (en) | Method for determining hydrophobic organic particles in a paper stock | |
US20100236732A1 (en) | Use of fluorescence to monitor hydrophobic contaminants in a papermaking process | |
US10844544B2 (en) | Method of measuring hydrophobic contaminants in a pulp slurry or a papermaking system | |
EP3287763B1 (en) | Pitch analysis method and pitch processing method | |
US20080151227A1 (en) | Method for Determining a Sizing Agent Concentration, Particle Size and a Sizing Agent Particle Size Distribution in a Peper Pulp | |
US20160245757A1 (en) | A Method of Controlling Hydrophobic Contaminants by Utilizing a Fluorescent Dye | |
FI130403B (en) | Measuring device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NEW YO Free format text: SECURITY AGREEMENT;ASSIGNORS:NALCO COMPANY;CALGON LLC;NALCO ONE SOURCE LLC;AND OTHERS;REEL/FRAME:022703/0001 Effective date: 20090513 |
|
AS | Assignment |
Owner name: NALCO COMPANY, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GERLI, ALESSANDRA;SHERMAN, LAURA M.;MURCIA, MICHAEL J.;SIGNING DATES FROM 20090417 TO 20090427;REEL/FRAME:023024/0593 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NALCO COMPANY, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:035976/0609 Effective date: 20111201 |
|
AS | Assignment |
Owner name: NALCO COMPANY, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:041808/0713 Effective date: 20111201 |
|
AS | Assignment |
Owner name: ECOLAB USA INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NALCO COMPANY LLC;CALGON CORPORATION;CALGON LLC;AND OTHERS;REEL/FRAME:041836/0437 Effective date: 20170227 Owner name: NALCO COMPANY LLC, DELAWARE Free format text: CHANGE OF NAME;ASSIGNOR:NALCO COMPANY;REEL/FRAME:041835/0903 Effective date: 20151229 |
|
AS | Assignment |
Owner name: ECOLAB USA INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NALCO COMPANY;REEL/FRAME:042147/0420 Effective date: 20170227 |