US20090133261A1 - Conformal vacuum cup apparatus and method - Google Patents
Conformal vacuum cup apparatus and method Download PDFInfo
- Publication number
- US20090133261A1 US20090133261A1 US11/505,951 US50595106A US2009133261A1 US 20090133261 A1 US20090133261 A1 US 20090133261A1 US 50595106 A US50595106 A US 50595106A US 2009133261 A1 US2009133261 A1 US 2009133261A1
- Authority
- US
- United States
- Prior art keywords
- tool
- rail
- vacuum cup
- carrying rail
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B11/00—Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
- B25B11/005—Vacuum work holders
- B25B11/007—Vacuum work holders portable, e.g. handheld
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B11/00—Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q2210/00—Machine tools incorporating a specific component
- B23Q2210/008—Flexible guiding rails
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49616—Structural member making
- Y10T29/49622—Vehicular structural member making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49947—Assembling or joining by applying separate fastener
- Y10T29/49954—Fastener deformed after application
- Y10T29/49956—Riveting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49998—Work holding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/51—Plural diverse manufacturing apparatus including means for metal shaping or assembling
- Y10T29/5104—Type of machine
- Y10T29/5105—Drill press
- Y10T29/5108—Portable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/51—Plural diverse manufacturing apparatus including means for metal shaping or assembling
- Y10T29/5116—Plural diverse manufacturing apparatus including means for metal shaping or assembling forging and bending, cutting or punching
- Y10T29/5118—Riveting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/51—Plural diverse manufacturing apparatus including means for metal shaping or assembling
- Y10T29/5191—Assembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/5313—Means to assemble electrical device
- Y10T29/53191—Means to apply vacuum directly to position or hold work part
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T408/00—Cutting by use of rotating axially moving tool
- Y10T408/55—Cutting by use of rotating axially moving tool with work-engaging structure other than Tool or tool-support
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/306216—Randomly manipulated, work supported, or work following device
- Y10T409/306384—Randomly manipulated, work supported, or work following device with work supported guide means
- Y10T409/30644—Randomly manipulated, work supported, or work following device with work supported guide means to guide tool to move in arcuate path
Definitions
- the present invention relates generally to manufacturing tools and automation. More particularly, the present invention relates to attachment of rail-mounted machine tools to work surfaces.
- Portable, vacuum-cup-attached systems for drilling or fastening sections of aircraft fuselage or wing structures, as well as for other manufacturing operations, for other vehicle types, and for static structures, have been developed previously, but have generally been most practical for use only on workpiece areas where the contour is zero or very small in the longitudinal direction of the device.
- some prior art vacuum cup systems could be attached readily along the flight direction of a cylindrical or otherwise highly curved fuselage, particularly where the fuselage has a long, essentially straight extent (i.e., a contour near zero), but attaching such a system to the fuselage in the circumferential direction, or fore-and-aft along a curving wing rib, would tend sometimes to produce uncertain results.
- Prior art systems that use small numbers of large vacuum cups have been used, but have tended to be unable to conform smoothly to severe contours.
- Prior art systems with large numbers of small vacuum cups can follow a contour to some extent, but tend to be limited in the available retaining force by the necessity of having physical clearance around each vacuum cup, and by the limited available length-to-width ratio of an individual cup.
- Prior art rail-mounted machine tool systems can possess the capability to advance a tool attached to a rail using a motor and gear apparatus integrated with the tool. Measurement apparatus, likewise integrated with the tool, allows the position of the tool to be determined with considerable precision. Nonetheless, prior art systems tend to be limited in their ability to conform to generalized surfaces, being best suited to positioning along low-contour paths.
- the conformal vacuum cup described in some embodiments comprises a resilient cup member having a series of rigid stiffener elements oriented next to each other along the longitudinal axis of a rail system.
- a rail can be supported by attachment to the stiffener elements.
- the stiffener elements can be spaced away from the rail, in a representative embodiment, using standoff pins attached to the stiffener elements and to the rail. Between each pair of stiffener elements is a gap sufficient to allow the rail to flex over a comparatively sharply curved contour without interference.
- a group of stiffener elements assembled in a mold can be overmolded with an elastomeric material such as urethane, which overmolding encloses all of the stiffener elements and adds a circumferential lip to establish the vacuum cup.
- the vacuum cup so formed can have kerf shapes formed into the gaps between adjacent stiffener elements to permit substantial motion between the stiffener elements despite the presence of the overmolded elastomer.
- the above standoff pins can protrude from top and/or bottom surfaces of the overmolded elastomer.
- a vacuum cup for removable connection between a conformable, tool-carrying rail and a rail-side surface of a workpiece comprises an inner surface of the vacuum cup, an outer surface of the vacuum cup, a plurality of resilient pads joined into a contiguous whole (wherein the area between each pad and the rail-side surface of the workpiece defines a zone), a plurality of stiffener elements (wherein at least one of the plurality of stiffening elements is embedded at least partially within each respective one of the pads, and wherein the stiffener elements are attachable to the rail), and a resilient peripheral seal, joined to the pads and surrounding the periphery of all of the zones between the pads and the rail-side surface of the workpiece.
- a vacuum cup for removable connection between a conformable, tool-carrying rail and a rail-side surface of a workpiece comprises an inner surface of the vacuum cup, an outer surface of the vacuum cup, a plurality of resilient pads joined into a contiguous whole, wherein the area between each pad and the rail-side surface of the workpiece defines a zone, a plurality of stiffener elements, wherein one of the plurality of stiffening elements is embedded at least partially within each of the pads, and wherein the stiffener elements are attachable to the rail, and a resilient peripheral seal, joined to the pads and surrounding the periphery of all of the zones between the pads and the rail-side surface of the workpiece, and a plurality of standoff pins attached to the rail, where at least one of one of the standoff pins is attached to a respective one of each of the stiffener elements.
- an attachment between a rail with a longitudinal axis and a rail-side surface of the workpiece comprises means for stiffening a vacuum cup along an axis transverse to the longitudinal axis of the rail and parallel to the rail-side surface of the workpiece, means for removably sealing the stiffening means to the rail-side surface of the workpiece against vacuum loss, means for rigidly positioning a point on the rail with respect to a point on the rail-side surface of the workpiece, and means for coupling a vacuum source to a spatial volume occupying all of a space between the means for sealing and the rail-side surface of the workpiece.
- a method for removably attaching a rail with a longitudinal axis to a rail-side surface of a workpiece comprises stiffening a vacuum cup along an axis transverse to the longitudinal axis of the rail and parallel to the rail-side surface of the workpiece, removably sealing a perimeter of the vacuum cup to the rail-side surface of the workpiece against vacuum loss, rigidly positioning a point on the rail with respect to a point on the rail-side surface of the workpiece, and coupling a vacuum source to a spatial volume occupying all of a space between the vacuum cup and the rail-side surface of the workpiece.
- FIG. 1 is a perspective view illustrating from beneath a fully compressed conformal vacuum cup according to a preferred embodiment of the invention.
- FIG. 2 is an oblique view from above with cutaway of a conformal vacuum cup according to the embodiment of FIG. 1 .
- FIG. 3 is an exploded view of an end stiffener and associated standoff pins according to the embodiment of FIG. 1 .
- FIG. 4 is an exploded view of an intermediate stiffener and associated standoff pins according to the embodiment of FIG. 1 .
- FIG. 5 is a section view of a vacuum connection with an intact diaphragm.
- FIG. 6 is a section view of a vacuum connection with a pierced diaphragm in which a barbed tubing coupling has been installed.
- FIG. 7 is a side view with cutaway of a conformal vacuum cup installed on a rail and pressed onto a workpiece, according to the embodiment of FIG. 1 .
- FIG. 8 is a section view of a groove and kerfs separating two pads according to the embodiment of FIG. 1 .
- FIG. 9 is a section view of a groove without kerfs.
- FIG. 10 is an oblique view from above of a conformal vacuum cup according to an alternative embodiment of the invention.
- FIG. 11 is a side view of a multiplicity of conformal vacuum cups according to the alternative embodiment of FIG. 10 , showing attachment to a rail and a curved workpiece.
- Various embodiments in accordance with the present invention provide vacuum cup apparatus and methods for attachment of devices such as, for example, a rail system used in operations such as drilling series of holes, which holes may be needed for assembling screws or rivets through airplane sheet surfaces into underlying structures.
- devices such as, for example, a rail system used in operations such as drilling series of holes, which holes may be needed for assembling screws or rivets through airplane sheet surfaces into underlying structures.
- FIG. 1 is an oblique bottom view that shows a fully compressed vacuum cup 10 according to an exemplary embodiment.
- the vacuum cup 10 has a peripheral sealing lip 12 that is shown deflected as it would be seen from below a transparent workpiece (a workpiece 70 is shown in FIGS. 7 and 11 ) when vacuum from an external vacuum system (shown in FIG. 10 ) has been applied to the volume between the cup 10 and the workpiece 70 , and has caused outside air pressure to force the cup 10 against the workpiece 70 .
- the exemplary vacuum cup 10 comprises two end pads 14 along with three intermediate pads 16 . Each pad 14 or 16 comprises a stiffener (stiffeners 26 and 28 are shown in FIG.
- the standoff pin tops 22 can be attached to a rail using suitable fastenings (a rail 72 is shown in FIGS. 7 and 11 ).
- One or more partial holes 24 that are used to permit vacuum system attachment are shown in each end pad 14 and in more detail in FIGS. 5 and 6 .
- FIG. 2 is an oblique cutaway view of the vacuum cup 10 from above. Representative pads 14 and 16 are shown cut away to reveal an end pad stiffener 26 and intermediate pad stiffeners 28 within their respective pads 14 and 16 . Similar stiffeners are fully shown in FIGS. 3 and 4 .
- FIG. 3 is an oblique exploded view showing an end stiffener 30 substantially similar to the corresponding stiffener 26 in FIG. 2 .
- the stiffener 30 is shown with two standoff pins 18 oriented for insertion.
- Each of the exemplary standoff pins 18 in FIG. 3 has a pin top 22 with a chamfer 32 and a female thread 34 for attachment to a rail 72 (shown in FIGS. 7 and 11 ).
- a taper section 36 and an interference-fit section 38 on each standoff pin 18 can allow the pin 18 to be pressed substantially permanently into the corresponding hole 40 .
- a shoulder 42 can provide an integral stop to allow the pin 18 to bear against the stiffener 26 or 30 , with the pin bottom end 20 at a uniform distance from the bottom surface 44 of the stiffener 26 or 30 .
- Three bores 46 in the end stiffener 30 can be used to provide passage for vacuum connection (shown in FIGS. 5 and 6 ).
- FIG. 4 is an oblique exploded view showing an intermediate stiffener 48 substantially similar to the corresponding stiffener 28 in FIG. 2 .
- the stiffener 48 is shown with two standoff pins 18 oriented for insertion.
- Each of the pins 18 in FIG. 4 has a pin top 22 with a chamfer 32 and a female thread 34 for attachment to a rail 72 (shown in FIGS. 7 and 11 ).
- a tapered section 36 and an interference-fit section 38 on each pin 18 can allow the pin 18 to be pressed essentially permanently into the corresponding hole 40 .
- a shoulder 42 can provide a stop that allows the pin 18 to bear against the stiffener 48 , with the pin bottom end 20 at a uniform distance from the bottom surface 50 of the stiffener 28 or 48 .
- the sealing lip 12 is shown relaxed and deflected downward in its rest orientation.
- a kerf or lower slot 60 Inscribed around most of the perimeter of each of the pads 14 and 16 is a kerf or lower slot 60 .
- An upper groove or slot 62 is present as well.
- the two kerfs 60 and one groove 62 together provide some degree of decoupling between each two stiffeners 26 , 28 , 30 , or 48 , allowing the stiffeners 26 , 28 , 30 , or 48 to draw together or move apart as flexed by the rail 72 (shown in FIGS. 7 and 11 ) to which they are fastened, and/or to twist relative to each other if so driven by the mounted curve profile of the rail 72 .
- FIG. 5 is a section through FIG. 1 at section line 5 - 5 . This shows that the first partial hole 24 in the bottom face 52 of an end pad 14 aligns with a second partial hole 54 in the top face 56 , shown in FIG. 2 , of the end pad 14 .
- the two partial holes 24 and 54 are separated by a diaphragm 58 , and may preferably be positioned within one of the bores 46 in the end stiffeners 26 and 30 .
- FIG. 6 is a section view of a barbed tubing coupling 64 inserted into a vacuum cup 10 .
- a barbed coupling 64 of suitable size can be inserted into the second partial hole 54 .
- the barbed coupling 64 preferably carrying a single barb on each end as shown, preferably passes through the pierced diaphragm 58 and uses the pierced diaphragm 58 as a locking element to retain the barbed coupling 64 .
- the top of the barbed tubing coupling 64 is shown to be set at a right angle 66 .
- the right angle 66 shown may be preferable to allow a vacuum line 68 to deliver vacuum to the vacuum cup 10 without a sharp bend in the line 68 .
- Other angles and other fitting styles may be preferable in some applications.
- the multiplicity of partial holes 24 in the end pads 14 can be used to provide optional vacuum connections.
- a pierced diaphragm 58 may leak substantially no air when no barbed coupling 64 has been installed in it. This can allow the vacuum cup 10 in which the pierced diaphragm 58 exists to hold vacuum acceptably. By extension, a vacuum cup 10 may remain usable with multiple diaphragms 58 that are unused but have been pierced.
- the baseline configuration for the exemplary embodiment employs a common area below the entire vacuum cup 10 , vacuum drawn at a first pierced partial hole 24 can be extended out through a second pierced partial hole 24 (as shown in FIG. 10 ).
- Another barbed tubing coupling 64 can be added to connect the vacuum source to a second vacuum cup 10 without using a manifold port at the vacuum source for every vacuum cup 10 .
- Providing an ample number of partial holes 24 in the embodiment permits a variety of options for distributing vacuum in a rail-mounted machine tool system with a vacuum cups 10 of a single design.
- the availability of additional partial holes 24 can permit the addition of sensors, gauges, and the like as well as additional vacuum cups 10 .
- the standoff pins 18 are shown surrounded by the elastomer of the pads 14 and 16 .
- the pin bottom ends 20 can be domed with a radius roughly equal to the elastic deformation of the workpiece 70 effected by the pressure stemming from the applied vacuum plus a portion of the weight of the rail-mounted drilling system. If the elastic deformation of the workpiece 70 can be shown to be negligible, then a satisfactory pin bottom end 20 shape may be achievable with a flat face square to the workpiece and a smooth edge roundoff.
- the pin bottom end 20 shape, radius of curvature, and size may preferably be chosen to at least minimize scuffing or marring of the workpiece 70 .
- FIG. 7 is a side view with a partial cutaway, revealing the structure of a vacuum cup 10 pressed against a workpiece 70 and attached to a rail 72 with studs 74 , nuts 76 , and washers 78 .
- the lip 12 is flexed upward from its rest position as a result of application of vacuum.
- a flat workpiece 70 is contacted by the standoff pins 18 , causing the rail 72 to assume a flat shape, parallel to the workpiece 70 .
- FIG. 8 is a section through the vacuum cup 10 of FIG. 1 , in which the kerfs 60 and upper groove 62 are shown as they would be with a vacuum cup 10 positioned on a flat workpiece 70 .
- the standoff pins 18 shown in FIGS. 1 and 2
- This flexure allows the vacuum cup 10 to conform to a workpiece 70 with a relatively sharp curvature, and thus to cause the rail 72 to so conform. Twist in the workpiece 70 can be accommodated as well, with the elastomer flexing as necessary.
- FIG. 9 is a section through an alternative vacuum cup configuration retaining the upper groove 62 but without kerfs. This configuration may be preferable on some workpieces, for example where curvature is slight or nonexistent along the rail longitudinal axis.
- Alternative methods for fastening standoff pins to a rail could include welding, brazing, and equivalent metallurgical bonding methods, as well as application of a flange to the top of each standoff pin, which flange could have multiple radially-arrayed holes for rivets or other fastenings.
- the stud 74 , nut 76 , and washer 78 of the exemplary embodiment can be replaced by other threaded fasteners, such as screws with or without washers, and can be prevented from loosening by application of antivibration materials, upset threads, and other technologies.
- FIG. 10 is an oblique view of a conformal vacuum cup 10 according to another design.
- the lip 12 is made wavy instead of straight-edged as in FIGS. 1-9 .
- the elastomeric material 80 does not surround the stiffeners 28 and 30 above an attachment shoulder 82 .
- the embodiment shown has one inlet vacuum line 84 and one outlet vacuum line 86 , with no provision for additional vacuum lines.
- a fitting 88 is employed to seal to a threaded hole and connect to a vacuum hose 94 at an approximate right angle.
- FIG. 10 further shows in schematic form the use of a vacuum source 92 connected by a vacuum hose 94 to use the vacuum cup 10 .
- a second fitting 88 connects to a second vacuum hose 86 to carry vacuum to another vacuum cup 10 or to an accessory such as a gauge.
- FIG. 11 shows multiple samples of the conformal vacuum cup 10 of FIG. 10 attached to a curved rail 72 using studs 74 , nuts 76 , and washers 78 . Also shown is a convex-curved workpiece 70 . The curvature of the rail 72 requires the flexing of the conformal vacuum cups 10 to accommodate the drawing together of the individual stiffeners 30 and 48 shown in FIGS. 3 and 4 .
- the stiffeners 26 , 28 , 30 , and 48 described herein can preferably be fabricated from a material with specific physical properties.
- One such desirable stiffener property is higher flexure resistance than the rail 72 and/or the workpiece 70 , particularly in the thickness used.
- Another such desirable stiffener property is compatibility with insertion of pins 18 , which compatibility includes adequate malleability to permit pin 18 insertion and similarity in temperature coefficient of expansion to the pins 18 .
- Another such desirable stiffener property is compatibility with the elastomeric overmolding material, which compatibility includes tolerance of the temperatures at which the molding takes place and chemical compatibility with the overmolding material.
- Typical materials likely to be suitable include various aluminum and stainless steel alloys, fiber reinforced phenolics, engineering plastics such as PEEK®, and others.
- Suitable elastomers for the vacuum cup overmolding material include a class of synthetic rubbers known generically as urethanes.
- Other classes of elastomers, such as vinyls, as well as other formable materials, may, like urethanes, have adequate ranges of durometer values and acceptable physical properties such as tear resistance for repeated use and may exhibit an ability to withstand rough treatment.
- Urethanes in the preferred range of durometers can in some formulations exhibit a desirable ability to cling to surfaces, which ability may add to the positioning force of the vacuum cups 10 .
- Vinyls may exhibit significantly lower cling than urethanes, which may be preferable in some embodiments.
- Other elastomers may likewise exhibit desirable combinations of attributes for specific uses.
- Forcing air, such as from a compressor, through a vacuum cup system may allow the cups to function as air bearings to make tool repositioning easier and quicker.
- Specific features such as lip shape, interface surface profile, elastomer material choice, and available air flow rate may inhibit or facilitate such use.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Manipulator (AREA)
- Pressure Vessels And Lids Thereof (AREA)
- Drilling And Boring (AREA)
- Automatic Assembly (AREA)
- Jigs For Machine Tools (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Hooks, Suction Cups, And Attachment By Adhesive Means (AREA)
- Connection Of Plates (AREA)
- Insertion Pins And Rivets (AREA)
- Coating With Molten Metal (AREA)
- Advancing Webs (AREA)
- Auxiliary Devices For Machine Tools (AREA)
Abstract
Description
- This application claims priority of and is a divisional application to U.S. patent application Ser. No. 10/854,209, filed on May 27, 2004, titled “CONFORMAL VACUUM CUP APPARATUS AND METHOD,” the disclosure of which is incorporated herein by reference in its entirety.
- The present invention relates generally to manufacturing tools and automation. More particularly, the present invention relates to attachment of rail-mounted machine tools to work surfaces.
- Portable, vacuum-cup-attached systems for drilling or fastening sections of aircraft fuselage or wing structures, as well as for other manufacturing operations, for other vehicle types, and for static structures, have been developed previously, but have generally been most practical for use only on workpiece areas where the contour is zero or very small in the longitudinal direction of the device. For example, some prior art vacuum cup systems could be attached readily along the flight direction of a cylindrical or otherwise highly curved fuselage, particularly where the fuselage has a long, essentially straight extent (i.e., a contour near zero), but attaching such a system to the fuselage in the circumferential direction, or fore-and-aft along a curving wing rib, would tend sometimes to produce uncertain results.
- Prior art systems that use small numbers of large vacuum cups have been used, but have tended to be unable to conform smoothly to severe contours. Prior art systems with large numbers of small vacuum cups can follow a contour to some extent, but tend to be limited in the available retaining force by the necessity of having physical clearance around each vacuum cup, and by the limited available length-to-width ratio of an individual cup.
- Prior art rail-mounted machine tool systems can possess the capability to advance a tool attached to a rail using a motor and gear apparatus integrated with the tool. Measurement apparatus, likewise integrated with the tool, allows the position of the tool to be determined with considerable precision. Nonetheless, prior art systems tend to be limited in their ability to conform to generalized surfaces, being best suited to positioning along low-contour paths.
- Accordingly, it would be desirable to provide a method and apparatus that provides attachment of a rail system that can conform to surfaces with comparatively large contour in the longitudinal direction of traversal by the rail system and by tools carried thereon.
- The conformal vacuum cup described in some embodiments comprises a resilient cup member having a series of rigid stiffener elements oriented next to each other along the longitudinal axis of a rail system. A rail can be supported by attachment to the stiffener elements. The stiffener elements can be spaced away from the rail, in a representative embodiment, using standoff pins attached to the stiffener elements and to the rail. Between each pair of stiffener elements is a gap sufficient to allow the rail to flex over a comparatively sharply curved contour without interference. A group of stiffener elements assembled in a mold can be overmolded with an elastomeric material such as urethane, which overmolding encloses all of the stiffener elements and adds a circumferential lip to establish the vacuum cup. The vacuum cup so formed can have kerf shapes formed into the gaps between adjacent stiffener elements to permit substantial motion between the stiffener elements despite the presence of the overmolded elastomer. The above standoff pins can protrude from top and/or bottom surfaces of the overmolded elastomer.
- In another aspect, a vacuum cup for removable connection between a conformable, tool-carrying rail and a rail-side surface of a workpiece comprises an inner surface of the vacuum cup, an outer surface of the vacuum cup, a plurality of resilient pads joined into a contiguous whole (wherein the area between each pad and the rail-side surface of the workpiece defines a zone), a plurality of stiffener elements (wherein at least one of the plurality of stiffening elements is embedded at least partially within each respective one of the pads, and wherein the stiffener elements are attachable to the rail), and a resilient peripheral seal, joined to the pads and surrounding the periphery of all of the zones between the pads and the rail-side surface of the workpiece.
- In still another aspect, a vacuum cup for removable connection between a conformable, tool-carrying rail and a rail-side surface of a workpiece comprises an inner surface of the vacuum cup, an outer surface of the vacuum cup, a plurality of resilient pads joined into a contiguous whole, wherein the area between each pad and the rail-side surface of the workpiece defines a zone, a plurality of stiffener elements, wherein one of the plurality of stiffening elements is embedded at least partially within each of the pads, and wherein the stiffener elements are attachable to the rail, and a resilient peripheral seal, joined to the pads and surrounding the periphery of all of the zones between the pads and the rail-side surface of the workpiece, and a plurality of standoff pins attached to the rail, where at least one of one of the standoff pins is attached to a respective one of each of the stiffener elements.
- In still another aspect, an attachment between a rail with a longitudinal axis and a rail-side surface of the workpiece comprises means for stiffening a vacuum cup along an axis transverse to the longitudinal axis of the rail and parallel to the rail-side surface of the workpiece, means for removably sealing the stiffening means to the rail-side surface of the workpiece against vacuum loss, means for rigidly positioning a point on the rail with respect to a point on the rail-side surface of the workpiece, and means for coupling a vacuum source to a spatial volume occupying all of a space between the means for sealing and the rail-side surface of the workpiece.
- In yet another aspect, a method for removably attaching a rail with a longitudinal axis to a rail-side surface of a workpiece comprises stiffening a vacuum cup along an axis transverse to the longitudinal axis of the rail and parallel to the rail-side surface of the workpiece, removably sealing a perimeter of the vacuum cup to the rail-side surface of the workpiece against vacuum loss, rigidly positioning a point on the rail with respect to a point on the rail-side surface of the workpiece, and coupling a vacuum source to a spatial volume occupying all of a space between the vacuum cup and the rail-side surface of the workpiece.
- There have thus been outlined, rather broadly, certain embodiments of the invention, in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.
- In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
- As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may be used readily as a basis for the designing of other structures, methods, and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
-
FIG. 1 is a perspective view illustrating from beneath a fully compressed conformal vacuum cup according to a preferred embodiment of the invention. -
FIG. 2 is an oblique view from above with cutaway of a conformal vacuum cup according to the embodiment ofFIG. 1 . -
FIG. 3 is an exploded view of an end stiffener and associated standoff pins according to the embodiment ofFIG. 1 . -
FIG. 4 is an exploded view of an intermediate stiffener and associated standoff pins according to the embodiment ofFIG. 1 . -
FIG. 5 is a section view of a vacuum connection with an intact diaphragm. -
FIG. 6 is a section view of a vacuum connection with a pierced diaphragm in which a barbed tubing coupling has been installed. -
FIG. 7 is a side view with cutaway of a conformal vacuum cup installed on a rail and pressed onto a workpiece, according to the embodiment ofFIG. 1 . -
FIG. 8 is a section view of a groove and kerfs separating two pads according to the embodiment ofFIG. 1 . -
FIG. 9 is a section view of a groove without kerfs. -
FIG. 10 is an oblique view from above of a conformal vacuum cup according to an alternative embodiment of the invention. -
FIG. 11 is a side view of a multiplicity of conformal vacuum cups according to the alternative embodiment ofFIG. 10 , showing attachment to a rail and a curved workpiece. - Various embodiments in accordance with the present invention provide vacuum cup apparatus and methods for attachment of devices such as, for example, a rail system used in operations such as drilling series of holes, which holes may be needed for assembling screws or rivets through airplane sheet surfaces into underlying structures. Although described in the context of aircraft manufacturing, various embodiments can also be useful in other manufacturing industries. The invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout.
-
FIG. 1 is an oblique bottom view that shows a fullycompressed vacuum cup 10 according to an exemplary embodiment. Thevacuum cup 10 has aperipheral sealing lip 12 that is shown deflected as it would be seen from below a transparent workpiece (aworkpiece 70 is shown inFIGS. 7 and 11 ) when vacuum from an external vacuum system (shown inFIG. 10 ) has been applied to the volume between thecup 10 and theworkpiece 70, and has caused outside air pressure to force thecup 10 against theworkpiece 70. Theexemplary vacuum cup 10 comprises twoend pads 14 along with threeintermediate pads 16. Eachpad stiffeners FIG. 2 ) encapsulated in the resilient material of thevacuum cup 10, and further comprises twostandoff pins 18 withbottom ends 20 that can directly contact the workpiece when thecup 10 is compressed. Thestandoff pin tops 22 can be attached to a rail using suitable fastenings (arail 72 is shown inFIGS. 7 and 11 ). One or morepartial holes 24 that are used to permit vacuum system attachment are shown in eachend pad 14 and in more detail inFIGS. 5 and 6 . -
FIG. 2 is an oblique cutaway view of thevacuum cup 10 from above.Representative pads end pad stiffener 26 andintermediate pad stiffeners 28 within theirrespective pads FIGS. 3 and 4 . -
FIG. 3 is an oblique exploded view showing anend stiffener 30 substantially similar to thecorresponding stiffener 26 inFIG. 2 . Thestiffener 30 is shown with twostandoff pins 18 oriented for insertion. Each of theexemplary standoff pins 18 inFIG. 3 has apin top 22 with achamfer 32 and afemale thread 34 for attachment to a rail 72 (shown inFIGS. 7 and 11 ). Ataper section 36 and an interference-fit section 38 on eachstandoff pin 18 can allow thepin 18 to be pressed substantially permanently into thecorresponding hole 40. Ashoulder 42 can provide an integral stop to allow thepin 18 to bear against thestiffener pin bottom end 20 at a uniform distance from thebottom surface 44 of thestiffener bores 46 in theend stiffener 30 can be used to provide passage for vacuum connection (shown inFIGS. 5 and 6 ). -
FIG. 4 is an oblique exploded view showing anintermediate stiffener 48 substantially similar to the correspondingstiffener 28 inFIG. 2 . Thestiffener 48 is shown with two standoff pins 18 oriented for insertion. Each of thepins 18 inFIG. 4 has apin top 22 with achamfer 32 and afemale thread 34 for attachment to a rail 72 (shown inFIGS. 7 and 11 ). A taperedsection 36 and an interference-fit section 38 on eachpin 18 can allow thepin 18 to be pressed essentially permanently into the correspondinghole 40. Ashoulder 42 can provide a stop that allows thepin 18 to bear against thestiffener 48, with the pinbottom end 20 at a uniform distance from thebottom surface 50 of thestiffener - Returning to
FIG. 2 , the sealinglip 12 is shown relaxed and deflected downward in its rest orientation. Inscribed around most of the perimeter of each of thepads lower slot 60. An upper groove orslot 62 is present as well. The twokerfs 60 and onegroove 62 together provide some degree of decoupling between each twostiffeners stiffeners FIGS. 7 and 11 ) to which they are fastened, and/or to twist relative to each other if so driven by the mounted curve profile of therail 72. -
FIG. 5 is a section throughFIG. 1 at section line 5-5. This shows that the firstpartial hole 24 in thebottom face 52 of anend pad 14 aligns with a secondpartial hole 54 in thetop face 56, shown inFIG. 2 , of theend pad 14. The twopartial holes diaphragm 58, and may preferably be positioned within one of thebores 46 in theend stiffeners -
FIG. 6 is a section view of abarbed tubing coupling 64 inserted into avacuum cup 10. After thediaphragm 58 has been pierced, for example using an ordinary sewing needle, abarbed coupling 64 of suitable size can be inserted into the secondpartial hole 54. Thebarbed coupling 64, preferably carrying a single barb on each end as shown, preferably passes through thepierced diaphragm 58 and uses thepierced diaphragm 58 as a locking element to retain thebarbed coupling 64. Various options may be preferable in some applications, such as using multiple-barb ends on thebarbed coupling 64 or passing thebarbed coupling 64 through thepierced diaphragm 58 and the firstpartial hole 24, although preferably not extending thebarbed coupling 64 so far through thebore 46 as to extend beyond the pinbottom end 20 and contact theworkpiece 70. The top of thebarbed tubing coupling 64 is shown to be set at aright angle 66. Theright angle 66 shown may be preferable to allow avacuum line 68 to deliver vacuum to thevacuum cup 10 without a sharp bend in theline 68. Other angles and other fitting styles may be preferable in some applications. - Returning once more to
FIG. 1 , the multiplicity ofpartial holes 24 in theend pads 14 can be used to provide optional vacuum connections. In some embodiments it may be preferable to plumb all vacuum cups 10 individually back to a common manifold. This can permit a manifold with valving to apply vacuum systematically, for example applying vacuum first to vacuumcups 10 located near mid rail, then sequentially activating cups outward toward both ends. - Experimentation has shown that for at least some combinations of materials and dimensions, a
pierced diaphragm 58 may leak substantially no air when nobarbed coupling 64 has been installed in it. This can allow thevacuum cup 10 in which thepierced diaphragm 58 exists to hold vacuum acceptably. By extension, avacuum cup 10 may remain usable withmultiple diaphragms 58 that are unused but have been pierced. - Since the baseline configuration for the exemplary embodiment employs a common area below the
entire vacuum cup 10, vacuum drawn at a first piercedpartial hole 24 can be extended out through a second pierced partial hole 24 (as shown inFIG. 10 ). Anotherbarbed tubing coupling 64 can be added to connect the vacuum source to asecond vacuum cup 10 without using a manifold port at the vacuum source for everyvacuum cup 10. Providing an ample number ofpartial holes 24 in the embodiment permits a variety of options for distributing vacuum in a rail-mounted machine tool system with a vacuum cups 10 of a single design. The availability of additionalpartial holes 24 can permit the addition of sensors, gauges, and the like as well as additional vacuum cups 10. - Continuing in
FIG. 1 , the standoff pins 18 are shown surrounded by the elastomer of thepads workpiece 70 effected by the pressure stemming from the applied vacuum plus a portion of the weight of the rail-mounted drilling system. If the elastic deformation of theworkpiece 70 can be shown to be negligible, then a satisfactory pinbottom end 20 shape may be achievable with a flat face square to the workpiece and a smooth edge roundoff. The pinbottom end 20 shape, radius of curvature, and size may preferably be chosen to at least minimize scuffing or marring of theworkpiece 70. -
FIG. 7 is a side view with a partial cutaway, revealing the structure of avacuum cup 10 pressed against aworkpiece 70 and attached to arail 72 withstuds 74,nuts 76, andwashers 78. Thelip 12 is flexed upward from its rest position as a result of application of vacuum. InFIG. 7 , aflat workpiece 70 is contacted by the standoff pins 18, causing therail 72 to assume a flat shape, parallel to theworkpiece 70. -
FIG. 8 is a section through thevacuum cup 10 ofFIG. 1 , in which thekerfs 60 andupper groove 62 are shown as they would be with avacuum cup 10 positioned on aflat workpiece 70. Where theworkpiece 70 surface is curved, the standoff pins 18 (shown inFIGS. 1 and 2 ) are drawn by the vacuum to conform to that curve, shifting thestiffeners kerfs 60 and theupper groove 62 to flex. This flexure allows thevacuum cup 10 to conform to aworkpiece 70 with a relatively sharp curvature, and thus to cause therail 72 to so conform. Twist in theworkpiece 70 can be accommodated as well, with the elastomer flexing as necessary. -
FIG. 9 is a section through an alternative vacuum cup configuration retaining theupper groove 62 but without kerfs. This configuration may be preferable on some workpieces, for example where curvature is slight or nonexistent along the rail longitudinal axis. - Alternative methods for fastening standoff pins to a rail could include welding, brazing, and equivalent metallurgical bonding methods, as well as application of a flange to the top of each standoff pin, which flange could have multiple radially-arrayed holes for rivets or other fastenings. The
stud 74,nut 76, andwasher 78 of the exemplary embodiment can be replaced by other threaded fasteners, such as screws with or without washers, and can be prevented from loosening by application of antivibration materials, upset threads, and other technologies. -
FIG. 10 is an oblique view of aconformal vacuum cup 10 according to another design. Here, thelip 12 is made wavy instead of straight-edged as inFIGS. 1-9 . In the embodiment shown, theelastomeric material 80 does not surround thestiffeners attachment shoulder 82. The embodiment shown has oneinlet vacuum line 84 and oneoutlet vacuum line 86, with no provision for additional vacuum lines. In this embodiment, a fitting 88 is employed to seal to a threaded hole and connect to avacuum hose 94 at an approximate right angle.FIG. 10 further shows in schematic form the use of avacuum source 92 connected by avacuum hose 94 to use thevacuum cup 10. In the embodiment shown, asecond fitting 88 connects to asecond vacuum hose 86 to carry vacuum to anothervacuum cup 10 or to an accessory such as a gauge. -
FIG. 11 shows multiple samples of theconformal vacuum cup 10 ofFIG. 10 attached to acurved rail 72 usingstuds 74,nuts 76, andwashers 78. Also shown is a convex-curved workpiece 70. The curvature of therail 72 requires the flexing of the conformal vacuum cups 10 to accommodate the drawing together of theindividual stiffeners FIGS. 3 and 4 . - The
stiffeners rail 72 and/or theworkpiece 70, particularly in the thickness used. Another such desirable stiffener property is compatibility with insertion ofpins 18, which compatibility includes adequate malleability to permitpin 18 insertion and similarity in temperature coefficient of expansion to thepins 18. Another such desirable stiffener property is compatibility with the elastomeric overmolding material, which compatibility includes tolerance of the temperatures at which the molding takes place and chemical compatibility with the overmolding material. Typical materials likely to be suitable include various aluminum and stainless steel alloys, fiber reinforced phenolics, engineering plastics such as PEEK®, and others. - Suitable elastomers for the vacuum cup overmolding material include a class of synthetic rubbers known generically as urethanes. Other classes of elastomers, such as vinyls, as well as other formable materials, may, like urethanes, have adequate ranges of durometer values and acceptable physical properties such as tear resistance for repeated use and may exhibit an ability to withstand rough treatment. Urethanes in the preferred range of durometers can in some formulations exhibit a desirable ability to cling to surfaces, which ability may add to the positioning force of the vacuum cups 10. Vinyls may exhibit significantly lower cling than urethanes, which may be preferable in some embodiments. Other elastomers may likewise exhibit desirable combinations of attributes for specific uses.
- Forcing air, such as from a compressor, through a vacuum cup system may allow the cups to function as air bearings to make tool repositioning easier and quicker. Specific features such as lip shape, interface surface profile, elastomer material choice, and available air flow rate may inhibit or facilitate such use.
- The many features and advantages of the invention are apparent from the detailed specification, and, thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and, accordingly, all suitable modifications and equivalents may be resorted to that fall within the scope of the invention.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/505,951 US7526851B1 (en) | 2004-05-27 | 2006-08-18 | Conformal vacuum cup apparatus and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/854,209 US7134649B2 (en) | 2004-05-27 | 2004-05-27 | Conformal vacuum cup apparatus and method |
US11/505,951 US7526851B1 (en) | 2004-05-27 | 2006-08-18 | Conformal vacuum cup apparatus and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/854,209 Division US7134649B2 (en) | 2004-05-27 | 2004-05-27 | Conformal vacuum cup apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
US7526851B1 US7526851B1 (en) | 2009-05-05 |
US20090133261A1 true US20090133261A1 (en) | 2009-05-28 |
Family
ID=35424298
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/854,209 Expired - Lifetime US7134649B2 (en) | 2004-05-27 | 2004-05-27 | Conformal vacuum cup apparatus and method |
US11/505,952 Expired - Lifetime US7380776B2 (en) | 2004-05-27 | 2006-08-18 | Conformal vacuum cup apparatus and method |
US11/505,951 Active 2024-11-29 US7526851B1 (en) | 2004-05-27 | 2006-08-18 | Conformal vacuum cup apparatus and method |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/854,209 Expired - Lifetime US7134649B2 (en) | 2004-05-27 | 2004-05-27 | Conformal vacuum cup apparatus and method |
US11/505,952 Expired - Lifetime US7380776B2 (en) | 2004-05-27 | 2006-08-18 | Conformal vacuum cup apparatus and method |
Country Status (10)
Country | Link |
---|---|
US (3) | US7134649B2 (en) |
EP (3) | EP2082838B1 (en) |
JP (2) | JP4749419B2 (en) |
KR (1) | KR101179017B1 (en) |
CN (1) | CN100445039C (en) |
AT (1) | ATE439947T1 (en) |
CA (1) | CA2567780C (en) |
DE (1) | DE602005016106D1 (en) |
ES (3) | ES2546210T3 (en) |
WO (1) | WO2006043983A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10189167B2 (en) | 2015-07-13 | 2019-01-29 | Mitsubishi Heavy Industries, Ltd. | Suction device, holding device, and conveyance method |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7134649B2 (en) * | 2004-05-27 | 2006-11-14 | The Boeing Company | Conformal vacuum cup apparatus and method |
US7966713B2 (en) * | 2006-05-17 | 2011-06-28 | The Boeing Company | Tooling head mounted structural positioning |
US7677181B2 (en) * | 2006-11-06 | 2010-03-16 | The Boeing Company | Interlocking precision flexible rail system |
US7611314B2 (en) * | 2007-08-01 | 2009-11-03 | The Boeing Company | Aligning a machine tool with a target location on a structure |
WO2009105579A2 (en) | 2008-02-19 | 2009-08-27 | Garahan Patrick J | Portable holder for beverage containers |
US7922272B2 (en) * | 2008-04-11 | 2011-04-12 | The Boeing Company | Method for application and accurate positioning of graphics on a surface |
US20100037444A1 (en) * | 2008-08-15 | 2010-02-18 | Reid Eric M | Reconfigurable flexible rail apparatus and method |
US20100180711A1 (en) | 2009-01-19 | 2010-07-22 | Comau, Inc. | Robotic end effector system and method |
DE102009044305A1 (en) * | 2009-10-21 | 2011-05-05 | Fooke Gmbh | Method for holding and processing a workpiece with clamping plate, and device for stiffening a workpiece with clamping plate |
US8503610B1 (en) | 2010-11-23 | 2013-08-06 | The Boeing Company | X-ray inspection tool |
CN102060100B (en) * | 2010-12-14 | 2013-03-27 | 钱智声 | Aircraft fuselage-wing connecting mechanism |
DE102011106214A1 (en) * | 2011-06-07 | 2012-12-13 | Brötje-Automation GmbH | end effector |
US8588262B1 (en) | 2011-09-07 | 2013-11-19 | The Boeing Company | Quantum dot detection |
US8960745B2 (en) * | 2011-11-18 | 2015-02-24 | Nike, Inc | Zoned activation manufacturing vacuum tool |
US9010827B2 (en) | 2011-11-18 | 2015-04-21 | Nike, Inc. | Switchable plate manufacturing vacuum tool |
US8858744B2 (en) | 2011-11-18 | 2014-10-14 | Nike, Inc. | Multi-functional manufacturing tool |
CN102847979A (en) * | 2012-03-21 | 2013-01-02 | 北京航空航天大学 | Flexible railway attaching to plane surface and used for carrying drilling end effector |
DE102012208148A1 (en) * | 2012-05-15 | 2013-11-21 | Lufthansa Technical Training GmbH | Mold for machining major components in aircraft, has surface arranged opposite to outer contour of major component, where mold is fixed on major component by negative pressure acting between mold surface and outer contour of major component |
CN102765088B (en) * | 2012-07-16 | 2015-12-02 | 上海飞机制造有限公司 | Single side soft absorption type automatic drilling machine people |
US9302787B2 (en) * | 2012-09-14 | 2016-04-05 | The Boeing Company | Vacuum adhering apparatus for automated maintenance of airfoil-shaped bodies |
US10065280B2 (en) | 2012-10-30 | 2018-09-04 | The Boeing Company | Multifunction legs for autonomous crawling assembly equipment |
US9327376B2 (en) | 2012-10-30 | 2016-05-03 | The Boeing Company | Dual function movement component for automated assembly systems |
US9475527B2 (en) | 2012-10-30 | 2016-10-25 | The Boeing Company | Autonomous crawling assembly system |
US20140272312A1 (en) * | 2013-03-13 | 2014-09-18 | Gulfstream Aerospace Corporation | Aircraft component and method of making an aircraft component |
US9211679B1 (en) | 2013-05-03 | 2015-12-15 | The Boeing Company | Systems and methods of forming a skin for a composite structure and composite structures including the same |
US9745815B2 (en) * | 2013-10-10 | 2017-08-29 | Newpark Mats & Integrated Services Llc | Apparatus and methods for sealing around the opening to a cellar formed around a hydrocarbon exploration or production well |
US9511548B1 (en) | 2013-10-16 | 2016-12-06 | The Boeing Company | Systems and methods for assembling a skin of a composite structure |
CN103955165A (en) * | 2014-04-11 | 2014-07-30 | 浙江大学 | Method for acquiring joint variables by inversely solving kinematical equation of annular track hole making system |
CN104443426B (en) * | 2014-10-08 | 2016-06-08 | 中国航空工业集团公司北京航空制造工程研究所 | A kind of Titanium Alloy Aircraft frame beam-like part manufacture method |
US9663247B2 (en) * | 2015-02-27 | 2017-05-30 | The Boeing Company | Systems, methods, and vacuum chucks for transferring flexible elongate bodies |
US9823160B2 (en) * | 2015-04-02 | 2017-11-21 | The Boeing Company | Apparatus and methods for testing suction cups mounted to a track |
DE102015009177A1 (en) | 2015-07-09 | 2017-01-12 | Broetje-Automation Gmbh | Method for producing a fiber-metal laminate component of an aircraft |
US10005234B2 (en) | 2015-10-29 | 2018-06-26 | The Boeing Company | Devices, systems, and methods for compacting a charge of composite material across an edge |
GB2543843B (en) * | 2015-10-31 | 2020-04-29 | Loop Tech Ltd | A system for handling flexible materials |
CN105234866A (en) * | 2015-11-17 | 2016-01-13 | 江苏保捷锻压有限公司 | Multipoint positioning device for transmission gear of automobile |
EP3228428A1 (en) * | 2016-04-05 | 2017-10-11 | KEURO Besitz GmbH & Co. EDV-Dienstleistungs KG | Suction gripper for a handling device |
US10479510B2 (en) * | 2016-10-12 | 2019-11-19 | The Boeing Company | Modular environmental control chamber |
FR3061054B1 (en) * | 2016-12-22 | 2019-06-14 | Airbus Operations | GUIDE DEVICE SUITABLE FOR POSITIONING ON A DOUBLE BEND RADIUS SURFACE |
US10099385B2 (en) * | 2017-02-06 | 2018-10-16 | The Boeing Company | End effectors carrying plies of material for shaping by a mandrel |
CN108453642B (en) * | 2017-02-20 | 2021-08-13 | 波音公司 | Tool assembly for use with a panel and method of supporting a panel by means of a tool assembly |
US10906157B2 (en) | 2017-02-20 | 2021-02-02 | The Boeing Company | Modular tooling fixture with interchangeable panel defining a tooling surface |
CN107515088B (en) * | 2017-08-04 | 2019-06-28 | 中国航空工业集团公司西安飞机设计研究所 | A kind of model test part design method of the main box section bending stiffness test of metal wings |
US10369706B2 (en) | 2017-08-09 | 2019-08-06 | The Boeing Company | End effectors carrying plies of limp material for shaping by a mandrel |
US11041518B2 (en) * | 2018-07-19 | 2021-06-22 | The Boeing Company | Methods for bonding a structural component within a channel of a rail |
US10807383B2 (en) | 2018-09-24 | 2020-10-20 | The Boeing Company | Robotic printing system for an aircraft exterior |
CN109552663B (en) * | 2018-11-22 | 2021-05-04 | 南京航空航天大学 | Flexible positioner and method for assembling composite material wing box by using same |
CN109552881A (en) * | 2018-12-04 | 2019-04-02 | 武汉华星光电技术有限公司 | A kind of display panel vacuum suction system |
CN111085954A (en) * | 2019-12-24 | 2020-05-01 | 深圳市华星光电半导体显示技术有限公司 | Substrate adsorption device |
US20220212352A1 (en) * | 2021-01-04 | 2022-07-07 | The Boeing Company | Part transfer system |
US11920915B2 (en) | 2021-04-07 | 2024-03-05 | The Boeing Company | Non-contact measurement for interface gaps |
CN113478250B (en) * | 2021-05-25 | 2022-06-14 | 成都飞机工业(集团)有限责任公司 | Large-scale reconfigurable hyperboloid trimming clamp and assembling method thereof |
FR3125976B1 (en) * | 2021-08-06 | 2023-08-11 | Joulin Cemma | Vacuum gripper head, elementary module and associated frame |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2910895A (en) * | 1957-12-13 | 1959-11-03 | James C Winslow | Power tool with suction foot |
US2946246A (en) * | 1957-09-20 | 1960-07-26 | Gen Motors Corp | Drill fixture |
US3575364A (en) * | 1968-07-22 | 1971-04-20 | Gen Dynamics Corp | Flexible track |
US3591228A (en) * | 1968-06-17 | 1971-07-06 | David John Tudor Webb | Suction pads |
US4640661A (en) * | 1982-07-02 | 1987-02-03 | Rasmussen Rolf B | Vacuum lift clamp device for handling of paper rolls |
US5120033A (en) * | 1990-07-03 | 1992-06-09 | Isao Shoda | Work table for wood working machine or the like |
US5457868A (en) * | 1991-03-26 | 1995-10-17 | Gfm Gesellschaft Fur Fertigungstechnik Und Maschinenbau Aktiengesellschaft | Work supporting method using a deck for use in machine tools, particularly in cutting machines |
US5704599A (en) * | 1996-01-18 | 1998-01-06 | Slothower; Stephen G. | Vacuum apparatus for aligning and securely positioning components |
US5865827A (en) * | 1997-06-03 | 1999-02-02 | Bullister; Edward T | Vacuum device for securing human tissue |
US6068547A (en) * | 1998-05-20 | 2000-05-30 | Lupi; Quintilio | System for the profile machining with templates of slabs of marble, stone, glass and the like |
US6655671B2 (en) * | 2000-08-04 | 2003-12-02 | Fuji Machine Mfg. Co., Ltd. | Printed-wiring-board holding apparatus |
US6796014B2 (en) * | 2000-09-18 | 2004-09-28 | The Boeing Company | Method for coupling first and second structures |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4947785B1 (en) * | 1970-05-12 | 1974-12-18 | ||
JPS5228183B2 (en) * | 1973-05-07 | 1977-07-25 | ||
JPS63119581A (en) * | 1986-11-07 | 1988-05-24 | Fujitsu Ltd | Semiconductor memory device |
JPH0435342Y2 (en) * | 1987-01-27 | 1992-08-21 | ||
JPS6462275A (en) * | 1987-09-02 | 1989-03-08 | Ural Politekhn Inst | Method of repairing surface of steel part |
JPH0544375Y2 (en) * | 1987-10-12 | 1993-11-10 | ||
JPH01137934A (en) * | 1987-11-19 | 1989-05-30 | Nippon Oil & Fats Co Ltd | Preparation for preventing oxidation for dried small sardine |
JPH01137934U (en) * | 1988-03-11 | 1989-09-20 | ||
JPH0812230B2 (en) * | 1988-09-06 | 1996-02-07 | 株式会社日立製作所 | IC test equipment |
JPH072540Y2 (en) * | 1988-11-16 | 1995-01-25 | セントラル硝子株式会社 | Suction tool |
DE4203808A1 (en) | 1992-02-10 | 1993-08-12 | Bruno Gruber | Stop or guide rail with rigid areas attached to surface of underside - is fixed to baseplate for use in handwork or with various machines |
AU4268193A (en) * | 1992-05-06 | 1993-11-29 | Carne, Charles Nicholas | Vacuum plates |
DE4433925A1 (en) * | 1994-09-23 | 1996-03-28 | Schlick Heinrich Gmbh Co Kg | Construction for mounting applicators of surface treatments to ships and aircraft |
JP3252752B2 (en) * | 1997-05-21 | 2002-02-04 | 日本鋼管株式会社 | Plates for lifting |
US6158666A (en) * | 1997-11-26 | 2000-12-12 | Banks; David P. | Vacuum fastened guide and method for supporting tooling on a component |
JP3230152B2 (en) * | 1997-12-26 | 2001-11-19 | 日本鋼管株式会社 | Sampling plate sampling device |
US6467385B1 (en) * | 1999-12-03 | 2002-10-22 | The Boeing Company | Panel trimming system |
JP2002187085A (en) * | 2000-12-19 | 2002-07-02 | Myotoku Ltd | Suction pad and suction method for object to be sucked |
US6843328B2 (en) * | 2001-12-10 | 2005-01-18 | The Boeing Company | Flexible track drilling machine |
CN1296261C (en) * | 2002-06-22 | 2007-01-24 | 鸿富锦精密工业(深圳)有限公司 | Vacuum gripping apparatus and method for using same |
US6772508B2 (en) * | 2002-07-24 | 2004-08-10 | The Boeing Company | Fastener delivery and installation system |
US7134649B2 (en) * | 2004-05-27 | 2006-11-14 | The Boeing Company | Conformal vacuum cup apparatus and method |
-
2004
- 2004-05-27 US US10/854,209 patent/US7134649B2/en not_active Expired - Lifetime
-
2005
- 2005-05-09 EP EP09005808.2A patent/EP2082838B1/en active Active
- 2005-05-09 ES ES09005809.0T patent/ES2546210T3/en active Active
- 2005-05-09 DE DE602005016106T patent/DE602005016106D1/en active Active
- 2005-05-09 KR KR1020067027433A patent/KR101179017B1/en active IP Right Grant
- 2005-05-09 JP JP2007515126A patent/JP4749419B2/en active Active
- 2005-05-09 CA CA2567780A patent/CA2567780C/en active Active
- 2005-05-09 ES ES09005808.2T patent/ES2562921T3/en active Active
- 2005-05-09 WO PCT/US2005/016085 patent/WO2006043983A2/en active Application Filing
- 2005-05-09 CN CNB2005800255654A patent/CN100445039C/en active Active
- 2005-05-09 EP EP05848361A patent/EP1755829B1/en active Active
- 2005-05-09 ES ES05848361T patent/ES2330129T3/en active Active
- 2005-05-09 EP EP09005809.0A patent/EP2082839B1/en active Active
- 2005-05-09 AT AT05848361T patent/ATE439947T1/en not_active IP Right Cessation
-
2006
- 2006-08-18 US US11/505,952 patent/US7380776B2/en not_active Expired - Lifetime
- 2006-08-18 US US11/505,951 patent/US7526851B1/en active Active
-
2011
- 2011-03-11 JP JP2011054047A patent/JP5265718B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2946246A (en) * | 1957-09-20 | 1960-07-26 | Gen Motors Corp | Drill fixture |
US2910895A (en) * | 1957-12-13 | 1959-11-03 | James C Winslow | Power tool with suction foot |
US3591228A (en) * | 1968-06-17 | 1971-07-06 | David John Tudor Webb | Suction pads |
US3575364A (en) * | 1968-07-22 | 1971-04-20 | Gen Dynamics Corp | Flexible track |
US4640661A (en) * | 1982-07-02 | 1987-02-03 | Rasmussen Rolf B | Vacuum lift clamp device for handling of paper rolls |
US5120033A (en) * | 1990-07-03 | 1992-06-09 | Isao Shoda | Work table for wood working machine or the like |
US5457868A (en) * | 1991-03-26 | 1995-10-17 | Gfm Gesellschaft Fur Fertigungstechnik Und Maschinenbau Aktiengesellschaft | Work supporting method using a deck for use in machine tools, particularly in cutting machines |
US5704599A (en) * | 1996-01-18 | 1998-01-06 | Slothower; Stephen G. | Vacuum apparatus for aligning and securely positioning components |
US5865827A (en) * | 1997-06-03 | 1999-02-02 | Bullister; Edward T | Vacuum device for securing human tissue |
US6068547A (en) * | 1998-05-20 | 2000-05-30 | Lupi; Quintilio | System for the profile machining with templates of slabs of marble, stone, glass and the like |
US6655671B2 (en) * | 2000-08-04 | 2003-12-02 | Fuji Machine Mfg. Co., Ltd. | Printed-wiring-board holding apparatus |
US6796014B2 (en) * | 2000-09-18 | 2004-09-28 | The Boeing Company | Method for coupling first and second structures |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10189167B2 (en) | 2015-07-13 | 2019-01-29 | Mitsubishi Heavy Industries, Ltd. | Suction device, holding device, and conveyance method |
Also Published As
Publication number | Publication date |
---|---|
CN1993208A (en) | 2007-07-04 |
JP2011167841A (en) | 2011-09-01 |
KR20070020088A (en) | 2007-02-16 |
WO2006043983A2 (en) | 2006-04-27 |
US20060277733A1 (en) | 2006-12-14 |
EP2082838A3 (en) | 2013-02-20 |
CA2567780A1 (en) | 2006-04-27 |
EP1755829B1 (en) | 2009-08-19 |
JP2008501538A (en) | 2008-01-24 |
EP2082839B1 (en) | 2015-08-19 |
ES2562921T3 (en) | 2016-03-09 |
US7380776B2 (en) | 2008-06-03 |
WO2006043983A3 (en) | 2006-07-20 |
CA2567780C (en) | 2012-12-11 |
JP4749419B2 (en) | 2011-08-17 |
EP2082839A2 (en) | 2009-07-29 |
ES2330129T3 (en) | 2009-12-04 |
EP2082839A3 (en) | 2012-12-19 |
KR101179017B1 (en) | 2012-09-03 |
EP1755829A1 (en) | 2007-02-28 |
EP2082838A2 (en) | 2009-07-29 |
ES2546210T3 (en) | 2015-09-21 |
ATE439947T1 (en) | 2009-09-15 |
US7526851B1 (en) | 2009-05-05 |
DE602005016106D1 (en) | 2009-10-01 |
US20050263949A1 (en) | 2005-12-01 |
JP5265718B2 (en) | 2013-08-14 |
EP2082838B1 (en) | 2016-02-10 |
CN100445039C (en) | 2008-12-24 |
US7134649B2 (en) | 2006-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7526851B1 (en) | Conformal vacuum cup apparatus and method | |
US9399510B2 (en) | Hat stringer closeout fitting and method of making same | |
EP2745963B2 (en) | Coupling for a cooling system in a cutting tool | |
CA3002277C (en) | Adhesive testing systems and methods | |
US20120291252A1 (en) | Device and method for stiffening and holding a workpiece for machining | |
JP2002372152A (en) | Attaching structure for gasket | |
EP3959052B1 (en) | A telescopic compression device and exchange tool of flat bed die-cutting machines, flat bed stripping machines or part separating machine | |
CN111664765A (en) | Plug gauge and associated method for sealing the same | |
US10472082B2 (en) | Fume tight sock collector/box | |
GB2586034A (en) | Floating nut assembly | |
CN210803121U (en) | 0-degree tensile test tool for H-shaped component | |
JP6788262B2 (en) | Diaphragm and fluid control equipment using diaphragm | |
US11852466B2 (en) | Gap measurement tool assembly, system, and method for measuring a gap between mating parts of a structure | |
EP3730747B1 (en) | Joining components | |
EP3708302B1 (en) | Adapter for turning a knob and methods for making and using the adapter | |
CN220166266U (en) | Positioning and mounting tool and thin film deposition equipment | |
EP3862172B1 (en) | Composite panel tooling system and method | |
KR0124941Y1 (en) | Air hose device for industrial robot's hand | |
CN112771291A (en) | Washer and grommet mounting assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |