US20100170512A1 - Improvements to Electrically Operable Resuscitators - Google Patents
Improvements to Electrically Operable Resuscitators Download PDFInfo
- Publication number
- US20100170512A1 US20100170512A1 US12/602,292 US60229208A US2010170512A1 US 20100170512 A1 US20100170512 A1 US 20100170512A1 US 60229208 A US60229208 A US 60229208A US 2010170512 A1 US2010170512 A1 US 2010170512A1
- Authority
- US
- United States
- Prior art keywords
- gas
- piston
- valve
- patient
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0057—Pumps therefor
- A61M16/0066—Blowers or centrifugal pumps
- A61M16/0069—Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0057—Pumps therefor
- A61M16/0072—Tidal volume piston pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/04—Tracheal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
- A61M16/0666—Nasal cannulas or tubing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/201—Controlled valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/201—Controlled valves
- A61M16/202—Controlled valves electrically actuated
- A61M16/203—Proportional
- A61M16/205—Proportional used for exhalation control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/208—Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
- A61M16/209—Relief valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0048—Mouth-to-mouth respiration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/08—Bellows; Connecting tubes ; Water traps; Patient circuits
- A61M16/0875—Connecting tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/12—Preparation of respiratory gases or vapours by mixing different gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/208—Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0015—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0027—Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/003—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/003—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
- A61M2016/0033—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
- A61M2016/0036—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the breathing tube and used in both inspiratory and expiratory phase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/02—Gases
- A61M2202/0208—Oxygen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/07—General characteristics of the apparatus having air pumping means
- A61M2205/071—General characteristics of the apparatus having air pumping means hand operated
- A61M2205/073—Syringe, piston type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/10—General characteristics of the apparatus with powered movement mechanisms
- A61M2205/106—General characteristics of the apparatus with powered movement mechanisms reciprocating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3334—Measuring or controlling the flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3341—Pressure; Flow stabilising pressure or flow to avoid excessive variation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3368—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/502—User interfaces, e.g. screens or keyboards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/04—Heartbeat characteristics, e.g. ECG, blood pressure modulation
- A61M2230/06—Heartbeat rate only
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/42—Rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/43—Composition of exhalation
- A61M2230/432—Composition of exhalation partial CO2 pressure (P-CO2)
Definitions
- the present invention relates to improvements to resuscitators.
- Resuscitators that can supply pressurised air or oxygen to a patient are well-known. Examples include bag or bellows type resuscitators and pump-like resuscitators and pressure-limited resuscitators. However, there are limitations in certain resuscitators. For example, there is a risk of overinflating a patient's lungs by delivering a volume of air that is greater than desirable. There is also a risk the pressure of the air or oxygen delivered may be at undesirably high levels. Such undesirable characteristics of the air being delivered to the patient can have adverse affects on the patient. If a patient's airway passage is or becomes blocked and air is delivered by the known devices then undesirable pressures may be reached.
- Eliminating human operation of a resuscitator for delivering air to a patient is advantageous. By eliminating the operator the risk of delivering too great a volume of air into the patient and overinflating the patient's lungs, causing volutrauma, is reduced. By eliminating the operator the risk of delivering too great a pressure of air into the patient and therefore over pressurising the patient's lungs, causing barotrauma, is reduced. In resuscitation it is desirable to start at the lowest risk procedure to the patient. The lowest risk procedure is volume resuscitation rather than pressure-limited resuscitation or manual-controlled resuscitation.
- a rigid cylinder including at least one gas inlet and at least one gas outlet
- the or each valve configured for allowing gas to be drawn into said cylinder through said at least one gas inlet during at least one of a first stroke direction and/or a second stroke direction of said piston in said cylinder, and for allowing gas to be displaced through said at least one gas outlet during an opposite of at least one of the first stroke direction and/or second stroke direction of said piston in said cylinder,
- accurate positional control motor preferably selected from a stepper motor and feedback motor or a stepper motor with feedback and linear motor, operatively connected to said piston to move said piston in said cylinder with accurate velocity control
- a patient interface in ducted fluid connection with said pump to receive gas via said at least one gas outlet and to deliver said gas to said patient.
- said patient interface is a face mask or endotracheal tube or naso-tube.
- said motor is a linear stepper motor that may also have feedback.
- said motor is a servo motor that may also have feedback.
- said motor is a linear stepper motor and is directly connected to said piston.
- the motor is indirectly connected with said piston, via a linkage.
- said piston includes a connection rod with which said motor is in operative connection.
- said piston is or includes one part (eg an iron bar and rare earth magnet assembly) of the two moving part linear motor.
- the motor and cylinder are connected together (and are preferably engaged to each other).
- a gas flow controller Preferably wherein intermediate of the patient interface and the at least one outlet of the cylinder and in said ducted fluid connection therewith is a gas flow controller.
- the gas flow controller includes a one way valve that allows gas to be displaced from the outlet of the cylinder towards the patient interface and prevents gas from flowing through the one way valve in the opposite direction.
- the gas flow controller includes a valved exhaust port via which gas can exhaust to relieve pressure at the patient interface.
- valved exhaust port assumes a closed condition when the piston is moving in a direction to displace gas towards the patient interface and assumes an open condition when the piston is moving in the opposite direction to allow gas due to exhalation of or by the patient to pass through the exhaust port.
- valved exhaust port includes at least one opening closable by a valve, said valve mounted on or to or in operative association with an actuator to actively control the movement of the valve relative the opening.
- valved exhaust port includes at least one opening closable by a valve, said valve mounted for movement relative the opening in a passive manner under the influence of pressure differential in the gas from controller and/or between the gas flow controller and ambient gas pressure.
- valved exhaust port is moved to a closed condition when gas is to be displaced into said patient and to an open condition to allow gas due to exhalation of or by the patient to pass through the exhaust port.
- valved exhaust port includes at least one opening closable by a valve, said valve mounted on or to or in operative association with an actuator to actively control the movement of the valve relative to the opening.
- valved exhaust port includes at least one opening closable by a valve, said valve mounted for movement relative the opening in a passive manner under the influence of pressure differential in the gas from controller and/or between the gas flow controller and ambient gas pressure.
- said motor stops or reduces the velocity of the piston.
- a controller is coupled to said motor to control at least the velocity and position of the motor.
- said controller is coupled to said actuator to move said actuator preferably in a manner in synchronicity with control of said motor.
- a source of electricity is connected to said motor.
- said source of electricity is connected to said motor via said controller.
- the controller can be instructed to operate the device in a suitable manner.
- the interface allows for patient-related information to be entered into the controller, the information including at least one selected from a patient's age and weight.
- the controller receives data from other parts of the device, including at least one of gas pressure at the patient interface and tidal volume flow rate at the patient interface.
- a display is provided to display operating conditions of said device.
- the operating conditions displayed may include inlet gas pressure, patient interface gas pressure, tidal volume at the patient interface, piston oscillation rate, piston stroke length, battery power, duration operation.
- the operating conditions may also be recorded for subsequent reference.
- fluid connection between said outlet of said cylinder and the patient interface is defined in part by a flexible conduit.
- fluid connection between said outlet of said cylinder and the patient interface is defined in part by a flexible conduit and said flow controller is located more proximate said patient interface than said cylinder.
- the ducted fluid connection and/or the patient interface includes a pressure relief valve to allow pressure reduction of gas in said patient interface.
- the pressure relief valve becomes operative to relieve pressure when the pressure in said patient interface reaches a certain threshold.
- said pump includes an inlet volute.
- the inlet volute includes an opening to allow pressure relief of said inlet volute to occur.
- said inlet volute includes a one way valve to allow pressure relief to occur into the inlet volute.
- the said inlet volute includes a pressure relief valve to allow pressure relief to occur out of said inlet volute.
- said inlet of said cylinder is in fluid connection with a supplementary gas supply to allow gas from said supplementary gas supply to pass into said cylinder for subsequent delivery to the patient. More preferably, the gas is oxygen.
- said cylinder is split into two zones by said piston, a first zone being on one side of said piston and a second zone being on the other side of said piston and wherein said gas inlet(s) are provided to allow gas into the first zone and said gas outlet(s) are provided to allow gas out of said second zone, wherein a one way pump valve is provided to allow gas to transfer from said first zone to said second zone and that restricts flow in the opposite direction.
- the one way pump valve is carried by the piston to operate on a passage through the piston.
- gas in said first zone is or becomes pressurised sufficiently to, upon the movement of the piston in its first stroke direction, allow some of the gas to displace through the one way pump valve into the second zone.
- the one way pump valve is a passive one way valve that moves between an open and closed condition dependent on pressure differential across the one way pump valve.
- a one way valve inlet one way valve
- a one way valve may be provided to allow gas to be drawn into the first zone upon the movement of the piston in its second stroke direction and that restricts flow of gas in the opposite direction through said inlet one way valve upon the movement of the piston in the first stroke direction.
- the inlet one way valve is a passive one way valve that moves between an open and closed condition dependent on pressure differential across the inlet one way valve.
