[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20100021864A1 - Manual driver for implant drills and method of dental implantation - Google Patents

Manual driver for implant drills and method of dental implantation Download PDF

Info

Publication number
US20100021864A1
US20100021864A1 US12/586,771 US58677109A US2010021864A1 US 20100021864 A1 US20100021864 A1 US 20100021864A1 US 58677109 A US58677109 A US 58677109A US 2010021864 A1 US2010021864 A1 US 2010021864A1
Authority
US
United States
Prior art keywords
chuck
manual driver
implant
drilling
manual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/586,771
Inventor
German L. Murias
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/586,771 priority Critical patent/US20100021864A1/en
Publication of US20100021864A1 publication Critical patent/US20100021864A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0089Implanting tools or instruments

Definitions

  • the present invention relates to a manual driver configured to receive and drive an implant drill or other dental implant tools, and the methods of manual preparation for dental implantation using the manual driver.
  • motor-driven drilling has certain advantages, such as fast and less labor demanding, however, it also has various drawbacks.
  • motor-driven drilling causes vibrations, at the area where bone is very thin it tends to cause cracking of the bone and renders implantation impossible.
  • motor-driven drilling provides one directional drilling, i.e., clockwise, which generates more pressure on the surrounding bone, hence, this also poses a higher risk of bone cracking, as well as causes more trauma to the patient. Consequently, in some areas or situations implantations have been considered not permissible because of the risks associated with the drilling.
  • the bone tissue collected from the threads of the implant drills immediately after the drilling can be used to enhance bone regeneration around the implant.
  • the dentist collects the bone tissue from the threads of the implant drills used in drilling, after the implant is placed inside the bore, the collected bone tissue is placed around the implant before suturing the wound.
  • the bone tissue collected is washed by the cooling water.
  • a dentist harvests bone tissue using a bone trap connected to a suction hose, and sucks away the cooling water and collects bone tissue on a filter in the trap. Such a process can cause dehydration of the bone tissue, which affects the quality of the collected bone tissue, and bone regeneration surrounding the implant.
  • the present invention is directed to a manual driver for an implant drill or other dental implant tools.
  • the manual driver comprises a chuck having an axial channel with an opening at a distal end of the chuck and a stop in a proximal portion of the chuck, and a fastening screw transverse to the axial channel adjacent to the stop, the axial channel including an abutment portion for interlocking with a shaft of the implant drill; an extension shank integral with and extending from the proximal portion of the chuck along a longitudinal axis of the manual driver; and a handle extending from a proximal end of the extension shank along the longitudinal axis.
  • the proximal portion of the chuck includes a threaded transverse bore disposed at the abutment portion of the axial channel for receiving the fastening screw.
  • the present invention is directed to a manual preparation method for dental implantation.
  • the method comprises the steps of providing a manual driver comprising a handle and a chuck configured to receive and lock an implant drill therein; securing a shaft of a first implant drill into the chuck of the manual driver; manually driving the first implant drill at a selected location to create an initial bore by turning the driver clockwise and counter clockwise until the first implant drill reaching a desired depth; taking a x-ray image of the initial bore to confirm proper angulation of the initial bore; manually driving one or more implant drills that has an increased diameter from the first implant drill using the manual driver to expand the initial bore by turning the driver clockwise and counter clockwise until obtaining a final bore having a desired diameter; removing the implant drills, and collecting bone tissue on threads of each of the implant drills into a sterilized container; placing collected bone tissue back into the final bore; and placing the dental implant into the final bore that is filled with the collected bone tissue.
  • a manual driver comprising a handle and a chuck
  • the present invention is directed to a method of immediate dental implantation.
  • the method combines extraction of a selected tooth and implanting the dental implant in one surgical procedure.
  • the preparation for implantation is substantially the same as the process described above, except that the drilling starts with the cavity generated from extraction of the tooth.
  • FIG. 1 is a perspective view of the manual driver.
  • FIG. 2 is an enlarged perspective view of the chuck and the extension shank of the instant manual driver.
  • FIG. 3 is an example of a commercial available implant drill that may be used with the manual driver of the present invention.
  • FIG. 4 is a side view of the manual driver, including an implant drill secured therein.
  • FIG. 4A is a fragmentary axial cross-sectional view along the longitudinal axis of said manual driver.
  • FIG. 4B is a bottom view of the chuck shown in FIG. 4 .
  • FIG. 5 is a fragmentary axial cross-sectional view along the longitudinal axis of said manual driver, showing a variation of the transverse bore and an Allen head screw.
  • FIG. 6 is a fragmentary axial cross-sectional view along the longitudinal axis of said manual driver, showing the enlarged screw head being disposed outside of the transverse bore.
  • the present invention provides a manual driver for dental implant drills or other dental implant tools.
  • manual driver 10 comprises a chuck 20 , an extension shank 80 connected to a proximal end 24 of chuck 20 and a handle 90 connected to a proximal end 84 of extension shank 80 , all coaxially aligned on longitudinal axis 2 of manual driver 10 .
  • chuck 20 has a conical distal portion 30 which tapers toward distal end 22 of chuck 20 , and a generally cylindrical proximal portion 40 .
  • Distal portion 30 has an axial channel 34 extending through the entire distal portion, and further into proximal portion 40 as described hereinafter.
  • Axial channel 34 has an opening 36 at distal end 22 of chuck 20 . It should be understood that the distal portion can also have other suitable shapes, such as cylindrical and elliptical.
  • proximal portion 40 has a U-shape like cut-out 50 .
  • the proximal end 56 of cut-out 50 forms a stop, and distal end 54 of cut-out 50 intersects with axial channel 34 , therefore, the lower portion of the axial channel 34 extending beyond distal end 54 of cut-out 50 into proximal portion 40 , as shown in FIGS. 2 and 4A .
  • the bottom of cut-out 50 forms a planar surface 52 in parallel with longitudinal axis 2 of manual driver 10 .
  • planar surface 52 functions as an abutment portion 38 of axial channel 34 for interlocking with the shaft of an implant drill, as more fully described hereinafter.
  • a threaded transverse bore 58 is disposed transverse to the longitudinal axis 2 and intersecting with planar surface 52 . Disposed within transverse bore 58 is a fastening screw 60 , with a screw head 64 adjacent to the periphery of chuck 20 , in other words, away from planar surface 52 of cut-out 50 , as shown in FIG. 4A .
  • cut-out 50 renders visible the proximal portion of the shaft of an implant drill when the shaft is secured to manual driver 10 . This helps the dentist to ensure that the implant drill, or other implant tools, is in position.
  • cut-out 50 is optional.
  • abutment portion 38 can be in a form of a step up planar platform adjacent the inner end of axial channel 34 . In this case, the inner end of axial channel 34 is the stop.
  • FIG. 3 shows a commonly used implant drill 100 , which is commercially available from various manufacturers.
  • Implant drill 100 has a threaded drill head 120 and a shaft 130 .
  • Shaft 130 is cylindrical and the neck portion 136 of shaft 130 is stepped to provide a recess 132 therein.
  • neck portion 135 of implant drill 100 When in use, neck portion 135 of implant drill 100 is inserted into axial channel 34 through opening 36 all the way to the proximal end 56 of cut-out 50 , recess 132 of shaft 130 is disposed on planar surface 52 , i.e., abutment portion 38 of axial channel 34 , therefore, abutment portion 38 and recess 132 of shaft 130 are interlocked with each other.
  • rotation of manual driver 10 causes drill 100 to rotate.
  • groove 134 is provided for further interlocking with some drill holders, it is not required when the drill is used with the instant manual driver.
  • a fastening screw 60 is used to fasten shaft 130 of implant drill 100 in the position.
  • implant drill 100 is firmly secured in manual driver 10 , and no sliding or wobbling within the driver occurs when it is used in a surgical procedure.
  • the stability of the implant drill within the instant manual driver is critically important, because the success of an implant replies on the precision of the drilling. Any wobbling of the implant drill, or implant tools, could cause errors in angulation and desired structure of the bore, and hence cause improper positioning of the dental implant or improper interface with the surrounding bone tissue.
  • FIG. 4A shows a cross-sectional structure of threaded transverse bore 58 and fastening screw 60 in one embodiment.
  • threaded transverse bore 58 has a recess 59 at the outmost end thereof, adjacent to the periphery of chuck 20
  • screw 60 has a screw head 64 disposed within recess 59 .
  • screw head 64 does not protrude from chuck 20 , therefore, the chuck has a smooth exterior surface.
  • Fastening screw 60 can be tightened using a screw driver by engaging with a hexagonal opening 65 on screw head 64 .
  • Hexagonal opening 65 is compatible with standard dental screw drivers, therefore, more convenient to the dentist.
  • other structure, such as a slot can also be used on the screw head.
  • fastening screw 60 has a relatively small diameter, for example about 1 . 3 mm. Therefore, a screw head with an enlarged diameter can be easier for the dentist to work with, and is more durable because the implant drill is changed frequently, from surgery to surgery and can be several times within one surgery.
  • FIG. 5 illustrates an alternative embodiment, wherein an Allen head screw 60 ′ is used.
  • threaded transverse bore 58 ′ of chuck 20 ′ does not have the recess, however, the screw head is disposed within threaded transverse bore 58 ′.
  • FIG. 6 illustrates a further alternative embodiment, wherein chuck 20 ′ includes a threaded transverse bore 58 ′ and a fastening screw 60 ′′ has a longer stem with a screw head 64 ′′ disposed outside the periphery of chuck 20 ′.
  • various commercially available dental implant tools such as rotational bone expanders, bone Trephine drills, tissue punches, have the same latch type neck structure on the shaft of the tools, as shown in implant drill 100 in FIG. 3 . These tools can be used with the manual driver 10 of the present invention.
  • chuck 20 , extension shank 80 and handle 90 are integrally connected.
  • Chuck 20 and extension shank 80 are preferably made of stainless steel.
  • handle 90 has an ergonomic shape, such as the structure shown in FIG. 1 , to support stable hand gripping.
  • the exterior of the handle can further include grooves to prevent sliding of the hand.
  • portion of the handle, such as the exterior portion is made of a suitable plastic material which has a lighter weight than metal. Therefore, the manual driver is not too heavy for the dentist to operate with freedom and comfort.
  • the present invention provides methods of using the manual driver for dental implant procedures.
  • the method is directed to a manual preparation process for dental implantation.
  • the method is described herein according to the sequence of the process steps using manual driver 10 .
  • a manual driver 10 is provided, and a first implant drill is secured into chuck 20 by inserting the shaft of the first implant drill all the way to stop 54 and tightening fastening screw 60 .
  • the first implant drill is manually driven into a selected location in a patient's mouth to create an initial bore by turning manual driver 10 back and forth, i.e., clockwise and counter clockwise, until the first implant drill reaching a desired depth.
  • the bore created by drilling is also referred to as osteotomy site.
  • manual driver 10 is removed from the shaft of the first implant drill by loosening the fastening screw 60 , while the first implant drill is left within the initial bore. Then, a x-ray image of the initial bore is taken to confirm proper angulation of the initial bore. Upon confirming the proper angulation, the first implant drill is removed from the initial bore by turning back and forth, and then the bone tissue on threads of the first implant drill is collected in a sterilized container. At this stage, if angulation of the initial bore is improper, further drilling with the first implant drill to correct the angle of the initial bore is performed. After the initial drilling, the initial bore is expanded using one or more implant drills that have a sequentially, or stepwise, increased diameter from the prior implant drill.
  • the implant drill is secured into manual driver 10 as described above, and the drilling is performed manually by turning the driver clockwise and counter clockwise.
  • typically one to three implant drills can be used until obtaining a final bore that has the desired diameter.
  • the implant drill is retrieved from the bore, and the bone tissue on threads of the implant drills is collected into the sterilized container. Once the final bore is obtained, the collected bone tissue is placed back into the final bore, using a specula or other suitable tools. After filling, a plugger can be inserted to push the bone tissue down. Typically, about 30% to about 50% of the interior of the final bore is filled with the collected bone tissue.
  • a predetermined dental implant is placed, using the conventional method, into the final bore that is filled with the collected bone tissue.
  • the implant is in place, the area around the top of the dental implant is further packed with the collected bone tissue.
  • an absorbable collagen wound dressing is applied, and the gum is sutured according to the requirement of the subsequent implant procedures.
  • rotational bone expanders can be used in addition to a minimal amount of drilling to expand the diameter of the bore.
  • Using rotational bone expanders can effectively expand the diameter of the bore with minimal loss of bone tissue and effectively increase bone density around the bore, which has been found to produce more stable anchoring of the implant, and enhance bone regeneration at the interface between the implant and the surrounding environment.
  • the collected bone tissue can also be mixed with human allograft tissue, for example, Grapton® demineralized bone matrix available commercially from Osteotech Inc. (Eatontown, N.J.), prior to placing into the final bore.
  • human allograft tissue for example, Grapton® demineralized bone matrix available commercially from Osteotech Inc. (Eatontown, N.J.), prior to placing into the final bore.
  • the mixture can have a ratio from about 1:2 to about 2:1 between the two components.
  • a 1:1 mixture of the collected bone tissue and Grapton® demineralized bone matrix is used. Using the mixture helps to achieve the desired bone volume. Furthermore, it has been found that the mixture lasts longer in the osteotomy site, which is more effective for facilitating local bone regeneration.
  • the method of the present invention has various advantages in comparison to the traditional process of preparing the bore using motor-driven drilling, which are described in detail below.
  • motor-driven drilling has a very high speed, typically from about 400 to about 2,000 rpm, which causes vibrations in the surrounding bone. At the area where bone is very thin, motor-driven drilling tends to cause cracking of the bone and renders implantation difficult or impossible. Furthermore, motor-driven drilling provides one directional drilling, i.e., clockwise, which generates pressure on the surrounding bone, causes more trauma to the patient and poses risks of bone cracking.
  • manual drilling as provided above with the instant manual driver and the method, the drilling does not cause vibration.
  • turning the drill clockwise and counter clockwise manual drilling generates less pressure in the surrounding bone. Consequently, it has a substantially lower risk for cracking the bone. It has been found that in several situations where the implantations were not permissible with the traditional motor-driven drilling because of the risks associated with the drilling, the implantations were successfully performed using the manual driver and the method of the present invention.
  • the precision of the drilling can be better controlled.
  • the drill head Prior to entering into the bone, the drill head tends to wobble on the exterior surface of the bone, which renders the control of the location and angulation difficult.
  • the vibration also causes difficulty in controlling angulation.
  • manual drilling is substantially slower, it does not cause vibration, and the speed can be well controlled by the dentist. As such, it is easier to achieve a proper angulation of the bore, which ultimately results in a more successful implantation.
  • the dentist has a better tactile sensation during the drilling process.
  • the dentist senses a density change or more difficult to proceed with drilling, this indicates a local structural change, such as in the situation when the drill is approaching the sinus, or the floor of the nose.
  • the dentist can stop drilling to exam the situation and timely adjust the process.
  • motor-driven drilling causes penetration into the sinus, the floor of the nose, or bone cortex in the process of preparing implantation in the upper jar.
  • the manual driver and method of the present invention the risk of accidents due to lack of sensation and control from the dentist is reduced substantially. Even with a less experienced professional, those difficult situations can be better controlled with manual drilling.
  • motor-driven drilling generates heat because of its high speed, therefore, water cooling of the drill and the bore is required. This is typically done using an irrigation device adjacent to the drill. In the presence of irrigation, it is more difficult to collect bone tissue, and the bone tissue collected is washed by the cooling water. Irrigation further causes additional disturbance of the wound. Moreover, irrigation can interfere the dentist's operation because of the water spiting from the drill. Sometimes, the cooling water is accumulated in the patient's throat, the drilling has to be stopped to allow the patient to clear his throat. With a motor-driven drilling procedure, a dentist typically harvests bone tissue using a bone trap connected to a suction hose, and sucks away the cooling water and collects bone tissue on a filter in the trap. This method can cause dehydration of the bone tissue, which affects the quality of bone tissue, and bone regeneration around the implant.
  • the manual drilling method of the present invention does not generate heat, therefore, no cooling water is used. Consequently, it is easier to harvest the bone tissue from the implant drills, and the bone tissue collected is virgin bone tissue, meaning not washed, or contaminated by non-natural materials, such as the cooling water, and not dehydrated. Because the collected bone tissue is substantially natural, after placing it back into the bore, it is more effective in promoting local bone regeneration after the implantation. Furthermore, without heating the very costly implant drills can also be used longer.
  • the instant method fills the bone tissue into the bore prior to placing the implant. This ensures the bone tissue filling in all available spaces between the implant and the bore, and hence is more effective in enhancing local bone regeneration after the implantation.
  • the first implant drill is removed from the initial bore, then a pin is inserted into the bore as an indicator for the x-ray image.
  • the first implant drill is remained within the initial bore after the initial drilling without removal, it has been found that it reduces bleeding within the bore, therefore, no cleaning of blood, either by rinsing or using gauze, is required. This reduces the process steps, and reduces the agitation of the surrounding tissue.
  • the instant manual driver can be easily separated from the implant drill by loosening the fastening screw and sliding the chuck away from the shaft of the implant drill.
  • the instant method provides better precision and control in preparation for dental implantation, poses less stress and trauma to the surrounding tissue, and reduces risks associated with drilling. Furthermore, it allows collection of virgin bone tissue for bone grafting at the implant site.
  • the method is directed to an immediate dental implantation process.
  • immediate dental implantation process refers to a surgical procedure wherein the implant is placed immediately after the extraction of a tooth.
  • implant process involves two separate surgical procedures, one for extraction and one for implantation, which is typically arranged two to three months later after the cavity formed from the extraction is no longer present because of bone regeneration.
  • the method steps are the same as those described above except the followings.
  • a selected tooth is extracted using the conventionally method, which results in a cavity that typically has an oval shape, not cylindrical.
  • the wall of the cavity is cleaned and rinsed.
  • the first implant drill is manually drilled beyond the bottom of the cavity, in other words, the initial bore is deeper.
  • all previously described method steps are used in this process.
  • the final bore generated may not be perfectly cylindrical, therefore, certain portions of the wall of the final bore may not be in direct contact with the dental implant.
  • the collected bone tissue from the drilling is filled into the final bore, when the dental implant is placed in, the collected bone tissue fills in the space between the implant and the wall of the final bore. Therefore, the surface of the dental implant is completely surrounded by bone tissue, either by the wall of the final bore, or by the collected bone tissue from the drilling.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dental Prosthetics (AREA)

Abstract

A manual driver for a dental implant drill or other dental implant tools and the method of use for preparing for dental implantation are provided. The manual driver includes a handle, an extension shank and a chuck having an axial channel configured to receive and interlock an implant drill, and a fastening screw transverse to the axial channel. The method of manual preparation for dental implantation using the manual driver has a high precision, and reduces the risk of bone cracking caused by vibration of motor-driven drilling. The manual drilling method provides better tactile sensation and drilling control to the dentist. Further, the method avoids drilling irrigation, allows collection of virgin bone tissue from the drills, and reintroduces the collected bone tissue in the receiving bore to promote bone regeneration after the implantation.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a divisional of patent application Ser. No. 11/698,231, filed on Jan. 25, 2007, which claims the benefit under 35 USC 119 (e) of the provisional patent application Ser. No. 60/762,730, filed on Jan. 27, 2006. All parent applications are hereby incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to a manual driver configured to receive and drive an implant drill or other dental implant tools, and the methods of manual preparation for dental implantation using the manual driver.
  • BACKGROUND OF THE INVENTION
  • Currently, in all dental implantation procedures drilling is performed using motor-driven drilling. Motor-driven drilling has certain advantages, such as fast and less labor demanding, however, it also has various drawbacks. For example, in the process of preparing dental implantation, drilling is frequently made on a location which has very thin bones. Since motor-driven drilling causes vibrations, at the area where bone is very thin it tends to cause cracking of the bone and renders implantation impossible. Furthermore, motor-driven drilling provides one directional drilling, i.e., clockwise, which generates more pressure on the surrounding bone, hence, this also poses a higher risk of bone cracking, as well as causes more trauma to the patient. Consequently, in some areas or situations implantations have been considered not permissible because of the risks associated with the drilling.
  • Furthermore, because of the high speed and the vibration of motor-driven drilling, it requires substantial skills and experiences in proper control of the angulation of drilling. Often, a correction of drilling angulation needs to be made when the bore generated is not precisely in the required angulation, particularly in an area, such as at the front of the mouth, where a high precision is required. Additionally, using motor-driven drilling, the dentists have a limited tactile sensation about the surrounding bone structures in the process of drilling. Clinically, a commonly seen accident is the drill penetrating into the sinus, the floor of the nose, or bone cortex (outer layer of bone) in the preparation process for implantation in the upper jaw of the patient.
  • Moreover, motor-driven drilling generates heat, therefore, water cooling of the drill and the bore is required. This is typically done using an irrigation device adjacent to the drill. With irrigation, frequently the cooling water is accumulated in the patient's throat, the surgical procedure has to be stopped until the patient clears his throat. This interrupts the process and can be dangerous during drilling. Moreover, the cooling water also causes a further disturbance of the wound.
  • On the other hand, it has been found in the recent years that the bone tissue collected from the threads of the implant drills immediately after the drilling can be used to enhance bone regeneration around the implant. Typically, the dentist collects the bone tissue from the threads of the implant drills used in drilling, after the implant is placed inside the bore, the collected bone tissue is placed around the implant before suturing the wound. However, in the presence of irrigation, the bone tissue collected is washed by the cooling water. Typically, a dentist harvests bone tissue using a bone trap connected to a suction hose, and sucks away the cooling water and collects bone tissue on a filter in the trap. Such a process can cause dehydration of the bone tissue, which affects the quality of the collected bone tissue, and bone regeneration surrounding the implant.
  • Therefore, it is desirable to provide improved tools and methods to solve the problems described above, and achieve a better precision and control of the dental implantation process. The present invention addresses this long felt need in the field.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present invention is directed to a manual driver for an implant drill or other dental implant tools. The manual driver comprises a chuck having an axial channel with an opening at a distal end of the chuck and a stop in a proximal portion of the chuck, and a fastening screw transverse to the axial channel adjacent to the stop, the axial channel including an abutment portion for interlocking with a shaft of the implant drill; an extension shank integral with and extending from the proximal portion of the chuck along a longitudinal axis of the manual driver; and a handle extending from a proximal end of the extension shank along the longitudinal axis. The proximal portion of the chuck includes a threaded transverse bore disposed at the abutment portion of the axial channel for receiving the fastening screw.
  • In a further aspect, the present invention is directed to a manual preparation method for dental implantation. In one embodiment, the method comprises the steps of providing a manual driver comprising a handle and a chuck configured to receive and lock an implant drill therein; securing a shaft of a first implant drill into the chuck of the manual driver; manually driving the first implant drill at a selected location to create an initial bore by turning the driver clockwise and counter clockwise until the first implant drill reaching a desired depth; taking a x-ray image of the initial bore to confirm proper angulation of the initial bore; manually driving one or more implant drills that has an increased diameter from the first implant drill using the manual driver to expand the initial bore by turning the driver clockwise and counter clockwise until obtaining a final bore having a desired diameter; removing the implant drills, and collecting bone tissue on threads of each of the implant drills into a sterilized container; placing collected bone tissue back into the final bore; and placing the dental implant into the final bore that is filled with the collected bone tissue. Preferably, after the first drilling, the first implant drill is remained in the initial bore for taking the x-ray image, and to prevent bleeding.
  • In a further embodiment, the present invention is directed to a method of immediate dental implantation. The method combines extraction of a selected tooth and implanting the dental implant in one surgical procedure. The preparation for implantation is substantially the same as the process described above, except that the drilling starts with the cavity generated from extraction of the tooth.
  • The manual driver and the method of the present invention have various advantages over the existing motor driven drilling method, which will become apparent from the hereinafter set forth Detailed Description of the Invention and Claims appended herewith.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of the manual driver.
  • FIG. 2 is an enlarged perspective view of the chuck and the extension shank of the instant manual driver.
  • FIG. 3 is an example of a commercial available implant drill that may be used with the manual driver of the present invention.
  • FIG. 4 is a side view of the manual driver, including an implant drill secured therein.
  • FIG. 4A is a fragmentary axial cross-sectional view along the longitudinal axis of said manual driver.
  • FIG. 4B is a bottom view of the chuck shown in FIG. 4.
  • FIG. 5 is a fragmentary axial cross-sectional view along the longitudinal axis of said manual driver, showing a variation of the transverse bore and an Allen head screw.
  • FIG. 6 is a fragmentary axial cross-sectional view along the longitudinal axis of said manual driver, showing the enlarged screw head being disposed outside of the transverse bore.
  • It is noted that in the drawings like numerals refer to like components.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In one aspect, the present invention provides a manual driver for dental implant drills or other dental implant tools.
  • With reference to FIGS. 1 thru 4B, in one embodiment, manual driver 10 comprises a chuck 20, an extension shank 80 connected to a proximal end 24 of chuck 20 and a handle 90 connected to a proximal end 84 of extension shank 80, all coaxially aligned on longitudinal axis 2 of manual driver 10.
  • In the embodiment shown, chuck 20 has a conical distal portion 30 which tapers toward distal end 22 of chuck 20, and a generally cylindrical proximal portion 40. Distal portion 30 has an axial channel 34 extending through the entire distal portion, and further into proximal portion 40 as described hereinafter. Axial channel 34 has an opening 36 at distal end 22 of chuck 20. It should be understood that the distal portion can also have other suitable shapes, such as cylindrical and elliptical.
  • In the embodiment shown, proximal portion 40 has a U-shape like cut-out 50. The proximal end 56 of cut-out 50 forms a stop, and distal end 54 of cut-out 50 intersects with axial channel 34, therefore, the lower portion of the axial channel 34 extending beyond distal end 54 of cut-out 50 into proximal portion 40, as shown in FIGS. 2 and 4A. The bottom of cut-out 50 forms a planar surface 52 in parallel with longitudinal axis 2 of manual driver 10. In the structure shown, planar surface 52 functions as an abutment portion 38 of axial channel 34 for interlocking with the shaft of an implant drill, as more fully described hereinafter.
  • A threaded transverse bore 58 is disposed transverse to the longitudinal axis 2 and intersecting with planar surface 52. Disposed within transverse bore 58 is a fastening screw 60, with a screw head 64 adjacent to the periphery of chuck 20, in other words, away from planar surface 52 of cut-out 50, as shown in FIG. 4A.
  • As can be seen in FIGS. 4 and 4A, cut-out 50 renders visible the proximal portion of the shaft of an implant drill when the shaft is secured to manual driver 10. This helps the dentist to ensure that the implant drill, or other implant tools, is in position. However, it should be understood that cut-out 50 is optional. In the absence of cut-out 50, abutment portion 38 can be in a form of a step up planar platform adjacent the inner end of axial channel 34. In this case, the inner end of axial channel 34 is the stop.
  • FIG. 3 shows a commonly used implant drill 100, which is commercially available from various manufacturers. Implant drill 100 has a threaded drill head 120 and a shaft 130. Shaft 130 is cylindrical and the neck portion 136 of shaft 130 is stepped to provide a recess 132 therein. Typically, there is a transverse groove 134 in communication with recess 132. When in use, neck portion 135 of implant drill 100 is inserted into axial channel 34 through opening 36 all the way to the proximal end 56 of cut-out 50, recess 132 of shaft 130 is disposed on planar surface 52, i.e., abutment portion 38 of axial channel 34, therefore, abutment portion 38 and recess 132 of shaft 130 are interlocked with each other. As such, rotation of manual driver 10 causes drill 100 to rotate. It is noted that groove 134 is provided for further interlocking with some drill holders, it is not required when the drill is used with the instant manual driver.
  • In addition to the interlocking mechanism between abutment portion 38 of axial channel 34 and recess 132 of shaft 130, a fastening screw 60 is used to fasten shaft 130 of implant drill 100 in the position. As such, implant drill 100 is firmly secured in manual driver 10, and no sliding or wobbling within the driver occurs when it is used in a surgical procedure. The stability of the implant drill within the instant manual driver is critically important, because the success of an implant replies on the precision of the drilling. Any wobbling of the implant drill, or implant tools, could cause errors in angulation and desired structure of the bore, and hence cause improper positioning of the dental implant or improper interface with the surrounding bone tissue.
  • FIG. 4A shows a cross-sectional structure of threaded transverse bore 58 and fastening screw 60 in one embodiment. As shown, threaded transverse bore 58 has a recess 59 at the outmost end thereof, adjacent to the periphery of chuck 20, and screw 60 has a screw head 64 disposed within recess 59. When it is tightened, screw head 64 does not protrude from chuck 20, therefore, the chuck has a smooth exterior surface. Fastening screw 60 can be tightened using a screw driver by engaging with a hexagonal opening 65 on screw head 64. Hexagonal opening 65 is compatible with standard dental screw drivers, therefore, more convenient to the dentist. However, other structure, such as a slot can also be used on the screw head. Typically, fastening screw 60 has a relatively small diameter, for example about 1.3 mm. Therefore, a screw head with an enlarged diameter can be easier for the dentist to work with, and is more durable because the implant drill is changed frequently, from surgery to surgery and can be several times within one surgery.
  • FIG. 5 illustrates an alternative embodiment, wherein an Allen head screw 60′ is used. In this situation, threaded transverse bore 58′ of chuck 20′ does not have the recess, however, the screw head is disposed within threaded transverse bore 58′. FIG. 6 illustrates a further alternative embodiment, wherein chuck 20′ includes a threaded transverse bore 58′ and a fastening screw 60″ has a longer stem with a screw head 64″ disposed outside the periphery of chuck 20′.
  • In addition to implant drill 100, various commercially available dental implant tools, such as rotational bone expanders, bone Trephine drills, tissue punches, have the same latch type neck structure on the shaft of the tools, as shown in implant drill 100 in FIG. 3. These tools can be used with the manual driver 10 of the present invention.
  • Preferably, chuck 20, extension shank 80 and handle 90 are integrally connected. Chuck 20 and extension shank 80 are preferably made of stainless steel. However, other suitable materials can also be used for the chuck and extension shank, such as titanium and high density plastics. Preferably, handle 90 has an ergonomic shape, such as the structure shown in FIG. 1, to support stable hand gripping. The exterior of the handle can further include grooves to prevent sliding of the hand. Preferably, portion of the handle, such as the exterior portion, is made of a suitable plastic material which has a lighter weight than metal. Therefore, the manual driver is not too heavy for the dentist to operate with freedom and comfort.
  • In a further aspect, the present invention provides methods of using the manual driver for dental implant procedures.
  • In one embodiment, the method is directed to a manual preparation process for dental implantation. The method is described herein according to the sequence of the process steps using manual driver 10. First, a manual driver 10 is provided, and a first implant drill is secured into chuck 20 by inserting the shaft of the first implant drill all the way to stop 54 and tightening fastening screw 60. Then, the first implant drill is manually driven into a selected location in a patient's mouth to create an initial bore by turning manual driver 10 back and forth, i.e., clockwise and counter clockwise, until the first implant drill reaching a desired depth. Herein, the bore created by drilling is also referred to as osteotomy site. At this stage, manual driver 10 is removed from the shaft of the first implant drill by loosening the fastening screw 60, while the first implant drill is left within the initial bore. Then, a x-ray image of the initial bore is taken to confirm proper angulation of the initial bore. Upon confirming the proper angulation, the first implant drill is removed from the initial bore by turning back and forth, and then the bone tissue on threads of the first implant drill is collected in a sterilized container. At this stage, if angulation of the initial bore is improper, further drilling with the first implant drill to correct the angle of the initial bore is performed. After the initial drilling, the initial bore is expanded using one or more implant drills that have a sequentially, or stepwise, increased diameter from the prior implant drill. In each drilling, the implant drill is secured into manual driver 10 as described above, and the drilling is performed manually by turning the driver clockwise and counter clockwise. In this step, typically one to three implant drills can be used until obtaining a final bore that has the desired diameter. After each step of drilling, the implant drill is retrieved from the bore, and the bone tissue on threads of the implant drills is collected into the sterilized container. Once the final bore is obtained, the collected bone tissue is placed back into the final bore, using a specula or other suitable tools. After filling, a plugger can be inserted to push the bone tissue down. Typically, about 30% to about 50% of the interior of the final bore is filled with the collected bone tissue. Then, a predetermined dental implant is placed, using the conventional method, into the final bore that is filled with the collected bone tissue. When the implant is in place, the area around the top of the dental implant is further packed with the collected bone tissue. Then, an absorbable collagen wound dressing is applied, and the gum is sutured according to the requirement of the subsequent implant procedures.
  • Furthermore, after the initial drilling one or more rotational bone expanders can be used in addition to a minimal amount of drilling to expand the diameter of the bore. Using rotational bone expanders can effectively expand the diameter of the bore with minimal loss of bone tissue and effectively increase bone density around the bore, which has been found to produce more stable anchoring of the implant, and enhance bone regeneration at the interface between the implant and the surrounding environment.
  • Moreover, the collected bone tissue can also be mixed with human allograft tissue, for example, Grapton® demineralized bone matrix available commercially from Osteotech Inc. (Eatontown, N.J.), prior to placing into the final bore. Preferably, the mixture can have a ratio from about 1:2 to about 2:1 between the two components. In several dental implant procedures performed using the instant manual driver and the method, a 1:1 mixture of the collected bone tissue and Grapton® demineralized bone matrix is used. Using the mixture helps to achieve the desired bone volume. Furthermore, it has been found that the mixture lasts longer in the osteotomy site, which is more effective for facilitating local bone regeneration.
  • The method of the present invention has various advantages in comparison to the traditional process of preparing the bore using motor-driven drilling, which are described in detail below.
  • First, motor-driven drilling has a very high speed, typically from about 400 to about 2,000 rpm, which causes vibrations in the surrounding bone. At the area where bone is very thin, motor-driven drilling tends to cause cracking of the bone and renders implantation difficult or impossible. Furthermore, motor-driven drilling provides one directional drilling, i.e., clockwise, which generates pressure on the surrounding bone, causes more trauma to the patient and poses risks of bone cracking. Using manual drilling, as provided above with the instant manual driver and the method, the drilling does not cause vibration. Moreover, turning the drill clockwise and counter clockwise, manual drilling generates less pressure in the surrounding bone. Consequently, it has a substantially lower risk for cracking the bone. It has been found that in several situations where the implantations were not permissible with the traditional motor-driven drilling because of the risks associated with the drilling, the implantations were successfully performed using the manual driver and the method of the present invention.
  • Second, using the instant manual driver the precision of the drilling can be better controlled. With motor-driven drilling, prior to entering into the bone, the drill head tends to wobble on the exterior surface of the bone, which renders the control of the location and angulation difficult. Furthermore, during drilling the vibration also causes difficulty in controlling angulation. On the other hand, manual drilling is substantially slower, it does not cause vibration, and the speed can be well controlled by the dentist. As such, it is easier to achieve a proper angulation of the bore, which ultimately results in a more successful implantation.
  • Furthermore, it has been found that using the instant manual driver, the dentist has a better tactile sensation during the drilling process. When the dentist senses a density change or more difficult to proceed with drilling, this indicates a local structural change, such as in the situation when the drill is approaching the sinus, or the floor of the nose. Under such circumstances, the dentist can stop drilling to exam the situation and timely adjust the process. Because of the high speed and vibration associated with the motor-driven drilling it is difficult for the dentist to sense the structural change, and hence, difficult to respond timely without substantial experiences. Clinically, it happens often that motor-driven drilling causes penetration into the sinus, the floor of the nose, or bone cortex in the process of preparing implantation in the upper jar. Using the manual driver and method of the present invention, the risk of accidents due to lack of sensation and control from the dentist is reduced substantially. Even with a less experienced professional, those difficult situations can be better controlled with manual drilling.
  • Third, motor-driven drilling generates heat because of its high speed, therefore, water cooling of the drill and the bore is required. This is typically done using an irrigation device adjacent to the drill. In the presence of irrigation, it is more difficult to collect bone tissue, and the bone tissue collected is washed by the cooling water. Irrigation further causes additional disturbance of the wound. Moreover, irrigation can interfere the dentist's operation because of the water spiting from the drill. Sometimes, the cooling water is accumulated in the patient's throat, the drilling has to be stopped to allow the patient to clear his throat. With a motor-driven drilling procedure, a dentist typically harvests bone tissue using a bone trap connected to a suction hose, and sucks away the cooling water and collects bone tissue on a filter in the trap. This method can cause dehydration of the bone tissue, which affects the quality of bone tissue, and bone regeneration around the implant.
  • Substantially different from the motor-driven drilling process, the manual drilling method of the present invention does not generate heat, therefore, no cooling water is used. Consequently, it is easier to harvest the bone tissue from the implant drills, and the bone tissue collected is virgin bone tissue, meaning not washed, or contaminated by non-natural materials, such as the cooling water, and not dehydrated. Because the collected bone tissue is substantially natural, after placing it back into the bore, it is more effective in promoting local bone regeneration after the implantation. Furthermore, without heating the very costly implant drills can also be used longer.
  • Additionally, the instant method fills the bone tissue into the bore prior to placing the implant. This ensures the bone tissue filling in all available spaces between the implant and the bore, and hence is more effective in enhancing local bone regeneration after the implantation.
  • Fourth, traditionally, after the initial drilling the first implant drill is removed from the initial bore, then a pin is inserted into the bore as an indicator for the x-ray image. In the instant method, the first implant drill is remained within the initial bore after the initial drilling without removal, it has been found that it reduces bleeding within the bore, therefore, no cleaning of blood, either by rinsing or using gauze, is required. This reduces the process steps, and reduces the agitation of the surrounding tissue. The instant manual driver can be easily separated from the implant drill by loosening the fastening screw and sliding the chuck away from the shaft of the implant drill.
  • Based on the above description, it can be appreciated that the instant method provides better precision and control in preparation for dental implantation, poses less stress and trauma to the surrounding tissue, and reduces risks associated with drilling. Furthermore, it allows collection of virgin bone tissue for bone grafting at the implant site.
  • In a further embodiment, the method is directed to an immediate dental implantation process. Herein, the term of “immediate dental implantation process” refers to a surgical procedure wherein the implant is placed immediately after the extraction of a tooth. In contrast, the more commonly used implant process involves two separate surgical procedures, one for extraction and one for implantation, which is typically arranged two to three months later after the cavity formed from the extraction is no longer present because of bone regeneration.
  • In this embodiment, the method steps are the same as those described above except the followings. A selected tooth is extracted using the conventionally method, which results in a cavity that typically has an oval shape, not cylindrical. The wall of the cavity is cleaned and rinsed. At the initial drilling, the first implant drill is manually drilled beyond the bottom of the cavity, in other words, the initial bore is deeper. Then, all previously described method steps are used in this process. The final bore generated may not be perfectly cylindrical, therefore, certain portions of the wall of the final bore may not be in direct contact with the dental implant. However, because the collected bone tissue from the drilling is filled into the final bore, when the dental implant is placed in, the collected bone tissue fills in the space between the implant and the wall of the final bore. Therefore, the surface of the dental implant is completely surrounded by bone tissue, either by the wall of the final bore, or by the collected bone tissue from the drilling.
  • It has been found that using the manual driver and method of the present invention, the implantation process is simplified and easier to control, and hence the surgery is faster. More importantly, the risks associated with the surgery are substantially reduced, and the patients recover faster.
  • While there has been shown and described the preferred embodiment of the instant invention it is to be appreciated-that the invention may be embodied otherwise than is herein specifically shown and described and that, within said embodiment, certain changes may be made in the form without departing from the underlying ideas or principles of this invention as set forth in the Claims appended herewith.

Claims (8)

1. A manual driver for an implant drill or a dental implant tool comprising:
(a) a chuck having an axial channel with an opening at a distal end of said chuck and a stop in a proximal portion of said chuck, and a fastening screw transverse to said axial channel adjacent to said stop, said axial channel including an abutment portion for interlocking with a shaft of said implant drill;
(b) an extension shank integral with and extending from said proximal portion of said chuck along a longitudinal axis of said manual driver; and
(c) a handle extending from a proximal end of said extension shank along said longitudinal axis.
2. The manual driver of claim 1, wherein said proximal portion of said chuck is generally cylindrical and a distal portion of said chuck is conical tapering toward said distal end.
3. The manual driver of claim 2, wherein said proximal portion of said chuck includes a cut-out having a planar surface in parallel with said longitudinal axis of said driver, said cut-out rendering visible a proximal portion of said shaft of said implant drill when said shaft is secured to said dental driver.
4. The manual driver of claim 1, wherein said proximal portion of said chuck includes a threaded transverse bore disposed at said abutment portion of said axial channel for receiving said fastening screw.
5. The manual driver of claim 4, wherein said threaded transverse bore has a recess at an outmost end thereof, adjacent to a periphery of said proximal portion of said chuck, and said fastening screw has an enlarged screw head disposed within said recess of said threaded transverse bore.
6. The manual driver of claim 4, wherein said fastening screw is an Allen head screw.
7. The manual driver of claim 4, wherein said fastening screw has an enlarged screw head disposed outside of said threaded transverse bore.
8. The manual driver of claim 1, wherein said handle is tapered toward said extension shank, providing an ergonomic shape for engagement with hands.
US12/586,771 2006-01-27 2009-09-28 Manual driver for implant drills and method of dental implantation Abandoned US20100021864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/586,771 US20100021864A1 (en) 2006-01-27 2009-09-28 Manual driver for implant drills and method of dental implantation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US76273006P 2006-01-27 2006-01-27
US11/698,231 US7611355B2 (en) 2006-01-27 2007-01-25 Manual driver for implant drills and method of dental implantation
US12/586,771 US20100021864A1 (en) 2006-01-27 2009-09-28 Manual driver for implant drills and method of dental implantation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/698,231 Division US7611355B2 (en) 2006-01-27 2007-01-25 Manual driver for implant drills and method of dental implantation

Publications (1)

Publication Number Publication Date
US20100021864A1 true US20100021864A1 (en) 2010-01-28

Family

ID=38322486

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/698,231 Active 2027-02-23 US7611355B2 (en) 2006-01-27 2007-01-25 Manual driver for implant drills and method of dental implantation
US12/586,771 Abandoned US20100021864A1 (en) 2006-01-27 2009-09-28 Manual driver for implant drills and method of dental implantation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/698,231 Active 2027-02-23 US7611355B2 (en) 2006-01-27 2007-01-25 Manual driver for implant drills and method of dental implantation

Country Status (1)

Country Link
US (2) US7611355B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD853562S1 (en) * 2017-08-23 2019-07-09 Jjgc Industria E Comércio De Materiais Dentários S.A. Star shaped driver
USD854156S1 (en) * 2017-08-23 2019-07-16 Jjgc Indústria E Comércio De Materiais Dentários S.A. Star shaped driver
RU2797396C1 (en) * 2019-09-26 2023-06-05 Норис Медикал Лтд. Implant device with external drive element for dental implants with flexible neck and method for its design

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505594A (en) * 2006-10-10 2010-02-25 オルムコ コーポレイション Dual Option Orthodontic Implant Driver for Implant Installation / Tightening
US20120107922A1 (en) * 2010-11-03 2012-05-03 Nico Ooms Tampering device used during embedding of biological tissue samples
KR101904525B1 (en) 2011-05-13 2018-10-05 어드밴스드 오쏘돈틱스 앤드 에듀케이션 어소시에이션 엘엘씨 Method and device for causing tooth movement
USD739018S1 (en) * 2012-02-13 2015-09-15 German L. Murias Surgical manual driver
US9687323B2 (en) 2012-06-07 2017-06-27 Propel Orthodontics, Llc Temporary anchorage device with external plate
US9089384B1 (en) * 2013-05-21 2015-07-28 Austin H. Sampson Dental pin system
US9358060B2 (en) 2013-07-25 2016-06-07 Zimmer Spine, Inc. Self-retaining driver for a bone screw
USD761963S1 (en) 2014-07-29 2016-07-19 Propel Orthodontics, Llc Microperforation dental device
WO2016019073A1 (en) * 2014-07-29 2016-02-04 Propel Orthodontics, Llc Device and methods for osteoperforation
CN106880397B (en) * 2017-03-31 2023-03-14 河南理工大学 Bone grafting kit and bone grafting method
CN109893261B (en) * 2019-04-08 2020-10-27 王娟 Metal dowel pin removing device for oral restoration department
CN114209459B (en) * 2021-12-31 2022-09-16 山东大学 Universal manual implanter for oral implantation and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547562B2 (en) * 2000-05-11 2003-04-15 Nobel Biocare Ab Pseudo-etching of diamond-like carbon coated instruments
US20050003326A1 (en) * 2002-01-28 2005-01-06 Christopher Lampert Endodontic instrument

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538424A (en) * 1994-05-18 1996-07-23 Gelb; David A. Radiographic depth and prosthetic positioning guide
US6604945B1 (en) * 1994-08-15 2003-08-12 Shedrick D. Jones Method and apparatus for implantation
DE19613743C2 (en) * 1996-04-01 1999-11-18 Marcus Nowak Set of jaw surgical instruments for creating openings in the jawbone for inserting implants
ES2127116B1 (en) * 1996-10-24 1999-11-16 Dalmau Marcela Ridao NEW ATRAUMATIC BONE EXPANDERS FOR DENTAL PROSTHETIC FIXATIONS.
US6325627B1 (en) * 1999-10-20 2001-12-04 Arthur Ashman Method and apparatus for performing ridge preservation and implant treatment
US20020094508A1 (en) * 2001-01-17 2002-07-18 Lorenzi Lawrence P. Rotary osteotome for dental implant
US6863529B2 (en) * 2001-05-18 2005-03-08 Biohorizons Implant Systems, Inc. Dental drill system and method of use
US7241144B2 (en) * 2003-07-30 2007-07-10 Bio-Lok International, Inc. Method of bone expansion and compression for receiving a dental implant using threaded expanders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547562B2 (en) * 2000-05-11 2003-04-15 Nobel Biocare Ab Pseudo-etching of diamond-like carbon coated instruments
US20050003326A1 (en) * 2002-01-28 2005-01-06 Christopher Lampert Endodontic instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD853562S1 (en) * 2017-08-23 2019-07-09 Jjgc Industria E Comércio De Materiais Dentários S.A. Star shaped driver
USD854156S1 (en) * 2017-08-23 2019-07-16 Jjgc Indústria E Comércio De Materiais Dentários S.A. Star shaped driver
RU2797396C1 (en) * 2019-09-26 2023-06-05 Норис Медикал Лтд. Implant device with external drive element for dental implants with flexible neck and method for its design

Also Published As

Publication number Publication date
US7611355B2 (en) 2009-11-03
US20070178427A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
US7611355B2 (en) Manual driver for implant drills and method of dental implantation
EP2131757B1 (en) Maxillary bone cutting system, kit, and method of using the same
CA2643609C (en) Reamer for operating implant
JP5162663B2 (en) Maxillary sinus elevation drill
US8398643B2 (en) Maxillary bone cutting and injection system and method of using the same
US7771199B2 (en) Bone cutting osteotome tool and method for preparing a surgical sinus-lift osteotomy
US8377064B2 (en) Tooling and methodology for maxillary sinus elevation
US20170143351A1 (en) Implant placement trephine, prepackaged and sized implant / trephine kit, and methods of use
JP2009131634A (en) Reamer for operating implant
EP2978387A1 (en) Dental implant positioning system
TWI444166B (en) Drill tool for lifting sinus
TW201004608A (en) Drill for operating implant
KR100801510B1 (en) Perforation member for perforating alveolar bone used implant operation, and set of perforation member for perforating alveolar bone used implant operation
WO2007067105A1 (en) A surgical tool for a dental implant procedure, a tool kit for a dental implant procedure and a method for making a dental implant
KR101170895B1 (en) Windows opener for lateral sinus graft surgical operation
US20090069834A1 (en) Auxiliary tool for formation of implant pre-hole
JP2021513439A (en) Oral surgery methods and equipment
KR101181923B1 (en) Drill for lateral sinus graft surgical operation
US12076212B1 (en) Internal sinus lifting drill set
KR20220044332A (en) Universal keyless guided surgery system
KR200427490Y1 (en) Perforation member for perforating alveolar bone used implant operation, and set of perforation member for perforating alveolar bone used implant operation
US20220257220A1 (en) Bone Access, Bone Capture, and Aspiration Devices
WO2015087321A1 (en) Sinus lift apparatus and method
WO2024105619A1 (en) Self-osteotome dental implant and orthopedic fastener
WO2008045913A1 (en) Drill for orthodontic implants

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION