US20100204696A1 - Extension Cutting Blade - Google Patents
Extension Cutting Blade Download PDFInfo
- Publication number
- US20100204696A1 US20100204696A1 US12/368,463 US36846309A US2010204696A1 US 20100204696 A1 US20100204696 A1 US 20100204696A1 US 36846309 A US36846309 A US 36846309A US 2010204696 A1 US2010204696 A1 US 2010204696A1
- Authority
- US
- United States
- Prior art keywords
- shaft
- electrosurgical
- instrument
- electrosurgical instrument
- contour
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title description 21
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000002357 laparoscopic surgery Methods 0.000 claims description 8
- 239000012781 shape memory material Substances 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 2
- 230000015271 coagulation Effects 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000012636 effector Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 230000023597 hemostasis Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 229910016347 CuSn Inorganic materials 0.000 description 1
- -1 FeMnSi Inorganic materials 0.000 description 1
- 229910005335 FePt Inorganic materials 0.000 description 1
- 229910003172 MnCu Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000001113 umbilicus Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1482—Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1465—Deformable electrodes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/12—Shape memory
Definitions
- the present disclosure relates generally to a device, a system, and a method of electrosurgery and, more particularly, to a method and device adapted for single incision laparoscopic surgery (SILS) to maximize the manipulability of electrosurgical instruments used during a SILS procedure.
- STEM single incision laparoscopic surgery
- Monopolar electrosurgical techniques deliver alternating current electrosurgical energy from an exposed or an active electrode, through the patient's body, to a return pad or an electrode which is externally attached to a suitable location on the patient's skin.
- Bipolar electrosurgical methods deliver electrosurgical energy from a first exposed electrode in which both the first and the second electrodes are typically disposed within the patient's body, for example, the opposing jaws of electrosurgical forceps.
- Electrosurgical instruments are devices that deliver radio-frequency (RF) energy to a tissue site, such as an electrosurgical instrument.
- RF radio-frequency
- electrosurgical instrument is intended to include instruments having a hand-piece attached to an active electrode and used to cauterize, coagulate, and/or cut tissue.
- the electrosurgical instrument may be operated by a hand-switch or a foot switch, and are hand-held.
- the waveforms produced by the RF source may yield a predetermined electrosurgical effect such as electrosurgical cutting, blending, or coagulation.
- Coagulation is defined as a process of desiccating tissue, wherein the tissue cells are ruptured and dehydrated.
- Electrosurgical cutting and dissecting include the application of electrosurgical energy to tissue to produce a cutting, dissecting, and/or dividing effect.
- Blending includes the function of cutting (dissecting) with the production of a hemostasis effect. Hemostasis is defined as the process of liquefying tissue collagen so that it becomes a fused mass.
- the active electrode is an electrically conducting element, which is usually enlongated and may be in the form of a thin blade with a pointed or rounded distal end. Alternatively, the active electrode can include an enlongated narrow cylindrical needle that is either solid or hollow with a flat, rounded, pointed, or slanted distal end.
- the hand-piece of the electrosurgical instrument is connected to a suitable electrosurgical energy source (generator) that produces the RF energy needed for the operation of the electrosurgical instrument.
- generator electrosurgical energy source
- electrical energy from the electrosurgical generator is conducted through the active electrode to the tissue at the site of the operation and then through the patient to a return electrode.
- the return electrode is selectively placed on the patient's body and attached to the generator by a conductive material.
- SILS single incision laparoscopic surgery
- the SILS technique involves making one single small incision, instead of several, through which a surgeon operates.
- the surgery is performed around the umbilicus (belly button) area. Fewer incisions result in a faster recovery with less pain.
- the instrument handles often line up and interfere with each other. This problem may be offset somewhat by making a larger incision in the patient with the resultant delay in healing and increased scarring.
- the present disclosure is directed to a device, a system, and a method for electrosurgery, e.g., single incision laparoscopic surgery (SILS), to permit a surgeon to more easily use multiple electrosurgical instruments within a single access point, e.g., an incision, while minimizing interference between the instruments.
- SOMS single incision laparoscopic surgery
- multiple embodiments of shafts for electrosurgical instruments and electrosurgical methods adapted for this purpose are disclosed.
- an electrosurgical instrument including a housing having a selectively contourable shaft that extends therefrom and at least one electrode disposed at a distal end of the shaft adapted to connect to all electrosurgical generator, wherein the shaft is selectively contourable to maximize the manipulability of the shaft when used with other instruments during a single incision laparoscopic surgery.
- the shaft may be selectively contour able to form a contour selected from the group consisting of generally S shaped shafts, generally U shaped shafts, generally W shaped shafts, and generally sinusoidal shaped shafts.
- the shaft may be selectively contourable to form two generally right angles defined therein.
- the shaft may be made from a shape memory material.
- the shaft may include a series of joints.
- the shaft may include a helical coil.
- a handle may be coupled to the shaft at a proximal end thereof, the handle being movable relative to the shaft.
- the shaft may be sufficiently rigid to resist application of ordinary forces and torques applied during an electrosurgical procedure.
- Also disclosed is a method of adjusting a contour of a shaft of an electrosurgical instrument to maximize manipulability of the instrument when used for an electrosurgical procedure including the steps of: determining values for variables including instrument type, instrument number, number of instruments, and diameter of instrument shafts; inputting the values of the variables into a database, selecting an appropriate contour from the database's recommended contours; and adjusting the contour of the shaft to correspond with one of the recommended contours.
- the method may further include the step of using a template to adjust the contour of the shaft.
- the template may include a contour displayed on a surface.
- the template may include a surface having a plurality of apertures configured as a grid adapted for the reception of pegs, wherein the pegs are adapted for the reception of an electrosurgical instrument shaft.
- the template may include a surface adapted for receiving a shaft of an electrosurgical instrument and a series of apertures adapted to receive screws along a non-parallel surface thereof for applying pressure to the shaft along predetermined points.
- the database may include a list of preferred shapes for an electrosurgical shaft corresponding to a permutation of variables selected from the group consisting of instrument type, instrument model, shaft diameter, number of instruments, location of incision, size of incision, and physical characteristics of a user.
- an electrosurgical system including an electrosurgical generator adapted to connect to an electrosurgical instrument, the electrosurgical instrument having a contourable shaft including a distal end and a proximal end, and at least one electrode located proximate the distal end of the shaft, wherein the shaft is selectively contourable to maximize the manipulability of the shaft when used with other instruments during a single laparoscopic surgery.
- FIG. 1 is a schematic view of an electrosurgical system in accordance with the present disclosure
- FIG. 2 is a schematic view of a cutting device in accordance with the present disclosure, engaged with a target lumen;
- FIG. 3 is a schematic view of a cutting device in accordance with the present disclosure, engaged with a target lumen;
- FIG. 4 is a schematic view of a template for shaping a shaft of a cutting device in accordance with the present disclosure
- FIG. 5 is a schematic view of a template for shaping a shaft of a cutting device in accordance with the present disclosure
- FIG. 6 is a schematic view of a template for shaping a shaft of a cutting device in accordance with the present disclosure
- FIG. 7 is a schematic view of a template for shaping a shaft of a cutting device in accordance with the present disclosure.
- FIG. 8 is a schematic view of an embodiment of a contoured shaft in accordance with the present disclosure.
- FIG. 9 is a schematic view of another contoured shaft in accordance with the present disclosure.
- FIG. 10 is a schematic view of yet another contoured shaft in accordance with the present disclosure.
- FIG. 11 is a schematic view of still another contoured shaft in accordance with the present disclosure.
- FIG. 12 is a schematic view of a cutting device having a helical coil in accordance with the present disclosure.
- FIG. 13 is a schematic view of a cutting device having a series of joints in accordance with the present disclosure.
- FIG. 14 is a schematic view of a database for selecting a contoured shaft for an electrosurgical instrument.
- proximal refers to the end of the apparatus that is closer to the user and the term “distal” refers to the end of the apparatus that is further from the user.
- distal refers to the end of the apparatus that is further from the user.
- an electrosurgical system having an RF generator 20 coupled to an electrosurgical instrument 100 including a handle 12 and a shaft 2 configured and adapted to support electrodes, e.g., electrodes 3 , 5 , and 6 , at a distal end of the shaft 2 and the appropriate electrical connections, e.g., cable 10 , for coupling one or more active electrodes and one return electrodes to a high frequency power supply, e.g., electrosurgical generator 20 .
- an end effector may be, but is not limited to, a cutting device, forceps, or a suction coagulator
- an end effector 110 may include one or more active electrodes 3 , 5 , and 6 .
- the electrodes 3 , 5 , and 6 may be supported within or near an insulating support 7 positioned at or near the distal end of the shaft 2 .
- Electrodes 3 , 5 , and 6 are operably coupled to an electrosurgical generator 20 that is configured to supply radio frequency (RF) voltage, RF electronic current, or electrosurgical energy therein.
- RF radio frequency
- electrosurgical generator 20 may be any one of the following, or equivalents thereof: the “FORCE FX®”, “FORCE 2TM”, “FORCE 4TM”, “LIGASURE®”, “FORCE EZ®”, “FORCE 1CTM”, “SURGISTAT®”, “SURGISTAT IITM”, generators manufactured by Valleylab, a division of Covidien, located in Boulder, Colo. It is contemplated that electrosurgical generator 14 can be preset to selectively provide an appropriate first predetermined RF signal (e.g., about 1 to 300 watts) for tissue cutting and an appropriate second predetermined RF signal (e.g., about 1 to 120 watts) for tissue coagulation.
- an appropriate first predetermined RF signal e.g., about 1 to 300 watts
- an appropriate second predetermined RF signal e.g., about 1 to 120 watts
- the generator may include a switch (not shown) to deliver either RF-current suitable for cutting or RF-current suitable for coagulation by applying, for example, suitable RF voltage to either the coagulation electrode pair 3 and 6 or the cutting electrode pair 5 and 6 .
- the switch may be on the instrument or may be a handswitch or a footswitch.
- the cutting device 100 may be inserted into a single incision I within a patient P to reach a target lumen T, for example, the gallbladder.
- a target lumen T for example, the gallbladder.
- the shaft 2 is bent so that the handle 12 is less likely to interact with other instruments and also creates more of a workspace for the surgeon.
- Such a configuration permits the distal end 3 of the shaft 2 to be much closer to one another than would otherwise be permitted, for example, thereby creating space for the surgeon's hands (not shown) without requiring the surgeon to hold the instruments further apart.
- each cutting device 100 has a shaft 2 that forms two generally right angles 901 and 902 . It is envisioned that by staggering the lengths of portions of the shaft 904 , e.g. upper portion 905 and lower portion 906 that the shafts 900 may be spaced closely to one another in a parallel configuration while allowing for a full range of motion without interference from each shaft 2 . Joints may be located at points 901 and 902 along the shaft 904 , allowing the handle 12 to tilt with respect to the shaft 2 . In still a further embodiment, handle 12 is capable of telescopic motion. The distal end 903 of the shaft 2 may include electrodes.
- the shape of the shaft can be made to be adjustable in several ways, including, but not limited to the shaft being made of a shape memory material, comprising a series of joints, as shown in FIG. 12 , and/or comprising a helical coil, as shown in FIG. 13 . Once positioned as desired by the user, the shaft 2 in both of these embodiments may be locked in place for instance by a drawstring (not shown).
- the shaft may be made of a material sufficiently rigid to resist the application of ordinary forces and torques applied to the device during an electrosurgical procedure.
- the shaft 2 is made from any bendable material, including a shape memory alloy, including but not limited to AgCd, AuCd, CuAlNi, CuSn, CuZnSi, CuZnAl, CuZnSn, FePt, MnCu, FeMnSi, Pt alloys, CoNiAl, CoNiGa, TiPd, NiTi, and CuAlNi.
- Shape memory allows have the ability to be bent into a variety of shapes and will hold that shape until heated above a transition temperature, whereupon they will revert back to the original shape.
- a series of joints and/or a helical coil may comprise the shaft 2 of the cutting device 100 .
- the shaft 2 may be locked in place once the shaft's desired shape is achieved.
- a method of preparing electrosurgical instrumentation for insertion into an incision within a patient includes the steps of providing a template displaying a shape corresponding to a desired shape for a shaft of an electrosurgical device and bending the shaft of the electrosurgical device in conformance with the shape determined by the template.
- a database of recommended shaft configurations determined by a permutation of variables including, but not limited to, type or model number of an instrument, shaft diameter, location and size of an incision, the number of instruments to be inserted into the incision, and the physical characteristics of the user such as the size of the user's hands.
- a surgeon may for example use a database to select an appropriate shaft configuration given the model and type numbers of instruments to be used.
- a surgeon may quickly and easily determine the curvature necessitated by a particular procedure by using a template, as shown in FIGS. 4-7 .
- a template 200 is shown having a surface 7 including a curve 8 .
- the electrosurgical cutting device 100 may be placed on the template 200 and the shaft 2 may be manipulated to conform with the curve 8 displayed on the surface 7 .
- the curve 8 may also be displayed visually as shown in FIG. 5 .
- a visual display 50 is coupled to a computer 40 .
- a surgeon may enter variables into the computer 40 through controls 41 , including such variables as shaft diameter, location of the target lumen, incision size, and the number of instruments to be used. Once entered, the curve 8 is shown on display 8 and the surgeon may use the displayed image to conform the shaft 2 to the displayed curve.
- a template 300 may include a surface including a plurality of holes 301 corresponding to a grid 305 adapted for the insertion of push pins 302 , as shown in FIG. 6 .
- a user e.g., a surgeon, may enter variables for a given procedure, including instrument type and model number, number of instruments, shaft diameter, etc., and utilize a database to select a curve corresponding to that specific permutation. The database will then specify the appropriate locations for push pins 302 to be inserted into the holes 301 .
- a user may fit the shaft 2 between the push pins 302 until the shaft 2 conforms to the desired configuration for the particular procedure.
- a template 400 for adjusting the shape of an electrosurgical device shaft including a box 600 having an opening 603 along one face of the box 600 and a series of screws 605 along another face of the box that is not parallel to the face having the opening 605 .
- a marked thread 602 can be used to indicate the depth of the screw.
- a database can indicate the desired depth of each screw 605 to achieve a desired shaft 2 contour upon the insertion of shaft 2 . It is envisioned that one skilled in the art may make obvious substitutions for certain elements disclosed herein. For example, without limitation, it should be understood that the term “screw” connotes any device capable of maintaining a fixed position once inserted into a hole.
- Exemplary shapes of the shafts of the electrosurgical devices include a shaft having the shape of two substantially inversely symmetrical L's ( FIG. 3 ), a generally S-shaped configuration ( FIG. 8 ), a generally U-shaped configuration ( FIG. 9 ), a generally W-shaped configuration ( FIG. 10 ), a generally sinusoidal shaped configuration ( FIG. 11 ).
- the present disclosure will permit a surgeon to more easily manipulate multiple instruments within a single access point.
- a greater range of manipulability is achieved by selecting electrosurgical instruments having shaft configurations purposefully designed to reduce the likelihood that the shafts will impede each shaft's range of motion.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Otolaryngology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cardiology (AREA)
- Surgical Instruments (AREA)
- Harvester Elements (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
- 1. Technical Field
- The present disclosure relates generally to a device, a system, and a method of electrosurgery and, more particularly, to a method and device adapted for single incision laparoscopic surgery (SILS) to maximize the manipulability of electrosurgical instruments used during a SILS procedure.
- 2. Background
- Two popular electrosurgical techniques are monopolar electrosurgery and bipolar electrosurgery. Monopolar electrosurgical techniques deliver alternating current electrosurgical energy from an exposed or an active electrode, through the patient's body, to a return pad or an electrode which is externally attached to a suitable location on the patient's skin. Bipolar electrosurgical methods deliver electrosurgical energy from a first exposed electrode in which both the first and the second electrodes are typically disposed within the patient's body, for example, the opposing jaws of electrosurgical forceps.
- Electrosurgical instruments are devices that deliver radio-frequency (RF) energy to a tissue site, such as an electrosurgical instrument. The term “electrosurgical instrument,” as used herein, is intended to include instruments having a hand-piece attached to an active electrode and used to cauterize, coagulate, and/or cut tissue. Typically, the electrosurgical instrument may be operated by a hand-switch or a foot switch, and are hand-held.
- The waveforms produced by the RF source may yield a predetermined electrosurgical effect such as electrosurgical cutting, blending, or coagulation. Coagulation is defined as a process of desiccating tissue, wherein the tissue cells are ruptured and dehydrated. Electrosurgical cutting and dissecting include the application of electrosurgical energy to tissue to produce a cutting, dissecting, and/or dividing effect. Blending includes the function of cutting (dissecting) with the production of a hemostasis effect. Hemostasis is defined as the process of liquefying tissue collagen so that it becomes a fused mass.
- The active electrode is an electrically conducting element, which is usually enlongated and may be in the form of a thin blade with a pointed or rounded distal end. Alternatively, the active electrode can include an enlongated narrow cylindrical needle that is either solid or hollow with a flat, rounded, pointed, or slanted distal end. The hand-piece of the electrosurgical instrument is connected to a suitable electrosurgical energy source (generator) that produces the RF energy needed for the operation of the electrosurgical instrument. In general, when performing an operation with an electrosurgical instrument, electrical energy from the electrosurgical generator is conducted through the active electrode to the tissue at the site of the operation and then through the patient to a return electrode. The return electrode is selectively placed on the patient's body and attached to the generator by a conductive material.
- One technique for electrosurgery, called single incision laparoscopic surgery (SILS), reduces scanning and accelerates healing. The SILS technique involves making one single small incision, instead of several, through which a surgeon operates. Typically, the surgery is performed around the umbilicus (belly button) area. Fewer incisions result in a faster recovery with less pain.
- Within the single incision, typically three or four ports are placed for the insertion of electrosurgical instruments to the operative field. Usually, two or three ports are used for devices having a 5 mm diameter and at least one larger port having a 10 to 12 mm diameter to allow for the insertion of an endoscope. Since all the channels are parallel to one another within a single incision, the instrument handles often line up and interfere with each other. This problem may be offset somewhat by making a larger incision in the patient with the resultant delay in healing and increased scarring.
- The present disclosure is directed to a device, a system, and a method for electrosurgery, e.g., single incision laparoscopic surgery (SILS), to permit a surgeon to more easily use multiple electrosurgical instruments within a single access point, e.g., an incision, while minimizing interference between the instruments. In particular, multiple embodiments of shafts for electrosurgical instruments and electrosurgical methods adapted for this purpose are disclosed.
- Disclosed herein is an electrosurgical instrument including a housing having a selectively contourable shaft that extends therefrom and at least one electrode disposed at a distal end of the shaft adapted to connect to all electrosurgical generator, wherein the shaft is selectively contourable to maximize the manipulability of the shaft when used with other instruments during a single incision laparoscopic surgery.
- The shaft may be selectively contour able to form a contour selected from the group consisting of generally S shaped shafts, generally U shaped shafts, generally W shaped shafts, and generally sinusoidal shaped shafts.
- The shaft may be selectively contourable to form two generally right angles defined therein.
- The shaft may be made from a shape memory material.
- The shaft may include a series of joints.
- The shaft may include a helical coil.
- A handle may be coupled to the shaft at a proximal end thereof, the handle being movable relative to the shaft.
- The shaft may be sufficiently rigid to resist application of ordinary forces and torques applied during an electrosurgical procedure.
- Also disclosed is a method of adjusting a contour of a shaft of an electrosurgical instrument to maximize manipulability of the instrument when used for an electrosurgical procedure, including the steps of: determining values for variables including instrument type, instrument number, number of instruments, and diameter of instrument shafts; inputting the values of the variables into a database, selecting an appropriate contour from the database's recommended contours; and adjusting the contour of the shaft to correspond with one of the recommended contours.
- The method may further include the step of using a template to adjust the contour of the shaft. The template may include a contour displayed on a surface. The template may include a surface having a plurality of apertures configured as a grid adapted for the reception of pegs, wherein the pegs are adapted for the reception of an electrosurgical instrument shaft. The template may include a surface adapted for receiving a shaft of an electrosurgical instrument and a series of apertures adapted to receive screws along a non-parallel surface thereof for applying pressure to the shaft along predetermined points.
- The database may include a list of preferred shapes for an electrosurgical shaft corresponding to a permutation of variables selected from the group consisting of instrument type, instrument model, shaft diameter, number of instruments, location of incision, size of incision, and physical characteristics of a user.
- Also disclosed is an electrosurgical system including an electrosurgical generator adapted to connect to an electrosurgical instrument, the electrosurgical instrument having a contourable shaft including a distal end and a proximal end, and at least one electrode located proximate the distal end of the shaft, wherein the shaft is selectively contourable to maximize the manipulability of the shaft when used with other instruments during a single laparoscopic surgery.
- By way of description only, embodiments of the disclosure are described with reference to the accompanying drawings in which:
-
FIG. 1 is a schematic view of an electrosurgical system in accordance with the present disclosure; -
FIG. 2 is a schematic view of a cutting device in accordance with the present disclosure, engaged with a target lumen; -
FIG. 3 is a schematic view of a cutting device in accordance with the present disclosure, engaged with a target lumen; -
FIG. 4 is a schematic view of a template for shaping a shaft of a cutting device in accordance with the present disclosure; -
FIG. 5 is a schematic view of a template for shaping a shaft of a cutting device in accordance with the present disclosure; -
FIG. 6 is a schematic view of a template for shaping a shaft of a cutting device in accordance with the present disclosure; -
FIG. 7 is a schematic view of a template for shaping a shaft of a cutting device in accordance with the present disclosure; -
FIG. 8 is a schematic view of an embodiment of a contoured shaft in accordance with the present disclosure; -
FIG. 9 is a schematic view of another contoured shaft in accordance with the present disclosure; -
FIG. 10 is a schematic view of yet another contoured shaft in accordance with the present disclosure; -
FIG. 11 is a schematic view of still another contoured shaft in accordance with the present disclosure; -
FIG. 12 is a schematic view of a cutting device having a helical coil in accordance with the present disclosure; -
FIG. 13 is a schematic view of a cutting device having a series of joints in accordance with the present disclosure; and -
FIG. 14 is a schematic view of a database for selecting a contoured shaft for an electrosurgical instrument. - Particular embodiments of the present disclosure will be described herein with reference to the accompanying drawings. As shown in the drawings and as described throughout the following description, and as is traditional when referring to relative positioning on an object, the term “proximal” refers to the end of the apparatus that is closer to the user and the term “distal” refers to the end of the apparatus that is further from the user. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
- As seen in
FIG. 1 , an electrosurgical system is disclosed having anRF generator 20 coupled to anelectrosurgical instrument 100 including ahandle 12 and ashaft 2 configured and adapted to support electrodes, e.g.,electrodes shaft 2 and the appropriate electrical connections, e.g.,cable 10, for coupling one or more active electrodes and one return electrodes to a high frequency power supply, e.g.,electrosurgical generator 20. - In embodiments, an end effector may be, but is not limited to, a cutting device, forceps, or a suction coagulator As shown in
FIG. 1 , anend effector 110 may include one or moreactive electrodes electrodes support 7 positioned at or near the distal end of theshaft 2.Electrodes electrosurgical generator 20 that is configured to supply radio frequency (RF) voltage, RF electronic current, or electrosurgical energy therein. By way of example only,electrosurgical generator 20 may be any one of the following, or equivalents thereof: the “FORCE FX®”, “FORCE 2™”, “FORCE 4™”, “LIGASURE®”, “FORCE EZ®”, “FORCE 1C™”, “SURGISTAT®”, “SURGISTAT II™”, generators manufactured by Valleylab, a division of Covidien, located in Boulder, Colo. It is contemplated that electrosurgical generator 14 can be preset to selectively provide an appropriate first predetermined RF signal (e.g., about 1 to 300 watts) for tissue cutting and an appropriate second predetermined RF signal (e.g., about 1 to 120 watts) for tissue coagulation. One such system is described in commonly-owned U.S. Pat. No. 6,033,399 entitled “ELECTROSURGICAL GENERATOR WITH ADAPTIVE POWER CONTROL” the entire contents of which are hereby incorporated by reference herein. Other systems have been described in commonly-owned U.S. Pat. No. 6,187,003 entitled “BIPOLAR ELECTROSURGICAL INSTRUMENT FOR SEALING VESSELS” the entire contents of which are also incorporated by reference herein. - In an embodiment, the generator may include a switch (not shown) to deliver either RF-current suitable for cutting or RF-current suitable for coagulation by applying, for example, suitable RF voltage to either the
coagulation electrode pair electrode pair 5 and 6. The switch may be on the instrument or may be a handswitch or a footswitch. - As shown in
FIG. 2 , thecutting device 100 may be inserted into a single incision I within a patient P to reach a target lumen T, for example, the gallbladder. As seen, theshaft 2 is bent so that thehandle 12 is less likely to interact with other instruments and also creates more of a workspace for the surgeon. Such a configuration permits thedistal end 3 of theshaft 2 to be much closer to one another than would otherwise be permitted, for example, thereby creating space for the surgeon's hands (not shown) without requiring the surgeon to hold the instruments further apart. - In an embodiment, as shown in
FIG. 3 , each cuttingdevice 100 has ashaft 2 that forms two generallyright angles upper portion 905 andlower portion 906 that the shafts 900 may be spaced closely to one another in a parallel configuration while allowing for a full range of motion without interference from eachshaft 2. Joints may be located atpoints handle 12 to tilt with respect to theshaft 2. In still a further embodiment, handle 12 is capable of telescopic motion. Thedistal end 903 of theshaft 2 may include electrodes. - The shape of the shaft can be made to be adjustable in several ways, including, but not limited to the shaft being made of a shape memory material, comprising a series of joints, as shown in
FIG. 12 , and/or comprising a helical coil, as shown inFIG. 13 . Once positioned as desired by the user, theshaft 2 in both of these embodiments may be locked in place for instance by a drawstring (not shown). - The shaft may be made of a material sufficiently rigid to resist the application of ordinary forces and torques applied to the device during an electrosurgical procedure. For instance, in one embodiment, the
shaft 2 is made from any bendable material, including a shape memory alloy, including but not limited to AgCd, AuCd, CuAlNi, CuSn, CuZnSi, CuZnAl, CuZnSn, FePt, MnCu, FeMnSi, Pt alloys, CoNiAl, CoNiGa, TiPd, NiTi, and CuAlNi. Shape memory allows have the ability to be bent into a variety of shapes and will hold that shape until heated above a transition temperature, whereupon they will revert back to the original shape. - Alternatively, a series of joints and/or a helical coil may comprise the
shaft 2 of thecutting device 100. Theshaft 2 may be locked in place once the shaft's desired shape is achieved. - A method of preparing electrosurgical instrumentation for insertion into an incision within a patient, e.g., for use in single incision laparoscopic surgeries (SILS), includes the steps of providing a template displaying a shape corresponding to a desired shape for a shaft of an electrosurgical device and bending the shaft of the electrosurgical device in conformance with the shape determined by the template.
- A database of recommended shaft configurations determined by a permutation of variables including, but not limited to, type or model number of an instrument, shaft diameter, location and size of an incision, the number of instruments to be inserted into the incision, and the physical characteristics of the user such as the size of the user's hands. As seen in
FIG. 14 , a surgeon may for example use a database to select an appropriate shaft configuration given the model and type numbers of instruments to be used. - In a further embodiment, a surgeon may quickly and easily determine the curvature necessitated by a particular procedure by using a template, as shown in
FIGS. 4-7 . As shown inFIG. 4 , atemplate 200 is shown having asurface 7 including acurve 8. Theelectrosurgical cutting device 100 may be placed on thetemplate 200 and theshaft 2 may be manipulated to conform with thecurve 8 displayed on thesurface 7. Thecurve 8 may also be displayed visually as shown inFIG. 5 . In the embodiment shown inFIG. 5 , avisual display 50 is coupled to acomputer 40. A surgeon may enter variables into thecomputer 40 throughcontrols 41, including such variables as shaft diameter, location of the target lumen, incision size, and the number of instruments to be used. Once entered, thecurve 8 is shown ondisplay 8 and the surgeon may use the displayed image to conform theshaft 2 to the displayed curve. - Alternatively, a
template 300 may include a surface including a plurality ofholes 301 corresponding to agrid 305 adapted for the insertion of push pins 302, as shown inFIG. 6 . A user, e.g., a surgeon, may enter variables for a given procedure, including instrument type and model number, number of instruments, shaft diameter, etc., and utilize a database to select a curve corresponding to that specific permutation. The database will then specify the appropriate locations for push pins 302 to be inserted into theholes 301. - Once the push pins 302 are inserted into the
holes 301 within thesurface 304 of thetemplate 300 as specified in a database detailing the placement of the push pins 302 along thegrid 305, a user may fit theshaft 2 between the push pins 302 until theshaft 2 conforms to the desired configuration for the particular procedure. - In an embodiment, a
template 400 for adjusting the shape of an electrosurgical device shaft including abox 600 having anopening 603 along one face of thebox 600 and a series ofscrews 605 along another face of the box that is not parallel to the face having theopening 605. Amarked thread 602 can be used to indicate the depth of the screw. In an embodiment, a database can indicate the desired depth of eachscrew 605 to achieve a desiredshaft 2 contour upon the insertion ofshaft 2. It is envisioned that one skilled in the art may make obvious substitutions for certain elements disclosed herein. For example, without limitation, it should be understood that the term “screw” connotes any device capable of maintaining a fixed position once inserted into a hole. - Exemplary shapes of the shafts of the electrosurgical devices include a shaft having the shape of two substantially inversely symmetrical L's (
FIG. 3 ), a generally S-shaped configuration (FIG. 8 ), a generally U-shaped configuration (FIG. 9 ), a generally W-shaped configuration (FIG. 10 ), a generally sinusoidal shaped configuration (FIG. 11 ). - It is envisioned that the present disclosure will permit a surgeon to more easily manipulate multiple instruments within a single access point. In particular, a greater range of manipulability is achieved by selecting electrosurgical instruments having shaft configurations purposefully designed to reduce the likelihood that the shafts will impede each shaft's range of motion.
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/368,463 US8231620B2 (en) | 2009-02-10 | 2009-02-10 | Extension cutting blade |
EP10153021A EP2215986B1 (en) | 2009-02-10 | 2010-02-09 | Method of contouring the shaft of an electrosurgical instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/368,463 US8231620B2 (en) | 2009-02-10 | 2009-02-10 | Extension cutting blade |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100204696A1 true US20100204696A1 (en) | 2010-08-12 |
US8231620B2 US8231620B2 (en) | 2012-07-31 |
Family
ID=42045309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/368,463 Expired - Fee Related US8231620B2 (en) | 2009-02-10 | 2009-02-10 | Extension cutting blade |
Country Status (2)
Country | Link |
---|---|
US (1) | US8231620B2 (en) |
EP (1) | EP2215986B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8460289B2 (en) | 2005-06-28 | 2013-06-11 | Covidien Ag | Electrode with rotatably deployable sheath |
US20130304051A1 (en) * | 2012-05-08 | 2013-11-14 | Greatbatch Ltd. | Transseptal needle apparatus |
US9358039B2 (en) | 2012-05-08 | 2016-06-07 | Greatbatch Ltd. | Transseptal needle apparatus |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2967711B1 (en) | 2013-03-15 | 2020-05-06 | Cynosure, LLC | Electrosurgical instruments with multimodes of operation |
CA3234911A1 (en) | 2018-02-07 | 2019-08-15 | Cynosure, Llc | Methods and apparatus for controlled rf treatments and rf generator system |
KR102035265B1 (en) * | 2018-02-26 | 2019-10-22 | 사회복지법인 삼성생명공익재단 | The screw type electrode which is connected to a plug type wire |
USD1005484S1 (en) | 2019-07-19 | 2023-11-21 | Cynosure, Llc | Handheld medical instrument and docking base |
Citations (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2031682A (en) * | 1932-11-18 | 1936-02-25 | Wappler Frederick Charles | Method and means for electrosurgical severance of adhesions |
US3494363A (en) * | 1969-04-01 | 1970-02-10 | Technical Resources Inc | Control for devices used in surgery |
US3648001A (en) * | 1969-12-11 | 1972-03-07 | Robert K Anderson | Compact hand held switching device with insertable switching means |
US3720896A (en) * | 1970-06-23 | 1973-03-13 | Siemens Ag | Handle for high frequency electrodes |
US3825004A (en) * | 1972-09-13 | 1974-07-23 | Durden Enterprises Ltd | Disposable electrosurgical cautery |
US3875945A (en) * | 1973-11-02 | 1975-04-08 | Demetron Corp | Electrosurgery instrument |
US3974833A (en) * | 1973-03-19 | 1976-08-17 | Durden Iii John G | Disposable electrosurgical cautery having optional suction control feature |
US4014343A (en) * | 1975-04-25 | 1977-03-29 | Neomed Incorporated | Detachable chuck for electro-surgical instrument |
US4043342A (en) * | 1974-08-28 | 1977-08-23 | Valleylab, Inc. | Electrosurgical devices having sesquipolar electrode structures incorporated therein |
US4314559A (en) * | 1979-12-12 | 1982-02-09 | Corning Glass Works | Nonstick conductive coating |
US4427006A (en) * | 1982-01-18 | 1984-01-24 | Medical Research Associates, Ltd. #1 | Electrosurgical instruments |
US4492832A (en) * | 1982-12-23 | 1985-01-08 | Neomed, Incorporated | Hand-controllable switching device for electrosurgical instruments |
US4492231A (en) * | 1982-09-17 | 1985-01-08 | Auth David C | Non-sticking electrocautery system and forceps |
US4562838A (en) * | 1981-01-23 | 1986-01-07 | Walker William S | Electrosurgery instrument |
US4640279A (en) * | 1985-08-08 | 1987-02-03 | Oximetrix, Inc. | Combination surgical scalpel and electrosurgical instrument |
US4642128A (en) * | 1985-09-11 | 1987-02-10 | Xanar, Inc. | Smoke evacuator system with electronic control circuitry |
US4796623A (en) * | 1987-07-20 | 1989-01-10 | The Cooper Companies, Inc. | Corneal vacuum trephine system |
US4803323A (en) * | 1986-02-05 | 1989-02-07 | Preh Elektrofeinmechanische Werke Jakob Preh Nachf. Gmbh & Co. | Electric manual switching device having environmentally protected components |
US4811733A (en) * | 1985-03-14 | 1989-03-14 | Baxter Travenol Laboratories, Inc. | Electrosurgical device |
US4901719A (en) * | 1986-04-08 | 1990-02-20 | C. R. Bard, Inc. | Electrosurgical conductive gas stream equipment |
US4903696A (en) * | 1988-10-06 | 1990-02-27 | Everest Medical Corporation | Electrosurgical generator |
US4909249A (en) * | 1987-11-05 | 1990-03-20 | The Cooper Companies, Inc. | Surgical cutting instrument |
US4911159A (en) * | 1988-11-21 | 1990-03-27 | Johnson Jeffrey W | Electrosurgical instrument with electrical contacts between the probe and the probe holder |
US4986839A (en) * | 1988-11-10 | 1991-01-22 | Surgical Laser Products, Inc. | Self-contained air enhancement and laser plume evacuation system |
US4988334A (en) * | 1986-04-09 | 1991-01-29 | Valleylab, Inc. | Ultrasonic surgical system with aspiration tubulation connector |
US5000754A (en) * | 1985-10-15 | 1991-03-19 | Egidio L. DeOliveira | Fluid control electrosurgical method |
US5088997A (en) * | 1990-03-15 | 1992-02-18 | Valleylab, Inc. | Gas coagulation device |
US5098430A (en) * | 1990-03-16 | 1992-03-24 | Beacon Laboratories, Inc. | Dual mode electrosurgical pencil |
US5100402A (en) * | 1990-10-05 | 1992-03-31 | Megadyne Medical Products, Inc. | Electrosurgical laparoscopic cauterization electrode |
US5178012A (en) * | 1991-05-31 | 1993-01-12 | Rockwell International Corporation | Twisting actuator accelerometer |
US5178605A (en) * | 1991-09-23 | 1993-01-12 | Alcon Surgical, Inc. | Coaxial flow irrigating and aspirating ultrasonic handpiece |
US5190517A (en) * | 1991-06-06 | 1993-03-02 | Valleylab Inc. | Electrosurgical and ultrasonic surgical system |
US5192267A (en) * | 1989-01-23 | 1993-03-09 | Nadiv Shapira | Vortex smoke remover for electrosurgical devices |
US5195959A (en) * | 1991-05-31 | 1993-03-23 | Paul C. Smith | Electrosurgical device with suction and irrigation |
US5196007A (en) * | 1991-06-07 | 1993-03-23 | Alan Ellman | Electrosurgical handpiece with activator |
US5197962A (en) * | 1991-06-05 | 1993-03-30 | Megadyne Medical Products, Inc. | Composite electrosurgical medical instrument |
US5312327A (en) * | 1992-10-09 | 1994-05-17 | Symbiosis Corporation | Cautery override safety systems endoscopic electrosurgical suction-irrigation instrument |
US5380320A (en) * | 1993-11-08 | 1995-01-10 | Advanced Surgical Materials, Inc. | Electrosurgical instrument having a parylene coating |
US5382247A (en) * | 1994-01-21 | 1995-01-17 | Valleylab Inc. | Technique for electrosurgical tips and method of manufacture and use |
US5395363A (en) * | 1993-06-29 | 1995-03-07 | Utah Medical Products | Diathermy coagulation and ablation apparatus and method |
US5399823A (en) * | 1993-11-10 | 1995-03-21 | Minimed Inc. | Membrane dome switch with tactile feel regulator shim |
US5401273A (en) * | 1993-03-01 | 1995-03-28 | Shippert; Ronald D. | Cauterizing instrument for surgery |
US5484398A (en) * | 1994-03-17 | 1996-01-16 | Valleylab Inc. | Methods of making and using ultrasonic handpiece |
US5484434A (en) * | 1993-12-06 | 1996-01-16 | New Dimensions In Medicine, Inc. | Electrosurgical scalpel |
US5486162A (en) * | 1995-01-11 | 1996-01-23 | Fibrasonics, Inc. | Bubble control device for an ultrasonic surgical probe |
US5496314A (en) * | 1992-05-01 | 1996-03-05 | Hemostatic Surgery Corporation | Irrigation and shroud arrangement for electrically powered endoscopic probes |
US5498654A (en) * | 1992-06-05 | 1996-03-12 | Taiho Kogyo Co., Ltd. | Sliding bearing material |
US5504687A (en) * | 1994-11-22 | 1996-04-02 | Vescor Corporation | Apparatus for automated machinery component selection |
US5601224A (en) * | 1992-10-09 | 1997-02-11 | Ethicon, Inc. | Surgical instrument |
US5609573A (en) * | 1996-02-28 | 1997-03-11 | Conmed Corporation | Electrosurgical suction/irrigation instrument |
US5673695A (en) * | 1995-08-02 | 1997-10-07 | Ep Technologies, Inc. | Methods for locating and ablating accessory pathways in the heart |
US5712543A (en) * | 1995-10-31 | 1998-01-27 | Smith & Nephew Endoscopy Inc. | Magnetic switching element for controlling a surgical device |
US5713895A (en) * | 1994-12-30 | 1998-02-03 | Valleylab Inc | Partially coated electrodes |
US5720745A (en) * | 1992-11-24 | 1998-02-24 | Erbe Electromedizin Gmbh | Electrosurgical unit and method for achieving coagulation of biological tissue |
USD393067S (en) * | 1996-08-27 | 1998-03-31 | Valleylab Inc. | Electrosurgical pencil |
US5859527A (en) * | 1996-06-14 | 1999-01-12 | Skop Gmbh Ltd | Electrical signal supply with separate voltage and current control for an electrical load |
US5868768A (en) * | 1995-06-07 | 1999-02-09 | Baxter International Inc. | Method and device for endoluminal disruption of venous valves |
US5876400A (en) * | 1997-01-13 | 1999-03-02 | Pioneer Laboratories, Inc. | Electrocautery method and apparatus |
US5888200A (en) * | 1996-08-02 | 1999-03-30 | Stryker Corporation | Multi-purpose surgical tool system |
US6010499A (en) * | 1995-05-31 | 2000-01-04 | Nuvotek Ltd. | Electrosurgical cutting and coagulation apparatus |
US6022347A (en) * | 1991-08-12 | 2000-02-08 | Karl Storz Gmbh & Co. | High-frequency surgical generator for adjusted cutting and coagulation |
US6149646A (en) * | 1999-02-02 | 2000-11-21 | Linvatec Corporation | Monopolar tissue ablator |
US6197024B1 (en) * | 1999-09-22 | 2001-03-06 | Scott Keith Sullivan | Adjustable electrocautery surgical apparatus |
US6200311B1 (en) * | 1998-01-20 | 2001-03-13 | Eclipse Surgical Technologies, Inc. | Minimally invasive TMR device |
US6231591B1 (en) * | 1991-10-18 | 2001-05-15 | 2000 Injectx, Inc. | Method of localized fluid therapy |
US6270476B1 (en) * | 1999-04-23 | 2001-08-07 | Cryocath Technologies, Inc. | Catheter |
USD453222S1 (en) * | 2001-04-30 | 2002-01-29 | Jon C. Garito | Electrosurgical handpiece |
US20020019631A1 (en) * | 2000-02-28 | 2002-02-14 | John Kidder | Electro-surgical pencil with smoke evacuation |
US20020019596A1 (en) * | 1999-12-27 | 2002-02-14 | Eggers Philip E. | Minimally invasive intact recovery of tissue |
USD453833S1 (en) * | 2001-01-24 | 2002-02-19 | Ethicon, Inc. | Handle for surgical instrument |
US20020022838A1 (en) * | 2000-02-16 | 2002-02-21 | Sherwood Services Ag | Inert gas inhanced electrosurgical apparatus |
US6350276B1 (en) * | 1996-01-05 | 2002-02-26 | Thermage, Inc. | Tissue remodeling apparatus containing cooling fluid |
US20020026145A1 (en) * | 1997-03-06 | 2002-02-28 | Bagaoisan Celso J. | Method and apparatus for emboli containment |
US6352544B1 (en) * | 2000-02-22 | 2002-03-05 | Gregory A. Spitz | Apparatus and methods for removing veins |
US6355034B2 (en) * | 1996-09-20 | 2002-03-12 | Ioan Cosmescu | Multifunctional telescopic monopolar/bipolar surgical device and method therefor |
US6358281B1 (en) * | 1999-11-29 | 2002-03-19 | Epic Biosonics Inc. | Totally implantable cochlear prosthesis |
US20020035364A1 (en) * | 1998-09-23 | 2002-03-21 | Arthur Schoenman | Electrosurgical device having a dielectric seal |
US6361532B1 (en) * | 1996-05-01 | 2002-03-26 | Bovie Medical Corporation | Electrosurgical pencil |
US20030004508A1 (en) * | 1999-05-11 | 2003-01-02 | Stryker Corporation | Surgical handpiece with self-sealing switch assembly |
US20030014043A1 (en) * | 1997-12-10 | 2003-01-16 | Henry Orszulak James | Smart recognition apparatus and method |
US6511479B2 (en) * | 2000-02-28 | 2003-01-28 | Conmed Corporation | Electrosurgical blade having directly adhered uniform coating of silicone release material and method of manufacturing same |
US20030032950A1 (en) * | 1996-12-02 | 2003-02-13 | Altshuler Gregory B. | Cooling system for a photo cosmetic device |
US6526320B2 (en) * | 1998-11-16 | 2003-02-25 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US20040000316A1 (en) * | 1996-01-05 | 2004-01-01 | Knowlton Edward W. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US20040002705A1 (en) * | 1996-01-05 | 2004-01-01 | Knowlton Edward W. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US20040002704A1 (en) * | 1996-01-05 | 2004-01-01 | Knowlton Edward W. | Treatment apparatus with electromagnetic energy delivery device and non-volatile memory |
US20040010246A1 (en) * | 2002-07-09 | 2004-01-15 | Olympus Optical Co., Ltd. | Surgery system |
US20040015162A1 (en) * | 2002-07-22 | 2004-01-22 | Medtronic Vidamed, Inc. | Method for treating tissue with a wet electrode and apparatus for using same |
US20040015161A1 (en) * | 2002-07-22 | 2004-01-22 | Medtronic Vidamed, Inc. | Method for monitoring impedance to control power and apparatus utilizing same |
US20040015216A1 (en) * | 2002-05-30 | 2004-01-22 | Desisto Stephen R. | Self-evacuating electrocautery device |
US20040015160A1 (en) * | 2002-07-22 | 2004-01-22 | Medtronic Vidamed, Inc. | Method for calculating impedance and apparatus utilizing same |
US6685704B2 (en) * | 2002-02-26 | 2004-02-03 | Megadyne Medical Products, Inc. | Utilization of an active catalyst in a surface coating of an electrosurgical instrument |
US20040024396A1 (en) * | 1999-12-27 | 2004-02-05 | Eggers Philip E. | Electrosurgical accessing of tissue with controlled collateral thermal phenomena |
US20040024395A1 (en) * | 2001-09-13 | 2004-02-05 | Ellman Alan G. | Intelligent selection system for electrosurgical instrument |
US20040030332A1 (en) * | 1996-01-05 | 2004-02-12 | Knowlton Edward W. | Handpiece with electrode and non-volatile memory |
US20040030367A1 (en) * | 2002-08-09 | 2004-02-12 | Olympus Optical Co., Ltd. | Medical control device, control method for medical control device, medical system device and control system |
US20040030330A1 (en) * | 2002-04-18 | 2004-02-12 | Brassell James L. | Electrosurgery systems |
US20040030328A1 (en) * | 2001-07-12 | 2004-02-12 | Eggers Philip E. | Electrosurgical generator |
US20040034346A1 (en) * | 1996-01-05 | 2004-02-19 | Stern Roger A. | RF device with thermo-electric cooler |
US6840948B2 (en) * | 2002-06-06 | 2005-01-11 | Ethicon-Endo Surgery, Inc. | Device for removal of tissue lesions |
US20050033286A1 (en) * | 2003-07-30 | 2005-02-10 | Eggers Philip E. | Minimally invasive instrumentation for recovering tissue |
US6855140B2 (en) * | 2002-06-06 | 2005-02-15 | Thomas E. Albrecht | Method of tissue lesion removal |
USD515412S1 (en) * | 2005-03-11 | 2006-02-21 | Sherwood Services Ag | Drape clip |
US20060041257A1 (en) * | 2003-11-20 | 2006-02-23 | Sartor Joe D | Electrosurgical pencil with improved controls |
US20060241577A1 (en) * | 2000-03-31 | 2006-10-26 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
US7156842B2 (en) * | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US7156844B2 (en) * | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
USD535396S1 (en) * | 2003-11-13 | 2007-01-16 | Sherwood Services Ag | Electrosurgical pencil with three button control |
US7169143B2 (en) * | 1993-05-10 | 2007-01-30 | Arthrocare Corporation | Methods for electrosurgical tissue treatment in electrically conductive fluid |
US7412296B2 (en) * | 2003-01-31 | 2008-08-12 | Fujitsu Limited | Working control device |
US7449022B2 (en) * | 1999-06-22 | 2008-11-11 | Senorx, Inc. | Shapeable electrosurgical scalpel |
Family Cites Families (317)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2102270A (en) | 1935-11-29 | 1937-12-14 | Mortimer N Hyams | Electrosurgical device |
NL205229A (en) | 1955-03-11 | |||
US2964796A (en) | 1955-12-15 | 1960-12-20 | Resistoflex Corp | Preformed flexible hose and method of making it |
BE556940A (en) | 1956-04-26 | |||
US3219029A (en) | 1963-03-25 | 1965-11-23 | Groff De | Remote control medical therapy instrument |
US3460539A (en) | 1967-03-10 | 1969-08-12 | James E Anhalt Sr | Cautery tip |
US3675655A (en) | 1970-02-04 | 1972-07-11 | Electro Medical Systems Inc | Method and apparatus for high frequency electric surgery |
US4038984A (en) | 1970-02-04 | 1977-08-02 | Electro Medical Systems, Inc. | Method and apparatus for high frequency electric surgery |
US3699967A (en) | 1971-04-30 | 1972-10-24 | Valleylab Inc | Electrosurgical generator |
US3911241A (en) | 1972-12-15 | 1975-10-07 | Neomed Inc | Switching device for electro-surgical instruments |
US3801800A (en) | 1972-12-26 | 1974-04-02 | Valleylab Inc | Isolating switching circuit for an electrosurgical generator |
US3801766A (en) | 1973-01-22 | 1974-04-02 | Valleylab Inc | Switching means for an electro-surgical device including particular contact means and particular printed-circuit mounting means |
US3828780A (en) | 1973-03-26 | 1974-08-13 | Valleylab Inc | Combined electrocoagulator-suction instrument |
DE2324415C2 (en) | 1973-05-15 | 1975-06-05 | Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen | Surgical suction device |
FR2235669A1 (en) | 1973-07-07 | 1975-01-31 | Lunacek Boris | Gynaecological sterilisation instrument - has hollow electrode protruding from the end of a curved ended tube |
US3906955A (en) | 1974-05-06 | 1975-09-23 | Richard R Roberts | Surgical cauterizing tool having suction means |
DE2429021C2 (en) | 1974-06-18 | 1983-12-08 | Erbe Elektromedizin GmbH, 7400 Tübingen | Remote switching device for an HF surgical device |
DE2460481A1 (en) | 1974-12-20 | 1976-06-24 | Delma Elektro Med App | Electrode grip for remote HF surgical instrument switching - has shaped insulated piece with contact ring of sterilizable (silicon) rubber |
US3967084A (en) | 1975-05-12 | 1976-06-29 | Kb-Denver, Inc. | Keyboard switch assemblies having two foot support legs on dome-shaped contact member |
US4032738A (en) | 1975-05-15 | 1977-06-28 | Neomed Incorporated | Electro-surgical instrument |
US4034761A (en) | 1975-12-15 | 1977-07-12 | The Birtcher Corporation | Disposable electrosurgical switching assembly |
US4112950A (en) | 1976-10-22 | 1978-09-12 | Aspen Laboratories | Medical electronic apparatus and components |
USD253247S (en) | 1978-03-20 | 1979-10-23 | Gill Earnest T | Electrical surgical probe |
US4232676A (en) | 1978-11-16 | 1980-11-11 | Corning Glass Works | Surgical cutting instrument |
US4620548A (en) | 1980-04-21 | 1986-11-04 | Accupap, Inc. | Pap smear T-zone sampler |
US4921476A (en) | 1980-10-08 | 1990-05-01 | Cavitron, Inc. | Method for preventing clogging of a surgical aspirator |
DE3045996A1 (en) | 1980-12-05 | 1982-07-08 | Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg | Electro-surgical scalpel instrument - has power supply remotely controlled by surgeon |
US4463759A (en) | 1982-01-13 | 1984-08-07 | Garito Jon C | Universal finger/foot switch adaptor for tube-type electrosurgical instrument |
US4443935A (en) | 1982-03-01 | 1984-04-24 | Trident Surgical Corporation | Process for making electrosurgical scalpel pencil |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US4459443A (en) | 1982-12-27 | 1984-07-10 | Cherry Electrical Products Corporation | Tactile feedback switch |
US4545375A (en) | 1983-06-10 | 1985-10-08 | Aspen Laboratories, Inc. | Electrosurgical instrument |
US4593691A (en) | 1983-07-13 | 1986-06-10 | Concept, Inc. | Electrosurgery electrode |
US4463234A (en) | 1983-11-02 | 1984-07-31 | Centralab Inc. | Tactile feel membrane switch assembly |
US4619258A (en) | 1984-03-02 | 1986-10-28 | Dart Industries Inc. | Electrosurgical pencil providing blade isolation |
US4595809A (en) | 1984-08-17 | 1986-06-17 | Dart Industries, Inc. | Snap action dome switch having wire contacts |
US4754754A (en) | 1984-08-20 | 1988-07-05 | Garito Jon C | Electrosurgical handpiece for blades and needles |
US4657016A (en) | 1984-08-20 | 1987-04-14 | Garito Jon C | Electrosurgical handpiece for blades, needles and forceps |
KR900003546B1 (en) | 1984-09-29 | 1990-05-21 | 마쯔시다덴기산교 가부시기가이샤 | Push switch |
US4827927A (en) | 1984-12-26 | 1989-05-09 | Valleylab, Inc. | Apparatus for changing the output power level of an electrosurgical generator while remaining in the sterile field of a surgical procedure |
US4589411A (en) | 1985-02-08 | 1986-05-20 | Aaron Friedman | Electrosurgical spark-gap cutting blade |
US4606342A (en) | 1985-02-15 | 1986-08-19 | National Patent Development Corporation | Cautery device having a variable temperature cautery tip |
US4625723A (en) | 1985-02-26 | 1986-12-02 | Medical Research Associates, Ltd. #1 | Pencil for electrosurgical generator |
US4655215A (en) | 1985-03-15 | 1987-04-07 | Harold Pike | Hand control for electrosurgical electrodes |
DE3523871C3 (en) | 1985-07-04 | 1994-07-28 | Erbe Elektromedizin | High frequency surgical device |
US4750488A (en) | 1986-05-19 | 1988-06-14 | Sonomed Technology, Inc. | Vibration apparatus preferably for endoscopic ultrasonic aspirator |
US4701193A (en) | 1985-09-11 | 1987-10-20 | Xanar, Inc. | Smoke evacuator system for use in laser surgery |
US4872454A (en) | 1985-10-15 | 1989-10-10 | Lucas DeOliveira | Fluid control electrosurgical device |
US4712544A (en) | 1986-02-12 | 1987-12-15 | Castle Company | Electrosurgical generator |
US4827911A (en) | 1986-04-02 | 1989-05-09 | Cooper Lasersonics, Inc. | Method and apparatus for ultrasonic surgical fragmentation and removal of tissue |
US4846790A (en) | 1986-04-09 | 1989-07-11 | Cooper Lasersonics, Inc. | Ultrasonic surgical system with irrigation manifold |
US4683884A (en) | 1986-04-11 | 1987-08-04 | Md Engineering | Noise attenuating smokeless surgical device |
US4688569A (en) | 1986-06-09 | 1987-08-25 | Medi-Tech, Inc. | Finger actuated surgical electrode holder |
DE3689889D1 (en) | 1986-07-17 | 1994-07-07 | Erbe Elektromedizin | High-frequency surgical device for the thermal coagulation of biological tissues. |
US4735603A (en) | 1986-09-10 | 1988-04-05 | James H. Goodson | Laser smoke evacuation system and method |
USD301739S (en) | 1986-10-15 | 1989-06-20 | Mdt Corporation | Electrosurgical pencil |
US4785807B1 (en) | 1987-02-24 | 1996-07-16 | American Medical Products Inc | Electrosurgical knife |
US4876110A (en) | 1987-02-24 | 1989-10-24 | American Medical Products, Inc. | Electrosurgical knife |
SE459711B (en) | 1987-03-20 | 1989-07-31 | Swedemed Ab | EQUIPMENT FOR USE IN SURGICAL INTERVENTIONS TO DISPOSE TISSUE |
DE3878477D1 (en) | 1987-04-10 | 1993-03-25 | Siemens Ag | MONITORING CIRCUIT FOR AN HF SURGERY DEVICE. |
US5015227A (en) | 1987-09-30 | 1991-05-14 | Valleylab Inc. | Apparatus for providing enhanced tissue fragmentation and/or hemostasis |
US4931047A (en) | 1987-09-30 | 1990-06-05 | Cavitron, Inc. | Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis |
EP0316469B2 (en) | 1987-11-17 | 1998-11-25 | Erbe Elektromedizin GmbH | High frequence surgical device to cut and/or coagulate biological tissues |
US4919129A (en) | 1987-11-30 | 1990-04-24 | Celebration Medical Products, Inc. | Extendable electrocautery surgery apparatus and method |
US5035695A (en) | 1987-11-30 | 1991-07-30 | Jaroy Weber, Jr. | Extendable electrocautery surgery apparatus and method |
US4862890A (en) | 1988-02-29 | 1989-09-05 | Everest Medical Corporation | Electrosurgical spatula blade with ceramic substrate |
US4916275A (en) | 1988-04-13 | 1990-04-10 | Square D Company | Tactile membrane switch assembly |
US4869715A (en) | 1988-04-21 | 1989-09-26 | Sherburne Fred S | Ultrasonic cone and method of construction |
DE3815835A1 (en) | 1988-05-09 | 1989-11-23 | Flachenecker Gerhard | HIGH FREQUENCY GENERATOR FOR TISSUE CUTTING AND COAGULATION IN HIGH FREQUENCY SURGERY |
US4850353A (en) | 1988-08-08 | 1989-07-25 | Everest Medical Corporation | Silicon nitride electrosurgical blade |
US4949734A (en) | 1988-08-25 | 1990-08-21 | Gerald Bernstein | Shield for electrosurgical device |
US4922903A (en) | 1988-10-06 | 1990-05-08 | Everest Medical Corporation | Handle for electro-surgical blade |
US5026368A (en) | 1988-12-28 | 1991-06-25 | Adair Edwin Lloyd | Method for cervical videoscopy |
US5460602A (en) | 1989-01-23 | 1995-10-24 | Shapira; Nadiv | Smoke evacuator for smoke generating devices |
US5254082A (en) | 1989-02-18 | 1993-10-19 | Haruo Takase | Ultrasonic surgical scalpel |
US5055100A (en) | 1989-06-19 | 1991-10-08 | Eugene Olsen | Suction attachment for electrosurgical instruments or the like |
US5011483A (en) | 1989-06-26 | 1991-04-30 | Dennis Sleister | Combined electrosurgery and laser beam delivery device |
US5076276A (en) | 1989-11-01 | 1991-12-31 | Olympus Optical Co., Ltd. | Ultrasound type treatment apparatus |
US5797907A (en) | 1989-11-06 | 1998-08-25 | Mectra Labs, Inc. | Electrocautery cutter |
US5085662A (en) | 1989-11-13 | 1992-02-04 | Scimed Life Systems, Inc. | Atherectomy catheter and related components |
US5035696A (en) | 1990-02-02 | 1991-07-30 | Everest Medical Corporation | Electrosurgical instrument for conducting endoscopic retrograde sphincterotomy |
US5391144A (en) | 1990-02-02 | 1995-02-21 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US5046506A (en) | 1990-02-09 | 1991-09-10 | Singer Medical Products, Inc. | Molded needle with adhesive |
US5244462A (en) | 1990-03-15 | 1993-09-14 | Valleylab Inc. | Electrosurgical apparatus |
US5217457A (en) | 1990-03-15 | 1993-06-08 | Valleylab Inc. | Enhanced electrosurgical apparatus |
US5306238A (en) | 1990-03-16 | 1994-04-26 | Beacon Laboratories, Inc. | Laparoscopic electrosurgical pencil |
US5013312A (en) | 1990-03-19 | 1991-05-07 | Everest Medical Corporation | Bipolar scalpel for harvesting internal mammary artery |
US5312400A (en) | 1992-10-09 | 1994-05-17 | Symbiosis Corporation | Cautery probes for endoscopic electrosurgical suction-irrigation instrument |
US5431645A (en) | 1990-05-10 | 1995-07-11 | Symbiosis Corporation | Remotely activated endoscopic tools such as endoscopic biopsy forceps |
JPH0734805B2 (en) | 1990-05-16 | 1995-04-19 | アロカ株式会社 | Blood coagulator |
US5071418A (en) | 1990-05-16 | 1991-12-10 | Joseph Rosenbaum | Electrocautery surgical scalpel |
US5199944A (en) | 1990-05-23 | 1993-04-06 | Ioan Cosmescu | Automatic smoke evacuator system for a surgical laser apparatus and method therefor |
US5318516A (en) | 1990-05-23 | 1994-06-07 | Ioan Cosmescu | Radio frequency sensor for automatic smoke evacuator system for a surgical laser and/or electrical apparatus and method therefor |
US5233515A (en) | 1990-06-08 | 1993-08-03 | Cosman Eric R | Real-time graphic display of heat lesioning parameters in a clinical lesion generator system |
US5154709A (en) | 1990-09-04 | 1992-10-13 | Johnson Gerald W | Vacuum hood attachment for electrosurgical instruments |
US5246440A (en) | 1990-09-13 | 1993-09-21 | Noord Andrew J Van | Electrosurgical knife |
US5409484A (en) | 1990-09-24 | 1995-04-25 | Erlich; Frederick | Cautery with smoke removal apparatus |
USD330253S (en) | 1990-10-04 | 1992-10-13 | Birtcher Medical Systems, Inc. | Electrosurgical handpiece |
US5256138A (en) | 1990-10-04 | 1993-10-26 | The Birtcher Corporation | Electrosurgical handpiece incorporating blade and conductive gas functionality |
US5074863A (en) | 1990-10-12 | 1991-12-24 | Dines Lenna V | Disposable retractable surgical instrument |
US5162044A (en) | 1990-12-10 | 1992-11-10 | Storz Instrument Company | Phacoemulsification transducer with rotatable handle |
US5224944A (en) | 1991-01-07 | 1993-07-06 | Elliott Martin P | Aspiration tip for a cautery handpiece |
US5147292A (en) | 1991-02-05 | 1992-09-15 | C. R. Bard, Inc. | Control handle with locking means for surgical irrigation |
US5226904A (en) | 1991-02-08 | 1993-07-13 | Conmed Corporation | Electrosurgical instrument |
US5300087A (en) | 1991-03-22 | 1994-04-05 | Knoepfler Dennis J | Multiple purpose forceps |
US5160334A (en) | 1991-04-30 | 1992-11-03 | Utah Medical Products, Inc. | Electrosurgical generator and suction apparatus |
US5133714A (en) | 1991-05-06 | 1992-07-28 | Kirwan Surgical Products, Inc. | Electrosurgical suction coagulator |
US5633578A (en) | 1991-06-07 | 1997-05-27 | Hemostatic Surgery Corporation | Electrosurgical generator adaptors |
US5472443A (en) | 1991-06-07 | 1995-12-05 | Hemostatic Surgery Corporation | Electrosurgical apparatus employing constant voltage and methods of use |
US5234428A (en) | 1991-06-11 | 1993-08-10 | Kaufman David I | Disposable electrocautery/cutting instrument with integral continuous smoke evacuation |
DE4122219A1 (en) | 1991-07-04 | 1993-01-07 | Delma Elektro Med App | ELECTRO-SURGICAL TREATMENT INSTRUMENT |
US5312401A (en) | 1991-07-10 | 1994-05-17 | Electroscope, Inc. | Electrosurgical apparatus for laparoscopic and like procedures |
DE59209642D1 (en) | 1991-08-12 | 1999-04-08 | Storz Karl Gmbh & Co | HIGH FREQUENCY SURGERY GENERATOR FOR TISSUE TISSUE |
US5262241A (en) | 1991-08-26 | 1993-11-16 | Eeonyx Corporation | Surface coated products |
US5242442A (en) | 1991-09-18 | 1993-09-07 | Hirschfeld Jack J | Smoke aspirating electrosurgical device |
US5322503A (en) | 1991-10-18 | 1994-06-21 | Desai Ashvin H | Endoscopic surgical instrument |
US5261906A (en) | 1991-12-09 | 1993-11-16 | Ralph Pennino | Electro-surgical dissecting and cauterizing instrument |
US5254117A (en) | 1992-03-17 | 1993-10-19 | Alton Dean Medical | Multi-functional endoscopic probe apparatus |
US5269781A (en) | 1992-06-10 | 1993-12-14 | Hewell Iii Todd S | Suction-assisted electrocautery unit |
US5234429A (en) | 1992-07-06 | 1993-08-10 | Goldhaber Neil G | Cauterization instrument and associated surgical method |
US5788688A (en) | 1992-11-05 | 1998-08-04 | Bauer Laboratories, Inc. | Surgeon's command and control |
US5318565A (en) | 1992-11-12 | 1994-06-07 | Daniel B. Kuriloff | Suction cautery dissector |
CA2150487C (en) | 1992-11-30 | 2000-11-21 | Michael D. Olichney | An ultrasonic surgical handpiece and an energy initiator to maintain thevibration and linear dynamics |
US5342356A (en) | 1992-12-02 | 1994-08-30 | Ellman Alan G | Electrical coupling unit for electrosurgery |
US5468240A (en) | 1992-12-03 | 1995-11-21 | Conmed Corporation | Manual control device for laparoscopic instrument |
US5431650A (en) | 1992-12-11 | 1995-07-11 | Cosmescu; Ioan | Vortex hand piece shroud for automatic smoke evacuator system for a surgical laser apparatus and method therefor |
US5693044A (en) | 1992-12-11 | 1997-12-02 | Cosmescu; Ioan | Telescopic surgical device and method therefor |
US5697926A (en) | 1992-12-17 | 1997-12-16 | Megadyne Medical Products, Inc. | Cautery medical instrument |
US5312329A (en) | 1993-04-07 | 1994-05-17 | Valleylab Inc. | Piezo ultrasonic and electrosurgical handpiece |
US5462522A (en) | 1993-04-19 | 1995-10-31 | Olympus Optical Co., Ltd. | Ultrasonic therapeutic apparatus |
US5348555A (en) | 1993-04-26 | 1994-09-20 | Zinnanti William J | Endoscopic suction, irrigation and cautery instrument |
US5406945A (en) | 1993-05-24 | 1995-04-18 | Ndm Acquisition Corp. | Biomedical electrode having a secured one-piece conductive terminal |
FR2707154B1 (en) | 1993-07-08 | 1995-09-15 | Satelec Sa | Ultrasound scalpel. |
US5366464A (en) | 1993-07-22 | 1994-11-22 | Belknap John C | Atherectomy catheter device |
US5376089A (en) | 1993-08-02 | 1994-12-27 | Conmed Corporation | Electrosurgical instrument |
US5451222A (en) | 1994-03-16 | 1995-09-19 | Desentech, Inc. | Smoke evacuation system |
US5472442A (en) | 1994-03-23 | 1995-12-05 | Valleylab Inc. | Moveable switchable electrosurgical handpiece |
DE59409469D1 (en) | 1994-03-23 | 2000-09-07 | Erbe Elektromedizin | Multifunctional instrument for ultrasound surgery |
US5413575A (en) | 1994-04-19 | 1995-05-09 | Innovative Medical Technologies, Ltd. | Multifunction electrocautery tool |
US5843021A (en) | 1994-05-09 | 1998-12-01 | Somnus Medical Technologies, Inc. | Cell necrosis apparatus |
US5765418A (en) | 1994-05-16 | 1998-06-16 | Medtronic, Inc. | Method for making an implantable medical device from a refractory metal |
US6733495B1 (en) | 1999-09-08 | 2004-05-11 | Curon Medical, Inc. | Systems and methods for monitoring and controlling use of medical devices |
US5846236A (en) | 1994-07-18 | 1998-12-08 | Karl Storz Gmbh & Co. | High frequency-surgical generator for adjusted cutting and coagulation |
AU694225B2 (en) | 1994-08-02 | 1998-07-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic hemostatic and cutting instrument |
US5561278A (en) | 1994-09-16 | 1996-10-01 | Rutten; Phillip | Membrane switch |
US6646541B1 (en) | 1996-06-24 | 2003-11-11 | Computer Motion, Inc. | General purpose distributed operating room control system |
US7053752B2 (en) | 1996-08-06 | 2006-05-30 | Intuitive Surgical | General purpose distributed operating room control system |
US5674219A (en) | 1994-10-06 | 1997-10-07 | Donaldson Company, Inc. | Electrosurgical smoke evacuator |
US5531722A (en) | 1994-11-21 | 1996-07-02 | Van Hale; Gregory L. | Aspiration unit |
US5549604A (en) | 1994-12-06 | 1996-08-27 | Conmed Corporation | Non-Stick electroconductive amorphous silica coating |
US5669907A (en) | 1995-02-10 | 1997-09-23 | Valleylab Inc. | Plasma enhanced bipolar electrosurgical system |
US5630426A (en) | 1995-03-03 | 1997-05-20 | Neovision Corporation | Apparatus and method for characterization and treatment of tumors |
USD370731S (en) | 1995-03-07 | 1996-06-11 | Medtronic, Inc. | Electrocautery handle |
US6213999B1 (en) | 1995-03-07 | 2001-04-10 | Sherwood Services Ag | Surgical gas plasma ignition apparatus and method |
US5626575A (en) | 1995-04-28 | 1997-05-06 | Conmed Corporation | Power level control apparatus for electrosurgical generators |
US6241753B1 (en) | 1995-05-05 | 2001-06-05 | Thermage, Inc. | Method for scar collagen formation and contraction |
US5755753A (en) | 1995-05-05 | 1998-05-26 | Thermage, Inc. | Method for controlled contraction of collagen tissue |
US6425912B1 (en) | 1995-05-05 | 2002-07-30 | Thermage, Inc. | Method and apparatus for modifying skin surface and soft tissue structure |
US5643256A (en) | 1995-05-19 | 1997-07-01 | Urueta; R. Wilfrido | Gold-plated electrosurgical instrument |
US6632193B1 (en) | 1995-06-07 | 2003-10-14 | Arthrocare Corporation | Systems and methods for electrosurgical tissue treatment |
US5634935A (en) | 1995-06-16 | 1997-06-03 | Taheri; Syde A. | Balloon dissection instrument and method of dissection |
GB9526627D0 (en) | 1995-12-29 | 1996-02-28 | Gyrus Medical Ltd | An electrosurgical instrument and an electrosurgical electrode assembly |
US6293942B1 (en) | 1995-06-23 | 2001-09-25 | Gyrus Medical Limited | Electrosurgical generator method |
US6458125B1 (en) | 1995-07-10 | 2002-10-01 | I. C. Medical, Inc. | Electro-surgical unit pencil apparatus and method therefor |
US5693052A (en) | 1995-09-01 | 1997-12-02 | Megadyne Medical Products, Inc. | Coated bipolar electrocautery |
US5630417A (en) | 1995-09-08 | 1997-05-20 | Acuson Corporation | Method and apparatus for automated control of an ultrasound transducer |
US5702387A (en) | 1995-09-27 | 1997-12-30 | Valleylab Inc | Coated electrosurgical electrode |
US5693050A (en) | 1995-11-07 | 1997-12-02 | Aaron Medical Industries, Inc. | Electrosurgical instrument |
US5630812A (en) | 1995-12-11 | 1997-05-20 | Ellman; Alan G. | Electrosurgical handpiece with locking nose piece |
US7141049B2 (en) | 1999-03-09 | 2006-11-28 | Thermage, Inc. | Handpiece for treatment of tissue |
US7022121B2 (en) | 1999-03-09 | 2006-04-04 | Thermage, Inc. | Handpiece for treatment of tissue |
US7189230B2 (en) | 1996-01-05 | 2007-03-13 | Thermage, Inc. | Method for treating skin and underlying tissue |
US7229436B2 (en) | 1996-01-05 | 2007-06-12 | Thermage, Inc. | Method and kit for treatment of tissue |
US7452358B2 (en) | 1996-01-05 | 2008-11-18 | Thermage, Inc. | RF electrode assembly for handpiece |
US20030212393A1 (en) | 1996-01-05 | 2003-11-13 | Knowlton Edward W. | Handpiece with RF electrode and non-volatile memory |
US5634912A (en) | 1996-02-12 | 1997-06-03 | Alcon Laboratories, Inc. | Infusion sleeve |
US6117134A (en) | 1996-02-14 | 2000-09-12 | Cunningham; James Steven | Instrument for suction electrosurgery |
EP0836514A2 (en) | 1996-03-18 | 1998-04-22 | 688726 Alberta, Ltd. | Electrotherapy device |
USD384148S (en) | 1996-03-18 | 1997-09-23 | Donaldson Company, Inc. | Smoke evacuator for an electrocautery scalpel |
DE19706269A1 (en) | 1996-03-21 | 1997-09-25 | Valleylab Inc | Instrument for gas-enriched electrosurgery |
US5843109A (en) | 1996-05-29 | 1998-12-01 | Allergan | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
US6017354A (en) | 1996-08-15 | 2000-01-25 | Stryker Corporation | Integrated system for powered surgical tools |
US5755716A (en) | 1996-08-30 | 1998-05-26 | Garito; Jon C. | Method for using an electrosurgical electrode for treating glaucoma |
US5941887A (en) | 1996-09-03 | 1999-08-24 | Bausch & Lomb Surgical, Inc. | Sleeve for a surgical instrument |
US5836909A (en) | 1996-09-13 | 1998-11-17 | Cosmescu; Ioan | Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor |
US7112199B2 (en) | 1996-09-20 | 2006-09-26 | Ioan Cosmescu | Multifunctional telescopic monopolar/bipolar surgical device and method therefore |
US6036667A (en) | 1996-10-04 | 2000-03-14 | United States Surgical Corporation | Ultrasonic dissection and coagulation system |
US6099525A (en) | 1996-10-07 | 2000-08-08 | Cosmescu; Ioan | Removable shroud for receiving a pencil used in electro-surgery |
US5800431A (en) | 1996-10-11 | 1998-09-01 | Brown; Robert H. | Electrosurgical tool with suction and cautery |
US5893848A (en) | 1996-10-24 | 1999-04-13 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
US5899915A (en) | 1996-12-02 | 1999-05-04 | Angiotrax, Inc. | Apparatus and method for intraoperatively performing surgery |
US5951548A (en) | 1997-02-21 | 1999-09-14 | Stephen R. DeSisto | Self-evacuating electrocautery device |
US5944737A (en) | 1997-10-10 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved waveguide support member |
US6033399A (en) | 1997-04-09 | 2000-03-07 | Valleylab, Inc. | Electrosurgical generator with adaptive power control |
US5893862A (en) | 1997-04-10 | 1999-04-13 | Pratt; Arthur William | Surgical apparatus |
ES2353846T3 (en) | 1997-04-11 | 2011-03-07 | United States Surgical Corporation | APPLIANCE FOR RF ABLATION AND CONTROLLER OF THE SAME. |
GB9708268D0 (en) | 1997-04-24 | 1997-06-18 | Gyrus Medical Ltd | An electrosurgical instrument |
US5913864A (en) | 1997-06-09 | 1999-06-22 | Garito; Jon C. | Electrosurgical dermatological curet |
US5938589A (en) | 1997-07-15 | 1999-08-17 | Fuji Photo Optical Co., Ltd. | Control switch device for an endoscope duct |
US6071281A (en) | 1998-05-05 | 2000-06-06 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same |
US6287305B1 (en) | 1997-12-23 | 2001-09-11 | Team Medical, L.L.C. | Electrosurgical instrument |
US6074387A (en) | 1997-10-15 | 2000-06-13 | Team Medical L.L.C. | Electrosurgical system for reducing/removing eschar accumulations on electrosurgical instruments |
US6241723B1 (en) | 1997-10-15 | 2001-06-05 | Team Medical Llc | Electrosurgical system |
USD402030S (en) | 1997-10-29 | 1998-12-01 | Megadyne Medical Products, Inc. | Electrosurgical pencil with push button actuators |
USD402031S (en) | 1997-10-29 | 1998-12-01 | Megadyne Medical Products, Inc. | Electrosurgical pencil with rocker arm actuator |
US6004333A (en) | 1997-10-31 | 1999-12-21 | Ethicon Endo-Surgery, Inc. | Prosthetic with collagen for tissue repair |
US5972007A (en) | 1997-10-31 | 1999-10-26 | Ethicon Endo-Surgery, Inc. | Energy-base method applied to prosthetics for repairing tissue defects |
US6484334B1 (en) | 1997-11-07 | 2002-11-26 | Hill-Rom Services, Inc. | Surgical table |
US6187003B1 (en) | 1997-11-12 | 2001-02-13 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US6286512B1 (en) | 1997-12-30 | 2001-09-11 | Cardiodyne, Inc. | Electrosurgical device and procedure for forming a channel within tissue |
US5954686A (en) | 1998-02-02 | 1999-09-21 | Garito; Jon C | Dual-frequency electrosurgical instrument |
JP4157183B2 (en) | 1998-02-17 | 2008-09-24 | オリンパス株式会社 | Endoscopic treatment tool |
DE69805335T2 (en) | 1998-06-18 | 2002-11-28 | Telea Electronic Engineering S.R.L., Vicenza | ELECTRO-SURGICAL RADIO FREQUENCY GENERATOR WITH CURRENT CONTROL |
US6146353A (en) | 1998-09-22 | 2000-11-14 | Sherwood Services Ag | Smoke extraction device |
US20010047183A1 (en) | 2000-04-05 | 2001-11-29 | Salvatore Privitera | Surgical device for the collection of soft tissue |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
CA2287087C (en) | 1998-10-23 | 2007-12-04 | Ethicon Endo-Surgery, Inc. | Surgical device for the collection of soft tissue |
US6710546B2 (en) | 1998-10-30 | 2004-03-23 | The Bodine Company, Inc. | Remote control test apparatus |
US6611706B2 (en) | 1998-11-09 | 2003-08-26 | Transpharma Ltd. | Monopolar and bipolar current application for transdermal drug delivery and analyte extraction |
US6312441B1 (en) | 1999-03-04 | 2001-11-06 | Stryker Corporation | Powered handpiece for performing endoscopic surgical procedures |
AU779100B2 (en) | 1999-03-09 | 2005-01-06 | Thermage, Inc. | Apparatus and method for treatment of tissue |
US20020156471A1 (en) | 1999-03-09 | 2002-10-24 | Stern Roger A. | Method for treatment of tissue |
US6070444A (en) | 1999-03-31 | 2000-06-06 | Sherwood Services Ag | Method of mass manufacturing coated electrosurgical electrodes |
US6086544A (en) | 1999-03-31 | 2000-07-11 | Ethicon Endo-Surgery, Inc. | Control apparatus for an automated surgical biopsy device |
US6251110B1 (en) | 1999-03-31 | 2001-06-26 | Ethicon Endo-Surgery, Inc. | Combined radio frequency and ultrasonic surgical device |
US6257241B1 (en) | 1999-03-31 | 2001-07-10 | Ethicon Endo-Surgery, Inc. | Method for repairing tissue defects using ultrasonic radio frequency energy |
US6287344B1 (en) | 1999-03-31 | 2001-09-11 | Ethicon Endo-Surgery, Inc. | Method for repairing tissue defects using an ultrasonic device |
EP1614393B1 (en) | 1999-05-03 | 2009-09-23 | Jon C. Garito | Electrosurgical handpiece for treating tissue |
US6214003B1 (en) | 1999-05-11 | 2001-04-10 | Stryker Corporation | Electrosurgical tool |
CN1256068C (en) | 1999-06-22 | 2006-05-17 | 欧内斯托·E·巴兰科 | Safety trocar with progressive cutting tip and gas jet tissue deflector |
USD433752S (en) | 1999-06-29 | 2000-11-14 | Stryker Corporation | Handpiece for an electrosurgical tool |
US6258088B1 (en) | 1999-08-12 | 2001-07-10 | Robert H. Brown, M. D., Inc. | Switch for electrosurgical tool for performing cutting, coagulation, and suctioning |
US6386032B1 (en) | 1999-08-26 | 2002-05-14 | Analog Devices Imi, Inc. | Micro-machined accelerometer with improved transfer characteristics |
JP2003526407A (en) | 1999-09-08 | 2003-09-09 | キューロン メディカル,インコーポレイテッド | System for controlling a set of treatment devices |
US6238388B1 (en) | 1999-09-10 | 2001-05-29 | Alan G. Ellman | Low-voltage electrosurgical apparatus |
FR2798579B1 (en) | 1999-09-20 | 2002-02-22 | 7 Med Ind | SINGLE-USE BISTOURI HANDLE WITH DIGITAL CONTROL |
US6402741B1 (en) | 1999-10-08 | 2002-06-11 | Sherwood Services Ag | Current and status monitor |
US6277083B1 (en) | 1999-12-27 | 2001-08-21 | Neothermia Corporation | Minimally invasive intact recovery of tissue |
US6589239B2 (en) | 2000-02-01 | 2003-07-08 | Ashok C. Khandkar | Electrosurgical knife |
US6409725B1 (en) | 2000-02-01 | 2002-06-25 | Triad Surgical Technologies, Inc. | Electrosurgical knife |
EP2322104B1 (en) | 2000-02-18 | 2017-10-25 | Stryker Corporation | Surgical handpiece with a push rod that both transfers rotational movement to an output drive shaft and that actuates a cutting accessory locking assembly |
US6636107B2 (en) | 2000-03-28 | 2003-10-21 | International Rectifier Corporation | Active filter for reduction of common mode current |
US6395001B1 (en) | 2000-04-10 | 2002-05-28 | Health Care Technologies, Llc | Electrosurgical electrode for wedge resection |
USD441077S1 (en) | 2000-05-01 | 2001-04-24 | Jon C. Garito | 3-button electrosurgical handpiece |
US6500169B1 (en) | 2000-05-15 | 2002-12-31 | Stryker Corporation | Powered surgical handpiece with membrane switch |
US6669691B1 (en) | 2000-07-18 | 2003-12-30 | Scimed Life Systems, Inc. | Epicardial myocardial revascularization and denervation methods and apparatus |
US6494882B1 (en) | 2000-07-25 | 2002-12-17 | Verimetra, Inc. | Cutting instrument having integrated sensors |
US6585664B2 (en) | 2000-08-02 | 2003-07-01 | Ethicon Endo-Surgery, Inc. | Calibration method for an automated surgical biopsy device |
US6662053B2 (en) | 2000-08-17 | 2003-12-09 | William N. Borkan | Multichannel stimulator electronics and methods |
ES2253250T3 (en) | 2000-10-04 | 2006-06-01 | Synthes Ag Chur | DEVICE FOR SUPPLYING ELECTRICAL ENERGY TO AN ELECTRIC PEN. |
US6633234B2 (en) | 2000-10-20 | 2003-10-14 | Ethicon Endo-Surgery, Inc. | Method for detecting blade breakage using rate and/or impedance information |
US20020103485A1 (en) | 2000-12-05 | 2002-08-01 | Ivan Melnyk | Electrosurgical pencil with a smoke evacuating blade |
US6676657B2 (en) | 2000-12-07 | 2004-01-13 | The United States Of America As Represented By The Department Of Health And Human Services | Endoluminal radiofrequency cauterization system |
ES2244551T3 (en) | 2000-12-15 | 2005-12-16 | Sherwood Services Ag | ELECTROCHIRURGICAL ELECTRODE ENVELOPE. |
CA2434151C (en) | 2001-01-11 | 2009-12-22 | Rita Medical Systems, Inc. | Bone-treatment instrument and method |
US6618626B2 (en) | 2001-01-16 | 2003-09-09 | Hs West Investments, Llc | Apparatus and methods for protecting the axillary nerve during thermal capsullorhaphy |
US6620161B2 (en) | 2001-01-24 | 2003-09-16 | Ethicon, Inc. | Electrosurgical instrument with an operational sequencing element |
US6464702B2 (en) | 2001-01-24 | 2002-10-15 | Ethicon, Inc. | Electrosurgical instrument with closing tube for conducting RF energy and moving jaws |
US6699243B2 (en) | 2001-09-19 | 2004-03-02 | Curon Medical, Inc. | Devices, systems and methods for treating tissue regions of the body |
US6610057B1 (en) | 2001-03-27 | 2003-08-26 | Alan G. Ellman | Electrosurgical blade electrode |
USD457955S1 (en) | 2001-03-29 | 2002-05-28 | Annex Medical, Inc. | Handle |
US7367973B2 (en) | 2003-06-30 | 2008-05-06 | Intuitive Surgical, Inc. | Electro-surgical instrument with replaceable end-effectors and inhibited surface conduction |
DE60222545T2 (en) | 2001-04-27 | 2008-06-12 | C.R. Bard, Inc. | HANDLEBAR DESIGN FOR A MEDICAL CATHETER |
US6551313B1 (en) | 2001-05-02 | 2003-04-22 | John M. Levin | Electrosurgical instrument with separate cutting and coagulating members |
US6827725B2 (en) | 2001-05-10 | 2004-12-07 | Gyrus Medical Limited | Surgical instrument |
DE10128377A1 (en) | 2001-06-08 | 2003-01-16 | Storz Endoskop Gmbh Schaffhaus | Electrosurgical device |
US6740079B1 (en) | 2001-07-12 | 2004-05-25 | Neothermia Corporation | Electrosurgical generator |
EP2314233B1 (en) | 2001-08-08 | 2013-06-12 | Stryker Corporation | A surgical tool system with an intermediate attachment located between the handpiece and an accessory or an implant, the attachment able to transmit energy from the handpiece to the accessory or the implant and the transmission of data signals from the accessory or implant to the handpiece |
US7166103B2 (en) | 2001-10-01 | 2007-01-23 | Electrosurgery Associates, Llc | High efficiency electrosurgical ablator with electrode subjected to oscillatory or other repetitive motion |
US6840937B2 (en) | 2001-10-18 | 2005-01-11 | Electrosurgery Associates, Llc | Electrosurgical ablator with aspiration |
US6685703B2 (en) | 2001-10-19 | 2004-02-03 | Scimed Life Systems, Inc. | Generator and probe adapter |
US6616658B2 (en) | 2001-11-08 | 2003-09-09 | Leonard Ineson | Electrosurgical pencil |
US6783525B2 (en) | 2001-12-12 | 2004-08-31 | Megadyne Medical Products, Inc. | Application and utilization of a water-soluble polymer on a surface |
US20030109865A1 (en) | 2001-12-12 | 2003-06-12 | Megadyne Medical Products, Inc. | Utilization of a multi-character material in a surface coating of an electrosurgical instrument |
US20030144680A1 (en) | 2002-01-22 | 2003-07-31 | Sontra Medical, Inc. | Portable ultrasonic scalpel/cautery device |
US6648839B2 (en) | 2002-02-28 | 2003-11-18 | Misonix, Incorporated | Ultrasonic medical treatment device for RF cauterization and related method |
US6955674B2 (en) | 2002-04-11 | 2005-10-18 | Medtronic, Inc. | Medical ablation catheter control |
DE10217811C1 (en) | 2002-04-22 | 2003-11-27 | Wolf Gmbh Richard | Coding system for marking tools in medical devices |
US7004174B2 (en) | 2002-05-31 | 2006-02-28 | Neothermia Corporation | Electrosurgery with infiltration anesthesia |
CA2493556C (en) | 2002-07-25 | 2012-04-03 | Thomas L. Ii Buchman | Electrosurgical pencil with drag sensing capability |
US7125406B2 (en) | 2002-09-13 | 2006-10-24 | Given Kenna S | Electrocautery instrument |
US6747218B2 (en) | 2002-09-20 | 2004-06-08 | Sherwood Services Ag | Electrosurgical haptic switch including snap dome and printed circuit stepped contact array |
US6905496B1 (en) | 2002-11-01 | 2005-06-14 | Alan G. Ellman | RF electrosurgery cryogenic system |
US7244257B2 (en) | 2002-11-05 | 2007-07-17 | Sherwood Services Ag | Electrosurgical pencil having a single button variable control |
DE10253819A1 (en) | 2002-11-18 | 2004-07-01 | Storz Endoskop Produktions Gmbh | Electrosurgical device and method for operating the same |
US6939347B2 (en) | 2002-11-19 | 2005-09-06 | Conmed Corporation | Electrosurgical generator and method with voltage and frequency regulated high-voltage current mode power supply |
US6830569B2 (en) | 2002-11-19 | 2004-12-14 | Conmed Corporation | Electrosurgical generator and method for detecting output power delivery malfunction |
US20040147909A1 (en) | 2002-12-20 | 2004-07-29 | Gyrus Ent L.L.C. | Surgical instrument |
US7072703B2 (en) | 2002-12-31 | 2006-07-04 | Cardiac Pacemakers, Inc. | Medical device with force monitoring features and method therefor |
US7844657B2 (en) | 2003-01-17 | 2010-11-30 | Storz Endoskop Produktions Gmbh | System for controlling medical devices |
USD495052S1 (en) | 2003-02-04 | 2004-08-24 | Sherwood Services Ag | Electrosurgical pencil with protected switch and straight proximal end |
USD495051S1 (en) | 2003-02-04 | 2004-08-24 | Sherwood Services Ag | Electrosurgical pencil with notched and scalloped handle |
USD494270S1 (en) | 2003-02-04 | 2004-08-10 | Sherwood Services Ag | Electrosurgical pencil with multiple scallops |
USD493888S1 (en) | 2003-02-04 | 2004-08-03 | Sherwood Services Ag | Electrosurgical pencil with pistol grip |
USD493530S1 (en) | 2003-02-04 | 2004-07-27 | Sherwood Services Ag | Electrosurgical pencil with slide activator |
CN1233300C (en) | 2003-02-19 | 2005-12-28 | 苏英 | Multifunctional operational dissector |
CA2516451A1 (en) | 2003-02-20 | 2004-09-02 | Sherwood Services Ag | Motion detector for controlling electrosurgical output |
US7074218B2 (en) | 2003-06-30 | 2006-07-11 | Ethicon, Inc. | Multi-modality ablation device |
US7563261B2 (en) | 2003-08-11 | 2009-07-21 | Electromedical Associates Llc | Electrosurgical device with floating-potential electrodes |
US20050059967A1 (en) | 2003-09-11 | 2005-03-17 | Breazeale Earl E. | Electrosurgical device |
US20050059858A1 (en) | 2003-09-16 | 2005-03-17 | Frith Martin A. | Endoscope magnetic rocker switch |
US7172592B2 (en) | 2003-09-29 | 2007-02-06 | Desisto Stephen R | Self-evacuating electrocautery device |
JP2005111085A (en) | 2003-10-09 | 2005-04-28 | Olympus Corp | Operation supporting system |
DE502004009815D1 (en) | 2003-10-29 | 2009-09-10 | Celon Ag Medical Instruments | Medical device for the electrotomy |
US20050096646A1 (en) | 2003-10-31 | 2005-05-05 | Parris Wellman | Surgical system for retracting and severing tissue |
US20050096645A1 (en) | 2003-10-31 | 2005-05-05 | Parris Wellman | Multitool surgical device |
BRPI0416323A (en) | 2003-11-10 | 2007-01-09 | Team Medical Llc | electrosurgical instrument |
US7241294B2 (en) | 2003-11-19 | 2007-07-10 | Sherwood Services Ag | Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US7131860B2 (en) | 2003-11-20 | 2006-11-07 | Sherwood Services Ag | Connector systems for electrosurgical generator |
WO2005060849A1 (en) | 2003-11-20 | 2005-07-07 | Sherwood Services Ag | Electrosurgical pencil with plurality of controls |
US7169145B2 (en) | 2003-11-21 | 2007-01-30 | Megadyne Medical Products, Inc. | Tuned return electrode with matching inductor |
US7553309B2 (en) | 2004-10-08 | 2009-06-30 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
US8216234B2 (en) | 2004-11-10 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Tissue resection device |
US7828794B2 (en) | 2005-08-25 | 2010-11-09 | Covidien Ag | Handheld electrosurgical apparatus for controlling operating room equipment |
US20070260238A1 (en) | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Combined energy level button |
US20070260240A1 (en) | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Soft tissue RF transection and resection device |
-
2009
- 2009-02-10 US US12/368,463 patent/US8231620B2/en not_active Expired - Fee Related
-
2010
- 2010-02-09 EP EP10153021A patent/EP2215986B1/en not_active Ceased
Patent Citations (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2031682A (en) * | 1932-11-18 | 1936-02-25 | Wappler Frederick Charles | Method and means for electrosurgical severance of adhesions |
US3494363A (en) * | 1969-04-01 | 1970-02-10 | Technical Resources Inc | Control for devices used in surgery |
US3648001A (en) * | 1969-12-11 | 1972-03-07 | Robert K Anderson | Compact hand held switching device with insertable switching means |
US3720896A (en) * | 1970-06-23 | 1973-03-13 | Siemens Ag | Handle for high frequency electrodes |
US3825004A (en) * | 1972-09-13 | 1974-07-23 | Durden Enterprises Ltd | Disposable electrosurgical cautery |
US3974833A (en) * | 1973-03-19 | 1976-08-17 | Durden Iii John G | Disposable electrosurgical cautery having optional suction control feature |
US3875945A (en) * | 1973-11-02 | 1975-04-08 | Demetron Corp | Electrosurgery instrument |
US4043342A (en) * | 1974-08-28 | 1977-08-23 | Valleylab, Inc. | Electrosurgical devices having sesquipolar electrode structures incorporated therein |
US4014343A (en) * | 1975-04-25 | 1977-03-29 | Neomed Incorporated | Detachable chuck for electro-surgical instrument |
US4314559A (en) * | 1979-12-12 | 1982-02-09 | Corning Glass Works | Nonstick conductive coating |
US4562838A (en) * | 1981-01-23 | 1986-01-07 | Walker William S | Electrosurgery instrument |
US4427006A (en) * | 1982-01-18 | 1984-01-24 | Medical Research Associates, Ltd. #1 | Electrosurgical instruments |
US4492231A (en) * | 1982-09-17 | 1985-01-08 | Auth David C | Non-sticking electrocautery system and forceps |
US4492832A (en) * | 1982-12-23 | 1985-01-08 | Neomed, Incorporated | Hand-controllable switching device for electrosurgical instruments |
US4811733A (en) * | 1985-03-14 | 1989-03-14 | Baxter Travenol Laboratories, Inc. | Electrosurgical device |
US4640279A (en) * | 1985-08-08 | 1987-02-03 | Oximetrix, Inc. | Combination surgical scalpel and electrosurgical instrument |
US4642128A (en) * | 1985-09-11 | 1987-02-10 | Xanar, Inc. | Smoke evacuator system with electronic control circuitry |
US5000754A (en) * | 1985-10-15 | 1991-03-19 | Egidio L. DeOliveira | Fluid control electrosurgical method |
US4803323A (en) * | 1986-02-05 | 1989-02-07 | Preh Elektrofeinmechanische Werke Jakob Preh Nachf. Gmbh & Co. | Electric manual switching device having environmentally protected components |
US4901719A (en) * | 1986-04-08 | 1990-02-20 | C. R. Bard, Inc. | Electrosurgical conductive gas stream equipment |
US4988334A (en) * | 1986-04-09 | 1991-01-29 | Valleylab, Inc. | Ultrasonic surgical system with aspiration tubulation connector |
US4796623A (en) * | 1987-07-20 | 1989-01-10 | The Cooper Companies, Inc. | Corneal vacuum trephine system |
US4909249A (en) * | 1987-11-05 | 1990-03-20 | The Cooper Companies, Inc. | Surgical cutting instrument |
US4903696A (en) * | 1988-10-06 | 1990-02-27 | Everest Medical Corporation | Electrosurgical generator |
US4986839A (en) * | 1988-11-10 | 1991-01-22 | Surgical Laser Products, Inc. | Self-contained air enhancement and laser plume evacuation system |
US4911159A (en) * | 1988-11-21 | 1990-03-27 | Johnson Jeffrey W | Electrosurgical instrument with electrical contacts between the probe and the probe holder |
US5192267A (en) * | 1989-01-23 | 1993-03-09 | Nadiv Shapira | Vortex smoke remover for electrosurgical devices |
US5088997A (en) * | 1990-03-15 | 1992-02-18 | Valleylab, Inc. | Gas coagulation device |
US5098430A (en) * | 1990-03-16 | 1992-03-24 | Beacon Laboratories, Inc. | Dual mode electrosurgical pencil |
US5100402A (en) * | 1990-10-05 | 1992-03-31 | Megadyne Medical Products, Inc. | Electrosurgical laparoscopic cauterization electrode |
US5178012A (en) * | 1991-05-31 | 1993-01-12 | Rockwell International Corporation | Twisting actuator accelerometer |
US5195959A (en) * | 1991-05-31 | 1993-03-23 | Paul C. Smith | Electrosurgical device with suction and irrigation |
US5197962A (en) * | 1991-06-05 | 1993-03-30 | Megadyne Medical Products, Inc. | Composite electrosurgical medical instrument |
US5190517A (en) * | 1991-06-06 | 1993-03-02 | Valleylab Inc. | Electrosurgical and ultrasonic surgical system |
US5196007A (en) * | 1991-06-07 | 1993-03-23 | Alan Ellman | Electrosurgical handpiece with activator |
US6022347A (en) * | 1991-08-12 | 2000-02-08 | Karl Storz Gmbh & Co. | High-frequency surgical generator for adjusted cutting and coagulation |
US5178605A (en) * | 1991-09-23 | 1993-01-12 | Alcon Surgical, Inc. | Coaxial flow irrigating and aspirating ultrasonic handpiece |
US6231591B1 (en) * | 1991-10-18 | 2001-05-15 | 2000 Injectx, Inc. | Method of localized fluid therapy |
US5496314A (en) * | 1992-05-01 | 1996-03-05 | Hemostatic Surgery Corporation | Irrigation and shroud arrangement for electrically powered endoscopic probes |
US5498654A (en) * | 1992-06-05 | 1996-03-12 | Taiho Kogyo Co., Ltd. | Sliding bearing material |
US5312327A (en) * | 1992-10-09 | 1994-05-17 | Symbiosis Corporation | Cautery override safety systems endoscopic electrosurgical suction-irrigation instrument |
US5601224A (en) * | 1992-10-09 | 1997-02-11 | Ethicon, Inc. | Surgical instrument |
US5720745A (en) * | 1992-11-24 | 1998-02-24 | Erbe Electromedizin Gmbh | Electrosurgical unit and method for achieving coagulation of biological tissue |
US5401273A (en) * | 1993-03-01 | 1995-03-28 | Shippert; Ronald D. | Cauterizing instrument for surgery |
US7169143B2 (en) * | 1993-05-10 | 2007-01-30 | Arthrocare Corporation | Methods for electrosurgical tissue treatment in electrically conductive fluid |
US5395363A (en) * | 1993-06-29 | 1995-03-07 | Utah Medical Products | Diathermy coagulation and ablation apparatus and method |
US5380320A (en) * | 1993-11-08 | 1995-01-10 | Advanced Surgical Materials, Inc. | Electrosurgical instrument having a parylene coating |
US5399823A (en) * | 1993-11-10 | 1995-03-21 | Minimed Inc. | Membrane dome switch with tactile feel regulator shim |
US5484434A (en) * | 1993-12-06 | 1996-01-16 | New Dimensions In Medicine, Inc. | Electrosurgical scalpel |
US5382247A (en) * | 1994-01-21 | 1995-01-17 | Valleylab Inc. | Technique for electrosurgical tips and method of manufacture and use |
US5484398A (en) * | 1994-03-17 | 1996-01-16 | Valleylab Inc. | Methods of making and using ultrasonic handpiece |
US5504687A (en) * | 1994-11-22 | 1996-04-02 | Vescor Corporation | Apparatus for automated machinery component selection |
US5713895A (en) * | 1994-12-30 | 1998-02-03 | Valleylab Inc | Partially coated electrodes |
US5486162A (en) * | 1995-01-11 | 1996-01-23 | Fibrasonics, Inc. | Bubble control device for an ultrasonic surgical probe |
US6010499A (en) * | 1995-05-31 | 2000-01-04 | Nuvotek Ltd. | Electrosurgical cutting and coagulation apparatus |
US5868768A (en) * | 1995-06-07 | 1999-02-09 | Baxter International Inc. | Method and device for endoluminal disruption of venous valves |
US5673695A (en) * | 1995-08-02 | 1997-10-07 | Ep Technologies, Inc. | Methods for locating and ablating accessory pathways in the heart |
US5712543A (en) * | 1995-10-31 | 1998-01-27 | Smith & Nephew Endoscopy Inc. | Magnetic switching element for controlling a surgical device |
US20040002705A1 (en) * | 1996-01-05 | 2004-01-01 | Knowlton Edward W. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US20040002704A1 (en) * | 1996-01-05 | 2004-01-01 | Knowlton Edward W. | Treatment apparatus with electromagnetic energy delivery device and non-volatile memory |
US6350276B1 (en) * | 1996-01-05 | 2002-02-26 | Thermage, Inc. | Tissue remodeling apparatus containing cooling fluid |
US20040000316A1 (en) * | 1996-01-05 | 2004-01-01 | Knowlton Edward W. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US20040034346A1 (en) * | 1996-01-05 | 2004-02-19 | Stern Roger A. | RF device with thermo-electric cooler |
US20040030332A1 (en) * | 1996-01-05 | 2004-02-12 | Knowlton Edward W. | Handpiece with electrode and non-volatile memory |
US5609573A (en) * | 1996-02-28 | 1997-03-11 | Conmed Corporation | Electrosurgical suction/irrigation instrument |
US6361532B1 (en) * | 1996-05-01 | 2002-03-26 | Bovie Medical Corporation | Electrosurgical pencil |
US5859527A (en) * | 1996-06-14 | 1999-01-12 | Skop Gmbh Ltd | Electrical signal supply with separate voltage and current control for an electrical load |
US5888200A (en) * | 1996-08-02 | 1999-03-30 | Stryker Corporation | Multi-purpose surgical tool system |
USD393067S (en) * | 1996-08-27 | 1998-03-31 | Valleylab Inc. | Electrosurgical pencil |
US6355034B2 (en) * | 1996-09-20 | 2002-03-12 | Ioan Cosmescu | Multifunctional telescopic monopolar/bipolar surgical device and method therefor |
US20030032950A1 (en) * | 1996-12-02 | 2003-02-13 | Altshuler Gregory B. | Cooling system for a photo cosmetic device |
US5876400A (en) * | 1997-01-13 | 1999-03-02 | Pioneer Laboratories, Inc. | Electrocautery method and apparatus |
US20020026145A1 (en) * | 1997-03-06 | 2002-02-28 | Bagaoisan Celso J. | Method and apparatus for emboli containment |
US20030014043A1 (en) * | 1997-12-10 | 2003-01-16 | Henry Orszulak James | Smart recognition apparatus and method |
US6685701B2 (en) * | 1997-12-10 | 2004-02-03 | Sherwood Services Ag | Smart recognition apparatus and method |
US6200311B1 (en) * | 1998-01-20 | 2001-03-13 | Eclipse Surgical Technologies, Inc. | Minimally invasive TMR device |
US20020035364A1 (en) * | 1998-09-23 | 2002-03-21 | Arthur Schoenman | Electrosurgical device having a dielectric seal |
US6526320B2 (en) * | 1998-11-16 | 2003-02-25 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US6149646A (en) * | 1999-02-02 | 2000-11-21 | Linvatec Corporation | Monopolar tissue ablator |
US6270476B1 (en) * | 1999-04-23 | 2001-08-07 | Cryocath Technologies, Inc. | Catheter |
US20030004508A1 (en) * | 1999-05-11 | 2003-01-02 | Stryker Corporation | Surgical handpiece with self-sealing switch assembly |
US7449022B2 (en) * | 1999-06-22 | 2008-11-11 | Senorx, Inc. | Shapeable electrosurgical scalpel |
US6197024B1 (en) * | 1999-09-22 | 2001-03-06 | Scott Keith Sullivan | Adjustable electrocautery surgical apparatus |
US6358281B1 (en) * | 1999-11-29 | 2002-03-19 | Epic Biosonics Inc. | Totally implantable cochlear prosthesis |
US20040024396A1 (en) * | 1999-12-27 | 2004-02-05 | Eggers Philip E. | Electrosurgical accessing of tissue with controlled collateral thermal phenomena |
US20020019596A1 (en) * | 1999-12-27 | 2002-02-14 | Eggers Philip E. | Minimally invasive intact recovery of tissue |
US20020022838A1 (en) * | 2000-02-16 | 2002-02-21 | Sherwood Services Ag | Inert gas inhanced electrosurgical apparatus |
US6352544B1 (en) * | 2000-02-22 | 2002-03-05 | Gregory A. Spitz | Apparatus and methods for removing veins |
US20020019631A1 (en) * | 2000-02-28 | 2002-02-14 | John Kidder | Electro-surgical pencil with smoke evacuation |
US6511479B2 (en) * | 2000-02-28 | 2003-01-28 | Conmed Corporation | Electrosurgical blade having directly adhered uniform coating of silicone release material and method of manufacturing same |
US20060241577A1 (en) * | 2000-03-31 | 2006-10-26 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
USD453833S1 (en) * | 2001-01-24 | 2002-02-19 | Ethicon, Inc. | Handle for surgical instrument |
USD453222S1 (en) * | 2001-04-30 | 2002-01-29 | Jon C. Garito | Electrosurgical handpiece |
US20040030328A1 (en) * | 2001-07-12 | 2004-02-12 | Eggers Philip E. | Electrosurgical generator |
US20040024395A1 (en) * | 2001-09-13 | 2004-02-05 | Ellman Alan G. | Intelligent selection system for electrosurgical instrument |
US6685704B2 (en) * | 2002-02-26 | 2004-02-03 | Megadyne Medical Products, Inc. | Utilization of an active catalyst in a surface coating of an electrosurgical instrument |
US20040030330A1 (en) * | 2002-04-18 | 2004-02-12 | Brassell James L. | Electrosurgery systems |
US20040015216A1 (en) * | 2002-05-30 | 2004-01-22 | Desisto Stephen R. | Self-evacuating electrocautery device |
US6840948B2 (en) * | 2002-06-06 | 2005-01-11 | Ethicon-Endo Surgery, Inc. | Device for removal of tissue lesions |
US6855140B2 (en) * | 2002-06-06 | 2005-02-15 | Thomas E. Albrecht | Method of tissue lesion removal |
US20040010246A1 (en) * | 2002-07-09 | 2004-01-15 | Olympus Optical Co., Ltd. | Surgery system |
US20040015160A1 (en) * | 2002-07-22 | 2004-01-22 | Medtronic Vidamed, Inc. | Method for calculating impedance and apparatus utilizing same |
US20040015161A1 (en) * | 2002-07-22 | 2004-01-22 | Medtronic Vidamed, Inc. | Method for monitoring impedance to control power and apparatus utilizing same |
US20040015162A1 (en) * | 2002-07-22 | 2004-01-22 | Medtronic Vidamed, Inc. | Method for treating tissue with a wet electrode and apparatus for using same |
US20040030367A1 (en) * | 2002-08-09 | 2004-02-12 | Olympus Optical Co., Ltd. | Medical control device, control method for medical control device, medical system device and control system |
US7412296B2 (en) * | 2003-01-31 | 2008-08-12 | Fujitsu Limited | Working control device |
US20050033286A1 (en) * | 2003-07-30 | 2005-02-10 | Eggers Philip E. | Minimally invasive instrumentation for recovering tissue |
USD535396S1 (en) * | 2003-11-13 | 2007-01-16 | Sherwood Services Ag | Electrosurgical pencil with three button control |
US7156844B2 (en) * | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US7156842B2 (en) * | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US20060041257A1 (en) * | 2003-11-20 | 2006-02-23 | Sartor Joe D | Electrosurgical pencil with improved controls |
USD515412S1 (en) * | 2005-03-11 | 2006-02-21 | Sherwood Services Ag | Drape clip |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8460289B2 (en) | 2005-06-28 | 2013-06-11 | Covidien Ag | Electrode with rotatably deployable sheath |
US20130304051A1 (en) * | 2012-05-08 | 2013-11-14 | Greatbatch Ltd. | Transseptal needle apparatus |
US9358039B2 (en) | 2012-05-08 | 2016-06-07 | Greatbatch Ltd. | Transseptal needle apparatus |
Also Published As
Publication number | Publication date |
---|---|
EP2215986A2 (en) | 2010-08-11 |
EP2215986B1 (en) | 2012-08-22 |
EP2215986A3 (en) | 2010-12-15 |
US8231620B2 (en) | 2012-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10862021B2 (en) | Method of constructing a jaw member for an end effector assembly | |
US9717548B2 (en) | Electrode for use in a bipolar electrosurgical instrument | |
ES2651687T3 (en) | Electrosurgical system with a memory module | |
US9579145B2 (en) | Flexible endoscopic catheter with ligasure | |
US5954720A (en) | Bipolar electrosurgical end effectors | |
US5330471A (en) | Bi-polar electrosurgical endoscopic instruments and methods of use | |
JP4774101B2 (en) | Equipment for tissue ablation | |
US8231620B2 (en) | Extension cutting blade | |
EP2939616A1 (en) | Electrosurgical instruments including end-effector assembly configured to provide mechanical cutting action on tissue | |
EP2904985A1 (en) | Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same | |
BRPI1106889A2 (en) | electrosurgical cobb elevator instrument | |
US20140364844A1 (en) | Miniaturized dual-mode electrosurgical device and methods of using same | |
US20220226036A1 (en) | Multi-functional surgical cautery device, system and method of use | |
US20150313628A1 (en) | Electrosurgical instruments including end-effector assembly configured to provide mechanical cutting action on tissue | |
US9987071B2 (en) | Surgical instrument with end-effector assembly including three jaw members | |
US20210038296A1 (en) | Single-handed operable surgical instrument including loop electrode with integrated pad electrode | |
US9987035B2 (en) | Surgical instrument with end-effector assembly including three jaw members and methods of cutting tissue using same | |
US20160058498A1 (en) | Vessel sealing instrument and switch assemblies thereof | |
KR20120065863A (en) | Laparoscope surgical instrument | |
CN109788980B (en) | Bipolar electrosurgical cutting coagulator | |
WO2023073675A1 (en) | Large area hemostasis with vessel sealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TYCO HEALTHCARE GROUP LP, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATHONNET, OLIVIER;REEL/FRAME:022233/0032 Effective date: 20090210 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:029065/0403 Effective date: 20120928 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240731 |