- one or each of the one way valves mentioned are valves under active control to be in the open and closed conditions in correspondence with the direction of movement of the piston.
- the cylinder and piston stroke length are of a size to allow a sufficient volume of gas to be displaced from said cylinder through said gas outlet(s) during said second direction of movement of the piston to deliver a desired volume and flow rate of gas for a single inhalation to a neonatal patient for resuscitation purposes.
- said cylinder is split into two zones by said piston, a first zone being on one side of said piston and a second zone being on the other side of said piston, and wherein the pump is a double acting pump that includes:
- each of at least one of the first to fourth one way valves are either actively controlling or passive in moving between their open and closed conditions.
- the cylinder and piston stroke length are of a size, and the motor is able to move and be controlled, to allow a sufficient volume of gas to be displaced from said cylinder through said gas outlet(s) during multiple oscillations of the piston to deliver a desired volume and flow rate of gas for a single inhalation to a patient for resuscitation purposes or ventilation purposes or both.
- the pump is a double acting pump and the motor is of a sufficient speed to, in multiple stokes of the piston, deliver a single tidal volume of gas for a single inhalation to a patient for ventilation and/or resuscitation purposes.
- the device is portable.
- At least one of the pump and patient interface and motor are portable and preferably unitary and preferably able to be held in one hand by a user.
- At least one of the controller and power supply and display are also portable and preferably unitary and preferably able to be held in one hand by a user.
- Preferably communication to and from the controller may be wireless.
- the present invention consists in a resuscitator to deliver gas to a patient to be resuscitated that includes a positive displacement pump that is operated by a linear motor.
- the pump is of a kind to allow continuous displacement gas to a patient to occur during operation of the pump and the velocity of linear motor is controlled to displace gas to the patient in a manner to facilitate resuscitation.
- control of the linear motor is such as to change its velocity to provide a variation in the volume of gas delivered.
- the pump is a positive displacement pump (preferably a piston and cylinder pump).
- the linear motor actuates the piston for multiple oscillations to deliver a single tidal volume of gas to the patient.
- the present invention consists in a gas flow controller for a resuscitator that includes a pump to pressurise a gas for delivery to a patient and a patient interface, the controller interposed between said pump and interface and including a one way valve that allows gas to be displaced from the pump towards the patient interface and prevents gas from flowing through the one way valve in the opposite direction.
- the gas flow controller includes a valved exhaust port via which gas can exhaust to relieve pressure at the patient interface.
- valved exhaust port assumes a closed condition when the pump is operating in a mode to displace gas towards the patient interface and assumes an open condition during exhalation of or by the patient to pass allow exhaled gas to pass through the exhaust port.
- valved exhaust port assumes an open condition when the device is in a non-operative or non-operational mode. More preferably, the valved exhaust port assumes an open condition when the pump is in a non-operative or non-operational mode.
- valved exhaust port includes at least one opening closable by a valve, said valve mounted on or to or in operative association with an actuator to actively control the movement of the valve relative the opening.
- valved exhaust port includes at least one opening closable by a valve, said valve is mounted for movement relative the opening in a passive manner under the influence of pressure differential in the gas from controller and/or between the gas flow controller and ambient gas pressure.
- valved exhaust port is moved to a closed condition when gas is to be displaced into said patient and to an open condition to allow gas due to exhalation of or by the patient to pass through the exhaust port.
- valved exhaust port includes at least one opening closable by a valve, said valve mounted on or to or in operative association with an actuator to actively control the movement of the valve relative the opening.
- valved exhaust port includes at least one opening closable by a valve, said valve mounted for movement relative the opening in a passive manner under the influence of pressure differential in the gas from controller and/or between the gas flow controller and ambient gas pressure.
- the present invention consists in a resuscitator device that operates to define an inhalation period during which a gas is displaced from the device to the patient and an exhalation period where no gas is displaced from the device to the patient and any gas received from the patient is exhausted from the device, wherein the device utilises an accurate positional control motor (eg a linear motor or rotary stepper motor) that controls a pump, the motor being controlled to operate the pump during the inhalation period and the motor being controlled to stop the pump during the exhalation period.
- an accurate positional control motor eg a linear motor or rotary stepper motor
- the pump undertakes a plurality of oscillations during any one inhalation period.
- the pump undertakes no more than one oscillation during any one inhalation period.
- the present invention consists in a resuscitator as herein before described and as herein described with reference to the accompanying drawings.
- This invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which this invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
- FIG. 1 is a schematic view of a resuscitator and is shown to describe it being in the inhalation phase
- FIG. 2 is a schematic view of a resuscitator and is shown to describe it in the exhalation phase
- FIG. 3 shows the resuscitator in a C-pap mode wherein a supplementary gas is supplied to the resuscitator
- FIG. 4 is a schematic view of a variation of the resuscitator shown in FIGS. 1-3 , also in a C-pap mode and wherein a flexible conduit extends between parts of the resuscitator to provide to some extent, independence of movement of the face mask relative some of the other components of the resuscitator,
- FIG. 5 is a schematic view of a variation of the resuscitator shown in an exhalation phase with reference to FIGS. 1-4 ,
- FIG. 6 is a schematic view of the resuscitator of FIG. 5 shown in operation, moving in an inhalation phase,
- FIG. 7 is a schematic view of the resuscitator of FIG. 5 shown in an inhalation phase
- FIG. 8 shows the resuscitator of FIG. 5 in an inhalation mode and wherein an oxygen supply is provided to allow the operation of the resuscitator in a C-pap mode
- FIG. 9 illustrates the resuscitator of FIG. 5 , wherein a flexible conduit is provided intermediate of certain parts of the resuscitator to provide, to a certain extent, independence of movement of the face mask relative to some of the other components of the resuscitator,
- FIG. 10 is a sectional view of the face mask shown to include a flow and tidal volume sensor wherein the gas flow is shown in an inhalation direction, and
- FIG. 11 is a variation to that shown in FIG. 10 wherein it is shown in an exhalation condition.
- the resuscitator 1 consists of a resuscitator body 2 . It may also include associated hardware such as a controller 3 , a display 4 and power supply 5 connected to each other and/or the resuscitator body 2 .
- the resuscitator body 2 consists of a pump unit 6 , a flow control unit 7 and a patient interface 8 .
- the pump unit 6 includes a pump that will deliver air to the flow control unit 7 .
- the flow control unit 7 will control the flow of gas between the patient interface and the flow control unit 7 in conjunction with or without the pump unit 6 depending on the status of operation of the resuscitator 1 .
- pump unit 6 and flow control unit 7 are part of the same body as for example shown in FIG. 1 .
- a conduit 9 extending between the flow control unit 7 and the patient interface 8 facilitates the flow of gas between the interface and the flow control unit 7 .
- the interface is preferably a face mask.
- the interface may be an endotracheal tube or naso-tube that extends partly into the patient's airway.
- the pump unit 6 consists of a piston 10 that locates in a cylinder 11 to displace gas through an outlet 12 of the cylinder and to the flow control unit 7 .
- the piston and cylinder are a complementary shape and make sure that a sufficiently tight seal exists between the piston and cylinder for the purposes of positively displacing gas through the outlet 12 .
- the cylinder 11 may be cylindrical in cross-section or may be any other shape in cross-section.
- the piston is actuated via its connection rod 14 , by a motor 13 .
- the motor is an actuator preferably a linear motor.
- the actuator may be a servomotor, stepper motor or similar device.
- the connection rod 14 may be the reactor to operate in conjunction with the motor 13 for the purposes of displacing the piston 10 in the cylinder 11 in an oscillating manner.
- the connection rod 14 may carry a reactor plate or surface in conjunction with the motor 13 .
- the connection rod 14 is acted upon directly by the motor 13 .
- the reactor plate may also be incorporated as part of the piston to be integral therewith. No connection rod may then be provided.
- Alternative mechanisms may be employed where such action is indirect via a linkage mechanism.
- Such linkage may include a rotor and crank and connection rod.
- the motor 13 is a linear motor or any other motor that has accurate and rapid positional control capabilities.
- the controller 3 via a connection 15 with the motor 13 will operate the motor in a manner so that the desired flow rate, volume and pressures are being delivered through the outlet opening 12 .
- the flow control unit 7 consists of an inlet that may coincide with or define the outlet 12 of the pump unit.
- the flow control unit includes an outlet 20 and a passage extending between the inlet and outlet.
- the passage allows the transmission of gas being displaced from the pump unit 6 to the outlet 20 .
- the outlet 20 preferably via a conduit 9 , allows the delivery of this gas to the patient interface 8 .
- a one-way valve 21 Intermediate of the inlet and outlet of the flow control unit is a one-way valve 21 .
- the one-way valve allows for gas to travel from the inlet towards the outlet via the passage but prevents flow of gas from the outlet to the inlet.
- the valve 21 may be mounted in a fixed manner to the housing 22 of the flow control unit 7 or alternatively and as shown in FIG. 1 , may be mounted to a movable mount 23 to move the valve mount.
- the movable mount 23 forms part of a voice coil actuator 24 that can displace the movable mount 23 between two positions.
- the first position is as shown in FIG. 1 and the second position is as shown in FIG. 2 .
- the moveable mount 23 is located in a position so that at least on the outlet 20 side of the valve 21 , no other opening to the passage of the flow control unit 7 is created. All gas that is displaced by the pump unit 6 is captured for flow towards the patient interface 8 .
- an opening 27 is created between part of the housing 22 of the flow control unit 7 and the moveable mount 23 .
- gas can escape from that part of the passage of the flow control unit 7 intermediate of the valve 21 and the flow control unit outlet 20 .
- gas that may be exhaled from the patient can travel through the opening 27 for example towards the surrounding atmosphere through opening 29 .
- the opening 27 may be an annular opening that is created between a substantially disk shaped mount portion and a circular shaped seat 30 of the housing 22 of the flow control unit 7 .
- the one-way valve 21 will assume a closed position as shown in FIG. 2 during the exhalation operating phase of the resuscitator.
- This negative pressure differential may be established by one or more of a combination of the patient breathing out, the retraction of the piston in its cylinder away from the outlet 12 and the movement of the voice coil actuator 24 in a direction establishing the opening 27 .
- the voice coil actuator 24 that primarily establishes the open and closed condition between the opening 27 and that part of the passage of the flow control unit 7 between the flow control unit outlet 20 and the one-way valve 21 .
- the piston In the exhalation operating phase of the resuscitator, the piston is withdrawn by the motor 13 preferably back to a predetermined start position.
- the piston retracts once it has traveled its full desired stroke during the inhalation operating phase and has delivered the required tidal volume or has timed out while holding the maximum airway pressure during the inhalation period.
- Control of the position or movement of the voice coil actuator 24 can occur by the controller 3 and is preferably synchronised with movement of the piston.
- a “PEEP” mode positive end expiratory pressure
- parameters can be preset by using the controller or the display panel PEEP so that pressure is controlled by the voice coil actuator.
- the voice coil actuator 24 will exert a closing force to the exhalation valve equal to the predetermined PEEP pressure.
- the PEEP pressure is measured by the airway pressure sensor 31 .
- the controller 3 will activate the voice coil actuator 24 when the expiratory airway pressure has reached the predetermined level.
- the tidal volume delivered to the patient can be preset by the controller 3 or the display panel 4 .
- the tidal volume is controlled by the stroke length of the piston 10 .
- Tidal volume is delivered to the patient on the compression stroke of the piston 10 and exhalation for the patient is facilitated during the retraction stroke of the piston 10 . Accordingly one inhale and exhale of the patient occurs during a movement of the piston 10 from one starting point to its opposite end travel and back to the starting point. For a given cylinder size, the longer the stroke of the piston, the greater the tidal volume.
- the controller 3 instructs the motor 13 to move the piston 10 a predetermined distance at a predetermined velocity.
- Feedback from the airway pressure sensor 31 and a flow and tidal volume sensor 36 can provide further control. These sensors may vary normal operation of the piston 10 and/or voice coil actuator 24 from conditions of operation predetermined by an operator and instructed to the device via the display panel 4 and/or controller 3 .
- the stroke length and position of the piston 10 may in addition be monitored by a sensor (a piston position sensor) of or associated with the motor 13 and/or piston 10 .
- the operation of the resuscitator will control the breath rate and inhalation/exhalation ratio. This can be preset by using the controller and/or display panel and may be controlled at least in part by a timer of the controller.
- Patient dependent parameters may also control operation. For example, input information into the controller 3 may include a patient's weight and age.
- the controller 3 can instruct the motor 13 to slow or stop. This can result in a maintaining of the maximum predetermined airway pressure for the duration of the inhalation time period.
- a safety valve 37 may be actuated to open and relieve pressure on the patient airway.
- the safety valve 37 may be a passive valve that has predetermined operating conditions. Alternatively it may be a safety valve connected with the controller 3 and controlled by the controller for operation.
- the airway pressure sensor 31 and/or flow and tidal volume sensor 36 may communicate with the controller 3 to direct movement of the voice coil actuator in instances where undesirable conditions are being sensed to thereby relieve pressure and/or flow by exhausting gas through the opening 29 .
- This first form of resuscitator described as well as the form yet to be described allows for data from the airway pressure sensor 31 , the piston position sensor, the flow and tidal volume sensor 36 and from a timer to be used to record operating data and performance.
- a graphical display on the display panel 4 can also be generated. The graphical display can be used by the operator to monitor performance and determine if leakage, blockage or further adjustments are required to the resuscitator.
- the graph and/or related data can be stored to assist in the setup of other life support systems and for clinical analysis. Such statistical information may offer significant benefits to future situations.
- the electrical connection 15 will ensure that the controller 3 can appropriately control the linear motor to thereby control the position and movement of the piston.
- the cylinder 11 has an inlet volute 16 that includes a primary inlet 17 . It is through the primary inlet that ambient air may be drawing into the inlet volute as the piston displaces inside the cylinder towards the outlet 12 . This direction of travel is shown in FIG. 1 .
- the piston 10 carries a one-way valve 18 that operates to be in a closed condition when the piston is travelling towards the outlet 12 . This will result in a drawing of ambient air into the inlet volute 16 .
- the one-way valve 18 can open to allow for air in the inlet volute 16 to displace into the region between the piston 10 and the outlet 12 as for example shown in FIG. 2 .
- the primary inlet 17 may include a one-way valve to assist such displacement through the opening created by the one-way valve through the piston by preventing air in the inlet volute 16 from displacing back out through the primary inlet 17 .
- the gas that has displaced into the space between the piston 10 and the outlet opening 12 can then on the return stroke during the inhalation phase of operation be displaced at least in part through the outlet opening 12 and to the flow control unit 7 .
- the resuscitator may (for example shown in FIG. 3 ) operate in a supplementary oxygen and C-pap mode.
- a supplementary oxygen reservoir 40 (that may or may not be connected to supplementary supply via the inlet 41 ) can be engaged to the primary inlet 17 of the pump unit 6 .
- the oxygen or other gas or gas mixture can be supplied to a patient via the resuscitator. This will allow the operator to control the delivery of an air/oxygen mixture by the use of for example an external blender.
- Supplementary gas such as oxygen may be delivered via the primary inlet 17 to the pump unit, under pressure.
- a safety valve 42 may open to exhaust gas from at least part of the pump unit 6 .
- a pressure sensor may be located in an appropriate location for these purposes. If a failure occurs with the supplementary gas supply or the primary inlet 17 becomes blocked then a safety valve 43 may open to allow for ambient air to be drawn into the pump unit 6 allowing ongoing operation of the resuscitator despite issues with the supply of supplementary gas.
- a C-pap mode operational conditions can be specified and preset by using the controller and/or display panel.
- the ventilator can operate in the C-pap mode.
- the motor 13 will stop operation and the flow from the supplementary oxygen reservoir 40 will pass through the one-way valve 18 through the one-way valve 21 to the patient interface 8 .
- the airway pressure sensor 31 will determine the patient's airway pressure.
- the voice coil actuator 24 will exert a closing force to the exhalation valve to the predetermined C-pap pressure.
- FIG. 4 there is shown a variation to the resuscitator described with reference to FIGS. 1-3 wherein a flexible conduit 56 is provided to extend between the pump unit 6 and the flow control unit 7 .
- the flexible conduit 56 may be fitted between the pump unit and the flow control unit to allow for delivery for gas displaced by the piston 10 towards the patient interface 8 .
- the controller can make adjustments for the compliance in the patient mask.
- a conduit 9 that is of a desired length to allow for more distal location between the patient interface 8 and the pump unit 6 .
- this has the disadvantage of dead space between the features of the flow control unit 7 and the patient interface 8 .
- the resuscitator of FIGS. 1-4 lends itself particularly to resuscitation and ventilation of neonatal patients.
- a manageable sized pump unit can be provided wherein in one stroke of the piston a sufficient tidal volume of air can be delivered to a neonatal patient for inhalation. It is desirable for the unit to be relatively portable and therefore size can be a design constraint. However where size is not an issue, the pump unit 6 can be scaled up so that single compression stroke of the piston can deliver a sufficient tidal volume of gas to larger patients. However this will increase at least the size of the pump unit 6 making it less convenient for portability purposes.
- the resuscitator 101 includes a patient interface 108 , flow control unit 107 and related components that are preferably the same as those described with reference to the resuscitator of FIGS. 1-4 .
- This alternative form of resuscitator also includes a pump unit 106 .
- the pump unit 106 varies to the pump unit 6 described with reference to FIGS. 1-4 .
- a motor 113 such as a linear motor or servo motor controlled by a controller 103 that may be engaged with a display panel 104 .
- the linear motor operates a piston 110 via a connection such as a connection rod 114 that operates in a cylinder 111 .
- the pump unit 106 includes an inlet volute 116 .
- the inlet volute via a primary inlet 117 can draw air or supplementary gas supply therethrough as a result of the action of the piston and into the inlet volute 116 .
- the cylinder includes two openings capable of being in communication with the inlet volute 116 .
- a first opening 160 is provided on the extension side of the piston 110 .
- a second opening 161 is provided on the retraction side of the piston 110 .
- the opening 160 is closable by a one-way valve 162 .
- the opening 161 is closable by a one-way valve 163 .
- the one-way valve 162 is able to assume an opening condition during the retraction stroke of the piston and is in a closed condition during the extension stroke of the piston.
- the one-way valve 163 is able to assume an open position during the extension stroke of the piston and is in a closed condition when the piston is retracting.
- the outlet opening 164 of the cylinder 111 On the extension side of the piston 110 is an outlet opening 164 of the cylinder 111 .
- the outlet opening is closable by a one-way valve 165 .
- the one-way valve 165 is in a closed condition during the retraction stroke of the piston and is able to assume an open condition during the extension stroke of the piston.
- the one-way valve 165 hence essentially works in an opposite mode to the one-way valve 162 to the cylinder.
- the outlet opening 164 is able to create a fluid connection of that part of the cylinder on the compression side of the piston with an outlet volute 166 .
- the outlet volute 166 includes an outlet opening 112 through which gas displaced by the piston can pass to the flow control unit 7 .
- the outlet volute 166 is separated from the inlet volute 116 .
- the housing of the pump unit 106 may include both the inlet volute 116 and outlet volute 166 and partitions 167 and the cylinder 111 may separate the volutes.
- the cylinder On the retraction side of the piston 110 the cylinder includes an opening 168 to the outlet volute 166 .
- the opening 168 includes a one-way valve 169 .
- the one-way valve is positioned so that during the retraction stroke of the piston, gas can displace on the retraction side of the cylinder through the one-way valve 169 into the outlet volute 166 .
- the one-way valve 169 will assume a closed condition during the extension stroke of the piston 110 .
- the one way valve 163 opens allowing for air to be drawn into the retraction side of the cylinder. Air on the extension side of the piston during the extension stroke can be displaced through the one-way valve 165 to be delivered into the outlet volute. One-way valve 169 will be closed thereby only offering one outlet to the outlet volute 166 being the outlet 112 .
- the retraction side of the cylinder is charged with gas being drawn through the one-way valve 163 .
- gas that has been drawn into the retraction side of the cylinder may then be displaced through the one-way valve 169 into the outlet volute 166 .
- the one-way valve 163 will close during the retraction stroke thereby creating only one outlet from the cylinder on its retraction side, namely the opening to discharge the gas into the outlet volute 166 .
- the one-way valve 165 is closed thereby offering only one outlet for gas being delivered into the outlet volute, namely being the outlet opening 112 .
- the extension side of the cylinder is charged with gas from the inlet volute 116 via the one-way valve 162 that is in that condition opened.
- the pump unit 106 hence operates in a double acting manner.
- a high frequency operating piston can deliver gas to the patient in effectively a continuous manner during both the retraction and extension strokes.
- Each tidal volume delivered to the patient may involve a high number of strokes of the piston. This allows for a compact and preferably portable unit to be provided.
- the flow control unit 107 may be operated to open the exhaust valve to allow for exhalation to occur may coincide with the linear motor stopping operation.
- the linear motor may continue oscillating the piston but where a waste valve may be opened to discharge displaced air from the piston from reaching the flow control valve. Alternatively such wasting may occur via the exhaust valve of the flow control.
- the resuscitator described with reference to FIGS. 5-7 is also capable of operating in a supplementary gas and/or C-pap mode. This is shown for example in FIG. 8 . Furthermore an extension conduit 156 may be utilised as shown in FIG. 9 .
- the number of oscillations that the piston may run through can be predetermined.
- the oscillations determine the tidal volume that is delivered to the patient.
- An operator may interact with the control unit and/or display to set parameters of operation of the resuscitator. Like the resuscitator described with reference to FIGS. 1-4 stroke length and position of the piston as well as airway pressures and tidal volume flow and volume sensing may occur and be recorded and displayed.
- the airway pressure may be monitored by a pressure sensor.
- the controller When the pressure sensor senses that the maximum predetermined airway pressure has been reached the controller then instructs the linear motor to stop or slow to maintain the maximum predetermined airway pressure for the duration of the inhalation period. Alternatively the controller may instruct the linear motor to stop to reduce pressure. In the event of any over pressure or system failure a safety valve like that described with reference to FIGS. 1-4 may open.
- the voice coil actuator may be preloaded so that the exhaust port tends to an open biased condition allowing external air to enter the patient airway.
- the resuscitator of FIGS. 5-9 may also operate in a PEEP mode as previously described. In the C-pap mode of operation all one-way valves to the cylinder are opened. This allows for direct transfer of gas from the inlet volute 116 to the outlet volute 166 and to the patient. Pressure sensors and relief valves may be included for failsafe purposes.
- parts of the resuscitator may be disposable.
- those parts of the resuscitator that have been exposed to exhaled breath or air from a patient may be disposable. They may be manufactured and assembled in a way to facilitate their disposable use.
- the patient interface 8 , the flow control unit 7 and one way valve 21 and/or the voice coil actuator 24 , movable mouth 23 and housing 22 may all be disengageable from the pump unit 6 and be disposed after use.
- Circuits to allow for a quick connection of the controller 3 to a replacement assembly of such parts may be provided through simple plug/socket arrangement(s). A single plug/socket may be provided. This may automatically become coupled upon the engagement of the disposable components with the pump unit 6 .
- FIGS. 10 and 11 there is shown more detail in respect of the tidal volume and flow sensor.
- the patient interface 208 wherein the flow and tidal volume sensor 236 is shown during the inhalation phase of operation. It is connected to the controller 203 via a connection 283 .
- the sensor 236 is shown in the exhalation phase.
- the sensor 236 is of a kind that displaces dependent on air flow past it. Such may not be ideal for accurate sensing due to inertial mass of the sensor.
- An alternative form of a sensor is one that has no inertial mass delay characteristics.
- An alternative form of sensor that may be used may be a gas flow meter that measure flow thermally.
- An example of such a flow meter is one manufactured by Sensirion.com such as their digital gas flow sensor ASF1400/ASF/1430. It may be one that is made in accordance to that described in U.S. Pat. No. 6,813,944.
- Such a flow sensor has a high response rate, given that it has unlike the sensor of FIG. 10 , it has no mass to be displaced by the flow. A fast response can be beneficial.
- Such sensors may commonly be referred to as a hot wire flow sensor or thermal mass flow meters.
- the sensor or an alternative sensor may also measure the temperature of the exhaled breath. With an appropriate sensor where the response rate is very quick (a matter of, for example one tenths of a second) it is possible during the exhale of a patient to measure the patient's core temperature.
- This information may also be collected and/or displayed or otherwise used by the resuscitator.
- the invention may offer the advantages of being portable, hand held (including being able to be held by one hand in order to hold the patient interface in the appropriate condition) and self contained by virtue of including its own power source (such as a 12 v power supply).
- the device may have programmable profiles fixed and/or customised to suit patients, clinicians and operators requirements.
- a heart rate monitoring facility may also be incorporated with the device, wherein heart rate can be accounted for in the control of the device and be displayed by the device.
- the display can assist the operator in evaluating resuscitation of the patient.
- the performance, operating parameters and status of the features of the device are able to be recorded. This can assist in statistical analysis and to gather information for set-up of other devices.
- the patient as herein defined may a mammal such a person or animal.
Landscapes
- Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Otolaryngology (AREA)
- Percussion Or Vibration Massage (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- External Artificial Organs (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ55558107 | 2007-05-30 | ||
NZ555581 | 2007-05-30 | ||
PCT/NZ2008/000128 WO2008147229A1 (en) | 2007-05-30 | 2008-05-30 | Improvements to electrically operable resuscitators |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NZ2008/000128 A-371-Of-International WO2008147229A1 (en) | 2007-05-30 | 2008-05-30 | Improvements to electrically operable resuscitators |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/741,848 Continuation US20150352302A1 (en) | 2007-05-30 | 2015-06-17 | Electrically Operable Resuscitators |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100170512A1 true US20100170512A1 (en) | 2010-07-08 |
Family
ID=40075316
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/602,292 Abandoned US20100170512A1 (en) | 2007-05-30 | 2008-05-30 | Improvements to Electrically Operable Resuscitators |
US14/741,848 Abandoned US20150352302A1 (en) | 2007-05-30 | 2015-06-17 | Electrically Operable Resuscitators |
US15/926,393 Active 2029-09-11 US11285281B2 (en) | 2007-05-30 | 2018-03-20 | Electrically operable resuscitators |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/741,848 Abandoned US20150352302A1 (en) | 2007-05-30 | 2015-06-17 | Electrically Operable Resuscitators |
US15/926,393 Active 2029-09-11 US11285281B2 (en) | 2007-05-30 | 2018-03-20 | Electrically operable resuscitators |
Country Status (10)
Country | Link |
---|---|
US (3) | US20100170512A1 (de) |
EP (1) | EP2164442B1 (de) |
JP (1) | JP2010527737A (de) |
CN (1) | CN101720215B (de) |
AU (1) | AU2008257723A1 (de) |
BR (1) | BRPI0812285B8 (de) |
CA (1) | CA2688555C (de) |
MX (1) | MX2009013001A (de) |
RU (1) | RU2523820C2 (de) |
WO (1) | WO2008147229A1 (de) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110126836A1 (en) * | 2009-12-01 | 2011-06-02 | Nellcor Puritan Bennett Llc | Exhalation Valve Assembly With Selectable Contagious/Non-Contagious Latch |
US8136527B2 (en) | 2003-08-18 | 2012-03-20 | Breathe Technologies, Inc. | Method and device for non-invasive ventilation with nasal interface |
US20120291779A1 (en) * | 2010-01-20 | 2012-11-22 | Koninklijke Philips Electronics, N.V. | Flow sensor and aerosol delivery device |
US8381729B2 (en) | 2003-06-18 | 2013-02-26 | Breathe Technologies, Inc. | Methods and devices for minimally invasive respiratory support |
US8418694B2 (en) | 2003-08-11 | 2013-04-16 | Breathe Technologies, Inc. | Systems, methods and apparatus for respiratory support of a patient |
US8434479B2 (en) | 2009-02-27 | 2013-05-07 | Covidien Lp | Flow rate compensation for transient thermal response of hot-wire anemometers |
US8439037B2 (en) | 2009-12-01 | 2013-05-14 | Covidien Lp | Exhalation valve assembly with integrated filter and flow sensor |
US8439036B2 (en) | 2009-12-01 | 2013-05-14 | Covidien Lp | Exhalation valve assembly with integral flow sensor |
US8469031B2 (en) | 2009-12-01 | 2013-06-25 | Covidien Lp | Exhalation valve assembly with integrated filter |
USD692556S1 (en) | 2013-03-08 | 2013-10-29 | Covidien Lp | Expiratory filter body of an exhalation module |
US8567399B2 (en) | 2007-09-26 | 2013-10-29 | Breathe Technologies, Inc. | Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy |
USD693001S1 (en) | 2013-03-08 | 2013-11-05 | Covidien Lp | Neonate expiratory filter assembly of an exhalation module |
US8677999B2 (en) | 2008-08-22 | 2014-03-25 | Breathe Technologies, Inc. | Methods and devices for providing mechanical ventilation with an open airway interface |
USD701601S1 (en) | 2013-03-08 | 2014-03-25 | Covidien Lp | Condensate vial of an exhalation module |
US8770193B2 (en) | 2008-04-18 | 2014-07-08 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8776793B2 (en) | 2008-04-18 | 2014-07-15 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8800557B2 (en) | 2003-07-29 | 2014-08-12 | Covidien Lp | System and process for supplying respiratory gas under pressure or volumetrically |
US8925545B2 (en) | 2004-02-04 | 2015-01-06 | Breathe Technologies, Inc. | Methods and devices for treating sleep apnea |
US8939152B2 (en) | 2010-09-30 | 2015-01-27 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
US8955518B2 (en) | 2003-06-18 | 2015-02-17 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
US8985099B2 (en) | 2006-05-18 | 2015-03-24 | Breathe Technologies, Inc. | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
USD731048S1 (en) | 2013-03-08 | 2015-06-02 | Covidien Lp | EVQ diaphragm of an exhalation module |
USD731049S1 (en) | 2013-03-05 | 2015-06-02 | Covidien Lp | EVQ housing of an exhalation module |
USD731065S1 (en) | 2013-03-08 | 2015-06-02 | Covidien Lp | EVQ pressure sensor filter of an exhalation module |
USD736905S1 (en) | 2013-03-08 | 2015-08-18 | Covidien Lp | Exhalation module EVQ housing |
US9132250B2 (en) | 2009-09-03 | 2015-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US9144658B2 (en) | 2012-04-30 | 2015-09-29 | Covidien Lp | Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control |
US9180270B2 (en) | 2009-04-02 | 2015-11-10 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube |
USD744095S1 (en) | 2013-03-08 | 2015-11-24 | Covidien Lp | Exhalation module EVQ internal flow sensor |
WO2015198000A1 (en) * | 2014-06-24 | 2015-12-30 | Smiths Medical International Limited | Ventilators |
US9289573B2 (en) | 2012-12-28 | 2016-03-22 | Covidien Lp | Ventilator pressure oscillation filter |
US20160094116A1 (en) * | 2014-09-30 | 2016-03-31 | Mindray Medical Sweden Ab | System and method for stabilizing a voice coil |
US9358355B2 (en) | 2013-03-11 | 2016-06-07 | Covidien Lp | Methods and systems for managing a patient move |
US9364624B2 (en) | 2011-12-07 | 2016-06-14 | Covidien Lp | Methods and systems for adaptive base flow |
US9375542B2 (en) | 2012-11-08 | 2016-06-28 | Covidien Lp | Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation |
US20160331917A1 (en) * | 2014-01-07 | 2016-11-17 | Smiths Medical International Limited | Respiratory therapy apparatus |
US9498589B2 (en) | 2011-12-31 | 2016-11-22 | Covidien Lp | Methods and systems for adaptive base flow and leak compensation |
FR3036944A1 (fr) * | 2015-06-08 | 2016-12-09 | Polycaptil | Dispositif de diagnostic de l'efficacite de la ventilation d'un patient et procede de ventilation d'un patient |
USD775345S1 (en) | 2015-04-10 | 2016-12-27 | Covidien Lp | Ventilator console |
US20170095631A1 (en) * | 2015-10-01 | 2017-04-06 | Atsuo F. Fukunaga | Resuscitator with distal oxygen inlet, breathing circuits having reusable and disposable components, systems and methods for resuscitation and providing assisted ventilation and anesthesia, and kits and components therefore |
US9629971B2 (en) | 2011-04-29 | 2017-04-25 | Covidien Lp | Methods and systems for exhalation control and trajectory optimization |
US9649458B2 (en) | 2008-09-30 | 2017-05-16 | Covidien Lp | Breathing assistance system with multiple pressure sensors |
US9950135B2 (en) | 2013-03-15 | 2018-04-24 | Covidien Lp | Maintaining an exhalation valve sensor assembly |
US9962512B2 (en) | 2009-04-02 | 2018-05-08 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
US9993604B2 (en) | 2012-04-27 | 2018-06-12 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US10058668B2 (en) | 2007-05-18 | 2018-08-28 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and providing ventilation therapy |
US10099028B2 (en) | 2010-08-16 | 2018-10-16 | Breathe Technologies, Inc. | Methods, systems and devices using LOX to provide ventilatory support |
US10252020B2 (en) | 2008-10-01 | 2019-04-09 | Breathe Technologies, Inc. | Ventilator with biofeedback monitoring and control for improving patient activity and health |
US10668239B2 (en) | 2017-11-14 | 2020-06-02 | Covidien Lp | Systems and methods for drive pressure spontaneous ventilation |
US10792449B2 (en) | 2017-10-03 | 2020-10-06 | Breathe Technologies, Inc. | Patient interface with integrated jet pump |
US20200353202A1 (en) * | 2018-01-10 | 2020-11-12 | Intersurgical Ag | Gas flow controller and a valve pin for a gas flow controller |
US20210316095A1 (en) * | 2020-04-09 | 2021-10-14 | Ator Labs, Inc. | Emergency ventilator system |
US11154672B2 (en) | 2009-09-03 | 2021-10-26 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US20220023560A1 (en) * | 2020-07-24 | 2022-01-27 | Pratt & Whitney Canada Corp. | Patient ventilator, method of ventilating an airway of a patient, and controller therefor |
US11517691B2 (en) | 2018-09-07 | 2022-12-06 | Covidien Lp | Methods and systems for high pressure controlled ventilation |
US11896767B2 (en) | 2020-03-20 | 2024-02-13 | Covidien Lp | Model-driven system integration in medical ventilators |
EP4114491A4 (de) * | 2020-04-05 | 2024-04-03 | Respirana, Inc. | Kolbenwiederbelebungs- und/oder beatmungssysteme, vorrichtungen und verfahren zur verwendung davon |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3064242A1 (de) * | 2003-04-28 | 2016-09-07 | Advanced Circulatory Systems Inc. | Lüfter und verfahren zur behandlung von kopftrauma und geringer blutzirkulation |
US9352111B2 (en) | 2007-04-19 | 2016-05-31 | Advanced Circulatory Systems, Inc. | Systems and methods to increase survival with favorable neurological function after cardiac arrest |
US8151790B2 (en) | 2007-04-19 | 2012-04-10 | Advanced Circulatory Systems, Inc. | Volume exchanger valve system and method to increase circulation during CPR |
WO2011051908A1 (en) * | 2009-10-29 | 2011-05-05 | Gilbert Jacobus Kuypers | A conduit |
US9724266B2 (en) | 2010-02-12 | 2017-08-08 | Zoll Medical Corporation | Enhanced guided active compression decompression cardiopulmonary resuscitation systems and methods |
US12016820B2 (en) | 2010-02-12 | 2024-06-25 | Zoll Medical Corporation | Enhanced guided active compression decompression cardiopulmonary resuscitation systems and methods |
CN101905055A (zh) * | 2010-08-06 | 2010-12-08 | 于海侠 | 一种用于抢救病人的新型呼吸装置 |
CN103338806A (zh) * | 2010-10-29 | 2013-10-02 | 伊尔贝特·雅各布斯·库珀斯 | 导管 |
CA2859814A1 (en) | 2011-12-19 | 2013-06-27 | ResQSystems, Inc. | Systems and methods for therapeutic intrathoracic pressure regulation |
EP2692384A3 (de) | 2012-07-31 | 2014-04-09 | Linde Aktiengesellschaft | Gaszuführvorrichtung, insbesondere Wiederbelebungsvorrichtung |
US9811634B2 (en) | 2013-04-25 | 2017-11-07 | Zoll Medical Corporation | Systems and methods to predict the chances of neurologically intact survival while performing CPR |
US20140358047A1 (en) | 2013-05-30 | 2014-12-04 | ResQSystems, Inc. | End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure and arterial pressure |
US10265495B2 (en) | 2013-11-22 | 2019-04-23 | Zoll Medical Corporation | Pressure actuated valve systems and methods |
WO2015165479A1 (en) | 2014-04-30 | 2015-11-05 | Linde Aktiengesellschaft | Gas administration, especially resuscitation device |
WO2017029629A1 (en) * | 2015-08-18 | 2017-02-23 | Gilbert Jacobus Kuypers | Improvements to electrically operable resuscitators |
WO2017178069A1 (en) * | 2016-04-15 | 2017-10-19 | Ink Machines Sweden Ab | Disposable tattoo needle cartridge |
CN106237467A (zh) * | 2016-08-26 | 2016-12-21 | 深圳市安保科技有限公司 | 一种呼吸设备的通气方法及装置 |
EP3645094B1 (de) * | 2017-06-27 | 2022-10-12 | Air Liquide Santé International | Beatmungsbeutel mit einem mit thoraxkompressionen kompatiblen pep-auslassventil |
CN107376072A (zh) * | 2017-08-24 | 2017-11-24 | 山东省立医院 | 一种吸入式麻醉装置 |
EP3728912A4 (de) * | 2017-12-22 | 2021-09-01 | Fresenius Medical Care Deutschland GmbH | Rückflussverhinderungsvorrichtung und dialysegerät mit rückflussverhinderungsvorrichtung |
CN108498883A (zh) * | 2018-04-24 | 2018-09-07 | 中国人民解放军第二军医大学第二附属医院 | 一种用于气道阻塞的负压急救装置 |
KR102140161B1 (ko) * | 2018-08-08 | 2020-07-31 | 사회복지법인 삼성생명공익재단 | 자동 산소 공급 장치, 방법 및 컴퓨터 프로그램 |
KR102200003B1 (ko) * | 2019-04-12 | 2021-01-11 | 건양대학교산학협력단 | 휴대용 산소호흡기 |
WO2021183623A1 (en) * | 2020-03-10 | 2021-09-16 | Rowe Jonathon D | Manual resuscitator, ventilation control assembly, and method of use |
KR102441704B1 (ko) * | 2020-10-14 | 2022-09-08 | 사회복지법인 삼성생명공익재단 | 호흡 멈춤 장치 |
WO2022079477A1 (en) * | 2020-10-16 | 2022-04-21 | Arcelormittal | Mechanical ventilator |
CN117205419B (zh) * | 2023-10-26 | 2024-04-19 | 广州蓝仕威克医疗科技有限公司 | 一种可控通气量的通气方法和人工复苏器装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3530873A (en) * | 1969-03-26 | 1970-09-29 | Leon J Arp | Fluid delivery device |
US5092326A (en) * | 1987-11-19 | 1992-03-03 | Winn Bryan D | Apparatus and method for a ventilator system |
US6152131A (en) * | 1998-08-26 | 2000-11-28 | Instrumentarium Corp. | Method and apparatus for detecting an empty breathing gas compartment in a patient ventilator |
US6264432B1 (en) * | 1999-09-01 | 2001-07-24 | Liquid Metronics Incorporated | Method and apparatus for controlling a pump |
US20060021620A1 (en) * | 1996-12-12 | 2006-02-02 | Resmed Limited | Method and apparatus for substance delivery in system for supplying breathable gas |
US8230857B2 (en) * | 2004-11-11 | 2012-07-31 | Ric Investments, Llc. | Expiratory pressure regulation in a ventilator |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2972345A (en) * | 1955-10-26 | 1961-02-21 | Spigel Robert | Respirator |
US3590815A (en) * | 1969-01-07 | 1971-07-06 | Peter Shiff | Portable mechanical ventricular assistance device |
GB1243765A (en) * | 1970-03-18 | 1971-08-25 | Pye Ltd | Improvements in or relating to medical respirators |
US3812878A (en) * | 1971-09-27 | 1974-05-28 | Bird Corp | Fail-safe breathing circuit and valve assembly for use therewith |
US4036221A (en) * | 1972-05-01 | 1977-07-19 | Sutter Hospitals Medical Research Foundation | Respirator |
US3905362A (en) * | 1973-10-02 | 1975-09-16 | Chemetron Corp | Volume-rate respirator system and method |
DE2507981B2 (de) * | 1975-02-25 | 1977-03-31 | Drägerwerk AG, 2400 Lübeck | Vorrichtung zur steuerung der atmung in beatmungsgeraeten |
FR2320082A1 (fr) * | 1975-08-07 | 1977-03-04 | Assistance Tech Med | Respirateur pour le traitement d'insuffisants respiratoires, utilisable plus particulierement a domicile |
US4297999A (en) * | 1979-07-19 | 1981-11-03 | Kitrell John V | Portable resuscitation apparatus |
US4448192A (en) * | 1982-03-05 | 1984-05-15 | Hewlett Packard Company | Medical ventilator device parametrically controlled for patient ventilation |
US4527557A (en) * | 1984-11-01 | 1985-07-09 | Bear Medical Systems, Inc. | Medical ventilator system |
US4719910A (en) * | 1985-04-29 | 1988-01-19 | Jensen Robert L | Oscillating ventilator and method |
IT1185906B (it) * | 1985-09-13 | 1987-11-18 | Luciano Gattinoni | Sistema ed apparecchio biomedicale per la misurazione con precisione dei valori di variazione di pressione e volume nei polmoni di un paziente |
FR2600723B3 (fr) * | 1986-06-26 | 1988-08-26 | Berthoud Sa | Pompe a piston a membrane a deroulement. |
EP0282675A3 (de) * | 1986-11-04 | 1990-01-03 | Bird Products Corporation | Strömungskontrollventil für medizinische Beatmungsgeräte |
GB8704104D0 (en) * | 1987-02-21 | 1987-03-25 | Manitoba University Of | Respiratory system load apparatus |
DE3900276A1 (de) * | 1989-01-07 | 1990-07-12 | Draegerwerk Ag | Beatmungsgeraet mit atemkreislauf und gesteuerter frischgaszufuhr |
US5331995A (en) * | 1992-07-17 | 1994-07-26 | Bear Medical Systems, Inc. | Flow control system for medical ventilator |
JPH09502623A (ja) | 1993-08-05 | 1997-03-18 | 内蒙古新優佳企業聨合聰公司 | 磁気治療方法及び磁気走査式治療装置 |
GB9410935D0 (en) * | 1994-06-01 | 1994-07-20 | Dranez Anstalt | Ventilator apparatus |
US5531221A (en) * | 1994-09-12 | 1996-07-02 | Puritan Bennett Corporation | Double and single acting piston ventilators |
EP0805697B1 (de) * | 1995-02-09 | 2002-06-26 | Puritan-Bennett Corporation | Beatmungsgerät der kolbenbauart |
CN1135327A (zh) * | 1995-05-08 | 1996-11-13 | 中国人民解放军海军医学高等专科学校教务部 | 液压式多功能电脑人体心肺复苏机 |
GB2306623B (en) * | 1995-10-31 | 1998-08-05 | Zamir Hayek | Fluid control valves |
JP3044396U (ja) * | 1997-06-13 | 1997-12-22 | 正幸 山本 | 人工呼吸装置 |
WO2001076476A2 (en) * | 2000-04-07 | 2001-10-18 | New York Medical College | Method and apparatus for measurement of in vivo air volumes |
US20020020414A1 (en) * | 2000-07-20 | 2002-02-21 | Fukunaga Atsuo F. | Multifunctional, multilumen valve assembly, assisted ventilation devices incorporating same, and new methods of resuscitation and ventilation |
RU2210064C2 (ru) * | 2001-05-15 | 2003-08-10 | Общество с ограниченной ответственностью "Научно-производственная фирма "ВИНАР" | Композиция для температурно-временного индикатора воздушной стерилизации |
RU2219964C2 (ru) | 2001-10-25 | 2003-12-27 | Открытое акционерное общество "Уральский приборостроительный завод" | Аппарат ингаляционного наркоза минимального потока |
US8561611B2 (en) | 2005-06-21 | 2013-10-22 | Ric Investments, Llc | Respiratory device measurement system |
JP2006006984A (ja) | 2005-09-22 | 2006-01-12 | Kawasaki Safety Service Industries Ltd | 人工呼吸装置および人工呼吸装置用空気ポンプ |
US9427540B2 (en) * | 2005-11-08 | 2016-08-30 | Carefusion 207, Inc. | High frequency oscillator ventilator |
CN1883433A (zh) * | 2006-06-02 | 2006-12-27 | 钟敬泉 | 主动性心肺复苏自动仪 |
-
2008
- 2008-05-30 EP EP08766977.6A patent/EP2164442B1/de active Active
- 2008-05-30 US US12/602,292 patent/US20100170512A1/en not_active Abandoned
- 2008-05-30 BR BRPI0812285A patent/BRPI0812285B8/pt active IP Right Grant
- 2008-05-30 WO PCT/NZ2008/000128 patent/WO2008147229A1/en active Application Filing
- 2008-05-30 RU RU2009148030/14A patent/RU2523820C2/ru active
- 2008-05-30 JP JP2010510249A patent/JP2010527737A/ja active Pending
- 2008-05-30 CA CA2688555A patent/CA2688555C/en active Active
- 2008-05-30 MX MX2009013001A patent/MX2009013001A/es active IP Right Grant
- 2008-05-30 CN CN200880023152.6A patent/CN101720215B/zh active Active
- 2008-05-30 AU AU2008257723A patent/AU2008257723A1/en not_active Abandoned
-
2015
- 2015-06-17 US US14/741,848 patent/US20150352302A1/en not_active Abandoned
-
2018
- 2018-03-20 US US15/926,393 patent/US11285281B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3530873A (en) * | 1969-03-26 | 1970-09-29 | Leon J Arp | Fluid delivery device |
US5092326A (en) * | 1987-11-19 | 1992-03-03 | Winn Bryan D | Apparatus and method for a ventilator system |
US20060021620A1 (en) * | 1996-12-12 | 2006-02-02 | Resmed Limited | Method and apparatus for substance delivery in system for supplying breathable gas |
US6152131A (en) * | 1998-08-26 | 2000-11-28 | Instrumentarium Corp. | Method and apparatus for detecting an empty breathing gas compartment in a patient ventilator |
US6264432B1 (en) * | 1999-09-01 | 2001-07-24 | Liquid Metronics Incorporated | Method and apparatus for controlling a pump |
US8230857B2 (en) * | 2004-11-11 | 2012-07-31 | Ric Investments, Llc. | Expiratory pressure regulation in a ventilator |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8955518B2 (en) | 2003-06-18 | 2015-02-17 | Breathe Technologies, Inc. | Methods, systems and devices for improving ventilation in a lung area |
US8381729B2 (en) | 2003-06-18 | 2013-02-26 | Breathe Technologies, Inc. | Methods and devices for minimally invasive respiratory support |
US8800557B2 (en) | 2003-07-29 | 2014-08-12 | Covidien Lp | System and process for supplying respiratory gas under pressure or volumetrically |
US8418694B2 (en) | 2003-08-11 | 2013-04-16 | Breathe Technologies, Inc. | Systems, methods and apparatus for respiratory support of a patient |
US8573219B2 (en) | 2003-08-18 | 2013-11-05 | Breathe Technologies, Inc. | Method and device for non-invasive ventilation with nasal interface |
US8136527B2 (en) | 2003-08-18 | 2012-03-20 | Breathe Technologies, Inc. | Method and device for non-invasive ventilation with nasal interface |
US8925545B2 (en) | 2004-02-04 | 2015-01-06 | Breathe Technologies, Inc. | Methods and devices for treating sleep apnea |
US8985099B2 (en) | 2006-05-18 | 2015-03-24 | Breathe Technologies, Inc. | Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer |
US10058668B2 (en) | 2007-05-18 | 2018-08-28 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and providing ventilation therapy |
US8567399B2 (en) | 2007-09-26 | 2013-10-29 | Breathe Technologies, Inc. | Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy |
US8776793B2 (en) | 2008-04-18 | 2014-07-15 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8770193B2 (en) | 2008-04-18 | 2014-07-08 | Breathe Technologies, Inc. | Methods and devices for sensing respiration and controlling ventilator functions |
US8677999B2 (en) | 2008-08-22 | 2014-03-25 | Breathe Technologies, Inc. | Methods and devices for providing mechanical ventilation with an open airway interface |
US9649458B2 (en) | 2008-09-30 | 2017-05-16 | Covidien Lp | Breathing assistance system with multiple pressure sensors |
US10252020B2 (en) | 2008-10-01 | 2019-04-09 | Breathe Technologies, Inc. | Ventilator with biofeedback monitoring and control for improving patient activity and health |
US8434479B2 (en) | 2009-02-27 | 2013-05-07 | Covidien Lp | Flow rate compensation for transient thermal response of hot-wire anemometers |
US8905024B2 (en) | 2009-02-27 | 2014-12-09 | Covidien Lp | Flow rate compensation for transient thermal response of hot-wire anemometers |
US9180270B2 (en) | 2009-04-02 | 2015-11-10 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube |
US9675774B2 (en) | 2009-04-02 | 2017-06-13 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles in free space |
US11896766B2 (en) | 2009-04-02 | 2024-02-13 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space |
US10709864B2 (en) | 2009-04-02 | 2020-07-14 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube |
US10232136B2 (en) | 2009-04-02 | 2019-03-19 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation for treating airway obstructions |
US10046133B2 (en) | 2009-04-02 | 2018-08-14 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation for providing ventilation support |
US11707591B2 (en) | 2009-04-02 | 2023-07-25 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube |
US9227034B2 (en) | 2009-04-02 | 2016-01-05 | Beathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation for treating airway obstructions |
US10695519B2 (en) | 2009-04-02 | 2020-06-30 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within nasal pillows |
US9962512B2 (en) | 2009-04-02 | 2018-05-08 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature |
US11103667B2 (en) | 2009-04-02 | 2021-08-31 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation with gas delivery nozzles in free space |
US9132250B2 (en) | 2009-09-03 | 2015-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US11154672B2 (en) | 2009-09-03 | 2021-10-26 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US10265486B2 (en) | 2009-09-03 | 2019-04-23 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US12048813B2 (en) | 2009-09-03 | 2024-07-30 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US8439037B2 (en) | 2009-12-01 | 2013-05-14 | Covidien Lp | Exhalation valve assembly with integrated filter and flow sensor |
US20110126836A1 (en) * | 2009-12-01 | 2011-06-02 | Nellcor Puritan Bennett Llc | Exhalation Valve Assembly With Selectable Contagious/Non-Contagious Latch |
US9205221B2 (en) | 2009-12-01 | 2015-12-08 | Covidien Lp | Exhalation valve assembly with integral flow sensor |
US8439036B2 (en) | 2009-12-01 | 2013-05-14 | Covidien Lp | Exhalation valve assembly with integral flow sensor |
US9987457B2 (en) | 2009-12-01 | 2018-06-05 | Covidien Lp | Exhalation valve assembly with integral flow sensor |
US8469031B2 (en) | 2009-12-01 | 2013-06-25 | Covidien Lp | Exhalation valve assembly with integrated filter |
US8469030B2 (en) | 2009-12-01 | 2013-06-25 | Covidien Lp | Exhalation valve assembly with selectable contagious/non-contagious latch |
US20120291779A1 (en) * | 2010-01-20 | 2012-11-22 | Koninklijke Philips Electronics, N.V. | Flow sensor and aerosol delivery device |
US10099028B2 (en) | 2010-08-16 | 2018-10-16 | Breathe Technologies, Inc. | Methods, systems and devices using LOX to provide ventilatory support |
US9358358B2 (en) | 2010-09-30 | 2016-06-07 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
US8939152B2 (en) | 2010-09-30 | 2015-01-27 | Breathe Technologies, Inc. | Methods, systems and devices for humidifying a respiratory tract |
US11638796B2 (en) | 2011-04-29 | 2023-05-02 | Covidien Lp | Methods and systems for exhalation control and trajectory optimization |
US10850056B2 (en) | 2011-04-29 | 2020-12-01 | Covidien Lp | Methods and systems for exhalation control and trajectory optimization |
US9629971B2 (en) | 2011-04-29 | 2017-04-25 | Covidien Lp | Methods and systems for exhalation control and trajectory optimization |
US9364624B2 (en) | 2011-12-07 | 2016-06-14 | Covidien Lp | Methods and systems for adaptive base flow |
US10543327B2 (en) | 2011-12-07 | 2020-01-28 | Covidien Lp | Methods and systems for adaptive base flow |
US11497869B2 (en) | 2011-12-07 | 2022-11-15 | Covidien Lp | Methods and systems for adaptive base flow |
US10709854B2 (en) | 2011-12-31 | 2020-07-14 | Covidien Lp | Methods and systems for adaptive base flow and leak compensation |
US11833297B2 (en) | 2011-12-31 | 2023-12-05 | Covidien Lp | Methods and systems for adaptive base flow and leak compensation |
US9498589B2 (en) | 2011-12-31 | 2016-11-22 | Covidien Lp | Methods and systems for adaptive base flow and leak compensation |
US9993604B2 (en) | 2012-04-27 | 2018-06-12 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US10806879B2 (en) | 2012-04-27 | 2020-10-20 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US9144658B2 (en) | 2012-04-30 | 2015-09-29 | Covidien Lp | Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control |
US9375542B2 (en) | 2012-11-08 | 2016-06-28 | Covidien Lp | Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation |
US11229759B2 (en) | 2012-11-08 | 2022-01-25 | Covidien Lp | Systems and methods for monitoring, managing, and preventing fatigue during ventilation |
US10543326B2 (en) | 2012-11-08 | 2020-01-28 | Covidien Lp | Systems and methods for monitoring, managing, and preventing fatigue during ventilation |
US9289573B2 (en) | 2012-12-28 | 2016-03-22 | Covidien Lp | Ventilator pressure oscillation filter |
USD731049S1 (en) | 2013-03-05 | 2015-06-02 | Covidien Lp | EVQ housing of an exhalation module |
USD736905S1 (en) | 2013-03-08 | 2015-08-18 | Covidien Lp | Exhalation module EVQ housing |
USD731065S1 (en) | 2013-03-08 | 2015-06-02 | Covidien Lp | EVQ pressure sensor filter of an exhalation module |
USD701601S1 (en) | 2013-03-08 | 2014-03-25 | Covidien Lp | Condensate vial of an exhalation module |
USD693001S1 (en) | 2013-03-08 | 2013-11-05 | Covidien Lp | Neonate expiratory filter assembly of an exhalation module |
USD731048S1 (en) | 2013-03-08 | 2015-06-02 | Covidien Lp | EVQ diaphragm of an exhalation module |
USD744095S1 (en) | 2013-03-08 | 2015-11-24 | Covidien Lp | Exhalation module EVQ internal flow sensor |
USD692556S1 (en) | 2013-03-08 | 2013-10-29 | Covidien Lp | Expiratory filter body of an exhalation module |
US11559641B2 (en) | 2013-03-11 | 2023-01-24 | Covidien Lp | Methods and systems for managing a patient move |
US10639441B2 (en) | 2013-03-11 | 2020-05-05 | Covidien Lp | Methods and systems for managing a patient move |
US9358355B2 (en) | 2013-03-11 | 2016-06-07 | Covidien Lp | Methods and systems for managing a patient move |
US9950135B2 (en) | 2013-03-15 | 2018-04-24 | Covidien Lp | Maintaining an exhalation valve sensor assembly |
US20160331917A1 (en) * | 2014-01-07 | 2016-11-17 | Smiths Medical International Limited | Respiratory therapy apparatus |
US11464924B2 (en) * | 2014-01-07 | 2022-10-11 | Smiths Medical International Limited | Respiratory therapy apparatus |
GB2557908A (en) * | 2014-06-24 | 2018-07-04 | Smiths Medical International Ltd | Ventilators |
WO2015198000A1 (en) * | 2014-06-24 | 2015-12-30 | Smiths Medical International Limited | Ventilators |
US20160094116A1 (en) * | 2014-09-30 | 2016-03-31 | Mindray Medical Sweden Ab | System and method for stabilizing a voice coil |
US9712033B2 (en) * | 2014-09-30 | 2017-07-18 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd | System and method for stabilizing a voice coil |
USD775345S1 (en) | 2015-04-10 | 2016-12-27 | Covidien Lp | Ventilator console |
FR3036944A1 (fr) * | 2015-06-08 | 2016-12-09 | Polycaptil | Dispositif de diagnostic de l'efficacite de la ventilation d'un patient et procede de ventilation d'un patient |
US20180160970A1 (en) * | 2015-06-08 | 2018-06-14 | Polycaptil | Device for diagnosing the efficacy of ventilation of a patient and method for determining the ventilatory efficacy of a patient |
WO2016198275A1 (fr) * | 2015-06-08 | 2016-12-15 | Polycaptil | Dispositif de diagnostic de l'efficacite de la ventilation d'un patient et procede pour determiner l'efficacite ventilatoire d'un patient |
US20170095631A1 (en) * | 2015-10-01 | 2017-04-06 | Atsuo F. Fukunaga | Resuscitator with distal oxygen inlet, breathing circuits having reusable and disposable components, systems and methods for resuscitation and providing assisted ventilation and anesthesia, and kits and components therefore |
US12017002B2 (en) | 2017-10-03 | 2024-06-25 | Breathe Technologies, Inc. | Patient interface with integrated jet pump |
US10792449B2 (en) | 2017-10-03 | 2020-10-06 | Breathe Technologies, Inc. | Patient interface with integrated jet pump |
US11559643B2 (en) | 2017-11-14 | 2023-01-24 | Covidien Lp | Systems and methods for ventilation of patients |
US11931509B2 (en) | 2017-11-14 | 2024-03-19 | Covidien Lp | Systems and methods for drive pressure spontaneous ventilation |
US10668239B2 (en) | 2017-11-14 | 2020-06-02 | Covidien Lp | Systems and methods for drive pressure spontaneous ventilation |
US20200353202A1 (en) * | 2018-01-10 | 2020-11-12 | Intersurgical Ag | Gas flow controller and a valve pin for a gas flow controller |
US11517691B2 (en) | 2018-09-07 | 2022-12-06 | Covidien Lp | Methods and systems for high pressure controlled ventilation |
US11896767B2 (en) | 2020-03-20 | 2024-02-13 | Covidien Lp | Model-driven system integration in medical ventilators |
EP4114491A4 (de) * | 2020-04-05 | 2024-04-03 | Respirana, Inc. | Kolbenwiederbelebungs- und/oder beatmungssysteme, vorrichtungen und verfahren zur verwendung davon |
US20210316095A1 (en) * | 2020-04-09 | 2021-10-14 | Ator Labs, Inc. | Emergency ventilator system |
US11975144B2 (en) * | 2020-04-09 | 2024-05-07 | Ator Labs, Inc. | Emergency ventilator system |
US20220023560A1 (en) * | 2020-07-24 | 2022-01-27 | Pratt & Whitney Canada Corp. | Patient ventilator, method of ventilating an airway of a patient, and controller therefor |
Also Published As
Publication number | Publication date |
---|---|
EP2164442A4 (de) | 2014-09-10 |
MX2009013001A (es) | 2010-02-18 |
BRPI0812285B1 (pt) | 2019-06-18 |
WO2008147229A1 (en) | 2008-12-04 |
BRPI0812285A2 (pt) | 2014-11-25 |
CA2688555C (en) | 2021-11-23 |
EP2164442B1 (de) | 2019-12-25 |
US20150352302A1 (en) | 2015-12-10 |
CA2688555A1 (en) | 2008-12-04 |
CN101720215A (zh) | 2010-06-02 |
AU2008257723A1 (en) | 2008-12-04 |
US20190060592A1 (en) | 2019-02-28 |
JP2010527737A (ja) | 2010-08-19 |
RU2523820C2 (ru) | 2014-07-27 |
RU2009148030A (ru) | 2011-07-10 |
US11285281B2 (en) | 2022-03-29 |
CN101720215B (zh) | 2014-03-26 |
BRPI0812285B8 (pt) | 2021-06-22 |
EP2164442A1 (de) | 2010-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11285281B2 (en) | Electrically operable resuscitators | |
EP0283141B1 (de) | Lungenbeatmungsgerät | |
US9259547B2 (en) | Systems for reducing exhalation pressure in a mask system | |
US8960193B2 (en) | Mobile medical ventilator | |
US11964108B2 (en) | Process and device for ventilating a patient | |
JP6326569B2 (ja) | 呼吸補助装置 | |
WO2017029629A1 (en) | Improvements to electrically operable resuscitators | |
CA2611603A1 (en) | Respiratory device measurement system | |
US20230233792A1 (en) | Ventilation system with improved valving | |
US20200316327A1 (en) | Device for ventilating a patient | |
US20130204151A1 (en) | Augmented Incentive Spirometer | |
WO2021203189A1 (en) | Portable piston icu ventilator | |
US20140144447A1 (en) | Conduit | |
US20220193352A1 (en) | Electrically operable resuscitators | |
CN101983738A (zh) | 呼吸机用的压力控制阀 | |
US20210213234A1 (en) | High flow oxygen therapy with on-demand humidification and an active exhalation valve | |
TW202435925A (zh) | 具有改進的閥門的通風系統 | |
CN117098576A (zh) | 为患者气道提供冲击性通气治疗的方法和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |