US20100172967A1 - Compound modified with glycerol derivative - Google Patents
Compound modified with glycerol derivative Download PDFInfo
- Publication number
- US20100172967A1 US20100172967A1 US12/708,714 US70871410A US2010172967A1 US 20100172967 A1 US20100172967 A1 US 20100172967A1 US 70871410 A US70871410 A US 70871410A US 2010172967 A1 US2010172967 A1 US 2010172967A1
- Authority
- US
- United States
- Prior art keywords
- compound
- group
- fine particle
- fatty acid
- liposome
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 153
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 title description 74
- 239000000126 substance Substances 0.000 claims abstract description 113
- 239000010419 fine particle Substances 0.000 claims abstract description 64
- 150000003839 salts Chemical class 0.000 claims abstract description 43
- 125000006850 spacer group Chemical group 0.000 claims abstract description 19
- -1 cationic lipid Chemical class 0.000 claims description 204
- 239000002502 liposome Substances 0.000 claims description 138
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 30
- 125000002947 alkylene group Chemical group 0.000 claims description 29
- 125000004432 carbon atom Chemical group C* 0.000 claims description 29
- 150000004671 saturated fatty acids Chemical group 0.000 claims description 24
- 150000004670 unsaturated fatty acids Chemical group 0.000 claims description 24
- 125000002252 acyl group Chemical group 0.000 claims description 19
- 150000003904 phospholipids Chemical class 0.000 claims description 18
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 17
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 16
- 150000002148 esters Chemical class 0.000 claims description 16
- 239000000194 fatty acid Substances 0.000 claims description 16
- 229930195729 fatty acid Natural products 0.000 claims description 16
- 125000004429 atom Chemical group 0.000 claims description 15
- 150000004665 fatty acids Chemical class 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000000839 emulsion Substances 0.000 claims description 11
- 239000004359 castor oil Substances 0.000 claims description 8
- 235000019438 castor oil Nutrition 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 8
- 125000001841 imino group Chemical group [H]N=* 0.000 claims description 8
- 239000002960 lipid emulsion Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 229930182558 Sterol Natural products 0.000 claims description 6
- 239000003945 anionic surfactant Substances 0.000 claims description 6
- 239000003093 cationic surfactant Substances 0.000 claims description 6
- 239000002563 ionic surfactant Substances 0.000 claims description 6
- 239000002736 nonionic surfactant Substances 0.000 claims description 6
- 150000003432 sterols Chemical class 0.000 claims description 6
- 235000003702 sterols Nutrition 0.000 claims description 6
- 150000005846 sugar alcohols Polymers 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000004166 Lanolin Substances 0.000 claims description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 5
- 235000019388 lanolin Nutrition 0.000 claims description 5
- 229940039717 lanolin Drugs 0.000 claims description 5
- 150000003410 sphingosines Chemical class 0.000 claims description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 4
- 239000005977 Ethylene Substances 0.000 claims description 3
- 125000005647 linker group Chemical group 0.000 claims description 3
- 229920000805 Polyaspartic acid Polymers 0.000 claims description 2
- 229940009098 aspartate Drugs 0.000 claims description 2
- 229960002989 glutamic acid Drugs 0.000 claims description 2
- 229940057995 liquid paraffin Drugs 0.000 claims description 2
- 229920000835 poly(gamma-benzyl-L-glutamate) polymer Polymers 0.000 claims description 2
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 2
- 229920001042 poly(δ-valerolactone) Polymers 0.000 claims description 2
- 229920001610 polycaprolactone Polymers 0.000 claims description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 2
- 239000008158 vegetable oil Substances 0.000 claims description 2
- 230000002209 hydrophobic effect Effects 0.000 abstract description 38
- 150000002314 glycerols Chemical class 0.000 abstract description 35
- 239000003607 modifier Substances 0.000 abstract description 16
- 239000003937 drug carrier Substances 0.000 abstract description 15
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 120
- 239000000243 solution Substances 0.000 description 101
- 239000000725 suspension Substances 0.000 description 101
- 229960004679 doxorubicin Drugs 0.000 description 60
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 52
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 48
- 238000006243 chemical reaction Methods 0.000 description 47
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 45
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 44
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 40
- 238000000034 method Methods 0.000 description 34
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 31
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 31
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- 125000000217 alkyl group Chemical group 0.000 description 30
- 238000003756 stirring Methods 0.000 description 29
- 230000002829 reductive effect Effects 0.000 description 28
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 27
- 229920006395 saturated elastomer Polymers 0.000 description 27
- 239000002904 solvent Substances 0.000 description 25
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 235000011187 glycerol Nutrition 0.000 description 24
- 125000003118 aryl group Chemical group 0.000 description 23
- 150000002632 lipids Chemical class 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 21
- 239000003814 drug Substances 0.000 description 21
- 239000012528 membrane Substances 0.000 description 21
- 238000005160 1H NMR spectroscopy Methods 0.000 description 20
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 125000003545 alkoxy group Chemical group 0.000 description 19
- LVNGJLRDBYCPGB-UHFFFAOYSA-N 1,2-distearoylphosphatidylethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP([O-])(=O)OCC[NH3+])OC(=O)CCCCCCCCCCCCCCCCC LVNGJLRDBYCPGB-UHFFFAOYSA-N 0.000 description 18
- 239000012044 organic layer Substances 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 18
- 238000010898 silica gel chromatography Methods 0.000 description 18
- 125000001424 substituent group Chemical group 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- 0 *COC(CO)CO Chemical compound *COC(CO)CO 0.000 description 16
- 239000000872 buffer Substances 0.000 description 16
- 229940079593 drug Drugs 0.000 description 16
- 125000000623 heterocyclic group Chemical group 0.000 description 16
- 239000011780 sodium chloride Substances 0.000 description 16
- 235000015165 citric acid Nutrition 0.000 description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 14
- 125000003435 aroyl group Chemical group 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 229920000515 polycarbonate Polymers 0.000 description 14
- 239000004417 polycarbonate Substances 0.000 description 14
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 13
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 13
- 239000002202 Polyethylene glycol Substances 0.000 description 12
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 12
- 238000000605 extraction Methods 0.000 description 12
- 150000002430 hydrocarbons Chemical group 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 12
- 235000017557 sodium bicarbonate Nutrition 0.000 description 12
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 12
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 12
- 125000005843 halogen group Chemical group 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 235000019198 oils Nutrition 0.000 description 11
- 210000002381 plasma Anatomy 0.000 description 11
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 238000005538 encapsulation Methods 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 241000700159 Rattus Species 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 7
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- CQRFEDVNTJTKFU-UHFFFAOYSA-N CCC(CC)OC Chemical compound CCC(CC)OC CQRFEDVNTJTKFU-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 6
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 6
- 235000012000 cholesterol Nutrition 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 description 6
- 125000006239 protecting group Chemical group 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- KWVJHCQQUFDPLU-YEUCEMRASA-N 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KWVJHCQQUFDPLU-YEUCEMRASA-N 0.000 description 5
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 5
- 210000002969 egg yolk Anatomy 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 5
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000008065 acid anhydrides Chemical group 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- NXJCBFBQEVOTOW-UHFFFAOYSA-L palladium(2+);dihydroxide Chemical compound O[Pd]O NXJCBFBQEVOTOW-UHFFFAOYSA-L 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 4
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 4
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 3
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 3
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 3
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 3
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 3
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 3
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 3
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 3
- 229940126657 Compound 17 Drugs 0.000 description 3
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- LJOOWESTVASNOG-UFJKPHDISA-N [(1s,3r,4ar,7s,8s,8as)-3-hydroxy-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=C[C@H]2C[C@@H](O)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 LJOOWESTVASNOG-UFJKPHDISA-N 0.000 description 3
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 3
- WREOTYWODABZMH-DTZQCDIJSA-N [[(2r,3s,4r,5r)-3,4-dihydroxy-5-[2-oxo-4-(2-phenylethoxyamino)pyrimidin-1-yl]oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N(C=C\1)C(=O)NC/1=N\OCCC1=CC=CC=C1 WREOTYWODABZMH-DTZQCDIJSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229940106189 ceramide Drugs 0.000 description 3
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 229940125758 compound 15 Drugs 0.000 description 3
- 229940126142 compound 16 Drugs 0.000 description 3
- 229940126208 compound 22 Drugs 0.000 description 3
- 229940127204 compound 29 Drugs 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 150000004820 halides Chemical group 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 3
- 125000000394 phosphonato group Chemical group [O-]P([O-])(*)=O 0.000 description 3
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 229940014800 succinic anhydride Drugs 0.000 description 3
- 125000004646 sulfenyl group Chemical group S(*)* 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 238000005199 ultracentrifugation Methods 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 description 2
- ASGMFNBUXDJWJJ-JLCFBVMHSA-N (1R,3R)-3-[[3-bromo-1-[4-(5-methyl-1,3,4-thiadiazol-2-yl)phenyl]pyrazolo[3,4-d]pyrimidin-6-yl]amino]-N,1-dimethylcyclopentane-1-carboxamide Chemical compound BrC1=NN(C2=NC(=NC=C21)N[C@H]1C[C@@](CC1)(C(=O)NC)C)C1=CC=C(C=C1)C=1SC(=NN=1)C ASGMFNBUXDJWJJ-JLCFBVMHSA-N 0.000 description 2
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 2
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 2
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 2
- STBLNCCBQMHSRC-BATDWUPUSA-N (2s)-n-[(3s,4s)-5-acetyl-7-cyano-4-methyl-1-[(2-methylnaphthalen-1-yl)methyl]-2-oxo-3,4-dihydro-1,5-benzodiazepin-3-yl]-2-(methylamino)propanamide Chemical compound O=C1[C@@H](NC(=O)[C@H](C)NC)[C@H](C)N(C(C)=O)C2=CC(C#N)=CC=C2N1CC1=C(C)C=CC2=CC=CC=C12 STBLNCCBQMHSRC-BATDWUPUSA-N 0.000 description 2
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 2
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 2
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 2
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 2
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 2
- SLKDGVPOSSLUAI-PGUFJCEWSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCCCCCCCCCC SLKDGVPOSSLUAI-PGUFJCEWSA-N 0.000 description 2
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 2
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 2
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 2
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- WALUVDCNGPQPOD-UHFFFAOYSA-M 2,3-di(tetradecoxy)propyl-(2-hydroxyethyl)-dimethylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCOCC(C[N+](C)(C)CCO)OCCCCCCCCCCCCCC WALUVDCNGPQPOD-UHFFFAOYSA-M 0.000 description 2
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 2
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 2
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IPUDBCXGMBSQGH-UHFFFAOYSA-N CCC(CO)OC Chemical compound CCC(CO)OC IPUDBCXGMBSQGH-UHFFFAOYSA-N 0.000 description 2
- BMAINLNHNVARHJ-UHFFFAOYSA-N CCOC(CC)CC Chemical compound CCOC(CC)CC BMAINLNHNVARHJ-UHFFFAOYSA-N 0.000 description 2
- RKOGJKGQMPZCGG-UHFFFAOYSA-N COC(CO)CO Chemical compound COC(CO)CO RKOGJKGQMPZCGG-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229940127007 Compound 39 Drugs 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 241001441550 Zeiformes Species 0.000 description 2
- HIHOWBSBBDRPDW-PTHRTHQKSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate Chemical compound C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HIHOWBSBBDRPDW-PTHRTHQKSA-N 0.000 description 2
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 2
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N [H]N(C)C(C)=O Chemical compound [H]N(C)C(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 229960004217 benzyl alcohol Drugs 0.000 description 2
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 2
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000000035 biogenic effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012503 blood component Substances 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 229930183167 cerebroside Natural products 0.000 description 2
- RIZIAUKTHDLMQX-UHFFFAOYSA-N cerebroside D Natural products CCCCCCCCCCCCCCCCC(O)C(=O)NC(C(O)C=CCCC=C(C)CCCCCCCCC)COC1OC(CO)C(O)C(O)C1O RIZIAUKTHDLMQX-UHFFFAOYSA-N 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 229940125773 compound 10 Drugs 0.000 description 2
- 229940125797 compound 12 Drugs 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 229940125810 compound 20 Drugs 0.000 description 2
- 229940126086 compound 21 Drugs 0.000 description 2
- 229940125833 compound 23 Drugs 0.000 description 2
- 229940125961 compound 24 Drugs 0.000 description 2
- 229940125846 compound 25 Drugs 0.000 description 2
- 229940125851 compound 27 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 229940125878 compound 36 Drugs 0.000 description 2
- 229940127573 compound 38 Drugs 0.000 description 2
- 229940126540 compound 41 Drugs 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 description 2
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000002270 gangliosides Chemical class 0.000 description 2
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 2
- 229920001600 hydrophobic polymer Polymers 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 2
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- RENRQMCACQEWFC-UGKGYDQZSA-N lnp023 Chemical compound C1([C@H]2N(CC=3C=4C=CNC=4C(C)=CC=3OC)CC[C@@H](C2)OCC)=CC=C(C(O)=O)C=C1 RENRQMCACQEWFC-UGKGYDQZSA-N 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- PIDFDZJZLOTZTM-KHVQSSSXSA-N ombitasvir Chemical compound COC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC1=CC=C([C@H]2N([C@@H](CC2)C=2C=CC(NC(=O)[C@H]3N(CCC3)C(=O)[C@@H](NC(=O)OC)C(C)C)=CC=2)C=2C=CC(=CC=2)C(C)(C)C)C=C1 PIDFDZJZLOTZTM-KHVQSSSXSA-N 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 2
- 125000004043 oxo group Chemical group O=* 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003905 phosphatidylinositols Chemical class 0.000 description 2
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- OSELKOCHBMDKEJ-UHFFFAOYSA-N (10R)-3c-Hydroxy-10r.13c-dimethyl-17c-((R)-1-methyl-4-isopropyl-hexen-(4c)-yl)-(8cH.9tH.14tH)-Delta5-tetradecahydro-1H-cyclopenta[a]phenanthren Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(=CC)C(C)C)C1(C)CC2 OSELKOCHBMDKEJ-UHFFFAOYSA-N 0.000 description 1
- BQPPJGMMIYJVBR-UHFFFAOYSA-N (10S)-3c-Acetoxy-4.4.10r.13c.14t-pentamethyl-17c-((R)-1.5-dimethyl-hexen-(4)-yl)-(5tH)-Delta8-tetradecahydro-1H-cyclopenta[a]phenanthren Natural products CC12CCC(OC(C)=O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C BQPPJGMMIYJVBR-UHFFFAOYSA-N 0.000 description 1
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 1
- FROLUYNBHPUZQU-IIZJPUEISA-N (2R,3R,4S,5R)-2-(hydroxymethyl)-6-[3-[3-[(3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropoxy]propoxy]oxane-3,4,5-triol Chemical compound OC[C@H]1OC(OCCCOCCCOC2O[C@H](CO)[C@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@@H](O)[C@H]1O FROLUYNBHPUZQU-IIZJPUEISA-N 0.000 description 1
- IUSARDYWEPUTPN-OZBXUNDUSA-N (2r)-n-[(2s,3r)-4-[[(4s)-6-(2,2-dimethylpropyl)spiro[3,4-dihydropyrano[2,3-b]pyridine-2,1'-cyclobutane]-4-yl]amino]-3-hydroxy-1-[3-(1,3-thiazol-2-yl)phenyl]butan-2-yl]-2-methoxypropanamide Chemical compound C([C@H](NC(=O)[C@@H](C)OC)[C@H](O)CN[C@@H]1C2=CC(CC(C)(C)C)=CN=C2OC2(CCC2)C1)C(C=1)=CC=CC=1C1=NC=CS1 IUSARDYWEPUTPN-OZBXUNDUSA-N 0.000 description 1
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- CHGIKSSZNBCNDW-UHFFFAOYSA-N (3beta,5alpha)-4,4-Dimethylcholesta-8,24-dien-3-ol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21 CHGIKSSZNBCNDW-UHFFFAOYSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- QYIXCDOBOSTCEI-QCYZZNICSA-N (5alpha)-cholestan-3beta-ol Chemical compound C([C@@H]1CC2)[C@@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CCCC(C)C)[C@@]2(C)CC1 QYIXCDOBOSTCEI-QCYZZNICSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 description 1
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- XYTLYKGXLMKYMV-UHFFFAOYSA-N 14alpha-methylzymosterol Natural products CC12CCC(O)CC1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C XYTLYKGXLMKYMV-UHFFFAOYSA-N 0.000 description 1
- WVPAABNYMHNFJG-QDVBXLKVSA-N 2,2-dimethylpropanoyloxymethyl (6r,7r)-7-[[(z)-2-(2-amino-1,3-thiazol-4-yl)pent-2-enoyl]amino]-3-(carbamoyloxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(=O)OCOC(=O)C(C)(C)C)=O)C(=O)\C(=C/CC)C1=CSC(N)=N1 WVPAABNYMHNFJG-QDVBXLKVSA-N 0.000 description 1
- OIFAHDAXIUURLN-UHFFFAOYSA-N 2-(fluoromethyl)oxirane Chemical compound FCC1CO1 OIFAHDAXIUURLN-UHFFFAOYSA-N 0.000 description 1
- SYNPRNNJJLRHTI-UHFFFAOYSA-N 2-(hydroxymethyl)butane-1,4-diol Chemical compound OCCC(CO)CO SYNPRNNJJLRHTI-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- MHNNAWXXUZQSNM-UHFFFAOYSA-N 2-methylbut-1-ene Chemical compound CCC(C)=C MHNNAWXXUZQSNM-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- FPTJELQXIUUCEY-UHFFFAOYSA-N 3beta-Hydroxy-lanostan Natural products C1CC2C(C)(C)C(O)CCC2(C)C2C1C1(C)CCC(C(C)CCCC(C)C)C1(C)CC2 FPTJELQXIUUCEY-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- 125000005986 4-piperidonyl group Chemical group 0.000 description 1
- CQSRUKJFZKVYCY-UHFFFAOYSA-N 5alpha-isofucostan-3beta-ol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(=CC)C(C)C)C1(C)CC2 CQSRUKJFZKVYCY-UHFFFAOYSA-N 0.000 description 1
- WUWFMDMBOJLQIV-UHFFFAOYSA-N 7-(3-aminopyrrolidin-1-yl)-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid Chemical compound C1C(N)CCN1C(C(=C1)F)=NC2=C1C(=O)C(C(O)=O)=CN2C1=CC=C(F)C=C1F WUWFMDMBOJLQIV-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 125000005330 8 membered heterocyclic group Chemical group 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- BHELIUBJHYAEDK-OAIUPTLZSA-N Aspoxicillin Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3[C@H](C(C)(C)S[C@@H]32)C(O)=O)=O)NC(=O)[C@H](N)CC(=O)NC)=CC=C(O)C=C1 BHELIUBJHYAEDK-OAIUPTLZSA-N 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- OILXMJHPFNGGTO-NRHJOKMGSA-N Brassicasterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@](C)([C@H]([C@@H](/C=C/[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 OILXMJHPFNGGTO-NRHJOKMGSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- QMUSHVDAHLQQNH-UHFFFAOYSA-N C.C.CC1(C)OCC(O)CO1.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)N=[N+]=[N-])CO1.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(N)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)CO1.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(O)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)CO1.CC1(C)OCC(OCC(O)COC2COC(C)(C)OC2)CO1.CC1=CC=C(S(=O)(=O)OC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)C=C1.COC(=O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)CC(=O)NC(COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1.COC(=O)CCC(=O)N(CC(=O)O)CC(=O)O.ClCC1CO1.ClCC1CO1.[AlH3].[LiH].[N-]=[N+]=N[Na] Chemical compound C.C.CC1(C)OCC(O)CO1.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)N=[N+]=[N-])CO1.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(N)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)CO1.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(O)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)CO1.CC1(C)OCC(OCC(O)COC2COC(C)(C)OC2)CO1.CC1=CC=C(S(=O)(=O)OC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)C=C1.COC(=O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)CC(=O)NC(COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1.COC(=O)CCC(=O)N(CC(=O)O)CC(=O)O.ClCC1CO1.ClCC1CO1.[AlH3].[LiH].[N-]=[N+]=N[Na] QMUSHVDAHLQQNH-UHFFFAOYSA-N 0.000 description 1
- VVNHNVVMVVBFKC-UHFFFAOYSA-N C.C.COC(=O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1.COC(=O)CCC(=O)N(CC(=O)O)CC(=O)O.N=S.O=C(O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1 Chemical compound C.C.COC(=O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1.COC(=O)CCC(=O)N(CC(=O)O)CC(=O)O.N=S.O=C(O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1 VVNHNVVMVVBFKC-UHFFFAOYSA-N 0.000 description 1
- PKLQUAMESBSMHL-UHFFFAOYSA-N C.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)NC(=O)CN(CC(=O)NC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)C(=O)CCC(=O)O)CO1.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)NC(=O)CN(CC(=O)NC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)C(=O)CCC(=O)ON2C(=O)CCC2=O)CO1.N=S Chemical compound C.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)NC(=O)CN(CC(=O)NC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)C(=O)CCC(=O)O)CO1.CC1(C)OCC(OCC(COC2COC(C)(C)OC2)OCC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)NC(=O)CN(CC(=O)NC(COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)COC(COC2COC(C)(C)OC2)COC2COC(C)(C)OC2)C(=O)CCC(=O)ON2C(=O)CCC2=O)CO1.N=S PKLQUAMESBSMHL-UHFFFAOYSA-N 0.000 description 1
- ARYIOLBPKQGHOA-UHFFFAOYSA-N C.CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)OC(=O)CCCCCCCCCCCCCCCCC.O=C(CN(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)C(=O)CN(CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1 Chemical compound C.CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)OC(=O)CCCCCCCCCCCCCCCCC.O=C(CN(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)C(=O)CN(CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1 ARYIOLBPKQGHOA-UHFFFAOYSA-N 0.000 description 1
- LIJSRXAKGSIIRW-UHFFFAOYSA-N C.CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)OC(=O)CCCCCCCCCCCCCCCCC.O=C(CN(CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1 Chemical compound C.CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)OC(=O)CCCCCCCCCCCCCCCCC.O=C(CN(CC(=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1 LIJSRXAKGSIIRW-UHFFFAOYSA-N 0.000 description 1
- LACQSSDPGMIZKK-UHFFFAOYSA-N CC(C)(C)OC(=O)N(CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1.N=S.O=C(CN(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)C(=O)CNCC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1.O=C(O)CCC(=O)N(CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1 Chemical compound CC(C)(C)OC(=O)N(CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1.N=S.O=C(CN(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)C(=O)CNCC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1.O=C(O)CCC(=O)N(CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1 LACQSSDPGMIZKK-UHFFFAOYSA-N 0.000 description 1
- AATOHLDZQXBOEB-UHFFFAOYSA-N CC1=CC=C(S(=O)(=O)OC(COC(COC2COC(C3=CC=CC=C3)OC2)COC2COC(C3=CC=CC=C3)OC2)COC(COC2COC(C3=CC=CC=C3)OC2)COC2COC(C3=CC=CC=C3)OC2)C=C1.ClCC1CO1.ClCC1CO1.OC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1.OC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1.OC1COC(C2=CC=CC=C2)OC1.[N-]=[N+]=N[Na] Chemical compound CC1=CC=C(S(=O)(=O)OC(COC(COC2COC(C3=CC=CC=C3)OC2)COC2COC(C3=CC=CC=C3)OC2)COC(COC2COC(C3=CC=CC=C3)OC2)COC2COC(C3=CC=CC=C3)OC2)C=C1.ClCC1CO1.ClCC1CO1.OC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1.OC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1.OC1COC(C2=CC=CC=C2)OC1.[N-]=[N+]=N[Na] AATOHLDZQXBOEB-UHFFFAOYSA-N 0.000 description 1
- PFEOZHBOMNWTJB-UHFFFAOYSA-N CCC(C)CC Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 1
- AORMDLNPRGXHHL-UHFFFAOYSA-N CCC(CC)CC Chemical compound CCC(CC)CC AORMDLNPRGXHHL-UHFFFAOYSA-N 0.000 description 1
- IYQKQCLYCYRROU-UHFFFAOYSA-N CCC(CC)CC.CCN(CC)CC Chemical compound CCC(CC)CC.CCN(CC)CC IYQKQCLYCYRROU-UHFFFAOYSA-N 0.000 description 1
- MDVOEWMVMCNPHG-UHFFFAOYSA-N CCC(CC)NC(C)=O Chemical compound CCC(CC)NC(C)=O MDVOEWMVMCNPHG-UHFFFAOYSA-N 0.000 description 1
- OJALASKPODJTCN-UHFFFAOYSA-N CCC(CC)NC(C)=O.CCC(CC)OC.CCN(CC)C(C)=O Chemical compound CCC(CC)NC(C)=O.CCC(CC)OC.CCN(CC)C(C)=O OJALASKPODJTCN-UHFFFAOYSA-N 0.000 description 1
- UIUVMGPXEMICLV-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)N(CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)N(CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(CO)CO)COC(CO)CO)OC(=O)CCCCCCCCCCCCCCCCC Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)N(CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)N(CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(CO)CO)COC(CO)CO)OC(=O)CCCCCCCCCCCCCCCCC UIUVMGPXEMICLV-UHFFFAOYSA-N 0.000 description 1
- ORHOCYSXENSNDO-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(CO)CO)COC(CO)CO)OC(=O)CCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)OC(=O)CCCCCCCCCCCCCCCCC Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(CO)CO)COC(CO)CO)OC(=O)CCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)CC(=O)NC(COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)COC(COCC1=CC=CC=C1)COCC1=CC=CC=C1)OC(=O)CCCCCCCCCCCCCCCCC ORHOCYSXENSNDO-UHFFFAOYSA-N 0.000 description 1
- LSYWPWDUCGCHKU-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)OC(=O)CCCCCCCCCCCCCCCCC Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)OC(=O)CCCCCCCCCCCCCCCCC LSYWPWDUCGCHKU-UHFFFAOYSA-N 0.000 description 1
- YFOFOCRPUPTAHL-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)OC(=O)CCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)CC(=O)NC(COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)OC(=O)CCCCCCCCCCCCCCCCC Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)OC(=O)CCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCNC(=O)CCC(=O)N(CC(=O)NC(COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)CC(=O)NC(COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)COC(COC1COC(C)(C)OC1)COC1COC(C)(C)OC1)OC(=O)CCCCCCCCCCCCCCCCC YFOFOCRPUPTAHL-UHFFFAOYSA-N 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N CCN(CC)C(C)=O Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- LGXIHZZECKKWSI-UHFFFAOYSA-N COC(=O)CCC(=O)N(CC(=O)O)CC(=O)O.COC(=O)CCC(=O)N(CC(=O)OCC1=CC=CC=C1)CC(=O)OCC1=CC=CC=C1.O=C(CNCC(=O)OCC1=CC=CC=C1)OCC1=CC=CC=C1.O=C(O)CCC(=O)N(CC(=O)OCC1=CC=CC=C1)CC(=O)OCC1=CC=CC=C1.O=C(O)CNCC(=O)O Chemical compound COC(=O)CCC(=O)N(CC(=O)O)CC(=O)O.COC(=O)CCC(=O)N(CC(=O)OCC1=CC=CC=C1)CC(=O)OCC1=CC=CC=C1.O=C(CNCC(=O)OCC1=CC=CC=C1)OCC1=CC=CC=C1.O=C(O)CCC(=O)N(CC(=O)OCC1=CC=CC=C1)CC(=O)OCC1=CC=CC=C1.O=C(O)CNCC(=O)O LGXIHZZECKKWSI-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- SGNBVLSWZMBQTH-FGAXOLDCSA-N Campesterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 SGNBVLSWZMBQTH-FGAXOLDCSA-N 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- QYQDKDWGWDOFFU-IUODEOHRSA-N Cefotiam Chemical compound CN(C)CCN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CC=3N=C(N)SC=3)[C@H]2SC1 QYQDKDWGWDOFFU-IUODEOHRSA-N 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XULFJDKZVHTRLG-JDVCJPALSA-N DOSPA trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F.CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)CCNC(=O)C(CCCNCCCN)NCCCN)OCCCCCCCC\C=C/CCCCCCCC XULFJDKZVHTRLG-JDVCJPALSA-N 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- QRLVDLBMBULFAL-UHFFFAOYSA-N Digitonin Natural products CC1CCC2(OC1)OC3C(O)C4C5CCC6CC(OC7OC(CO)C(OC8OC(CO)C(O)C(OC9OCC(O)C(O)C9OC%10OC(CO)C(O)C(OC%11OC(CO)C(O)C(O)C%11O)C%10O)C8O)C(O)C7O)C(O)CC6(C)C5CCC4(C)C3C2C QRLVDLBMBULFAL-UHFFFAOYSA-N 0.000 description 1
- SAMRUMKYXPVKPA-VFKOLLTISA-N Enocitabine Chemical compound O=C1N=C(NC(=O)CCCCCCCCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 SAMRUMKYXPVKPA-VFKOLLTISA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- OVMMHVNNFBJRNE-CACIRBSMSA-M Flomoxef sodium Chemical compound [Na+].O([C@@H]1[C@@](C(N1C=1C([O-])=O)=O)(CC(=O)CSC(F)F)OC)CC=1CSC1=NN=NN1CCO OVMMHVNNFBJRNE-CACIRBSMSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GBBBJSKVBYJMBG-QTWVXCTBSA-N Fucosterol Natural products CC=C(CC[C@@H](C)[C@@H]1CC[C@@H]2[C@H]3C=C[C@@H]4C[C@H](O)CC[C@@]4(C)[C@@H]3CC[C@@]12C)C(C)C GBBBJSKVBYJMBG-QTWVXCTBSA-N 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- BKLIAINBCQPSOV-UHFFFAOYSA-N Gluanol Natural products CC(C)CC=CC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(O)C(C)(C)C4CC3 BKLIAINBCQPSOV-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- BTEISVKTSQLKST-UHFFFAOYSA-N Haliclonasterol Natural products CC(C=CC(C)C(C)(C)C)C1CCC2C3=CC=C4CC(O)CCC4(C)C3CCC12C BTEISVKTSQLKST-UHFFFAOYSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- OSELKOCHBMDKEJ-VRUYXKNBSA-N Isofucosterol Natural products CC=C(CC[C@@H](C)[C@H]1CC[C@@H]2[C@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C)C(C)C OSELKOCHBMDKEJ-VRUYXKNBSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- LOPKHWOTGJIQLC-UHFFFAOYSA-N Lanosterol Natural products CC(CCC=C(C)C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 LOPKHWOTGJIQLC-UHFFFAOYSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N N-methylaminoacetic acid Natural products C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 1
- KOLNOBCFWWAVII-UHFFFAOYSA-N NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1.[AlH3].[LiH].[N-]=[N+]=NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1 Chemical compound NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1.[AlH3].[LiH].[N-]=[N+]=NC(COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1)COC(COC1COC(C2=CC=CC=C2)OC1)COC1COC(C2=CC=CC=C2)OC1 KOLNOBCFWWAVII-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- CAHGCLMLTWQZNJ-UHFFFAOYSA-N Nerifoliol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C CAHGCLMLTWQZNJ-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- SUHOOTKUPISOBE-UHFFFAOYSA-N O-phosphoethanolamine Chemical compound NCCOP(O)(O)=O SUHOOTKUPISOBE-UHFFFAOYSA-N 0.000 description 1
- GRHGHSUTXGYTHT-UHFFFAOYSA-N O=C(CCC(=O)ON1C(=O)CCC1=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO.O=C(CN(CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(CO)CO)COC(CO)CO.O=C(CN(CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CN(CC(=O)N(CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(CO)CO)COC(CO)CO Chemical compound O=C(CCC(=O)ON1C(=O)CCC1=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO.O=C(CN(CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(CO)CO)COC(CO)CO.O=C(CN(CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CN(CC(=O)N(CC(=O)NC(COC(CO)CO)COC(CO)CO)CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(CO)CO)COC(CO)CO GRHGHSUTXGYTHT-UHFFFAOYSA-N 0.000 description 1
- DNYXDQRTCCJZMF-UHFFFAOYSA-N O=C(CCC(=O)ON1C(=O)CCC1=O)NC(COC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)COC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO.O=C(CN(CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO Chemical compound O=C(CCC(=O)ON1C(=O)CCC1=O)NC(COC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)COC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO.O=C(CN(CC(=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO)C(=O)CCC(=O)ON1C(=O)CCC1=O)NC(COC(COC(CO)CO)COC(CO)CO)COC(COC(CO)CO)COC(CO)CO DNYXDQRTCCJZMF-UHFFFAOYSA-N 0.000 description 1
- IXOWIKFBWRCQEG-UHFFFAOYSA-N O=C(CN(CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CCC(=O)ONCCN1C(=O)C=CC1=O)NC(COC(CO)CO)COC(CO)CO.O=C(CN(CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CCCS)NC(COC(CO)CO)COC(CO)CO Chemical compound O=C(CN(CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CCC(=O)ONCCN1C(=O)C=CC1=O)NC(COC(CO)CO)COC(CO)CO.O=C(CN(CC(=O)NC(COC(CO)CO)COC(CO)CO)C(=O)CCCS)NC(COC(CO)CO)COC(CO)CO IXOWIKFBWRCQEG-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 108010057150 Peplomycin Proteins 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- OILXMJHPFNGGTO-ZRUUVFCLSA-N UNPD197407 Natural products C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)C=C[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZRUUVFCLSA-N 0.000 description 1
- HZYXFRGVBOPPNZ-UHFFFAOYSA-N UNPD88870 Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)=CCC(CC)C(C)C)C1(C)CC2 HZYXFRGVBOPPNZ-UHFFFAOYSA-N 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 241000276425 Xiphophorus maculatus Species 0.000 description 1
- BHATUINFZWUDIX-UHFFFAOYSA-N Zwittergent 3-14 Chemical compound CCCCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O BHATUINFZWUDIX-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- USZYSDMBJDPRIF-SVEJIMAYSA-N aclacinomycin A Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1CCC(=O)[C@H](C)O1 USZYSDMBJDPRIF-SVEJIMAYSA-N 0.000 description 1
- 229960004176 aclarubicin Drugs 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- QYIXCDOBOSTCEI-UHFFFAOYSA-N alpha-cholestanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCCC(C)C)C1(C)CC2 QYIXCDOBOSTCEI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- BBDAGFIXKZCXAH-CCXZUQQUSA-N ancitabine Chemical compound N=C1C=CN2[C@@H]3O[C@H](CO)[C@@H](O)[C@@H]3OC2=N1 BBDAGFIXKZCXAH-CCXZUQQUSA-N 0.000 description 1
- 229950000242 ancitabine Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000005427 anthranyl group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 125000001124 arachidoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- MKKYBZZTJQGVCD-XTCKQBCOSA-N arbekacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)CC[C@H]1N MKKYBZZTJQGVCD-XTCKQBCOSA-N 0.000 description 1
- 229960005397 arbekacin Drugs 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 229960000202 aspoxicillin Drugs 0.000 description 1
- PFOLLRNADZZWEX-FFGRCDKISA-N bacampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)[C@H](C(S3)(C)C)C(=O)OC(C)OC(=O)OCC)=CC=CC=C1 PFOLLRNADZZWEX-FFGRCDKISA-N 0.000 description 1
- 229960002699 bacampicillin Drugs 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 125000003910 behenoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229940076810 beta sitosterol Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- YXJUEYDETJCBKA-UHFFFAOYSA-N bis(2-hydroxyethyl)azanium;dihydrogen phosphate Chemical compound OP(O)(O)=O.OCCNCCO YXJUEYDETJCBKA-UHFFFAOYSA-N 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- OILXMJHPFNGGTO-ZAUYPBDWSA-N brassicasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZAUYPBDWSA-N 0.000 description 1
- 235000004420 brassicasterol Nutrition 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- SGNBVLSWZMBQTH-PODYLUTMSA-N campesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](C)C(C)C)[C@@]1(C)CC2 SGNBVLSWZMBQTH-PODYLUTMSA-N 0.000 description 1
- 235000000431 campesterol Nutrition 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- MOIPGXQKZSZOQX-UHFFFAOYSA-N carbonyl bromide Chemical compound BrC(Br)=O MOIPGXQKZSZOQX-UHFFFAOYSA-N 0.000 description 1
- RVIQSSNDHKQZHH-UHFFFAOYSA-N carbonyl diiodide Chemical compound IC(I)=O RVIQSSNDHKQZHH-UHFFFAOYSA-N 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- FLKYBGKDCCEQQM-WYUVZMMLSA-M cefazolin sodium Chemical compound [Na+].S1C(C)=NN=C1SCC1=C(C([O-])=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 FLKYBGKDCCEQQM-WYUVZMMLSA-M 0.000 description 1
- 229960003408 cefazolin sodium Drugs 0.000 description 1
- 229950004627 cefcapene pivoxil Drugs 0.000 description 1
- 229960003719 cefdinir Drugs 0.000 description 1
- RTXOFQZKPXMALH-GHXIOONMSA-N cefdinir Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 RTXOFQZKPXMALH-GHXIOONMSA-N 0.000 description 1
- KMIPKYQIOVAHOP-YLGJWRNMSA-N cefditoren Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1\C=C/C=1SC=NC=1C KMIPKYQIOVAHOP-YLGJWRNMSA-N 0.000 description 1
- 229960004069 cefditoren Drugs 0.000 description 1
- 229960001242 cefotiam Drugs 0.000 description 1
- 230000005859 cell recognition Effects 0.000 description 1
- 125000003312 cerotoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- ZYVSOIYQKUDENJ-WKSBCEQHSA-N chromomycin A3 Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@@H]1OC(C)=O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@@H](O)[C@H](O[C@@H]3O[C@@H](C)[C@H](OC(C)=O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@@H]1C[C@@H](O)[C@@H](OC)[C@@H](C)O1 ZYVSOIYQKUDENJ-WKSBCEQHSA-N 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 229940126543 compound 14 Drugs 0.000 description 1
- 229940125807 compound 37 Drugs 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- XDSGMUJLZDSCPA-UHFFFAOYSA-N diazanium;phenoxybenzene;sulfate Chemical compound [NH4+].[NH4+].[O-]S([O-])(=O)=O.C=1C=CC=CC=1OC1=CC=CC=C1 XDSGMUJLZDSCPA-UHFFFAOYSA-N 0.000 description 1
- JJCQSGDBDPYCEO-XVZSLQNASA-N dibekacin Chemical compound O1[C@H](CN)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N JJCQSGDBDPYCEO-XVZSLQNASA-N 0.000 description 1
- 229960003807 dibekacin Drugs 0.000 description 1
- RNPXCFINMKSQPQ-UHFFFAOYSA-N dicetyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCC RNPXCFINMKSQPQ-UHFFFAOYSA-N 0.000 description 1
- 229940093541 dicetylphosphate Drugs 0.000 description 1
- UVYVLBIGDKGWPX-KUAJCENISA-N digitonin Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)C[C@@H](O)[C@H](O[C@H]5[C@@H]([C@@H](O)[C@@H](O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)CO7)O)[C@H](O)[C@@H](CO)O6)O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O7)O)[C@@H](O)[C@@H](CO)O6)O)[C@@H](CO)O5)O)C[C@@H]4CC[C@H]3[C@@H]2[C@@H]1O)C)[C@@H]1C)[C@]11CC[C@@H](C)CO1 UVYVLBIGDKGWPX-KUAJCENISA-N 0.000 description 1
- UVYVLBIGDKGWPX-UHFFFAOYSA-N digitonine Natural products CC1C(C2(CCC3C4(C)CC(O)C(OC5C(C(O)C(OC6C(C(OC7C(C(O)C(O)CO7)O)C(O)C(CO)O6)OC6C(C(OC7C(C(O)C(O)C(CO)O7)O)C(O)C(CO)O6)O)C(CO)O5)O)CC4CCC3C2C2O)C)C2OC11CCC(C)CO1 UVYVLBIGDKGWPX-UHFFFAOYSA-N 0.000 description 1
- 125000000723 dihydrobenzofuranyl group Chemical group O1C(CC2=C1C=CC=C2)* 0.000 description 1
- QBSJHOGDIUQWTH-UHFFFAOYSA-N dihydrolanosterol Natural products CC(C)CCCC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 QBSJHOGDIUQWTH-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000000447 dimerizing effect Effects 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical group C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 229950011487 enocitabine Drugs 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- YMDXZJFXQJVXBF-STHAYSLISA-N fosfomycin Chemical compound C[C@@H]1O[C@@H]1P(O)(O)=O YMDXZJFXQJVXBF-STHAYSLISA-N 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- OSELKOCHBMDKEJ-JUGJNGJRSA-N fucosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC\C(=C/C)C(C)C)[C@@]1(C)CC2 OSELKOCHBMDKEJ-JUGJNGJRSA-N 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 125000002519 galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 239000008350 hydrogenated phosphatidyl choline Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 description 1
- 229960004657 indocyanine green Drugs 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- NBQNWMBBSKPBAY-UHFFFAOYSA-N iodixanol Chemical compound IC=1C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C(I)C=1N(C(=O)C)CC(O)CN(C(C)=O)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NBQNWMBBSKPBAY-UHFFFAOYSA-N 0.000 description 1
- 229960004359 iodixanol Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- UDIIBEDMEYAVNG-ZKFPOVNWSA-N isepamicin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)O)[C@@H](N)C[C@H]1NC(=O)[C@@H](O)CN UDIIBEDMEYAVNG-ZKFPOVNWSA-N 0.000 description 1
- 229960000798 isepamicin Drugs 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229940058690 lanosterol Drugs 0.000 description 1
- CAHGCLMLTWQZNJ-RGEKOYMOSA-N lanosterol Chemical compound C([C@]12C)C[C@@H](O)C(C)(C)[C@H]1CCC1=C2CC[C@]2(C)[C@H]([C@H](CCC=C(C)C)C)CC[C@@]21C CAHGCLMLTWQZNJ-RGEKOYMOSA-N 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960003376 levofloxacin Drugs 0.000 description 1
- 125000000403 lignoceroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000000628 margaroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000000412 melissoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- UMWKZHPREXJQGR-XOSAIJSUSA-N n-methyl-n-[(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl]decanamide Chemical compound CCCCCCCCCC(=O)N(C)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO UMWKZHPREXJQGR-XOSAIJSUSA-N 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- QIMGFXOHTOXMQP-GFAGFCTOSA-N peplomycin Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCN[C@@H](C)C=1C=CC=CC=1)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C QIMGFXOHTOXMQP-GFAGFCTOSA-N 0.000 description 1
- 229950003180 peplomycin Drugs 0.000 description 1
- 125000001639 phenylmethylene group Chemical group [H]C(=*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 125000005544 phthalimido group Chemical group 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229960005264 piperacillin sodium Drugs 0.000 description 1
- WCMIIGXFCMNQDS-IDYPWDAWSA-M piperacillin sodium Chemical compound [Na+].O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C([O-])=O)C(C)(C)S[C@@H]21 WCMIIGXFCMNQDS-IDYPWDAWSA-M 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 1
- 229950005143 sitosterol Drugs 0.000 description 1
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 1
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 1
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 229940083604 sodium iothalamate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 229940045946 sodium taurodeoxycholate Drugs 0.000 description 1
- YXHRQQJFKOHLAP-FVCKGWAHSA-M sodium;2-[[(4r)-4-[(3r,5r,8r,9s,10s,12s,13r,14s,17r)-3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 YXHRQQJFKOHLAP-FVCKGWAHSA-M 0.000 description 1
- WCIMWHNSWLLELS-ZMWPDAOESA-M sodium;3-acetamido-2,6-bis(iodanyl)-4-iodo-5-(methylcarbamoyl)benzoate Chemical compound [Na+].CNC(=O)C1=C(I)C(NC(C)=O)=C([125I])C(C([O-])=O)=C1[125I] WCIMWHNSWLLELS-ZMWPDAOESA-M 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940032091 stigmasterol Drugs 0.000 description 1
- HCXVJBMSMIARIN-PHZDYDNGSA-N stigmasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@@H](CC)C(C)C)[C@@]1(C)CC2 HCXVJBMSMIARIN-PHZDYDNGSA-N 0.000 description 1
- 235000016831 stigmasterol Nutrition 0.000 description 1
- BFDNMXAIBMJLBB-UHFFFAOYSA-N stigmasterol Natural products CCC(C=CC(C)C1CCCC2C3CC=C4CC(O)CCC4(C)C3CCC12C)C(C)C BFDNMXAIBMJLBB-UHFFFAOYSA-N 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- OPYGFNJSCUDTBT-PMLPCWDUSA-N sultamicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(=O)OCOC(=O)[C@H]2C(S(=O)(=O)[C@H]3N2C(C3)=O)(C)C)(C)C)=CC=CC=C1 OPYGFNJSCUDTBT-PMLPCWDUSA-N 0.000 description 1
- 229960001636 sultamicillin tosylate Drugs 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 229960001674 tegafur Drugs 0.000 description 1
- WFWLQNSHRPWKFK-ZCFIWIBFSA-N tegafur Chemical compound O=C1NC(=O)C(F)=CN1[C@@H]1OCCC1 WFWLQNSHRPWKFK-ZCFIWIBFSA-N 0.000 description 1
- 229960002722 terbinafine Drugs 0.000 description 1
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical compound C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 125000003039 tetrahydroisoquinolinyl group Chemical group C1(NCCC2=CC=CC=C12)* 0.000 description 1
- 125000004853 tetrahydropyridinyl group Chemical group N1(CCCC=C1)* 0.000 description 1
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical class C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000005505 thiomorpholino group Chemical group 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 229950008187 tosufloxacin Drugs 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/44—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
- C07D207/444—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
- C07D207/448—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
- C07D207/452—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6905—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
- A61K47/6911—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/50—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
- C07C323/51—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
- C07C323/60—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton with the carbon atom of at least one of the carboxyl groups bound to nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/10—Phosphatides, e.g. lecithin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/02—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/02—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
- C07K5/0202—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-X-X-C(=0)-, X being an optionally substituted carbon atom or a heteroatom, e.g. beta-amino acids
Definitions
- the present invention relates to a compound in which an amphiphilic substance or a hydrophobic substance is modified with a glycerol derivative, which is useful as a surface modifier for producing a drug carrier or the like, or a salt thereof; a fine particle comprising the same; and the like.
- a fine particles such as a liposome, an emulsion, a micell, a fine particle crystal, a microcapsule, a microsphere or the like as a drug carrier are known.
- liposomes are used as drug carriers for antitumor agents, antiinflammatory agents and the like. It is known that, when administered into a vein, the liposomes are trapped in the lung, liver, spleen or the like and rapidly disappear from blood. Therefore, it is difficult for the liposomes to efficiently transfer the agents to a tumor or inflamed part in a target region other than the lung, liver, and spleen. Thus, various attempts have been made to increase retention of the liposomes in blood, including chemical modification of the liposomes with polyethylene glycol (PEG), and the like.
- PEG polyethylene glycol
- liposomes modified with surface modifiers comprising PEG derivatives show remarkably high retention in blood (for example, Japanese Patent No. 2667051, Japanese Published Examined Patent Application No. 20857/95, Japanese Patent No. 2948246 and the like).
- liposomes modified with surface modifiers comprising polyglycerin derivatives are increased retention in blood (for example, Japanese Published Unexamined Patent Application No. 228012/94).
- the PEG-modified liposomes have several disadvantages in view of use as the drug carrier.
- a PEG-modified liposome can efficiently transfer a drug to a tumor cell
- the PEG on the surface of the liposome has a large steric hindrance to inhibit interaction between the drug and the tumor cell to thereby prevent the drug from efficiently moving into the tumor cell ( Biochimica et Biophysica Acta, 1558, 1-13 (2002)).
- a PEG-modified liposome is repeatedly administered, the retention thereof in blood is reduced ( Journal of Controlled Release, 88, 35-42 (2003) and Journal of Pharmacology and Experimental Therapeutics, 292, 1071-1079 (2000)).
- the PEG inhibits the cell recognition ability of the antibody, whereby there is a difficulty in active targeting by the PEG-modified liposome ( Biochimica et Biophysica Acta, 1062, 142-148 (1991)).
- the stability of a liposome membrane is reduced by introducing a PEG to a lipid of the liposome, whereby a drug encapsulated in the liposome easily leaks.
- polyglycerin-modified liposomes have been developed as ones with high retention in blood instead of the PEG-modified liposomes, they are insufficient in the retention, which is only twice as high as unmodified liposomes.
- Objects of the present invention are to provide a compound in which an amphiphilic substance or a hydrophobic substance is modified with a glycerol derivative, which is useful as a surface modifier for producing a drug carrier or the like, or a salt thereof; a fine particle comprising the same; and the like.
- a surface modifier is one of components of a drug carrier such as a fine particle, and is a compound in which a part or the whole of the structure of the surface of the carrier is extended outward from the carrier or a composition comprising the compound.
- the present invention relates to the following (1) to (28).
- a compound in which a substance to be modified which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, is modified with a glycerol derivative represented by the following formula (1):
- R represents a residue comprising a reactive group for the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or for a spacer capable of binding the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, to R—X, or a group capable of being transformed into the reactive group;
- n represents an integer of 3 or more; and
- X represents a residue capable of having the following structure by n in number:
- Y 1 , Y 2 and Y 3 each independently represents a single bond, or one, or two or more in any combination, which may be the same or different, selected from the group consisting of substituted or unsubstituted alkylene, carbonyl, substituted or unsubstituted imino, O, S, sulfonyl and sulfinyl, and when Y 1 , Y 2 and Y 3 exist two or more in number, they may be the same or different,
- X comprises one to (n ⁇ 1) structure(s) represented by
- R is a residue comprising a reactive group for a group selected from the group consisting of carboxy, amino, a hydroxyl group, mercapto, formyl, a sulfuric acid residue, a phosphoric acid residue, a phosphonic acid residue and partial structures thereof in the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, or the spacer capable of binding the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, to R—X, or a group capable of being transformed into the reactive group.
- R 1 and R 2 which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R 1 and R 2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R 3 and R 4 , which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- R 1 and R 2 which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R 1 and R 2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R 3 and R 4 , which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- R 1 and R 2 which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R 1 and R 2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R 3 and R 4 , which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- R 1 and R 2 which may be the same or different, and each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R 1 and R 2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R 3 and R 4 , which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- R 1 and R 2 which may be the same or different, and each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R 1 and R 2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R 3 and R 4 , which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- R 1 and R 2 which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R 1 and R 2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R 3 and R 4 , which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- R 1 and R 2 which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R 1 and R 2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R 3 and R 4 , which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- R 1 and R 2 which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R 1 and R 2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R 3 and R 4 , which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- R 1 and R 2 which may the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R 1 and R 2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R 3 and R 4 , which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- a fine particle comprising a compound in which a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, is modified with a glycerol derivative which comprises a residue comprising a reactive group for the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or for a spacer capable of binding the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, to R—X, or a group capable of being transformed into the reactive group and one or more structure(s) represented by
- a fine particle comprising the compound according to any one of the above-described (1) to (22) or a salt thereof.
- a surface modifier of a fine particle comprising a compound in which a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, is modified with a glycerol derivative which comprises a residue comprising a reactive group for the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or for a spacer capable of binding the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, to R—X, or a group capable of being transformed into the reactive group and one or more structure(s) represented by
- a surface modifier of a fine particle comprising the compound according to any one of the above-described (1) to (22) or a salt thereof.
- the glycerol derivative which comprises a residue containing a reactive group for a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or a group capable of being transformed into the reactive group and one or more structure(s) represented by
- the glycerol derivative (I) may be any one, so long as it has a structure which comprises the residue containing a reactive group for a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or a group capable of being transformed into the reactive group and one or more structure(s) represented by
- Examples include a glycerol derivative represented by the following formula (1) (hereinafter referred to as the glycerol derivative (1)):
- R represents a residue comprising a reactive group for the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or a group capable of being transformed into the reactive group;
- n represents an integer of 3 or more; and
- X represents a residue capable of having the following structure by n in number
- X is not particularly limited, so long as it is a group capable of binding to R and the following structure by n in number:
- the serially branched structure means a structure in which at least one branched chain of branched chains which are branched into two or more, is further branched into two or more, and this branching is repeated.
- the preferred structure is a structure in which each of the branched chains which are branched into two or more is further branched into two or more, and this branching is repeated.
- the number of respective branches is 2.
- glycerol unit represented by
- the number of these branched structures to be contained in formula (1) is not particularly limited, and is preferably one to (n ⁇ 1), and when n is 2 m , it is more preferably one to (2 m -2).
- a glycerol derivative in which X in formula (1) comprises one to (n ⁇ 1), or when n is r, one to (2 m -2), of a structure represented by
- the alkylene includes, for example, straight-chain, branched or cyclic alkylene having 1 to 8 carbon atom(s), such as methylene, ethylene, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, hexane-1,6-diyl, heptane-1,7-diyl, octane-1,8-diyl, non ane-1,8-diyl, decane-1,9-diyl, cyclopropane-1,2-diyl, cyclobutane-1,2-diyl, cyclopentane-1,2-diyl, cyclohexane-1,2-diyl, cyclooctane-1,2-diyl and the like.
- the substituents of the substituted alkylene includes, for example, 1 to 3 substituent(s) which may be the same or different, such as a halogen atom, lower alkyl, an unsaturated hydrocarbon group, aryl, lower alkoxy, a hydroxyl group, oxo, carboxy, acyl, aroyl, amino, nitro, cyano and a heterocyclic group.
- the halogen atom includes atoms of fluorine, chlorine, bromine and iodine.
- the lower alkyl and the lower alkyl moiety of the lower alkoxy include, for example, straight-chain or branched alkyl having 1 to 8 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl and octyl.
- the unsaturated hydrocarbon group includes, for example, a straight-chain, branched or cyclic unsaturated hydrocarbon group having 1 to 8 carbon atom(s), for example, alkenyl and alkynyl such as vinyl, allyl, 1-propenyl, methacryl, 2-butenyl, 1-pentenyl, 2-hexenyl, 1,3-pentadienyl, 1,3-hexadienyl, cyclopentenyl, cyclopentadienyl, propargyl, pentynyl and the like.
- the aryl includes, for example, aryl having 6 to 14 carbon atoms, such as phenyl, naphthyl, anthranyl and the like.
- the acyl includes, for example, straight-chain, branched or cyclic acyl having 1 to 8 carbon atoms such as acetyl and propionyl.
- the aroyl includes, for example, benzoyl.
- the heterocyclic group includes, for example, a 3- to 8-membered heterocyclic group and the like containing at least one hetero atom of a nitrogen atom, an oxygen atom, a sulfur atom and the like, such as furyl, thienyl, pyrrolyl, pyridyl, oxazolyl, thiazolyl, imidazolyl, pyrimidinyl, triazinyl, indolyl, quinolyl, purinyl, benzoxazolyl, benzothiazolyl and benzimidazolyl.
- the substituent in the substituted imino includes, for example, lower alkyl, aryl, aralkyl and the like.
- the aralkyl includes, for example, aralkyl having 7 to 13 carbon atoms such as benzyl, phenetyl, benzhydryl and naphtylmethyl.
- the lower alkyl and the aryl have the same meaning as described above, respectively.
- R is a residue comprising a reactive group for a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, or a group capable of being transformed into the reactive group.
- the reactive group as a partial structure of R may be any group, so long as it can react with carboxy, amino, a hydroxyl group, mercapto, formyl, a sulfuric acid residue (sulfonyl, sulfenyl, sulfinyl, etc.), a phosphoric acid residue (phosphono, phosphonoyl, phosphonato, hydroxyoxydophosphoryl, hydrohydroxyphosphoryl, phosphinoyl, hydroxyphosphoryl, phosphoryl, etc.), a phosphonic acid residue (dihydroxyphosphanyl, hydroxyoxydophosphanyl, hydroxyphosphanyl, hydroxyphosphanediyl, phosphinato, etc.) or the like or the like
- Preferred examples of the reactive group for a substance to be modified include a carboxylic acid active ester residue, carbonate, maleimido, mercapto, formyl, tresyl, isocyanato, an acid anhydride residue, an acid halide residue, vinylsulfonyl, hydrazido, amino, halogen and the like.
- Preferred examples of the group capable of being transformed into a reactive group for a substance to be modified include a hydroxyl group, carboxy, amino, mercapto, formyl, vinyl, phosphono, halogen and the like.
- the carboxylic acid active ester of carboxylic acid active ester residue is ester having substituted or unsubstituted aryl, a substituted or unsubstituted heterocyclic group or the like.
- Examples include N-hydroxysuccinimide ester, p-nitrophenyl ester, thiophenyl ester, 2,3,5-trichlorophenyl ester, 2,4,6-trichlorophenyl ester, 2,4,5-trichlorophenyl ester, pentachlorophenyl ester, 2,4-dinitrophenyl ester, N-hydroxyphthalimido ester and the like.
- the acid anhydride of the acid anhydride residue includes carboxylic anhydride and the like.
- the acid halide residue includes carbonyl chloride, carbonyl bromide, carbonyl iodide, carbonyl fluoride and the like.
- the moiety other than the reactive group or the group capable of being transformed into the reactive group in R is not particularly limited, so long as it is a group which does not inhibit the reactivity, and it may be an optional group.
- Examples include groups comprising one or two or more in optional combination, which may be the same or different, selected from the group consisting of a halogen atom, substituted or unsubstituted alkyl, a substituted or unsubstituted unsaturated hydrocarbon group, substituted or unsubstituted alkylene, substituted or unsubstituted aryl, substituted or unsubstituted alkoxy, a hydroxyl group, carbonyl, carboxy, substituted or unsubstituted acyl, substituted or unsubstituted aroyl, substituted or unsubstituted amino, substituted or unsubstituted imino, nitro, cyano, O, S, sulfinyl, sulfonyl, a
- groups comprising one or two or more in optional combination, which may be the same or different, selected from the group consisting of substituted or unsubstituted alkylene, carbonyl, substituted or unsubstituted imino, O and S are preferred.
- the alkyl moiety of the alkyl and the alkoxy of R includes, for example, straight-chain, branched or cyclic alkyl having 1 to 8 carbon atom(s), such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
- halogen atom, the unsaturated hydrocarbon group, the alkylene, the aryl, the acyl, the aroyl and the heterocyclic group have the same meanings as the halogen atom, the unsaturated hydrocarbon group, the alkylene, the aryl, the acyl, the aroyl and the heterocyclic group, respectively, described above in the definitions of Y 1 , Y 2 and Y 3 .
- the substituent(s) of the substituted alkyl, the substituted unsaturated hydrocarbon group, the substituted alkylene, the substituted aryl, the substituted alkoxy, substituted acyl, the substituted aroyl and the substituted heterocyclic group include, for example, 1 to 3 substituent(s) which may be the same or different, such as a halogen atom, alkyl, an unsaturated hydrocarbon group, aryl, alkoxy, a hydroxyl group, oxo, carboxy, acyl, aroyl, amino, nitro, cyano, a heterocyclic group and the like, and the halogen atom, the alkyl, the unsaturated hydrocarbon group, the aryl, the alkoxy, the acyl, the aroyl and the heterocyclic group have the same meaning as described above, respectively.
- the substituent of the substituted imino includes, for example, alkyl, an unsaturated hydrocarbon group, aryl, alkoxy, acyl, aroyl, amino, a heterocyclic group and the like
- the substituent of the substituted amino includes, for example, 1 or 2 substituent(s) which nay be the same or different, such as alkyl, an unsaturated hydrocarbon group, aryl, alkoxy, acyl, aroyl, amino, a heterocyclic group and the like
- the alkyl, the unsaturated hydrocarbon group, the aryl, the alkoxy, the acyl, the aroyl and the heterocyclic group have the same meaning as described above, respectively.
- n is not particularly limited, so long as it is an integer of 3 or more, and is preferably 2 m , wherein m has the same meaning as described above, and is more preferably from 4 to 1,024 (2 2 to 2 16 ).
- the molecular weight of the glycerol derivative (1) is not particularly limited, and the compound has preferably a molecular weight of 100 to 1,000,000, and more preferably 1,000 to 100,000.
- glycerol derivative (1) examples include compounds represented by the following formulae (IA), (1B), (1C), (1D), (1E), (1F), (1G) and the like.
- the glycerol derivative (1) can be produced by a combination of reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis , I to IV, Experimental Chemistry Course, Vol. 19 to 22, edited by, Maruzen, (1992)] and the like.
- the glycerol derivative (1) can be produced by the following usual production method.
- R, X and n have the same meaning as described above, respectively;
- Hal represents a halogen atom;
- R A represents a group capable of being transformed into a hydrogen atom;
- R 5 represents a group capable of being transformed into R; and
- R 6 represents a group which can be substituted with
- R A has the same meaning as described above.
- the halogen atom has the same meaning as described above.
- the group which is transformed into a hydrogen atom includes, for example, substituted or unsubstituted lower alkyl, a substituted or unsubstituted alicyclic heterocycle group, substituted or unsubstituted silyl, substituted or unsubstituted acyl, substituted or unsubstituted aroyl and the like, and among these, benzyl and the like are preferred.
- the group which is transformed into a hydrogen atom may be a group formed by combining two R A s in one glycerol unit, such as substituted or unsubstituted alkylene, and among these, propane-2,2-diyl, phenylmethylene and the like are preferred.
- the lower alkyl includes, for example, straight-chain or branched alkyl having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl and octyl.
- the alicyclic heterocycle group includes, for example, a 3- to 8-membered monocyclic alicyclic heterocycle group containing at least one atom selected from nitrogen, oxygen and sulfur atoms, a 3- to 8-membered rings-condensing bi- or tri-cyclic condensed alicyclic heterocycle group containing at least one atom selected from nitrogen, oxygen and sulfur atoms, and the like, such as tetrahydropyridinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, tetrahydropyranyl, tetrahydrofuranyl, dihydrobenzofuranyl, pyrrolidinyl, piperidino, piperidinyl, perhydroazepinyl, perhydroazocinyl, morpholino, morpholinyl, thiomorpholino, thiomorpholinyl, piperazinyl, homopiperidino, homopiperazinyl
- acyl and aroyl have the same meanings as described above, respectively.
- the alkylene includes, for example, methylene, ethylene, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, and hexane-1,6-diyl.
- the substituent of the substituted lower alkyl, the substituted alicyclic heterocycle group, the substituted silyl, the substituted acyl and the substituted aroyl includes, for example, 1 to 3 substituent(s) which may be the same or different, such as lower alkyl, lower alkoxy, lower alkoxy-lower alkoxy and aralkyloxy.
- the substituent of the substituted lower alkyl includes, for example, 1 or 2 substituent(s) of aryl, and the aryl includes, for example, phenyl, naphtyl and the like.
- the substituent of the substituted aryl includes, for example, 1 to 3 substituent(s), such as lower alkyl, lower alkoxy, lower alkoxy-lower alkoxy and aralkyloxy.
- the lower alkyl and the lower alkyl moiety of the lower alkoxy and the lower alkoxy-lower alkoxy have the same meanings as the above lower alkyl
- the aryl moiety of the aralkyloxy has the same meaning as the above aryl
- the alkylene moiety of the aralkyloxy includes, for example, methylene, ethylene, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, hexane-1,6-diyl and the like.
- the substituent of the substituted alkylene includes, for example, 1 to 3 substituent(s) which may be the same or different, such as lower alkyl, aryl and lower alkoxy.
- the lower alkyl and the lower alkyl moiety of the lower alkoxy have the same meanings as the above lower alkyl, and the aryl has the same meaning as the above aryl.
- the group capable of being transformed into R is not particularly limited, so long as it is a group capable of being transformed into R, and examples include those described in the definition of the group capable of being transformed into a hydrogen atom.
- R A has the same meaning as described above
- R A is not particularly limited, so long as it is a group which can be substituted with
- R A has the same meaning as described above
- examples include a hydrogen atom, a halogen atom, a hydroxyl group, alkoxy, alkanoyloxy and the like, wherein the halogen atom has the same meaning as described above, and the alkyl moiety of the alkoxy and the alkanoyloxy has the same meaning as the above-described alkyl.
- Compound (c) can be obtained in accordance with the methods described in J. Org. Chem., 57, 435 (1992), J. Med. Chem., 38 (10), 1673 (1995) and the like by using epihalohydrin (Compound (a)) such as epichlorohydrin, epibromohydrin, epifluorohydrin or the like and R A —OH (wherein R A has the same meaning as described above).
- epihalohydrin such as epichlorohydrin, epibromohydrin, epifluorohydrin or the like and R A —OH (wherein R A has the same meaning as described above).
- Compound (c) can be obtained by allowing 1 mole of glycerol (compound (b)) to react with 1 to 10 mole(s) of R A -Hal (wherein R A and Hal have the same meaning as described above, respectively) in the presence of an appropriate base and then purifying the product, or by allowing it to react with 2-methyl-1-butene in the presence of a catalytic amount of BF 3 .O(C 2 H 5 ) 2 [Tetrahedron Lett, 29, 2951 (1988)], thereby selectively protecting a hydroxyl group of the primary alcohol, or in accordance with the methods described in Tetrahedron Lett, 41, 6411 (2000), J. Org. Chem., 54, 1346 (1989), Can.
- Compound (c) can be obtained by protecting a hydroxyl group of the primary alcohol of compound (b) in accordance, for example, with the protective group introducing method described in Protective Groups in Organic Synthesis , third edition, edited by T. W. Greene, John Wiley & Sons, Inc. (1999) or the like.
- R A —OH to be allowed to react with Compound (a) for example, various alcohols such as methanol, ethanol, propanol, tert-butyl alcohol, benzyl alcohol and the like can be used.
- R A of R A -Hal to be allowed to react with Compound (b) it is possible to use a residue which can be removed, such as benzyl, methyl, ethyl, propyl, tert-butyl, methoxymethyl, methoxyethoxymethyl, tetrahydropyranyl, tetrahydrofuranyl, triphenylmethyl, benzyloxymethyl, triethylsilyl or the like.
- Commercially available products can be used as Compounds (a) and (b), and Compound (c) can be synthesized in accordance with the above-described method or can be obtained as a commercially available product.
- Compound (d) is obtained by further reacting Compound (c) obtained by the above-described step with Compound (a), or by reacting Compound (b) with
- Compound (e) having n Compound (c) residues bound to X having a series branch structure can be obtained by combining the above reaction steps with the following reaction steps and/or repeating them.
- Compound (j) can be obtained by a method described in J. Med. Chem., 38, 1673 (1995) and the like, or by combining reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis , I to IV, Experimental Chemistry Course, 4th Ed, Vol. 19 to 22, edited by, Maruzen, (1992), and the like].
- Compound (e) having n compound (c) residues bound to X having a series branch structure can be obtained by combining the above reaction steps with the following reaction steps and/or repeating them.
- R A and n have the same meanings as described above, respectively; and R 8 represents a group which can be substituted with a hydrogen atom.
- Compound (k) can be obtained by reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis , I to IV, Experimental Chemistry Course, 4th Ed, Maruzen, Vol. 19 to 22 (1992) and the like].
- Compound (l) can be obtained by dimerizing two amines using a linker (a crosslinking agent) having a HO 2 C—CH 2 —NR 8 —CH 2 —CO 2 H skeleton (R 8 represents a group which can be substituted with a hydrogen atom) (Toth, G. K., Botond, P., Synthesis , p. 361 (1992)), and then Compound (m) can be obtained by subjecting Compound (l) to amine deprotection reaction described in T. W. Greene, Protective Groups in Organic Synthesis , Third Edition, John Wiley & Sons Inc. (1999), and the like.
- a linker a crosslinking agent having a HO 2 C—CH 2 —NR 8 —CH 2 —CO 2 H skeleton (R 8 represents a group which can be substituted with a hydrogen atom)
- Compound (h) can be obtained by binding the residue R containing a reactive group or a group capable of being transformed into the reactive group to the X-terminal hydroxyl group existing in Compound (e), by using a general organic synthesis reaction, or by directly being transformed the hydroxyl group into a reactive residue.
- Compound (g) can be obtained by reacting Compound (f) with Compound (c) synthesized in the similar manner as described above.
- the method for obtaining Compound (g) by reacting Compound (f) with Compound (c) includes a substitution reaction of the R 6 moiety of Compound (f) with Compound (c), a combination of reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis , I to IV, Experimental Chemistry Course, 4th Ed, Maruzen, Vol. 19 to 22 (1992) and the like] and the like.
- Compound (h) can be obtained by converting R 2 of Compound (g) into the residue R comprising a reactive group or a group capable of being transformed into the reactive group, by using a general organic synthesis reaction.
- a commercially available compound having a known structure can be used as Compound (f), or Compound (f) can be prepared by combining the reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis , I to IV, Experimental Chemistry Course, 4th Ed, Maruzen, Vol. 19 to 22 (1992) and the like].
- the glycerol derivative (1) is obtained by subjecting Compound (h) to a protecting group removing reaction generally used in the organic synthesis reactions [e.g., Protective Groups in Organic Synthesis , third edition, edited by T. W. Greene, John Wiley & Sons, Inc. (1999) and the like] to thereby remove R A and replace it with a hydrogen atom.
- a protecting group removing reaction generally used in the organic synthesis reactions
- Each reaction step is carried out in an appropriate solvent, preferably a solvent optionally selected from dichloromethane, chloroform, N,N-dimethylformamide, dimethyl sulfoxide, toluene, tetrahydrofuran, acetonitrile, methanol, ethanol, pyridine, water and mixed solvents thereof at a temperature of ⁇ 20 to 150° C. for 1 hour to several days.
- a solvent optionally selected from dichloromethane, chloroform, N,N-dimethylformamide, dimethyl sulfoxide, toluene, tetrahydrofuran, acetonitrile, methanol, ethanol, pyridine, water and mixed solvents thereof at a temperature of ⁇ 20 to 150° C. for 1 hour to several days.
- Each of the compounds obtained by respective steps can be used in the subsequent step with the purity as such, or after purifying it to an optional purity by general purification methods such as recrystallization, solvent extraction, silica gel chromatography, reverse phase chromatography, normal phase chromatography and the like.
- the amphiphilic substance includes, for example, lipids such as phospholipid, glyceroglycolipid, sphingoglycolipid, sphingoids, sterols, cationic lipid and anionic lipid; surfactants such as polyhydric alcohol ester nonionic surfactant, anionic surfactant, cationic surfactant and ampholytic surfactant; and the like.
- lipids such as phospholipid, glyceroglycolipid, sphingoglycolipid, sphingoids, sterols, cationic lipid and anionic lipid
- surfactants such as polyhydric alcohol ester nonionic surfactant, anionic surfactant, cationic surfactant and ampholytic surfactant; and the like.
- phospholipid examples include natural or synthesized phospholipid, for example, glycerophospholipid such as phosphatidylcholine (e.g., soy phosphatidylcholine, yolk phosphatidylcholine, distearoylphosphatidylcholine (DSPC), dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), etc.), phosphatidylethanolamine (e.g., distearoylphosphatidylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine (DPPE), dioleoylphosphatidylethanolamine (DOPE), etc.), phosphatidylserine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol and lysophosphatidylcholine; sphingophospho
- the glyceroglycolipid includes, for example, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride and the like.
- the sphingoglycolipid includes, for example, galactosyl cerebroside, lactosyl cerebroside, ganglioside and the like.
- the sphingoids include, for example, sphingan, icosasphingan, sphingosine, derivatives thereof and the like.
- the derivatives include, for example, those obtained by converting —NH 2 of sphingan, icosasphingan, sphingosine or the like to —NHCO(CH 2 ) x CH 3 (wherein x is an integer of 0 to 18, preferably 6, 12 or 18).
- the sterols include cholesterol, dihydrocholesterol, lanosterol, ⁇ -sitosterol, campesterol, stigmasterol, brassicasterol, ergocasterol, fucosterol and the like.
- the cationic lipid includes, for example, 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chrolide (DOTMA), 2,3-dioleyloxy-N-[2-(sperminecarboxyamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), N-[2,3-(ditetradecyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE), N-[1-(2,3-dioleyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DORIE) 3 ⁇ -[N—(N′,N′-dimethylaminoethyl)carbamoyl]cholesterol (DC-C
- the anionic lipid includes, for example, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol and the like.
- the polyhydric alcohol ester nonionic surfactant includes, for example, fatty acid monoglyceride, fatty acid diglyceride, fatty acid triglyceride, sorbitan ester of fatty acid, polyoxysorbitan ester of fatty acid, sucrose ester of fatty acid and the like. Specific examples include octyl glucoside, digitonin, decanoyl-N-methylglucamide and the like.
- the anionic surfactant includes, for example, acyl sarcosine, sodium alkylsulfate, an alkylbenzenesulfonate salt, a sodium salt of fatty acid having 7 to 22 carbon atoms and the like. Specific examples include sodium dodecylsulfate, sodium laurylsulfate, sodium cholate, sodium deoxycholate, sodium taurodeoxycholate and the like.
- the cationic surfactant includes, for example, an alkylamine salt, an acylamine salt, a quaternary ammonium salt, amine derivatives and the like.
- Specific examples include a primary amine salt, an acylaminoethyldiethylamine salt, an N-alkylpolyalkylpolyamine salt, fatty acid polyethylene polyamide, cetyltrimethylammonium bromide, dodecyltrimethylammonium bromide, alkylpolyoxyethyleneamine, N-alkylaminopropylamine, triethanolamine ester of fatty acid and the like.
- the ampholytic surfactant includes, for example, 3-[(3-cholamidopropyl)dimethylammonio]-1-prop ane sulfonic acid, N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonic acid and the like.
- the hydrophobic substance includes, for example, an oil substance, a hydrophobic polymer and the like.
- the oil substance includes, for example, liquid paraffin, vegetable oil (soy oils, etc.), ester of fatty acid having 12 to 30 carbon atoms, castor oil, castor oil derivatives (polyoxyethylene castor oil, etc.), lanolin, lanolin derivatives, silicon and the like.
- the hydrophobic polymer includes, for example, polyaspartic acids, poly( ⁇ -benzyl aspartate), poly( ⁇ -benzyl glutamate), poly( ⁇ -alkyl aspartate), polylactide, poly( ⁇ -caprolactone), poly( ⁇ -valerolactone), poly( ⁇ -butyrolactone), poly( ⁇ -benzyl aspartate-co-aspartic acid), poly( ⁇ -benzyl glutamate-co-glutaminic acid), poly( ⁇ -amino acid) and the like.
- Compound (1) The compound of the present invention (hereinafter referred to as Compound (1)) may be any one, so long as the amphiphilic or hydrophobic substance (ii) is modified with the glycerol derivative (1) directly or via the spacer.
- Specific examples of Compound (1) include the compounds represented by formulae (2) to (10) (hereinafter referred to as Compounds (2) to (19), respectively).
- the saturated or unsaturated fatty acid residue includes, for example, an acyl moiety of a straight-chain or branched saturated or unsaturated fatty acid having 12 to 30 carbon atoms, and specific examples include dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, nonadecanoyl, eicosanoyl, henicosanoyl, docosanoyl, tricosanoyl, tetracosanoyl, hexacosanoyl, triacontanoyl, 4-dodecenoyl, 9-hexadecenoyl, 9-octadecenoyl, 11-eicosenoyl, 13-docosenoyl
- the alkaline metal atom includes, for example, sodium, potassium and the like.
- the alkylene group having 1 to 10 carbon atoms includes, for example, methylene, ethylene, propane-1,2-diyl, propane-2,2-diyl, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, hexane-1,6-diyl, heptane-1,7-diyl, octane-1,8-diyl, nonane-1,8-diyl, decane-1,9-diyl and the like.
- the compound of the present invention further includes, for example, those in which a PEG moiety of a triton surfactant is modified with the glycerol derivative (1) or a PEG moiety of a Tween surfactant is modified with the glycerol derivative (1) in addition to the above examples.
- the compound of the present invention includes those in which a PEG moiety of each of a mixture of polyoxyethylene alkyl ether and stearyl alcohol, polyoxyethylene alkyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl amine, polyoxyethylene oleyl ether, polyoxyethylene oleyl ether phosphate diethanolamine, sodium polyoxyethylene oleyl ether phosphate, polyoxyethylene hydrogenated castor oil, polyoxyethylene distyrylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene stearyl ether phosphate, polyoxyethylene cetyl ether, a mixture of polyoxyethylene cetyl ether and distearate polyethylene glycol, sodium polyoxyethylene cetyl ether phosphate, polyoxyethylene cetostearyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbit beeswax, polyoxyethylene polycyclic phenyl ether ammonium
- the salt of the compound includes, for example, hydrochloride, hydrobromide, nitrate, sulfate, phosphate, a sodium salt, a potassium salt, a magnesium salt, a calcium salt, an ammonium salt, a tetramethylammonium salt, a morpholine addition salt, a piperidine addition salt and the like.
- the modification of the amphiphilic substance or the hydrophobic substance with the glycerol derivative (1) can be carried out, for example, by binding the reactive group in the glycerol derivative (1) to carboxy, amino, a hydroxyl group, mercapto, formyl, a sulfuric acid residue (sulfonyl, sulfenyl, sulfinyl, etc.), a phosphoric acid residue (phosphono, phosphonoyl, phosphonato, hydroxyoxidophosphoryl, hydrohydroxyphosphoryl, phosphinoyl, hydroxyphosphoryl, phosphoryl, etc.), a phosphonic acid residue (dihydroxyphosphanyl, hydroxyoxidophosphanyl, hydroxyphosphanyl, hydroxyphosphanediyl, phosphinato, etc.) or a moiety thereof in the structure of the amphiphilic substance or hydrophobic substance directly or via the spacer.
- the spacer may be any one, so long as it can bind the glycerol derivative (1) to the binding site in the structure of each of the amphiphilic substance and the hydrophobic substance, and examples include a straight-chain linking group of one, or two or more in any combination, which may be the same or different, selected from the group consisting substituted or unsubstituted alkylene (in which the alkylene and the substituent of the substituted alkylene have the same meanings as those, respectively, described in the definitions of Y 1 , Y 2 and Y 3 ), carbonyl, substituted or unsubstituted imino (in which the substituent of the substituted imino has the same meaning as described above), O and S; and the like.
- substituted or unsubstituted alkylene in which the alkylene and the substituent of the substituted alkylene have the same meanings as those, respectively, described in the definitions of Y 1 , Y 2 and Y 3
- carbonyl substituted or un
- the spacer is bound, for example, via an ether bond, amide bond, thioether bond, ester bond or the like, to carboxy, amino, a hydroxyl group, mercapto, formyl, a sulfuric acid residue (sulfonyl, sulfenyl, sulfinyl, etc.), a phosphoric acid residue (phosphono, phosphonoyl, phosphonato, hydroxyoxidophosphoryl, hydrohydroxyphosphoryl, phosphinoyl, hydroxyphosphoryl, phosphoryl, etc.), a phosphonic acid residue (dihydroxyphosphanyl, hydroxyoxidophosphanyl, hydroxyphosphanyl, hydroxyphosphanediyl, phosphinato, etc.), a partial structure thereof or the like in the amphiphilic substance or the hydrophobic substance.
- the bond can be formed by usual peptide synthesis methods [Nobuo Izumiya, Tetsuo Kato, Haruhiko Aoyagi and Michinori Waki, Basis and Experiment of Peptide Synthesis , Maruzen (1985), etc.] and the like.
- the spacer is preferably introduced to the amphiphilic substance or the hydrophobic substance beforehand; however, the spacer can be bound to the glycerol derivative (1) as the modifier and then the spacer bound to the glycerol derivative (1) can be bound to the amphiphilic substance or the hydrophobic substance in the above manner.
- Each compound obtained in each step may be used in the next step without purification or after purification by usual purification methods such as recrystallization, solvent extraction, silica gel chromatography, reversed phase chromatography and normal phase chromatography.
- the glycerol derivative (1) is used as a chemical modifier for the amphiphilic substance or the hydrophobic substance, and a precursor of a glycerol derivative in which a part or the whole of hydroxyl groups at the terminals of the glycerol derivative (1) are protected —OR A (in which R A has the same meaning as described above) can used as a chemical modifier in the reaction with the amphiphilic substance or the hydrophobic substance.
- R A in which R A has the same meaning as described above
- objective Compound (l) can be obtained by carrying out removal reaction of the protective group in the same manner as in the above-described Compound (h).
- the substance to be modified selected from the amphiphilic substance and the hydrophobic substance is modified with one or a combination of two or more which may be the same or different, of glycerol derivatives (1), preferably modified with one or a combination of two or more which are the same, of the glycerol derivatives (1).
- the compound of the present invention can be used as a surface modifier for producing a drug carrier (for example, a fine particle capable of holding or encapsulating a drug or the like). Also, the compound of the present invention can be used as a component of a drug carrier, and has an effect of improving the productivity of the drug carrier.
- a drug carrier for example, a fine particle capable of holding or encapsulating a drug or the like.
- the compound of the present invention can be used as a component of a drug carrier, and has an effect of improving the productivity of the drug carrier.
- the fine particle of the present invention comprises the compound in which the amphiphilic substance or the hydrophobic substance described in the above (ii) is modified with the glycerol derivative (I) directly or via the spacer (hereinafter referred to as Compound (I)) or the salt thereof, and Compounds (I) to be contained may be a combination of different kinds.
- Compound (I) can be produced in the same manner as the above-described preparation of Compound (I).
- the fine particle may further comprise a lipid and/or a surfactant, and the embodiments of the fine particle are not limited.
- the fine particles preferably have an average particle diameter of 1 nm to 1000 ⁇ m, and include liposomes [multilayer liposomes such as MLV (multilamellar vesicles); single membrane liposomes such as LUV (large unilamellar vesicles) and SUV (small unilamellar vesicles); etc.], fat emulsions (microcapsules, microspheres, etc.), emulsions (lipid emulsions, microemulsions, etc.), micells (polymer micells, lipid micells, etc.), fine particle crystals (platy, columnar, needle-like, fibrous, spherical, cubic and prismatic crystals, etc.) and the like.
- the fine particle is preferably the liposome.
- the lipid contained in the fine particle includes, for example, phospholipid, glyceroglycolipid, sphingoglycolipid, sphingoids, sterols, cationic lipid, anionic lipid, those which is bound to polyethylene glycol via an ether bond (those which is polyethyleneglycolated) and the like.
- the lipid preferably having a phase transition temperature higher than living body temperature (35 to 37° C.) is preferred, and phospholipid and/or polyethyleneglycolated phospholipid is/are more preferred.
- the surfactant contained in the fine particle includes, for example, a polyhydric alcohol ester nonionic surfactant, an anionic surfactant, a cationic surfactant, an ampholytic surfactant, those bound to polyethylene glycol thereto via an ether bond (those which is polyethyleneglycolated) and the like.
- the phospholipid, the glyceroglycolipid, the sphingoglycolipid, the sphingoids, the sterols, the cationic lipid, the anionic lipid, the polyhydric alcohol ester nonionic surfactant, the anionic surfactant, the cationic surfactant and the ampholytic surfactant include those described in the above (ii), respectively, and they may be used alone or in combination.
- the combination includes, for example, lipids comprising at least two selected from the group consisting of hydrogenated soy phosphatidylcholine, polyethyleneglycolated phospholipid and cholesterol, lipids comprising at least two selected from the group consisting of DSPC, polyethyleneglycolated phospholipid and cholesterol, lipids comprising yolk phosphatidylcholine and DOTAP, lipids comprising yolk phosphatidylcholine, DOTAP and polyethyleneglycolated phospholipid, lipids comprising yolk phosphatidylcholine, DOTAP, cholesterol and polyethyleneglycolated phospholipid, and the like.
- polyoxysorbitan ester of fatty acid sorbitan ester of fatty acid, a sodium salt of fatty acid, polyethylene hydrogenated castor oil and the like are preferably used alone or in combination.
- the fine particle of the present invention may comprise additives such as an isotonizing agent, a membrane stabilizer, an antioxidant and a charged substance, if necessary.
- the isotonizing agent includes, for example, glycerin, glucose, sodium chrolide and the like.
- the membrane stabilizer includes, for example, sterols such as cholesterol, and the like.
- the antioxidant includes, for example, tocopherol, citric acid, ascorbic acid, cysteine, ethylenediaminetetraacetic acid (EDTA) and the like.
- the charged substance includes, for example, stearylamine, dicetyl phosphate, ganglioside, cation lipid such as DOTMA [ Proc. Natl. Acad. Sci.
- the fine particle of the present invention can be prepared by usual known methods, and can be prepared, for example, by a method in which (1) the above-described lipid and/or surfactant and the compound of the present invention, if necessary, together with the above-described additive are dissolved in a solvent of ethanol, ether or the like, the solvent is evaporated if necessary, and a solution for suspension is added to obtain dispersion, emulsion or suspension, or (2) they are directly dispersed, emulsified or suspended in a solution for suspension.
- the fine particle of the present invention can be obtained by preparing a fine particle material to be modified according to a usual known method, adding the compound of the present invention, for example, as a powder, an aqueous solution or an ethanol solution, to the prepared liquid (dispersion, emulsion or suspension) of the fine particle to be modified, and allowing the resulting mixture to stand for a certain period, preferably heating the mixture at the phase transition temperature of the membrane or higher and allowing the mixture to stand for cooling.
- the compound of the present invention for example, as a powder, an aqueous solution or an ethanol solution
- the solution for suspension includes, for example, distilled water, an acidic aqueous solution (aqueous solution of hydrochloric acid, sulfuric acid, acetic acid, etc.), an alkali aqueous solution (aqueous solution of sodium hydroxide, calcium hydroxide, sodium hydrogen carbonate, etc.), buffer (phosphoric acid buffer, etc.), saline, amino acid infusion solution and the like.
- an acidic aqueous solution aqueous solution of hydrochloric acid, sulfuric acid, acetic acid, etc.
- an alkali aqueous solution aqueous solution of sodium hydroxide, calcium hydroxide, sodium hydrogen carbonate, etc.
- buffer phosphoric acid buffer, etc.
- saline amino acid infusion solution and the like.
- the fine particle of the present invention is preferably a fine particle with one or more structure(s) represented by
- the glycerol derivative-modified fine particle can be prepared by using the compound of the present invention as a surface modifier in the preparation of the fine particle of the present invention.
- the use of the compound of the present invention as a surface modifier means that the compound of the present invention is used in the preparation of the fine particle of the present invention such that the compound is contained in the outermost portion of the fine particle.
- the fine particle of the present invention can be produced by a known preparation method.
- the preparation method includes, for example, a liposome preparation method by Bangham, et al. [ J. Mol. Biol., 13, 238 (1965)], an ethanol injection method [ J. Mol. Biol, 66, 621 (1975)], a French press methods [ FEBS Lett., 99, 210 (1979)], a freezing and thawing method [ Arch. Biochem. Biophys., 212, 186 (1980], a reversed-phase evaporation method [ Proc. Natl. Acad. Sci. U.S.A., 75, 4194 (1978)], a pH gradient method (Japanese Patent Nos. 2572554 and 2659136) and the like.
- the surface of the liposome may be modified with a polyhydric alcohol ester nonionic surfactant, an anionic surfactant, a cationic surfactant, an ampholytic surfactant, polysaccharides or derivatives thereof, polyoxyethylene derivatives and the like.
- a surface-modified liposome is included in the fine particle of the present invention [D. D. Lasic and F. Martin, Stealth Liposomes , U.S.A., CRC Press Inc, p. 93-102 (1995)].
- the average particle diameter of the liposome is preferably 30 to 3,000 nm, more preferably 50 to 500 nm, and most preferably 60 to 200 nm.
- the method for controlling the average particle diameter of the liposome includes, for example, a method mechanically grounding large multilayer liposomes (MLV) by an extrusion method or by using a Manton Gaulin, a microfluidizer or the like. [R. H. Muller, S. Benita, and B. Bohm, Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs , Germany, Scientific Publishers Stuttgart, p. 267-294 (1998)] and the like.
- MLV large multilayer liposomes
- Compound (I) or a salt thereof is preferably contained in the fine particle at an amount of about 0.01 to 50 mol %, more preferably 0.1 to 20 mol %.
- the above-described fine particle may be modified with a substance including a protein such as an antibody, saccharides, glycolipid, amino acid, nucleic acid, various low molecular weight compounds, a polymer and the like. Also, these substances may be incorporated into the above-described fine particle. The fine particles obtained by these methods are included in the fine particle of the present invention. Additionally, the lipid membrane surface of the above-described fine particle may be modified with an antibody, a protein, a peptide, fatty acid or the like for application in targeting [D. D. Lasic and F. Martin, Stealth Liposomes , U.S.A., CRC Press Inc, p. 93-102 (1995)], and these lipid membrane surface-modified ones are also included in the fine particle of the present invention.
- a protein such as an antibody, saccharides, glycolipid, amino acid, nucleic acid, various low molecular weight compounds, a polymer and the like.
- these substances may be incorporated into the above-described fine particle
- the fine particle of the present invention can hold or encapsulate, for example, a drug or the like, and can be used as a medicament for stabilizing the drug in the living body component such as blood component (e.g., blood, alimentary canal, etc.) reducing adverse sides, increasing accumulation of the drug in a target organ such as a tumor, or improving absorption of the drug in oral or transmucosal administration.
- a drug or the like e.g., a drug or the like
- the drug held or encapsulated is not particularly limited, and examples include an antitumor agents, a contrast medium, an antibiotic, an antifungal agent, a substance having pharmacological activity, a biogenic substance and the like.
- the antitumor agent includes, for example, actinomycin D, mitomycin C, chromomycin, doxorubicin, epirubicin, vinorelbine, daunorubicin, aclarubicin, bleomycin, peplomycin, vincristine, vinblastine, vindesine, etoposide, methotrexate, 5-Fu, tegafur, cytarabine, enocitabine, ancitabine, taxol, taxotere, cisplatin, cytosine arabinoside, irinotecan, camptothecin, derivatives thereof and the like.
- the contrast medium includes, for example, iohexyl, iodixanol, indocyanine green, sodium iothalamate and the like.
- the antibiotic includes, for example, minocycline, tetracycline, piperacillin sodium, sultamicillin tosylate, amoxicillin, ampicillin, bacampicillin, aspoxicillin, cefdinir, flomoxef sodium, cefotiam, cefcapene pivoxil, cefaclor, cefditoren pivosil, cefazolin sodium, cefazoran, clarithromycin, clindamycin, erythromycin, levofloxacin, tosufloxacin tosylate, ofloxacin, ciprofloxacin, arbekacin, isepamicin, dibekacin, amikacin, gentamicin, vancomycin, phosphomycin, derivatives thereof and the like.
- the antifungal agents include, for example, fluconazole, itraconazole, terbinafine, amphotericin B, miconazole, derivatives thereof and the like.
- the substance having pharmacological activity includes, for example, a hormone, an enzyme, a protein, a peptide, an amino acid, a nucleic acid, a gene, antisense RNA, antisense DNA, siRNA (small interfering RNA), vitamins, saccharides, lipid, a synthetic medicament and the like.
- the biogenic substance includes, for example, blood component and the like.
- the suspension of the fine particle prepared in the above method is directly used as an injection as it is, and the suspension can be used by processing it to the form of an oral agent, a nasal drop, an eye drop, a percutaneous agent, a suppository, an inhalant or the like.
- They can be produced by a usual method using a diluent, a vehicle, a disintegrating agent, a lubricant, a binder, a surfactant, water, a physiological saline solution, a vegetable oil-solubilizer, an isotonizing agent, a preservative, an antioxidant and the like which are pharmaceutically acceptable.
- the suspension of the fine particle may be converted to an oral agent such as a capsule, a tablet, or a granule agent by freeze-drying the suspension after adding a vehicle such as lactose or freeze-preserving it after adding a freeze preservative such as glycerin, followed by granulation, drying or the like together with an appropriate vehicle according to a usual method.
- a vehicle such as lactose or freeze-preserving it after adding a freeze preservative such as glycerin, followed by granulation, drying or the like together with an appropriate vehicle according to a usual method.
- the average particle diameters of the liposomes prepared in each of Examples 5 to 8 and Comparative Examples 1 to 3 were measured by an electrophoresis light scattering photometer (ELS) (A model ELS-800, manufactured by Otsuka Electronics).
- ELS electrophoresis light scattering photometer
- the glycerol derivative-modified liposomes containing Compounds (2) or (4) prepared in Examples 5 to 8 have the average particle diameters of approximately 120 nm, which are suitable as the liposomes.
- each of the liposome suspensions prepared in Examples 5 to 8 and Comparative Examples 1 to 3 was subjected to ultracentrifugation (1 hour, 110,000 ⁇ g, 25° C.).
- Each liposome suspension A and supernatant obtained in the ultracentrifugation (hereinafter referred to as the supernatant A) were dissolved in a mixed solvent of 2-propanol and water (8/2 volume/volume).
- the absorbance at 497 nm of each solution was measured using a spectrophotometer (U-3210, manufactured by Hitachi) to determine the amount of doxorubicin in the liposome suspensions A and supernatants A.
- a liposome suspension having the same phospholipid concentration as the liposome suspensions A and containing no doxorubicin (hereinafter referred to as the liposome suspension B) was prepared, the absorbance of phosphatidylcholine (PC) in the liposome was measured in the same manner as described above.
- the doxorubicin encapsulation ratio of the liposome in each liposome suspension A was calculated by the following equation.
- the PEG-modified liposome prepared in Comparative Example 3 was poor in the doxorubicin encapsulation rate, and thus it is clear that the increased PEG-DSPE content results in remarkable reduction of the liposome stability to cause leakage of the doxorubicin.
- the glycerol derivative-modified liposomes prepared in Examples 5 to 8 were excellent in the doxorubicin encapsulation rate, and thus it is clear that these liposomes are excellent in stability.
- the liposome containing the compound of the present invention has an excellent stability, not depending on the content of Compound (1).
- each of the liposome suspensions (the administration drug liquids) prepared in Examples 7 and 8 and Comparative Examples 1 to 3 was administered to Crj:CD (SD) IGS rats (weight: 200 to 300 g, 3 rats per group, in the case of 2 lots, the suspension was administered to 2 rats in the first lot and to 1 rat in the second lot) under diethyl ether inhalation anesthesia from the left tail vein (dose: doxorubicin 0.35 mg/kg).
- dose: doxorubicin 0.35 mg/kg dose: doxorubicin 0.35 mg/kg.
- the blood of each rat was collected from the right tail vein with time by a capillary treated with heparin, and was centrifuged (5 minutes, 8,000 ⁇ g, 4° C.) to give a blood plasma, and the content of the doxorubicin in the blood plasma was determined by the following method.
- the resulting blood plasma was diluted 10-fold with a 0.075 mol/L hydrogen chrolide solution of a 2-propanol/water (9/1) mixed solvent, followed by stirring.
- the resulting diluted liquid was cooled with ice and centrifuged (10 minutes, 12,000 ⁇ g, 4° C.), and the fluorescence intensities of the resulting supernatant were measured at an excitation wavelength of 500 nm and at a fluorescence wavelength of 550 nm by a spectrophotofluorometer.
- a blood plasma collected from a rat with no administration of liposome suspensions was diluted 200-fold and the fluorescence intensity was measured.
- a standard doxorubicin solution was prepared, and the fluorescence intensity thereof was measured to give a calibration curve.
- the doxorubicin contents of each blood plasma and each administration liquid were obtained based on the calibration curve, and the rate (%) of the doxorubicin remaining in the blood plasma to the total of the administered doxorubicin was obtained based on 7.8 mL of the blood plasma amount of 250 g weight rat [ Pharmaceutical Res., 10, 1093-1095 (1993)].
- an area AUC 0-24hr under the curve in 0 to 24 hours was obtained by a trapezoidal method.
- the AUC 0-24hr value was 1 in the case of administering the unmodified liposome of Comparative Example 1, and the AUC 0-24h , values of the other modified liposomes were measured.
- Table 3 The results are shown in Table 3.
- the doxorubicin AUC 0-24h values obtained in the cases of administering the glycerol derivative-modified liposomes of Examples 7 and 8 was remarkably higher than that in the case of administering the unmodified liposome of Comparative Example 1. Also, the doxorubicin AUC 0-24h , values obtained in the cases of administering the glycerol derivative-modified liposomes of Examples 7 and 8 was higher than that in the cases of administering the PEG-modified liposomes of Comparative Examples 2 and 3.
- the glycerol derivative-modified liposomes are more effective than the PEG-modified liposomes for maintaining high doxorubicin contents in the blood plasmas.
- a higher drug efficacy can be obtained by using the liposome containing the compound of the present invention as a drug carrier without increasing the amount of a drug administered.
- the amount of the drug to reach the tumor is increased to thereby achieve an effective medical treatment, reduction of adverse side reactions, and the like.
- reaction scheme is shown below.
- Bn represents benzyl
- NHS represents N-hydroxysuccinimide
- DSPE distearoylphosphatidylethanolamine
- Trifluoroacetic acid (5 mL) was poured into a dichloromethane solution (45 mL) of Compound 3 (2.0 g, 1.43 mmol) at room temperature, followed by stirring at the same temperature for 20 hours. A saturated aqueous sodium hydrogencarbonate solution was added to the reaction solution, followed by extraction with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was evaporated under reduced pressure to give Compound 4 (1.19 g, yield 64%) as pale yellow oil.
- N-hydroxysuccinimide (NHS; 495 mg, 4.30 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC; 886 mg, 4.30 mmol) and triethylamine (0.24 mL, 1.72 mmol) were added to a tetrahydrofuran solution (45 mL) of Compound 5 (3.0 g, 2.15 mmol) in this order at room temperature, followed by refluxing for 2 hours. Then, 5% aqueous potassium hydrogensulfate solution was added thereto, followed by extraction with dichloromethane.
- DSPE Distearoylphosphatidylethanolamine
- dichloromethane (50 mL) containing TEA (184 ⁇ l) was added, followed by stirring under shading and argon atmosphere at room temperature for 18 hours.
- reaction scheme is shown below.
- Bn represents benzyl
- NHS represents N-hydroxysuccinimide
- DSPE distearoylphosphatidylethanolamine
- Trifluoroacetic acid (0.48 mL) was added dropwise to a dichloromethane solution (48.32 mL) of Compound 9 (322 mg, 0.115 mmol) at room temperature. After stirring at the same temperature for 24 hours, the reaction solution was poured into a saturated aqueous sodium hydrogencarbonate solution, followed by extraction with dichloromethane, the organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was evaporated under reduced pressure to give Compound 10 (310 mg, 0.115 mmol, yield 100%) as white oil. This product was subjected to subsequent reaction without purification.
- reaction solution was added to 5% aqueous KHSO 4 solution, followed by extraction with dichloromethane, the organic layer was washed with a saturated aqueous sodium hydrogencarbonate solution and a saturated aqueous sodium chloride solution in this order, dried over anhydrous magnesium sulfate and filtered, and then the solvent was evaporated under reduced pressure.
- DSPE 39 mg, 0.052 mmol
- a mixture solvent of dichloromethane (10 mL) and methanol (5 mL) and a chloroform solution (5 mL) of Compound 12 (150 mg, 0.052 mmol) and TEA (4 ⁇ L) were added thereto.
- the reaction mixture was stirred under shading and argon atmosphere at room temperature for 18 hours.
- DSPE (20 mg) was further added, followed by stirring at 33° C. for 23 hours.
- Compound 15 was prepared according to a known method [Synthesis, p. 879-882 (1998)].
- Compound 16 (43.8 mg, 0.47 mmol) was slowly added dropwise to a suspension of Compound 15 (250.0 mg, 1.89 mmol), tetrabutylammonium bromide (30.5 mg, 0.09 mmol), potassium hydroxide (93.7 mg, 1.42 mmol) and water (0.04 mL) under vigorously stirring the suspension at room temperature.
- the reaction mixture was stirred at 60° C. for 40 hours, diluted with ethyl acetate (150 mL), and filtered. The filtrate was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
- the residue was purified by silica gel column chromatography to give Compound 15 (130 mg, recovery 52%) and Compound 17 (64.8 mg, yield 43%).
- p-Toluenesulfonyl chrolide (1.01 g, 5.32 mmol) and 4-dimethylaminopyridine (65.0 mg, 0.53 mmol) were added to a pyridine solution (1 mL) of Compound 18 (1.85 g, 2.66 mmol) at room temperature, followed by stirring 16 hours.
- Ethyl acetate was added to the resulting reaction solution, and the mixture washed with a saturated aqueous copper sulfate solution, a saturated aqueous sodium hydrogen carbonate solution and a saturated aqueous sodium chloride solution, dried over sodium sulfate, and concentrated under reduced pressure to give Compound 19.
- Lithium aluminum hydride (2.2 mg, 0.057 mmol) was added to an anhydride THF solution (0.5 mL) of Compound 20 (20.5 mg, 0.028 mmol) at 0° C., and the resulting suspension was stirred at room temperature for 15 hours. Ethyl acetate was added dropwise to the resulting reaction solution at 0° C. When generation of hydrogen gas was completed, water (0.1 mL) was added thereto, followed by filtering. The filtrate was dried over potassium carbonate and concentrated under reduced pressure. The resulting residue was purified by column chromatography to give Compound 21 (7.8 mg, yield 40%).
- Lithium oxide is slowly added to an aqueous solution of Compound 23 at room temperature, followed by stirring.
- the reaction liquid is extracted with dichloromethane.
- the organic layer is washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate and filtered.
- the solvent is evaporated under reduced pressure, and the residue is purified by silica gel column chromatography to give Compound 24.
- Compound 26 can be obtained using the resulting Compound 25 and DSPE in the same manner as the reaction of Compound 6 and DSPE in Example 1.
- Compound 27 can be obtained by treating Compound 26 under acidic conditions, preferably under weak acidic conditions.
- Compound 28 was prepared according to a known method [ J. Am. Chem. Soc, 117, 8757-8768 (1995)].
- Compound 36 can be obtained using the resulting Compound 30 in the same manner as the reaction of Compound 18 and the reactions of Compounds 19 to 24 in Example 3.
- Compound 37 can be obtained using Compound 36 and DSPE in the same manner as the reaction of Compound 6 and DSPE in Example 1.
- Compound 27 can be obtained by treating Compound 38 in a methanol solution with Pd(OH) 2 /C under hydrogen atmosphere at room temperature in the same manner as Compound 7 in Example 1.
- a 100 mmol/L citric acid buffer pH 4.0 was added to a hydrogenated soy phosphatidylcholine (HSPC), followed by stirring under shaking with a Vortex mixer.
- the resulting suspension was filtered through a 0.4- ⁇ m polycarbonate membrane filter 4 times and filtered through a 0.1- ⁇ m polycarbonate membrane filter 10 times at 70° C.
- a 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL.
- the unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL.
- the pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L aqueous sodium hydroxide solution, and distilled water was added to the suspension to give the doxorubicin concentration of 1 mg/mL.
- the resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin.
- a 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, followed by stirring under shaking with a Vortex mixer. The resulting suspension was filtered through a 0.4- ⁇ m polycarbonate membrane filter 4 times and filtered through a 0.1- ⁇ m polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL.
- the pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L aqueous sodium hydroxide solution, and distilled water was added to the suspension to give the doxorubicin concentration of 1 mg/mL.
- the resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin.
- a 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, and the mixture was shaken and stirred by a Vortex mixer. The resulting suspension was filtered through a 0.4- ⁇ m polycarbonate membrane filter 4 times and filtered through a polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared such that the HSPC concentration was 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL.
- the pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L sodium hydroxide aqueous solution, and distilled water was added to the suspension, so that the doxorubicin content was 1 mg/mL.
- the resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin.
- Example 2 To the suspension of the unmodified liposome encapsulating the doxorubicin was added the ethanol solution of Compound (4) prepared in Example 2 (ethanol content: 1 volume % of the suspension of the unmodified liposome encapsulating the doxorubicin) such that the mole rate of Compound (4) to the lipids in the desired glycerol derivative-modified liposome was 6.7 mol %. The resulting suspension was heated at 70° C. for 2 minutes to give a glycerol derivative-modified liposome containing Compound (4).
- a 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, and the mixture was shaken and stirred by a Vortex mixer. The resulting suspension was filtered through a 0.4- ⁇ m polycarbonate membrane filter 4 times and filtered through a polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL.
- the pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L sodium hydroxide aqueous solution, and distilled water was added to the suspension to give the doxorubicin concentration of 1 mg/mL.
- the resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin.
- Example 2 To the suspension of the unmodified liposome encapsulating the doxorubicin, an ethanol solution of Compound (4) prepared in Example 2 (ethanol content: 1 volume % of the suspension of the unmodified liposome encapsulating the doxorubicin) was added such that the mole rate of Compound (4) to the lipids in the desired glycerol derivative-modified liposome was 15 mol %. The resulting suspension was heated at 70° C. for 2 minutes to give a glycerol derivative-modified liposome containing Compound (4).
- ethanol content 1 volume % of the suspension of the unmodified liposome encapsulating the doxorubicin
- a 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, followed by shaking under stirring with a Vortex mixer. The resulting suspension was filtered through a 0.4- ⁇ m polycarbonate membrane filter 4 times and filtered through a 0.1- ⁇ m polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL.
- the pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L aqueous sodium hydroxide solution, and distilled water was added to the suspension to give the doxorubicin content of 1 mg/mL.
- the resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin. Two lots of this liposome were prepared in this manner.
- a 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, followed by stirring under shaking with a Vortex mixer. The resulting suspension was filtered through a 0.4- ⁇ m polycarbonate membrane filter 4 times and filtered through a 0.1- ⁇ m polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL.
- the pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L aqueous sodium hydroxide solution, and distilled water was added to the suspension to give the doxorubicin content of 1 mg/mL.
- the resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin.
- a 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, followed by stirring under shaking with a Vortex mixer. The resulting suspension was filtered through a 0.4- ⁇ m polycarbonate membrane filter 4 times and filtered through a 0.1- ⁇ m polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL.
- the pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L sodium hydroxide aqueous solution, and distilled water was added to the suspension to give the doxorubicin concentration of 1 mg/mL.
- the resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin.
- the present invention provides a compound in which an amphiphilic or hydrophobic substance is modified with a glycerol derivative, which is useful as a surface modifier for producing a drug carrier or the like, or a salt thereof; a fine particle comprising the same; and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Biotechnology (AREA)
- Dispersion Chemistry (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Preparation (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Objects of the present invention are to provide a compound which is useful as a surface modifier for producing a drug carrier or the like, or a salt thereof; a fine particle comprising the same; and the like. The present invention provides a compound in which a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, is modified with a glycerol derivative represented by the following formula (1):
wherein R represents a residue comprising a reactive group for the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or for a spacer capable of binding the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, to R—X, or a group capable of being transformed into the reactive group; n represents an integer of 3 or more; and X represents a residue capable of having the following structure by n in number:
directly or via the spacer, or a salt thereof; a fine particle comprising the same; and the like.
Description
- This application is a Division of application Ser. No. 10/570,623 filed Mar. 3, 2006, which in turn is the national phase of PCT application No. PCT/JP2004/013187 filed Sep. 3, 2004.
- The present invention relates to a compound in which an amphiphilic substance or a hydrophobic substance is modified with a glycerol derivative, which is useful as a surface modifier for producing a drug carrier or the like, or a salt thereof; a fine particle comprising the same; and the like.
- As drug delivery systems for transferring a necessary amount of an administered drug to a desired tissue when needed, methods using a fine particles such as a liposome, an emulsion, a micell, a fine particle crystal, a microcapsule, a microsphere or the like as a drug carrier are known.
- For example, liposomes are used as drug carriers for antitumor agents, antiinflammatory agents and the like. It is known that, when administered into a vein, the liposomes are trapped in the lung, liver, spleen or the like and rapidly disappear from blood. Therefore, it is difficult for the liposomes to efficiently transfer the agents to a tumor or inflamed part in a target region other than the lung, liver, and spleen. Thus, various attempts have been made to increase retention of the liposomes in blood, including chemical modification of the liposomes with polyethylene glycol (PEG), and the like. For example, it is known that liposomes modified with surface modifiers comprising PEG derivatives (PEG-modified liposomes) show remarkably high retention in blood (for example, Japanese Patent No. 2667051, Japanese Published Examined Patent Application No. 20857/95, Japanese Patent No. 2948246 and the like). Also, it is known that liposomes modified with surface modifiers comprising polyglycerin derivatives (polyglycerin-modified liposomes) are increased retention in blood (for example, Japanese Published Unexamined Patent Application No. 228012/94).
- However, the PEG-modified liposomes have several disadvantages in view of use as the drug carrier. For example, although a PEG-modified liposome can efficiently transfer a drug to a tumor cell, the PEG on the surface of the liposome has a large steric hindrance to inhibit interaction between the drug and the tumor cell to thereby prevent the drug from efficiently moving into the tumor cell (Biochimica et Biophysica Acta, 1558, 1-13 (2002)). Also, it is known that when a PEG-modified liposome is repeatedly administered, the retention thereof in blood is reduced (Journal of Controlled Release, 88, 35-42 (2003) and Journal of Pharmacology and Experimental Therapeutics, 292, 1071-1079 (2000)). Furthermore, in a PEG-modified liposome containing a monoclonal antibody, the PEG inhibits the cell recognition ability of the antibody, whereby there is a difficulty in active targeting by the PEG-modified liposome (Biochimica et Biophysica Acta, 1062, 142-148 (1991)). Moreover, it is possible that the stability of a liposome membrane is reduced by introducing a PEG to a lipid of the liposome, whereby a drug encapsulated in the liposome easily leaks.
- Although the polyglycerin-modified liposomes have been developed as ones with high retention in blood instead of the PEG-modified liposomes, they are insufficient in the retention, which is only twice as high as unmodified liposomes.
- Under such circumstances, there is a demand for a novel drug carrier as a substitute to the PEG-modified liposomes.
- Objects of the present invention are to provide a compound in which an amphiphilic substance or a hydrophobic substance is modified with a glycerol derivative, which is useful as a surface modifier for producing a drug carrier or the like, or a salt thereof; a fine particle comprising the same; and the like. In the present invention, a surface modifier is one of components of a drug carrier such as a fine particle, and is a compound in which a part or the whole of the structure of the surface of the carrier is extended outward from the carrier or a composition comprising the compound.
- The present invention relates to the following (1) to (28).
- (1) A compound in which a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, is modified with a glycerol derivative represented by the following formula (1):
- wherein R represents a residue comprising a reactive group for the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or for a spacer capable of binding the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, to R—X, or a group capable of being transformed into the reactive group; n represents an integer of 3 or more; and X represents a residue capable of having the following structure by n in number:
- directly or via the spacer,
- or a salt thereof.
- (2) The compound according to the above-described (1), wherein n is 2m, in which m is an integer of 2 or more, or a salt thereof.
(3) The compound according to the above-described (1) or (2), wherein X comprises one or more series branched structure(s), or a salt thereof.
(4) The compound according to any one of the above-described (1) to (3), wherein X comprises one to (n−1) structure(s) represented by - wherein Y1, Y2 and Y3 each independently represents a single bond, or one, or two or more in any combination, which may be the same or different, selected from the group consisting of substituted or unsubstituted alkylene, carbonyl, substituted or unsubstituted imino, O, S, sulfonyl and sulfinyl, and when Y1, Y2 and Y3 exist two or more in number, they may be the same or different,
- or a salt thereof.
- (5) The compound according to any one of the above-described (1) to (4), wherein X comprises one to (n−1) structure(s) represented by
- or a salt thereof.
- (6) The compound according to any one of the above-described (1) to (5),
- wherein X comprises one to (n−1) structure(s) represented by
- or a salt thereof.
- (7) The compound according to any one of the above-described (1) to (6), wherein X comprises one to (n−1) structure(s) represented by
- or a salt thereof.
- (8) The compound according to any one of the above-described (1) to (7), wherein X comprises one to (n−1) structure(s) represented by
- or a salt thereof.
- (9) The compound according to any one of the above-described (1) to (8), wherein R is a residue comprising a reactive group for a group selected from the group consisting of carboxy, amino, a hydroxyl group, mercapto, formyl, a sulfuric acid residue, a phosphoric acid residue, a phosphonic acid residue and partial structures thereof in the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, or the spacer capable of binding the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, to R—X, or a group capable of being transformed into the reactive group.
(10) The compound according to any one of the above-described (1) to (8), wherein R is selected from the group consisting of a carboxylic acid active ester residue, carbonate, maleimido, mercapto, formyl, tresyl, isocyanato, an acid anhydride residue, an acid halide residue, vinylsulfonyl, hydrazido, amino, a hydroxyl group, halogen, carboxy, vinyl and phosphono, or a salt thereof.
(11) A mixture comprising at least two of the compounds according to any one of the above-described (1) to (10) and salts thereof.
(12) The compound according to any one of the above-described (1) to (11), wherein the substance to be modified, which is selected from the group consisting of an amphiphilic and a hydrophobic substance is a lipid or a derivative thereof, or a salt thereof.
(13) A compound represented by the following formula (2): - wherein X represents a hydrogen atom or an alkaline metal atom; R1 and R2, which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R3 and R4, which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- or a salt thereof.
- (14) A compound represented by the following formula (3):
- wherein X represents a hydrogen atom or an alkaline metal atom; R1 and R2, which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R3 and R4, which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- or a salt thereof.
- (15) A compound represented by the following formula (4):
- wherein X represents a hydrogen atom or an alkaline metal atom; R1 and R2, which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R3 and R4, which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- or a salt thereof
- (16) A compound represented by the following formula (5):
- wherein X represents a hydrogen atom or an alkaline metal atom; R1 and R2, which may be the same or different, and each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R3 and R4, which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- or a salt thereof.
- (17) A compound represented by the following formula (6):
- wherein X represents a hydrogen atom or an alkaline metal atom; R1 and R2, which may be the same or different, and each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R3 and R4, which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- or a salt thereof.
- (18) A compound represented by the following formula (7):
- wherein X represents a hydrogen atom or an alkaline metal atom; R1 and R2, which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R3 and R4, which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- or a salt thereof.
- (19) A compound represented by the following formula (8):
- wherein X represents a hydrogen atom or an alkaline metal atom; R1 and R2, which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R3 and R4, which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- or a salt thereof.
- (20) A compound represented by the following formula (9):
- wherein X represents a hydrogen atom or an alkaline metal atom; R1 and R2, which may be the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R3 and R4, which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- or a salt thereof.
- (21) A compound represented by the following formula (10):
- wherein X represents a hydrogen atom or an alkaline metal atom; R1 and R2, which may the same or different, each represent a hydrogen atom, a saturated fatty acid residue or an unsaturated fatty acid residue, and at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and R3 and R4, which may be the same or different, each represent alkylene having 1 to 10 carbon atoms,
- or a salt thereof.
- (22) The compound according to any one of the above-described (13) to (21), wherein R3 and R4 are ethylene.
(23) A fine particle comprising a compound in which a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, is modified with a glycerol derivative which comprises a residue comprising a reactive group for the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or for a spacer capable of binding the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, to R—X, or a group capable of being transformed into the reactive group and one or more structure(s) represented by - directly or via the spacer,
- or a salt thereof.
- (24) A fine particle comprising the compound according to any one of the above-described (1) to (22) or a salt thereof.
(25) The fine particle according to the above-described (23) or (24), wherein the fine particle is selected from the group consisting of a liposome, a fat emulsion, an emulsion, a micell and a fine particle crystal.
(26) A surface modifier of a fine particle, comprising a compound in which a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, is modified with a glycerol derivative which comprises a residue comprising a reactive group for the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or for a spacer capable of binding the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, to R—X, or a group capable of being transformed into the reactive group and one or more structure(s) represented by - directly or via the spacer,
- or a salt thereof.
- (27) A surface modifier of a fine particle, comprising the compound according to any one of the above-described (1) to (22) or a salt thereof.
(28) The surface modifier according to the above-described (26) or (27), wherein the fine particle is selected from the group consisting of a liposome, a fat emulsion, an emulsion, a micell and a fine particle crystal. - In the present invention,
- (i) the glycerol derivative which comprises a residue containing a reactive group for a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or a group capable of being transformed into the reactive group and one or more structure(s) represented by
- (hereinafter referred to as the glycerol derivative (I)) may be any one, so long as it has a structure which comprises the residue containing a reactive group for a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or a group capable of being transformed into the reactive group and one or more structure(s) represented by
- Examples include a glycerol derivative represented by the following formula (1) (hereinafter referred to as the glycerol derivative (1)):
- wherein R represents a residue comprising a reactive group for the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance or a group capable of being transformed into the reactive group; n represents an integer of 3 or more; and X represents a residue capable of having the following structure by n in number
- In formula (1), X is not particularly limited, so long as it is a group capable of binding to R and the following structure by n in number:
- and it is preferred that it comprises at least one or more serially branched structure. Also, the serially branched structure means a structure in which at least one branched chain of branched chains which are branched into two or more, is further branched into two or more, and this branching is repeated. Particularly, the preferred structure is a structure in which each of the branched chains which are branched into two or more is further branched into two or more, and this branching is repeated. In addition, it is preferred that the number of respective branches is 2.
- As the branched structure,
- or
- (wherein Y1, Y2 and Y3 have the same meaning as described above, respectively) is preferred, and particularly, glycerol unit represented by
- is more preferred. The number of these branched structures to be contained in formula (1) is not particularly limited, and is preferably one to (n−1), and when n is 2m, it is more preferably one to (2m-2).
- In addition, a glycerol derivative in which X in formula (1) comprises one to (n−1), or when n is r, one to (2m-2), of a structure represented by
- is also preferred.
- Among the definitions of Y1, Y2 and Y3, the alkylene includes, for example, straight-chain, branched or cyclic alkylene having 1 to 8 carbon atom(s), such as methylene, ethylene, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, hexane-1,6-diyl, heptane-1,7-diyl, octane-1,8-diyl, non ane-1,8-diyl, decane-1,9-diyl, cyclopropane-1,2-diyl, cyclobutane-1,2-diyl, cyclopentane-1,2-diyl, cyclohexane-1,2-diyl, cyclooctane-1,2-diyl and the like.
- The substituents of the substituted alkylene includes, for example, 1 to 3 substituent(s) which may be the same or different, such as a halogen atom, lower alkyl, an unsaturated hydrocarbon group, aryl, lower alkoxy, a hydroxyl group, oxo, carboxy, acyl, aroyl, amino, nitro, cyano and a heterocyclic group.
- In this case, the halogen atom includes atoms of fluorine, chlorine, bromine and iodine. The lower alkyl and the lower alkyl moiety of the lower alkoxy include, for example, straight-chain or branched alkyl having 1 to 8 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl and octyl. The unsaturated hydrocarbon group includes, for example, a straight-chain, branched or cyclic unsaturated hydrocarbon group having 1 to 8 carbon atom(s), for example, alkenyl and alkynyl such as vinyl, allyl, 1-propenyl, methacryl, 2-butenyl, 1-pentenyl, 2-hexenyl, 1,3-pentadienyl, 1,3-hexadienyl, cyclopentenyl, cyclopentadienyl, propargyl, pentynyl and the like. The aryl includes, for example, aryl having 6 to 14 carbon atoms, such as phenyl, naphthyl, anthranyl and the like. The acyl includes, for example, straight-chain, branched or cyclic acyl having 1 to 8 carbon atoms such as acetyl and propionyl. The aroyl includes, for example, benzoyl. The heterocyclic group includes, for example, a 3- to 8-membered heterocyclic group and the like containing at least one hetero atom of a nitrogen atom, an oxygen atom, a sulfur atom and the like, such as furyl, thienyl, pyrrolyl, pyridyl, oxazolyl, thiazolyl, imidazolyl, pyrimidinyl, triazinyl, indolyl, quinolyl, purinyl, benzoxazolyl, benzothiazolyl and benzimidazolyl.
- The substituent in the substituted imino includes, for example, lower alkyl, aryl, aralkyl and the like.
- The aralkyl includes, for example, aralkyl having 7 to 13 carbon atoms such as benzyl, phenetyl, benzhydryl and naphtylmethyl. The lower alkyl and the aryl have the same meaning as described above, respectively.
- In formula (1), R is a residue comprising a reactive group for a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, or a group capable of being transformed into the reactive group. The reactive group as a partial structure of R may be any group, so long as it can react with carboxy, amino, a hydroxyl group, mercapto, formyl, a sulfuric acid residue (sulfonyl, sulfenyl, sulfinyl, etc.), a phosphoric acid residue (phosphono, phosphonoyl, phosphonato, hydroxyoxydophosphoryl, hydrohydroxyphosphoryl, phosphinoyl, hydroxyphosphoryl, phosphoryl, etc.), a phosphonic acid residue (dihydroxyphosphanyl, hydroxyoxydophosphanyl, hydroxyphosphanyl, hydroxyphosphanediyl, phosphinato, etc.) or the like or a partial structure thereof in the substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance.
- Preferred examples of the reactive group for a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, include a carboxylic acid active ester residue, carbonate, maleimido, mercapto, formyl, tresyl, isocyanato, an acid anhydride residue, an acid halide residue, vinylsulfonyl, hydrazido, amino, halogen and the like.
- Preferred examples of the group capable of being transformed into a reactive group for a substance to be modified, which is selected from the group consisting of an amphiphilic substance and a hydrophobic substance, include a hydroxyl group, carboxy, amino, mercapto, formyl, vinyl, phosphono, halogen and the like.
- The carboxylic acid active ester of carboxylic acid active ester residue is ester having substituted or unsubstituted aryl, a substituted or unsubstituted heterocyclic group or the like. Examples include N-hydroxysuccinimide ester, p-nitrophenyl ester, thiophenyl ester, 2,3,5-trichlorophenyl ester, 2,4,6-trichlorophenyl ester, 2,4,5-trichlorophenyl ester, pentachlorophenyl ester, 2,4-dinitrophenyl ester, N-hydroxyphthalimido ester and the like.
- The acid anhydride of the acid anhydride residue includes carboxylic anhydride and the like.
- The acid halide residue includes carbonyl chloride, carbonyl bromide, carbonyl iodide, carbonyl fluoride and the like.
- The moiety other than the reactive group or the group capable of being transformed into the reactive group in R is not particularly limited, so long as it is a group which does not inhibit the reactivity, and it may be an optional group. Examples include groups comprising one or two or more in optional combination, which may be the same or different, selected from the group consisting of a halogen atom, substituted or unsubstituted alkyl, a substituted or unsubstituted unsaturated hydrocarbon group, substituted or unsubstituted alkylene, substituted or unsubstituted aryl, substituted or unsubstituted alkoxy, a hydroxyl group, carbonyl, carboxy, substituted or unsubstituted acyl, substituted or unsubstituted aroyl, substituted or unsubstituted amino, substituted or unsubstituted imino, nitro, cyano, O, S, sulfinyl, sulfonyl, a substituted or unsubstituted heterocyclic group and the like. Among these, groups comprising one or two or more in optional combination, which may be the same or different, selected from the group consisting of substituted or unsubstituted alkylene, carbonyl, substituted or unsubstituted imino, O and S are preferred.
- The alkyl moiety of the alkyl and the alkoxy of R includes, for example, straight-chain, branched or cyclic alkyl having 1 to 8 carbon atom(s), such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
- The halogen atom, the unsaturated hydrocarbon group, the alkylene, the aryl, the acyl, the aroyl and the heterocyclic group have the same meanings as the halogen atom, the unsaturated hydrocarbon group, the alkylene, the aryl, the acyl, the aroyl and the heterocyclic group, respectively, described above in the definitions of Y1, Y2 and Y3.
- The substituent(s) of the substituted alkyl, the substituted unsaturated hydrocarbon group, the substituted alkylene, the substituted aryl, the substituted alkoxy, substituted acyl, the substituted aroyl and the substituted heterocyclic group include, for example, 1 to 3 substituent(s) which may be the same or different, such as a halogen atom, alkyl, an unsaturated hydrocarbon group, aryl, alkoxy, a hydroxyl group, oxo, carboxy, acyl, aroyl, amino, nitro, cyano, a heterocyclic group and the like, and the halogen atom, the alkyl, the unsaturated hydrocarbon group, the aryl, the alkoxy, the acyl, the aroyl and the heterocyclic group have the same meaning as described above, respectively.
- The substituent of the substituted imino includes, for example, alkyl, an unsaturated hydrocarbon group, aryl, alkoxy, acyl, aroyl, amino, a heterocyclic group and the like, the substituent of the substituted amino includes, for example, 1 or 2 substituent(s) which nay be the same or different, such as alkyl, an unsaturated hydrocarbon group, aryl, alkoxy, acyl, aroyl, amino, a heterocyclic group and the like, and the alkyl, the unsaturated hydrocarbon group, the aryl, the alkoxy, the acyl, the aroyl and the heterocyclic group have the same meaning as described above, respectively.
- In formula (1), n is not particularly limited, so long as it is an integer of 3 or more, and is preferably 2m, wherein m has the same meaning as described above, and is more preferably from 4 to 1,024 (22 to 216).
- The molecular weight of the glycerol derivative (1) is not particularly limited, and the compound has preferably a molecular weight of 100 to 1,000,000, and more preferably 1,000 to 100,000.
- Representative examples of the glycerol derivative (1) include compounds represented by the following formulae (IA), (1B), (1C), (1D), (1E), (1F), (1G) and the like.
- The glycerol derivative (1) can be produced by a combination of reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis, I to IV, Experimental Chemistry Course, Vol. 19 to 22, edited by, Maruzen, (1992)] and the like. For example, the glycerol derivative (1) can be produced by the following usual production method.
- wherein R, X and n have the same meaning as described above, respectively; Hal represents a halogen atom; RA represents a group capable of being transformed into a hydrogen atom; R5 represents a group capable of being transformed into R; and R6 represents a group which can be substituted with
- wherein RA has the same meaning as described above.
- The halogen atom has the same meaning as described above.
- The group which is transformed into a hydrogen atom includes, for example, substituted or unsubstituted lower alkyl, a substituted or unsubstituted alicyclic heterocycle group, substituted or unsubstituted silyl, substituted or unsubstituted acyl, substituted or unsubstituted aroyl and the like, and among these, benzyl and the like are preferred. Also, the group which is transformed into a hydrogen atom may be a group formed by combining two RAs in one glycerol unit, such as substituted or unsubstituted alkylene, and among these, propane-2,2-diyl, phenylmethylene and the like are preferred.
- The lower alkyl includes, for example, straight-chain or branched alkyl having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl and octyl.
- The alicyclic heterocycle group includes, for example, a 3- to 8-membered monocyclic alicyclic heterocycle group containing at least one atom selected from nitrogen, oxygen and sulfur atoms, a 3- to 8-membered rings-condensing bi- or tri-cyclic condensed alicyclic heterocycle group containing at least one atom selected from nitrogen, oxygen and sulfur atoms, and the like, such as tetrahydropyridinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, tetrahydropyranyl, tetrahydrofuranyl, dihydrobenzofuranyl, pyrrolidinyl, piperidino, piperidinyl, perhydroazepinyl, perhydroazocinyl, morpholino, morpholinyl, thiomorpholino, thiomorpholinyl, piperazinyl, homopiperidino, homopiperazinyl, dioxolanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, indolinyl, isoindolinyl, 2-pyrrolinyl, 2-pyrrolidonyl, 3-pyrrolidonyl, 2-piperidonyl, 3-piperidonyl, 4-piperidonyl, perhydro-2-azepinonyl, perhydro-3-azepinonyl, perhydro-4-azepinonyl, 2-thiazolidonyl, 4-thiazolidonyl, 2-oxazolidonyl, 4-oxazolidonyl, phthalimido, glutarimido, hydantoinyl, thiazolidinedionyl and oxazolidinedionyl.
- The acyl and aroyl have the same meanings as described above, respectively.
- The alkylene includes, for example, methylene, ethylene, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, and hexane-1,6-diyl.
- The substituent of the substituted lower alkyl, the substituted alicyclic heterocycle group, the substituted silyl, the substituted acyl and the substituted aroyl includes, for example, 1 to 3 substituent(s) which may be the same or different, such as lower alkyl, lower alkoxy, lower alkoxy-lower alkoxy and aralkyloxy. The substituent of the substituted lower alkyl includes, for example, 1 or 2 substituent(s) of aryl, and the aryl includes, for example, phenyl, naphtyl and the like. The substituent of the substituted aryl includes, for example, 1 to 3 substituent(s), such as lower alkyl, lower alkoxy, lower alkoxy-lower alkoxy and aralkyloxy. The lower alkyl and the lower alkyl moiety of the lower alkoxy and the lower alkoxy-lower alkoxy have the same meanings as the above lower alkyl, the aryl moiety of the aralkyloxy has the same meaning as the above aryl, and the alkylene moiety of the aralkyloxy includes, for example, methylene, ethylene, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, hexane-1,6-diyl and the like.
- The substituent of the substituted alkylene includes, for example, 1 to 3 substituent(s) which may be the same or different, such as lower alkyl, aryl and lower alkoxy. The lower alkyl and the lower alkyl moiety of the lower alkoxy have the same meanings as the above lower alkyl, and the aryl has the same meaning as the above aryl.
- The group capable of being transformed into R is not particularly limited, so long as it is a group capable of being transformed into R, and examples include those described in the definition of the group capable of being transformed into a hydrogen atom.
- The group which can be substituted with
- (wherein RA has the same meaning as described above) is not particularly limited, so long as it is a group which can be substituted with
- (wherein RA has the same meaning as described above), and examples include a hydrogen atom, a halogen atom, a hydroxyl group, alkoxy, alkanoyloxy and the like, wherein the halogen atom has the same meaning as described above, and the alkyl moiety of the alkoxy and the alkanoyloxy has the same meaning as the above-described alkyl.
- Compound (c) can be obtained in accordance with the methods described in J. Org. Chem., 57, 435 (1992), J. Med. Chem., 38 (10), 1673 (1995) and the like by using epihalohydrin (Compound (a)) such as epichlorohydrin, epibromohydrin, epifluorohydrin or the like and RA—OH (wherein RA has the same meaning as described above). Also, Compound (c) can be obtained by allowing 1 mole of glycerol (compound (b)) to react with 1 to 10 mole(s) of RA-Hal (wherein RA and Hal have the same meaning as described above, respectively) in the presence of an appropriate base and then purifying the product, or by allowing it to react with 2-methyl-1-butene in the presence of a catalytic amount of BF3.O(C2H5)2 [Tetrahedron Lett, 29, 2951 (1988)], thereby selectively protecting a hydroxyl group of the primary alcohol, or in accordance with the methods described in Tetrahedron Lett, 41, 6411 (2000), J. Org. Chem., 54, 1346 (1989), Can. J. Chem, 62, 241 (1984) and the like. In addition, Compound (c) can be obtained by protecting a hydroxyl group of the primary alcohol of compound (b) in accordance, for example, with the protective group introducing method described in Protective Groups in Organic Synthesis, third edition, edited by T. W. Greene, John Wiley & Sons, Inc. (1999) or the like.
- As the RA—OH to be allowed to react with Compound (a), for example, various alcohols such as methanol, ethanol, propanol, tert-butyl alcohol, benzyl alcohol and the like can be used. Also, as the RA of RA-Hal to be allowed to react with Compound (b), it is possible to use a residue which can be removed, such as benzyl, methyl, ethyl, propyl, tert-butyl, methoxymethyl, methoxyethoxymethyl, tetrahydropyranyl, tetrahydrofuranyl, triphenylmethyl, benzyloxymethyl, triethylsilyl or the like. Commercially available products can be used as Compounds (a) and (b), and Compound (c) can be synthesized in accordance with the above-described method or can be obtained as a commercially available product.
- Next, Compound (d) is obtained by further reacting Compound (c) obtained by the above-described step with Compound (a), or by reacting Compound (b) with
- (wherein Hal and RA has the same meaning as described above, respectively).
- By repeating this reaction step, Compound (e) wherein X comprises a serially branched structure, and n Compound (c) residues are bound to X, can be obtained.
- Also, Compound (e) having n Compound (c) residues bound to X having a series branch structure can be obtained by combining the above reaction steps with the following reaction steps and/or repeating them.
- wherein X, RA and n have the same meanings as described above, respectively; and R7 represents
- (wherein RA has the same meaning as described above) or
- (wherein X, RA and n have the same meanings as described above, respectively).
- Compound (j) can be obtained by a method described in J. Med. Chem., 38, 1673 (1995) and the like, or by combining reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis, I to IV, Experimental Chemistry Course, 4th Ed, Vol. 19 to 22, edited by, Maruzen, (1992), and the like].
- Also, Compound (e) having n compound (c) residues bound to X having a series branch structure can be obtained by combining the above reaction steps with the following reaction steps and/or repeating them.
- wherein X, RA and n have the same meanings as described above, respectively; R7 represents
- (wherein RA has the same meaning as described above) or
- wherein X, RA and n have the same meanings as described above, respectively; and R8 represents a group which can be substituted with a hydrogen atom.
- Compound (k) can be obtained by reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis, I to IV, Experimental Chemistry Course, 4th Ed, Maruzen, Vol. 19 to 22 (1992) and the like].
- Compound (l) can be obtained by dimerizing two amines using a linker (a crosslinking agent) having a HO2C—CH2—NR8—CH2—CO2H skeleton (R8 represents a group which can be substituted with a hydrogen atom) (Toth, G. K., Botond, P., Synthesis, p. 361 (1992)), and then Compound (m) can be obtained by subjecting Compound (l) to amine deprotection reaction described in T. W. Greene, Protective Groups in Organic Synthesis, Third Edition, John Wiley & Sons Inc. (1999), and the like.
- Compound (h) can be obtained by binding the residue R containing a reactive group or a group capable of being transformed into the reactive group to the X-terminal hydroxyl group existing in Compound (e), by using a general organic synthesis reaction, or by directly being transformed the hydroxyl group into a reactive residue.
- On the other hand, Compound (g) can be obtained by reacting Compound (f) with Compound (c) synthesized in the similar manner as described above. The method for obtaining Compound (g) by reacting Compound (f) with Compound (c) includes a substitution reaction of the R6 moiety of Compound (f) with Compound (c), a combination of reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis, I to IV, Experimental Chemistry Course, 4th Ed, Maruzen, Vol. 19 to 22 (1992) and the like] and the like. Compound (h) can be obtained by converting R2 of Compound (g) into the residue R comprising a reactive group or a group capable of being transformed into the reactive group, by using a general organic synthesis reaction. A commercially available compound having a known structure can be used as Compound (f), or Compound (f) can be prepared by combining the reactions known in usual organic synthesis methods [Edited by The Chemical Society of Japan, Organic Synthesis, I to IV, Experimental Chemistry Course, 4th Ed, Maruzen, Vol. 19 to 22 (1992) and the like].
- The glycerol derivative (1) is obtained by subjecting Compound (h) to a protecting group removing reaction generally used in the organic synthesis reactions [e.g., Protective Groups in Organic Synthesis, third edition, edited by T. W. Greene, John Wiley & Sons, Inc. (1999) and the like] to thereby remove RA and replace it with a hydrogen atom.
- On the contrary to this, in formula (1), it is possible to produce the glycerol derivative (1) by elongating the glycerol unit from the —OH terminus, in the opposite direction of X.
- Each reaction step is carried out in an appropriate solvent, preferably a solvent optionally selected from dichloromethane, chloroform, N,N-dimethylformamide, dimethyl sulfoxide, toluene, tetrahydrofuran, acetonitrile, methanol, ethanol, pyridine, water and mixed solvents thereof at a temperature of −20 to 150° C. for 1 hour to several days.
- Each of the compounds obtained by respective steps can be used in the subsequent step with the purity as such, or after purifying it to an optional purity by general purification methods such as recrystallization, solvent extraction, silica gel chromatography, reverse phase chromatography, normal phase chromatography and the like.
- (ii) The amphiphilic substance includes, for example, lipids such as phospholipid, glyceroglycolipid, sphingoglycolipid, sphingoids, sterols, cationic lipid and anionic lipid; surfactants such as polyhydric alcohol ester nonionic surfactant, anionic surfactant, cationic surfactant and ampholytic surfactant; and the like.
- Examples of the phospholipid include natural or synthesized phospholipid, for example, glycerophospholipid such as phosphatidylcholine (e.g., soy phosphatidylcholine, yolk phosphatidylcholine, distearoylphosphatidylcholine (DSPC), dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), etc.), phosphatidylethanolamine (e.g., distearoylphosphatidylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine (DPPE), dioleoylphosphatidylethanolamine (DOPE), etc.), phosphatidylserine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol and lysophosphatidylcholine; sphingophospholipid such as sphingomyelin, ceramide phosphoethanolamine, ceramide phosphoglycerol and ceramide phosphoglycerophosphoric acid; glycerophosphonolipid; sphingophosphonolipid; natural lecithin (e.g., yolk lecithin, soy lecithin, etc.); hydrogenated phospholipid (e.g., hydrogenated phosphatidylcholine (HSPC), etc.); and the like.
- The glyceroglycolipid includes, for example, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride and the like.
- The sphingoglycolipid includes, for example, galactosyl cerebroside, lactosyl cerebroside, ganglioside and the like.
- The sphingoids include, for example, sphingan, icosasphingan, sphingosine, derivatives thereof and the like. The derivatives include, for example, those obtained by converting —NH2 of sphingan, icosasphingan, sphingosine or the like to —NHCO(CH2)xCH3 (wherein x is an integer of 0 to 18, preferably 6, 12 or 18).
- The sterols include cholesterol, dihydrocholesterol, lanosterol, β-sitosterol, campesterol, stigmasterol, brassicasterol, ergocasterol, fucosterol and the like.
- The cationic lipid includes, for example, 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chrolide (DOTMA), 2,3-dioleyloxy-N-[2-(sperminecarboxyamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), N-[2,3-(ditetradecyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE), N-[1-(2,3-dioleyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DORIE) 3β-[N—(N′,N′-dimethylaminoethyl)carbamoyl]cholesterol (DC-Chol) and the like.
- The anionic lipid includes, for example, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol and the like.
- The polyhydric alcohol ester nonionic surfactant includes, for example, fatty acid monoglyceride, fatty acid diglyceride, fatty acid triglyceride, sorbitan ester of fatty acid, polyoxysorbitan ester of fatty acid, sucrose ester of fatty acid and the like. Specific examples include octyl glucoside, digitonin, decanoyl-N-methylglucamide and the like.
- The anionic surfactant includes, for example, acyl sarcosine, sodium alkylsulfate, an alkylbenzenesulfonate salt, a sodium salt of fatty acid having 7 to 22 carbon atoms and the like. Specific examples include sodium dodecylsulfate, sodium laurylsulfate, sodium cholate, sodium deoxycholate, sodium taurodeoxycholate and the like.
- The cationic surfactant includes, for example, an alkylamine salt, an acylamine salt, a quaternary ammonium salt, amine derivatives and the like. Specific examples include a primary amine salt, an acylaminoethyldiethylamine salt, an N-alkylpolyalkylpolyamine salt, fatty acid polyethylene polyamide, cetyltrimethylammonium bromide, dodecyltrimethylammonium bromide, alkylpolyoxyethyleneamine, N-alkylaminopropylamine, triethanolamine ester of fatty acid and the like.
- The ampholytic surfactant includes, for example, 3-[(3-cholamidopropyl)dimethylammonio]-1-prop ane sulfonic acid, N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonic acid and the like. The hydrophobic substance includes, for example, an oil substance, a hydrophobic polymer and the like.
- The oil substance includes, for example, liquid paraffin, vegetable oil (soy oils, etc.), ester of fatty acid having 12 to 30 carbon atoms, castor oil, castor oil derivatives (polyoxyethylene castor oil, etc.), lanolin, lanolin derivatives, silicon and the like.
- The hydrophobic polymer includes, for example, polyaspartic acids, poly(β-benzyl aspartate), poly(γ-benzyl glutamate), poly(β-alkyl aspartate), polylactide, poly(ε-caprolactone), poly(δ-valerolactone), poly(γ-butyrolactone), poly(β-benzyl aspartate-co-aspartic acid), poly(γ-benzyl glutamate-co-glutaminic acid), poly(α-amino acid) and the like.
- (iii) The compound of the present invention (hereinafter referred to as Compound (1)) may be any one, so long as the amphiphilic or hydrophobic substance (ii) is modified with the glycerol derivative (1) directly or via the spacer. Specific examples of Compound (1) include the compounds represented by formulae (2) to (10) (hereinafter referred to as Compounds (2) to (19), respectively).
- In definition of each group in formulae (2) to (10), the saturated or unsaturated fatty acid residue includes, for example, an acyl moiety of a straight-chain or branched saturated or unsaturated fatty acid having 12 to 30 carbon atoms, and specific examples include dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, nonadecanoyl, eicosanoyl, henicosanoyl, docosanoyl, tricosanoyl, tetracosanoyl, hexacosanoyl, triacontanoyl, 4-dodecenoyl, 9-hexadecenoyl, 9-octadecenoyl, 11-eicosenoyl, 13-docosenoyl, 15-tetracosenoyl, 9,12-octadecadienoyl, 11,14-eicosadienoyl, 9,12,15-octadecatrienoyl, 11,14,17-eicosatrienoyl, 4,8,12,16-eicosatetraenoyl, 4,8,12,15,19-docosapentaenoyl, 2-decanylhexadecanoyl, 2-tetradecylhexadecanoyl, 2-tetradecylhexadecenoyl, 2-tetradecenylhexadecanoyl and the like.
- The alkaline metal atom includes, for example, sodium, potassium and the like.
- The alkylene group having 1 to 10 carbon atoms includes, for example, methylene, ethylene, propane-1,2-diyl, propane-2,2-diyl, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, hexane-1,6-diyl, heptane-1,7-diyl, octane-1,8-diyl, nonane-1,8-diyl, decane-1,9-diyl and the like.
- The compound of the present invention further includes, for example, those in which a PEG moiety of a triton surfactant is modified with the glycerol derivative (1) or a PEG moiety of a Tween surfactant is modified with the glycerol derivative (1) in addition to the above examples. Furthermore, the compound of the present invention includes those in which a PEG moiety of each of a mixture of polyoxyethylene alkyl ether and stearyl alcohol, polyoxyethylene alkyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl amine, polyoxyethylene oleyl ether, polyoxyethylene oleyl ether phosphate diethanolamine, sodium polyoxyethylene oleyl ether phosphate, polyoxyethylene hydrogenated castor oil, polyoxyethylene distyrylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene stearyl ether phosphate, polyoxyethylene cetyl ether, a mixture of polyoxyethylene cetyl ether and distearate polyethylene glycol, sodium polyoxyethylene cetyl ether phosphate, polyoxyethylene cetostearyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbit beeswax, polyoxyethylene polycyclic phenyl ether ammonium sulfate, polyoxyethylene nonylphenyl ether, a mixture of polyoxyethylene nonylphenyl ether and calcium alkylbenzenesulfonate, polyoxyethylene castor oil, polyoxyethylene behenyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxypropylene cetyl ether, polyoxyethylene coconut oil fatty acid glyceryl, polyoxyethylene lanolin, polyoxyethylene lanolin alcohol ether and the like is modified with the glycerol derivative (1).
- The salt of the compound includes, for example, hydrochloride, hydrobromide, nitrate, sulfate, phosphate, a sodium salt, a potassium salt, a magnesium salt, a calcium salt, an ammonium salt, a tetramethylammonium salt, a morpholine addition salt, a piperidine addition salt and the like.
- (iv) The modification of the amphiphilic substance or the hydrophobic substance with the glycerol derivative (1) can be carried out, for example, by binding the reactive group in the glycerol derivative (1) to carboxy, amino, a hydroxyl group, mercapto, formyl, a sulfuric acid residue (sulfonyl, sulfenyl, sulfinyl, etc.), a phosphoric acid residue (phosphono, phosphonoyl, phosphonato, hydroxyoxidophosphoryl, hydrohydroxyphosphoryl, phosphinoyl, hydroxyphosphoryl, phosphoryl, etc.), a phosphonic acid residue (dihydroxyphosphanyl, hydroxyoxidophosphanyl, hydroxyphosphanyl, hydroxyphosphanediyl, phosphinato, etc.) or a moiety thereof in the structure of the amphiphilic substance or hydrophobic substance directly or via the spacer.
- The spacer may be any one, so long as it can bind the glycerol derivative (1) to the binding site in the structure of each of the amphiphilic substance and the hydrophobic substance, and examples include a straight-chain linking group of one, or two or more in any combination, which may be the same or different, selected from the group consisting substituted or unsubstituted alkylene (in which the alkylene and the substituent of the substituted alkylene have the same meanings as those, respectively, described in the definitions of Y1, Y2 and Y3), carbonyl, substituted or unsubstituted imino (in which the substituent of the substituted imino has the same meaning as described above), O and S; and the like.
- The spacer is bound, for example, via an ether bond, amide bond, thioether bond, ester bond or the like, to carboxy, amino, a hydroxyl group, mercapto, formyl, a sulfuric acid residue (sulfonyl, sulfenyl, sulfinyl, etc.), a phosphoric acid residue (phosphono, phosphonoyl, phosphonato, hydroxyoxidophosphoryl, hydrohydroxyphosphoryl, phosphinoyl, hydroxyphosphoryl, phosphoryl, etc.), a phosphonic acid residue (dihydroxyphosphanyl, hydroxyoxidophosphanyl, hydroxyphosphanyl, hydroxyphosphanediyl, phosphinato, etc.), a partial structure thereof or the like in the amphiphilic substance or the hydrophobic substance. The bond can be formed by usual peptide synthesis methods [Nobuo Izumiya, Tetsuo Kato, Haruhiko Aoyagi and Michinori Waki, Basis and Experiment of Peptide Synthesis, Maruzen (1985), etc.] and the like.
- In this case, the spacer is preferably introduced to the amphiphilic substance or the hydrophobic substance beforehand; however, the spacer can be bound to the glycerol derivative (1) as the modifier and then the spacer bound to the glycerol derivative (1) can be bound to the amphiphilic substance or the hydrophobic substance in the above manner.
- Each compound obtained in each step may be used in the next step without purification or after purification by usual purification methods such as recrystallization, solvent extraction, silica gel chromatography, reversed phase chromatography and normal phase chromatography.
- Also, the glycerol derivative (1) is used as a chemical modifier for the amphiphilic substance or the hydrophobic substance, and a precursor of a glycerol derivative in which a part or the whole of hydroxyl groups at the terminals of the glycerol derivative (1) are protected —ORA (in which RA has the same meaning as described above) can used as a chemical modifier in the reaction with the amphiphilic substance or the hydrophobic substance. In this case, after the amphiphilic or hydrophobic substance is modified with the precursor, objective Compound (l) can be obtained by carrying out removal reaction of the protective group in the same manner as in the above-described Compound (h).
- In the compound of the present invention, the substance to be modified, selected from the amphiphilic substance and the hydrophobic substance is modified with one or a combination of two or more which may be the same or different, of glycerol derivatives (1), preferably modified with one or a combination of two or more which are the same, of the glycerol derivatives (1).
- The compound of the present invention can be used as a surface modifier for producing a drug carrier (for example, a fine particle capable of holding or encapsulating a drug or the like). Also, the compound of the present invention can be used as a component of a drug carrier, and has an effect of improving the productivity of the drug carrier.
- (v) The fine particle of the present invention comprises the compound in which the amphiphilic substance or the hydrophobic substance described in the above (ii) is modified with the glycerol derivative (I) directly or via the spacer (hereinafter referred to as Compound (I)) or the salt thereof, and Compounds (I) to be contained may be a combination of different kinds. Compound (I) can be produced in the same manner as the above-described preparation of Compound (I).
- The fine particle may further comprise a lipid and/or a surfactant, and the embodiments of the fine particle are not limited. The fine particles preferably have an average particle diameter of 1 nm to 1000 μm, and include liposomes [multilayer liposomes such as MLV (multilamellar vesicles); single membrane liposomes such as LUV (large unilamellar vesicles) and SUV (small unilamellar vesicles); etc.], fat emulsions (microcapsules, microspheres, etc.), emulsions (lipid emulsions, microemulsions, etc.), micells (polymer micells, lipid micells, etc.), fine particle crystals (platy, columnar, needle-like, fibrous, spherical, cubic and prismatic crystals, etc.) and the like. The fine particle is preferably the liposome.
- The lipid contained in the fine particle includes, for example, phospholipid, glyceroglycolipid, sphingoglycolipid, sphingoids, sterols, cationic lipid, anionic lipid, those which is bound to polyethylene glycol via an ether bond (those which is polyethyleneglycolated) and the like. Among these, the lipid preferably having a phase transition temperature higher than living body temperature (35 to 37° C.) is preferred, and phospholipid and/or polyethyleneglycolated phospholipid is/are more preferred.
- The surfactant contained in the fine particle includes, for example, a polyhydric alcohol ester nonionic surfactant, an anionic surfactant, a cationic surfactant, an ampholytic surfactant, those bound to polyethylene glycol thereto via an ether bond (those which is polyethyleneglycolated) and the like.
- The phospholipid, the glyceroglycolipid, the sphingoglycolipid, the sphingoids, the sterols, the cationic lipid, the anionic lipid, the polyhydric alcohol ester nonionic surfactant, the anionic surfactant, the cationic surfactant and the ampholytic surfactant include those described in the above (ii), respectively, and they may be used alone or in combination. When they are used in combination, for example, in the case of the liposome and the fat emulsion, the combination includes, for example, lipids comprising at least two selected from the group consisting of hydrogenated soy phosphatidylcholine, polyethyleneglycolated phospholipid and cholesterol, lipids comprising at least two selected from the group consisting of DSPC, polyethyleneglycolated phospholipid and cholesterol, lipids comprising yolk phosphatidylcholine and DOTAP, lipids comprising yolk phosphatidylcholine, DOTAP and polyethyleneglycolated phospholipid, lipids comprising yolk phosphatidylcholine, DOTAP, cholesterol and polyethyleneglycolated phospholipid, and the like. In the case of the emulsion and the micell, polyoxysorbitan ester of fatty acid, sorbitan ester of fatty acid, a sodium salt of fatty acid, polyethylene hydrogenated castor oil and the like are preferably used alone or in combination.
- Also, the fine particle of the present invention may comprise additives such as an isotonizing agent, a membrane stabilizer, an antioxidant and a charged substance, if necessary. The isotonizing agent includes, for example, glycerin, glucose, sodium chrolide and the like. The membrane stabilizer includes, for example, sterols such as cholesterol, and the like. The antioxidant includes, for example, tocopherol, citric acid, ascorbic acid, cysteine, ethylenediaminetetraacetic acid (EDTA) and the like. The charged substance includes, for example, stearylamine, dicetyl phosphate, ganglioside, cation lipid such as DOTMA [Proc. Natl. Acad. Sci. U.S.A., 84, 7413-7417 (1987)], dioctadecylamidoglycylspermine (DOGS) [Proc. Natl. Acad. Sci. U.S.A., 86, 6982-6986 (1989)], DMRIE, DORIE [Methods, 5, 67-75 (1993)] and DC-Chol [Biochem. Biophys. Res. Comun., 179, 280-285 (1990], and the like.
- The fine particle of the present invention can be prepared by usual known methods, and can be prepared, for example, by a method in which (1) the above-described lipid and/or surfactant and the compound of the present invention, if necessary, together with the above-described additive are dissolved in a solvent of ethanol, ether or the like, the solvent is evaporated if necessary, and a solution for suspension is added to obtain dispersion, emulsion or suspension, or (2) they are directly dispersed, emulsified or suspended in a solution for suspension. Also, the fine particle of the present invention can be obtained by preparing a fine particle material to be modified according to a usual known method, adding the compound of the present invention, for example, as a powder, an aqueous solution or an ethanol solution, to the prepared liquid (dispersion, emulsion or suspension) of the fine particle to be modified, and allowing the resulting mixture to stand for a certain period, preferably heating the mixture at the phase transition temperature of the membrane or higher and allowing the mixture to stand for cooling.
- The solution for suspension includes, for example, distilled water, an acidic aqueous solution (aqueous solution of hydrochloric acid, sulfuric acid, acetic acid, etc.), an alkali aqueous solution (aqueous solution of sodium hydroxide, calcium hydroxide, sodium hydrogen carbonate, etc.), buffer (phosphoric acid buffer, etc.), saline, amino acid infusion solution and the like.
- The fine particle of the present invention is preferably a fine particle with one or more structure(s) represented by
- in Compound (1) extending outward from the fine particle surface (hereinafter referred to as the glycerol derivative-modified fine particle; in the case of using, for example, the liposome as the fine particle, it is referred to as the glycerol derivative-modified liposome). The glycerol derivative-modified fine particle can be prepared by using the compound of the present invention as a surface modifier in the preparation of the fine particle of the present invention. The use of the compound of the present invention as a surface modifier means that the compound of the present invention is used in the preparation of the fine particle of the present invention such that the compound is contained in the outermost portion of the fine particle.
- Specifically the fine particle of the present invention, such as liposome, can be produced by a known preparation method. The preparation method includes, for example, a liposome preparation method by Bangham, et al. [J. Mol. Biol., 13, 238 (1965)], an ethanol injection method [J. Mol. Biol, 66, 621 (1975)], a French press methods [FEBS Lett., 99, 210 (1979)], a freezing and thawing method [Arch. Biochem. Biophys., 212, 186 (1980], a reversed-phase evaporation method [Proc. Natl. Acad. Sci. U.S.A., 75, 4194 (1978)], a pH gradient method (Japanese Patent Nos. 2572554 and 2659136) and the like.
- The surface of the liposome may be modified with a polyhydric alcohol ester nonionic surfactant, an anionic surfactant, a cationic surfactant, an ampholytic surfactant, polysaccharides or derivatives thereof, polyoxyethylene derivatives and the like. Such a surface-modified liposome is included in the fine particle of the present invention [D. D. Lasic and F. Martin, Stealth Liposomes, U.S.A., CRC Press Inc, p. 93-102 (1995)].
- The average particle diameter of the liposome is preferably 30 to 3,000 nm, more preferably 50 to 500 nm, and most preferably 60 to 200 nm. The method for controlling the average particle diameter of the liposome includes, for example, a method mechanically grounding large multilayer liposomes (MLV) by an extrusion method or by using a Manton Gaulin, a microfluidizer or the like. [R. H. Muller, S. Benita, and B. Bohm, Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs, Germany, Scientific Publishers Stuttgart, p. 267-294 (1998)] and the like.
- In order to increase the retention in blood of the fine particle, generally, Compound (I) or a salt thereof is preferably contained in the fine particle at an amount of about 0.01 to 50 mol %, more preferably 0.1 to 20 mol %.
- Furthermore, the above-described fine particle may be modified with a substance including a protein such as an antibody, saccharides, glycolipid, amino acid, nucleic acid, various low molecular weight compounds, a polymer and the like. Also, these substances may be incorporated into the above-described fine particle. The fine particles obtained by these methods are included in the fine particle of the present invention. Additionally, the lipid membrane surface of the above-described fine particle may be modified with an antibody, a protein, a peptide, fatty acid or the like for application in targeting [D. D. Lasic and F. Martin, Stealth Liposomes, U.S.A., CRC Press Inc, p. 93-102 (1995)], and these lipid membrane surface-modified ones are also included in the fine particle of the present invention.
- The fine particle of the present invention can hold or encapsulate, for example, a drug or the like, and can be used as a medicament for stabilizing the drug in the living body component such as blood component (e.g., blood, alimentary canal, etc.) reducing adverse sides, increasing accumulation of the drug in a target organ such as a tumor, or improving absorption of the drug in oral or transmucosal administration.
- When the fine particle of the present invention is used as a medicament, for example, the drug held or encapsulated is not particularly limited, and examples include an antitumor agents, a contrast medium, an antibiotic, an antifungal agent, a substance having pharmacological activity, a biogenic substance and the like.
- The antitumor agent includes, for example, actinomycin D, mitomycin C, chromomycin, doxorubicin, epirubicin, vinorelbine, daunorubicin, aclarubicin, bleomycin, peplomycin, vincristine, vinblastine, vindesine, etoposide, methotrexate, 5-Fu, tegafur, cytarabine, enocitabine, ancitabine, taxol, taxotere, cisplatin, cytosine arabinoside, irinotecan, camptothecin, derivatives thereof and the like.
- The contrast medium includes, for example, iohexyl, iodixanol, indocyanine green, sodium iothalamate and the like.
- The antibiotic includes, for example, minocycline, tetracycline, piperacillin sodium, sultamicillin tosylate, amoxicillin, ampicillin, bacampicillin, aspoxicillin, cefdinir, flomoxef sodium, cefotiam, cefcapene pivoxil, cefaclor, cefditoren pivosil, cefazolin sodium, cefazoran, clarithromycin, clindamycin, erythromycin, levofloxacin, tosufloxacin tosylate, ofloxacin, ciprofloxacin, arbekacin, isepamicin, dibekacin, amikacin, gentamicin, vancomycin, phosphomycin, derivatives thereof and the like.
- The antifungal agents include, for example, fluconazole, itraconazole, terbinafine, amphotericin B, miconazole, derivatives thereof and the like.
- The substance having pharmacological activity includes, for example, a hormone, an enzyme, a protein, a peptide, an amino acid, a nucleic acid, a gene, antisense RNA, antisense DNA, siRNA (small interfering RNA), vitamins, saccharides, lipid, a synthetic medicament and the like.
- The biogenic substance includes, for example, blood component and the like.
- In the case of using the fine particle of the present invention as a medicament, the suspension of the fine particle prepared in the above method is directly used as an injection as it is, and the suspension can be used by processing it to the form of an oral agent, a nasal drop, an eye drop, a percutaneous agent, a suppository, an inhalant or the like. They can be produced by a usual method using a diluent, a vehicle, a disintegrating agent, a lubricant, a binder, a surfactant, water, a physiological saline solution, a vegetable oil-solubilizer, an isotonizing agent, a preservative, an antioxidant and the like which are pharmaceutically acceptable.
- For example, the suspension of the fine particle may be converted to an oral agent such as a capsule, a tablet, or a granule agent by freeze-drying the suspension after adding a vehicle such as lactose or freeze-preserving it after adding a freeze preservative such as glycerin, followed by granulation, drying or the like together with an appropriate vehicle according to a usual method.
- The effects of the present invention is described based on Test Examples, but the present invention is not limited thereto.
- The average particle diameters of the liposomes prepared in each of Examples 5 to 8 and Comparative Examples 1 to 3 were measured by an electrophoresis light scattering photometer (ELS) (A model ELS-800, manufactured by Otsuka Electronics).
- The results are shown in Table 1. In the cases of 2 lots, the average particle diameters of the first lot and the second lot are shown in this order.
-
TABLE 1 Average particle diameter (nm) Example 5 (2 Lots) 114, 125 Example 6 123 Example 7 115 Example 8 116 Comparative Example 1 (2 Lots) 109, 127 Comparative Example 2 (2 Lots) 118, 125 Comparative Example 3 109 - As is shown in Table 1, the glycerol derivative-modified liposomes containing Compounds (2) or (4) prepared in Examples 5 to 8 have the average particle diameters of approximately 120 nm, which are suitable as the liposomes.
- Each of the liposome suspensions prepared in Examples 5 to 8 and Comparative Examples 1 to 3 (hereinafter referred to as the liposome suspensions A) was subjected to ultracentrifugation (1 hour, 110,000×g, 25° C.). Each liposome suspension A and supernatant obtained in the ultracentrifugation (hereinafter referred to as the supernatant A) were dissolved in a mixed solvent of 2-propanol and water (8/2 volume/volume). The absorbance at 497 nm of each solution was measured using a spectrophotometer (U-3210, manufactured by Hitachi) to determine the amount of doxorubicin in the liposome suspensions A and supernatants A. Also, a liposome suspension having the same phospholipid concentration as the liposome suspensions A and containing no doxorubicin (hereinafter referred to as the liposome suspension B) was prepared, the absorbance of phosphatidylcholine (PC) in the liposome was measured in the same manner as described above. The doxorubicin encapsulation ratio of the liposome in each liposome suspension A was calculated by the following equation.
-
- A: Absorbance of liposome suspension A
- B: Absorbance of liposome suspension B
- C: Absorbance of supernatant A
- In Comparative Example 3, the liposome remained in the ultracentrifugation supernatant, so that the encapsulation rate was calculated by the following equation. The phospholipid concentration was measured by using Phospholipid C-Test Wako (Wako Pure Chemical Industries)
-
- A: Absorbance of liposome suspension A
- B: Absorbance of liposome suspension B
- C: Absorbance of supernatant A
- D: Phospholipid concentration of liposome suspension A
- E: Phospholipid concentration of supernatant A
- The results are shown in Table 2. In the cases of 2 lots, the encapsulation rates of the first lot and the second lot are shown in this order.
-
TABLE 2 Encapsulation rate (%) Example 5 (2 Lots) 95, 91 Example 6 79 Example 7 96 Example 8 89 Comparative Example 1 (2 Lots) 99, 98 Comparative Example 2 (2 Lots) 95, 89 Comparative Example 3 56 - As shown in Table 2, the PEG-modified liposome prepared in Comparative Example 3 was poor in the doxorubicin encapsulation rate, and thus it is clear that the increased PEG-DSPE content results in remarkable reduction of the liposome stability to cause leakage of the doxorubicin. On the other hand, the glycerol derivative-modified liposomes prepared in Examples 5 to 8 were excellent in the doxorubicin encapsulation rate, and thus it is clear that these liposomes are excellent in stability. Thus, the liposome containing the compound of the present invention has an excellent stability, not depending on the content of Compound (1).
- Each of the liposome suspensions (the administration drug liquids) prepared in Examples 7 and 8 and Comparative Examples 1 to 3 was administered to Crj:CD (SD) IGS rats (weight: 200 to 300 g, 3 rats per group, in the case of 2 lots, the suspension was administered to 2 rats in the first lot and to 1 rat in the second lot) under diethyl ether inhalation anesthesia from the left tail vein (dose: doxorubicin 0.35 mg/kg). The blood of each rat was collected from the right tail vein with time by a capillary treated with heparin, and was centrifuged (5 minutes, 8,000×g, 4° C.) to give a blood plasma, and the content of the doxorubicin in the blood plasma was determined by the following method.
- The resulting blood plasma was diluted 10-fold with a 0.075 mol/L hydrogen chrolide solution of a 2-propanol/water (9/1) mixed solvent, followed by stirring. The resulting diluted liquid was cooled with ice and centrifuged (10 minutes, 12,000×g, 4° C.), and the fluorescence intensities of the resulting supernatant were measured at an excitation wavelength of 500 nm and at a fluorescence wavelength of 550 nm by a spectrophotofluorometer. Also, in the same manner as the determination of the doxorubicin in the blood plasma, a blood plasma collected from a rat with no administration of liposome suspensions was diluted 200-fold and the fluorescence intensity was measured. Separately, a standard doxorubicin solution was prepared, and the fluorescence intensity thereof was measured to give a calibration curve. The doxorubicin contents of each blood plasma and each administration liquid were obtained based on the calibration curve, and the rate (%) of the doxorubicin remaining in the blood plasma to the total of the administered doxorubicin was obtained based on 7.8 mL of the blood plasma amount of 250 g weight rat [Pharmaceutical Res., 10, 1093-1095 (1993)]. Also, using a blood plasma doxorubicin content (%)-time curve, an area AUC0-24hr under the curve in 0 to 24 hours was obtained by a trapezoidal method. The AUC0-24hr value was 1 in the case of administering the unmodified liposome of Comparative Example 1, and the AUC0-24h, values of the other modified liposomes were measured. The results are shown in Table 3.
-
TABLE 3 AUC0-24 hr/unmodified liposome AUC0-24 hr Example 7 28.9 Example 8 37.4 Comparative Example 1 1.0 (unmodified liposome) Comparative Example 2 24.8 Comparative Example 3 21.3 - As is shown in Table 3, the doxorubicin AUC0-24h, values obtained in the cases of administering the glycerol derivative-modified liposomes of Examples 7 and 8 was remarkably higher than that in the case of administering the unmodified liposome of Comparative Example 1. Also, the doxorubicin AUC0-24h, values obtained in the cases of administering the glycerol derivative-modified liposomes of Examples 7 and 8 was higher than that in the cases of administering the PEG-modified liposomes of Comparative Examples 2 and 3. Based on these results, it is considered that the glycerol derivative-modified liposomes are more effective than the PEG-modified liposomes for maintaining high doxorubicin contents in the blood plasmas. Thus, it is expected that a higher drug efficacy can be obtained by using the liposome containing the compound of the present invention as a drug carrier without increasing the amount of a drug administered. For example, in the case of using the liposome containing the compound of the present invention as a drug carrier for an antitumor agent, the amount of the drug to reach the tumor is increased to thereby achieve an effective medical treatment, reduction of adverse side reactions, and the like.
- In comparison of the AUC0-24h, values of the PEG-modified liposomes with different PEG-DSPE contents prepared in Comparative Examples 2 and 3, the doxorubicin AUC0-24h, values were hardly changed by changing the PEG-DSPE contents. On the other hand, in comparison of the AUC0-24h, values of the glycerol derivative-modified liposomes containing Compound (4) in a different content prepared in Examples 7 and 8, the doxorubicin AUC0-24h, values were increased by changing the glycerol derivative contents of Compound (4). Thus, it is considered that, unlike the PEG-modified liposomes, the glycerol derivative-modified liposomes can have further improved drug carrier functions of retention in blood plasma, and the like.
- The present invention is described based on Examples and Reference Examples, but the present invention is not limited thereto.
- The reaction scheme is shown below. In the reaction scheme, Bn represents benzyl; NHS represents N-hydroxysuccinimide; and DSPE represents distearoylphosphatidylethanolamine.
- Compound 2 [2-amino-1,3-bis(1,3-di-O-benzyl-2-glyceroxy)propane] was prepared according to the method of Nemoto et al. [J. Med. Chem., 38, 1673 (1995)]. Diisopropylethylamine (10.5 mL, 60.0 mmol), a DMF solution (20 mL) of Compound 2 (19.8 g, 33.0 mmol) and benzotriazol-1-yloxytris(pylidino)phosphonium hexafluorophosphine (PyBOP; 15.6 g, 30.0 mmol) were added to a dimethylformamide (DMF) solution (50 mL) of Compound 1 (3.5 g, 15.0 mmol) in this order at room temperature, followed by stirring at the same temperature for 15 hours. The reaction solution was poured into 5% aqueous potassium hydrogensulfate solution, followed by extraction with ethyl acetate. The organic layer was washed with a saturated aqueous sodium hydrogencarbonate solution and a saturated aqueous sodium chloride solution in this order, dried over and then filtered. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane:ethyl acetate=3:2) to give Compound 3 (18.7 g, yield 89%) as pale yellow oil. 1H-NMR (CDCl3, 300 MHz) δ (ppm): 1.36 (9H, s), 3.40-3.81 (32H, m), 4.16 (2H, m), 4.48 (16H, s), 7.19-7.31 (40H, m).
- Trifluoroacetic acid (5 mL) was poured into a dichloromethane solution (45 mL) of Compound 3 (2.0 g, 1.43 mmol) at room temperature, followed by stirring at the same temperature for 20 hours. A saturated aqueous sodium hydrogencarbonate solution was added to the reaction solution, followed by extraction with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was evaporated under reduced pressure to give Compound 4 (1.19 g, yield 64%) as pale yellow oil.
- 1H-NMR (CDCl3, 300 MHz) δ (ppm): 1.75 (1H, s), 2.87 (4H, s), 3.47-3.81 (28H, m), 4.16 (2H, m), 4.48 (16H, s), 7.00 (2H, d), 7.19-7.31 (40H, m).
- Succinic anhydride (232 mg, 2.31 mmol) was gradually added to a pyridine solution (2.0 mL) of Compound 4 (1.5 g, 1.16 mmol) at room temperature, followed by stirring at 100° C. for 1.5 hours. The reaction solution was cooled to room temperature, and 2 mol/L hydrochloric acid was added thereto, followed by extraction with dichloromethane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate and then filtered. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane:ethyl acetate=1:3) to give Compound 5 (1.62 g, yield 100%) as pale yellow oil.
- 1H-NMR (CDCl3, 300 MHz) δ (ppm): 2.39 (2H, m), 2.56 (2H, m), 3.45-3.76 (32H, m), 4.09-4.21 (2H, m), 4.46 (16H, s), 6.87 (1H, d), 7.19-7.31 (40H, m), 8.02 (1H, d).
- N-hydroxysuccinimide (NHS; 495 mg, 4.30 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC; 886 mg, 4.30 mmol) and triethylamine (0.24 mL, 1.72 mmol) were added to a tetrahydrofuran solution (45 mL) of Compound 5 (3.0 g, 2.15 mmol) in this order at room temperature, followed by refluxing for 2 hours. Then, 5% aqueous potassium hydrogensulfate solution was added thereto, followed by extraction with dichloromethane. The organic layer was washed with a saturated aqueous sodium hydrogencarbonate solution and a saturated aqueous sodium chloride solution in this order, dried over anhydrous magnesium sulfate and then filtered. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane:ethyl acetate=1:10) to give Compound 6 (2.35 g, yield 79%) as pale yellow oil.
- 1H-NMR (CDCl3, 300 MHz) δ (ppm): 2.49 (2H, t), 2.67 (4H, s), 2.78 (2H, t), 3.40-3.78 (32H, m), 4.11-4.22 (2H, m), 4.48 (16H, d), 6.96 (1H, d), 7.19-7.31 (40H, m), 8.37 (1H, d).
- Distearoylphosphatidylethanolamine (DSPE; 497 mg, 0.664 mmol) was dissolved in a mixed solvent of dichloromethan (50 mL) and methanol (50 mL) and a chloroform solution (50 mL) of Compound 6 (993 mg, 0.665 mmol) was added thereto. To the reaction mixture, dichloromethane (50 mL) containing TEA (184 μl) was added, followed by stirring under shading and argon atmosphere at room temperature for 18 hours. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (methanol:chroroform=0:100, 1:50, 1:40, 1:30, 1:20, 1:10, 1:7.5 or 1:5 was applied in this order) to give Compound 7 (1.032 g, 0.4857 mmol. yield 73.1%).
- 1H-NMR (CDCl3, 300 MHz) δ (ppm): 0.85-0.90 (6H, t), 1.00-1.35 (64H, m), 2.20-2.24 (2H, t), 2.45-2.52 (2H, m), 3.30-3.92 (32H, m), 4.11-4.22 (2H, m), 4.44 (16H, d), 7.19-7.31 (40H, m).
- Pd(OH)2/C (Pd content: 20% by weight, 516 mg) was added to a methanol solution (50 mL) of Compound 7 (1.032 g, 0.4857 mmol) under hydrogen atmosphere at room temperature, followed by stirring at the same temperature for 6 hours. The reaction solution was filtered through a filter, and then the solvent was evaporated under reduced pressure to give Compound 8 (603 mg, yield 88.3%).
- 1H-NMR (CDCl3, 300 MHz) δ (ppm): 0.84-0.88 (6H, t), 1.10-1.40 (64H, m), 2.26-2.33 (2H, m), 2.55-2.63 (2H, m), 3.30-3.95 (32H, m), 4.14-4.23 (2H, m).
- FAB-MS: m/z 1404.8 ([M-H]−, FAB−)
- The reaction scheme is shown below. In the reaction scheme, Bn represents benzyl; NHS represents N-hydroxysuccinimide; and DSPE represents distearoylphosphatidylethanolamine.
- Compound 1 (51 mg, 0.219 mmol), diisopropylethylamine (0.15 mL, 0.876 mmol) and PyBOP (228 mg, 0.428 mmol) were added to a DMF solution (13 mL) of Compound 4 (624 mg, 0.48 mmol) at room temperature, followed by stirring at the same temperature for 48 hours. The reaction mixture was poured into 5% aqueous potassium hydrogensulfate solution, followed by extraction with ethyl acetate, and the organic layer was washed with a saturated aqueous sodium hydrogencarbonate solution and a saturated aqueous sodium chloride solution in this order. Thereafter, the organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was evaporated under reduced pressure. The residue was purified by using silica gel column chromatography (ethyl acetate:acetic acid=100:0.7) to give Compound 9 (322 mg, 0.115 mmol, yield 53%) as yellow oil.
- 1H-NMR (CDCl3, 400 MHz) δ (ppm): 7.32-7.17 (80H, m), 4.49-4.38 (32H, m), 4.15-4.06 (4H, m), 3.77-3.27 (68H, m), 1.32 (9H, s), (CONH was not clearly identified).
- 13C-NMR (CDCl3, 75 MHz) 6 (ppm): 170.2 (C×4, CONH), 167.7 (C×2, CON), 155.4 (C, O2CN), 138.2 (C×16), 128.3 (CH×16), 128.3 (CH×16), 127.7 (CH×16), 127.6 (CH×16), 127.6 (CH×16), 80.5 (C), 78.7 (CH×8), 73.2 (CH2×16), 70.2 (CH2×16), 68.9 (CH2×8), 52.1 (CH2×2), 51.9 (CH2×4), 49.6 (CH×4), 28.2 (CH3×3).
- Trifluoroacetic acid (0.48 mL) was added dropwise to a dichloromethane solution (48.32 mL) of Compound 9 (322 mg, 0.115 mmol) at room temperature. After stirring at the same temperature for 24 hours, the reaction solution was poured into a saturated aqueous sodium hydrogencarbonate solution, followed by extraction with dichloromethane, the organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was evaporated under reduced pressure to give Compound 10 (310 mg, 0.115 mmol, yield 100%) as white oil. This product was subjected to subsequent reaction without purification.
- 1H-NMR (CDCl3, 400 MHz) δ (ppm): 7.33-7.18 (80H, m), 4.50-4.39 (32H, m), 4.20-4.02 (4H, m), 3.94-3.28 (68H, m), (NH was not clearly identified), (CONH was not clearly identified).
- Succinic anhydride (28 mg, 0.28 mmol) and N,N-dimethylaminopyridine (4 mg, 0.036 mmol) were added to a pyridine solution (3 mL) of Compound 10 (190 mg, 0.071 mmol) at room temperature, followed by stirring at 50° C. for 5 hours. The reaction solution was added to 2 mol/L aqueous hydrochloric acid solution, followed by extraction with dichloromethane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate and filtered, and then the solvent was evaporated under reduced pressure. The residue was purified by using silica gel column chromatography (ethyl acetate:acetic acid=100:0.7) to give Compound 11 (150 mg, 0.054 mmol, yield 76%) as white oil.
- 1H-NMR (CDCl3, 400 MHz) δ (ppm): 7.35-7.17 (80H, m), 4.50-4.39 (32H, m), 4.22-4.05 (4H, m), 4.02-3.27 (68H, m), 2.62-2.53 (4H, m), (neither OH nor CONH was clearly identified).
- NHS (12 mg, 0.11 mmol) was added to a tetrahydrofuran solution (2 mL) of Compound 11 (150 mg, 0.054 mmol) at room temperature, followed by stirring at the same temperature for 15 minutes, and then EDC (21 mg, 0.11 mmol) and triethylamine (7 mL, 0.043 mmol) were added thereto at room temperature, followed by refluxing for 30 minutes. The reaction solution was added to 5% aqueous KHSO4 solution, followed by extraction with dichloromethane, the organic layer was washed with a saturated aqueous sodium hydrogencarbonate solution and a saturated aqueous sodium chloride solution in this order, dried over anhydrous magnesium sulfate and filtered, and then the solvent was evaporated under reduced pressure. The residue was purified by using flash column chromatography (ethyl acetate:hexane=20:1) to give Compound 12 (62 mg, 0.21 mmol, yield 40%) as oil.
- 1H-NMR (CDCl3, 400 MHz) δ (ppm): 7.39-7.18 (80H, m), 4.54-4.38 (32H, m), 4.23-4.07 (4H, m), 4.89-3.33 (68H, m), 2.77-2.69 (4H, m), 2.57-2.49 (4H, m), (CONH was not clearly identified).
- 13C-NMR (CDCl3, 75 MHz) δ (ppm): 172.1 (C, CO2—), 170.4 (C, CON), 169.5 (C×4, CONH), 168.7 (C×2, CON), 168.1 (C×2, CON), 138.8 (C×16), 129.0 (CH×16), 129.0 (CH×16), 128.2 (CH×16), 128.0 (CH×16), 127.6 (CH×16), 79.3 (CH×8), 73.8 (CH2×16), 70.5 (CH2×16), 68.9 (CH2×8), 52.1 (CH2×2), 51.9 (CH2×4), 50.4 (CH×4), 30.3 (CH2), 30.2 (CH2), 25.9 (CH2×2).
- TOF-MS: precision mass spectrometry (M)=2886, measured value (M+1)=2887.44
- DSPE (39 mg, 0.052 mmol) was added to a mixture solvent of dichloromethane (10 mL) and methanol (5 mL) and a chloroform solution (5 mL) of Compound 12 (150 mg, 0.052 mmol) and TEA (4 μL) were added thereto. The reaction mixture was stirred under shading and argon atmosphere at room temperature for 18 hours. To the reaction solution, DSPE (20 mg) was further added, followed by stirring at 33° C. for 23 hours. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (methanol:chloroform=0:100, 1:50, 1:40, 1:30, 1:20, 1:10, 1:7.5 or 1:5 was applied in this order) to give Compound 13 (42.4 mg, 0.0121 mmol, yield 23.3%).
- 1H-NMR (CDCl3, 300 MHz) δ (ppm): 0.82-0.93 (6H, t), 1.10-1.35 (64H, m), 2.10-2.25 (2H, m), 3.50-3.65 (68H, m), 4.08-4.23 (2H, m), 4.43 (32H, d), 7.23-7.25 (80H, m).
- Pd(OH)2/C (Pd content: 20% by weight, 22 mg) was added to a methanol solution (2.2 mL) of Compound 13 (42.4 mg, 0.0121 nmol) under hydrogen atmosphere at room temperature, followed by stirring at the same temperature for 7 hours and at 30° C. for 17 hours. To the reaction solution, THF (1 mL) was added, followed by stirring at 30° C. for 6 hours and at 40° C. for 21 hours, and then 20 mg of 10% Pd-carbon powder was added thereto, followed by stirring at 40° C. for 95.5 hours. The reaction solution was filtered through a filter, and then the solvent was evaporated under reduced pressure to give Compound 14 (17.2 mg, yield 68.7%).
- 1H-NMR (CD3OD, 300 MHz) δ (ppm): 0.75-0.85 (6H, t), 1.10-1.30 (64H, m), 3.20-3.52 (68H, m).
- TOF-MS: m/z 2076.2 ([M-H]−, ES−)
- The reaction scheme is shown below. In the reaction scheme, Ph represents a phenyl group; Ts represents a p-toluenesulfonyl group; NHS represents N-hydroxysuccinimide; and DSPE represents distearoylphosphatidylethanolamine.
- Compound 15 was prepared according to a known method [Synthesis, p. 879-882 (1998)]. Compound 16 (43.8 mg, 0.47 mmol) was slowly added dropwise to a suspension of Compound 15 (250.0 mg, 1.89 mmol), tetrabutylammonium bromide (30.5 mg, 0.09 mmol), potassium hydroxide (93.7 mg, 1.42 mmol) and water (0.04 mL) under vigorously stirring the suspension at room temperature. The reaction mixture was stirred at 60° C. for 40 hours, diluted with ethyl acetate (150 mL), and filtered. The filtrate was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give Compound 15 (130 mg, recovery 52%) and Compound 17 (64.8 mg, yield 43%).
- 1H-NMR (400 MHz, CDCl3): 4.05-3.70 (m, 9H), 3.65-3.45 (m, 4H), 3.45-3.41 (m, 2H), 2.63 (br, 1H), 1.43 (s, 6H), 1.41 (s, 6H)
- 13C-NMR (100 MHz, CDCl3): 98.1 (C×2), 70.8 (CH×2), 69.8 (CH2×2), 69.4 (CH), 62.3 (CH2×2), 62.2 (CH2×2), 23.9 (CH3×2), 22.9 (CH3×2)
- Compound 16 (72.2 mg, 0.78 mmol) was slowly added dropwise to a suspension of Compound 17 (1,000 mg, 3.12 mmol), tetrabutylammonium bromide (50.3 mg, 0.16 mmol), potassium hydroxide (154.5 mg, 2.34 mmol) and water (0.4 mL) under vigorously stirring at room temperature. The reaction mixture was stirred at 80° C. for 48 hours, water was added thereto, and the resulting suspension was extracted with methylene chrolide (80 mL, 5 times). The collected organic layer was dried over anhydrous potassium carbonate and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give Compound 17 (273.2 mg, recovery 27%) and Compound 18 (414.6 mg, yield 76%).
- 1H-NMR (CDCl3, 400 MHz): 4.05-3.35 (m, 35H), 1.43 (s, 12H), 1.40 (s, 12H)
- 13C-NMR (100 MHz, CDCl3): 98.1 (C×4), 78.7 (CH×2), 71.9 (CH2×2), 70.9 (CH×4), 69.6 (CH), 68.7 (CH2×2), 68.6 (CH2×2), 62.4 (CH2×2), 62.4 (CH2×2), 62.3 (CH2×2), 62.3 (CH2×2), 30.9 (CH3), 29.6 (CH3), 24.0 (CH3×2), 24.0 (CH3), 23.1 (CH3×2), 23.0 (CH3)
- p-Toluenesulfonyl chrolide (1.01 g, 5.32 mmol) and 4-dimethylaminopyridine (65.0 mg, 0.53 mmol) were added to a pyridine solution (1 mL) of Compound 18 (1.85 g, 2.66 mmol) at room temperature, followed by stirring 16 hours. Ethyl acetate was added to the resulting reaction solution, and the mixture washed with a saturated aqueous copper sulfate solution, a saturated aqueous sodium hydrogen carbonate solution and a saturated aqueous sodium chloride solution, dried over sodium sulfate, and concentrated under reduced pressure to give Compound 19. The resulting Compound 19, sodium azide (1.04 g, 16.0 mmol) and tetrabutylammonium bromide (85.8 mg, 0.27 mmol) were dissolved in DMF (5 mL), and the resulting solution was stirred at 120° C. for 20 hours. A saturated aqueous sodium hydrogen carbonate solution was added to the resulting reaction solution, followed by extraction with ethyl acetate (3 times). The extract was washed with a saturated aqueous sodium chloride solution, dried over potassium carbonate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to give Compound 20 (1.2048 g, yield 63%).
- 1H-NMR (CDCl3, 400 MHz): 4.01-3.51 (m, 31H), 3.48-3.40 (m, 4H), 1.43 (s, 12H), 1.41 (s, 12H)
- Lithium aluminum hydride (2.2 mg, 0.057 mmol) was added to an anhydride THF solution (0.5 mL) of Compound 20 (20.5 mg, 0.028 mmol) at 0° C., and the resulting suspension was stirred at room temperature for 15 hours. Ethyl acetate was added dropwise to the resulting reaction solution at 0° C. When generation of hydrogen gas was completed, water (0.1 mL) was added thereto, followed by filtering. The filtrate was dried over potassium carbonate and concentrated under reduced pressure. The resulting residue was purified by column chromatography to give Compound 21 (7.8 mg, yield 40%).
- 1H-NMR (CDCl3, 400 MHz): 4.02-3.50 (m, 31H), 1.42 (s, 12H), 1.40 (s, 12H)
- Diisopropylethyl amine, a DMF solution of Compound 21 and PyBOP were added to a DMF solution of Compound 22 in this order, followed by stirring. The reaction liquid is poured into 5% aqueous potassium hydrogen sulfate solution and extracted with ethyl acetate. The resulting organic layer is washed with a saturated aqueous sodium hydrogen carbonate solution and then with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate and filtered. The solvent is evaporated under reduced pressure, and the residue is purified by silica gel column chromatography to give Compound 23.
- Lithium oxide is slowly added to an aqueous solution of Compound 23 at room temperature, followed by stirring. The reaction liquid is extracted with dichloromethane. The organic layer is washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate and filtered. The solvent is evaporated under reduced pressure, and the residue is purified by silica gel column chromatography to give Compound 24.
- NHS, EDC and triethylamine are added to a DMF solution of Compound 24 in this order, followed by refluxing. Then, 5% aqueous potassium hydrogen sulfate solution is added to the reaction solution, followed by extraction with dichloromethane. The organic layer is washed with a saturated aqueous sodium hydrogen carbonate solution and then with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate and filtered. The solvent is evaporated under reduced pressure, and the residue is purified by silica gel column chromatography to give Compound 25.
- Compound 26 can be obtained using the resulting Compound 25 and DSPE in the same manner as the reaction of Compound 6 and DSPE in Example 1.
- Compound 27 can be obtained by treating Compound 26 under acidic conditions, preferably under weak acidic conditions.
- The reaction scheme is shown below. In the reaction scheme, Ph represents a phenyl group; Ts represents a p-toluenesulfonyl group; NHS represents N-hydroxysuccinimide; and DSPE represents distearoylphosphatidylethanolamine.
- Compound 28 was prepared according to a known method [J. Am. Chem. Soc, 117, 8757-8768 (1995)]. Compound 16 (0.91 mL, d=1.183 g/L, 11.6 mmol) was slowly added dropwise to a suspension of Compound 28 (8.739 g, 48.5 mmol), tetrabutylammonium bromide (0.773 g, 2.33 mmol), potassium hydroxide (2.304 g, 41.1 mmol) and water (10 mL) under vigorously stirring at room temperature, followed by stirring at 80° C. for 40 hours. Then, water (200 mL) was added thereto, and the resulting suspension was extracted with methylene chrolide (80 mL, 5 times). The recovered organic layer was washed with an aqueous sodium chloride solution, dried over anhydrous potassium carbonate and concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to give Compound 28 (4.803 g, recovery 55%) and Compound 29 (2.939 g, yield 61%).
- 1H-NMR (CDCl3, 400 MHz): δ 7.54-7.29 (m, 10H, aromatic ring), 5.54 (s, 2H, [—CH2O]2—CHPh), 4.40-3.96 (m, 9H, [CH2]×4+HOCH—), 3.77-3.67 (m, 4H, [CH2]×2), 3.39-337 (m, 2H, [CH2—O—CH]×2), 2.88-2.80 (m, 1H, —OH)
- (0.087 mL, 1.11 mmol) was slowly added dropwise to a suspension of Compound 29 (1.844 g, 4.43 mmol), sodium hydride (55% in mineral oil dispersion, 0.145 g, 3.32 mmol) and dioxane (15 mL) under vigorously stirring at room temperature. The reaction mixture was stirred under refluxing for 43 hours, water (50 mL) was added thereto, and the resulting suspension was extracted with methylene chrolide (50 mL, 3 times). The recovered organic layer was washed with an aqueous sodium chloride solution, dried over anhydrous potassium carbonate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give Compound 29 (1.106 g, recovery 60%) and Compound 30 (181 mg, yield 18%).
- 1H-NMR (CDCl3, 400 MHz): δ 7.70-7.28 (m, 20H, aromatic ring), 5.48 (s, 4H, [—CH2O]2—CHPh), 4.51-3.47 (m, 33H, [CH2]×14, [CH]×4, —OH), 3.32-3.30 (m, 3H, [CH]×3).
- Compound 36 can be obtained using the resulting Compound 30 in the same manner as the reaction of Compound 18 and the reactions of Compounds 19 to 24 in Example 3.
- Compound 37 can be obtained using Compound 36 and DSPE in the same manner as the reaction of Compound 6 and DSPE in Example 1.
- Compound 27 can be obtained by treating Compound 38 in a methanol solution with Pd(OH)2/C under hydrogen atmosphere at room temperature in the same manner as Compound 7 in Example 1.
- The reaction scheme is shown below. In the reaction scheme, Bn represents a benzyl group.
- p-Toluenesulfonic acid monohydrate (1.80 g, 9.0 mmol) and benzylalcohol (31 mL, 301 mmol) were added to a toluene solution (20 mL) of Compound 38 (1.00 g, 7.5 mmol) in this order at a room temperature, followed by azeotropically dehydrating for 20 hours. Diethyl ether was added to the reaction solution, followed by cooling. The resulting precipitate was isolated by filtration and washed with diethyl ether. Methylene chrolide and a saturated aqueous sodium hydrogen carbonate solution were added thereto, followed by extraction with methylene chrolide. The organic layer was dried over anhydrous sodium sulfate and filtered, and the solvent was evaporated under reduced pressure to give Compound 39.
- Succinic anhydride (1,125 mg, 11.25 mmol) was added to a pyridine solution (6 mL) of the resulting Compound 39 at room temperature, followed by stirring at the same temperature for 6 hours. To the reaction solution, 1 mol/L hydrochloric acid was added, and then the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate and filtered, and the solvent was evaporated under reduced pressure to give Compound 40.
- Anhydrous potassium carbonate (2,073 mg, 15 mmol) and dimethyl sulfate (1,895 mg, 15 mmol) were added in this order to an acetone solution (50 mL) of the resulting compound 40 at room temperature, and the mixture was refluxed for 1 hour. Then, 5% aqueous potassium hydrogen sulfate solution was added to the reaction solution, followed by extraction with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate and filtered, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane:ethyl acetate=1:1) to give Compound 41 (545.0 mg, yield 17%).
- H-NMR (400 MHz, CDCl3): 7.44-7.29 (m, 10H), 5.22-5.12 (m, 4H), 4.27-4.20 (m, 4H), 3.68 (s, 3H), 2.70-2.60 (m, 4H)
- Pd(OH)2/C (Pd: 20 wt %, 25 mg) was added to a methanol solution (5 mL) of Compound 41 (535.8 mg, 1.25 mmol) under hydrogen stream at room temperature, followed by stirring for 2 hours at the same temperature. The reaction solution was filtered using celite 535, and the solvent was evaporated under reduced pressure to give Compound 22 (309.0 mg, yield 100%).
- H-NMR (400 MHz, CD3OD): 4.34-4.05 (m, 4H), 3.66 (s, 3H), 2.72-2.52 (m, 4H)
- A 100 mmol/L citric acid buffer (pH 4.0) was added to a hydrogenated soy phosphatidylcholine (HSPC), followed by stirring under shaking with a Vortex mixer. The resulting suspension was filtered through a 0.4-μm polycarbonate membrane filter 4 times and filtered through a 0.1-μm polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL. The pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L aqueous sodium hydroxide solution, and distilled water was added to the suspension to give the doxorubicin concentration of 1 mg/mL. The resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin. To the suspension of the unmodified liposome encapsulating the doxorubicin, an ethanol solution of Compound (2) prepared in Example 1 (ethanol content: 1 volume % of the suspension of the unmodified liposome encapsulating the doxorubicin) was added so that the mole rate of Compound (2) to the lipids in the desired glycerol derivative-modified liposome was 6.7 mol %. The resulting suspension was heated at 70° C. for 2 minutes to give a glycerol derivative-modified liposome containing Compound (2). Two lots of this liposome were prepared in this manner.
- A 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, followed by stirring under shaking with a Vortex mixer. The resulting suspension was filtered through a 0.4-μm polycarbonate membrane filter 4 times and filtered through a 0.1-μm polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL. The pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L aqueous sodium hydroxide solution, and distilled water was added to the suspension to give the doxorubicin concentration of 1 mg/mL. The resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin. To the suspension of the unmodified liposome encapsulating the doxorubicin, an ethanol solution of Compound (2) prepared in Example 1 (ethanol content: 1 volume % of the suspension of the unmodified liposome encapsulating the doxorubicin) was added so that the mole rate of Compound (2) to the lipids in the desired glycerol derivative-modified liposome was 15 mol %. The resulting suspension was heated at 70° C. for 2 minutes to give a glycerol derivative-modified liposome containing Compound (2).
- A 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, and the mixture was shaken and stirred by a Vortex mixer. The resulting suspension was filtered through a 0.4-μm polycarbonate membrane filter 4 times and filtered through a polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared such that the HSPC concentration was 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL. The pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L sodium hydroxide aqueous solution, and distilled water was added to the suspension, so that the doxorubicin content was 1 mg/mL. The resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin. To the suspension of the unmodified liposome encapsulating the doxorubicin was added the ethanol solution of Compound (4) prepared in Example 2 (ethanol content: 1 volume % of the suspension of the unmodified liposome encapsulating the doxorubicin) such that the mole rate of Compound (4) to the lipids in the desired glycerol derivative-modified liposome was 6.7 mol %. The resulting suspension was heated at 70° C. for 2 minutes to give a glycerol derivative-modified liposome containing Compound (4).
- A 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, and the mixture was shaken and stirred by a Vortex mixer. The resulting suspension was filtered through a 0.4-μm polycarbonate membrane filter 4 times and filtered through a polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL. The pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L sodium hydroxide aqueous solution, and distilled water was added to the suspension to give the doxorubicin concentration of 1 mg/mL. The resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin. To the suspension of the unmodified liposome encapsulating the doxorubicin, an ethanol solution of Compound (4) prepared in Example 2 (ethanol content: 1 volume % of the suspension of the unmodified liposome encapsulating the doxorubicin) was added such that the mole rate of Compound (4) to the lipids in the desired glycerol derivative-modified liposome was 15 mol %. The resulting suspension was heated at 70° C. for 2 minutes to give a glycerol derivative-modified liposome containing Compound (4).
- A 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, followed by shaking under stirring with a Vortex mixer. The resulting suspension was filtered through a 0.4-μm polycarbonate membrane filter 4 times and filtered through a 0.1-μm polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL. The pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L aqueous sodium hydroxide solution, and distilled water was added to the suspension to give the doxorubicin content of 1 mg/mL. The resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin. Two lots of this liposome were prepared in this manner.
- A 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, followed by stirring under shaking with a Vortex mixer. The resulting suspension was filtered through a 0.4-μm polycarbonate membrane filter 4 times and filtered through a 0.1-μm polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL. The pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L aqueous sodium hydroxide solution, and distilled water was added to the suspension to give the doxorubicin content of 1 mg/mL. The resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin. To the suspension of the unmodified liposome encapsulating the doxorubicin, an ethanol solution of PEG-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethyleneglycol)-2000], available from Avanti) (ethanol content: 1 volume % of the suspension of the unmodified liposome encapsulating the doxorubicin) was added so that the mole rate of the PEG-DSPE to the lipids in the desired PEG-modified liposome was 6.7 mol %. The resulting suspension was heated at 70° C. for 2 minutes to give a PEG-modified liposome. Two lots of this liposome were prepared in this manner.
- A 100 mmol/L citric acid buffer (pH 4.0) was added to HSPC, followed by stirring under shaking with a Vortex mixer. The resulting suspension was filtered through a 0.4-μm polycarbonate membrane filter 4 times and filtered through a 0.1-μm polycarbonate membrane filter 10 times at 70° C. A 100 mmol/L citric acid buffer was added to the resulting solution, so that an unmodified liposome suspension was prepared to give the HSPC concentration of 62.5 mg/mL. The unmodified liposome suspension was added to doxorubicin to control the doxorubicin concentration at 1.25 mg/mL. The pH of the resulting suspension was adjusted to approximately 7.4 by using 1 mol/L sodium hydroxide aqueous solution, and distilled water was added to the suspension to give the doxorubicin concentration of 1 mg/mL. The resulting suspension was heated at 70° C. for 5 minutes to prepare a suspension of an unmodified liposome encapsulating doxorubicin. To the suspension of the unmodified liposome encapsulating the doxorubicin, an ethanol solution of PEG-DSPE available from Avanti (ethanol content: 1 volume % of the suspension of the unmodified liposome encapsulating the doxorubicin) was added so that the mole rate of the PEG-DSPE to the lipids in the desired PEG-modified liposome was 15 mol %. The resulting suspension was heated at 70° C. for 2 minutes to give a PEG-modified liposome.
- The present invention provides a compound in which an amphiphilic or hydrophobic substance is modified with a glycerol derivative, which is useful as a surface modifier for producing a drug carrier or the like, or a salt thereof; a fine particle comprising the same; and the like.
Claims (12)
1-28. (canceled)
29. A compound comprising (i) a substance selected from the group consisting of phospholipid, glyceroglycolipid, sphingoglycolipid, sphingoids, sterols, cationic lipid, anionic lipid, polyhydric alcohol ester nonionic surfactant, anionic surfactant, cationic surfactant, ampholytic surfactant, liquid paraffin, vegetable oil, ester of fatty acid having 12 to 30 carbon atoms, castor oil, polyoxyethylene castor oil, lanolin, polyaspartic acids, poly(β-benzyl aspartate), poly(γ-benzyl glutamate), poly(β-alkyl aspartate), polylactide, poly(ε-caprolactone), poly(δ-valerolactone), poly(γ-butyrolactone), poly(β-benzyl aspartate-co-aspartic acid), poly(γ-benzyl glutamate-co-glutaminic acid) and poly(α-amino acid), linked directly or via a spacer with (ii) a group represented by
30. The compound according to claim 29 , which is represented by formula (2):
wherein X represents a hydrogen atom or an alkaline metal atom;
R1 and R2 independently represent a hydrogen atom, a straight chain or branched chain saturated fatty acid residue having an acyl moiety of 12 to 30 carbon atoms or a straight chain or branched chain unsaturated fatty acid residue having an acyl moiety of 12 to 30 carbon atoms, wherein at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and
R3 and R4 independently represent alkylene having 1 to 10 carbon atoms,
or a salt thereof.
31. The compound according to claim 29 , which is represented by formula (4):
wherein X represents a hydrogen atom or an alkaline metal atom;
R1 and R2 independently represent a hydrogen atom, a straight chain or branched chain saturated fatty acid residue having an acyl moiety of 12 to 30 carbon atoms or a straight chain or branched chain unsaturated fatty acid residue having an acyl moiety of 12 to 30 carbon atoms, wherein at least one of R1 and R2 is the saturated fatty acid residue or the unsaturated fatty acid residue; and
R3 and R4 independently represent alkylene having 1 to 10 carbon atoms,
or a salt thereof.
32. The compound according to claim 30 , wherein R3 and R4 are ethylene.
33. The compound according to claim 31 , wherein R3 and R4 are ethylene.
34. A fine particle comprising a compound of claim 29 or said salt thereof.
35. A fine particle comprising a compound of claim 30 or said salt thereof.
36. A fine particle comprising a compound of claim 31 or said salt thereof.
37. The fine particle according to claim 34 , wherein the fine particle is selected from the group consisting of a liposome, a fat emulsion, an emulsion, a micell and a fine particle crystal.
38. The fine particle according to claim 35 , wherein the fine particle is selected from the group consisting of a liposome, a fat emulsion, an emulsion, a micell and a fine particle crystal.
39. The fine particle according to claim 36 , wherein the fine particle is selected from the group consisting of a liposome, a fat emulsion, an emulsion, a micell and a fine particle crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/708,714 US20100172967A1 (en) | 2003-09-03 | 2010-02-19 | Compound modified with glycerol derivative |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPP.2003-311436 | 2003-09-03 | ||
JP2003311436 | 2003-09-03 | ||
US10/570,623 US7696359B2 (en) | 2003-09-03 | 2004-09-03 | Compound modified with glycerol derivative |
PCT/JP2004/013187 WO2005023844A1 (en) | 2003-09-03 | 2004-09-03 | Compound modified with glycerol derivative |
US12/708,714 US20100172967A1 (en) | 2003-09-03 | 2010-02-19 | Compound modified with glycerol derivative |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/570,623 Division US7696359B2 (en) | 2003-09-03 | 2004-09-03 | Compound modified with glycerol derivative |
PCT/JP2004/013187 Division WO2005023844A1 (en) | 2003-09-03 | 2004-09-03 | Compound modified with glycerol derivative |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100172967A1 true US20100172967A1 (en) | 2010-07-08 |
Family
ID=34269696
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/570,623 Expired - Fee Related US7696359B2 (en) | 2003-09-03 | 2004-09-03 | Compound modified with glycerol derivative |
US12/708,714 Abandoned US20100172967A1 (en) | 2003-09-03 | 2010-02-19 | Compound modified with glycerol derivative |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/570,623 Expired - Fee Related US7696359B2 (en) | 2003-09-03 | 2004-09-03 | Compound modified with glycerol derivative |
Country Status (6)
Country | Link |
---|---|
US (2) | US7696359B2 (en) |
EP (1) | EP1666486A4 (en) |
JP (1) | JP4804923B2 (en) |
KR (1) | KR20070019941A (en) |
CN (1) | CN1867580B (en) |
WO (1) | WO2005023844A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014151565A1 (en) * | 2013-03-15 | 2014-09-25 | The Brigham And Women's Hospital, Inc. | Compounds to modulate intestinal absorption of nutrients |
US20150086484A1 (en) * | 2012-05-04 | 2015-03-26 | The Johns Hopkins University | Lipid-Based Drug Carriers for Rapid Penetration Through Mucus Linings |
US10973846B2 (en) | 2015-09-24 | 2021-04-13 | The Brigham And Women's Hospital, Inc. | Water-activated mucoadhesive compositions to reduce intestinal absorption of nutrients |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004029018A1 (en) * | 2002-09-26 | 2004-04-08 | Kyowa Hakko Kogyo Co., Ltd. | Glycerol derivative |
JPWO2008093655A1 (en) * | 2007-01-30 | 2010-05-20 | 国立大学法人徳島大学 | Polyalcohol compounds and medicines |
EP2146692A1 (en) * | 2007-03-19 | 2010-01-27 | Fresenius Kabi Oncology Limited | Proliposomal and liposomal compositions |
EP2100621A1 (en) * | 2008-03-10 | 2009-09-16 | mivenion GmbH | Polyether polyol dendron conjugates with effector molecules for biological targeting |
SG171340A1 (en) * | 2008-11-19 | 2011-07-28 | Avantor Performance Mat Inc | New chromatographic media based on phenoxy alkyl and alkoxy-or phenoxy-phenyl alkyl ligands |
FR2943544B1 (en) | 2009-03-31 | 2012-04-20 | Univ Angers | PROCESS FOR PREPARING FUNCTIONALIZED LIPID CAPSULES |
JP5636692B2 (en) * | 2010-02-26 | 2014-12-10 | 国立大学法人徳島大学 | Method for producing 5-hydroxy-1,3-dioxane and method for producing branched glycerol trimer using 5-hydroxy-1,3-dioxane obtained by the method as a raw material |
WO2013035899A1 (en) * | 2011-09-07 | 2013-03-14 | 주식회사 코리아테크노에이전시 | Method for preparing 5-hydroxy-1,3-dioxane and method for preparing branched glycerol trimers using 5-hydroxy-1,3-dioxane as a raw material |
GB201814356D0 (en) | 2018-09-04 | 2018-10-17 | Univ Oxford Innovation Ltd | Methods of detergents |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5013556A (en) * | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5552391A (en) * | 1990-01-16 | 1996-09-03 | La Jolla Pharmaceutical Company | Chemically-defined non-polymeric valency platform molecules and conjugates thereof |
US5593622A (en) * | 1988-08-11 | 1997-01-14 | Terumo Kabushiki Kaisha | Preparation of liposomes with peg-bound phospholipid on surface |
US6132763A (en) * | 1988-10-20 | 2000-10-17 | Polymasc Pharmaceuticals Plc | Liposomes |
US20050208015A1 (en) * | 2002-09-26 | 2005-09-22 | Tecno Network Shikoku Co., Ltd | Glycerol derivative |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06228012A (en) | 1993-01-29 | 1994-08-16 | Dai Ichi Seiyaku Co Ltd | Liposome preparation |
JP3570561B2 (en) * | 1993-07-27 | 2004-09-29 | テルモ株式会社 | Carrier that recognizes vascular endothelial injury site |
JPH08325271A (en) | 1995-05-31 | 1996-12-10 | Nippon Alkyl Alum Kk | P-boronophenylalanine derivative, its production and intermediate compound for the derivative |
JP4827277B2 (en) * | 1998-11-02 | 2011-11-30 | テルモ株式会社 | Liposome |
JP2002542386A (en) * | 1999-04-23 | 2002-12-10 | アルザ・コーポレーション | Releasable bonds and compositions containing the same |
JP2001064158A (en) * | 1999-06-25 | 2001-03-13 | Terumo Corp | Liposome |
-
2004
- 2004-09-03 CN CN2004800305856A patent/CN1867580B/en not_active Expired - Fee Related
- 2004-09-03 JP JP2005513728A patent/JP4804923B2/en not_active Expired - Fee Related
- 2004-09-03 WO PCT/JP2004/013187 patent/WO2005023844A1/en active Application Filing
- 2004-09-03 US US10/570,623 patent/US7696359B2/en not_active Expired - Fee Related
- 2004-09-03 KR KR1020067004439A patent/KR20070019941A/en not_active Application Discontinuation
- 2004-09-03 EP EP04772926A patent/EP1666486A4/en not_active Withdrawn
-
2010
- 2010-02-19 US US12/708,714 patent/US20100172967A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593622A (en) * | 1988-08-11 | 1997-01-14 | Terumo Kabushiki Kaisha | Preparation of liposomes with peg-bound phospholipid on surface |
US6132763A (en) * | 1988-10-20 | 2000-10-17 | Polymasc Pharmaceuticals Plc | Liposomes |
US5013556A (en) * | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5552391A (en) * | 1990-01-16 | 1996-09-03 | La Jolla Pharmaceutical Company | Chemically-defined non-polymeric valency platform molecules and conjugates thereof |
US20050208015A1 (en) * | 2002-09-26 | 2005-09-22 | Tecno Network Shikoku Co., Ltd | Glycerol derivative |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150086484A1 (en) * | 2012-05-04 | 2015-03-26 | The Johns Hopkins University | Lipid-Based Drug Carriers for Rapid Penetration Through Mucus Linings |
US9889208B2 (en) * | 2012-05-04 | 2018-02-13 | The Johns Hopkins University | Lipid-based drug carriers for rapid penetration through mucus linings |
US10556017B2 (en) | 2012-05-04 | 2020-02-11 | The Johns Hopkins University | Lipid-based drug carriers for rapid penetration through mucus linings |
WO2014151565A1 (en) * | 2013-03-15 | 2014-09-25 | The Brigham And Women's Hospital, Inc. | Compounds to modulate intestinal absorption of nutrients |
US10716802B2 (en) | 2013-03-15 | 2020-07-21 | The Brigham And Women's Hospital, Inc. | Compounds to modulate intestinal absorption of nutrients |
US11524024B2 (en) | 2013-03-15 | 2022-12-13 | The Brigham And Women's Hospital, Inc. | Compounds to modulate intestinal absorption of nutrients |
US10973846B2 (en) | 2015-09-24 | 2021-04-13 | The Brigham And Women's Hospital, Inc. | Water-activated mucoadhesive compositions to reduce intestinal absorption of nutrients |
US11433094B2 (en) | 2015-09-24 | 2022-09-06 | The Brigham And Women's Hospital, Inc. | Water-activated mucoadhesive compositions to reduce intestinal absorption of nutrients |
US11666597B2 (en) | 2015-09-24 | 2023-06-06 | The Brigham And Women's Hospital, Inc. | Water-activated mucoadhesive compositions to reduce intestinal absorption of nutrients |
Also Published As
Publication number | Publication date |
---|---|
JP4804923B2 (en) | 2011-11-02 |
EP1666486A1 (en) | 2006-06-07 |
EP1666486A4 (en) | 2006-12-06 |
KR20070019941A (en) | 2007-02-16 |
US7696359B2 (en) | 2010-04-13 |
CN1867580A (en) | 2006-11-22 |
CN1867580B (en) | 2010-09-29 |
JPWO2005023844A1 (en) | 2007-11-01 |
US20060280784A1 (en) | 2006-12-14 |
WO2005023844A1 (en) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100172967A1 (en) | Compound modified with glycerol derivative | |
JP6226476B2 (en) | Cationic lipid | |
WO2016153012A1 (en) | Nucleic acid-containing lipid nanoparticles | |
WO2013089151A1 (en) | Lipid nanoparticles for drug delivery system containing cationic lipids | |
JP2019508371A (en) | Compounds and compositions for intracellular delivery of drugs | |
EP1041976B1 (en) | Polyamide oligomers | |
CN103857654A (en) | Compounds for targeting drug delivery and enhancing siRNA activity | |
WO2019027055A1 (en) | Nucleic-acid-containing lipid nanoparticles | |
JP2024508047A (en) | Compounds, compositions and methods of their use | |
WO2018062413A1 (en) | Nucleic-acid-containing lipid nanoparticles | |
JP6272226B2 (en) | KRAS gene expression-suppressing RNAi pharmaceutical composition | |
EP4458805A1 (en) | Cationic lipid containing functional group on side chain, and use thereof | |
JP6641272B2 (en) | Cationic lipid | |
US20170101639A1 (en) | RNAi PHARMACEUTICAL COMPOSITION FOR SUPPRESSING EXPRESSION OF CKAP5 GENE | |
JP6495408B2 (en) | Cationic lipid | |
JP6774965B2 (en) | Compounds as cationic lipids | |
US11471533B2 (en) | Compound usable as cationic lipid | |
WO2024158042A1 (en) | Compound or salt thereof, lipid composition, pharmaceutical composition, and delivery carrier | |
US20140294978A1 (en) | Cationic lipid | |
KR20240159310A (en) | Lipid nanoparticle compositions using novel ionizable lipids | |
CN117534585A (en) | Novel ionizable cationic lipid compound, and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |