[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20100135834A1 - Double-piston mechanism of an emulsion squeeze head - Google Patents

Double-piston mechanism of an emulsion squeeze head Download PDF

Info

Publication number
US20100135834A1
US20100135834A1 US12/327,709 US32770908A US2010135834A1 US 20100135834 A1 US20100135834 A1 US 20100135834A1 US 32770908 A US32770908 A US 32770908A US 2010135834 A1 US2010135834 A1 US 2010135834A1
Authority
US
United States
Prior art keywords
piston
connecting portion
groove
flange
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/327,709
Inventor
Kun-Lung Tseng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIVING FOUNTAIN PLASTIC INDUSTRIAL Co Ltd
Living Fountain Plastic Ind Co Ltd
Original Assignee
Living Fountain Plastic Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Living Fountain Plastic Ind Co Ltd filed Critical Living Fountain Plastic Ind Co Ltd
Priority to US12/327,709 priority Critical patent/US20100135834A1/en
Assigned to LIVING FOUNTAIN PLASTIC INDUSTRIAL CO., LTD. reassignment LIVING FOUNTAIN PLASTIC INDUSTRIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSENG, KUN-LUNG
Publication of US20100135834A1 publication Critical patent/US20100135834A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/14Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts
    • B05B15/18Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts for improving resistance to wear, e.g. inserts or coatings; for indicating wear; for handling or replacing worn parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1001Piston pumps

Definitions

  • the present invention relates generally to an emulsion squeeze head, and more particularly to an innovative squeeze head with a double-piston mechanism mounted onto the suction pipe of an actuating cylinder.
  • the emulsion squeeze head is structurally designed in a manner that the pumping action is implemented by the lifting and sliding action of a piston in an actuating cylinder.
  • the pumping quality and service life of the emulsion squeeze head is closely related to wear and tear of the piston.
  • the concentration of emulsion is also a crucial influential factor to the wear and tear of piston.
  • a close friction will occur between the sliding piston and the wall of the actuating cylinder, leading to possible wear and tear of the piston, failure of air-tightness, degraded pumping effect, poorer endurance and shorter service life of the emulsion squeeze head.
  • the inventor has provided the present invention of practicability after deliberate design and evaluation based on years of experience in the production, development and design of related products.
  • the double-piston mechanism of the emulsion squeeze head is mainly composed of a first and a second piston. It is possible to improve the robustness and extend the life span of the piston mechanism of the emulsion squeeze head with better applicability.
  • the first tube of the first piston and the second tube of the second piston can be set into different lengths.
  • the first flange of the first piston and the second flange of the second piston are provided with space or without space, thus adapting itself to different suction spaces and strengths of the emulsion squeeze heads.
  • FIG. 1 shows an assembled sectional view of emulsion squeeze head of the present invention.
  • FIG. 2 shows an exploded perspective view of the piston set of the present invention.
  • FIG. 3 shows an exploded sectional view of the piston set of the present invention.
  • FIG. 4 shows another exploded sectional view of the piston set of the present invention.
  • FIG. 5 shows another assembled sectional view of the piston set of the present invention.
  • FIGS. 1-3 depict preferred embodiments of a double-piston mechanism of the emulsion squeeze head of the present invention. The embodiments are not provided for only explanatory purposes with respect to the claims.
  • the emulsion squeeze head A comprises an actuating syringe 10 and a suction pipe 20 in the actuating groove 11 of the actuating syringe 10 .
  • the top of the suction pipe 20 is connected with a pressing head 30 , while an elastic resetter 40 (a spring) is arranged between the bottom of the suction pipe 20 and the bottom wall of the actuating groove 11 .
  • an elastic resetter 40 (a spring) is arranged between the bottom of the suction pipe 20 and the bottom wall of the actuating groove 11 .
  • a stopper 50 (a steel ball) is placed at the bottom of the actuating groove 11 .
  • the suction pipe 20 is also provided with a piston set 60 .
  • the piston set includes a first piston 61 , including a first connecting portion 611 and a first flange 612 .
  • the first connecting portion 611 is assembled onto the suction pipe 20 , and the first flange 612 is abutted on the wall of the actuating groove 11 .
  • the piston set also includes a second piston 62 , which is placed at one end of the first piston 61 , including a second connecting portion 621 and a second flange 622 .
  • the second connecting portion 621 is assembled onto the first piston 61 , and the second flange 622 is abutted on the wall of the actuating groove 11 .
  • the piston set 60 is a double-piston mechanism composed of first piston 61 and second piston 62 .
  • first piston 61 and second piston 62 are air-sealed synchronously with the wall of the actuating groove 11 .
  • the emulsion attached on the wall of the actuating groove 11 will be fully erased by the lower second piston 62 .
  • the possible tear and wear only occurs on the second flange 622 of the second piston 62 , thereby maintaining the optimum air-tightness and pumping function.
  • the first piston 61 can be combined with the second piston 62 , so that a first tube 613 is formed at one end of the first connecting portion 611 of the first piston 61 , and a first groove 614 formed at the other end of the first connecting portion 611 .
  • a second tube 623 is formed at one end of the second connecting portion 621 of the second piston 62 , and a second groove 624 formed at the other end of the second connecting portion 621 .
  • the first tube 613 can be inserted into the second groove 624
  • the second tube 623 can be inserted into the first groove 614 , enabling the first piston 61 to be mated with the second piston 62 .
  • first tube 613 of the first piston 61 and the second tube 623 of the second piston 62 can be set into different lengths.
  • the first flange 612 of the first piston 61 and the second flange 622 of the second piston 62 are provided with space or without space.
  • the first tube 613 of the first piston 61 is shorter than the second tube 623 of the second piston 62 .
  • FIGS. 2-3 when the second piston 62 is assembled onto the bottom of the first piston 61 , a space W 1 will be formed between the first flange 612 of the first piston 61 and the second flange 622 of the second piston 62 .
  • the first piston 61 and second piston 62 can also be prefabricated.

Landscapes

  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

The present invention provides a double-piston mechanism of an emulsion squeeze head, having an actuating syringe and a suction pipe. A top of the suction pipe is connected to a pressing head, while an elastic resetter is arranged between the bottom of the suction pipe and the bottom wall of the actuating groove. The suction pipe is also provided with a piston set. The piston set includes a first piston, with a first connecting portion and a first flange, and a second piston. The first connecting portion is assembled onto the suction pipe, and the first flange is abutted on the wall of the actuating groove. The second piston, placed at one end of the first piston, includes a second connecting portion and a second flange. The second connecting portion is assembled onto the first piston, and the second flange is abutted on the wall of the actuating groove.

Description

    CROSS-REFERENCE TO RELATED U.S. APPLICATIONS
  • Not applicable.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable.
  • NAMES OF PARTIES TO A JOINT RESEARCH AGREEMENT
  • Not applicable.
  • REFERENCE TO AN APPENDIX SUBMITTED ON COMPACT DISC
  • Not applicable.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to an emulsion squeeze head, and more particularly to an innovative squeeze head with a double-piston mechanism mounted onto the suction pipe of an actuating cylinder.
  • 2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98
  • The emulsion squeeze head is structurally designed in a manner that the pumping action is implemented by the lifting and sliding action of a piston in an actuating cylinder. The pumping quality and service life of the emulsion squeeze head is closely related to wear and tear of the piston.
  • In addition to the quality of the materials for the piston, the concentration of emulsion is also a crucial influential factor to the wear and tear of piston. As the emulsion with a higher concentration always contains fine articles, a close friction will occur between the sliding piston and the wall of the actuating cylinder, leading to possible wear and tear of the piston, failure of air-tightness, degraded pumping effect, poorer endurance and shorter service life of the emulsion squeeze head.
  • Thus, to overcome the aforementioned problems of the prior art, it would be an advancement in the art to provide an improved structure that can significantly improve efficacy.
  • Therefore, the inventor has provided the present invention of practicability after deliberate design and evaluation based on years of experience in the production, development and design of related products.
  • BRIEF SUMMARY OF THE INVENTION
  • There is enhanced efficacy of the present invention.
  • Based on the present invention, the double-piston mechanism of the emulsion squeeze head is mainly composed of a first and a second piston. It is possible to improve the robustness and extend the life span of the piston mechanism of the emulsion squeeze head with better applicability.
  • The improvements brought about by this invention are as follows:
  • Based on the structure of the present invention, the first tube of the first piston and the second tube of the second piston can be set into different lengths. The first flange of the first piston and the second flange of the second piston are provided with space or without space, thus adapting itself to different suction spaces and strengths of the emulsion squeeze heads.
  • Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 shows an assembled sectional view of emulsion squeeze head of the present invention.
  • FIG. 2 shows an exploded perspective view of the piston set of the present invention.
  • FIG. 3 shows an exploded sectional view of the piston set of the present invention.
  • FIG. 4 shows another exploded sectional view of the piston set of the present invention.
  • FIG. 5 shows another assembled sectional view of the piston set of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The features and the advantages of the present invention will be more readily understood upon a thoughtful deliberation of the following detailed description of a preferred embodiment of the present invention with reference to the accompanying drawings.
  • FIGS. 1-3 depict preferred embodiments of a double-piston mechanism of the emulsion squeeze head of the present invention. The embodiments are not provided for only explanatory purposes with respect to the claims.
  • The emulsion squeeze head A comprises an actuating syringe 10 and a suction pipe 20 in the actuating groove 11 of the actuating syringe 10. The top of the suction pipe 20 is connected with a pressing head 30, while an elastic resetter 40 (a spring) is arranged between the bottom of the suction pipe 20 and the bottom wall of the actuating groove 11. Moreover, a stopper 50(a steel ball) is placed at the bottom of the actuating groove 11. The suction pipe 20 is also provided with a piston set 60.
  • The piston set includes a first piston 61, including a first connecting portion 611 and a first flange 612. The first connecting portion 611 is assembled onto the suction pipe 20, and the first flange 612 is abutted on the wall of the actuating groove 11. The piston set also includes a second piston 62, which is placed at one end of the first piston 61, including a second connecting portion 621 and a second flange 622. The second connecting portion 621 is assembled onto the first piston 61, and the second flange 622 is abutted on the wall of the actuating groove 11.
  • Based on the aforementioned structures, the key design of the present invention is that the piston set 60 is a double-piston mechanism composed of first piston 61 and second piston 62. When the sliding piston set 60 is lifted in the actuating groove 11 of the actuating syringe 10 (referring to FIG. 1), the first piston 61 and second piston 62 are air-sealed synchronously with the wall of the actuating groove 11. Meanwhile, the emulsion attached on the wall of the actuating groove 11 will be fully erased by the lower second piston 62. In such case, the possible tear and wear (high friction caused by dense emulsion) only occurs on the second flange 622 of the second piston 62, thereby maintaining the optimum air-tightness and pumping function.
  • Referring to FIGS. 1-3, the first piston 61 can be combined with the second piston 62, so that a first tube 613 is formed at one end of the first connecting portion 611 of the first piston 61, and a first groove 614 formed at the other end of the first connecting portion 611. A second tube 623 is formed at one end of the second connecting portion 621 of the second piston 62, and a second groove 624 formed at the other end of the second connecting portion 621. Moreover, the first tube 613 can be inserted into the second groove 624, and the second tube 623 can be inserted into the first groove 614, enabling the first piston 61 to be mated with the second piston 62.
  • Furthermore, the first tube 613 of the first piston 61 and the second tube 623 of the second piston 62 can be set into different lengths. The first flange 612 of the first piston 61 and the second flange 622 of the second piston 62 are provided with space or without space. In this preferred embodiment, the first tube 613 of the first piston 61 is shorter than the second tube 623 of the second piston 62. Referring to FIGS. 2-3, when the second piston 62 is assembled onto the bottom of the first piston 61, a space W1 will be formed between the first flange 612 of the first piston 61 and the second flange 622 of the second piston 62. Referring also to FIG. 4, when the second piston 62 is assembled onto the top of the first piston 61, the first flange 612 of the first piston 61 is closely abutted with the second flange 622 of the second piston 62 (shown in FIG. 5).
  • The first piston 61 and second piston 62 can also be prefabricated.

Claims (4)

1. A double-piston mechanism of an emulsion squeeze head, said emulsion squeeze head being comprised of an actuating syringe, having an actuating groove with a bottom wall, and a suction pipe being housed in said actuating groove, said suction pipe having a top connected to a pressing head and a bottom with an elastic resetter, said elastic resetter being arranged between the bottom of the suction pipe and the bottom wall of the actuating groove, said actuating groove having a bottom with a stopper placed therein, the double-piston mechanism being a piston set and comprising:
a first piston, having a first connecting portion and a first flange, said first connecting portion being assembled onto said suction pipe, said first flange abutting a wall of said actuating groove; and
a second piston, being placed at one end of said first piston, and comprising a second connecting portion and a second flange, said second connecting portion being assembled onto said first piston, said second flange abutting a wall of said actuating groove.
2. The double-piston mechanism defined in claim 1, wherein said first piston combines with said second piston, forming a first tube at one end of said first connecting portion, first groove being formed at the other end of said first connecting portion, forming a second tube at one end of said second connecting portion, a second groove being formed at the other end of the second connecting portion, said first tube being inserted into said second groove, said second tube being inserted into said first groove, said first piston being mated with said second piston.
3. The double-piston mechanism defined in claim 2, wherein said first tube of said first piston and said second tube of said second piston have different lengths.
4. The double-piston mechanism defined in claim 1, wherein said first piston and said second piston are prefabricated.
US12/327,709 2008-12-03 2008-12-03 Double-piston mechanism of an emulsion squeeze head Abandoned US20100135834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/327,709 US20100135834A1 (en) 2008-12-03 2008-12-03 Double-piston mechanism of an emulsion squeeze head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/327,709 US20100135834A1 (en) 2008-12-03 2008-12-03 Double-piston mechanism of an emulsion squeeze head

Publications (1)

Publication Number Publication Date
US20100135834A1 true US20100135834A1 (en) 2010-06-03

Family

ID=42222983

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/327,709 Abandoned US20100135834A1 (en) 2008-12-03 2008-12-03 Double-piston mechanism of an emulsion squeeze head

Country Status (1)

Country Link
US (1) US20100135834A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217124A1 (en) * 2011-09-20 2014-08-07 Yonwoo Co., Ltd. Spray pump
WO2018044617A1 (en) * 2016-08-29 2018-03-08 Silgan Dispensing Systems Corporation Inline vacuum spring sustained duration sprayer
US11332279B2 (en) 2020-09-25 2022-05-17 World Club Supply Corporation Liquid dispenser apparatus
USD994498S1 (en) 2021-08-13 2023-08-08 World Club Supply Corporation Liquid dispenser
USD996975S1 (en) 2021-08-13 2023-08-29 World Club Supply Corporation Liquid dispenser apparatus
USD1010444S1 (en) 2021-08-13 2024-01-09 World Club Supply Corp. Combined pump top and skirt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458090A (en) * 1967-12-01 1969-07-29 Cook Chem Co Fluid dispenser with adjustable stroke pump piston
US5482188A (en) * 1992-01-20 1996-01-09 Valois S.A. Precompression pump
US6056163A (en) * 1999-07-28 2000-05-02 Lai; Jenn-Shyang Liquid dispenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458090A (en) * 1967-12-01 1969-07-29 Cook Chem Co Fluid dispenser with adjustable stroke pump piston
US5482188A (en) * 1992-01-20 1996-01-09 Valois S.A. Precompression pump
US6056163A (en) * 1999-07-28 2000-05-02 Lai; Jenn-Shyang Liquid dispenser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217124A1 (en) * 2011-09-20 2014-08-07 Yonwoo Co., Ltd. Spray pump
US9566596B2 (en) * 2011-09-20 2017-02-14 Yonwoo Co., Ltd. Spray pump
WO2018044617A1 (en) * 2016-08-29 2018-03-08 Silgan Dispensing Systems Corporation Inline vacuum spring sustained duration sprayer
US10618072B2 (en) * 2016-08-29 2020-04-14 Silgan Dispensing Systems Corporation Inline vacuum spring sustained duration sprayer
US11332279B2 (en) 2020-09-25 2022-05-17 World Club Supply Corporation Liquid dispenser apparatus
USD994498S1 (en) 2021-08-13 2023-08-08 World Club Supply Corporation Liquid dispenser
USD996975S1 (en) 2021-08-13 2023-08-29 World Club Supply Corporation Liquid dispenser apparatus
USD1010444S1 (en) 2021-08-13 2024-01-09 World Club Supply Corp. Combined pump top and skirt

Similar Documents

Publication Publication Date Title
US20100135834A1 (en) Double-piston mechanism of an emulsion squeeze head
US20180073653A1 (en) Valve seats for use in fracturing pumps
US7574946B1 (en) Magnetic assembly of a screwdriver head rod
US8490653B2 (en) Ceramic valve core with cold/hot separation point snapping functions
US20100012682A1 (en) Pumps and Methods for Using the Same
WO2011011434A3 (en) Gaseous fluid pump
WO2007081192A3 (en) Discharge valve assembly for linear compressor
EP1468938A4 (en) Emulsion pump with a gas path
USD583884S1 (en) Hand exerciser
CA2508270A1 (en) Wear rings for downhole pump
AU783477B2 (en) Fluid compressing apparatus
EP1568887A3 (en) Two-stage rotary compressor
ATE361438T1 (en) LENGTH-ADJUSTABLE COMPRESSION SPRING
AU783588B2 (en) Apparatus for compressing fluid
US7654886B2 (en) Pneumatic grinder
PL1714059T3 (en) Metallic cylinder head gasket
US8549987B2 (en) Piston seal guide bearing
ATE401994T1 (en) IMPACT DEVICE WITH A CONTROL VALVE FOR TWO ALTERNATING PISTONS
EP1158163A3 (en) Piston for swash plate compressor
WO2006044915A3 (en) Air valve for an air driven reciprocating device
US20060162549A1 (en) Air pump having cylinder with non-circular configuration in cross section
WO2009044757A1 (en) Compressor
JP3022942U (en) Air pump
WO2006021607A3 (en) Crank joint
USD539538S1 (en) Check presenter

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIVING FOUNTAIN PLASTIC INDUSTRIAL CO., LTD.,TAIWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TSENG, KUN-LUNG;REEL/FRAME:021933/0713

Effective date: 20081127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION