[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20090252695A1 - Special effects with mixtures of interference pigments - Google Patents

Special effects with mixtures of interference pigments Download PDF

Info

Publication number
US20090252695A1
US20090252695A1 US12/344,857 US34485708A US2009252695A1 US 20090252695 A1 US20090252695 A1 US 20090252695A1 US 34485708 A US34485708 A US 34485708A US 2009252695 A1 US2009252695 A1 US 2009252695A1
Authority
US
United States
Prior art keywords
pigments
interference
particle size
pigment
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/344,857
Inventor
Qinyun Peng
Philip Linz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/344,857 priority Critical patent/US20090252695A1/en
Publication of US20090252695A1 publication Critical patent/US20090252695A1/en
Priority to US15/082,918 priority patent/US10219989B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0021Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/003Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
    • C09C1/0039Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer consisting of at least one coloured inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • C09D17/008Titanium dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • A61K2800/436Interference pigments, e.g. Iridescent, Pearlescent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/592Mixtures of compounds complementing their respective functions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2220/00Methods of preparing the interference pigments
    • C09C2220/10Wet methods, e.g. co-precipitation

Definitions

  • This provisional application relates to mixtures of interference pigments having novel color effects, and to articles and compositions containing such pigments, especially cosmetic compositions, and to methods of producing such mixtures and products.
  • Interference pigments sometimes called pearlescent or iridescent pigments, have a long history including but not limited to natural pigments for cosmetic uses in early Egypt, the production of artificial pearls in France in the 17th century, and the emergence of titanium dioxide coated mica in the 1960's for many applications, not only in cosmetics of all types, but also for industrial uses for example, for providing decorative bottles, and especially for the large scale production of pearlescent paints for the automotive industry.
  • Descriptions of interference pigments are found in patents and pertinent literature, e.g. Pearl Lustre Pigments, Marsch and Wiegand (translation JH Steele) 1992, verlag modeme industrie AG & Co., D8910 Landsberg/Lech, Germany. Special color effects have been developed, based on particular substrates and coatings, for example, the relatively new multi-layer interference pigments and, color travel pigments, which change colors depending upon the viewing angle of the observer.
  • a large particle size interference pigment (hereinafter synonymously referred to as glitter pigment) has a median particle size (D50) of more than 40 ⁇ m, especially more than 60 ⁇ m.
  • the maximum D50 particle size is about 150 ⁇ m, preferably 60-120 ⁇ m, but it should be noted that glitter pigments may have a particle size of up to 250 ⁇ m.
  • normal (synonymously referred to as smaller) particle size interference pigments have a D50 below 40 ⁇ m, especially below 30 ⁇ m, but in general should not be less than 15 ⁇ m. It was unexpected that the resultant color appearance of the mixture of interference pigments was not only dependent on the color of each individual pigment but also on its particle size.
  • the general color mixing rule for interference pigments was additive mixing because the reflected light portions from each pigment are added together, e.g. a mixture of blue and yellow is white and the mixture of green and red is yellow.
  • a discovery of the present invention is that by adjusting the particle size of different colored interference pigments that unusual effects are obtained.
  • the particle size difference between normal and large interference pigments should be sufficiently significant to minimize the color cancellation effect, for example the difference in D50 values between the normal particle size and the large particle size is preferably about 40-80 ⁇ m.
  • the specific difference will be dependent on the proportions of the normal and large particle size interference pigments in the mixture as well as the specific colors of each particle size.
  • the luster of the large particle size interference pigment will be significantly reduced by virtue of the overwhelming covering power and light scattering power of the normal particle size pigment.
  • the surface area of a pigment may be used as a reference to evaluate the suitability and to optimize color mixing.
  • the intensity of the color of the large particle size pigment plays an important role in color mixing, but it is the very size of the large particle size interference pigment which is essential to the success of the invention. It has been discovered, to the contrary, that if one blends a normal particle size interference pigment with an interference pigment having a smaller D50 than that of normal size pigment, the unusual color effects are not obtained.
  • the chemical nature of the individual interference pigments, aside from particle size can be varied widely, from substrate-free pigments, to substrate-based pigments of monolayer or multilayer metal oxide coating(s), all well known in the pertinent general and patent literature. Particularly special effects occur when the normal size pigment and/or the large size pigment is a color travel pigment.
  • Suitable base substrates for substrate-based pigments include, but are not limited to transparent flake-form substrates, Preferred substrates are phyllosilicates. Particularly suitable are natural and/or synthetic mica, glass flakes, SiO 2 flakes, aluminum oxides, sericite, talc, kaolin, flake-form iron oxides or TiO 2 flakes, BiOCl or other comparable materials.
  • the size of the base substrates can be matched to the particular application.
  • the flake-form substrates have a thickness of between 0.05 and 5 ⁇ m, in particular between 0.1 and 4.5 ⁇ m.
  • the size in the other two directions is usually between 1 and 550 ⁇ m, preferably between 2 and 300 ⁇ m, and in particular between 5 and 250 ⁇ m.
  • the thickness of the individual layers on the base substrate is essential for the optical properties of the pigment.
  • the aspect ratio ratio of surface dimension to thickness of an object is preferably about 1-500, especially 40-350.
  • the interference pigments according to the invention have high and/or low refractive-index layer(s) on top of the substrate.
  • the high-refractive-index layer(s) have a refractive index of n>1.8, preferably of n ⁇ 2.0.
  • the high refractive-index layers preferably comprise TiO 2 , Fe 2 O 3 , Fe 3 O 4 , ZrO 2 , SnO 2 , ZnO, BiOCl, Cr 2 O 3 , CeO 3 , molybdenum oxides, CoO, CO 3 O 4 , VO 2 , V 2 O 3 , NiO, V 2 O 5 , CuO, Cu 2 O, Ag 2 O, CeO 2 , MnO 2 , Mn 2 O 3 , Mn 2 O 5 , titanium oxynitrides, pseudobrookite, ilmenite, as well as titanium nitride, MoS 2 , WS 2 or mixtures or combinations thereof.
  • the TiO 2 here can be in the rut
  • Suitable low-refractive-index materials are preferably metal oxides or the corresponding oxide hydrates, such as, for example, SiO 2 , Al 2 O 3 , AlO(OH), B 2 O 3 , MgF 2 , MgSiO 3 or a mixture of the said metal oxides.
  • the pigments according to the invention can be prepared relatively easily by the deposition of materials of high- and/or low-refractive-index, having precisely defined thickness and a smooth surface on the finely divided, flake-form substrates.
  • the metal-oxide layers are preferably applied by wet-chemical methods. Methods of this type are described, for example, in DE 14 67 468, DE 19 59 988, DE 20 09 566, DE 22 14 545, DE 22 15 191, DE 22 44 298, DE 23 13 331, DE 25 22 572, DE 31 37 808, DE 31 37 809, DE 31 51 343, DE 31 51 354, DE 31 51 355, DE 32 11 602, DE 32 35 017 or in further patent documents and other publications known to the person skilled in the art.
  • the substrate particles are suspended in water, and one or more hydrolyzable metal salts are added at a pH which is suitable for hydrolysis and which is selected so that the metal oxides or metal oxide hydrates are precipitated directly onto the flakes without secondary precipitations occurring.
  • the pH is usually kept constant by simultaneous metered addition of a base or acid.
  • the pigments are subsequently separated off, washed and dried and, if desired, calcined, where the calcination temperature can be optimized with respect to the coating present in each case. In general, the calcination temperatures are between 250 and 1000° C., preferably between 350 and 900° C. If desired, the pigments can be separated off after application of individual coatings, dried and, if desired, calcined and then re-suspended for the deposition of the further layers.
  • the coating may furthermore also take place in a fluidized-bed reactor by gas-phase coating, it being possible, for example, to use correspondingly the methods proposed in EP 0 045 851 and EP 0 0106 235 for the preparation of pearlescent pigments.
  • Ti suboxide or Fe 3 O 4 layers can be carried out, for example, by reduction of the TiO 2 layer using ammonia, hydrogen and also hydrocarbons and hydrocarbon/ammonia mixtures, as described, for example, in EP-A-0 332 071, DE 199 51 696 A1 and DE 199 51 697 A1.
  • the reduction is preferably carried out in a forming-gas atmosphere (92% of N 2 /8% of H 2 or 96% of N 2 /4% of H 2 ).
  • the reduction is generally carried out at temperatures of 250-1000° C., preferably 350-900° C. and in particular 500-850° C.
  • the hue of the pigments can be varied within conventionally broad limits by a choice of the coating amounts and/or the layers resulting therefrom. Fine tuning for a certain hue can be achieved by utilizing visual or optical measurement technology.
  • Suitable post-coatings or post-treatments are, for example, the processes described in German Patent 22 15 191, DE-A 31 51 354, DE-A 32 35 017, DE-A 33 34 598, DE 40 30 727 A1, EP 0 649 886 A2, WO 97/29059, WO 99/57204 and U.S. Pat. No. 5,759,255.
  • This post-coating further increases the chemical stability of the pigments or simplifies the handling of the pigment, in particular the incorporation into various media.
  • organic or combined organic/inorganic post-coatings may be employed for example with silanes, as described, for example, in EP 0090259, EP 0 634 459, WO 99/57204, WO 96/32446, WO 99/57204, U.S. Pat. No. 5,759,255, U.S. Pat. No. 5,571,851, WO 01/92425 or in J. J. Ponjeé, Philips Technical Review, Vol. 44, No. 3, 81 ff. and P.
  • the interference pigments can advantageously be used in blends with organic dyes, organic pigments or other pigments. They can be mixed in any ratio with commercially available pigments and fillers.
  • interference pigments can be used. More examples of such pigments include but are not limited to those described in published U.S. patent application Ser. No. 10/608,563, by Cristoph Schmidt et al. filed Jun. 30, 2003, as well as to those described in the patents and literature cited therein, e.g. U.S. Pat. No. 4,434,010, JP H7-759, U.S. Pat. No. 3,438,796, U.S. Pat. No. 5,135,812, DE 44 05 494, DE 44 37 753, DE 195 16 181 and DE 195 15 988, DE 196 18 565, DE 197 46 067 and in the literature, for example in EURO COSMETICS, 1999, No. 8, p. 284.
  • the mixture of interference pigments can also advantageously be used in the form of a mixture with organic dyes, organic pigments or other pigments, such as, for example, transparent and opaque white, coloured and black pigments, and with flake-form iron oxides, organic pigments, holographic pigments, LCPs (liquid crystal polymers) and conventional transparent, coloured and black lustre pigments based on metal oxide-coated mica and SiO 2 flakes, etc.
  • the interference pigment mixture according to the invention can be mixed in any ratio with commercially available pigments and fillers.
  • Preferred fillers are for example, natural and synthetic mica, nylon powder, pure or filled melamine resins, talc, glasses, kaolin, oxides or hydroxides of aluminium, magnesium, calcium, zinc, BiOCI, barium sulfate, calcium sulfate, calcium carbonate, magnesium carbonate, carbon, and physical or chemical combinations of these substances.
  • particle shape of the filler It can be, for example, flake-form, spherical or needle-shaped in accordance with requirements.
  • the pigments according to the invention are compatible with a multiplicity of color systems, preferably from the area of cosmetics and personal care products, paints, coatings and printing inks. It is important to appreciate that the present invention is applicable for all applications where a decorative effect is desired.
  • compositions of this invention can be used in the form of a liquid cosmetic formulation for application to nails or skin.
  • cosmetic formulation include but are not limited to: nail lacquer, bath oil, shower gel, body wash, shampoos, conditioner, liquid soap, skin cleanser, hand sanitizer, sunless tanning foam and lotion, skin cream and lotion, body lotion, liquid eye make up, liquid foundation, hair gel, hydrogel, styling gel, lip products, such as lip gloss, lipstick.
  • composition of this invention can be used in formulations, such as for example, foundation (liquid and stick), face makeup such as cream-to-powder, eye highlighter, eye pencil, bronzing stick, blusher, powder makeup, lip powder, face powder, body powder and, bronzing powder etc.
  • the formulations comprising the interference pigment mixture according to the invention can belong to the lipophilic, hydrophilic or hydrophobic type.
  • the interference pigment mixtures according to the invention may in each case be present in only one of the two phases or alternatively distributed over both phases.
  • the invention relates, in particular, to formulations which, besides the interference pigment mixture according to the invention, comprise at least one constituent selected from absorbents, astringents, antimicrobial substances, antioxidants, antiperspirants, antifoaming agents, antidandruff active ingredients, antistatics, binders, biological additives, bleaching agents, chelating agents, deodorants, emollients, emulsifiers, emulsion stabilisers, dyes, humectants, film formers, odour substances, flavour substances, insect repellents, preservatives, anticorrosion agents, cosmetic oils, solvents, oxidants, vegetable constituents, buffer substances, reducing agents, surfactants, propellent gases, opacifiers, UV filters and UV absorbers, denaturing agents, viscosity regulators, perfume and vitamins.
  • constituents selected from absorbents, astringents, antimicrobial substances, antioxidants, antiperspirants, antifoaming agents, antidandruff active
  • proportions of the normal and large particle size interference pigments it is contemplated that all proportions will be utilizable, for example in part by weight 99:1 to 1:99, especially 75:25 to 25:75, depending on the specific particle size of each type of pigment, the color of each type of pigment, the D50 difference in particle sizes, etc., in order to obtain the desired color effect.
  • the present invention can be utilized by merely mixing at least one large particle size pigment with at least one normal size pigment of a different color.
  • the following examples show the results of mixing normal and/or large particle size interference pigments (D50>60 ⁇ m).
  • these large particle size interference pigments are also called glitter interference pigments in the examples.
  • Timiron® Super Color pigments and Timiron® Splendid Color pigments their particle size range is 10-60 ⁇ m and D50 is 18-25 ⁇ m.
  • mixtures are drawdowned on Leneta cards respectively in a nitrocellulose lacquer. The color over black is photographed at the luster angle to show the luster of the mixture.
  • the luster color of the mixture depends on the color choice of large particle size pigments and is shown below.
  • the first mixture consists of experimental glitter interference gold (D50 ⁇ 74 ⁇ m) and Timiron® Splendid Blue. Since the intensity of interference gold color is normally higher than that of blue, the sparkling gold pigment particles can be seen clearly in the environment of smooth blue luster pigment. This mixture has a very attractive color and no significant color cancellation is observed.
  • experimental glitter interference blue D50 ⁇ 74 ⁇ m
  • Timiron® Splendid Gold we are able to see blue luster from some of the pigment particles, but the color is quite dull when compared to the intense interference gold color. This mixture gives a less impressive color.
  • This example demonstrates the importance of choosing the color of the large particle size pigment in order to achieve a specific color effect.
  • compositions of the various pigments referred to in the above examples are tabulated as follows:
  • compositions of the various pigments are listed as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Cosmetics (AREA)

Abstract

A method of producing mixtures of interference pigments having special effects comprises mixing at least one large particle size interference pigment with at least one normal size interference pigment of predetermined colors and in proportions desired to obtain a unique effect.

Description

  • This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 60/606,503 filed Sep. 2, 2004 which is incorporated by reference herein.
  • CROSS REFERENCE TO RELATED APPLICATION
  • This application is related to Applicants' Attorney Docket No. EMI-66, entitled COSMETIC POWDER COMPOSITIONS HAVING LARGE PARTICLE SIZE COLOR EFFECT PIGMENTS filed Jul. 13, 2004, U.S. application Ser. No. 10/889,003.
  • SPECIFICATION
  • This provisional application relates to mixtures of interference pigments having novel color effects, and to articles and compositions containing such pigments, especially cosmetic compositions, and to methods of producing such mixtures and products.
  • Interference pigments sometimes called pearlescent or iridescent pigments, have a long history including but not limited to natural pigments for cosmetic uses in early Egypt, the production of artificial pearls in France in the 17th century, and the emergence of titanium dioxide coated mica in the 1960's for many applications, not only in cosmetics of all types, but also for industrial uses for example, for providing decorative bottles, and especially for the large scale production of pearlescent paints for the automotive industry. Descriptions of interference pigments are found in patents and pertinent literature, e.g. Pearl Lustre Pigments, Marsch and Wiegand (translation JH Steele) 1992, verlag modeme industrie AG & Co., D8910 Landsberg/Lech, Germany. Special color effects have been developed, based on particular substrates and coatings, for example, the relatively new multi-layer interference pigments and, color travel pigments, which change colors depending upon the viewing angle of the observer.
  • Acknowledging the extensive and ongoing research conducted in this field, objects of this invention include new pigment mixtures and methods of producing same. Upon further study of the specification and dependent claims, other objects and advantages of the invention will become apparent.
  • To achieve these objects, there is provided a method of producing mixtures of pigments comprising at least one normal size interference pigment with at least one large particle size interference pigment. A large particle size interference pigment (hereinafter synonymously referred to as glitter pigment) has a median particle size (D50) of more than 40 μm, especially more than 60 μm. The maximum D50 particle size is about 150 μm, preferably 60-120 μm, but it should be noted that glitter pigments may have a particle size of up to 250 μm. Conversely, normal (synonymously referred to as smaller) particle size interference pigments have a D50 below 40 μm, especially below 30 μm, but in general should not be less than 15 μm. It was unexpected that the resultant color appearance of the mixture of interference pigments was not only dependent on the color of each individual pigment but also on its particle size.
  • Heretofore, the general color mixing rule for interference pigments was additive mixing because the reflected light portions from each pigment are added together, e.g. a mixture of blue and yellow is white and the mixture of green and red is yellow. A discovery of the present invention is that by adjusting the particle size of different colored interference pigments that unusual effects are obtained. The particle size difference between normal and large interference pigments should be sufficiently significant to minimize the color cancellation effect, for example the difference in D50 values between the normal particle size and the large particle size is preferably about 40-80 μm. The specific difference will be dependent on the proportions of the normal and large particle size interference pigments in the mixture as well as the specific colors of each particle size. If the D50 of the normal particle size interference pigment is too small or the proportion is too high, the luster of the large particle size interference pigment will be significantly reduced by virtue of the overwhelming covering power and light scattering power of the normal particle size pigment. (The surface area of a pigment may be used as a reference to evaluate the suitability and to optimize color mixing.)
  • In order to obtain the particular effects of the invention, the intensity of the color of the large particle size pigment, plays an important role in color mixing, but it is the very size of the large particle size interference pigment which is essential to the success of the invention. It has been discovered, to the contrary, that if one blends a normal particle size interference pigment with an interference pigment having a smaller D50 than that of normal size pigment, the unusual color effects are not obtained.
  • To produce the desired particle size, conventional methods are employed, for example, by sedimentation.
  • The chemical nature of the individual interference pigments, aside from particle size can be varied widely, from substrate-free pigments, to substrate-based pigments of monolayer or multilayer metal oxide coating(s), all well known in the pertinent general and patent literature. Particularly special effects occur when the normal size pigment and/or the large size pigment is a color travel pigment.
  • Possible Compositions of the Interference Pigments:
  • Suitable base substrates for substrate-based pigments include, but are not limited to transparent flake-form substrates, Preferred substrates are phyllosilicates. Particularly suitable are natural and/or synthetic mica, glass flakes, SiO2 flakes, aluminum oxides, sericite, talc, kaolin, flake-form iron oxides or TiO2 flakes, BiOCl or other comparable materials.
  • The size of the base substrates can be matched to the particular application. In general, the flake-form substrates have a thickness of between 0.05 and 5 μm, in particular between 0.1 and 4.5 μm. The size in the other two directions is usually between 1 and 550 μm, preferably between 2 and 300 μm, and in particular between 5 and 250 μm. As known by those skilled in the art, the thickness of the individual layers on the base substrate is essential for the optical properties of the pigment. The aspect ratio (ratio of surface dimension to thickness of an object) is preferably about 1-500, especially 40-350.
  • The interference pigments according to the invention have high and/or low refractive-index layer(s) on top of the substrate. The high-refractive-index layer(s) have a refractive index of n>1.8, preferably of n≧2.0. The high refractive-index layers preferably comprise TiO2, Fe2O3, Fe3O4, ZrO2, SnO2, ZnO, BiOCl, Cr2O3, CeO3, molybdenum oxides, CoO, CO3O4, VO2, V2O3, NiO, V2O5, CuO, Cu2O, Ag2O, CeO2, MnO2, Mn2O3, Mn2O5, titanium oxynitrides, pseudobrookite, ilmenite, as well as titanium nitride, MoS2, WS2 or mixtures or combinations thereof. The TiO2 here can be in the rutile or anatase modification, preferably in the rutile modification.
  • Suitable low-refractive-index materials (n≦1.9) are preferably metal oxides or the corresponding oxide hydrates, such as, for example, SiO2, Al2O3, AlO(OH), B2O3, MgF2, MgSiO3 or a mixture of the said metal oxides.
  • Particularly interesting interference pigments have the following layer sequences:
  • substrate+TiO2
  • substrate+Fe2O3
  • substrate+Fe3O4
  • substrate+Cr2O3
  • substrate+−TiO suboxide
  • substrate+TiO2+Fe2O3
  • substrate+TiO2+SiO2+TiO2
  • substrate+TiO2/Fe2O3
  • substrate+TiO2/Fe2O3+SiO2+TiO2/Fe2O3
  • substrate+TiO2/Fe2O3+SiO2+TiO2
  • substrate+TiO2+SiO2+TiO2/Fe2O3
  • substrate+Fe2O3+SiO2+TiO2/Fe2O3
  • substrate+TiO2/Fe2O3+SiO2+Fe2O3
  • substrate+TiO2+SiO2+Fe3O4
  • substrate+Fe3O4+SiO2+TiO2
  • The pigments according to the invention can be prepared relatively easily by the deposition of materials of high- and/or low-refractive-index, having precisely defined thickness and a smooth surface on the finely divided, flake-form substrates.
  • The metal-oxide layers are preferably applied by wet-chemical methods. Methods of this type are described, for example, in DE 14 67 468, DE 19 59 988, DE 20 09 566, DE 22 14 545, DE 22 15 191, DE 22 44 298, DE 23 13 331, DE 25 22 572, DE 31 37 808, DE 31 37 809, DE 31 51 343, DE 31 51 354, DE 31 51 355, DE 32 11 602, DE 32 35 017 or in further patent documents and other publications known to the person skilled in the art. For example, in wet coating, the substrate particles are suspended in water, and one or more hydrolyzable metal salts are added at a pH which is suitable for hydrolysis and which is selected so that the metal oxides or metal oxide hydrates are precipitated directly onto the flakes without secondary precipitations occurring. The pH is usually kept constant by simultaneous metered addition of a base or acid. The pigments are subsequently separated off, washed and dried and, if desired, calcined, where the calcination temperature can be optimized with respect to the coating present in each case. In general, the calcination temperatures are between 250 and 1000° C., preferably between 350 and 900° C. If desired, the pigments can be separated off after application of individual coatings, dried and, if desired, calcined and then re-suspended for the deposition of the further layers.
  • The coating may furthermore also take place in a fluidized-bed reactor by gas-phase coating, it being possible, for example, to use correspondingly the methods proposed in EP 0 045 851 and EP 0 0106 235 for the preparation of pearlescent pigments.
  • The production of Ti suboxide or Fe3O4 layers can be carried out, for example, by reduction of the TiO2 layer using ammonia, hydrogen and also hydrocarbons and hydrocarbon/ammonia mixtures, as described, for example, in EP-A-0 332 071, DE 199 51 696 A1 and DE 199 51 697 A1. The reduction is preferably carried out in a forming-gas atmosphere (92% of N2/8% of H2 or 96% of N2/4% of H2). The reduction is generally carried out at temperatures of 250-1000° C., preferably 350-900° C. and in particular 500-850° C.
  • The hue of the pigments can be varied within conventionally broad limits by a choice of the coating amounts and/or the layers resulting therefrom. Fine tuning for a certain hue can be achieved by utilizing visual or optical measurement technology.
  • In order to increase the light, water and weather stability, it is frequently advisable, depending on the area of application, to subject the finished pigment to post-coating or post-treatment. Suitable post-coatings or post-treatments are, for example, the processes described in German Patent 22 15 191, DE-A 31 51 354, DE-A 32 35 017, DE-A 33 34 598, DE 40 30 727 A1, EP 0 649 886 A2, WO 97/29059, WO 99/57204 and U.S. Pat. No. 5,759,255. This post-coating further increases the chemical stability of the pigments or simplifies the handling of the pigment, in particular the incorporation into various media. In order to increase the light, water and weather stability, dispersibility and/or compatibility with the application media, it is possible for functional coatings of Al2O3 or ZrO2 or mixtures thereof or mixed phases to be applied to the pigment surface. Furthermore, organic or combined organic/inorganic post-coatings may be employed for example with silanes, as described, for example, in EP 0090259, EP 0 634 459, WO 99/57204, WO 96/32446, WO 99/57204, U.S. Pat. No. 5,759,255, U.S. Pat. No. 5,571,851, WO 01/92425 or in J. J. Ponjeé, Philips Technical Review, Vol. 44, No. 3, 81 ff. and P. H. Harding J. C. Berg, J. Adhesion Sci. Technol. Vol. 11 No. 4, pp. 471-493. Also, the interference pigments can advantageously be used in blends with organic dyes, organic pigments or other pigments. They can be mixed in any ratio with commercially available pigments and fillers.
  • In general, all types of interference pigments can be used. More examples of such pigments include but are not limited to those described in published U.S. patent application Ser. No. 10/608,563, by Cristoph Schmidt et al. filed Jun. 30, 2003, as well as to those described in the patents and literature cited therein, e.g. U.S. Pat. No. 4,434,010, JP H7-759, U.S. Pat. No. 3,438,796, U.S. Pat. No. 5,135,812, DE 44 05 494, DE 44 37 753, DE 195 16 181 and DE 195 15 988, DE 196 18 565, DE 197 46 067 and in the literature, for example in EURO COSMETICS, 1999, No. 8, p. 284.
  • It goes without saying that, for the various applications, the mixture of interference pigments can also advantageously be used in the form of a mixture with organic dyes, organic pigments or other pigments, such as, for example, transparent and opaque white, coloured and black pigments, and with flake-form iron oxides, organic pigments, holographic pigments, LCPs (liquid crystal polymers) and conventional transparent, coloured and black lustre pigments based on metal oxide-coated mica and SiO2 flakes, etc. The interference pigment mixture according to the invention can be mixed in any ratio with commercially available pigments and fillers. Preferred fillers are for example, natural and synthetic mica, nylon powder, pure or filled melamine resins, talc, glasses, kaolin, oxides or hydroxides of aluminium, magnesium, calcium, zinc, BiOCI, barium sulfate, calcium sulfate, calcium carbonate, magnesium carbonate, carbon, and physical or chemical combinations of these substances. There are no restrictions regarding the particle shape of the filler. It can be, for example, flake-form, spherical or needle-shaped in accordance with requirements.
  • The pigments according to the invention are compatible with a multiplicity of color systems, preferably from the area of cosmetics and personal care products, paints, coatings and printing inks. It is important to appreciate that the present invention is applicable for all applications where a decorative effect is desired.
  • As merely one example among all the applications described in patents and pertinent literature, the compositions of this invention can be used in the form of a liquid cosmetic formulation for application to nails or skin. Examples of such cosmetic formulation include but are not limited to: nail lacquer, bath oil, shower gel, body wash, shampoos, conditioner, liquid soap, skin cleanser, hand sanitizer, sunless tanning foam and lotion, skin cream and lotion, body lotion, liquid eye make up, liquid foundation, hair gel, hydrogel, styling gel, lip products, such as lip gloss, lipstick. Also, the composition of this invention can be used in formulations, such as for example, foundation (liquid and stick), face makeup such as cream-to-powder, eye highlighter, eye pencil, bronzing stick, blusher, powder makeup, lip powder, face powder, body powder and, bronzing powder etc.
  • The formulations comprising the interference pigment mixture according to the invention can belong to the lipophilic, hydrophilic or hydrophobic type. In the case of heterogeneous formulations having discrete aqueous and non-aqueous phases, the interference pigment mixtures according to the invention may in each case be present in only one of the two phases or alternatively distributed over both phases.
  • The invention relates, in particular, to formulations which, besides the interference pigment mixture according to the invention, comprise at least one constituent selected from absorbents, astringents, antimicrobial substances, antioxidants, antiperspirants, antifoaming agents, antidandruff active ingredients, antistatics, binders, biological additives, bleaching agents, chelating agents, deodorants, emollients, emulsifiers, emulsion stabilisers, dyes, humectants, film formers, odour substances, flavour substances, insect repellents, preservatives, anticorrosion agents, cosmetic oils, solvents, oxidants, vegetable constituents, buffer substances, reducing agents, surfactants, propellent gases, opacifiers, UV filters and UV absorbers, denaturing agents, viscosity regulators, perfume and vitamins.
  • The above or following description of the multitude of pigments that can be used is not intended to be exclusive since there are a wide variety of interference pigments that have been developed and which will be developed in the future. This invention is based on a finding that the mixture of a large particle size interference pigment with a small particle size interference pigment can yield highly unusual effects, especially when using non-complementary colors.
  • As to the proportions of the normal and large particle size interference pigments, it is contemplated that all proportions will be utilizable, for example in part by weight 99:1 to 1:99, especially 75:25 to 25:75, depending on the specific particle size of each type of pigment, the color of each type of pigment, the D50 difference in particle sizes, etc., in order to obtain the desired color effect.
  • For details of other interference pigments, reference is invited to patents and the pertinent literature. Irrespective of the nature of the individual pigments, the present invention can be utilized by merely mixing at least one large particle size pigment with at least one normal size pigment of a different color.
  • Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
  • In the foregoing and in the following examples, all temperatures are set forth uncorrected in degrees Celsius and, all parts and percentages are by weight, unless otherwise indicated.
  • The following examples show the results of mixing normal and/or large particle size interference pigments (D50>60 μm). For convenience, these large particle size interference pigments are also called glitter interference pigments in the examples. For Timiron® Super Color pigments and Timiron® Splendid Color pigments, their particle size range is 10-60 μm and D50 is 18-25 μm. To demonstrate the color mixing effect more effectively, mixtures are drawdowned on Leneta cards respectively in a nitrocellulose lacquer. The color over black is photographed at the luster angle to show the luster of the mixture.
  • As a disclaimer, it is to be noted that one or more examples may have not been actually conducted.
  • EXAMPLE 1
  • Mixing two interference pigments of complementary colors (with the same particle size range) in 1 to 1 ratio by weight.
  • Referring to FIG. 1, when Timiron® Super Blue is blended with Timiron® Super Gold, the interference colors of the blue and gold pigments are no longer visible due to color cancellation (according to the color mixing rule). On the other hand, on the right hand side of FIG. 1, when experimental glitter interference blue and gold pigments (both D50 about 74 μm) are mixed together, the blue and gold luster colors of pigment particles are discernable macroscopically. This mixture renders the so called multi-color effect.
  • Similar results are obtained for the mixtures of green and red interference pigments in normal or large particle size. Therefore, a multi-color effect can be created by mixing large particle size interference pigments.
  • EXAMPLE 2
  • Mixing two interference pigments of complementary colors (one with large particle size and the other with normal particle size) in 1 to 1 ratio by weight.
  • The luster color of the mixture depends on the color choice of large particle size pigments and is shown below.
  • Referring to FIG. 2, the first mixture consists of experimental glitter interference gold (D50˜74 μm) and Timiron® Splendid Blue. Since the intensity of interference gold color is normally higher than that of blue, the sparkling gold pigment particles can be seen clearly in the environment of smooth blue luster pigment. This mixture has a very attractive color and no significant color cancellation is observed. In the second case (on the right hand side of FIG. 2), when experimental glitter interference blue (D50˜74 μm) is blended with Timiron® Splendid Gold, we are able to see blue luster from some of the pigment particles, but the color is quite dull when compared to the intense interference gold color. This mixture gives a less impressive color.
  • Referring to FIG. 3, the same is true again for blending red and green interference pigments of normal and large particle sizes. The luster color of the mixture of experimental glitter interference red (D50˜74 μm) and Timiron® Splendid Green (D50˜22 μm) is rather different from that of the mixture of experimental glitter interference green (D50˜74 μm) and Timiron® Splendid Red (D50˜22 μm).
  • The examples show that it is possible to create a product consisting of complementary interference colors by mixing a large particle size pigment with a normal size pigment of complementary color to minimize the color cancellation. However, this cannot be accomplished by mixing different D50 fractions of normal particle size pigments. Additionally, the choice of color for the large particle size pigment is important.
  • EXAMPLE 3
  • Mixing two interference pigments of non-complementary colors (one with large particle size and the other with normal particle size) in 1 to 1 ratio by weight.
  • Referring to FIG. 4, some unexpected highly attractive color effects are generated by this type of mixing. When experimental glitter interference red (D50˜74 μm) and Timiron® Splendid Blue (D50˜22 μm) are mixed together, the luster color of the mixture becomes bluish magenta and is surprisingly striking. In addition, the sparkling luster of the experimental glitter red interference pigment can be seen clearly as well. Whereas, when experimental glitter interference blue (D50˜74 μm) is mixed with Timiron® Splendid Red, the color effect of the mixture is still red, but less vivid and no magenta luster color is developed.
  • This example demonstrates the importance of choosing the color of the large particle size pigment in order to achieve a specific color effect.
  • The compositions of the various pigments referred to in the above examples are tabulated as follows:
  • Particle Size Range
    Description INCI name D50 (μm) (μm)
    Timiron Splendid Blue titanium dioxide, mica, silica 18~25  10~60 
    Timiron Splendid Gold titanium dioxide, mica, silica 18~25  10~60 
    Timiron Splendid Green titanium dioxide, mica, silica 18~25  10~60 
    Timiron Splendid Red titanium dioxide, mica, silica 18~25  10~60 
    Experimental Glitter Interference Blue mica, titanium dioxide 60~100 10~150
    Experimental Glitter Interference Gold mica, titanium dioxide 60~100 10~150
    Experimental Glitter Interference Green mica, titanium dioxide 60~100 10~150
    Experimental Glitter Interference Red mica, titanium dioxide 60~100 10~150
  • In substantially the same manner, other mixtures are producible, as below, the percentage being in percent by weight of each pigment of a mixture in a nitrocellulose lacquer.
  • 1. 2% Colorona® Glitter Copper/2% Timiron® Splendid Green: glitter copper particle is clearly visible over a green background
  • 2. 2% Large particle size color travel (Green blue/Lilac)/2% Xirona® Magic Mauve: the color travel effect of Xiron® Magic Mauve is dominating.
  • 3. 2% Large particle size color travel (Green blue/Lilac)/2% Xirona® Nordic Sunset: the color travel effect of Xirona® Nordic Sunset is dominating.
  • 4. 2% Large particle size color travel (Red/Gold)/2% Experimental Glitter Interference Blue: the color travel effect is unchanged and the blue background is clearly visible, very interesting color effect.
  • 5. 2% Large particle size color travel (Red/Gold)/1% Experimental Glitter Interference Blue: similar effect as 4.
  • 6. 2% Xirona® Volcanic Fire/2% Experimental Glitter Interference Blue: color travel effect from Xirona Volcanic Fire is modified.
  • 7. 2% Xirona® Volcanic Fire/1% Experimental Glitter Interference Blue: similar as 6, except the color travel effect was changed less dramatically.
  • 8. 2% Large particle size color travel (Red/Gold)/2% Experimental Glitter Interference Green: color travel effect remains, multi-color effect is created, very interesting color effect.
  • 9. 2% Large particle size color travel (Red/Gold)/1% Experimental Glitter Interference Green: similar as 8
  • 10. 2% Xirona® Volcanic Fire/2% Experimental Glitter Interference Green: color travel effect from Xirona® Volcanic Fire is greatly diminished.
  • 11. 2% Xirona® Volcanic Fire/1% Experimental Glitter Interference Green: similar as 10.
  • 12. 2% Experimental Glitter Interference Red/2% Timiron® Splendid Gold: The gold color overwhelms the red.
  • 13. 2% Experimental Glitter Interference Red/0.5% Timiron® Splendid Gold: interesting color effect.
  • 14. 2% Reflecks™ Beams of Blue/2% Reflecks™ Gleams of Gold: similar effect as shown in example 1.
  • 15. 2% Reflecks™ Beams of Blue/2% Experimental Glitter Interference Gold: similar effect as shown in example 1 except that the blue color from experimental glitter interference blue is more apparent.
  • 16. 2% Reflecks™ Gleams of Gold/2% Experimental Glitter Interference Blue: the gold color dominates.
  • 17. 2% Experimental Glitter interference Green/2% Reflecks™ Dimensions Sparkling Red: similar effect as described in example 1.
  • With respect to the preceding tables, the compositions of the various pigments are listed as follows:
  • Particle Size Range
    Description INCI name D50 (μm) (μm)
    Colorona ® Glitter Copper mica, iron oxides 65~82 10~150
    Timiron ® Splendid Gold titanium dioxide, mica, silica 18~25 10~60 
    Timiron ® Splendid Green titanium dioxide, mica, silica 18~25 10~60 
    Xirona ® Magic Mauve silica, titanium dioxide, tin oxide 16~22 5~50
    Xirona ® Nordic Sunset silica, titanium dioxide, tin oxide 16~23 5~50
    Xirona ® Volcanic Fire titanium dixodixe, silica, mica 19~25 10~60 
    Experimental Glitter Interference Blue mica, titanium dioxide  60~100 10~150
    Experimental Glitter Interference Gold mica, titanium dioxide  60~100 10~150
    Experimental Glitter Interference Green mica, titanium dioxide  60~100 10~150
    Experimental Glitter Interference Red mica, titanium dioxide  60~100 10~150
    Large particle size color travel mica, titanium dioxide, ~85 10~150
    (Green blue/Lilac) silica, tin oxide
    Large particle size color travel mica, titanium dioxide, ~85 10~150
    (Red/Gold) silica, tin oxide
    Reflecks ™ Beams of Blue borosilicate, titanium dioxide ~94  4~190
    Reflecks ™ Gleams of Gold borosilicate, titanium dioxide ~94  4~190
    Reflecks ™ Dimensions Sparkling Red borosilicate, titanium dioxide 75~100
  • The entire disclosures of all applications, patents and publications, cited herein and of corresponding U.S. Provisional Application Ser. No. 60/606,503, filed Sep. 2, 2004 are incorporated by reference herein.
  • The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
  • From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Claims (8)

1. A method of producing mixtures of interference pigments having special effects comprising mixing at least one large particle size interference pigment with at least one normal size interference pigment of predetermined colors and in proportions desired to obtain a unique effect.
2. A method according to claim 1 wherein the large particle size interference pigment has a median size (D50) of more than 40 μm.
3. A method according to claim 1 wherein the normal particle size interference pigment has a median size (D50) of less than 40 μm.
4. A mixture of pigments as obtained by claim 1.
5. A mixture of pigments according to claim 4, wherein at least one large particle size pigment has a non-complementary color to at least one normal size pigment.
6. Cosmetics, personal care products, paints, coatings and printing inks containing the mixture of pigments according to claim 1.
7. Formulations according to claim 6 containing at least one constituent selected from absorbents, astringents, antimicrobial substances, antioxidants, antiperspirants, antifoaming agents, antidandruff active ingredients, antistatics, binders, biological additives, bleaching agents, chelating agents, deodorants, emollients, emulsifiers, emulsion stabilisers, dyes, fillers, humectants, film formers, odour substances, flavour substances, insect repellents, preservatives, anticorrosion agents, cosmetic oils, solvents, oxidants, vegetable constituents, buffer substances, reducing agents, surfactants, propellent gases, opacifiers, UV filters and UV absorbers, denaturing agents, viscosity regulators, perfume and vitamins.
8. Cosmetics and personal care products according to claim 5 which are of the lipophilic, hydrophilic or hydrophobic type.
US12/344,857 2004-09-02 2008-12-29 Special effects with mixtures of interference pigments Abandoned US20090252695A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/344,857 US20090252695A1 (en) 2004-09-02 2008-12-29 Special effects with mixtures of interference pigments
US15/082,918 US10219989B2 (en) 2004-09-02 2016-03-28 Special effects with mixtures of interference pigments

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60650304P 2004-09-02 2004-09-02
US11/217,675 US20060051304A1 (en) 2004-09-02 2005-09-02 Special effects with mixtures of interference pigments
US12/344,857 US20090252695A1 (en) 2004-09-02 2008-12-29 Special effects with mixtures of interference pigments

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/217,675 Continuation US20060051304A1 (en) 2004-09-02 2005-09-02 Special effects with mixtures of interference pigments

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/082,918 Continuation US10219989B2 (en) 2004-09-02 2016-03-28 Special effects with mixtures of interference pigments

Publications (1)

Publication Number Publication Date
US20090252695A1 true US20090252695A1 (en) 2009-10-08

Family

ID=35996478

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/217,675 Abandoned US20060051304A1 (en) 2004-09-02 2005-09-02 Special effects with mixtures of interference pigments
US12/344,857 Abandoned US20090252695A1 (en) 2004-09-02 2008-12-29 Special effects with mixtures of interference pigments
US15/082,918 Expired - Fee Related US10219989B2 (en) 2004-09-02 2016-03-28 Special effects with mixtures of interference pigments

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/217,675 Abandoned US20060051304A1 (en) 2004-09-02 2005-09-02 Special effects with mixtures of interference pigments

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/082,918 Expired - Fee Related US10219989B2 (en) 2004-09-02 2016-03-28 Special effects with mixtures of interference pigments

Country Status (1)

Country Link
US (3) US20060051304A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168394B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168209B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168393B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9320687B2 (en) 2013-03-13 2016-04-26 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
CN111500122A (en) * 2020-06-02 2020-08-07 四川达威科技股份有限公司 Leather pigment paste with iridescent effect and preparation method thereof
US10800924B2 (en) * 2017-11-27 2020-10-13 Cathy Cowan Toy bubble forming composition containing glitter

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309813B4 (en) * 2003-03-05 2008-06-19 Heubach Gmbh Pigment preparation and process for its preparation
US20040223928A1 (en) * 2003-05-08 2004-11-11 The Procter & Gamble Company Cosmetic compositions for skin
DE10346167A1 (en) * 2003-10-01 2005-05-25 Merck Patent Gmbh Shiny black interference pigments
DE102004039554A1 (en) * 2004-08-13 2006-02-23 Merck Patent Gmbh pearlescent
US9089493B2 (en) * 2005-09-16 2015-07-28 The Procter & Gamble Company Skin care composition
DE102006014095A1 (en) 2006-03-24 2007-09-27 Merck Patent Gmbh Glass slides and their use as a transparent filler
FR2903898B1 (en) * 2006-07-21 2012-01-13 Oreal COSMETIC COMPOSITION COMPRISING AN INTERFERENTIAL PIGMENT AND REFLECTIVE PARTICLES
FR2903896B1 (en) * 2006-07-21 2012-01-13 Oreal COSMETIC COMPOSITION WITH LOW SOLID BODY CONTENT COMPRISING AT LEAST ONE INTERFERENTIAL PIGMENT
FR2903900B1 (en) * 2006-07-21 2012-08-10 Oreal COSMETIC COMPOSITION.
FR2903894B1 (en) * 2006-07-21 2013-02-01 Oreal COSMETIC COMPOSITION COMPRISING AT LEAST ONE INTERFERENTIAL PIGMENT AND AT LEAST ONE ARGENT OR COLOR REFLECTING PIGMENT
US20120141776A1 (en) * 2010-11-03 2012-06-07 Fisker Automotive, Inc. Systems and methods of creating sparkle effect in exterior vehicle paint and using glass flake
US20140271736A1 (en) * 2013-03-13 2014-09-18 Johnson & Johnson Consumer Companies, Inc. Pigmented skin-care compositions
US20140271737A1 (en) * 2013-03-13 2014-09-18 Johnson & Johnson Consumer Companies, Inc. Pigmented skin-care compositions
CN103956245B (en) * 2014-04-21 2017-01-18 江苏凯达石英有限公司 Preparation method of ferroferric oxide/silica composite powder of shell-core structure
EP3202858A1 (en) * 2016-02-02 2017-08-09 Kronos International, Inc. The preparation of matt paints and printing inks
JP6663568B2 (en) * 2016-09-30 2020-03-13 ブラザー工業株式会社 Adhesive tape cartridge, adhesive tape roll, and method for manufacturing adhesive tape roll
KR101876199B1 (en) * 2017-04-21 2018-08-03 씨큐브 주식회사 Complex white pigment
CN113660925A (en) * 2019-04-04 2021-11-16 花王株式会社 Hair cosmetic

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929501A (en) * 1970-01-21 1975-12-30 Titanium Tech Nv Novel titanium dioxide composition
US4200474A (en) * 1978-11-20 1980-04-29 Texas Instruments Incorporated Method of depositing titanium dioxide (rutile) as a gate dielectric for MIS device fabrication
US5451632A (en) * 1992-10-26 1995-09-19 Idemitsu Petrochemical Co., Ltd. Polycarbonate-polyorganosiloxane copolymer and a resin composition
US5565025A (en) * 1993-09-02 1996-10-15 Merck Patent Gesellschaft Mit Beschrankter Haftung Surface-modified pigments and use thereof as yellowness inhibitors in pigmented plastics
US5626661A (en) * 1991-12-13 1997-05-06 Basf Aktiengesellschaft Luster pigments based on multiply coated plateletlike silicatic substrates
US5753371A (en) * 1996-06-03 1998-05-19 The Mearl Corporation Pearlescent glass pigment
US5780018A (en) * 1991-06-21 1998-07-14 The Boots Company Plc Cosmetic formulations
US6045914A (en) * 1996-06-03 2000-04-04 Engelhard Corporation Pearlescent glass pigment
US6060071A (en) * 1993-12-12 2000-05-09 Merck Patent Gmbh Ectoin and ectoin derivatives as moisturizers in cosmetics
US6419736B1 (en) * 1998-03-11 2002-07-16 Merck Patent Gesellschaft Mit Beschrankter Haftung Sulfide and oxysulphide pigments
US6517628B1 (en) * 1999-04-16 2003-02-11 Merck Patent Gmbh Pigment mixture
US6596070B1 (en) * 1997-10-17 2003-07-22 Merck Patent Gesellschaft Interference pigments
US20040123778A1 (en) * 2002-12-31 2004-07-01 Frank Bagala Effect pigment
US20040191198A1 (en) * 2003-03-27 2004-09-30 Veronika Hochstein Pigment mixture, and the use thereof in cosmetics and in the foods and pharmaceuticals sector
US6875264B2 (en) * 2003-01-17 2005-04-05 Engelhard Corporation Multi-layer effect pigment
US20050220741A1 (en) * 2004-03-22 2005-10-06 Christophe Dumousseaux Cosmetic composition comprising concave particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI234787B (en) 1998-05-26 2005-06-21 Tokyo Ohka Kogyo Co Ltd Silica-based coating film on substrate and coating solution therefor
JP3702742B2 (en) 1999-04-28 2005-10-05 日本板硝子株式会社 Pearlescent pigment, method for producing the same, and cosmetics containing pearlescent pigment
TWI292773B (en) 2001-05-09 2008-01-21 Merck Patent Gmbh Effect pigments based on coated glass flakes
JP2005502738A (en) 2001-07-12 2005-01-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Multilayer pigments based on glass flakes
US20060013838A1 (en) * 2004-07-13 2006-01-19 Qinyun Peng Cosmetic powder compositions having large particle size color travel effect pigments

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929501A (en) * 1970-01-21 1975-12-30 Titanium Tech Nv Novel titanium dioxide composition
US4200474A (en) * 1978-11-20 1980-04-29 Texas Instruments Incorporated Method of depositing titanium dioxide (rutile) as a gate dielectric for MIS device fabrication
US5780018A (en) * 1991-06-21 1998-07-14 The Boots Company Plc Cosmetic formulations
US5626661A (en) * 1991-12-13 1997-05-06 Basf Aktiengesellschaft Luster pigments based on multiply coated plateletlike silicatic substrates
US5451632A (en) * 1992-10-26 1995-09-19 Idemitsu Petrochemical Co., Ltd. Polycarbonate-polyorganosiloxane copolymer and a resin composition
US5565025A (en) * 1993-09-02 1996-10-15 Merck Patent Gesellschaft Mit Beschrankter Haftung Surface-modified pigments and use thereof as yellowness inhibitors in pigmented plastics
US6060071A (en) * 1993-12-12 2000-05-09 Merck Patent Gmbh Ectoin and ectoin derivatives as moisturizers in cosmetics
US6045914A (en) * 1996-06-03 2000-04-04 Engelhard Corporation Pearlescent glass pigment
US5753371A (en) * 1996-06-03 1998-05-19 The Mearl Corporation Pearlescent glass pigment
US6596070B1 (en) * 1997-10-17 2003-07-22 Merck Patent Gesellschaft Interference pigments
US6419736B1 (en) * 1998-03-11 2002-07-16 Merck Patent Gesellschaft Mit Beschrankter Haftung Sulfide and oxysulphide pigments
US6517628B1 (en) * 1999-04-16 2003-02-11 Merck Patent Gmbh Pigment mixture
US20040123778A1 (en) * 2002-12-31 2004-07-01 Frank Bagala Effect pigment
US6875264B2 (en) * 2003-01-17 2005-04-05 Engelhard Corporation Multi-layer effect pigment
US20040191198A1 (en) * 2003-03-27 2004-09-30 Veronika Hochstein Pigment mixture, and the use thereof in cosmetics and in the foods and pharmaceuticals sector
US20050220741A1 (en) * 2004-03-22 2005-10-06 Christophe Dumousseaux Cosmetic composition comprising concave particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168394B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168209B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168393B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9320687B2 (en) 2013-03-13 2016-04-26 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US10800924B2 (en) * 2017-11-27 2020-10-13 Cathy Cowan Toy bubble forming composition containing glitter
CN111500122A (en) * 2020-06-02 2020-08-07 四川达威科技股份有限公司 Leather pigment paste with iridescent effect and preparation method thereof

Also Published As

Publication number Publication date
US20060051304A1 (en) 2006-03-09
US20160206530A1 (en) 2016-07-21
US10219989B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
US10219989B2 (en) Special effects with mixtures of interference pigments
US8500901B2 (en) Interference pigments
US6866710B2 (en) Inorganic spherical absorption pigments
US9909010B2 (en) Pigments
JP4960229B2 (en) Cosmetic powder composition having a large particle size color travel effect pigment
JP5138862B2 (en) Glossy black interference pigment
JP5409983B2 (en) Interference pigment
US20080279796A1 (en) Transition metal-containing effect pigments
US20040177788A1 (en) Interference pigments having a mass tone
CN107286706B (en) Pigment mixture
TW200424271A (en) Silver pigments
EP3145867B1 (en) Alpha-al2o3 flakes
US10280308B2 (en) Effect pigments
CN113767151B (en) Effect pigments
JP7473297B2 (en) Pigment Mixture
WO2019043022A1 (en) Pigment formulation
CN114788793A (en) Powder pigment composition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION