US20090045367A1 - Circuit board for a Solenoid Valve Manifold - Google Patents
Circuit board for a Solenoid Valve Manifold Download PDFInfo
- Publication number
- US20090045367A1 US20090045367A1 US12/223,736 US22373606A US2009045367A1 US 20090045367 A1 US20090045367 A1 US 20090045367A1 US 22373606 A US22373606 A US 22373606A US 2009045367 A1 US2009045367 A1 US 2009045367A1
- Authority
- US
- United States
- Prior art keywords
- type valve
- double
- valve
- manifold
- circuit board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/06—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
- F15B13/08—Assemblies of units, each for the control of a single servomotor only
- F15B13/0803—Modular units
- F15B13/0832—Modular valves
- F15B13/0839—Stacked plate type valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/06—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
- F15B13/08—Assemblies of units, each for the control of a single servomotor only
- F15B13/0803—Modular units
- F15B13/0846—Electrical details
- F15B13/085—Electrical controllers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/06—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
- F15B13/08—Assemblies of units, each for the control of a single servomotor only
- F15B13/0803—Modular units
- F15B13/0846—Electrical details
- F15B13/0853—Electric circuit boards
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/06—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
- F15B13/08—Assemblies of units, each for the control of a single servomotor only
- F15B13/0803—Modular units
- F15B13/0846—Electrical details
- F15B13/0857—Electrical connecting means, e.g. plugs, sockets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/06—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
- F15B13/08—Assemblies of units, each for the control of a single servomotor only
- F15B13/0803—Modular units
- F15B13/0875—Channels for electrical components, e.g. for cables or sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/06—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
- F15B13/08—Assemblies of units, each for the control of a single servomotor only
- F15B13/0803—Modular units
- F15B13/0878—Assembly of modular units
- F15B13/0885—Assembly of modular units using valves combined with other components
- F15B13/0889—Valves combined with electrical components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/06—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
- F15B13/08—Assemblies of units, each for the control of a single servomotor only
- F15B13/0803—Modular units
- F15B13/0878—Assembly of modular units
- F15B13/0885—Assembly of modular units using valves combined with other components
- F15B13/0892—Valves combined with fluid components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
- H05K1/117—Pads along the edge of rigid circuit boards, e.g. for pluggable connectors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B2013/002—Modular valves, i.e. consisting of an assembly of interchangeable components
- F15B2013/006—Modular components with multiple uses, e.g. kits for either normally-open or normally-closed valves, interchangeable or reprogrammable manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0266—Marks, test patterns or identification means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09818—Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
- H05K2201/09936—Marks, inscriptions, etc. for information
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/1003—Non-printed inductor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10431—Details of mounted components
- H05K2201/10439—Position of a single component
- H05K2201/10446—Mounted on an edge
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/15—Position of the PCB during processing
- H05K2203/1572—Processing both sides of a PCB by the same process; Providing a similar arrangement of components on both sides; Making interlayer connections from two sides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/877—With flow control means for branched passages
- Y10T137/87885—Sectional block structure
Definitions
- the present invention relates to a manifold-type valve assembly; and, more particularly, to a manifold-type valve assembly capable of switching between a single solenoid valve and a double solenoid valve mounted on a manifold block through a simple switching operation.
- a certain gas (hydrogen, oxygen, nitrogen, and so forth) is supplied into a gas cabinet apparatus to create a specific condition for washing, cleaning, and the like.
- a manifold-type valve is used to control a small-size single-acting gas cylinder.
- Such a conventional manifold-type valve assembly has: one or more solenoid-actuated valves as necessary; manifold blocks for mounting thereon the solenoid valves individually while connecting them to each other; and an air supply/exhaust block for supplying or exhausting compressed air through the insides of the manifold blocks.
- the solenoid-actuated valves installed on the manifold blocks include a single solenoid-actuated valve (hereinafter, simply referred to as a single-type valve) for performing a switching of a flow path of a main valve by means of a single solenoid; and a double solenoid-actuated valve (hereinafter, simply referred to as a double-type valve) for performing a switching of the flow path of the main valve by means of two solenoids.
- a single solenoid-actuated valve hereinafter, simply referred to as a single-type valve
- a double solenoid-actuated valve hereinafter, simply referred to as a double-type valve
- the number, i.e., one or two, of solenoids is varied depending on whether a solenoid-actuated valve is a single-type valve or a double-type valve and, thus, it is required to adjust a circuit configuration to be suitable for either one of them.
- one of the solenoid-actuated valves individually mounted on the manifold blocks can be replaced by a double-type valve from a single-type valve or vice versa, it is preferable to switch the circuit configuration for controlling the solenoid-actuated valves in a simple manner.
- a control scheme for controlling a solenoid-actuated valve by providing an electrical power to the solenoid-actuated valve is installed in a signal board inside a manifold block.
- the controlling type of the control scheme is predetermined and the predetermined control scheme is accommodated in the manifold block.
- an object of the present invention to provide a manifold-type valve assembly capable of switching between a single-type valve and a double-type valve in a simple manner.
- a manifold-type valve assembly capable of being changed-over between a single-type valve and a double-type valve, including comprising: one solenoid-actuated valve or two solenoid-actuated valves to constitute the single-type valve or the double-type valve, the single-type valve and the double-type valve being actuated by one and two solenoids, respectively; and, manifold blocks for accommodating the solenoid-actuated valves thereon individually, while connecting the solenoid-actuated valves to other ones mounted on neighboring manifold blocks, each manifold block having a power supply apparatus,
- the power supply apparatus includes: a power supply terminal, for providing an electrical power to drive the solenoid-actuated valves of the single-type valve and the double-type valve; a circuit board connected to the power supply terminal and having a first surface and a second surface, the first surface having a single-type valve circuit for the single-type valve and the second surface having a double-type valve circuit for the double-type valve; and a male connector and a female connector installed at opposite sides of the circuit board and connected to their neighboring female and male connectors in neighboring manifold blocks, respectively,
- each of the single- and the double-type valve circuits has valve contacts arranged in two rows, the valve contacts in a first row being connected to the valve contacts in a second row with offset by the number of solenoids and, for each valve circuit, the offset contact in the second row being connected to the power supply terminal;
- each of the male connector and the female connector has connector contacts corresponding to the valve contacts in each valve circuit.
- the driving control of a single-type valve and a double-type valve employed in the manifold-type valve assembly is possible by means of a circuit board with a single-type valve and a double-type valve in its surfaces.
- the changing-over the circuit board can be carried out simply by changing the connection directions of the circuit board and connectors. Therefore, the assembly of solenoid-actuated valves and replacement thereof can be facilitated.
- FIG. 1 is a perspective view of a manifold-type valve assembly in accordance with the present invention
- FIG. 2 sets forth an exploded perspective view of the manifold-type valve assembly shown in FIG. 1 ;
- FIG. 3 presents an exploded perspective view of a manifold block shown in FIG. 2 ;
- FIG. 4 shows a perspective view of a power supply apparatus in a manifold block shown in FIG. 2 ;
- FIGS. 5 and 6 depict diagrams illustrating a single-type valve circuit and a double-type valve circuit of the circuit board shown in FIG. 4 , respectively;
- FIG. 7 is an electrical connection between the single and the double-type valve circuits shown in FIGS. 5 and 6 ;
- FIG. 8 illustrates a state of using the power supply apparatus for the manifold block in accordance with the present invention.
- FIG. 1 there is provided a perspective view showing a manifold-type valve assembly in accordance with the present invention.
- a manifold-type valve assembly shown in FIG. 1 includes: one or more solenoid-actuated valves 110 arranged in parallel to each other, each solenoid-actuated valve 110 being a single-type valve or a double-type valve; manifold blocks (or base blocks) 120 for accommodating the solenoid-actuated valves 110 thereon individually, while connecting the solenoid-actuated valves 110 to each other; an air supply/exhaust block 130 disposed at one of two opposite ends of the assembly of the manifold blocks 120 , for supplying/exhausting compressed air through the insides of the manifold blocks 120 ; an end block 140 disposed at the other end of the assembly of the manifold blocks 120 ; and a relay unit 150 attached to the air supply/exhaust block 130 , for relaying a control signal to each solenoid-actuated valve 110 .
- FIG. 2 sets forth an exploded perspective view of the manifold-type valve assembly in accordance with the present invention
- FIG. 3 is an exploded perspective view of a manifold block shown in FIG. 2 .
- each solenoid-actuated valve 110 is fixed on a manifold block 120 via screws or the like.
- Each solenoid-actuated valve 110 has therein one or two solenoid valves (not shown) to control a single-type valve or a double-type valve.
- an air supply and an air exhaust of a main valve 114 are switched by pilot air passing through a small-size pilot valve 112 which is electronically driven by a solenoid or solenoids.
- the solenoid-actuated valve 110 has a power receiving terminal 116 installed at a lower side thereof.
- the power receiving terminal 116 is facing downward to form an electrical connection with a power supply terminal 126 on the manifold block 120 in case where the solenoid-actuated valve 110 is mounted on the manifold block 120 .
- the solenoid-actuated valve 110 is comprised of a single-type valve or a double-type valve, same manifold block 120 is used for both of the single-type valve and the double-type valve, providing the same external appearances. However, depending on whether it is a single-type valve or a double-type valve, the solenoid-actuated valve 110 has a different internal circuit configuration.
- each manifold block 120 has a fluid flow path portion 121 having a flow path communicated with a flow path inside the air supply/exhaust block 130 ; and an opened inner portion 125 .
- a pair of output openings 122 and 123 is installed at one side of the manifold block 120 of the fluid flow path portion 121 .
- the output openings 122 and 123 serve as a main fluid flow path for discharging fluids from the solenoid-actuated valve 110 .
- the output openings 122 and 123 are communicated with a surface of a fluid opening 124 .
- a power supply apparatus 20 for controlling a single-type valve or a double-type valve is also installed in the opened inner portion 125 .
- FIG. 4 is a perspective view of the power supply apparatus 200 shown in FIG. 3 .
- the power supply apparatus 200 includes a circuit board 205 , power supply connectors 214 and 224 , and a power supply terminal 126 .
- the power supply terminal 126 Installed on the top surface of the opened inner portion 125 is the power supply terminal 126 through which the electrical power is provided to the power receiving terminal 116 of the solenoid-actuated valve 110 .
- the circuit board 205 has a first surface 210 and a second surface 220 , which is a backside of the first surface 210 .
- a single-type valve circuit 212 for controlling a single-type valve.
- the power supply connector 214 is formed on the first surface 210 , facing upward, and is electrically connected with the power supply terminal 126 through a cable connector 216 .
- the cable connector 216 is detachable to and from the power supply connector 214 .
- a double-type valve circuit 222 for controlling double-type valves.
- the power supply connector 224 is formed on the second surface 220 , facing upward when upsetting the circuit board 205 reversely, and is electrically connected to the power supply terminal 126 with the cable connector 216 .
- a character e.g., an alphabet “S” is inscribed on the first surface 210
- an alphabet “D” is inscribed on the second surface 220 (See FIGS. 5 and 6 ).
- FIGS. 5 and 6 are schematic diagrams illustrating a single-type valve circuit and a double-type valve circuit of the circuit board, respectively, and FIG. 7 is an electrical connection of the single-type valve circuit and the double-type valve circuit shown in FIGS. 5 and 6 .
- the single-type valve circuit 212 on the first surface 110 has contacts 232 and 234 arranged at edges of the circuit board 205 in two rows; and the double-type valve circuit 222 on the second surface 220 has also contacts 232 and 234 arranged at edges of the circuit board 220 in two rows.
- valve contacts 232 in a first row are connected to their corresponding valve contacts 234 in a second row in one-to-one correspondence in a manner that a (n+1)th or a (n+2)th (where n is a number of the contacts to the solenoid-actuated valves) contact in the first row is connected to a nth value contact in the second row depending on the number of solenoids.
- a (n+1)th valve contact in the first row is connected to a nth valve contact in the second row; and in case of a double-type valve, (n+1)th and (n+2)th value contacts in the first row is connected to a nth and (n+1)th value contacts in the first row.
- the circuit board 205 further includes a common contact 230 and common power contacts 236 and 238 that are formed of through holes covered with a conductive material.
- the common contact 230 is used as a reference voltage, while the power contacts 236 and 238 are connected to the power supply terminal 126 .
- the common power contact 236 is devoted to the offset contact having the number ‘1’.
- both the common power contacts 236 and 238 are devoted to the offset contacts having the numbers ‘1’ and ‘2’.
- the power supply apparatus 200 further includes a male connector 240 and a female connector 250 that are disposed in opposite sides of the circuit board 205 .
- the male connector 240 and the female connector 250 have a plurality of contacts that are correspondingly coupled to the contacts 232 and 234 in the rows of the circuit board 205 , respectively.
- the male connector 240 and the female connector 250 are connected to their neighboring female connector and male connector in neighboring manifold blocks, respectively. Accordingly, the neighboring circuit boards 205 are electrically connected to each other, via the male connector 240 and the female connector 250 , enabling relay of the control signal to the neighboring circuit boards.
- such a circuit board 205 is installed inside a manifold block 120 via a holder member 300 (see FIG. 3 ).
- the holder member 300 is made of a synthetic resin material having relatively elasticity, and it has a substantially rectangular shape and has therein a hollow space for accommodating the circuit board 205 .
- a mark for indicating the state of a single-type valve or a double-type valve is provided on the front surface of the holder member 300 .
- the assembled state of the circuit board 205 can be identified.
- the holder member 300 has a structure capable of being assembled with the circuit board 205 only when its installation direction coincides with the installation direction of the circuit board 205 , i.e., only when the relative positions of the “S” and “D” inscriptions thereon coincide with those of the “S” and “D” inscriptions on the circuit board 205 .
- a hook portion 302 (see FIG. 3 ) to be inserted into and locked with the manifold block 120 is protrudently formed on the rear surface of the holder member 300 .
- a plurality of manifold blocks 120 are arranged while being connected to each other.
- the air supply/exhaust block 130 for supplying and exhausting compressed air into and out of the connected insides of the manifold blocks 120 is installed at one of two ends of such an assembly of the connected manifold blocks 130 , and the end block 140 is installed at the other end of the assembly of the manifold blocks 130 .
- control signal is produced from a controller (not shown), and the control signal is transmitted to the relay unit 150 .
- control signal is provided through the relay unit 150 to the circuit boards 200 loaded in the manifold blocks 120 step-by-step.
- the control signal is transmitted to the solenoid-actuated valve 110 from the power supply terminal 126 via the power receiving terminal 116 of the solenoid-actuated valve 110 . Further, the control signal is sent in sequence to a next circuit board 205 for controlling an operation of a next solenoid-actuated valve 110 via the male connector 240 and the female connector 250 .
- a circuit connection within the circuit board 205 is varied depending on whether the solenoid-actuated valve 110 controlled thereby is a single-type valve or a double-type valve.
- the circuit board 205 is placed with its first surface 210 facing upward and is installed such that the “S” inscription on the holder member 300 is indicated on the upper position.
- the power supply connector 214 on the first surface 210 is connected to the power supply terminal 126 through the use of the cable connector 216 .
- the circuit board 205 is placed with its second surface 220 facing upward and is installed such that the “D” inscription on the holder member 300 is located at an upper position than the “S” inscription.
- the power supply connector 224 on the second surface 220 is connected to the power supply terminal 126 with the cable connector 216 .
- the holder member 300 is fitted and fixed to the opened inner portion 125 of the manifold block 120 by locking the hook portion 302 with the manifold block 120 .
- circuit board 205 for the driving control of an solenoid-actuated valve when a circuit board 205 for the driving control of an solenoid-actuated valve is installed in an opened inner portion 125 of each manifold block 120 , the circuit board 205 can be changed-over between a single-type valve and a double-type valve in a simple manner. Therefore, in a manifold-type valve assembly, even when one of solenoid-actuated valves 110 mounted on manifold blocks 120 is changed into a single or a double-type valve, a circuit board 205 therefor can be easily switched as well.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Magnetically Actuated Valves (AREA)
- Valve Housings (AREA)
Abstract
Description
- The present invention relates to a manifold-type valve assembly; and, more particularly, to a manifold-type valve assembly capable of switching between a single solenoid valve and a double solenoid valve mounted on a manifold block through a simple switching operation.
- In a manufacturing process for a semiconductor device, a certain gas (hydrogen, oxygen, nitrogen, and so forth) is supplied into a gas cabinet apparatus to create a specific condition for washing, cleaning, and the like. At this time, a manifold-type valve is used to control a small-size single-acting gas cylinder.
- In a fluid control system employing a plurality of solenoid-actuated valves using air pressure, hydraulic pressure, and so forth, wiring between each solenoid-actuated valve and a driving apparatus or a controller is very complicated. Accordingly, to simplify wiring and reduce an attachment space, a manifold-type valve assembly having a solenoid-actuated valve installed on a base of a manifold has been employed. For example, one of manifold-type valve assemblies is disclosed in a Japanese Laid-open Patent Application No. 2004-100790.
- Such a conventional manifold-type valve assembly has: one or more solenoid-actuated valves as necessary; manifold blocks for mounting thereon the solenoid valves individually while connecting them to each other; and an air supply/exhaust block for supplying or exhausting compressed air through the insides of the manifold blocks. In general, the solenoid-actuated valves installed on the manifold blocks include a single solenoid-actuated valve (hereinafter, simply referred to as a single-type valve) for performing a switching of a flow path of a main valve by means of a single solenoid; and a double solenoid-actuated valve (hereinafter, simply referred to as a double-type valve) for performing a switching of the flow path of the main valve by means of two solenoids.
- As for such a manifold-type valve assembly, though it is possible to drive each of the solenoid-actuated valves mounted on the manifold blocks by using a common control signal, the number, i.e., one or two, of solenoids is varied depending on whether a solenoid-actuated valve is a single-type valve or a double-type valve and, thus, it is required to adjust a circuit configuration to be suitable for either one of them. Further, given that one of the solenoid-actuated valves individually mounted on the manifold blocks can be replaced by a double-type valve from a single-type valve or vice versa, it is preferable to switch the circuit configuration for controlling the solenoid-actuated valves in a simple manner. In general, a control scheme for controlling a solenoid-actuated valve by providing an electrical power to the solenoid-actuated valve is installed in a signal board inside a manifold block. In such a case, depending on whether the solenoid-actuated valve installed on a certain manifold block is a single-type valve or a double-type valve, the controlling type of the control scheme is predetermined and the predetermined control scheme is accommodated in the manifold block. Therefore, when a certain solenoid-actuated valve mounted on the manifold block is alternated between a single-type valve and a double-type valve, not only the solenoid-actuated valve assembly needs to be changed but also a control scheme disposed in its manifold block should be changed by dismantling the manifold block, which is very troublesome.
- It is, therefore, an object of the present invention to provide a manifold-type valve assembly capable of switching between a single-type valve and a double-type valve in a simple manner.
- In accordance with the present invention, there is provided a manifold-type valve assembly capable of being changed-over between a single-type valve and a double-type valve, including comprising: one solenoid-actuated valve or two solenoid-actuated valves to constitute the single-type valve or the double-type valve, the single-type valve and the double-type valve being actuated by one and two solenoids, respectively; and, manifold blocks for accommodating the solenoid-actuated valves thereon individually, while connecting the solenoid-actuated valves to other ones mounted on neighboring manifold blocks, each manifold block having a power supply apparatus,
- wherein the power supply apparatus includes: a power supply terminal, for providing an electrical power to drive the solenoid-actuated valves of the single-type valve and the double-type valve; a circuit board connected to the power supply terminal and having a first surface and a second surface, the first surface having a single-type valve circuit for the single-type valve and the second surface having a double-type valve circuit for the double-type valve; and a male connector and a female connector installed at opposite sides of the circuit board and connected to their neighboring female and male connectors in neighboring manifold blocks, respectively,
- wherein each of the single- and the double-type valve circuits has valve contacts arranged in two rows, the valve contacts in a first row being connected to the valve contacts in a second row with offset by the number of solenoids and, for each valve circuit, the offset contact in the second row being connected to the power supply terminal; and
- wherein each of the male connector and the female connector has connector contacts corresponding to the valve contacts in each valve circuit.
- As described above, as for the power supply apparatus for a manifold-type valve assembly in accordance with the present invention, the driving control of a single-type valve and a double-type valve employed in the manifold-type valve assembly is possible by means of a circuit board with a single-type valve and a double-type valve in its surfaces. Thus, even when one of solenoid-actuated valves installed on the manifold block is changed between a single-type valve and a double-type valve, the changing-over the circuit board can be carried out simply by changing the connection directions of the circuit board and connectors. Therefore, the assembly of solenoid-actuated valves and replacement thereof can be facilitated.
- The above and other objects and features of the present invention will become apparent from the following description of preferred embodiments given in conjunction with the accompanying drawings, in which:
-
FIG. 1 is a perspective view of a manifold-type valve assembly in accordance with the present invention; -
FIG. 2 sets forth an exploded perspective view of the manifold-type valve assembly shown inFIG. 1 ; -
FIG. 3 presents an exploded perspective view of a manifold block shown inFIG. 2 ; -
FIG. 4 shows a perspective view of a power supply apparatus in a manifold block shown inFIG. 2 ; -
FIGS. 5 and 6 depict diagrams illustrating a single-type valve circuit and a double-type valve circuit of the circuit board shown inFIG. 4 , respectively; -
FIG. 7 is an electrical connection between the single and the double-type valve circuits shown inFIGS. 5 and 6 ; and -
FIG. 8 illustrates a state of using the power supply apparatus for the manifold block in accordance with the present invention. - Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
- Referring to
FIG. 1 , there is provided a perspective view showing a manifold-type valve assembly in accordance with the present invention. - A manifold-type valve assembly shown in
FIG. 1 includes: one or more solenoid-actuatedvalves 110 arranged in parallel to each other, each solenoid-actuatedvalve 110 being a single-type valve or a double-type valve; manifold blocks (or base blocks) 120 for accommodating the solenoid-actuatedvalves 110 thereon individually, while connecting the solenoid-actuatedvalves 110 to each other; an air supply/exhaust block 130 disposed at one of two opposite ends of the assembly of themanifold blocks 120, for supplying/exhausting compressed air through the insides of themanifold blocks 120; anend block 140 disposed at the other end of the assembly of themanifold blocks 120; and arelay unit 150 attached to the air supply/exhaust block 130, for relaying a control signal to each solenoid-actuatedvalve 110. -
FIG. 2 sets forth an exploded perspective view of the manifold-type valve assembly in accordance with the present invention, andFIG. 3 is an exploded perspective view of a manifold block shown inFIG. 2 . - As shown in
FIGS. 2 and 3 , each solenoid-actuatedvalve 110 is fixed on amanifold block 120 via screws or the like. Each solenoid-actuatedvalve 110 has therein one or two solenoid valves (not shown) to control a single-type valve or a double-type valve. As for the operation of such a solenoid-actuatedvalve 110, an air supply and an air exhaust of amain valve 114 are switched by pilot air passing through a small-size pilot valve 112 which is electronically driven by a solenoid or solenoids. - Further, the solenoid-actuated
valve 110 has apower receiving terminal 116 installed at a lower side thereof. Thepower receiving terminal 116 is facing downward to form an electrical connection with apower supply terminal 126 on themanifold block 120 in case where the solenoid-actuatedvalve 110 is mounted on themanifold block 120. - Here, though the solenoid-actuated
valve 110 is comprised of a single-type valve or a double-type valve,same manifold block 120 is used for both of the single-type valve and the double-type valve, providing the same external appearances. However, depending on whether it is a single-type valve or a double-type valve, the solenoid-actuatedvalve 110 has a different internal circuit configuration. - Referring to
FIG. 3 , eachmanifold block 120 has a fluidflow path portion 121 having a flow path communicated with a flow path inside the air supply/exhaust block 130; and an openedinner portion 125. A pair ofoutput openings manifold block 120 of the fluidflow path portion 121. Theoutput openings valve 110. Moreover, theoutput openings fluid opening 124. Further, a power supply apparatus 20 for controlling a single-type valve or a double-type valve is also installed in the openedinner portion 125. -
FIG. 4 is a perspective view of thepower supply apparatus 200 shown inFIG. 3 . - The
power supply apparatus 200 includes a circuit board 205,power supply connectors power supply terminal 126. - Installed on the top surface of the opened
inner portion 125 is thepower supply terminal 126 through which the electrical power is provided to thepower receiving terminal 116 of the solenoid-actuatedvalve 110. - The circuit board 205 has a
first surface 210 and asecond surface 220, which is a backside of thefirst surface 210. Formed on thefirst surface 210 of the circuit board 205 is a single-type valve circuit 212 for controlling a single-type valve. Also, thepower supply connector 214 is formed on thefirst surface 210, facing upward, and is electrically connected with thepower supply terminal 126 through acable connector 216. Thecable connector 216 is detachable to and from thepower supply connector 214. - On the other hand, formed on the
second surface 220 is a double-type valve circuit 222 for controlling double-type valves. Also, thepower supply connector 224 is formed on thesecond surface 220, facing upward when upsetting the circuit board 205 reversely, and is electrically connected to thepower supply terminal 126 with thecable connector 216. Preferably, to help a user distinguish the single-type value and the double-type value readily, a character, e.g., an alphabet “S” is inscribed on thefirst surface 210, while an alphabet “D” is inscribed on the second surface 220 (SeeFIGS. 5 and 6 ). -
FIGS. 5 and 6 are schematic diagrams illustrating a single-type valve circuit and a double-type valve circuit of the circuit board, respectively, andFIG. 7 is an electrical connection of the single-type valve circuit and the double-type valve circuit shown inFIGS. 5 and 6 . - As shown in
FIGS. 5 and 6 , the single-type valve circuit 212 on thefirst surface 110 hascontacts type valve circuit 222 on thesecond surface 220 has alsocontacts circuit board 220 in two rows. - As for each valve circuit, as shown in
FIG. 7 , thevalve contacts 232 in a first row are connected to theircorresponding valve contacts 234 in a second row in one-to-one correspondence in a manner that a (n+1)th or a (n+2)th (where n is a number of the contacts to the solenoid-actuated valves) contact in the first row is connected to a nth value contact in the second row depending on the number of solenoids. That is, in case of a single-type valve, a (n+1)th valve contact in the first row is connected to a nth valve contact in the second row; and in case of a double-type valve, (n+1)th and (n+2)th value contacts in the first row is connected to a nth and (n+1)th value contacts in the first row. - In other words, in a single- or double-type valve circuit, the
contacts 232 in a first row are connected to thecontacts 232 in a second row while being offset by the number of solenoids. The circuit board 205 further includes acommon contact 230 andcommon power contacts common contact 230 is used as a reference voltage, while thepower contacts power supply terminal 126. In case of the single-type valve circuit 212, only thecommon power contact 236 is devoted to the offset contact having the number ‘1’. And, in case of the double-type valve circuit 222, both thecommon power contacts - Referring back to
FIGS. 3 and 4 , thepower supply apparatus 200 further includes amale connector 240 and afemale connector 250 that are disposed in opposite sides of the circuit board 205. Themale connector 240 and thefemale connector 250 have a plurality of contacts that are correspondingly coupled to thecontacts - The
male connector 240 and thefemale connector 250 are connected to their neighboring female connector and male connector in neighboring manifold blocks, respectively. Accordingly, the neighboring circuit boards 205 are electrically connected to each other, via themale connector 240 and thefemale connector 250, enabling relay of the control signal to the neighboring circuit boards. - Preferably, such a circuit board 205 is installed inside a
manifold block 120 via a holder member 300 (seeFIG. 3 ). - The
holder member 300 is made of a synthetic resin material having relatively elasticity, and it has a substantially rectangular shape and has therein a hollow space for accommodating the circuit board 205. Preferably, a mark for indicating the state of a single-type valve or a double-type valve is provided on the front surface of theholder member 300. For example, by inscribing an alphabet “S” or “D” at an upper or a lower portion of the front surface of theholder member 300, the assembled state of the circuit board 205 can be identified. Theholder member 300 has a structure capable of being assembled with the circuit board 205 only when its installation direction coincides with the installation direction of the circuit board 205, i.e., only when the relative positions of the “S” and “D” inscriptions thereon coincide with those of the “S” and “D” inscriptions on the circuit board 205. - Also, a hook portion 302 (see
FIG. 3 ) to be inserted into and locked with themanifold block 120 is protrudently formed on the rear surface of theholder member 300. - Meanwhile, a plurality of
manifold blocks 120 are arranged while being connected to each other. The air supply/exhaust block 130 for supplying and exhausting compressed air into and out of the connected insides of the manifold blocks 120 is installed at one of two ends of such an assembly of the connected manifold blocks 130, and theend block 140 is installed at the other end of the assembly of the manifold blocks 130. - Hereinafter, an operation of a power supply apparatus for a manifold-type valve assembly will be explained with reference to
FIG. 8 . - First, control signal is produced from a controller (not shown), and the control signal is transmitted to the
relay unit 150. - Then, the control signal is provided through the
relay unit 150 to thecircuit boards 200 loaded in the manifold blocks 120 step-by-step. - In each circuit board 205 where an operation is made to supply electrical power to the solenoid-actuated
valve 110 mounted on acorresponding manifold block 120 or to cut the power supply thereto, the control signal is transmitted to the solenoid-actuatedvalve 110 from thepower supply terminal 126 via thepower receiving terminal 116 of the solenoid-actuatedvalve 110. Further, the control signal is sent in sequence to a next circuit board 205 for controlling an operation of a next solenoid-actuatedvalve 110 via themale connector 240 and thefemale connector 250. - Meanwhile, a circuit connection within the circuit board 205 is varied depending on whether the solenoid-actuated
valve 110 controlled thereby is a single-type valve or a double-type valve. - In case the solenoid-actuated
valve 110 is a single-type valve, the circuit board 205 is placed with itsfirst surface 210 facing upward and is installed such that the “S” inscription on theholder member 300 is indicated on the upper position. During placement of thefirst surface 210, thepower supply connector 214 on thefirst surface 210 is connected to thepower supply terminal 126 through the use of thecable connector 216. - In contrast, if a solenoid-actuated
valve 110 mounted onmanifold block 120 is a double-type valve, the circuit board 205 is placed with itssecond surface 220 facing upward and is installed such that the “D” inscription on theholder member 300 is located at an upper position than the “S” inscription. During placement of thesecond surface 220, thepower supply connector 224 on thesecond surface 220 is connected to thepower supply terminal 126 with thecable connector 216. - Thereafter, the
holder member 300 is fitted and fixed to the openedinner portion 125 of themanifold block 120 by locking thehook portion 302 with themanifold block 120. - In case the solenoid-actuated
valve 110 is a single-type valve, the assembly method is the same as described above; so description thereof will be omitted. - Therefore, when a circuit board 205 for the driving control of an solenoid-actuated valve is installed in an opened
inner portion 125 of eachmanifold block 120, the circuit board 205 can be changed-over between a single-type valve and a double-type valve in a simple manner. Therefore, in a manifold-type valve assembly, even when one of solenoid-actuatedvalves 110 mounted onmanifold blocks 120 is changed into a single or a double-type valve, a circuit board 205 therefor can be easily switched as well. - While the invention has been shown and described with respect to the preferred embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060022313A KR100743388B1 (en) | 2006-03-09 | 2006-03-09 | Control changing device of manifold solenoid valve |
KR10-2006-0022313 | 2006-03-09 | ||
PCT/KR2006/003061 WO2007102643A1 (en) | 2006-03-09 | 2006-08-04 | Circuit board for a solenoid valve manifold |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090045367A1 true US20090045367A1 (en) | 2009-02-19 |
US7849881B2 US7849881B2 (en) | 2010-12-14 |
Family
ID=38475056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/223,736 Active 2027-06-07 US7849881B2 (en) | 2006-03-09 | 2006-08-04 | Circuit board for a solenoid valve manifold |
Country Status (4)
Country | Link |
---|---|
US (1) | US7849881B2 (en) |
KR (1) | KR100743388B1 (en) |
CN (1) | CN101395384B (en) |
WO (1) | WO2007102643A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130037128A1 (en) * | 2010-05-04 | 2013-02-14 | Fluid Automation Systems S.A. | Valve sub-base |
WO2013075729A1 (en) * | 2011-11-24 | 2013-05-30 | Festo Ag & Co. Kg | Supply module and module chain |
USD883214S1 (en) | 2017-11-28 | 2020-05-05 | Ckd Corporation | Connector for solenoid valves |
USD884637S1 (en) * | 2017-11-28 | 2020-05-19 | Ckd Corporation | Connector for solenoid valves |
USD886741S1 (en) | 2017-11-28 | 2020-06-09 | Ckd Corporation | Holder for solenoid valves |
WO2022164416A1 (en) | 2020-01-02 | 2022-08-04 | Asco, L.P. | A reversible circuit board for single and dual manifold solenoid valve assembly |
EP4119821A4 (en) * | 2020-03-11 | 2024-04-10 | Koganei Corporation | Manifold solenoid valve and valve base |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5004049B2 (en) * | 2007-10-10 | 2012-08-22 | Smc株式会社 | Control system for pneumatic equipment |
WO2010068201A1 (en) * | 2008-12-10 | 2010-06-17 | Numatics, Incorporated | A valve block assembly for a fluid manifold with mounted circuit board |
KR200458450Y1 (en) * | 2009-10-08 | 2012-03-07 | (주) 티피씨 메카트로닉스 | Solenoide-operated valve assembly for manifold |
EP2738396B1 (en) * | 2012-12-01 | 2015-02-25 | FESTO AG & Co. KG | Valve assembly |
US10006557B2 (en) | 2013-03-15 | 2018-06-26 | Asco, L.P. | Valve manifold circuit board with serial communication and control circuit line |
WO2014143002A1 (en) | 2013-03-15 | 2014-09-18 | Numatics, Incorporated | Valve manifold circuit board with serial communication circuit line |
CN106415094B (en) * | 2014-06-20 | 2019-05-07 | 阿斯科公司 | Subregion manifold component for electromagnetic valve controlling system |
USD809627S1 (en) * | 2016-01-13 | 2018-02-06 | Koganei Corporation | Solenoid valve manifold |
GB2551156B (en) * | 2016-06-07 | 2020-12-30 | Linx Printing Tech | Inkjet printer |
DE102017106891A1 (en) * | 2017-03-30 | 2018-10-04 | Bürkert Werke GmbH & Co. KG | valve terminal |
JP1591078S (en) * | 2017-04-25 | 2017-11-20 | ||
DE102018106835B4 (en) * | 2018-03-22 | 2024-08-22 | Bürkert Werke GmbH & Co. KG | Fluid housing for a fluid collection or fluid distribution system and fluid collection or fluid distribution system |
JP7556019B2 (en) * | 2020-03-11 | 2024-09-25 | 株式会社コガネイ | Manifold solenoid valves and valve bases |
CN112856023B (en) * | 2020-12-31 | 2023-03-31 | 浙江亿太诺气动科技有限公司 | Improved generation two electric control solenoid valve |
CN112855986B (en) * | 2020-12-31 | 2023-03-31 | 浙江亿太诺气动科技有限公司 | Multi-needle valve terminal |
DE102021113979A1 (en) | 2021-05-31 | 2022-12-01 | Ipetronik Gmbh & Co. Kg | measurement module system |
JP7454527B2 (en) * | 2021-06-25 | 2024-03-22 | Ckd株式会社 | solenoid valve manifold |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234033A (en) * | 1989-04-05 | 1993-08-10 | Festo Kg | Fluid power valve unit |
US5408966A (en) * | 1993-12-23 | 1995-04-25 | Ford Motor Company | System and method for synchronously activating cylinders within a variable displacement engine |
US6086043A (en) * | 1996-09-30 | 2000-07-11 | Siemens Aktiengesellschaft | Valve control apparatus with three-dimensional circuit board using MID technology |
US6095489A (en) * | 1997-03-14 | 2000-08-01 | Smc Corporation | Double- or single-solenoid type selector valve encapsulated in resin |
US6102068A (en) * | 1997-09-23 | 2000-08-15 | Hewlett-Packard Company | Selector valve assembly |
US20030172900A1 (en) * | 2002-03-12 | 2003-09-18 | Ford Global Technologies, Inc. | Strategy and control system for deactivation and reactivation of cylinders of a variable displacement engine |
US7377481B2 (en) * | 2005-07-01 | 2008-05-27 | Smc Corporation | Solenoid valve |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19706636C2 (en) * | 1997-02-20 | 1998-12-10 | Festo Ag & Co | Electrical connection device for consumers arranged in a row, in particular solenoid valves |
KR100297803B1 (en) | 1998-06-19 | 2001-09-22 | 김윤 | Orthopaedic casting tape and processing method thereof |
JP3323455B2 (en) * | 1999-03-31 | 2002-09-09 | エスエムシー株式会社 | Manifold type solenoid valve driven by serial signal |
JP3409085B2 (en) * | 1999-03-31 | 2003-05-19 | エスエムシー株式会社 | Manifold type solenoid valve driven by serial signal |
JP3323454B2 (en) * | 1999-03-31 | 2002-09-09 | エスエムシー株式会社 | Manifold type solenoid valve driven by serial signal |
JP3282128B2 (en) * | 1999-07-19 | 2002-05-13 | エスエムシー株式会社 | Power supply device for solenoid valve manifold |
JP3965096B2 (en) | 2002-09-06 | 2007-08-22 | シーケーディ株式会社 | Solenoid valve manifold |
-
2006
- 2006-03-09 KR KR1020060022313A patent/KR100743388B1/en active IP Right Grant
- 2006-08-04 CN CN2006800535838A patent/CN101395384B/en active Active
- 2006-08-04 US US12/223,736 patent/US7849881B2/en active Active
- 2006-08-04 WO PCT/KR2006/003061 patent/WO2007102643A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234033A (en) * | 1989-04-05 | 1993-08-10 | Festo Kg | Fluid power valve unit |
US5408966A (en) * | 1993-12-23 | 1995-04-25 | Ford Motor Company | System and method for synchronously activating cylinders within a variable displacement engine |
US6086043A (en) * | 1996-09-30 | 2000-07-11 | Siemens Aktiengesellschaft | Valve control apparatus with three-dimensional circuit board using MID technology |
US6095489A (en) * | 1997-03-14 | 2000-08-01 | Smc Corporation | Double- or single-solenoid type selector valve encapsulated in resin |
US6102068A (en) * | 1997-09-23 | 2000-08-15 | Hewlett-Packard Company | Selector valve assembly |
US20030172900A1 (en) * | 2002-03-12 | 2003-09-18 | Ford Global Technologies, Inc. | Strategy and control system for deactivation and reactivation of cylinders of a variable displacement engine |
US7377481B2 (en) * | 2005-07-01 | 2008-05-27 | Smc Corporation | Solenoid valve |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130037128A1 (en) * | 2010-05-04 | 2013-02-14 | Fluid Automation Systems S.A. | Valve sub-base |
US8985153B2 (en) * | 2010-05-04 | 2015-03-24 | Fluid Automation Systems S.A | Valve sub-base |
WO2013075729A1 (en) * | 2011-11-24 | 2013-05-30 | Festo Ag & Co. Kg | Supply module and module chain |
US9800047B2 (en) | 2011-11-24 | 2017-10-24 | Festo Ag & Co. Kg | Supply module and module chain |
USD886741S1 (en) | 2017-11-28 | 2020-06-09 | Ckd Corporation | Holder for solenoid valves |
USD884637S1 (en) * | 2017-11-28 | 2020-05-19 | Ckd Corporation | Connector for solenoid valves |
USD883214S1 (en) | 2017-11-28 | 2020-05-05 | Ckd Corporation | Connector for solenoid valves |
WO2022164416A1 (en) | 2020-01-02 | 2022-08-04 | Asco, L.P. | A reversible circuit board for single and dual manifold solenoid valve assembly |
US20230163499A1 (en) * | 2020-01-02 | 2023-05-25 | Asco, L.P. | A reversible circuit board for single and dual manifold solenoid valve assembly |
EP4085201A4 (en) * | 2020-01-02 | 2023-10-04 | Asco, L.P. | A reversible circuit board for single and dual manifold solenoid valve assembly |
US12100906B2 (en) * | 2020-01-02 | 2024-09-24 | Asco, L.P. | Reversible circuit board for single and dual manifold solenoid valve assembly |
EP4119821A4 (en) * | 2020-03-11 | 2024-04-10 | Koganei Corporation | Manifold solenoid valve and valve base |
US12117093B2 (en) | 2020-03-11 | 2024-10-15 | Koganei Corporation | Manifold solenoid valve and valve base |
Also Published As
Publication number | Publication date |
---|---|
KR100743388B1 (en) | 2007-07-27 |
WO2007102643A1 (en) | 2007-09-13 |
CN101395384B (en) | 2012-06-20 |
CN101395384A (en) | 2009-03-25 |
US7849881B2 (en) | 2010-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7849881B2 (en) | Circuit board for a solenoid valve manifold | |
US20030226606A1 (en) | Manifold valve | |
US5222524A (en) | Control device for fluidic media in particular for compressed air | |
KR100271472B1 (en) | Sealed transfer valve assembly | |
EP0715108B1 (en) | Solenoid valve controller | |
EP1041327B2 (en) | Manifold solenoid valve driven by serial signals | |
JP5004049B2 (en) | Control system for pneumatic equipment | |
US6179006B1 (en) | Plate-type mounting base | |
CN111290171B (en) | Direct type backlight source, backlight module and display device | |
JP2004036841A (en) | Manifold valve with sensor | |
KR100670632B1 (en) | Electromagnetic pilot type directional control valve | |
US6216740B1 (en) | Manifold-type solenoid valve with relay unit | |
DE50304224D1 (en) | Chaining module for controlling an electric valve drive of a fluidic valve arrangement | |
JP3409060B2 (en) | Manifold type solenoid valve driven by serial signal | |
US7328720B2 (en) | Solenoid valve | |
KR100302411B1 (en) | Pilot Switching Valve | |
KR20150116010A (en) | Convertable relay mounting terminal block between npn mode and pnp mode | |
KR200460135Y1 (en) | Pcb stopper device of manifold solenoid valve | |
JP2008215400A (en) | Solenoid valve manifold | |
JP4516192B2 (en) | Solenoid valve manifold | |
US12100906B2 (en) | Reversible circuit board for single and dual manifold solenoid valve assembly | |
JP2005243263A (en) | Electric apparatus driving control panel and terminal board unit | |
WO2006075108A3 (en) | Printed circuit for five leds in series | |
JPH10110859A (en) | Feeder system for pilot solenoid valve | |
CN101106895A (en) | Electric modular quick connecting device for inside of electric appliance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TPC MECHATRONICS CORP., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JIN YOUNG;HEO, GANG WOON;YUN, YOUNG MIN;AND OTHERS;REEL/FRAME:021388/0186 Effective date: 20080722 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |