US20100211113A1 - Bone Screw With Channels - Google Patents
Bone Screw With Channels Download PDFInfo
- Publication number
- US20100211113A1 US20100211113A1 US12/372,042 US37204209A US2010211113A1 US 20100211113 A1 US20100211113 A1 US 20100211113A1 US 37204209 A US37204209 A US 37204209A US 2010211113 A1 US2010211113 A1 US 2010211113A1
- Authority
- US
- United States
- Prior art keywords
- bone
- screw
- threaded
- channels
- bone screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 108
- 238000003780 insertion Methods 0.000 claims abstract description 10
- 230000037431 insertion Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 13
- 230000001054 cortical effect Effects 0.000 claims description 4
- 230000010354 integration Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000005553 drilling Methods 0.000 abstract description 4
- 238000010079 rubber tapping Methods 0.000 abstract description 3
- 230000008468 bone growth Effects 0.000 abstract description 2
- 210000002683 foot Anatomy 0.000 description 3
- 208000037873 arthrodesis Diseases 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 241000112853 Arthrodes Species 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000000878 metatarsophalangeal joint Anatomy 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000007838 tissue remodeling Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/864—Pins or screws or threaded wires; nuts therefor hollow, e.g. with socket or cannulated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8625—Shanks, i.e. parts contacting bone tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8645—Headless screws, e.g. ligament interference screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B2017/564—Methods for bone or joint treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B2017/8655—Pins or screws or threaded wires; nuts therefor with special features for locking in the bone
Definitions
- Cannulated bone screws are available in self-drilling and self-tapping screw versions. Such screws may vary in wall thickness, diameter and length, may be fully or partially threaded, and may utilize various head and thread designs as well as any number of materials. However, such screws are less than ideal because, for example, they are prone to fracture and “backing out” of the bone in which they are implanted.
- FIG. 1 includes a side view of a device in one embodiment of the invention.
- FIG. 2 includes a side view of a device in one embodiment of the invention.
- FIG. 3 includes a method in one embodiment of the invention.
- FIG. 1 includes a side view of a bone screw 100 in one embodiment of the invention which may help reduce any counter rotation that may lead to the screw backing out. Furthermore, screw 100 may be more robust and prevent screw failure (e.g., shearing, torsion) during, for example, screw insertion.
- screw failure e.g., shearing, torsion
- Bone screw 100 may comprise a proximal head portion 170 and a distal tip portion 150 .
- a threaded portion included between the head 170 and tip 150 portions, includes a first segment 140 comprising contiguous threads. For example, such contiguous threads are not interrupted by a channel present on or in the exterior of the screw. Contiguous threading may increase bone purchase and screw integrity in some instances.
- a non-threaded portion 165 which may be included between the head 170 and threaded 140 , 145 portions, may include one or more channels, such as first and second channels 105 , 110 .
- a cannula 175 e.g., a central bore, FIG.
- the head portion 170 and threaded portions 140 , 145 may not, in some embodiments of the invention, include first and/or second channels 105 , 110 .
- Channel location may increase screw integrity and bone purchase in some instances.
- bone screw 100 may taper outwardly at or near, for example, head portion 170 .
- threaded portions 140 , 145 may include an outer thread diameter 120 , which extends to the outermost part or crest of respective threads.
- Threaded portions 140 , 145 may also include an inner thread diameter 115 , which may extend to the innermost part or trough of respective threads.
- non-threaded portion 165 may include diameter 125 that is greater than inner thread diameter 115 . In some embodiments, diameter 125 may be greater than outer diameter 120 .
- non-threaded portion 165 is tapered to include a gradual increasing of diameters.
- diameter 130 may be greater than diameter 125 .
- Tapering may take place across any or all of regions 145 , 140 , 165 , 170 . Again, in some embodiments there may be no tapering but varying diameters nonetheless. For example, a diameter for a non-threaded portion may be larger than an inner thread diameter, despite a lack of tapering.
- channels 105 , 110 may be tapered.
- channel 105 may include a distal region with a diameter that is smaller than the diameter at a proximal region of channel 105 .
- Channels 105 , 110 may include sharp edges that may, for example, cut bone.
- channel 110 may include a sharp edge or portion 177 to cut bone during clockwise screw insertion.
- Channel 110 may also include a sharp edge or portion 176 to cut bone during counter-clockwise screw withdrawal.
- Channel 110 may include multiple sharp edges 176 , 177 .
- Some or all channels in a screw may include one or more such sharp edges or portions.
- bone screw 100 may include a threaded portion with threaded segment 145 distal to threaded segment 140 .
- Distal segment 145 may include non-contiguous threads due to the presence of, for example, cutting flutes 155 , 156 .
- Flutes 155 , 156 (and others not visible in FIG. 1 ) may terminate in points 160 , 161 , 162 .
- channels 105 , 110 may be helical and wrap or revolve partially or fully around screw 100 .
- Various embodiments may include one channel or numerous other channels (e.g., 3, 4 or more channels). Such channels may be placed horizontally, vertically, or in various other orientations in addition to helical orientations.
- screw 100 may be a lag screw.
- bone screw may be headless. If a head is included, such head may be low profile and/or slightly chamfered beneath the screw head to add torsional strength.
- threaded portions 140 , 145 may include threads that are cut with a trailing edge on the threads to reduce any counter rotation that may lead to the screw backing out.
- FIG. 2 includes a side view of a device in one embodiment of the invention.
- Screw 100 may be tapered as indicated by angle 180 .
- Angle 180 may be, for example, one degree rotated away from a central longitudinal axis.
- a tapered shaft may result, for example, in a 10% greater wall thickness for small diameter screws (e.g., 2.0 mm).
- FIG. 3 includes a method 300 in one embodiment of the invention.
- an incision may be made by a physician.
- the physician may partially insert a cannulated bone screw (e.g., bone screw 100 ) into first bone portion 185 ( FIG. 1 ).
- bone particulate 181 may be generated as a result of screw insertion. Such insertion may be eased by sharp edge 177 . Such bone particulate may be deposited in first and second channels 105 , 110 .
- screw 100 may be inserted into second bone portion 186 .
- first bone portion 185 may be compressed against second bone portion 186 based on inserting outwardly tapered portions (see, e.g., diameters 125 , 130 ) of non-threaded portion 165 of screw 100 into first bone portion 185 .
- outwardly tapered portions see, e.g., diameters 125 , 130
- bone segments 185 , 186 may be compressed by lag screw 100 .
- the incision may be closed while bone particulate 181 is left deposited in first and second channels 105 , 110 . Accordingly, in one embodiment of the invention, a partially threaded bone screw 100 ( FIG.
- non-threaded portion 165 may be used with a lag technique such that non-threaded portion 165 is allowed to turn without binding, or reduced binding, while threaded portion(s) 140 , 145 continue to approximate distal bone section 186 until tight against proximal bone section 185 .
- This may be done while using a bone clamp to compress relevant bone sections 185 , 186 so as to not distract distal segment 186 as the lag effect may not be seen (or seen to a relevant extent) until tapered non-threaded portion 165 of screw 100 , or even head portion 170 , is seated against proximal bone segment 185 or ancillary hardware such as a plate, which may be countersunk in some embodiments.
- the interference due to the tapered diameters may begin a lag effect before head portion 170 of the screw is fully seated.
- the interference fit may help distribute the stress and load of the lag stress and alleviate some tendency for fracture of the bone at, for example, the bone/screw head interface.
- the surgeon may use a bone clamp to create the necessary compression across, for example, an osteotomy or fusion site.
- the surgeon may insert an appropriately sized guide wire to the correct length under image intensification.
- the wire may be inserted in 15 mm-20 mm increments.
- the surgeon may slide the appropriately sized depth gauge/countersink over the guide wire until the countersink tip contacts bone.
- the surgeon may rotate the countersink back and forth to create the necessary recess in the bone.
- the surgeon may measure for the desired screw length by examining the end of the guide wire in relation to the marks on the depth gauge.
- pre-drilling the near cortex using the cannulated drill may help reduce the axial force necessary for inserting the screw.
- the surgeon may select the desired cannulated screw and slide the same over the guide wire. Then, using a screw driver and appropriate driver shaft, he or she may drive the screw into bone until the desired compression is achieved. The surgeon may then remove and discard the guide wire.
- Another method may include use of, for example, screws for arthrodesis of the 2nd through 5th digits.
- the surgeon may expose the joint space dorsal of the proximal interphalangeal joint and resect the articular surfaces of the proximal interphalangeal joint.
- He or she may use a wire pin driver and a 0.035′′ double trocar K-wire, insert the K-wire centrally into the middle phalanx, and drill towards the distal phalanx.
- the surgeon may position the distal phalanx in the desired position and continue inserting the K-wire, maintaining a central position. He or she may continue driving proximal to distal until the K-wire is protruding through the distal phalanx.
- the surgeon may, with the wire pin driver, retract the K-wire until the proximal end is only exposed 1 to 2 mm. He or she may then extend the digit to obtain proper alignment between the K-wire and the proximal phalanx. The surgeon may then drive the K-wire to engage the proximal phalanx, assuring that the K-wire does not pass into the metatarsophalangeal joint. The surgeon may countersink if desired and bone surface is adequate. He or she may use the appropriate depth gauge to determine screw length and, if necessary in dense bone, drill using the appropriate cannulated drill. He or she may then place the screw on the K-wire and drive the screw until fully seated and then remove the K-wire and discard the same.
- a 0.062′′ K-wire may be used in place of a 0.035′′ K-wire.
- the surgeon may replace the 0.062′′ K-wire with the 0.035′′ K-wire and ensure that 0.035′′ K-wire follows pilot hole created by 0.062′′ K-wire. This may alleviate a need to drill in dense bone using the appropriate cannulated drill as described immediately above.
- the surgeon may locate the implant with intra-operative imaging and palpate the head portion of the screw and remove surrounding soft tissue to gain maximum exposure to the screw. He or she may then engage the screw head portion with an appropriate driver and rotate counterclockwise until the screw is removed. If the screw is integrated into bone, he or she may need to core out the screw with a trephine drill, although embodiments described above may alleviate the need for such coring.
- Various embodiments of the invention may include a system of screws used for bone fixation of the hand and foot following trauma or osteotomy.
- Cannulated, threaded bone screws may include, for example, 2.0, 2.4, 3.0 & 4.0 mm diameters with lengths of 8-56 mm.
- Available screws and instrumentation may be packaged as a single system or the screws may be offered in a single sterile packaged offering.
- the system instruments may include drill bits, drill guides, guide wires, depth gauges, countersinks, bone clamps, forceps, screw removal tools, and screwdrivers to facilitate the placement of the screws.
- Screws may be made from, for example, Titanium Alloy (ASTM F-136). Instrumentation may be made from, for example, medical grades of titanium, stainless steel, anodized aluminum, and plastic.
- various embodiments of the invention may prevent or diminish a bone screw-from “backing out” from the bone.
- Bone particulate residing in channels 105 , 110 may promote bone growth that would reduce the potential of backing out.
- bone particulate 181 may incorporate into new growth providing ingrowth of the bone (e.g., cortical bone under the head of the screw).
- Channels 105 , 110 may add additional surface area for bone integration as compared to previously known technologies. This ingrowth may provide some level of resistance to revolution or axial movement to alleviate tendencies of backing out.
- bone particulate from drilling and tapping functions can cause increased friction. This friction can necessitate greater driving torque on the screw shaft for screw insertion, which may lead to screw fractures and failures.
- potential binding may be reduced resulting in less stress on the screw shaft.
- cannulated screws there may be a tradeoff between cannulated wall thickness and available thread height.
- the balancing of wall thickness and thread height may lead to a design where the head of the screw is prone to breaking or twisting.
- breaking or twisting may be reduced due to the tapering and/or increased proximal diameters described above.
- tapering may allow for maximum thread height (thinnest wall) in the thread area while reinforcing the portion below or near the head for greater strength.
- channels may increase flexural strength of screw 100 as compared to previously known technologies.
- the above advantages may be particularly relevant for small bone surgery (e.g., ankle, foot).
- small bone surgery e.g., ankle, foot
- such screws and related instrumentation may be used, for example, for fixation of fractures, non-unions, arthrodeses and osteotomies of the small bones in the hand and foot.
- the various embodiments of the invention are not limited to use in small bone surgery.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Embodiments of the invention may prevent or diminish a bone screw from “backing out” from bone. Bone particulate residing in channels of the bone screw may promote bone growth that would reduce the potential of backing out. Furthermore, bone particulate from drilling and tapping functions can cause increased friction. However, by placing bone particulate in channels of the bone screw, potential binding may be reduced resulting in less stress on the screw shaft. Also, breaking of screws during screw insertion may be reduced due to tapering of the screw.
Description
- Cannulated bone screws are available in self-drilling and self-tapping screw versions. Such screws may vary in wall thickness, diameter and length, may be fully or partially threaded, and may utilize various head and thread designs as well as any number of materials. However, such screws are less than ideal because, for example, they are prone to fracture and “backing out” of the bone in which they are implanted.
- The accompanying drawings, incorporated in and constituting a part of this specification, illustrate one or more implementations consistent with the principles of the invention and, together with the description of the invention, explain such implementations. The drawings are not necessarily to scale, the emphasis instead being placed upon illustrating the principles of the invention. In the drawings:
-
FIG. 1 includes a side view of a device in one embodiment of the invention. -
FIG. 2 includes a side view of a device in one embodiment of the invention. -
FIG. 3 includes a method in one embodiment of the invention. - The following description refers to the accompanying drawings. Among the various drawings the same reference numbers may be used to identify the same or similar elements. While the following description provides a thorough understanding of the various aspects of the claimed invention by setting forth specific details such as particular structures, architectures, interfaces, and techniques, such details are provided for purposes of explanation and should not be viewed as limiting. Moreover, those of skill in the art will, in light of the present disclosure, appreciate that various aspects of the invention claimed may be practiced in other examples or implementations that depart from these specific details. At certain junctures in the following disclosure, descriptions of known devices and methods have been omitted to avoid clouding the description of the present invention with unnecessary detail.
-
FIG. 1 includes a side view of abone screw 100 in one embodiment of the invention which may help reduce any counter rotation that may lead to the screw backing out. Furthermore,screw 100 may be more robust and prevent screw failure (e.g., shearing, torsion) during, for example, screw insertion. -
Bone screw 100 may comprise aproximal head portion 170 and adistal tip portion 150. A threaded portion, included between thehead 170 andtip 150 portions, includes afirst segment 140 comprising contiguous threads. For example, such contiguous threads are not interrupted by a channel present on or in the exterior of the screw. Contiguous threading may increase bone purchase and screw integrity in some instances. A non-threadedportion 165, which may be included between thehead 170 and threaded 140, 145 portions, may include one or more channels, such as first andsecond channels FIG. 2 ) may be coterminous with thescrew head 135 anddistal screw tip 150 portion and may be non-coterminous with the non-threaded 165 and threaded portion(s) (e.g., 140) and the first and/orsecond channels head portion 170 and threadedportions second channels - In one embodiment of the invention,
bone screw 100 may taper outwardly at or near, for example,head portion 170. For example, threadedportions outer thread diameter 120, which extends to the outermost part or crest of respective threads. Threadedportions inner thread diameter 115, which may extend to the innermost part or trough of respective threads. Also, non-threadedportion 165 may includediameter 125 that is greater thaninner thread diameter 115. In some embodiments,diameter 125 may be greater thanouter diameter 120. In an embodiment of the invention, non-threadedportion 165 is tapered to include a gradual increasing of diameters. However, the transition between different diameters need not necessarily be graduated and may be, for example, abrupt. In an embodiment of the invention,diameter 130 may be greater thandiameter 125. Tapering may take place across any or all ofregions channels channel 105 may include a distal region with a diameter that is smaller than the diameter at a proximal region ofchannel 105. -
Channels channel 110 may include a sharp edge orportion 177 to cut bone during clockwise screw insertion. Channel 110 may also include a sharp edge orportion 176 to cut bone during counter-clockwise screw withdrawal. Channel 110 may include multiplesharp edges - Again,
bone screw 100 may include a threaded portion with threadedsegment 145 distal to threadedsegment 140.Distal segment 145 may include non-contiguous threads due to the presence of, for example, cuttingflutes Flutes 155, 156 (and others not visible inFIG. 1 ) may terminate inpoints channels screw 100. Various embodiments may include one channel or numerous other channels (e.g., 3, 4 or more channels). Such channels may be placed horizontally, vertically, or in various other orientations in addition to helical orientations. As described further below,screw 100 may be a lag screw. In addition, bone screw may be headless. If a head is included, such head may be low profile and/or slightly chamfered beneath the screw head to add torsional strength. In various embodiments, threadedportions -
FIG. 2 includes a side view of a device in one embodiment of the invention.Screw 100 may be tapered as indicated byangle 180.Angle 180 may be, for example, one degree rotated away from a central longitudinal axis. A tapered shaft may result, for example, in a 10% greater wall thickness for small diameter screws (e.g., 2.0 mm). -
FIG. 3 includes amethod 300 in one embodiment of the invention. Inblock 305, an incision may be made by a physician. Inblock 310, the physician may partially insert a cannulated bone screw (e.g., bone screw 100) into first bone portion 185 (FIG. 1 ). Inblock 315,bone particulate 181 may be generated as a result of screw insertion. Such insertion may be eased bysharp edge 177. Such bone particulate may be deposited in first andsecond channels block 320, screw 100 may be inserted intosecond bone portion 186. Inblock 325,first bone portion 185 may be compressed againstsecond bone portion 186 based on inserting outwardly tapered portions (see, e.g.,diameters 125, 130) ofnon-threaded portion 165 ofscrew 100 intofirst bone portion 185. In other words, due to pulling action of threadedportions diameters bone segments lag screw 100. Inblock 330, the incision may be closed whilebone particulate 181 is left deposited in first andsecond channels FIG. 1 ) may be used with a lag technique such thatnon-threaded portion 165 is allowed to turn without binding, or reduced binding, while threaded portion(s) 140, 145 continue to approximatedistal bone section 186 until tight againstproximal bone section 185. This may be done while using a bone clamp to compressrelevant bone sections distal segment 186 as the lag effect may not be seen (or seen to a relevant extent) until taperednon-threaded portion 165 ofscrew 100, or evenhead portion 170, is seated againstproximal bone segment 185 or ancillary hardware such as a plate, which may be countersunk in some embodiments. With a tapered shaft existing through any or all portions of screw 100 (e.g.,portions 165 and 170), the interference due to the tapered diameters may begin a lag effect beforehead portion 170 of the screw is fully seated. Also, the interference fit may help distribute the stress and load of the lag stress and alleviate some tendency for fracture of the bone at, for example, the bone/screw head interface. - Various methods may be practiced with various embodiments of the invention. The surgeon may use a bone clamp to create the necessary compression across, for example, an osteotomy or fusion site. The surgeon may insert an appropriately sized guide wire to the correct length under image intensification. The wire may be inserted in 15 mm-20 mm increments. The surgeon may slide the appropriately sized depth gauge/countersink over the guide wire until the countersink tip contacts bone. The surgeon may rotate the countersink back and forth to create the necessary recess in the bone. The surgeon may measure for the desired screw length by examining the end of the guide wire in relation to the marks on the depth gauge. For 3.0 mm & 4.0 mm screws in dense cortical bone, pre-drilling the near cortex using the cannulated drill may help reduce the axial force necessary for inserting the screw. The surgeon may select the desired cannulated screw and slide the same over the guide wire. Then, using a screw driver and appropriate driver shaft, he or she may drive the screw into bone until the desired compression is achieved. The surgeon may then remove and discard the guide wire.
- Another method may include use of, for example, screws for arthrodesis of the 2nd through 5th digits. The surgeon may expose the joint space dorsal of the proximal interphalangeal joint and resect the articular surfaces of the proximal interphalangeal joint. He or she may use a wire pin driver and a 0.035″ double trocar K-wire, insert the K-wire centrally into the middle phalanx, and drill towards the distal phalanx. The surgeon may position the distal phalanx in the desired position and continue inserting the K-wire, maintaining a central position. He or she may continue driving proximal to distal until the K-wire is protruding through the distal phalanx. After assurance that the K-wire is sufficiently exposed to allow for capture with the wire pin driver, the surgeon may, with the wire pin driver, retract the K-wire until the proximal end is only exposed 1 to 2 mm. He or she may then extend the digit to obtain proper alignment between the K-wire and the proximal phalanx. The surgeon may then drive the K-wire to engage the proximal phalanx, assuring that the K-wire does not pass into the metatarsophalangeal joint. The surgeon may countersink if desired and bone surface is adequate. He or she may use the appropriate depth gauge to determine screw length and, if necessary in dense bone, drill using the appropriate cannulated drill. He or she may then place the screw on the K-wire and drive the screw until fully seated and then remove the K-wire and discard the same.
- Another method may be used for Arthrodesis of the 2nd through 5th digits. For example, a 0.062″ K-wire may be used in place of a 0.035″ K-wire. The surgeon may replace the 0.062″ K-wire with the 0.035″ K-wire and ensure that 0.035″ K-wire follows pilot hole created by 0.062″ K-wire. This may alleviate a need to drill in dense bone using the appropriate cannulated drill as described immediately above.
- In one method of use for screw removal, the surgeon may locate the implant with intra-operative imaging and palpate the head portion of the screw and remove surrounding soft tissue to gain maximum exposure to the screw. He or she may then engage the screw head portion with an appropriate driver and rotate counterclockwise until the screw is removed. If the screw is integrated into bone, he or she may need to core out the screw with a trephine drill, although embodiments described above may alleviate the need for such coring.
- Various embodiments of the invention may include a system of screws used for bone fixation of the hand and foot following trauma or osteotomy. Cannulated, threaded bone screws may include, for example, 2.0, 2.4, 3.0 & 4.0 mm diameters with lengths of 8-56 mm. Available screws and instrumentation may be packaged as a single system or the screws may be offered in a single sterile packaged offering. The system instruments may include drill bits, drill guides, guide wires, depth gauges, countersinks, bone clamps, forceps, screw removal tools, and screwdrivers to facilitate the placement of the screws. Screws may be made from, for example, Titanium Alloy (ASTM F-136). Instrumentation may be made from, for example, medical grades of titanium, stainless steel, anodized aluminum, and plastic.
- Thus, as indicated above, various embodiments of the invention may prevent or diminish a bone screw-from “backing out” from the bone. Bone particulate residing in
channels bone particulate 181 may incorporate into new growth providing ingrowth of the bone (e.g., cortical bone under the head of the screw).Channels - Furthermore, bone particulate from drilling and tapping functions can cause increased friction. This friction can necessitate greater driving torque on the screw shaft for screw insertion, which may lead to screw fractures and failures. By placing or clearing bone particulate in or to
channels - Also, with cannulated screws there may be a tradeoff between cannulated wall thickness and available thread height. The balancing of wall thickness and thread height may lead to a design where the head of the screw is prone to breaking or twisting. Such breaking or twisting may be reduced due to the tapering and/or increased proximal diameters described above. For example, tapering may allow for maximum thread height (thinnest wall) in the thread area while reinforcing the portion below or near the head for greater strength. Furthermore, channels may increase flexural strength of
screw 100 as compared to previously known technologies. - The above advantages may be particularly relevant for small bone surgery (e.g., ankle, foot). For example, such screws and related instrumentation may be used, for example, for fixation of fractures, non-unions, arthrodeses and osteotomies of the small bones in the hand and foot. However, the various embodiments of the invention are not limited to use in small bone surgery.
- While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Claims (20)
1. A bone screw comprising:
a proximal bone screw head portion and a distal tip portion;
a threaded portion, included between the head and tip portions, including a first segment comprising contiguous threads;
a non-threaded portion, included between the head and threaded portions, including first and second channels; and
a cannula coterminous with the head and tip portions and non-coterminous with the threaded and non-threaded portions and the first and second channels;
wherein the head and threaded portions do not include the first and second channels.
2. The bone screw of claim 1 , wherein the screw tapers outwardly near the head portion.
3. The bone screw of claim 1 , wherein the threaded portion includes an outer thread diameter and an inner thread diameter and the non-threaded portion includes a diameter, the diameter being greater than the inner thread diameter.
4. The bone screw of claim 3 , wherein the non-threaded portion is tapered.
5. The bone screw of claim 3 , wherein the diameter is greater than the outer thread diameter.
6. The bone screw of claim 1 , wherein the first channel includes a distal region that includes a first diameter and a proximal region that includes a second diameter, the second diameter being greater than the first diameter.
7. The bone screw of claim 1 , wherein the first channel includes a sharp edge to cut bone during screw insertion.
8. The bone screw of claim 1 , wherein the first channel includes a sharp edge to cut bone during screw withdrawal.
9. The bone screw of claim 1 , wherein the first channel includes a first sharp edge to cut bone during screw insertion and a second sharp edge to cut bone during screw withdrawal.
10. The bone screw of claim 1 , wherein the threaded portion includes a second segment distal to the first segment, the second segment comprising non-contiguous threads and a plurality of cutting flutes.
11. The bone screw of claim 1 , wherein the first and second channels are helical.
12. The bone screw of claim 1 , wherein the bone screw is a lag screw.
13. A method comprising:
creating an incision and producing bone particulate based on partially inserting a cannulated bone screw into a first bone portion;
depositing the bone particulate in first and second channels included entirely in a non-threaded portion of the screw that is proximal to a contiguously threaded portion of the screw;
inserting the screw into a second bone portion;
compressing the first bone portion against the second bone portion based on inserting an outwardly tapered portion of the non-threaded portion of the screw into the first bone portion; and
closing the incision while the bone particulate is deposited in the first and second channels.
14. The method of claim 13 , further comprising cutting the first bone portion with a sharp edge included in the first channel during insertion of the screw into the first bone portion.
15. The method of claim 13 , further comprising cutting the first bone portion bone with a sharp edge included in the first channel during withdrawal of the screw from the first bone portion.
16. The method of claim 13 , further comprising closing the incision while the first channel is adjacent cortical bone to promote integration between cortical bone and the bone particulate included in the first channel.
17. A bone screw comprising:
a non-threaded portion, included between a proximal bone screw end and a threaded bone screw portion, including first and second channels; and
a cannula coterminous only with the proximal bone screw end and a distal bone screw end.
18. The bone screw of claim 17 , wherein the first and second channels are excluded entirely from the threaded screw portion.
19. The bone screw of claim 17 , wherein the non-threaded portion tapers outwardly.
20. The bone screw of claim 17 , wherein the first channel includes a sharp edge to cut bone during screw insertion.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/372,042 US20100211113A1 (en) | 2009-02-17 | 2009-02-17 | Bone Screw With Channels |
EP10744149.5A EP2398414B1 (en) | 2009-02-17 | 2010-02-10 | Bone screw with channels |
CA 2752685 CA2752685C (en) | 2009-02-17 | 2010-02-10 | Bone screw with channels |
PCT/US2010/023715 WO2010096308A2 (en) | 2009-02-17 | 2010-02-10 | Bone screw with channels |
US14/308,290 US9387028B2 (en) | 2009-02-17 | 2014-06-18 | Bone screw with channels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/372,042 US20100211113A1 (en) | 2009-02-17 | 2009-02-17 | Bone Screw With Channels |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/308,290 Division US9387028B2 (en) | 2009-02-17 | 2014-06-18 | Bone screw with channels |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100211113A1 true US20100211113A1 (en) | 2010-08-19 |
Family
ID=42560594
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/372,042 Abandoned US20100211113A1 (en) | 2009-02-17 | 2009-02-17 | Bone Screw With Channels |
US14/308,290 Active 2029-04-25 US9387028B2 (en) | 2009-02-17 | 2014-06-18 | Bone screw with channels |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/308,290 Active 2029-04-25 US9387028B2 (en) | 2009-02-17 | 2014-06-18 | Bone screw with channels |
Country Status (4)
Country | Link |
---|---|
US (2) | US20100211113A1 (en) |
EP (1) | EP2398414B1 (en) |
CA (1) | CA2752685C (en) |
WO (1) | WO2010096308A2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110213426A1 (en) * | 2009-04-20 | 2011-09-01 | Yedlicka Joseph W | System and method for self filling bone screws |
US20120053639A1 (en) * | 2010-08-27 | 2012-03-01 | Grant William P | Foot beam insert |
WO2013043763A1 (en) * | 2011-09-21 | 2013-03-28 | Robinson James C | Fenestrated bone screws and methods of bone fastening and stabilization |
US20140257413A1 (en) * | 2013-03-08 | 2014-09-11 | Andreas Appenzeller | Universal Length Screw Design and Cutting Instrument |
US20140257409A1 (en) * | 2013-03-06 | 2014-09-11 | Gary Jack Reed | Bone screw |
EP3023067A1 (en) * | 2014-11-24 | 2016-05-25 | Stryker European Holdings I, LLC | Strut plate and cabling system |
US9358057B1 (en) * | 2015-02-25 | 2016-06-07 | Amendia, Inc. | Sacroiliac screw |
US20160242820A1 (en) * | 2015-02-25 | 2016-08-25 | Amendia, Inc. | Sacroiliac screw |
US9655661B1 (en) * | 2016-06-30 | 2017-05-23 | Hugh Boyd Watts | Cannulated orthopedic screw and method of reducing and fixing a fracture of the lateral malleolus |
US9687285B2 (en) | 2012-01-25 | 2017-06-27 | Spectrum Spine Ip Holdings, Llc | Fenestrated bone screws and methods of bone fastening and stabilization |
US20180243095A1 (en) * | 2015-10-26 | 2018-08-30 | Leon E. POPOVITZ | Circulation replenishing joint implant |
CN118766569A (en) * | 2024-06-04 | 2024-10-15 | 苏州市康力骨科器械有限公司 | Craniomaxillofacial bone plate, manufacturing equipment and manufacturing method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100211113A1 (en) | 2009-02-17 | 2010-08-19 | Jon Olson | Bone Screw With Channels |
TWI613992B (en) | 2016-12-28 | 2018-02-11 | 財團法人工業技術研究院 | Osteo-implant |
US20220240993A1 (en) * | 2021-02-04 | 2022-08-04 | Ctl Medical Corporation | Backout Resistant Screw |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US45133A (en) * | 1864-11-22 | Improvement in screws | ||
US877131A (en) * | 1906-11-20 | 1908-01-21 | Walter C Jordan | Screw. |
US1235626A (en) * | 1917-02-28 | 1917-08-07 | Charles Daniel Woodward | Screw. |
US4463753A (en) * | 1980-01-04 | 1984-08-07 | Gustilo Ramon B | Compression bone screw |
US4697969A (en) * | 1985-09-06 | 1987-10-06 | Sparkes Wilford S | Wood screw |
US5129901A (en) * | 1991-06-10 | 1992-07-14 | Decoste Vern X | Cannulated orthopedic screw |
US5300076A (en) * | 1991-10-11 | 1994-04-05 | Societe De Fabrication De Materiel Orthopedique-Sofamore | Percutaneous bone screw for supporting a stereotaxy frame |
US5334204A (en) * | 1992-08-03 | 1994-08-02 | Ace Medical Company | Fixation screw |
US5425407A (en) * | 1991-04-26 | 1995-06-20 | Archuleta; Vincent | Screw plug for tire punctures |
US5562672A (en) * | 1993-01-21 | 1996-10-08 | Acumed, Inc. | Tapered bone screw with continuously varying pitch |
US5800101A (en) * | 1996-02-14 | 1998-09-01 | Sumitomo Electric Industries, Ltd. | Drill |
US5964768A (en) * | 1993-01-21 | 1999-10-12 | Acumed, Inc. | Tapered bone screw with continuously varying pitch |
US6129730A (en) * | 1999-02-10 | 2000-10-10 | Depuy Acromed, Inc. | Bi-fed offset pitch bone screw |
US6375657B1 (en) * | 2000-03-14 | 2002-04-23 | Hammill Manufacturing Co. | Bonescrew |
US20040044345A1 (en) * | 2002-08-28 | 2004-03-04 | Demoss Richard Marshal | Shallow penetration bone screw |
US20060009770A1 (en) * | 2003-11-18 | 2006-01-12 | Andrew Speirs | Bone plate and bone screw system |
US20060129147A1 (en) * | 2004-04-16 | 2006-06-15 | Biedermann Motech Gmbh | Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element |
US20060149263A1 (en) * | 2004-12-17 | 2006-07-06 | Zimmer Spine, Inc. | Self drilling bone screw |
US7207994B2 (en) * | 2002-02-12 | 2007-04-24 | Pioneer Laboratories, Inc. | Cannulated bone screw |
US7293947B2 (en) * | 2004-04-09 | 2007-11-13 | Phillips Screw Company | Screw having a knurled portion |
US20080051793A1 (en) * | 2006-08-04 | 2008-02-28 | David Erickson | Drill-tap tool |
US7338493B1 (en) * | 2002-06-28 | 2008-03-04 | Biomet Manufacturing Corp. | Method and apparatus for cementing a screw anchor |
US20080177331A1 (en) * | 2006-12-28 | 2008-07-24 | Mi4Spine, Llc | Surgical Screw Including a Body that Facilitates Bone In-Growth |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4687443A (en) * | 1983-04-20 | 1987-08-18 | Boehringer Mannheim Corporation | Submergible post-type dental implant system and method of using same |
DE3811345C1 (en) * | 1988-04-02 | 1989-09-07 | Aesculap Ag, 7200 Tuttlingen, De | |
DE29520312U1 (en) | 1995-12-21 | 1996-02-08 | Leibinger Medizintech | Bone screw |
EP0788781B1 (en) | 1996-02-12 | 2002-01-02 | Nobel Biocare AB (reg. no. 556002-0231) | Abutment screw |
US5868749A (en) * | 1996-04-05 | 1999-02-09 | Reed; Thomas M. | Fixation devices |
EP0988833B1 (en) | 1998-09-24 | 2003-10-01 | Centerpulse Orthopedics Ltd. | Osteosynthesis plate with multiple bone screws |
US6214012B1 (en) | 1998-11-13 | 2001-04-10 | Harrington Arthritis Research Center | Method and apparatus for delivering material to a desired location |
US6048343A (en) * | 1999-06-02 | 2000-04-11 | Mathis; John M. | Bone screw system |
US6187008B1 (en) | 1999-07-07 | 2001-02-13 | Bristol-Myers Squibb | Device for temporarily fixing bones |
NZ517314A (en) | 1999-09-08 | 2003-06-30 | Synthes Ag | Bone screw |
US6540752B1 (en) * | 1999-11-01 | 2003-04-01 | Greg Hicken | Threaded bone tunnel dilator |
SE518461C2 (en) | 2001-02-21 | 2002-10-15 | Henrik Hansson | Bone screw, way to make its threads and drill to drill holes for same |
US20050101961A1 (en) * | 2003-11-12 | 2005-05-12 | Huebner Randall J. | Bone screws |
WO2008100239A2 (en) | 2005-02-12 | 2008-08-21 | Innovative Spinal Design, Inc. | Improved static anterior cervical plate |
US7749259B2 (en) * | 2005-04-08 | 2010-07-06 | Warsaw Orthopedic, Inc. | Slotted screw for use with a vertebral member |
US20070055257A1 (en) * | 2005-06-30 | 2007-03-08 | Alex Vaccaro | Cannulated screw access system |
US7731738B2 (en) * | 2005-12-09 | 2010-06-08 | Orthopro, Llc | Cannulated screw |
US20080262555A1 (en) | 2007-01-05 | 2008-10-23 | Trans1 Inc. | Percutaneous delivery of facet screws using depth control indicator |
US8398690B2 (en) * | 2007-02-07 | 2013-03-19 | Apex Biomedical Company, Llc | Rotationally asymmetric bone screw |
US20100211113A1 (en) | 2009-02-17 | 2010-08-19 | Jon Olson | Bone Screw With Channels |
-
2009
- 2009-02-17 US US12/372,042 patent/US20100211113A1/en not_active Abandoned
-
2010
- 2010-02-10 EP EP10744149.5A patent/EP2398414B1/en active Active
- 2010-02-10 CA CA 2752685 patent/CA2752685C/en active Active
- 2010-02-10 WO PCT/US2010/023715 patent/WO2010096308A2/en active Application Filing
-
2014
- 2014-06-18 US US14/308,290 patent/US9387028B2/en active Active
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US45133A (en) * | 1864-11-22 | Improvement in screws | ||
US877131A (en) * | 1906-11-20 | 1908-01-21 | Walter C Jordan | Screw. |
US1235626A (en) * | 1917-02-28 | 1917-08-07 | Charles Daniel Woodward | Screw. |
US4463753A (en) * | 1980-01-04 | 1984-08-07 | Gustilo Ramon B | Compression bone screw |
US4697969A (en) * | 1985-09-06 | 1987-10-06 | Sparkes Wilford S | Wood screw |
US5425407A (en) * | 1991-04-26 | 1995-06-20 | Archuleta; Vincent | Screw plug for tire punctures |
US5129901A (en) * | 1991-06-10 | 1992-07-14 | Decoste Vern X | Cannulated orthopedic screw |
US5300076A (en) * | 1991-10-11 | 1994-04-05 | Societe De Fabrication De Materiel Orthopedique-Sofamore | Percutaneous bone screw for supporting a stereotaxy frame |
US5334204A (en) * | 1992-08-03 | 1994-08-02 | Ace Medical Company | Fixation screw |
US5562672A (en) * | 1993-01-21 | 1996-10-08 | Acumed, Inc. | Tapered bone screw with continuously varying pitch |
US5964768A (en) * | 1993-01-21 | 1999-10-12 | Acumed, Inc. | Tapered bone screw with continuously varying pitch |
US5800101A (en) * | 1996-02-14 | 1998-09-01 | Sumitomo Electric Industries, Ltd. | Drill |
US6129730A (en) * | 1999-02-10 | 2000-10-10 | Depuy Acromed, Inc. | Bi-fed offset pitch bone screw |
US6375657B1 (en) * | 2000-03-14 | 2002-04-23 | Hammill Manufacturing Co. | Bonescrew |
US6551323B2 (en) * | 2000-03-14 | 2003-04-22 | Hammill Manufacturing | Method of making a bonescrew |
US7207994B2 (en) * | 2002-02-12 | 2007-04-24 | Pioneer Laboratories, Inc. | Cannulated bone screw |
US7338493B1 (en) * | 2002-06-28 | 2008-03-04 | Biomet Manufacturing Corp. | Method and apparatus for cementing a screw anchor |
US20040044345A1 (en) * | 2002-08-28 | 2004-03-04 | Demoss Richard Marshal | Shallow penetration bone screw |
US20060009770A1 (en) * | 2003-11-18 | 2006-01-12 | Andrew Speirs | Bone plate and bone screw system |
US7293947B2 (en) * | 2004-04-09 | 2007-11-13 | Phillips Screw Company | Screw having a knurled portion |
US20060129147A1 (en) * | 2004-04-16 | 2006-06-15 | Biedermann Motech Gmbh | Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element |
US20060149263A1 (en) * | 2004-12-17 | 2006-07-06 | Zimmer Spine, Inc. | Self drilling bone screw |
US20080051793A1 (en) * | 2006-08-04 | 2008-02-28 | David Erickson | Drill-tap tool |
US20080177331A1 (en) * | 2006-12-28 | 2008-07-24 | Mi4Spine, Llc | Surgical Screw Including a Body that Facilitates Bone In-Growth |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110213426A1 (en) * | 2009-04-20 | 2011-09-01 | Yedlicka Joseph W | System and method for self filling bone screws |
US20120053639A1 (en) * | 2010-08-27 | 2012-03-01 | Grant William P | Foot beam insert |
US9592084B2 (en) * | 2010-08-27 | 2017-03-14 | William P. Grant | Foot beam insert |
WO2013043763A1 (en) * | 2011-09-21 | 2013-03-28 | Robinson James C | Fenestrated bone screws and methods of bone fastening and stabilization |
US9687285B2 (en) | 2012-01-25 | 2017-06-27 | Spectrum Spine Ip Holdings, Llc | Fenestrated bone screws and methods of bone fastening and stabilization |
US9526547B2 (en) * | 2013-03-06 | 2016-12-27 | Rgt Scientific Inc. | Bone screw |
US10085782B2 (en) * | 2013-03-06 | 2018-10-02 | Rtg Scientific, Llc | Bone screw |
US20140257409A1 (en) * | 2013-03-06 | 2014-09-11 | Gary Jack Reed | Bone screw |
US9072559B2 (en) * | 2013-03-08 | 2015-07-07 | DePuy Synthes Products, Inc. | Universal length screw design and cutting instrument |
US9463056B2 (en) | 2013-03-08 | 2016-10-11 | DePuy Synthes Products, Inc. | Universal length screw design and cutting instrument |
US20140257413A1 (en) * | 2013-03-08 | 2014-09-11 | Andreas Appenzeller | Universal Length Screw Design and Cutting Instrument |
RU2659017C2 (en) * | 2013-03-08 | 2018-06-26 | Депуи Синтез Продактс, Инк. | Screw with universal length and cutting tools |
AU2014226308B2 (en) * | 2013-03-08 | 2017-11-09 | DePuy Synthes Products, Inc. | Universal length screw design and cutting instrument |
US11457954B2 (en) | 2014-11-24 | 2022-10-04 | Stryker European Operations Holdings Llc | Strut plate and cabling system |
EP3023067A1 (en) * | 2014-11-24 | 2016-05-25 | Stryker European Holdings I, LLC | Strut plate and cabling system |
US9943340B2 (en) * | 2015-02-25 | 2018-04-17 | Amendia, Inc. | Sacroiliac screw |
US9358057B1 (en) * | 2015-02-25 | 2016-06-07 | Amendia, Inc. | Sacroiliac screw |
US10123825B2 (en) | 2015-02-25 | 2018-11-13 | Amendia, Inc. | Sacroiliac screw |
US20160242820A1 (en) * | 2015-02-25 | 2016-08-25 | Amendia, Inc. | Sacroiliac screw |
US20180243095A1 (en) * | 2015-10-26 | 2018-08-30 | Leon E. POPOVITZ | Circulation replenishing joint implant |
US11938029B2 (en) * | 2015-10-26 | 2024-03-26 | Leon E. POPOVITZ | Circulation replenishing joint implant |
US9655661B1 (en) * | 2016-06-30 | 2017-05-23 | Hugh Boyd Watts | Cannulated orthopedic screw and method of reducing and fixing a fracture of the lateral malleolus |
CN118766569A (en) * | 2024-06-04 | 2024-10-15 | 苏州市康力骨科器械有限公司 | Craniomaxillofacial bone plate, manufacturing equipment and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
EP2398414B1 (en) | 2017-06-14 |
CA2752685A1 (en) | 2010-08-26 |
EP2398414A4 (en) | 2015-05-27 |
WO2010096308A2 (en) | 2010-08-26 |
WO2010096308A3 (en) | 2010-12-02 |
CA2752685C (en) | 2014-05-27 |
US9387028B2 (en) | 2016-07-12 |
EP2398414A2 (en) | 2011-12-28 |
US20140303677A1 (en) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9387028B2 (en) | Bone screw with channels | |
US20230225771A1 (en) | Flexible bone implant | |
US10485595B2 (en) | Flexible bone screw | |
US11638600B2 (en) | Implantable compression screws | |
US8267975B2 (en) | Bone screw system | |
US9974573B2 (en) | Minimally invasive approaches, methods and apparatuses to accomplish sacroiliac fusion | |
US8545540B2 (en) | Bone plate with pre-assembled drill guide tips | |
US9345522B2 (en) | Bone fixation screw and method | |
US9089377B2 (en) | Bone screw | |
US10772669B2 (en) | Drill and/or guide wire guides for surgical drill bits, guide wires and/or screws and methods of using said guides | |
US20220117747A1 (en) | Small bone angled compression screw | |
US10154863B2 (en) | Flexible bone screw | |
JP7477179B2 (en) | Orthopedic bone screws | |
US11564720B2 (en) | Intramedullary stabilization screw | |
CN110876640B (en) | A wedge screw internal fixation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TRILLIANT SURGICAL LTD., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OLSON, JON;STEITLE, CHAD;REEL/FRAME:022264/0673 Effective date: 20090210 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: TRILLIANT SURGICAL LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRILLIANT SURGICAL LTD.;REEL/FRAME:050560/0969 Effective date: 20190927 |