US20100003193A1 - Unit dosage of apadenoson - Google Patents
Unit dosage of apadenoson Download PDFInfo
- Publication number
- US20100003193A1 US20100003193A1 US12/496,949 US49694909A US2010003193A1 US 20100003193 A1 US20100003193 A1 US 20100003193A1 US 49694909 A US49694909 A US 49694909A US 2010003193 A1 US2010003193 A1 US 2010003193A1
- Authority
- US
- United States
- Prior art keywords
- unit dose
- apadenoson
- amount
- saline
- buffer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- FLEVIENZILQUKB-XTWQNQIISA-N chembl1950649 Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(C#CC[C@@H]3CC[C@H](CC3)C(=O)OC)=NC(N)=C2N=C1 FLEVIENZILQUKB-XTWQNQIISA-N 0.000 title claims abstract description 41
- 229950001316 apadenoson Drugs 0.000 title claims abstract description 40
- 230000002107 myocardial effect Effects 0.000 claims abstract description 9
- 230000010412 perfusion Effects 0.000 claims abstract description 8
- 239000000872 buffer Substances 0.000 claims description 17
- 239000003937 drug carrier Substances 0.000 claims description 17
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 11
- 239000001509 sodium citrate Substances 0.000 claims description 11
- 241000124008 Mammalia Species 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 239000011780 sodium chloride Substances 0.000 claims description 10
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 229920000858 Cyclodextrin Polymers 0.000 claims description 8
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 claims description 7
- 201000000057 Coronary Stenosis Diseases 0.000 claims description 5
- 238000007911 parenteral administration Methods 0.000 claims description 5
- 230000005856 abnormality Effects 0.000 claims description 4
- 239000007975 buffered saline Substances 0.000 claims description 4
- 239000013020 final formulation Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 abstract description 8
- 238000003384 imaging method Methods 0.000 abstract description 7
- 230000000144 pharmacologic effect Effects 0.000 abstract description 5
- 239000002831 pharmacologic agent Substances 0.000 abstract description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 5
- 229960005305 adenosine Drugs 0.000 description 5
- 230000017531 blood circulation Effects 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 210000004351 coronary vessel Anatomy 0.000 description 4
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 3
- 208000029078 coronary artery disease Diseases 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 208000009982 Ventricular Dysfunction Diseases 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000012217 radiopharmaceutical Substances 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- 230000002966 stenotic effect Effects 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 230000006815 ventricular dysfunction Effects 0.000 description 2
- PCWPQSDFNIFUPO-VDQKLNDWSA-N (1S,3R,5R,6S,8R,10R,11S,13R,15R,16S,18R,20R,21S,23R,25R,26S,28R,30R,31S,33R,35R,36R,37S,38R,39S,40R,41S,42R,43S,44R,45S,46R,47S,48R,49S)-37,39,41,43,45,47,49-heptakis(2-hydroxyethoxy)-5,10,15,20,25,30,35-heptakis(hydroxymethyl)-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontane-36,38,40,42,44,46,48-heptol Chemical compound OCCO[C@H]1[C@H](O)[C@@H]2O[C@H]3O[C@H](CO)[C@@H](O[C@H]4O[C@H](CO)[C@@H](O[C@H]5O[C@H](CO)[C@@H](O[C@H]6O[C@H](CO)[C@@H](O[C@H]7O[C@H](CO)[C@@H](O[C@H]8O[C@H](CO)[C@@H](O[C@H]1O[C@@H]2CO)[C@@H](O)[C@@H]8OCCO)[C@@H](O)[C@@H]7OCCO)[C@@H](O)[C@@H]6OCCO)[C@@H](O)[C@@H]5OCCO)[C@@H](O)[C@@H]4OCCO)[C@@H](O)[C@@H]3OCCO PCWPQSDFNIFUPO-VDQKLNDWSA-N 0.000 description 1
- NZAQRZWBQUIBSF-UHFFFAOYSA-N 4-(4-sulfobutoxy)butane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCCOCCCCS(O)(=O)=O NZAQRZWBQUIBSF-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- RONWRZLKVFURPJ-CKYCYVPOSA-N CCNC(=O)[C@H]1O[C@@H](N2C=NC3=C2N=C(CCC[C@H]2CC[C@H](C(=O)OC)CC2)N=C3N)[C@@H](O)C1O Chemical compound CCNC(=O)[C@H]1O[C@@H](N2C=NC3=C2N=C(CCC[C@H]2CC[C@H](C(=O)OC)CC2)N=C3N)[C@@H](O)C1O RONWRZLKVFURPJ-CKYCYVPOSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- ZCYVEMRRCGMTRW-AHCXROLUSA-N Iodine-123 Chemical compound [123I] ZCYVEMRRCGMTRW-AHCXROLUSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- QJGQUHMNIGDVPM-BJUDXGSMSA-N Nitrogen-13 Chemical compound [13N] QJGQUHMNIGDVPM-BJUDXGSMSA-N 0.000 description 1
- IGLNJRXAVVLDKE-OIOBTWANSA-N Rubidium-82 Chemical compound [82Rb] IGLNJRXAVVLDKE-OIOBTWANSA-N 0.000 description 1
- GKLVYJBZJHMRIY-OUBTZVSYSA-N Technetium-99 Chemical compound [99Tc] GKLVYJBZJHMRIY-OUBTZVSYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- HFHDHCJBZVLPGP-RWMJIURBSA-N alpha-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO HFHDHCJBZVLPGP-RWMJIURBSA-N 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 230000009091 contractile dysfunction Effects 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- QVGXLLKOCUKJST-BJUDXGSMSA-N oxygen-15 atom Chemical compound [15O] QVGXLLKOCUKJST-BJUDXGSMSA-N 0.000 description 1
- 238000009521 phase II clinical trial Methods 0.000 description 1
- 238000009522 phase III clinical trial Methods 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 229940071643 prefilled syringe Drugs 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229940056501 technetium 99m Drugs 0.000 description 1
- BKVIYDNLLOSFOA-OIOBTWANSA-N thallium-201 Chemical compound [201Tl] BKVIYDNLLOSFOA-OIOBTWANSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000000304 vasodilatating effect Effects 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0004—Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7076—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/40—Cyclodextrins; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- the present invention relates to a unit dosage of Apadenoson, a pharmacological stress agent, and use of the same as a pharmacologic agent for myocardial perfusion imaging.
- Apadenoson shown below, was first described as a pharmacologic stress agent
- Dr. Hendel et al reported to the American Heart Association on the preliminary results of 127 patient SPECT Tc 99m sestamibi imaging studying comparing adenosine with Apadenoson using either 1 ⁇ g/kg or 2 ⁇ g/kg intravenous boluses of Apadenoson. The report concluded that Apadenoson was safe and well-tolerated and worthy of Phase III evaluation. In 2006, Dr.
- Kern et al reported to the American Heart Association the results of a Phase II study of Apadenoson, one goal of which was to determine an appropriate dose for Phase III clinical trials.
- Intravenous bolus dosages of 0.5, 1.0, 2.0, and 2.5 ⁇ g/kg were studied.
- the average peak velocity for coronary blood flow was shown to increase with a corresponding increase in dosage from 0.5 to 2 ⁇ g/kg (see FIG. 1 ).
- Apadenoson would need to be administered on a weight basis, not a unit dose basis.
- the present invention provides a novel unit dose of Apadenoson suitable for parenteral administration.
- the present invention also provides a novel method of diagnosing myocardial dysfunction using a unit dose of Apadenoson as a pharmacologic stress agent.
- FIG. 1 shows the average peak flow wire velocity of one patient from a Phase II clinical trial study.
- adenosine was administered by intracoronary injection, and coronary blood flow velocity was monitored with a flow wire.
- the three injections of adenosine increased blood flow velocity consistent with the well characterized pharmacology of adenosine.
- increasing bolus doses of Apadenoson at doses shown to be safe, achieved peak flow equivalent to adenosine.
- FIG. 2 shows the average peak flow wire velocity of 33 patients from the study described in FIG. 1 .
- CBFV coronary blood flow velocity
- the present invention provides a novel unit dose of Apadenoson, comprising: (a) Apadenoson and (b) a pharmaceutically acceptable carrier, wherein the unit dose is suitable for parenteral administration.
- the unit dose is suitable for intravenous administration.
- the amount of Apadenoson present in the unit dose is selected from 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
- the amount of Apadenoson present in the unit dose is in the range selected from 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, to 125 ⁇ g. Additional examples of the weight of Apadenoson present include (a) 115, 120, and 125 ⁇ g and (b) 120 ⁇ g.
- the pharmaceutical carrier comprises: a cyclodextrin.
- cyclodextrins include ⁇ -CD or derivatives thereof (e.g., ⁇ -hydroxypropyl-CD (HP- ⁇ -CD)), ⁇ -CD or derivatives thereof (e.g., ⁇ -hydroxypropyl-CD (HP- ⁇ -CD), methylated ⁇ -cyclodextrin, hydroxyethyl- ⁇ -cyclodextrin, and sulfobutylether ⁇ -CD), and ⁇ -CD or derivatives thereof (e.g., ⁇ -hydroxypropyl-CD (HP- ⁇ -CD)).
- concentration of CD examples include being within the range selected from (a) about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10% w/v; (b) about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, to 4% w/v; (c) about 1% w/v; and, (d) about 2% w/v of the final formulation.
- CD e.g., hydroxypropyl- ⁇ -cyclodextrin
- the pharmaceutical carrier comprises: buffered saline.
- a useful buffer is a citrate buffer (e.g., sodium citrate).
- Citric acid can be useful to adjust the pH of the unit dose.
- the pharmaceutical carrier comprises: buffered saline, comprising: saline, sodium citrate, and citric acid.
- buffered saline comprising: saline, sodium citrate, and citric acid.
- citric acid may not be present in the final unit dose due to ionization.
- the pH of the unit dose is selected from 4.6, 4.7, 4.8, 4.9, to 5.0.
- Another example of the pH of the unit does is 4.8.
- the volume of the unit dose is selected from 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 mL.
- Another example of the volume is from 2, 3, 4, to 5 mL.
- the unit dose comprises:
- the unit dose comprises:
- the unit dose comprises:
- the unit dose comprises:
- the unit dose of the present invention can be filled into any useful container for storage, transportation, and usage.
- An example of a useful container is a syringe body.
- the present invention provides a novel method of diagnosing myocardial perfusion abnormalities in a mammal, comprising:
- the patient weighs at least 40 kg.
- the administration is intravenous administration.
- the technique is an imaging technique selected from: planar or single photon emission computed tomography (SPECT), gamma camera scintigraphy, positron emission tomography (PET), nuclear magnetic resonance (NMR) imaging, magnetic resonance imaging (MRI) imaging, perfusion contrast echocardiography, digital subtraction angiography (DSA), and ultrafast X-ray computed tomography (CINE CT).
- SPECT planar or single photon emission computed tomography
- PET gamma camera scintigraphy
- PET positron emission tomography
- NMR nuclear magnetic resonance
- MRI magnetic resonance imaging
- DSA digital subtraction angiography
- CINE CT ultrafast X-ray computed tomography
- the present invention provides a prefilled syringe, comprising: a syringe and a unit dose of Apadenoson, comprising: (a) Apadenoson and (b) a pharmaceutically acceptable carrier, wherein the unit dose is suitable for parenteral administration.
- the syringe can be any known syringe useful for parenteral administration.
- the syringe can comprise: a body and a plunger movably disposed within the body.
- the body can be cylindrical with a first open end to receive the plunger and a second end opposite the first, with the second end modified with an opening sufficient for the unit dose to pass through.
- the syringe can further comprise: a needle (e.g., an injection needle).
- the needle can be detachably connected to or permanently fixed to the body.
- a needle guard can also be present
- the present invention provides a novel unit dose of Apadenoson for use in medical therapy.
- the present invention provides a novel use of a unit dose of Apadenoson for the manufacture of a medicament for use in diagnosing myocardial perfusion abnormalities in a mammal.
- the Apadenoson unit dose of the present invention can be administered as a pharmacological stress agent and used in conjunction with any one of several noninvasive diagnostic procedures to measure aspects of myocardial, coronary, and/or ventricular perfusion.
- Aspects that can be measured include coronary artery stenoses, myocardial dysfunction (e.g., myocardial ischemia, coronary artery disease, ventricular dysfunction, and differences in blood flow through disease-free coronary vessels and/or stenotic coronary vessels), myocardial contractile dysfunction, the presence of regional wall motion abnormalities, the functional significance of stenotic coronary vessels, coronary artery disease, ischemic ventricular dysfunction, and vasodilatory capacity (reserve capacity) of coronary arteries in humans.
- myocardial dysfunction e.g., myocardial ischemia, coronary artery disease, ventricular dysfunction, and differences in blood flow through disease-free coronary vessels and/or stenotic coronary vessels
- myocardial contractile dysfunction e.
- Radiopharmaceuticals are typically used in diagnostic method methods.
- the radiopharmaceutical agent may comprise, for example, a radionuclide selected from the group consisting of thallium-201, technetium-99 m , nitrogen-13, rubidium-82, iodine-123 and oxygen-15.
- Unit dose means the amount of a medication administered to a patient in a single dose.
- a unit dose is typically independent of the weight of the patient or may be associated with a specified weight range (e.g., ⁇ 40kg).
- Mammal and patient covers warm blooded mammals that are typically under medical care (e.g., humans and domesticated animals). Examples of mammals include (a) feline, canine, equine, and bovine and (b) human.
- Parenteral includes intravenous, intramuscular, and subcutaneous routes.
- Sterile injectable solutions are typically prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization (or some other form of sterilization).
- filter sterilization or some other form of sterilization.
- the methods of preparation include vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Urology & Nephrology (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Endocrinology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pathology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Organic Chemistry (AREA)
- Vascular Medicine (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Saccharide Compounds (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
- The present application claims the priority benefits of U.S. Provisional Applications No. 61/078,169, filed 3 Jul. 2008 and No. 61/155,937, filed 27 Feb. 2009, which are expressly incorporated fully herein by reference.
- The present invention relates to a unit dosage of Apadenoson, a pharmacological stress agent, and use of the same as a pharmacologic agent for myocardial perfusion imaging.
- Apadenoson, shown below, was first described as a pharmacologic stress agent
- that can be used in clinical perfusion imaging techniques (e.g., for diagnosing and assessing the extent of coronary artery disease) in U.S. Pat. No. 6,322,771. This agent has since been taken into Phase I and II clinical trials. In 2005, Dr. Hendel et al reported to the American Heart Association on the preliminary results of 127 patient SPECT Tc99m sestamibi imaging studying comparing adenosine with Apadenoson using either 1 μg/kg or 2 μg/kg intravenous boluses of Apadenoson. The report concluded that Apadenoson was safe and well-tolerated and worthy of Phase III evaluation. In 2006, Dr. Kern et al reported to the American Heart Association the results of a Phase II study of Apadenoson, one goal of which was to determine an appropriate dose for Phase III clinical trials. Intravenous bolus dosages of 0.5, 1.0, 2.0, and 2.5 μg/kg were studied. For a patients, the average peak velocity for coronary blood flow was shown to increase with a corresponding increase in dosage from 0.5 to 2 μg/kg (see
FIG. 1 ). In light of this data, it was believed that Apadenoson would need to be administered on a weight basis, not a unit dose basis. - There are inherent limitations and opportunities for operator error when parenterally administering a pharmaceutical agent on a weight basis. This type of dosing requires calculating the amount of agent to administer based on a patient's weight, administering the calculated amount from a larger dose, and disposing of any left over agent. Thus, it is desirable and beneficial for a pharmaceutical agent to be provided in a unit dose.
- The present invention provides a novel unit dose of Apadenoson suitable for parenteral administration.
- The present invention also provides a novel method of diagnosing myocardial dysfunction using a unit dose of Apadenoson as a pharmacologic stress agent.
- These and other aspects of the present invention have been accomplished in view of the discovery that no dose response curve is seen when 1 μg/kg or 2 μg/kg of Apadenoson is administered.
-
FIG. 1 shows the average peak flow wire velocity of one patient from a Phase II clinical trial study. In this Phase II study in 100 patients, conducted by Dr. Morton Kern, an independent investigator at UC Irvine, adenosine was administered by intracoronary injection, and coronary blood flow velocity was monitored with a flow wire. On the left, the three injections of adenosine increased blood flow velocity consistent with the well characterized pharmacology of adenosine. On the right, increasing bolus doses of Apadenoson, at doses shown to be safe, achieved peak flow equivalent to adenosine. -
FIG. 2 shows the average peak flow wire velocity of 33 patients from the study described inFIG. 1 . - The previously reported increase in coronary blood flow velocity (CBFV) corresponding to an increase in dose of Apadenoson from 0.5 to 2 μg/kg was based on the increase in CBFV in a limited number of patients (see
FIG. 1 ). However, it has now been found that if one considers the entire sample of patients, as shown inFIG. 2 , then at dose >1μg/kg and in particular between 1 and 2.5 μg/kg no dose response is seen. In light of this, Applicant has surprisingly discovered that instead of the weight-based dosing predicted by the results reported inFIG. 1 , Apadenson can actually be administered via a unit dose. - Thus, in an embodiment, the present invention provides a novel unit dose of Apadenoson, comprising: (a) Apadenoson and (b) a pharmaceutically acceptable carrier, wherein the unit dose is suitable for parenteral administration.
- In another embodiment, the unit dose is suitable for intravenous administration.
- In another embodiment, the amount of Apadenoson present in the unit dose is selected from 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, and 175 μg. Additional examples of the weight of Apadenoson present include (a) 100, 110, 120, 130, 140, and 150 μg; (b) 100 μg; and (c) 150 μg.
- In another embodiment, the amount of Apadenoson present in the unit dose is in the range selected from 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, to 125μg. Additional examples of the weight of Apadenoson present include (a) 115, 120, and 125 μg and (b) 120 μg.
- In another embodiment, the pharmaceutical carrier, comprises: a cyclodextrin. Examples of cyclodextrins include α-CD or derivatives thereof (e.g., α-hydroxypropyl-CD (HP-α-CD)), β-CD or derivatives thereof (e.g., β-hydroxypropyl-CD (HP-β-CD), methylated β-cyclodextrin, hydroxyethyl-β-cyclodextrin, and sulfobutylether β-CD), and γ-CD or derivatives thereof (e.g., γ-hydroxypropyl-CD (HP-γ-CD)).
- Examples of the concentration of CD (e.g., hydroxypropyl-β-cyclodextrin) include being within the range selected from (a) about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10% w/v; (b) about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, to 4% w/v; (c) about 1% w/v; and, (d) about 2% w/v of the final formulation.
- In another embodiment, the pharmaceutical carrier, comprises: buffered saline. A useful buffer is a citrate buffer (e.g., sodium citrate). Citric acid can be useful to adjust the pH of the unit dose. As an example, the pharmaceutical carrier, comprises: buffered saline, comprising: saline, sodium citrate, and citric acid. One would recognize that citric acid may not be present in the final unit dose due to ionization.
- In another embodiment, the pH of the unit dose is selected from 4.6, 4.7, 4.8, 4.9, to 5.0. Another example of the pH of the unit does is 4.8.
- In another embodiment, the volume of the unit dose is selected from 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 mL. Another example of the volume is from 2, 3, 4, to 5 mL.
- In another embodiment, the unit dose, comprises:
-
- (a) 100 μg Apadenoson;
- (b) a pharmaceutically acceptable carrier, comprising:
- (bi) 2% w/v HP-β-CD;
- (bii) sodium citrate buffer in an amount to buffer the unit dose to pH 4.8; and,
- (biii) saline in an amount to form a 1-5 mL unit dose.
- In another embodiment, the unit dose, comprises:
-
- (a) 100 μg Apadenoson;
- (b) a pharmaceutically acceptable carrier, comprising:
- (bi) 1% w/v HP-β-CD;
- (bii) sodium citrate buffer in an amount to buffer the unit dose to pH 4.8; and,
- (biii) saline in an amount to form a 1-5 mL unit dose.
- In another embodiment, the unit dose, comprises:
-
- (a) 150 μg Apadenoson;
- (b) a pharmaceutically acceptable carrier, comprising:
- (bi) 2% w/v HP-β-CD;
- (bii) sodium citrate buffer in an amount to buffer the unit dose to pH 4.8; and,
- (biii) saline in an amount to form a 1-5 mL unit dose.
- In another embodiment, the unit dose, comprises:
-
- (a) 150 μg Apadenoson;
- (b) a pharmaceutically acceptable carrier, comprising:
- (bi) 2% w/v HP-β-CD;
- (bii) sodium citrate buffer in an amount to buffer the unit dose to pH 4.8; and,
- (biii) saline in an amount to form a 1-5 mL unit dose.
- The unit dose of the present invention can be filled into any useful container for storage, transportation, and usage. An example of a useful container is a syringe body.
- In another embodiment, the present invention provides a novel method of diagnosing myocardial perfusion abnormalities in a mammal, comprising:
-
- (a) parenterally administering to the mammal a unit dose of Apadenoson; and
- (b) performing a technique on the mammal to detect the presence of coronary artery stenoses, assess the severity of coronary artery stenoses, or a combination thereof.
- In another embodiment, the patient weighs at least 40 kg.
- In another embodiment, the administration is intravenous administration.
- In another embodiment, the technique is an imaging technique selected from: planar or single photon emission computed tomography (SPECT), gamma camera scintigraphy, positron emission tomography (PET), nuclear magnetic resonance (NMR) imaging, magnetic resonance imaging (MRI) imaging, perfusion contrast echocardiography, digital subtraction angiography (DSA), and ultrafast X-ray computed tomography (CINE CT).
- In another embodiment, the present invention provides a prefilled syringe, comprising: a syringe and a unit dose of Apadenoson, comprising: (a) Apadenoson and (b) a pharmaceutically acceptable carrier, wherein the unit dose is suitable for parenteral administration. The syringe can be any known syringe useful for parenteral administration. For example, the syringe can comprise: a body and a plunger movably disposed within the body. The body can be cylindrical with a first open end to receive the plunger and a second end opposite the first, with the second end modified with an opening sufficient for the unit dose to pass through. The syringe can further comprise: a needle (e.g., an injection needle). The needle can be detachably connected to or permanently fixed to the body. A needle guard can also be present
- In another embodiment, the present invention provides a novel unit dose of Apadenoson for use in medical therapy.
- In another embodiment, the present invention provides a novel use of a unit dose of Apadenoson for the manufacture of a medicament for use in diagnosing myocardial perfusion abnormalities in a mammal.
- The Apadenoson unit dose of the present invention can be administered as a pharmacological stress agent and used in conjunction with any one of several noninvasive diagnostic procedures to measure aspects of myocardial, coronary, and/or ventricular perfusion. Aspects that can be measured include coronary artery stenoses, myocardial dysfunction (e.g., myocardial ischemia, coronary artery disease, ventricular dysfunction, and differences in blood flow through disease-free coronary vessels and/or stenotic coronary vessels), myocardial contractile dysfunction, the presence of regional wall motion abnormalities, the functional significance of stenotic coronary vessels, coronary artery disease, ischemic ventricular dysfunction, and vasodilatory capacity (reserve capacity) of coronary arteries in humans. Radiopharmaceuticals are typically used in diagnostic method methods. The radiopharmaceutical agent may comprise, for example, a radionuclide selected from the group consisting of thallium-201, technetium-99m, nitrogen-13, rubidium-82, iodine-123 and oxygen-15.
- Any embodiment or feature of the present invention whether characterized as preferred or not characterized as preferred may be combined with any other aspect or feature of the invention, whether such other feature is characterized as preferred or not characterized as preferred.
- Definitions
- The examples provided in this application are non-inclusive unless otherwise stated. They include but are not limited to the recited groups.
- Unit dose means the amount of a medication administered to a patient in a single dose. A unit dose is typically independent of the weight of the patient or may be associated with a specified weight range (e.g., ≧40kg).
- The indefinite articles “a” and “an” mean “at least one” or “one or more” when used in this application, including the claims, unless specifically indicated otherwise.
- Mammal and patient covers warm blooded mammals that are typically under medical care (e.g., humans and domesticated animals). Examples of mammals include (a) feline, canine, equine, and bovine and (b) human.
- Parenteral includes intravenous, intramuscular, and subcutaneous routes.
- Dosage and formulation
- Sterile injectable solutions are typically prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization (or some other form of sterilization). In the case of sterile powders for the preparation of sterile injectable solutions, the methods of preparation include vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
- All patents, patent applications, books and literature cited in the specification are hereby incorporated by reference in their entirety. In the case of any inconsistencies, the present disclosure, including any definitions therein will prevail.
- Numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise that as specifically described herein.
Claims (21)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/496,949 US20100003193A1 (en) | 2008-07-03 | 2009-07-02 | Unit dosage of apadenoson |
US13/544,364 US20130017153A1 (en) | 2008-07-03 | 2012-07-09 | Unit dosage of apadenoson |
US14/103,130 US9415058B2 (en) | 2008-07-03 | 2013-12-11 | Unit dosage of Apadenoson |
US15/181,235 US9662406B2 (en) | 2008-07-03 | 2016-06-13 | Unit dosage of apadenoson |
US15/600,303 US20170252463A1 (en) | 2008-07-03 | 2017-05-19 | Unit dosage of apadenoson |
US16/045,359 US20190022253A1 (en) | 2008-07-03 | 2018-07-25 | Unit dosage of apadenoson |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7816908P | 2008-07-03 | 2008-07-03 | |
US15593709P | 2009-02-27 | 2009-02-27 | |
US12/496,949 US20100003193A1 (en) | 2008-07-03 | 2009-07-02 | Unit dosage of apadenoson |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/544,364 Continuation US20130017153A1 (en) | 2008-07-03 | 2012-07-09 | Unit dosage of apadenoson |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100003193A1 true US20100003193A1 (en) | 2010-01-07 |
Family
ID=41152021
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/496,949 Abandoned US20100003193A1 (en) | 2008-07-03 | 2009-07-02 | Unit dosage of apadenoson |
US13/544,364 Abandoned US20130017153A1 (en) | 2008-07-03 | 2012-07-09 | Unit dosage of apadenoson |
US14/103,130 Expired - Fee Related US9415058B2 (en) | 2008-07-03 | 2013-12-11 | Unit dosage of Apadenoson |
US15/181,235 Active US9662406B2 (en) | 2008-07-03 | 2016-06-13 | Unit dosage of apadenoson |
US15/600,303 Abandoned US20170252463A1 (en) | 2008-07-03 | 2017-05-19 | Unit dosage of apadenoson |
US16/045,359 Abandoned US20190022253A1 (en) | 2008-07-03 | 2018-07-25 | Unit dosage of apadenoson |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/544,364 Abandoned US20130017153A1 (en) | 2008-07-03 | 2012-07-09 | Unit dosage of apadenoson |
US14/103,130 Expired - Fee Related US9415058B2 (en) | 2008-07-03 | 2013-12-11 | Unit dosage of Apadenoson |
US15/181,235 Active US9662406B2 (en) | 2008-07-03 | 2016-06-13 | Unit dosage of apadenoson |
US15/600,303 Abandoned US20170252463A1 (en) | 2008-07-03 | 2017-05-19 | Unit dosage of apadenoson |
US16/045,359 Abandoned US20190022253A1 (en) | 2008-07-03 | 2018-07-25 | Unit dosage of apadenoson |
Country Status (24)
Country | Link |
---|---|
US (6) | US20100003193A1 (en) |
EP (1) | EP2306971B1 (en) |
JP (2) | JP2011526894A (en) |
KR (2) | KR20140021726A (en) |
CN (1) | CN102119023B (en) |
AU (1) | AU2009266317B2 (en) |
BR (1) | BRPI0913939A2 (en) |
CA (1) | CA2729819C (en) |
CY (1) | CY1116283T1 (en) |
DK (1) | DK2306971T3 (en) |
EA (1) | EA022348B1 (en) |
ES (1) | ES2537069T3 (en) |
HK (1) | HK1156250A1 (en) |
HR (1) | HRP20150454T1 (en) |
IL (2) | IL210428A (en) |
MX (1) | MX2011000193A (en) |
MY (1) | MY161655A (en) |
NZ (1) | NZ590489A (en) |
PL (1) | PL2306971T3 (en) |
PT (1) | PT2306971E (en) |
SI (1) | SI2306971T1 (en) |
SM (1) | SMT201500123B (en) |
WO (1) | WO2010002473A1 (en) |
ZA (1) | ZA201100163B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013114204A1 (en) | 2012-02-03 | 2013-08-08 | Adenobio N.V. | A method of using adenosine and dipyridamole for pharmacologic stress testing, with specific compositions, unit dosage forms and kits |
US9415058B2 (en) | 2008-07-03 | 2016-08-16 | University Of Virginia Patent Foundation | Unit dosage of Apadenoson |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109020881B (en) * | 2018-06-28 | 2020-04-28 | 新发药业有限公司 | Preparation method of apatinib |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5646094A (en) * | 1990-02-21 | 1997-07-08 | Tallon; Jeffrey Lewis | Rare earth substituted thallium-based superconductors |
US6322771B1 (en) * | 1999-06-18 | 2001-11-27 | University Of Virginia Patent Foundation | Induction of pharmacological stress with adenosine receptor agonists |
US20020056473A1 (en) * | 2000-11-16 | 2002-05-16 | Mohan Chandra | Making and connecting bus bars on solar cells |
US20040002797A1 (en) * | 2002-06-28 | 2004-01-01 | Hopple Michael Robert | Methods and systems for inspecting aircraft fuselage frames |
US20040026030A1 (en) * | 2000-10-23 | 2004-02-12 | Hironori Hatono | Composite structure body and method and apparatus for manufacturing thereof |
US20090029185A1 (en) * | 2007-07-27 | 2009-01-29 | Cheng-Chang Lee | Magnetic device and manufacturing method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5091171B2 (en) | 1986-12-23 | 1997-07-15 | Tristrata Inc | Amphoteric compositions and polymeric forms of alpha hydroxyacids and their therapeutic use |
IT1263831B (en) | 1993-01-29 | 1996-09-04 | Paolo Chiesi | MULTI-COMPONENT INCLUSION COMPLEXES WITH HIGH SOLUBILITY CONSTITUTED BY A BASIC-TYPE DRUG, AN ACID AND A CYCLODEXTRINE |
KR100668006B1 (en) | 1999-02-01 | 2007-01-15 | 유니버시티 오브 버지니아 페이턴트 파운데이션 | Compositions for Treating Inflammatory Response |
US6232297B1 (en) * | 1999-02-01 | 2001-05-15 | University Of Virginia Patent Foundation | Methods and compositions for treating inflammatory response |
US7427606B2 (en) | 1999-02-01 | 2008-09-23 | University Of Virginia Patent Foundation | Method to reduce inflammatory response in transplanted tissue |
EP1434782A2 (en) * | 2001-10-01 | 2004-07-07 | University of Virginia Patent Foundation | 2-propynyl adenosine analogs having a2a agonist activity and compositions thereof |
AU2003211011A1 (en) * | 2002-02-27 | 2003-09-09 | Ferring Bv | Intermediates and methods for making heptapeptide oxytocin analogues |
ATE381336T1 (en) * | 2002-04-10 | 2008-01-15 | Univ Virginia | USE OF A2A ADENOSINE RECEPTOR AGONIST AND ANTIPATHOGENE CONTAINING COMBINATIONS FOR THE TREATMENT OF INFLAMMATORY DISEASES |
JP2007536241A (en) * | 2004-05-03 | 2007-12-13 | ユニバーシティ オブ バージニア パテント ファウンデーション | A2A adenosine receptor agonist for the treatment of diabetic nephropathy |
EP2266994B1 (en) * | 2004-08-02 | 2013-04-03 | University Of Virginia Patent Foundation | 2-propynyl adenosine analgos with modified 5'-ribose groups having A2A agonist activity |
EP1729355B1 (en) | 2005-06-03 | 2008-11-19 | STMicroelectronics S.r.l. | Self-aligned process for manufacturing phase change memory cells |
US7767686B2 (en) | 2006-03-03 | 2010-08-03 | Covidien Ag | Method of using adenosine receptor blockers during tissue ablation |
DE102006022450A1 (en) | 2006-05-13 | 2007-11-15 | Lanxess Deutschland Gmbh | Aqueous carbon black dispersions for inkjet |
EP2178369A4 (en) * | 2007-07-17 | 2010-12-15 | Combinatorx Inc | Treatments of b-cell proliferative disorders |
BRPI0913939A2 (en) | 2008-07-03 | 2016-04-26 | Univ Virginia Patent Found | unit dose of apadenoson |
-
2009
- 2009-07-02 BR BRPI0913939A patent/BRPI0913939A2/en not_active Application Discontinuation
- 2009-07-02 AU AU2009266317A patent/AU2009266317B2/en not_active Ceased
- 2009-07-02 PT PT97739262T patent/PT2306971E/en unknown
- 2009-07-02 US US12/496,949 patent/US20100003193A1/en not_active Abandoned
- 2009-07-02 KR KR1020147003142A patent/KR20140021726A/en not_active Application Discontinuation
- 2009-07-02 MY MYPI2010006339A patent/MY161655A/en unknown
- 2009-07-02 SI SI200931189T patent/SI2306971T1/en unknown
- 2009-07-02 EP EP09773926.2A patent/EP2306971B1/en active Active
- 2009-07-02 DK DK09773926.2T patent/DK2306971T3/en active
- 2009-07-02 CN CN200980131395.6A patent/CN102119023B/en not_active Expired - Fee Related
- 2009-07-02 KR KR1020117002495A patent/KR20110028531A/en active Application Filing
- 2009-07-02 MX MX2011000193A patent/MX2011000193A/en active IP Right Grant
- 2009-07-02 EA EA201100132A patent/EA022348B1/en not_active IP Right Cessation
- 2009-07-02 JP JP2011516343A patent/JP2011526894A/en not_active Withdrawn
- 2009-07-02 ES ES09773926.2T patent/ES2537069T3/en active Active
- 2009-07-02 CA CA2729819A patent/CA2729819C/en active Active
- 2009-07-02 WO PCT/US2009/003939 patent/WO2010002473A1/en active Application Filing
- 2009-07-02 NZ NZ590489A patent/NZ590489A/en not_active IP Right Cessation
- 2009-07-02 PL PL09773926T patent/PL2306971T3/en unknown
-
2011
- 2011-01-02 IL IL210428A patent/IL210428A/en not_active IP Right Cessation
- 2011-01-06 ZA ZA2011/00163A patent/ZA201100163B/en unknown
- 2011-10-07 HK HK11110662.3A patent/HK1156250A1/en not_active IP Right Cessation
-
2012
- 2012-07-09 US US13/544,364 patent/US20130017153A1/en not_active Abandoned
-
2013
- 2013-08-29 JP JP2013177622A patent/JP2013237702A/en active Pending
- 2013-12-11 US US14/103,130 patent/US9415058B2/en not_active Expired - Fee Related
-
2015
- 2015-04-27 HR HRP20150454TT patent/HRP20150454T1/en unknown
- 2015-05-14 CY CY20151100432T patent/CY1116283T1/en unknown
- 2015-05-22 SM SM201500123T patent/SMT201500123B/en unknown
-
2016
- 2016-05-10 IL IL245577A patent/IL245577B/en active IP Right Grant
- 2016-06-13 US US15/181,235 patent/US9662406B2/en active Active
-
2017
- 2017-05-19 US US15/600,303 patent/US20170252463A1/en not_active Abandoned
-
2018
- 2018-07-25 US US16/045,359 patent/US20190022253A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5646094A (en) * | 1990-02-21 | 1997-07-08 | Tallon; Jeffrey Lewis | Rare earth substituted thallium-based superconductors |
US6322771B1 (en) * | 1999-06-18 | 2001-11-27 | University Of Virginia Patent Foundation | Induction of pharmacological stress with adenosine receptor agonists |
US20040026030A1 (en) * | 2000-10-23 | 2004-02-12 | Hironori Hatono | Composite structure body and method and apparatus for manufacturing thereof |
US20020056473A1 (en) * | 2000-11-16 | 2002-05-16 | Mohan Chandra | Making and connecting bus bars on solar cells |
US20040002797A1 (en) * | 2002-06-28 | 2004-01-01 | Hopple Michael Robert | Methods and systems for inspecting aircraft fuselage frames |
US20090029185A1 (en) * | 2007-07-27 | 2009-01-29 | Cheng-Chang Lee | Magnetic device and manufacturing method thereof |
Non-Patent Citations (3)
Title |
---|
"Buffer," anon., available at (derived from Ruzin, Plant Microtechnique and Microscopy (1999)). * |
Cerqueira, M., "Advances in Pharmacological Agents in Imaging: New A2A Receptor Agonists," Current Cardiology Reports 8: 119 - 122 (2006). * |
Rajewski, R. and Stella, V., "Pharmaceutical Applications of Cyclodextrins. 2. In Vivo Drug Delivery," Journal of Pharmaceutical Sciences 85(11): 1142 - 1169 (1996) ("Rajewski (1997)"). * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9415058B2 (en) | 2008-07-03 | 2016-08-16 | University Of Virginia Patent Foundation | Unit dosage of Apadenoson |
US9662406B2 (en) | 2008-07-03 | 2017-05-30 | University Of Virginia Patent Foundation | Unit dosage of apadenoson |
WO2013114204A1 (en) | 2012-02-03 | 2013-08-08 | Adenobio N.V. | A method of using adenosine and dipyridamole for pharmacologic stress testing, with specific compositions, unit dosage forms and kits |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Criscione et al. | Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging | |
Yu et al. | BMS-747 158-02: a novel PET myocardial perfusion imaging agent | |
GOULD et al. | Measurement of Regional: Myocardial Blood Flow in Dogs by Ultrafast CT | |
US20190022253A1 (en) | Unit dosage of apadenoson | |
CN101951835B (en) | Nano-scale contrast agents and methods of use | |
Koole et al. | Preclinical safety evaluation and human dosimetry of [18 F] MK-6240, a Novel PET tracer for imaging neurofibrillary tangles | |
US7534418B2 (en) | Imaging agents | |
Brunner et al. | Left ventricular functional assessment in murine models of ischemic and dilated cardiomyopathy using [18 F] FDG-PET: comparison with cardiac MRI and monitoring erythropoietin therapy | |
CN111870707B (en) | Zirconium [ 89 Zr]Carbon microsphere suspension, preparation method and application thereof | |
Landau et al. | 6-Fluoro-6-deoxy-D-glucose as a tracer of glucose transport | |
CN115970012A (en) | Positron myocardial fatty acid metabolism imaging agent and positron 18 Use of F-FDG myocardial glucose imaging agent for PET combined imaging | |
WO2008060466A2 (en) | Individualized dosage determination for local administration of therapeutic particles | |
Dobrucki et al. | Regional hypoxia correlates with the uptake of a radiolabeled targeted marker of angiogenesis in rat model of myocardial hypertrophy and ischemic injury | |
JP4863345B2 (en) | Radiodiagnostic agent or radiotherapeutic agent for myocardium | |
Ponto et al. | Pharmacoimaging of blood-brain barrier permeable (FDG) and impermeable (FLT) substrates after intranasal (IN) administration | |
UA108063C2 (en) | APADENOZONE DOSAGE FORM | |
Kawano et al. | Phase I clinical study of NMB58, a novel positron emission tomography (PET)-myocardial perfusion imaging tracer, conducted to evaluate its safety and pharmacokinetics in Japanese healthy adult males | |
Bramos et al. | The acute effect of an echo-contrast agent on right ventricular dimensions and contractility in pigs | |
Yamagishi et al. | A reverse flow-metabolism mismatch pattern-A new marker of viable myocardium with greater contractility during dobutamine stress than myocardium with a flow-metabolism mismatch pattern | |
Erpenwar et al. | Intravenous Ferric gluconate-induced Hyperkalemia | |
MATRIX | EVALUATING THE CORRELATION BETWEEN TUMOR 2-DEOXY-2-[18F] FLUORO-D-GLUCOSE UPTAKE AND BLOOD FLOW IN AN EXPERIMENTAL LIVER TUMOR MODEL USING HYBRID POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY | |
Raki et al. | In vivo biodistribution studies and cell tracking in stroke using SPECT imaging | |
Czernin et al. | Atlas of Cardiac Positron Emission Tomography | |
WO2003082347A1 (en) | Diagnostic for diseases associated with cerebrospinal fluid circulation failure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VIRGINIA, UNIVERSITY OF, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENDEL, ROBERT;STILLEY, WILLIAM B.;WILLIAMS, SHANNON P.;REEL/FRAME:023723/0906;SIGNING DATES FROM 20091020 TO 20091202 |
|
AS | Assignment |
Owner name: UNIVERSITY OF VIRGINIA PATENT FOUNDATION,VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:024018/0621 Effective date: 20100302 Owner name: UNIVERSITY OF VIRGINIA PATENT FOUNDATION,VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:024019/0493 Effective date: 20100302 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |