US20100108303A1 - Heat exchanger construction - Google Patents
Heat exchanger construction Download PDFInfo
- Publication number
- US20100108303A1 US20100108303A1 US12/593,745 US59374508A US2010108303A1 US 20100108303 A1 US20100108303 A1 US 20100108303A1 US 59374508 A US59374508 A US 59374508A US 2010108303 A1 US2010108303 A1 US 2010108303A1
- Authority
- US
- United States
- Prior art keywords
- tube
- body elements
- heat exchanger
- pair
- headers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
- B23K1/0012—Brazing heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05375—Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/04—Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
- F28F3/027—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
- F28F9/0204—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
- F28F9/0209—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
- F28F9/0212—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0219—Arrangements for sealing end plates into casing or header box; Header box sub-elements
- F28F9/0224—Header boxes formed by sealing end plates into covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/04—Fastening; Joining by brazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49389—Header or manifold making
Definitions
- the present invention relates to the field of heat exchangers.
- Heat exchangers are well known in the prior art and typically include a pair of headers between which extend a plurality of tubes, and a plurality of fins interleaved between the tubes.
- An exemplary heat exchanger of the prior art is illustrated, partially conceptually, in FIG. 1 .
- the tubes are extruded elements which are fitted into apertures formed in the headers and sealed thereto by flux brazing.
- the tubes can be multi-port aluminum extrusions, having a plurality of discrete fluid passages defined lengthwise of the tube.
- the tubes can also be seam-welded tubes or extruded tubes having a single longitudinal interior passage. In the latter case, to improve heat transfer characteristics it is known to push or draw through the tube an elongate turbulizer of expanded metal or the like.
- the headers are often formed of a tubular part in which the apertures are defined and which is defined by a pair of trough-shaped or channel elements, and a pair of caps which close the ends of the tubular part.
- the trough-shaped elements and caps are brazed or welded together.
- the trough-shaped elements are often of differing dimensions, such that the longitudinal peripheral edges of one of the trough-shaped elements fit within the longitudinal peripheral edges of the other, as shown in FIG. 2 . This facilitates fixturing during the brazing operation.
- the channel elements can be self-fixturing, i.e. snap-fittable within one another, or an external fixture can be utilized.
- An improved heat exchanger said heat exchanger being of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers, forms one aspect of the invention.
- the improvement comprises: a tubular structure for and defining in part each of said headers, the tubular structure being defined by a pair of body elements and having opposed longitudinal joints defined by overlapping portions of the body elements. One of the body elements overlaps the other of the body elements to define one of the joints and is overlapped by the other of the body elements to define the other of the joints.
- one of the body elements can have an aperture for each tube; and each tube can interface with the other of the body elements in a single butt joint.
- the body elements can be channels of arcuate profile with longitudinal edge portions that define the overlapping portions; and measured in the direction by which the longitudinal edge portions of the other of the body elements are spaced-apart from one another, an outer width of each tube can be substantially equal to the distance by which said longitudinal edge portions are spaced-apart.
- An improved heat exchanger selected from the group including condensers and evaporators for automotive air conditioners and automotive oil coolers and radiators forms another aspect of the invention.
- the heat exchanger is of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers.
- the improvement comprises: a cover and a pan interfitted with and brazed to the cover to define each tube.
- a tubular structure can be provided for and define in part each of said pair of headers; and the tubes can be brazed to the headers.
- the tubular structure can be defined by a pair of body elements of arcuate profile brazed together.
- a turbulizer in each tube a turbulizer can be provided, the turbulizer including a pair of coplanar base flanges dimensioned to centre the turbulizer in the tube.
- An improved turbulizer of the type for use in a tube formed of cooperating portions brazed together, forms another aspect of the invention.
- the improvement comprises: a pair of coplanar flanges dimensioned to centre the turbulizer in the tube in use.
- a method for constructing a heat exchanger forms another aspect of the invention.
- the heat exchanger is of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers.
- the method comprises the steps of: for each header, providing a pair of body elements each formed of brazing clad material; and brazing the body elements together such that the headers each have opposed longitudinal joints defined by overlapping portions of the body elements, one of the body elements overlapping the other of the body elements to define one of the joints and being overlapped by the other of the body elements to define the other of the joints.
- a tubular assembly formed of brazing clad material can be provided; one of the body elements can have an aperture formed therein for each tube and the tubular assembly for each tube can be fitted into the apertures formed for said each tube; and the body elements and the tubular assemblies can be brazed together to form said heat exchanger.
- each tubular assembly can interface with the other of the body elements in a single butt joint.
- the body elements can be channels of arcuate profile with longitudinal edge portions that define the overlapping portions; and in the heat exchanger, measured in the direction by which the longitudinal edge portions of the other of the body elements are spaced-apart from one another, an outer width of each tube can be substantially equal to the distance by which said longitudinal edge portions are spaced-apart.
- a method of constructing a heat exchanger selected from the group including condensers and evaporators for automotive air conditioners and automotive oil coolers and radiators, is disclosed.
- the heat exchanger is of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers.
- the method comprises the steps of: for each header, providing a tubular structure formed of brazing clad material, the tubular structure having an aperture formed therein for each tube; for each tube, providing a cover and a pan, both formed of brazing clad material and fitting the pan into the cover to form a tubular assembly; fitting the tubular assembly for each tube into the apertures formed for said each tube; and brazing the tubular structures, the covers and the pans together.
- each tubular structure can be provided a pair of body elements each formed of brazing clad material, one of the body elements defining the apertures for said each tubular structure; and the body elements can be fitted together to form said tubular structure, and brazed to one another when the tubular structures, the covers and the pans are brazed together.
- a turbulizer for each tube a turbulizer can be provided and fitted into the cover provided for said each tube to form a tube subassembly, into which tube subassembly the pan provided for said each tube is fitted to form the tubular assembly.
- each turbulizer can be provided with a pair of coplanar flanges dimensioned to centre said each turbulizer in the tube for which it is provided.
- each of the pan and cover can include a body plate and a pair of peripheral flanges extending from the body plate; and prior to assembly of the pan and cover, the turbulizer can be inserted into the cover, with the flanges seated against the cover body plate.
- the heat exchanger forms another aspect of the invention.
- the heat exchanger is of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers.
- the improvement comprises: a cover and a pan interfitted with and brazed to the cover to define each tube.
- a turbulizer is provided, the turbulizer including a pair of coplanar base flanges dimensioned to centre the turbulizer in the tube.
- a tubular structure can be provided for and define in part each of said pair of headers, the tubular structure being defined by a pair of body elements brazed together.
- the invention permits the construction of heat exchangers of relatively high performance and durability at relatively low cost.
- FIG. 1 is a perspective, partially conceptual view of a heat exchanger according to the prior art
- FIG. 2 is a top view of the structure of FIG. 1 ;
- FIG. 3 is a partial perspective view of a heat exchanger according to an exemplary embodiment of the invention.
- FIG. 4 is a perspective view of a cap portion of the structure of FIG. 3 ;
- FIG. 5 is a cross-sectional view of a portion of the structure of FIG. 3 ;
- FIG. 5A is a simplified view of a portion of FIG. 5 ;
- FIG. 6 is a view similar to FIG. 5 of the structure of FIG. 1 ;
- FIG. 6A is a simplified view of a portion of FIG. 6 ;
- FIG. 7 is a cross-sectional view of a portion of a tube of the structure of FIG. 3 ;
- FIG. 8 is a cross-sectional view of another portion of a tube of the structure of FIG. 3 ;
- FIG. 9 is a cross-sectional view of a tube of the structure of FIG. 3 ;
- FIG. 10 is an enlarged view of encircled area 10 of FIG. 9 ;
- FIG. 11 is a view, similar to FIG. 2 , of a pair of heat exchangers according to a further exemplary embodiment of the invention disposed in stacked relation.
- An improved heat exchanger 20 forms one aspect of the invention and is illustrated in partial perspective in FIG. 3 .
- the illustrated heat exchanger 20 is an exemplary embodiment, only, and is not to be construed as limiting in any way to the scope of the invention.
- Exchanger 20 will be seen to be of the general type including a pair of headers 22 (only one shown); a plurality of tubes 24 extending between and fluidly connecting the headers 22 ; and a plurality of fins 26 interleaved between the tubes 24 .
- the exchanger 20 shown will further be seen to be of the two pass type, with inlet 28 and outlet 30 spigots disposed at opposite ends of the same manifold or header 22 , which header 22 is segmented by an intermediate plate (shown in phantom and designated with reference numeral 32 ) to avoid direct flow between the inlet 28 and outlet 30 .
- the improvement resides in various features of construction of the headers 22 and tubes 24 , and the interconnection therebetween, all as described hereinafter in detail.
- the headers 22 each comprise a pair of body elements 34 , 36 and a pair of caps 38 .
- the body elements 34 , 36 are roll-formed or stamped channels or troughs of arcuate profile with longitudinal edge portions 40 and are formed out of braze clad aluminum of 1.0 mm thickness.
- One of the elements 34 has a plurality of apertures 136 punched or otherwise formed therein for receiving the tubes 24 , as discussed fully hereinafter.
- the other of the elements 36 has the spigots 28 , 30 extending therefrom, and is provided with notches 42 at its ends and an intermediate slot 44 .
- the caps 38 are planar elements formed out of 3.0 mm unclad aluminum sheet material.
- the pair of body elements 34 , 36 When assembled, the pair of body elements 34 , 36 define a tubular structure 46 , the ends 48 of which are occluded by respective caps 38 . Tabs 50 on the caps 38 register with the notches 42 . A further “cap” has its tab 50 in register within the intermediate slot 44 and defines the intermediate plate 32 in this condenser 20 .
- the body elements 34 , 36 and caps 38 are assembled together and exposed to brazing conditions in a brazing furnace (not shown).
- the caps 38 “master” the joint, such that dimensional issues are controlled by the cap, which is advantageous from the standpoint of manufacturability.
- the completed header 22 illustrated is characterized in the presence of opposed longitudinal joints 52 , 54 defined by overlapping portions 40 of the body elements 34 , 36 . More specifically, one of the body elements 34 , 36 overlaps the other of the body elements 34 , 36 to define one of the joints 52 and is overlapped by the other of the body elements to define the other 54 of the joints, as shown in FIG. 5 . In the illustrated embodiment, the portions 40 overlap one another over a distance of about 3.0 mm, to provide for a good seal in the joints 52 , 54 .
- This “overlap and underlap” arrangement of the body elements 34 , 36 is advantageous as compared to the conventional “overlap and overlap” arrangement (i.e of FIG. 2 ) in that, by so modifying the geometry, with a substantially similar amount of material, a tube having a greater cross-sectional area is obtained.
- FIG. 5 which shows a cross section of the header of FIG. 3 and a portion of a tube
- FIG. 6 shows the analogous structure of a heat exchanger of similar size constructed according to the conventional overlap and overlap arrangement, which has a cross-sectional area only 84% as large as that of FIG. 5 , as indicated by FIGS. 5A , 6 A.
- the greater area of the FIG. 5 structure advantageously reduces pressure drop.
- a yet further advantage of the “overlap and underlap” arrangement is associated with the elegant and efficient manner in which multiple heat exchangers 20 can be stacked together, as shown in FIG. 11 , with only three material thicknesses separating the manifold interiors, in contrast to the four material thicknesses associated with the conventional “overlap and overlap”. This has advantages in terms of the overall width of a stacked heat exchanger, which can be advantageous in automotive applications, as the space available in the engine compartment or air box of a vehicle is limited.
- the tubes 24 of the disclosed embodiment are defined by a cover 56 and a pan 58 , as shown in FIGS. 7 and 8 , respectively.
- the cover 56 is formed of braze clad aluminum of 0.4 mm thickness and includes a body plate 60 and a pair of peripheral flanges 62 extending from the body plate 60 .
- the pan 58 is also formed of braze clad aluminum of 0.4 mm thickness and includes a body plate 64 and pair of peripheral flanges 66 .
- the pan 58 is dimensioned to fit within the cover 56 .
- the assembled, but not brazed, pan 58 and cover 56 together define a tubular assembly. Once exposed to brazing conditions, the pan 58 and the cover 56 braze to one another to define a tube 24 .
- This tube construction is advantageous, in that it permits a fluxless braze joint to be created between the tubes 24 and the headers 22 , even in association with manifolds constructed out of relatively thin gauge material, such as 0.020′′-0.070′′ inch material, as the brazing material on the tubes accommodates the relatively lesser amounts of brazing material provided on the headers in thin-wall construction.
- the tubular assembly for each tube 24 is fitted into the apertures 136 formed for said each tube 24 in the body elements 34 , as shown in FIG. 5 , and the entire assembly is subjected to brazing conditions in a brazing furnace, to braze the pans 58 to the covers 56 , the body elements 34 , 36 to one another, the caps 38 to the body elements 34 , 36 and the tubes 24 to the headers 22 .
- Flared material 70 resultant from the punching operation by which the apertures 136 in the body elements 34 were formed, can be maintained, to provide a relatively large lap joint for tube 24 -header 22 braze joint. This can also facilitate tube entry.
- each tubular assembly interfaces with the other 36 of the body elements in a single butt joint, and is further characterized in that, measured in the direction by which the longitudinal edge 40 portions of the other 36 of the body elements are spaced-apart from one another, an outer width y of each tube 24 is substantially equal to the distance by which said longitudinal edge portions 40 are spaced-apart.
- this manner of tube-header joinder provides for a greater inlet size than that obtained via the conventional “overlap and overlap” arrangement, as evidenced by FIGS.
- inlet diameter z is shown to increase from 8.4 mm to 9.4 mm, that is, the thickness of the material forming the body elements, through the use of the “under and overlap” configuration.
- a further advantage of the pan 58 and cover 56 tube construction over extruded tubes is that it permits the ready introduction of a turbulizer 80 into the tube, as shown in FIG. 9 . To do so, the turbulizer 80 merely needs to be fitted into one of the pan 58 and the cover 56 before assembly of the pan and cover.
- the turbulizer 80 illustrated in FIG. 9 is notable in the presence of a pair of coplanar flanges 82 which extend outwardly from the base of the turbulizer 80 .
- the turbulizer 80 can be of any conventional construction and, for example, can be of the expanded metal or offset fin variety.
- the illustrated turbulizer 80 is inserted into the cover 56 , with the coplanar flanges 82 seated against the cover body plate 60 to form a tube subassembly (not shown).
- the pan 58 is fitted into the cover 56 .
- Coplanar flanges 82 are dimensioned to centre or locate the turbulizer 80 in the passage defined by the assembled pan and cover 56 , 58 , i.e. to space the outermost corrugations of the turbulizer 80 from the inner tube wall surfaces a distance equivalent to the spacing between the corrugations, so as to avoid undesirable bypass flow and dead zones and maximize heat transfer.
- the height of the turbulizer i.e. the amplitude of the corrugations in the case of an offset fin turbulizer, is such that the pan 58 and cover 56 are both brazed thereto during the brazing of the tubes.
- the pan 58 may bear against the coplanar flanges 82 in the assembled tube, but relatively shorter flanges 66 on pan 58 will maximize the likelihood of good braze joints between the turbulizer 80 , pan 58 and cover 56 , with a commensurate effect on the resultant burst strength of tube 24 .
- a yet further advantage of the pan and cover tube construction is that it permits fins 26 to be readily constructed out of unclad aluminum sheet, with the cladding on the pans and the covers providing brazing material for the joinder of the fins 26 to the tubes 24 during the brazing of the various components to one another.
- manifolds and tubes are constructed out of sheet material of a common thickness
- the manifolds and tubes can be constructed out of materials of varying thicknesses.
- Tubes of varying widths can be utilized, and in the automotive field will typically range between 10 mm (as illustrated) and 50 mm.
- Manifolds of different cross-sections can also be utilized, as is clearly evident from FIG. 11 , wherein two manifolds of differing size are shown, and it should be understood that the shape and size of the particular body elements employed impact on the cross-sectional area advantage associated with the shift from overlap/overlap to overlap/underlap configuration.
- heat exchanger is of the two-pass type, it will be readily appreciated that single or multiple-pass exchangers could similarly be constructed.
- turbulizer As well, whereas the illustrated turbulizer is shown in use in a pan and cover tube, it would also have usefulness elsewhere, such as in tubes formed of mating plate pairs, or in stacked dish structures.
- each cap whereas only a single tab is shown on each cap, multiple tabs could be utilized, if desired.
- fins are shown in FIG. 3 , they could be omitted.
- heat exchangers according to aspects of the invention can be manufactured with each tube interfacing only with the body element through which the apertures are provided.
- any heat exchanger or indeed any fluid core structure could be produced with the overlap and underlap structure shown.
- turbulizers as described herein could be provided in any flat tube.
- the illustrated tube to header joint is contemplated to have broad applicability in the context of heat exchangers and similar core structures using clad tubes other than pan and cover tubes, such as seam-welded clad tubes.
- the pan and cover tube construction is contemplated to have applicability in, the context of heat exchangers of various types including radiators, oil coolers and condensers and evporators for air conditioners.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
An improved heat exchanger is disclosed. The heat exchanger is of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers. The improvement comprises a tubular structure for and defining in part each of said headers. The tubular structure is defined by a pair of body elements and has opposed longitudinal joints defined by overlapping portions of the body elements. One of the body elements overlaps the other of the body elements to define one of the joints and is overlapped by the other of the body elements to define the other of the joints.
Description
- The present invention relates to the field of heat exchangers.
- Heat exchangers are well known in the prior art and typically include a pair of headers between which extend a plurality of tubes, and a plurality of fins interleaved between the tubes. An exemplary heat exchanger of the prior art is illustrated, partially conceptually, in
FIG. 1 . Often, the tubes are extruded elements which are fitted into apertures formed in the headers and sealed thereto by flux brazing. The tubes can be multi-port aluminum extrusions, having a plurality of discrete fluid passages defined lengthwise of the tube. The tubes can also be seam-welded tubes or extruded tubes having a single longitudinal interior passage. In the latter case, to improve heat transfer characteristics it is known to push or draw through the tube an elongate turbulizer of expanded metal or the like. The headers are often formed of a tubular part in which the apertures are defined and which is defined by a pair of trough-shaped or channel elements, and a pair of caps which close the ends of the tubular part. Often, the trough-shaped elements and caps are brazed or welded together. The trough-shaped elements are often of differing dimensions, such that the longitudinal peripheral edges of one of the trough-shaped elements fit within the longitudinal peripheral edges of the other, as shown inFIG. 2 . This facilitates fixturing during the brazing operation. The channel elements can be self-fixturing, i.e. snap-fittable within one another, or an external fixture can be utilized. - An improved heat exchanger, said heat exchanger being of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers, forms one aspect of the invention. The improvement comprises: a tubular structure for and defining in part each of said headers, the tubular structure being defined by a pair of body elements and having opposed longitudinal joints defined by overlapping portions of the body elements. One of the body elements overlaps the other of the body elements to define one of the joints and is overlapped by the other of the body elements to define the other of the joints.
- According to another aspect of the invention, one of the body elements can have an aperture for each tube; and each tube can interface with the other of the body elements in a single butt joint.
- According to another aspect of the invention, the body elements can be channels of arcuate profile with longitudinal edge portions that define the overlapping portions; and measured in the direction by which the longitudinal edge portions of the other of the body elements are spaced-apart from one another, an outer width of each tube can be substantially equal to the distance by which said longitudinal edge portions are spaced-apart.
- An improved heat exchanger selected from the group including condensers and evaporators for automotive air conditioners and automotive oil coolers and radiators forms another aspect of the invention. The heat exchanger is of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers. The improvement comprises: a cover and a pan interfitted with and brazed to the cover to define each tube.
- According to another aspect of the invention, a tubular structure can be provided for and define in part each of said pair of headers; and the tubes can be brazed to the headers.
- According to another aspect of the invention, the tubular structure can be defined by a pair of body elements of arcuate profile brazed together.
- According to another aspect of the invention, in each tube a turbulizer can be provided, the turbulizer including a pair of coplanar base flanges dimensioned to centre the turbulizer in the tube.
- An improved turbulizer, of the type for use in a tube formed of cooperating portions brazed together, forms another aspect of the invention. The improvement comprises: a pair of coplanar flanges dimensioned to centre the turbulizer in the tube in use.
- A method for constructing a heat exchanger forms another aspect of the invention. The heat exchanger is of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers. The method comprises the steps of: for each header, providing a pair of body elements each formed of brazing clad material; and brazing the body elements together such that the headers each have opposed longitudinal joints defined by overlapping portions of the body elements, one of the body elements overlapping the other of the body elements to define one of the joints and being overlapped by the other of the body elements to define the other of the joints.
- According to another aspect of the invention: for each tube, a tubular assembly formed of brazing clad material can be provided; one of the body elements can have an aperture formed therein for each tube and the tubular assembly for each tube can be fitted into the apertures formed for said each tube; and the body elements and the tubular assemblies can be brazed together to form said heat exchanger.
- According to another aspect of the invention, each tubular assembly can interface with the other of the body elements in a single butt joint.
- According to another aspect of the invention, the body elements can be channels of arcuate profile with longitudinal edge portions that define the overlapping portions; and in the heat exchanger, measured in the direction by which the longitudinal edge portions of the other of the body elements are spaced-apart from one another, an outer width of each tube can be substantially equal to the distance by which said longitudinal edge portions are spaced-apart.
- A method of constructing a heat exchanger, selected from the group including condensers and evaporators for automotive air conditioners and automotive oil coolers and radiators, is disclosed. The heat exchanger is of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers. The method comprises the steps of: for each header, providing a tubular structure formed of brazing clad material, the tubular structure having an aperture formed therein for each tube; for each tube, providing a cover and a pan, both formed of brazing clad material and fitting the pan into the cover to form a tubular assembly; fitting the tubular assembly for each tube into the apertures formed for said each tube; and brazing the tubular structures, the covers and the pans together.
- According to another aspect of the invention, for each tubular structure can be provided a pair of body elements each formed of brazing clad material, one of the body elements defining the apertures for said each tubular structure; and the body elements can be fitted together to form said tubular structure, and brazed to one another when the tubular structures, the covers and the pans are brazed together.
- According to another aspect of the invention, for each tube a turbulizer can be provided and fitted into the cover provided for said each tube to form a tube subassembly, into which tube subassembly the pan provided for said each tube is fitted to form the tubular assembly.
- According to another aspect of the invention, each turbulizer can be provided with a pair of coplanar flanges dimensioned to centre said each turbulizer in the tube for which it is provided.
- According to another aspect of the invention: each of the pan and cover can include a body plate and a pair of peripheral flanges extending from the body plate; and prior to assembly of the pan and cover, the turbulizer can be inserted into the cover, with the flanges seated against the cover body plate.
- An improved heat exchanger forms another aspect of the invention. The heat exchanger is of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers. The improvement comprises: a cover and a pan interfitted with and brazed to the cover to define each tube. In each tube a turbulizer is provided, the turbulizer including a pair of coplanar base flanges dimensioned to centre the turbulizer in the tube.
- According to yet another aspect of the invention, a tubular structure can be provided for and define in part each of said pair of headers, the tubular structure being defined by a pair of body elements brazed together.
- The invention permits the construction of heat exchangers of relatively high performance and durability at relatively low cost. Other advantages, features and characteristics of the present invention, as well as methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying drawings, the latter being briefly described hereinafter.
-
FIG. 1 is a perspective, partially conceptual view of a heat exchanger according to the prior art; -
FIG. 2 is a top view of the structure ofFIG. 1 ; -
FIG. 3 is a partial perspective view of a heat exchanger according to an exemplary embodiment of the invention; -
FIG. 4 is a perspective view of a cap portion of the structure ofFIG. 3 ; -
FIG. 5 is a cross-sectional view of a portion of the structure ofFIG. 3 ; -
FIG. 5A is a simplified view of a portion ofFIG. 5 ; -
FIG. 6 is a view similar toFIG. 5 of the structure ofFIG. 1 ; -
FIG. 6A is a simplified view of a portion ofFIG. 6 ; -
FIG. 7 is a cross-sectional view of a portion of a tube of the structure ofFIG. 3 ; -
FIG. 8 is a cross-sectional view of another portion of a tube of the structure ofFIG. 3 ; -
FIG. 9 is a cross-sectional view of a tube of the structure ofFIG. 3 ; -
FIG. 10 is an enlarged view ofencircled area 10 ofFIG. 9 ; and -
FIG. 11 is a view, similar toFIG. 2 , of a pair of heat exchangers according to a further exemplary embodiment of the invention disposed in stacked relation. - An
improved heat exchanger 20 forms one aspect of the invention and is illustrated in partial perspective inFIG. 3 . For greater certainty, it should be understood that the illustratedheat exchanger 20 is an exemplary embodiment, only, and is not to be construed as limiting in any way to the scope of the invention. -
Exchanger 20 will be seen to be of the general type including a pair of headers 22 (only one shown); a plurality oftubes 24 extending between and fluidly connecting theheaders 22; and a plurality offins 26 interleaved between thetubes 24. Theexchanger 20 shown will further be seen to be of the two pass type, withinlet 28 andoutlet 30 spigots disposed at opposite ends of the same manifold orheader 22, whichheader 22 is segmented by an intermediate plate (shown in phantom and designated with reference numeral 32) to avoid direct flow between theinlet 28 andoutlet 30. - The improvement resides in various features of construction of the
headers 22 andtubes 24, and the interconnection therebetween, all as described hereinafter in detail. - With reference to
FIGS. 3 and 5 , theheaders 22 each comprise a pair ofbody elements caps 38. Thebody elements longitudinal edge portions 40 and are formed out of braze clad aluminum of 1.0 mm thickness. One of theelements 34 has a plurality ofapertures 136 punched or otherwise formed therein for receiving thetubes 24, as discussed fully hereinafter. The other of theelements 36 has thespigots notches 42 at its ends and anintermediate slot 44. Thecaps 38 are planar elements formed out of 3.0 mm unclad aluminum sheet material. When assembled, the pair ofbody elements tubular structure 46, the ends 48 of which are occluded byrespective caps 38.Tabs 50 on thecaps 38 register with thenotches 42. A further “cap” has itstab 50 in register within theintermediate slot 44 and defines the intermediate plate 32 in thiscondenser 20. Toform header 22, thebody elements caps 38 “master” the joint, such that dimensional issues are controlled by the cap, which is advantageous from the standpoint of manufacturability. - The completed
header 22 illustrated is characterized in the presence of opposedlongitudinal joints portions 40 of thebody elements body elements body elements joints 52 and is overlapped by the other of the body elements to define the other 54 of the joints, as shown inFIG. 5 . In the illustrated embodiment, theportions 40 overlap one another over a distance of about 3.0 mm, to provide for a good seal in thejoints body elements FIG. 2 ) in that, by so modifying the geometry, with a substantially similar amount of material, a tube having a greater cross-sectional area is obtained. - This is evident from a comparison of the structure of
FIG. 5 , which shows a cross section of the header ofFIG. 3 and a portion of a tube, and the structure ofFIG. 6 , which shows the analogous structure of a heat exchanger of similar size constructed according to the conventional overlap and overlap arrangement, which has a cross-sectional area only 84% as large as that ofFIG. 5 , as indicated byFIGS. 5A , 6A. The greater area of theFIG. 5 structure, of course, advantageously reduces pressure drop. - A yet further advantage of the “overlap and underlap” arrangement is associated with the elegant and efficient manner in which
multiple heat exchangers 20 can be stacked together, as shown inFIG. 11 , with only three material thicknesses separating the manifold interiors, in contrast to the four material thicknesses associated with the conventional “overlap and overlap”. This has advantages in terms of the overall width of a stacked heat exchanger, which can be advantageous in automotive applications, as the space available in the engine compartment or air box of a vehicle is limited. - With regard to the
tubes 24, thetubes 24 of the disclosed embodiment are defined by acover 56 and apan 58, as shown inFIGS. 7 and 8 , respectively. Thecover 56 is formed of braze clad aluminum of 0.4 mm thickness and includes abody plate 60 and a pair ofperipheral flanges 62 extending from thebody plate 60. Thepan 58 is also formed of braze clad aluminum of 0.4 mm thickness and includes abody plate 64 and pair ofperipheral flanges 66. - The
pan 58 is dimensioned to fit within thecover 56. The assembled, but not brazed, pan 58 and cover 56 together define a tubular assembly. Once exposed to brazing conditions, thepan 58 and thecover 56 braze to one another to define atube 24. - This tube construction is advantageous, in that it permits a fluxless braze joint to be created between the
tubes 24 and theheaders 22, even in association with manifolds constructed out of relatively thin gauge material, such as 0.020″-0.070″ inch material, as the brazing material on the tubes accommodates the relatively lesser amounts of brazing material provided on the headers in thin-wall construction. - In assembly of the
condenser 20, the tubular assembly for eachtube 24 is fitted into theapertures 136 formed for said eachtube 24 in thebody elements 34, as shown inFIG. 5 , and the entire assembly is subjected to brazing conditions in a brazing furnace, to braze thepans 58 to thecovers 56, thebody elements caps 38 to thebody elements tubes 24 to theheaders 22. Flaredmaterial 70, resultant from the punching operation by which theapertures 136 in thebody elements 34 were formed, can be maintained, to provide a relatively large lap joint for tube 24-header 22 braze joint. This can also facilitate tube entry. - Recalling that one 34 of the body elements has an
aperture 136 for eachtube 24, the illustrated tube-header joint is characterized in that each tubular assembly interfaces with the other 36 of the body elements in a single butt joint, and is further characterized in that, measured in the direction by which thelongitudinal edge 40 portions of the other 36 of the body elements are spaced-apart from one another, an outer width y of eachtube 24 is substantially equal to the distance by which saidlongitudinal edge portions 40 are spaced-apart. Importantly, all things remaining equal, this manner of tube-header joinder provides for a greater inlet size than that obtained via the conventional “overlap and overlap” arrangement, as evidenced byFIGS. 5 , 6, wherein, from a common 10 mm tube size, inlet diameter z is shown to increase from 8.4 mm to 9.4 mm, that is, the thickness of the material forming the body elements, through the use of the “under and overlap” configuration. - A further advantage of the
pan 58 and cover 56 tube construction over extruded tubes is that it permits the ready introduction of aturbulizer 80 into the tube, as shown inFIG. 9 . To do so, theturbulizer 80 merely needs to be fitted into one of thepan 58 and thecover 56 before assembly of the pan and cover. - The
turbulizer 80 illustrated inFIG. 9 is notable in the presence of a pair ofcoplanar flanges 82 which extend outwardly from the base of theturbulizer 80. With the exception of theflanges 82, theturbulizer 80 can be of any conventional construction and, for example, can be of the expanded metal or offset fin variety. - In assembly of the illustrated heat exchanger, prior to assembly of the
pan 58 and thecover 56, the illustratedturbulizer 80 is inserted into thecover 56, with thecoplanar flanges 82 seated against thecover body plate 60 to form a tube subassembly (not shown). Once theturbulizer 80 is so inserted, thepan 58 is fitted into thecover 56.Coplanar flanges 82 are dimensioned to centre or locate theturbulizer 80 in the passage defined by the assembled pan and cover 56,58, i.e. to space the outermost corrugations of the turbulizer 80 from the inner tube wall surfaces a distance equivalent to the spacing between the corrugations, so as to avoid undesirable bypass flow and dead zones and maximize heat transfer. Advantageously, the height of the turbulizer, i.e. the amplitude of the corrugations in the case of an offset fin turbulizer, is such that thepan 58 and cover 56 are both brazed thereto during the brazing of the tubes. Thepan 58 may bear against thecoplanar flanges 82 in the assembled tube, but relativelyshorter flanges 66 onpan 58 will maximize the likelihood of good braze joints between theturbulizer 80,pan 58 andcover 56, with a commensurate effect on the resultant burst strength oftube 24. - A yet further advantage of the pan and cover tube construction is that it permits
fins 26 to be readily constructed out of unclad aluminum sheet, with the cladding on the pans and the covers providing brazing material for the joinder of thefins 26 to thetubes 24 during the brazing of the various components to one another. - While but two embodiments of the present invention have been herein shown and described, it will be understood that various changes in size and shape of parts may be made.
- For example, whereas in the illustrations, manifolds and tubes are constructed out of sheet material of a common thickness, the manifolds and tubes can be constructed out of materials of varying thicknesses. Tubes of varying widths can be utilized, and in the automotive field will typically range between 10 mm (as illustrated) and 50 mm. Manifolds of different cross-sections can also be utilized, as is clearly evident from
FIG. 11 , wherein two manifolds of differing size are shown, and it should be understood that the shape and size of the particular body elements employed impact on the cross-sectional area advantage associated with the shift from overlap/overlap to overlap/underlap configuration. - Additionally, whereas the illustrated heat exchanger is of the two-pass type, it will be readily appreciated that single or multiple-pass exchangers could similarly be constructed.
- As well, whereas the illustrated turbulizer is shown in use in a pan and cover tube, it would also have usefulness elsewhere, such as in tubes formed of mating plate pairs, or in stacked dish structures.
- Similarly, whereas only a single tab is shown on each cap, multiple tabs could be utilized, if desired.
- Moreover, although fins are shown in
FIG. 3 , they could be omitted. - As well, whereas in the heat exchanger of
FIG. 9 , the tube is shown interfacing with the other body element (i.e. the body element that is not the body element in which the apertures are provided) in a single butt joint, as is evident fromFIG. 11 , heat exchangers according to aspects of the invention can be manufactured with each tube interfacing only with the body element through which the apertures are provided. - Further, it should be understood that manifolds for any heat exchanger or indeed any fluid core structure could be produced with the overlap and underlap structure shown. As well, turbulizers as described herein could be provided in any flat tube. Further, the illustrated tube to header joint is contemplated to have broad applicability in the context of heat exchangers and similar core structures using clad tubes other than pan and cover tubes, such as seam-welded clad tubes. Further, the pan and cover tube construction is contemplated to have applicability in, the context of heat exchangers of various types including radiators, oil coolers and condensers and evporators for air conditioners.
- Finally, but without limitation, it should be appreciated that the maintenance of the flared material at the header apertures is not necessary, and might advantageously be removed in certain applications.
- Accordingly, the invention should be understood as being limited only by the claims appended hereto, purposively construed.
Claims (19)
1. An improved heat exchanger, said heat exchanger being of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers, the improvement comprising:
a tubular structure for and defining in part each of said headers, the tubular structure being defined by a pair of body elements and having opposed longitudinal joints defined by overlapping portions of the body elements,
wherein one of the body elements overlaps the other of the body elements to define one of the joints and is overlapped by the other of the body elements to define the other of the joints.
2. An improved heat exchanger according to claim 1 , characterized in that: the one of the body elements has an aperture for each tube; and each tube interfaces with the other of the body elements in a single butt joint.
3. An improved heat exchanger according to claim 1 , wherein
the body elements are channels of arcuate profile with longitudinal edge portions that define the overlapping portions; and
measured in the direction by which the longitudinal edge portions of the other of the body elements are spaced-apart from one another, an outer width of each tube is substantially equal to the distance by which said longitudinal edge portions are spaced-apart.
4. A heat exchanger selected from the group including condensers and evaporators for automotive air conditioners and automotive oil coolers and radiators, the heat exchanger being of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers, the improvement comprising:
a cover and a pan interfitted with and brazed to the cover to define each tube.
5. An improved heat exchanger according to claim 4 , wherein:
a tubular structure is provided for and defines in part each of said pair of headers; and
the tubes are brazed to the headers.
6. An improved heat exchanger according to claim 5 , wherein the tubular structure is defined by a pair of body elements of arcuate profile brazed together.
7. An improved heat exchanger according to claim 4 , characterized in that in each tube a turbulizer is provided, the turbulizer including a pair of coplanar base flanges dimensioned to centre the turbulizer in the tube.
8. An improved turbulizer of the type for use in a tube formed of cooperating portions brazed together, the improvement comprising:
a pair of coplanar flanges dimensioned to centre the turbulizer in the tube in use.
9. A method for constructing a heat exchanger, the heat exchanger being of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers, the method comprising the steps of:
for each header, providing a pair of body elements each formed of brazing clad material; and
brazing the body elements together such that the headers each have opposed longitudinal joints defined by overlapping portions of the body elements, one of the body elements overlapping the other of the body elements to define one of the joints and being overlapped by the other of the body elements to define the other of the joints.
10. A method according to claim 9 , wherein
for each tube, a tubular assembly formed of brazing clad material is provided; and
one of the body elements has an aperture formed therein for each tube and the tubular assembly for each tube is fitted into the apertures formed for said each tube; and
the body elements and the tubular assemblies are brazed together to form said heat exchanger.
11. A method according to claim 10 , wherein each tubular assembly interfaces with the other of the body elements in a single butt joint.
12. A method according to claim 10 , wherein
the body elements are channels of arcuate profile with longitudinal edge portions that define the overlapping portions; and
in the heat exchanger, measured in the direction by which the longitudinal edge portions of the other of the body elements are spaced-apart from one another, an outer width of each tube is substantially equal to the distance by which said longitudinal edge portions are spaced-apart.
13. A method of constructing a heat exchanger selected from the group including condensers and evaporators for automotive air conditioners and automotive oil coolers and radiators, said heat exchanger being of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers, the method comprising the steps of:
for each header, providing a tubular structure formed of brazing clad material, the tubular structure having an aperture formed therein for each tube;
for each tube, providing a cover and a pan, both formed of brazing clad material; and fitting the pan into the cover to form a tubular assembly;
fitting the tubular assembly for each tube into the apertures formed for said each tube; and
brazing the tubular structures, the covers and the pans together.
14. A method according to claim 13 , wherein:
for each tubular structure is provided a pair of body elements each formed of brazing clad material, one of the body elements defining the apertures for said each tubular structure; and
the body elements are fitted together to form said tubular structure, and brazed to one another when the tubular structures, the covers and the pans are brazed together.
15. A method according to claim 13 , wherein, for each tube, a turbulizer is provided and fitted into the cover provided for said each tube to form a tube subassembly, into which tube subassembly the pan provided for said each tube is fitted to form the tubular assembly.
16. A method according to claim 15 , wherein each turbulizer is provided with a pair of coplanar flanges dimensioned to centre said each turbulizer in the tube for which it is provided.
17. A method according to claim 16 , wherein: each of the pan and cover includes a body plate and a pair of peripheral flanges extending from the body plate; and prior to assembly of the pan and cover, the turbulizer is inserted into the cover, with the flanges seated against the cover body plate.
18. An improved heat exchanger, the heat exchanger being of the type including a pair of headers and a plurality of tubes extending between and fluidly connecting the headers, the improvement comprising:
a cover and a pan interfitted with and brazed to the cover to define each tube,
wherein, in each tube a turbulizer is provided, the turbulizer including a pair of coplanar base flanges dimensioned to centre the turbulizer in the tube.
19. An improved heat exchanger according to claim 18 , wherein
a tubular structure is provided for and defines in part each of said pair of headers, the tubular structure being defined by a pair of body elements brazed together.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/593,745 US20100108303A1 (en) | 2007-04-05 | 2008-04-04 | Heat exchanger construction |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91035407P | 2007-04-05 | 2007-04-05 | |
US12/593,745 US20100108303A1 (en) | 2007-04-05 | 2008-04-04 | Heat exchanger construction |
PCT/CA2008/000633 WO2008122116A1 (en) | 2007-04-05 | 2008-04-04 | Heat exchanger construction |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2008/000630 A-371-Of-International WO2008128320A1 (en) | 2007-04-05 | 2008-04-04 | Molding system having clamp actuator having actuator mount |
PCT/CA2008/000633 A-371-Of-International WO2008122116A1 (en) | 2007-04-05 | 2008-04-04 | Heat exchanger construction |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/513,868 Continuation US9593889B2 (en) | 2007-04-05 | 2014-10-14 | Heat exchanger construction |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100108303A1 true US20100108303A1 (en) | 2010-05-06 |
Family
ID=39830432
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/593,745 Abandoned US20100108303A1 (en) | 2007-04-05 | 2008-04-04 | Heat exchanger construction |
US14/513,868 Active 2028-07-22 US9593889B2 (en) | 2007-04-05 | 2014-10-14 | Heat exchanger construction |
US15/422,153 Abandoned US20170198975A1 (en) | 2007-04-05 | 2017-02-01 | Heat Exchanger Construction |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/513,868 Active 2028-07-22 US9593889B2 (en) | 2007-04-05 | 2014-10-14 | Heat exchanger construction |
US15/422,153 Abandoned US20170198975A1 (en) | 2007-04-05 | 2017-02-01 | Heat Exchanger Construction |
Country Status (5)
Country | Link |
---|---|
US (3) | US20100108303A1 (en) |
CN (1) | CN101663554B (en) |
CA (1) | CA2682620C (en) |
DE (1) | DE112008000781T5 (en) |
WO (1) | WO2008122116A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100270010A1 (en) * | 2009-04-28 | 2010-10-28 | Abb Research Ltd | Twisted tube thermosyphon |
US20100277870A1 (en) * | 2009-04-29 | 2010-11-04 | Abb Research Ltd | Multi-row thermosyphon heat exchanger |
WO2014003289A1 (en) * | 2012-06-27 | 2014-01-03 | 주식회사 고산 | Heat exchanger |
US20140069610A1 (en) * | 2012-09-12 | 2014-03-13 | Keihin Thermal Technology Corporation | Heat exchanger |
US20180245861A1 (en) * | 2015-08-24 | 2018-08-30 | Mahle International Gmbh | Heat exchanger |
WO2024089240A1 (en) * | 2022-10-28 | 2024-05-02 | Valeo Systemes Thermiques | Tank and tube assembly for a heat exchanger |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10190828B2 (en) * | 2015-10-22 | 2019-01-29 | Hamilton Sundstrand Corporation | Heat exchangers |
US10349227B2 (en) * | 2015-11-02 | 2019-07-09 | Intel Corporation | Personal safety system |
US10258295B2 (en) * | 2017-05-09 | 2019-04-16 | LifePod Solutions, Inc. | Voice controlled assistance for monitoring adverse events of a user and/or coordinating emergency actions such as caregiver communication |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5125454A (en) * | 1991-08-27 | 1992-06-30 | Thermal Components, Inc. | Manifold assembly for a parallel flow heat exchanger |
US6305465B1 (en) * | 1998-02-24 | 2001-10-23 | Denso Corporation | Double heat exchanger having condenser core and radiator core |
US6357521B1 (en) * | 1999-03-30 | 2002-03-19 | Denso Corporation | Heat exchanger having header tank |
US6601644B2 (en) * | 1999-10-21 | 2003-08-05 | Denso Corporation | Corrosion preventing layer forming method |
US6904958B2 (en) * | 1999-10-25 | 2005-06-14 | Denso Corporation | Heat exchanger |
US7032656B2 (en) * | 2003-10-10 | 2006-04-25 | Modine Manufacturing Company | Heat exchanger, especially for motor vehicles |
US20060213651A1 (en) * | 2003-07-08 | 2006-09-28 | Showa Denko K.K. | Heat exchanger |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866675A (en) * | 1973-08-03 | 1975-02-18 | Modine Mfg Co | Method of making a heat exchanger and a heat exchanger |
US4936381A (en) | 1988-12-27 | 1990-06-26 | Modine Manufacturing Company | Baffle for tubular header |
JP2898800B2 (en) | 1991-09-13 | 1999-06-02 | 株式会社ゼクセル | Heat exchanger |
JPH08327281A (en) * | 1995-05-30 | 1996-12-13 | Sanden Corp | Header for heat exchanger |
FR2738905B1 (en) | 1995-09-20 | 1997-12-05 | Valeo Climatisation | HEAT EXCHANGER TUBE WITH COUNTER-CURRENT CIRCULATION CHANNELS |
CN1161914A (en) * | 1996-02-20 | 1997-10-15 | 瓦莱奥热机公司 | Brazed-jointed fluid-box type heat-exchanger special for automobile |
JPH11148794A (en) * | 1997-11-14 | 1999-06-02 | Zexel:Kk | Heat exchanger |
US6736203B2 (en) | 2001-04-30 | 2004-05-18 | Visteon Global Technologies, Inc. | Heat exchanger header and tank unit |
US6745827B2 (en) | 2001-09-29 | 2004-06-08 | Halla Climate Control Corporation | Heat exchanger |
JP2006078033A (en) | 2004-09-08 | 2006-03-23 | Denso Corp | Heat exchanger |
US7686070B2 (en) * | 2005-04-29 | 2010-03-30 | Dana Canada Corporation | Heat exchangers with turbulizers having convolutions of varied height |
CN100476340C (en) * | 2005-05-11 | 2009-04-08 | 株式会社电装 | Brazed structure and method of manufacturing the same |
US20070051504A1 (en) | 2005-09-06 | 2007-03-08 | Showa Denko K.K. | Heat exchanger |
-
2008
- 2008-04-04 US US12/593,745 patent/US20100108303A1/en not_active Abandoned
- 2008-04-04 WO PCT/CA2008/000633 patent/WO2008122116A1/en active Application Filing
- 2008-04-04 CA CA2682620A patent/CA2682620C/en not_active Expired - Fee Related
- 2008-04-04 CN CN2008800096524A patent/CN101663554B/en active Active
- 2008-04-04 DE DE112008000781T patent/DE112008000781T5/en not_active Ceased
-
2014
- 2014-10-14 US US14/513,868 patent/US9593889B2/en active Active
-
2017
- 2017-02-01 US US15/422,153 patent/US20170198975A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5125454A (en) * | 1991-08-27 | 1992-06-30 | Thermal Components, Inc. | Manifold assembly for a parallel flow heat exchanger |
US6305465B1 (en) * | 1998-02-24 | 2001-10-23 | Denso Corporation | Double heat exchanger having condenser core and radiator core |
US6357521B1 (en) * | 1999-03-30 | 2002-03-19 | Denso Corporation | Heat exchanger having header tank |
US6601644B2 (en) * | 1999-10-21 | 2003-08-05 | Denso Corporation | Corrosion preventing layer forming method |
US6904958B2 (en) * | 1999-10-25 | 2005-06-14 | Denso Corporation | Heat exchanger |
US20060213651A1 (en) * | 2003-07-08 | 2006-09-28 | Showa Denko K.K. | Heat exchanger |
US7032656B2 (en) * | 2003-10-10 | 2006-04-25 | Modine Manufacturing Company | Heat exchanger, especially for motor vehicles |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100270010A1 (en) * | 2009-04-28 | 2010-10-28 | Abb Research Ltd | Twisted tube thermosyphon |
US9964362B2 (en) | 2009-04-28 | 2018-05-08 | Abb Research Ltd. | Twisted tube thermosyphon |
US20100277870A1 (en) * | 2009-04-29 | 2010-11-04 | Abb Research Ltd | Multi-row thermosyphon heat exchanger |
US9007771B2 (en) * | 2009-04-29 | 2015-04-14 | Abb Research Ltd. | Multi-row thermosyphon heat exchanger |
WO2014003289A1 (en) * | 2012-06-27 | 2014-01-03 | 주식회사 고산 | Heat exchanger |
US20140069610A1 (en) * | 2012-09-12 | 2014-03-13 | Keihin Thermal Technology Corporation | Heat exchanger |
US9328651B2 (en) * | 2012-09-12 | 2016-05-03 | Keihin Thermal Technology Corporation | Heat exchanger |
US20180245861A1 (en) * | 2015-08-24 | 2018-08-30 | Mahle International Gmbh | Heat exchanger |
WO2024089240A1 (en) * | 2022-10-28 | 2024-05-02 | Valeo Systemes Thermiques | Tank and tube assembly for a heat exchanger |
US12123664B2 (en) | 2022-10-28 | 2024-10-22 | Valeo Systemes Thermiques | Tank and tube assembly for a heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
DE112008000781T5 (en) | 2010-06-02 |
WO2008122116A1 (en) | 2008-10-16 |
US9593889B2 (en) | 2017-03-14 |
CA2682620A1 (en) | 2008-10-16 |
CN101663554A (en) | 2010-03-03 |
CA2682620C (en) | 2017-08-01 |
US20150026982A1 (en) | 2015-01-29 |
US20170198975A1 (en) | 2017-07-13 |
CN101663554B (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9593889B2 (en) | Heat exchanger construction | |
US5186250A (en) | Tube for heat exchangers and a method for manufacturing the tube | |
US5538079A (en) | Heat exchanger with oblong grommetted tubes and locating plates | |
US6343645B1 (en) | Multi-chamber tube and heat exchanger arrangement for a motor vehicle | |
EP1172623B1 (en) | Heat exchanger and fluid pipe therefor | |
US20140262181A1 (en) | Flattened Tube Finned Heat Exchanger And Fabrication Method | |
JP3760571B2 (en) | Heat exchanger | |
JPH0599584A (en) | Manifold assembly for parallel flow type heat exchanger | |
US5094293A (en) | Heat exchanger | |
US6971445B2 (en) | Heat exchanger and method of production | |
JPH09126685A (en) | Heat exchanger | |
JPH0245945B2 (en) | ||
US6736203B2 (en) | Heat exchanger header and tank unit | |
US7201216B2 (en) | Heat exchanger, in particular oil cooler for a motor vehicle | |
JP3683001B2 (en) | Double stacked heat exchanger | |
JPH07260393A (en) | Header for heat exchanger and tank structure | |
JP2005195318A (en) | Evaporator | |
US6484796B2 (en) | Heat-exchanger tube block with a plurality of slotted header tubes | |
US20080245518A1 (en) | Flat Tube Making Platelike Body, Flat Tube, Heat Exchanger and Process for Fabricating Heat Exchanger | |
JPH08271167A (en) | Heat exchanger | |
EP2057434B1 (en) | Alternating plate headerless heat exchangers | |
JPH0332944Y2 (en) | ||
JP2551703Y2 (en) | Heat exchanger | |
LU101721B1 (en) | Heat exchanger | |
JP2523238B2 (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DANA CANADA CORPORATION,CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUNDRALINGAM, SUDESH;KOZDRAS, MARK;SIGNING DATES FROM 20080916 TO 20080917;REEL/FRAME:023298/0345 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |