US20080294243A1 - Stent having helical elements - Google Patents
Stent having helical elements Download PDFInfo
- Publication number
- US20080294243A1 US20080294243A1 US12/178,895 US17889508A US2008294243A1 US 20080294243 A1 US20080294243 A1 US 20080294243A1 US 17889508 A US17889508 A US 17889508A US 2008294243 A1 US2008294243 A1 US 2008294243A1
- Authority
- US
- United States
- Prior art keywords
- stent
- segments
- circumferential
- cylindrical
- expandable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 description 9
- 239000011295 pitch Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 210000003037 cerebral aqueduct Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 210000002229 urogenital system Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/88—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91508—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91516—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91525—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
- A61F2002/91541—Adjacent bands are arranged out of phase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91558—Adjacent bands being connected to each other connected peak to peak
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91583—Adjacent bands being connected to each other by a bridge, whereby at least one of its ends is connected along the length of a strut between two consecutive apices within a band
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0013—Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
Definitions
- the present invention relates to prosthetic stents.
- the present invention relates to stents having helical elements and to methods for manufacturing the stents of the present invention.
- Stents are prosthetic devices that are implanted in the lumen of a vessel inside the body to provide support for the vessel's wall. Structural support from stents is particularly important in angioplasty procedures. Typically, stents are implanted within a vessel system to reinforce vessels that are partially occluded, collapsing, weakened, or abnormally dilated. More generally, stents can be used inside any physiological conduit or duct including, for example, arteries, veins, bile ducts, the urinary tract, alimentary tracts, the tracheobronchial tree, a cerebral aqueduct or the genitourinary system. Stents may be used in both humans and animals.
- Self expanding stents automatically expand once they are released and assume a deployed, expanded state.
- a balloon expandable stent is expanded using an inflatable balloon catheter. The balloon is inflated to plastically deform the stent.
- Balloon expandable stents may be implanted by mounting the stent in an unexpanded or crimped state on a balloon segment of a catheter. The catheter, after having the crimped stent placed thereon, is inserted through a puncture in a vessel wall and moved through the vessel until it is positioned in the portion of the vessel that is in need of repair.
- the stent is then expanded by inflating the balloon catheter against the inside wall of the vessel.
- the stent is plastically deformed by inflating the balloon so that the diameter of the stent is increased and remains at an increased state.
- the vessel in which the stent is implanted may be dilated by the stent itself when the stent is expanded.
- the Palmaz-SchatzTM stent which is disclosed in the Handbook of Coronary Stents by Patrick W. Serruys et al. (Martin Dunitz, LTD 1998), is an example of a balloon expandable stent that had been implanted in hundreds of thousands of patients.
- the Palmaz-SchatzTM stent like other known stents, has certain limitations. These include, but are not limited to: (i) low stent-to-vessel ratio uniformity, (ii) comparative rigidity of the stent in a crimped as well as deployed state, and (iii) limited flexibility making delivery and placement in narrow vessels difficult.
- Stent-to-vessel ratio generally refers to the degree that the vessel wall is supported by the stent in its expanded state and preferably should be uniform throughout the length of the stent. Furthermore because the Palmaz-SchatzTM stent consists of one or more bridges that connect a number of consecutively slotted tubes, there are a number of bare areas in the vessel after the expansion of the stent. These shortfalls are common to many stents. Id. at 36.
- the present invention is directed to expandable stents that have relatively uniform stent-to-vessel ratios when expanded and other desirable properties, as well as methods for making these stents.
- the stents of the present invention comprise a generally cylindrically shaped main body having a plurality of expandable helical segments.
- the main body is comprised of a plurality of cylindrical main body elements that are joined together by the helical segments.
- the cylindrical elements have cylindrical axes that are collinear with the cylindrical axis of the main body.
- the cylindrical elements are formed from a plurality of circumferential elements that are joined together by the expandable helical segments.
- the stent may comprise endzones that straddle the main body.
- the stent may comprise a first non-helical endzone and a second non-helical endzone that straddle the main body.
- the main body is generally cylindrically shaped and has a cylindrical axis.
- a plurality of adjacent main body cylindrical elements are connected together to form the main body of the stent.
- Each main body cylindrical element may be comprised of a plurality of expandable first and second circumferential elements.
- the second circumferential elements have a circumferential dimension less than the circumferential dimension of the first circumferential elements.
- the first and second circumferential elements have the same circumferential dimensions and are substantially identical except that, with respect to the cylindrical axis of the stent, they are oriented differently.
- Each second circumferential segment in each main body cylindrical element is connected to two first circumferential segments.
- each second circumferential segment in each main body cylindrical element is connected to a second circumferential segment in an adjoining main body cylindrical element thereby forming a plurality of helixes in the main body of the stent.
- the main body may be comprised of a plurality of first helical segments each having a substantially identical first pitch and a plurality of second helical segments, each having a substantially identical second pitch.
- the first and second pitches are generally different.
- the second pitch is twice that of the first, and at least one first helical segment crosses one of the second helical segments.
- the stents of the present invention may be manufactured from a tubular member by removing material from the tube to form a first endzone region, a second endzone region, and a middle region. By removing material from the middle region a plurality of parallel helical segments will remain and a plurality of circumferential segments will remain connecting the helical segments.
- the stent may be formed from a tube by removing material such that at least two sets of helical segments remain with each set having a different pitch.
- FIG. 1 is a three dimensional view of one embodiment of a stent according to the present invention in its unexpanded state.
- FIG. 2 is planar view of a flattened portion of the circumference of the stent in FIG. 1 .
- FIG. 3 is an enlarged portion of FIG. 2 .
- FIG. 4 is another planar view of a flattened portion of the circumference of a stent according to the present invention in its unexpanded state.
- FIG. 5 is an enlarged view of a portion of FIG. 4 showing a first circumferential element of the stent.
- FIG. 6 is an enlarged view of a portion of FIG. 4 showing a second circumferential element of the stent.
- FIG. 7 is a planar view of a flattened portion of the stent in FIG. 1 showing a plurality of sets of helical segments propagating through the stent's body.
- FIG. 8 is a planar view of a flattened endzone that may be employed in a stent of the present invention.
- FIG. 9 is a planar view of a flattened portion of part of the endzone shown in FIG. 8 .
- FIG. 10 is a planar view of a flattened portion of an expandable stent according to the present invention, after the stent has been deployed in a lumen.
- FIG. 11 is three dimensional view of an alternative embodiment of the present invention.
- FIG. 12 is a three dimensional view of an another stent according to the present invention.
- FIG. 13 is a planar view of the stent shown in 12 .
- FIG. 14 is a detailed view of a portion of FIG. 13 .
- FIG. 15 is a detailed view of another portion of FIG. 13 .
- the present invention is directed to an expandable stent, as well as a method of manufacturing the stent.
- the stent comprises a generally cylindrical shaped main body section 11 having a cylindrical axis 5 and a wall thickness 103 .
- the wall thickness 103 may optionally be uniform throughout the stent.
- the main body section 11 is comprised of a plurality of helical segments 30 and 40 and a plurality of main body cylindrical elements 100 , each having cylindrical axes (not shown) that are collinear with the main body cylindrical axis 5 .
- the main body cylindrical elements 100 are each comprised of circumferential elements 50 that are joined together by the helical segments 30 and 40 to form individual cylinders 100 .
- the stent may also have a first endzone 10 and a second endzone 20 that straddle the body section 11 .
- the endzones 10 and 20 may advantageously provide the stent with square outer edges 8 .
- the stent may be manufactured from stainless steel, or other suitable materials. In most embodiments, it is desirable that the material, or a portion of the material, be radiopaque and that the various segments that form the stent be contiguous. Although, in some embodiments, the various segments that make up the stent can be distinct elements that are joined together.
- the main body 11 may be formed in numerous ways.
- the body 11 may contain two or more first helical segment 30 and 40 that are generally parallel to each other. In some embodiments they may be opposite each other by 180.degree.
- the first helical segments 30 and 40 will be spaced equidistant along the circumference 110 of the main body 11 .
- the first helical segments 30 and 40 are joined by a plurality of circumferential segments 50 to form a plurality of main body cylindrical elements 100 , which may be only generally cylindrically shaped.
- the circumferential segments 50 make up a majority of the circumference 110 of each cylindrical element 100 .
- the helical segments 30 and 40 connect each cylindrical element 100 to an adjacent cylindrical element 100 to form the main body 11 .
- the body of the stent 11 may comprise a plurality of main body cylindrical elements 100 formed from first circumferential segments 50 that are joined with second circumferential segments 60 .
- the second circumferential segments 60 of each cylindrical element 100 may be joined with second circumferential segments 60 of adjacent cylindrical elements 100 to form a plurality of first helical segments 30 and 40 in the main body 11 .
- Each first circumferential segment 50 may have a circumferential dimension 55 and each second circumferential segments 60 may have a circumferential dimension 66 ′ (See FIG. 3 ).
- the first circumferential segment 50 may be an expandable segment formed from plurality of segments joined together to form a pattern.
- the pattern such as the one shown in the FIGS. 1-3 , may be a repeating pattern that resembles a square wave form having curved peaks and valleys. Other patterns, both repeating and non-repeating, may be used.
- the first circumferential segments 50 may resemble a triangle wave form, a sinusoidal wave form, other repetitious patterns, or any pattern that enables the segment to expand when a radial force is exerted on the stent from the inside or collapse radially when an external crimping force is applied.
- the first circumferential elements 50 may have a filament width 420 (see FIG. 4 ).
- the filament width may vary between 0.002 inches and 0.007 inches, but is preferably about 0.0050 inches. Other filament widths may be used depending on the parameters of the stent.
- the first circumferential elements 50 comprise linear portions 320 and curved portions 328 that join the linear portions 320 together to form a repeating pattern.
- the linear portion 320 may be parallel to the cylindrical axis of the stent. In other embodiments, the linear portion 320 lies at an angle of between 0-45 degrees with respect to the cylindrical axis.
- the first circumferential segment 50 has an amplitude 350 and a period 380 . In one embodiment the amplitude may range from 0.5 mm to 2.0 mm and the period may range from 0.5 mm to 2.0 mm. In some embodiments, the amplitude is less than the period. Other amplitudes and periods may be used depending on the overall stent design and performance constraints.
- the second circumferential element 60 which may be joined together in a helical pattern to form one or more helical segments 30 or 40 , may also take numerous forms, in addition to the form shown in FIG. 6 .
- the second circumferential element 60 comprises linear portions 412 and curved portions 414 having a filament width 407 , and resembles generally an S-shaped structure.
- the second element circumferential segment 60 may have an angled portion 417 attached to the linear portion 412 at an end opposite that of the curved portion 414 .
- the angled portion may be oriented to form an angle .alpha. relative to the cylindrical axis of the stent 5 in the range of 0-45 degrees.
- the preferable angle .alpha. is about 10 degrees.
- the linear portions 412 of the second circumferential element 60 lies at an angle .OMEGA. relative to the cylindrical axis of the stent, wherein OMEGA. preferably ranges from 0 to 45 degrees.
- OMEGA. may, in some embodiments, form an angle .OMEGA., relative to the cylindrical axis of the stent.
- OMEGA. may be approximately equal to the helical angle of the first helical segments 30 and 40 .
- the second circumferential elements 60 may have an amplitude 300 (see FIGS.
- the preferred period is about 0.82 mm and the preferred length of the linear portion 412 is about 0.5 mm and the amplitude 300 is about 0.38 mm.
- the amplitude of the second circumferential element 60 may be greater than, equal to, or less than the amplitude of the first circumferential element 50 .
- the circumferential contributions of the first circumferential elements 50 to the overall circumference of the main body 11 is greater than the circumferential contribution of the second circumferential element 60 , in terms of either circumferential length or circumferential cylindrical surface area.
- the stent may have an overall outer surface area of about 0.029 square inches.
- the stent may have a main body 11 comprised of two or more first helical segments 30 and 40 , as well as two or more second helical segments 200 and 210 .
- the first and second helical segments 30 , 40 and 200 , 210 are joined together to form a generally cylindrically shaped body 11 .
- the first and second helical segments may share a common connecting element 250 .
- the common connecting element 250 may be H-shaped and the two generally parallel linear portions of the H-shaped connecting segment 250 may form an angle .delta. relative to the axis 5 . (See FIG. 6 ). .delta. may, in one embodiment, be about 14 degrees.
- the first helical segments 30 and 40 and second helical segments 200 and 210 may have different pitches, i.e. number of spirals per unit length, which results in the first and second helical segments as having different helical angles (.theta. and .beta., respectively) i.e. the angle of the helical segment relative to the cylindrical axis 5 of the stent.
- the second helical segments 200 and 210 have a pitch approximately twice that of the first helical segments.
- .theta. may vary from 0 to 45 degrees and is preferably about 40 degrees and .beta. is preferably about twice .theta.
- the angle .theta. may range from 0 to 90 degrees.to the circumference 110 of each cylindrical element 100 .
- the helical segments 30 , 40 are circumferentially expandable (i.e. they expand along the circumference of the stent) and may be formed from a plurality of circumferential elements 60 that in turn are made up of linear 412 and/or curved 414 segments (see FIG. 6 ) that each have a filament width 407 (see FIG. 6 ) that is less than the circumferential dimension 66 of the circumferential element 60 (see FIG. 3 ).
- each helical segment 30 or 40 will make a total contribution to the circumference of each cylindrical element 100 that is greater than the filament width 407 .
- each helical segment 30 or 40 may be greater than the circumferential contribution of the filament widths 407 of the segments (e.g. 412 and 414 ) making up the circumferential elements 60 that in turn make up the helical segments.
- the circumferential contribution of the helical segments 30 and 40 to the circumference 110 of each cylindrical element 100 is more than just a function of the filament width 407 , e.g., it may be a function of the geometry of the element 60 .
- the geometry of the helical segments 30 and 40 are a factor in determining their expandability.
- the helical segments 200 , 210 are circumferentially expandable and may be comprised of other circumferential elements 50 that are in turn comprised of linear 320 and/or curved segments 328 (see FIGS. 3 and 5 ) that have a filament width 420 (see FIG. 4 ).
- the contribution of the helical segments 200 , 210 to the overall circumferential dimension 110 of each cylindrical element 100 is greater than just the contribution of the filament widths 420 of the individual segments 320 and 328 that make up the elements 50 that in turn make up the helical segments 200 , 210 .
- the geometry of the elements 50 making up the helical segments 200 , 210 may be a more important factor in determining the circumferential contribution of the helical segments 200 and 210 to the overall stent circumference than the filament width 420 .
- the circumference of the stent 110 in its unexpanded state and the circumference 105 when the stent is expanded are primarily functions of the geometry of the elements 50 and 60 that make up the helical segments 30 , 40 and 200 , 210 , respectively.
- Some, but not all embodiments, of the present invention may employ endzones 10 and 20 . (See FIGS. 1 , 2 , and 11 ).
- Stents that employ endzones will generally have two endzone regions straddling a central zone in the middle of the stent.
- the stents may also have a transition region between the endzone and the central zone.
- the transition region serves to help smoothly transition between the expanded middle region and portions of the end of the stent that remain unexpanded after the stent is implanted.
- the size and characteristics of the transition region are a function of the material and geometry of the stent.
- the transition range properties vary as a function of, among other things, the helical angle of the first helical segments, the number of curved segments located in the endzones, and the angle .epsilon. of the linear portions of the segments forming the endzones. (See e.g. FIG. 8 ).
- the endzones 10 and 20 may take numerous forms.
- the endzones may be comprised of one or more rings 17 .
- the rings 17 may be generally cylindrically shaped, and in some embodiments, right cylindrically shaped.
- the rings are formed from linear segments 28 joined together by curved segments 29 to form a pattern.
- the pattern which is preferably—but not necessarily—a repeating pattern may take numerous forms, including the one shown.
- the endzones 10 and 20 may be comprised of a plurality of rings 17 attached together.
- Struts 15 may be used to attach the rings together to form the endzone and to attach the endzone to the main body 11 .
- the struts in some embodiments, act as cantilever springs and there stiffness, which is a function of their width and thickness, may define bending properties of the stent along its cylindrical axis 5 .
- the linear segments 28 in the endzone 10 are oriented at an angle .epsilon. relative to the cylindrical axis of the stent.
- the angle .epsilon. is greater than 0 degrees.
- .epsilon. may range from 0 to 45 degrees and in still another embodiment is preferably about 10 degrees.
- the segments of the endzone may have a filament width 13 of between 0.002 and 0.007 inches.
- the repeating pattern of the endzone has a period 2 of about 0.027 inches and an amplitude 21 of about 0.043 inches. Other values may be used. As is shown in FIG.
- the struts 15 which are but one way to attach the endzones 10 and 20 to the main body 11 , may, in one embodiment have a width of between 0.002 inches and 0.08 inches and preferably the width does not exceed the wall thickness, which typically—but not necessarily ranges from about 0.002 to 0.008 inches.
- the stent of the present invention may, after insertion into a vessel, be expanded such that it plastically deforms from the unexpanded state to an expanded state having a diameter increase of about 400 to 500%, which results in a larger circumference 105 .
- FIG. 11 depicts the stent shown in FIG. 1 in an expanded state.
- the stent's outer diameter in one particular embodiment increases from 1.0 mm to 3.00 mm and maintains a stent-to-vessel ratio in the expanded state that is greater than on average 16%.
- FIGS. 12-15 depict an endzoneless stent. Like the stent shown in FIG. 19 , the stent of FIGS. 12-15 comprises a plurality of adjacent cylindrical elements 100 .
- the cylindrical elements 100 are formed from a plurality of first circumferential elements 50 ′ and second circumferential elements 60 .
- the first circumferential elements 50 ′ of the stent in FIGS. 12-15 are substantially identical to the second circumferential element 60 except that they are rotated to have a different orientation.
- the circumferential elements may be generally S-shaped having a linear portion 412 , a curved portion 414 having a radius R, and an angled portion 417 .
- R may vary widely depending on overall stent characteristics and in one embodiment varies between 0.001 and 0.02 inches and is preferably about 0.0083 inches.
- the angled portion 417 is spaced a distance 499 from the linear portion. In one particular embodiment, the distance 499 may vary from 0.002 to 0.020 inches and is preferably about 0.007 inches.
- the filament width 407 of the elements may, in one embodiment, be about 0.13 mm.
- angle K may be generally S-shaped having a linear portion 412 , a curved portion 414 having a radius R, and an angled portion 417 .
- the angle K may vary widely depending on overall stent characteristics and range of radial compression or expansion about the axis 5 .
- Adjacent cylindrical elements 100 are joined together by connecting first circumferential elements 50 ′ in each cylindrical element 100 with first circumferential elements 50 ′ in an adjacent cylindrical element 100 , such that the first circumferential elements 50 ′ in adjacent cylindrical elements 100 form helixes through the stent and such that second circumferential elements form helixes through the stent having an angle .theta. relative to the axis 5 .
- a connecting segment 250 (see FIG. 7 ) is used to connect first circumferential elements in adjacent cylindrical elements 100 and to connect second circumferential elements 60 in adjacent cylindrical elements 100 .
- the connecting segment connects first circumferential elements 50 ′ in each cylindrical element 100 with two second circumferential elements 60 in each cylindrical element 100 .
- the individual cylindrical elements 100 are adjacent to each other and are located a distance 666 apart. In one embodiment, the preferred may range between 0.002 and 0.020 inches, and is preferably about 0.009 inches.
- the above description of the stent of the present invention is illustrative and not exhaustive. Various modifications may be made to the stent to change its overall characteristics without deviating from the scope and spirit of the invention as defined by the claims.
- the increasing the length of the linear segments and or increasing the arc of the second circumferential elements 60 will decrease the amount of radial force required to expand each circular section and will increase flexibility.
- Increasing the angle .OMEGA. of the second circumferential element 60 will: (i) increase the amount of radial force required for expansion, (ii) increase surface area, and (iii) decrease flexibility.
- various modifications may be made to the struts 15 . (See FIG. 2 ).
- Increasing strut width and wall thickness will: (i) increase surface area, (ii) increase radial strength, (iii) increase pressure required to expand the stent radially, (iv) decrease flexibility, and, in the case of increased wall thickness, (v) increase radiopacity.
- the stent of the present invention may be manufactured in numerous ways.
- the stent may be formed from a metallic tube by removing various portions of the tube's wall to form the patterns described herein.
- the resulting stent will thus be formed from a single contiguous piece of material, eliminating the need for connecting various segments together.
- Material from the tube wall may be removed using various techniques including laser (YAG laser for example), electrical discharge, chemical etching, metal cutting, a combination of these techniques, or other well known techniques. See e.g. U.S. Pat. Nos. 5,879,381 to Moriuchi et al. and 6,117,165 to Becker, which are hereby incorporated in their entirety by reference.
- the tube from which the stent is formed may have an internal diameter of about 3.0 mm, a wall thickness of about 1.0 mm and a length of about 30 mm. Tubes having other dimensions may be used. In particular, the length may be adapted to that of the diseased part of the lumen in which the stent is to be placed. This may avoid using separate stents to cover the total diseased area.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
Abstract
An expandable stent comprised of a plurality of helical segments is disclosed. In one embodiment, the stent is generally cylindrical in shape having a cylindrical axis, and comprises a first and second set of helical segments. The helical segments in the first set are substantially parallel and have a first pitch forming a first helical angle with respect to the cylindrical axis. The helical segments in the second set are also generally parallel to each other and form a second pitch that differs from the first pitch, thereby forming a second helical angle with respect to the cylindrical axis. In an alternative embodiment, the stent comprises one set of helical segments and a plurality of circumferential elements that are joined together by the helical segments to form a plurality of cylindrical elements which are joined together to form a stent body. The stent may also have endzones.
Description
- This application is a continuation of U.S. patent application Ser. No. 12/027,382, filed on Feb. 7, 2008, which application is a continuation of U.S. patent application Ser. No. 10/014,705, filed on Dec. 11, 2001, now issued U.S. Pat. No. 7,329,277, which application claims the benefit of U.S. Provisional Application No. 60/254,688, filed on Dec. 11, 2000, all of which are hereby incorporated in their entirety by reference. U.S. patent application Ser. No. 10/014,705 is also continuation-in-part of U.S. patent application Ser. No. 09/511,481, filed on Feb. 23, 2000, now U.S. Pat. No. 7,108,714, which is a continuation of U.S. patent application Ser. No. 09/094,402, filed Jun. 10, 1998, now U.S. Pat. No. 6,117,165, all of which are hereby incorporated in their entirety by reference.
- The present invention relates to prosthetic stents. In particular, the present invention relates to stents having helical elements and to methods for manufacturing the stents of the present invention.
- Stents are prosthetic devices that are implanted in the lumen of a vessel inside the body to provide support for the vessel's wall. Structural support from stents is particularly important in angioplasty procedures. Typically, stents are implanted within a vessel system to reinforce vessels that are partially occluded, collapsing, weakened, or abnormally dilated. More generally, stents can be used inside any physiological conduit or duct including, for example, arteries, veins, bile ducts, the urinary tract, alimentary tracts, the tracheobronchial tree, a cerebral aqueduct or the genitourinary system. Stents may be used in both humans and animals.
- There are typically two types of stents: self expanding stents and balloon expandable stents. Self expanding stents automatically expand once they are released and assume a deployed, expanded state. A balloon expandable stent is expanded using an inflatable balloon catheter. The balloon is inflated to plastically deform the stent. Balloon expandable stents may be implanted by mounting the stent in an unexpanded or crimped state on a balloon segment of a catheter. The catheter, after having the crimped stent placed thereon, is inserted through a puncture in a vessel wall and moved through the vessel until it is positioned in the portion of the vessel that is in need of repair. The stent is then expanded by inflating the balloon catheter against the inside wall of the vessel. Specificially, the stent is plastically deformed by inflating the balloon so that the diameter of the stent is increased and remains at an increased state. In some situations, the vessel in which the stent is implanted may be dilated by the stent itself when the stent is expanded.
- The Palmaz-Schatz™ stent, which is disclosed in the Handbook of Coronary Stents by Patrick W. Serruys et al. (Martin Dunitz, LTD 1998), is an example of a balloon expandable stent that had been implanted in hundreds of thousands of patients. The Palmaz-Schatz™ stent, like other known stents, has certain limitations. These include, but are not limited to: (i) low stent-to-vessel ratio uniformity, (ii) comparative rigidity of the stent in a crimped as well as deployed state, and (iii) limited flexibility making delivery and placement in narrow vessels difficult. Stent-to-vessel ratio generally refers to the degree that the vessel wall is supported by the stent in its expanded state and preferably should be uniform throughout the length of the stent. Furthermore because the Palmaz-Schatz™ stent consists of one or more bridges that connect a number of consecutively slotted tubes, there are a number of bare areas in the vessel after the expansion of the stent. These shortfalls are common to many stents. Id. at 36.
- The present invention is directed to expandable stents that have relatively uniform stent-to-vessel ratios when expanded and other desirable properties, as well as methods for making these stents. The stents of the present invention comprise a generally cylindrically shaped main body having a plurality of expandable helical segments. The main body is comprised of a plurality of cylindrical main body elements that are joined together by the helical segments. The cylindrical elements have cylindrical axes that are collinear with the cylindrical axis of the main body. The cylindrical elements are formed from a plurality of circumferential elements that are joined together by the expandable helical segments. In some embodiments, the stent may comprise endzones that straddle the main body.
- In one embodiment of the present invention, the stent may comprise a first non-helical endzone and a second non-helical endzone that straddle the main body. The main body is generally cylindrically shaped and has a cylindrical axis. A plurality of adjacent main body cylindrical elements are connected together to form the main body of the stent. Each main body cylindrical element may be comprised of a plurality of expandable first and second circumferential elements. In some embodiments, the second circumferential elements have a circumferential dimension less than the circumferential dimension of the first circumferential elements. In yet other embodiments, the first and second circumferential elements have the same circumferential dimensions and are substantially identical except that, with respect to the cylindrical axis of the stent, they are oriented differently. Each second circumferential segment in each main body cylindrical element is connected to two first circumferential segments. In addition, each second circumferential segment in each main body cylindrical element is connected to a second circumferential segment in an adjoining main body cylindrical element thereby forming a plurality of helixes in the main body of the stent.
- In one embodiment, the main body may be comprised of a plurality of first helical segments each having a substantially identical first pitch and a plurality of second helical segments, each having a substantially identical second pitch. The first and second pitches are generally different. In at least one embodiment, the second pitch is twice that of the first, and at least one first helical segment crosses one of the second helical segments. The stents of the present invention may be manufactured from a tubular member by removing material from the tube to form a first endzone region, a second endzone region, and a middle region. By removing material from the middle region a plurality of parallel helical segments will remain and a plurality of circumferential segments will remain connecting the helical segments. Alternatively, the stent may be formed from a tube by removing material such that at least two sets of helical segments remain with each set having a different pitch.
-
FIG. 1 is a three dimensional view of one embodiment of a stent according to the present invention in its unexpanded state. -
FIG. 2 is planar view of a flattened portion of the circumference of the stent inFIG. 1 . -
FIG. 3 is an enlarged portion ofFIG. 2 . -
FIG. 4 is another planar view of a flattened portion of the circumference of a stent according to the present invention in its unexpanded state. -
FIG. 5 is an enlarged view of a portion ofFIG. 4 showing a first circumferential element of the stent. -
FIG. 6 is an enlarged view of a portion ofFIG. 4 showing a second circumferential element of the stent. -
FIG. 7 is a planar view of a flattened portion of the stent inFIG. 1 showing a plurality of sets of helical segments propagating through the stent's body. -
FIG. 8 is a planar view of a flattened endzone that may be employed in a stent of the present invention. -
FIG. 9 is a planar view of a flattened portion of part of the endzone shown inFIG. 8 . -
FIG. 10 is a planar view of a flattened portion of an expandable stent according to the present invention, after the stent has been deployed in a lumen. -
FIG. 11 is three dimensional view of an alternative embodiment of the present invention. -
FIG. 12 is a three dimensional view of an another stent according to the present invention. -
FIG. 13 is a planar view of the stent shown in 12. -
FIG. 14 is a detailed view of a portion ofFIG. 13 . -
FIG. 15 is a detailed view of another portion ofFIG. 13 . - The present invention is directed to an expandable stent, as well as a method of manufacturing the stent. In one embodiment, as is shown in
FIGS. 1 and 2 , the stent comprises a generally cylindrical shapedmain body section 11 having acylindrical axis 5 and awall thickness 103. Thewall thickness 103 may optionally be uniform throughout the stent. Themain body section 11 is comprised of a plurality ofhelical segments cylindrical elements 100, each having cylindrical axes (not shown) that are collinear with the main bodycylindrical axis 5. The main bodycylindrical elements 100 are each comprised ofcircumferential elements 50 that are joined together by thehelical segments individual cylinders 100. - The stent may also have a
first endzone 10 and asecond endzone 20 that straddle thebody section 11. In some embodiments, such as the one shown inFIG. 1 , theendzones outer edges 8. The stent may be manufactured from stainless steel, or other suitable materials. In most embodiments, it is desirable that the material, or a portion of the material, be radiopaque and that the various segments that form the stent be contiguous. Although, in some embodiments, the various segments that make up the stent can be distinct elements that are joined together. - The
main body 11, shown inFIGS. 1 and 2 , may be formed in numerous ways. For example, thebody 11 may contain two or more firsthelical segment helical segments circumference 110 of themain body 11. The firsthelical segments circumferential segments 50 to form a plurality of main bodycylindrical elements 100, which may be only generally cylindrically shaped. In one embodiment, thecircumferential segments 50 make up a majority of thecircumference 110 of eachcylindrical element 100. In addition to joining thecircumferential elements 50 to formcylindrical elements 100, thehelical segments cylindrical element 100 to an adjacentcylindrical element 100 to form themain body 11. - As is shown in
FIGS. 2 and 3 , the body of thestent 11 may comprise a plurality of main bodycylindrical elements 100 formed from firstcircumferential segments 50 that are joined with secondcircumferential segments 60. The secondcircumferential segments 60 of eachcylindrical element 100 may be joined with secondcircumferential segments 60 of adjacentcylindrical elements 100 to form a plurality of firsthelical segments main body 11. (SeeFIG. 2 ). Each firstcircumferential segment 50 may have acircumferential dimension 55 and each secondcircumferential segments 60 may have acircumferential dimension 66′ (SeeFIG. 3 ). In some embodiments, it may be desirable for thecircumferential dimension 55 of the firstexpandable element 50 to be larger than thecircumferential dimension 66′ of the secondexpandable element 60. - The
first circumferential segment 50 may be an expandable segment formed from plurality of segments joined together to form a pattern. The pattern, such as the one shown in theFIGS. 1-3 , may be a repeating pattern that resembles a square wave form having curved peaks and valleys. Other patterns, both repeating and non-repeating, may be used. For example, and without limitation, the firstcircumferential segments 50 may resemble a triangle wave form, a sinusoidal wave form, other repetitious patterns, or any pattern that enables the segment to expand when a radial force is exerted on the stent from the inside or collapse radially when an external crimping force is applied. - The first
circumferential elements 50 may have a filament width 420 (seeFIG. 4 ). In one embodiment, the filament width may vary between 0.002 inches and 0.007 inches, but is preferably about 0.0050 inches. Other filament widths may be used depending on the parameters of the stent. - In the embodiment shown in
FIGS. 1-5 , the firstcircumferential elements 50 compriselinear portions 320 andcurved portions 328 that join thelinear portions 320 together to form a repeating pattern. In some, but not all, embodiments, thelinear portion 320 may be parallel to the cylindrical axis of the stent. In other embodiments, thelinear portion 320 lies at an angle of between 0-45 degrees with respect to the cylindrical axis. Thefirst circumferential segment 50 has anamplitude 350 and aperiod 380. In one embodiment the amplitude may range from 0.5 mm to 2.0 mm and the period may range from 0.5 mm to 2.0 mm. In some embodiments, the amplitude is less than the period. Other amplitudes and periods may be used depending on the overall stent design and performance constraints. - The second
circumferential element 60, which may be joined together in a helical pattern to form one or morehelical segments FIG. 6 . In the embodiment shown inFIG. 6 , the secondcircumferential element 60 compriseslinear portions 412 andcurved portions 414 having afilament width 407, and resembles generally an S-shaped structure. In addition, the secondelement circumferential segment 60 may have an angledportion 417 attached to thelinear portion 412 at an end opposite that of thecurved portion 414. The angled portion may be oriented to form an angle .alpha. relative to the cylindrical axis of thestent 5 in the range of 0-45 degrees. In at least one embodiment, the preferable angle .alpha. is about 10 degrees. In some embodiments, thelinear portions 412 of the secondcircumferential element 60 lies at an angle .OMEGA. relative to the cylindrical axis of the stent, wherein OMEGA. preferably ranges from 0 to 45 degrees. When viewed in a planar fashion as inFIG. 2 , thelinear portions 412 may, in some embodiments, form an angle .OMEGA., relative to the cylindrical axis of the stent. In some embodiments, OMEGA. may be approximately equal to the helical angle of the firsthelical segments circumferential elements 60 may have an amplitude 300 (seeFIGS. 3 , 4, and 6) ranging from 0.5 mm to 2.0 mm and aperiod 310 ranging from 0.5 mm to 2.0 mm. Other ranges may be used depending on the particular stent size and design being employed. In one embodiment, the preferred period is about 0.82 mm and the preferred length of thelinear portion 412 is about 0.5 mm and theamplitude 300 is about 0.38 mm. The amplitude of the secondcircumferential element 60 may be greater than, equal to, or less than the amplitude of the firstcircumferential element 50. In one embodiment, the circumferential contributions of the firstcircumferential elements 50 to the overall circumference of themain body 11 is greater than the circumferential contribution of the secondcircumferential element 60, in terms of either circumferential length or circumferential cylindrical surface area. In one embodiment, the stent may have an overall outer surface area of about 0.029 square inches. - As is shown in
FIG. 7 , the stent may have amain body 11 comprised of two or more firsthelical segments helical segments helical segments body 11. In some, but not all embodiments, the first and second helical segments may share a common connectingelement 250. In some embodiments, the common connectingelement 250 may be H-shaped and the two generally parallel linear portions of the H-shaped connectingsegment 250 may form an angle .delta. relative to theaxis 5. (SeeFIG. 6 ). .delta. may, in one embodiment, be about 14 degrees. As is shown inFIG. 7 , the firsthelical segments helical segments cylindrical axis 5 of the stent. In one embodiment, the secondhelical segments circumference 110 of eachcylindrical element 100. - As is shown in
FIGS. 2 , 3, 4, and 6, thehelical segments circumferential elements 60 that in turn are made up of linear 412 and/or curved 414 segments (seeFIG. 6 ) that each have a filament width 407 (seeFIG. 6 ) that is less than thecircumferential dimension 66 of the circumferential element 60 (seeFIG. 3 ). In some embodiments, eachhelical segment cylindrical element 100 that is greater than thefilament width 407. The circumferential contribution of eachhelical segment FIG. 1 or 105 inFIG. 11 ) may be greater than the circumferential contribution of thefilament widths 407 of the segments (e.g. 412 and 414) making up thecircumferential elements 60 that in turn make up the helical segments. (I.e., In some embodiments the circumferential contribution of thehelical segments circumference 110 of eachcylindrical element 100 is more than just a function of thefilament width 407, e.g., it may be a function of the geometry of theelement 60.) For the embodiment shown inFIGS. 1 and 11 , this is the case when the stent is in both the unexpanded and expanded state. The geometry of thehelical segments - Likewise, the
helical segments circumferential elements 50 that are in turn comprised of linear 320 and/or curved segments 328 (seeFIGS. 3 and 5 ) that have a filament width 420 (seeFIG. 4 ). The contribution of thehelical segments circumferential dimension 110 of eachcylindrical element 100 is greater than just the contribution of thefilament widths 420 of theindividual segments elements 50 that in turn make up thehelical segments elements 50 making up thehelical segments helical segments filament width 420. Thus, in one embodiment of the present invention, the circumference of thestent 110 in its unexpanded state and thecircumference 105 when the stent is expanded are primarily functions of the geometry of theelements helical segments - Some, but not all embodiments, of the present invention may employ
endzones FIGS. 1 , 2, and 11). Stents that employ endzones will generally have two endzone regions straddling a central zone in the middle of the stent. The stents may also have a transition region between the endzone and the central zone. The transition region serves to help smoothly transition between the expanded middle region and portions of the end of the stent that remain unexpanded after the stent is implanted. The size and characteristics of the transition region are a function of the material and geometry of the stent. For example, the transition range properties vary as a function of, among other things, the helical angle of the first helical segments, the number of curved segments located in the endzones, and the angle .epsilon. of the linear portions of the segments forming the endzones. (See e.g.FIG. 8 ). - The
endzones FIG. 8 ). Therings 17 may be generally cylindrically shaped, and in some embodiments, right cylindrically shaped. In one embodiment, the rings are formed from linear segments 28 joined together bycurved segments 29 to form a pattern. The pattern, which is preferably—but not necessarily—a repeating pattern may take numerous forms, including the one shown. Theendzones rings 17 attached together.Struts 15 may be used to attach the rings together to form the endzone and to attach the endzone to themain body 11. The struts, in some embodiments, act as cantilever springs and there stiffness, which is a function of their width and thickness, may define bending properties of the stent along itscylindrical axis 5. - In the embodiment shown in
FIGS. 1 , 7, 8, and 9, which is exemplary only, the linear segments 28 in theendzone 10, are oriented at an angle .epsilon. relative to the cylindrical axis of the stent. In one embodiment, the angle .epsilon. is greater than 0 degrees. In another embodiment, .epsilon. may range from 0 to 45 degrees and in still another embodiment is preferably about 10 degrees. The segments of the endzone may have afilament width 13 of between 0.002 and 0.007 inches. In one embodiment, the repeating pattern of the endzone has aperiod 2 of about 0.027 inches and anamplitude 21 of about 0.043 inches. Other values may be used. As is shown inFIG. 1 , thestruts 15, which are but one way to attach theendzones main body 11, may, in one embodiment have a width of between 0.002 inches and 0.08 inches and preferably the width does not exceed the wall thickness, which typically—but not necessarily ranges from about 0.002 to 0.008 inches. - The stent of the present invention may, after insertion into a vessel, be expanded such that it plastically deforms from the unexpanded state to an expanded state having a diameter increase of about 400 to 500%, which results in a
larger circumference 105. (SeeFIG. 11 ).FIG. 11 depicts the stent shown inFIG. 1 in an expanded state. Upon expansion the stent's outer diameter in one particular embodiment increases from 1.0 mm to 3.00 mm and maintains a stent-to-vessel ratio in the expanded state that is greater than on average 16%. - While
endzones FIGS. 12-15 depict an endzoneless stent. Like the stent shown inFIG. 19 , the stent ofFIGS. 12-15 comprises a plurality of adjacentcylindrical elements 100. Thecylindrical elements 100 are formed from a plurality of firstcircumferential elements 50′ and secondcircumferential elements 60. The firstcircumferential elements 50′ of the stent inFIGS. 12-15 are substantially identical to the secondcircumferential element 60 except that they are rotated to have a different orientation. The circumferential elements may be generally S-shaped having alinear portion 412, acurved portion 414 having a radius R, and anangled portion 417. R may vary widely depending on overall stent characteristics and in one embodiment varies between 0.001 and 0.02 inches and is preferably about 0.0083 inches. Theangled portion 417 is spaced adistance 499 from the linear portion. In one particular embodiment, thedistance 499 may vary from 0.002 to 0.020 inches and is preferably about 0.007 inches. Thefilament width 407 of the elements may, in one embodiment, be about 0.13 mm. The circumferential elements depicted inFIG. 14 and the expansion elements depicted inFIG. 15 are positioned about thecylindrical axis 5 as defined by angle K and may be generally S-shaped having alinear portion 412, acurved portion 414 having a radius R, and anangled portion 417. The angle K may vary widely depending on overall stent characteristics and range of radial compression or expansion about theaxis 5. - Adjacent
cylindrical elements 100 are joined together by connecting firstcircumferential elements 50′ in eachcylindrical element 100 with firstcircumferential elements 50′ in an adjacentcylindrical element 100, such that the firstcircumferential elements 50′ in adjacentcylindrical elements 100 form helixes through the stent and such that second circumferential elements form helixes through the stent having an angle .theta. relative to theaxis 5. In some embodiments, a connecting segment 250 (seeFIG. 7 ) is used to connect first circumferential elements in adjacentcylindrical elements 100 and to connect secondcircumferential elements 60 in adjacentcylindrical elements 100. In addition, the connecting segment, connects firstcircumferential elements 50′ in eachcylindrical element 100 with two secondcircumferential elements 60 in eachcylindrical element 100. In one embodiment, the individualcylindrical elements 100 are adjacent to each other and are located adistance 666 apart. In one embodiment, the preferred may range between 0.002 and 0.020 inches, and is preferably about 0.009 inches. - The above description of the stent of the present invention is illustrative and not exhaustive. Various modifications may be made to the stent to change its overall characteristics without deviating from the scope and spirit of the invention as defined by the claims. For example and without limitation, the increasing the length of the linear segments and or increasing the arc of the second
circumferential elements 60 will decrease the amount of radial force required to expand each circular section and will increase flexibility. Increasing the angle .OMEGA. of the secondcircumferential element 60 will: (i) increase the amount of radial force required for expansion, (ii) increase surface area, and (iii) decrease flexibility. Likewise, various modifications may be made to thestruts 15. (SeeFIG. 2 ). Increasing strut width and wall thickness will: (i) increase surface area, (ii) increase radial strength, (iii) increase pressure required to expand the stent radially, (iv) decrease flexibility, and, in the case of increased wall thickness, (v) increase radiopacity. - The stent of the present invention may be manufactured in numerous ways. The stent may be formed from a metallic tube by removing various portions of the tube's wall to form the patterns described herein. The resulting stent will thus be formed from a single contiguous piece of material, eliminating the need for connecting various segments together. Material from the tube wall may be removed using various techniques including laser (YAG laser for example), electrical discharge, chemical etching, metal cutting, a combination of these techniques, or other well known techniques. See e.g. U.S. Pat. Nos. 5,879,381 to Moriuchi et al. and 6,117,165 to Becker, which are hereby incorporated in their entirety by reference. Forming stents in this manner allows for creation of a substantially stress-free structure where the helical segments are integral with the circumferential elements. In one embodiment, the tube from which the stent is formed may have an internal diameter of about 3.0 mm, a wall thickness of about 1.0 mm and a length of about 30 mm. Tubes having other dimensions may be used. In particular, the length may be adapted to that of the diseased part of the lumen in which the stent is to be placed. This may avoid using separate stents to cover the total diseased area.
- Those skilled in the art will recognize that the stent and manufacturing method described above are illustrative and not exhaustive of the present invention and that modifications and variations may be made without deviating from the scope and spirit of the invention as defined by the following claims.
Claims (20)
1. An expandable stent having an unexpanded state, the unexpanded stent comprising:
a plurality of adjacent cylindrical elements circumscribing a cylindrical axis, at least two of the cylindrical elements being connected by a substantially S-shaped segment defining at least one generally linear portion, the linear portion being angled with respect to the cylindrical axis.
2. The stent of claim 1 , wherein the angle between the linear portion and the cylindrical axis is greater than 0 degrees.
3. The stent of claim 2 , wherein the angle between the linear portion and the cylindrical axis is less than 90 degrees.
4. The stent of claim 1 , wherein the stent defines a plurality of expandable helical segments comprising expandable circumferential segments and H-shaped segments.
5. The stent of claim 4 , wherein the circumferential segments further comprise a plurality of segments joined together to form a repeating pattern.
6. The stent of claim 5 , wherein the repeating pattern comprises a square wave form having curved peaks and valleys.
7. The stent of claim 4 , wherein each cylindrical element comprises: (1) a first plurality of the expandable circumferential segments and (2) a second plurality of circumferential segments, wherein the first and second pluralities of circumferential segments are joined to each other by at least one of the S-shaped portion and H-shaped segment.
8. The stent of claim 7 , wherein the first and second pluralities of circumferential segments comprise a majority of the circumference of each cylindrical element.
9. The stent of claim 7 , wherein the first circumferential segments alternate with the second circumferential segments.
10. The stent of claim 7 , wherein the circumferential dimensions of the first and second pluralities of circumferential segments are equal.
11. The stent of claim 7 , wherein the circumferential dimension of at least one of the second plurality of circumferential segments is larger than the circumferential dimensions of the first plurality of circumferential segments.
12. The stent of claim 1 , further comprising first and second endzones straddling a main body of the stent.
13. The stent of claim 12 , wherein each endzone comprises a plurality of rings joined together by a plurality of struts.
14. The stent of claim 13 , wherein the rings are comprised of a plurality of alternating linear and curved segments.
15. The stent of claim 1 , wherein each substantially S-shaped portion defines three generally linear portions.
16. An expandable stent having an unexpanded state, the unexpanded stent comprising:
a plurality of adjacent cylindrical elements circumscribing a cylindrical axis, at least two of the cylindrical elements being connected by a substantially S-shaped segment, the S-shaped segment defining a generally linear portion, wherein the linear portion is nonparallel to the cylindrical axis.
17. The stent of claim 16 , wherein the linear portion is not perpendicular to the cylindrical axis.
18. The stent of claim 16 , wherein the stent defines a plurality of expandable helical segments comprising expandable circumferential segments and H-shaped segments.
19. The stent of claim 18 , wherein the expandable circumferential segments each having a single substantially S-shaped segment.
20. An expandable stent having an unexpanded state, the unexpanded stent comprising:
a plurality of adjacent cylindrical elements circumscribing a cylindrical axis, a helical element connecting at least two of the cylindrical elements, the helical element having plurality of substantially S-shaped segments in an alternating pattern with a plurality of substantially H-shaped segments, each S-shaped segment defining at least one generally linear portion being angled greater than 0 degrees and less than 90 degrees with respect to the cylindrical axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/178,895 US20080294243A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97201799 | 1997-06-13 | ||
EP97201799A EP0890346A1 (en) | 1997-06-13 | 1997-06-13 | Expandable intraluminal endoprosthesis |
EP98201446 | 1998-05-06 | ||
EP98201446A EP0884029B1 (en) | 1997-06-13 | 1998-05-06 | Expandable intraluminal endoprosthesis |
US09/094,402 US6117165A (en) | 1997-06-13 | 1998-06-10 | Expandable intraluminal endoprosthesis |
US09/511,481 US7108714B1 (en) | 1997-06-13 | 2000-02-23 | Expandable intraluminal endoprosthesis |
US25468800P | 2000-12-11 | 2000-12-11 | |
US10/014,705 US7329277B2 (en) | 1997-06-13 | 2001-12-11 | Stent having helical elements |
US12/027,382 US8486133B2 (en) | 1997-06-13 | 2008-02-07 | Stent having helical elements |
US12/178,895 US20080294243A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/027,382 Continuation US8486133B2 (en) | 1997-06-13 | 2008-02-07 | Stent having helical elements |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080294243A1 true US20080294243A1 (en) | 2008-11-27 |
Family
ID=26146599
Family Applications (20)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/511,481 Expired - Lifetime US7108714B1 (en) | 1997-06-13 | 2000-02-23 | Expandable intraluminal endoprosthesis |
US10/071,071 Expired - Lifetime US6821292B2 (en) | 1997-06-13 | 2002-02-08 | Crimpable intraluminal endoprosthesis having helical elements |
US10/390,100 Abandoned US20030149474A1 (en) | 1997-06-13 | 2003-03-17 | Expandable intraluminal endoprosthesis |
US10/993,380 Abandoned US20050090894A1 (en) | 1997-06-13 | 2004-11-19 | Crimpable intraluminal endoprosthesis having helical elements |
US11/523,726 Abandoned US20070203570A1 (en) | 1997-06-13 | 2006-09-19 | Expandable intraluminal endoprosthesis |
US12/027,382 Expired - Fee Related US8486133B2 (en) | 1997-06-13 | 2008-02-07 | Stent having helical elements |
US12/178,396 Abandoned US20080288051A1 (en) | 1997-06-13 | 2008-07-23 | Stent having helical elements |
US12/178,387 Abandoned US20080288050A1 (en) | 1997-06-13 | 2008-07-23 | Stent having helical elements |
US12/178,915 Expired - Fee Related US8382820B2 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,883 Abandoned US20080281406A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,898 Abandoned US20080294244A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,895 Abandoned US20080294243A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,906 Expired - Fee Related US8968385B2 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,909 Abandoned US20080288052A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,889 Abandoned US20080281407A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/196,761 Abandoned US20080319537A1 (en) | 1997-06-13 | 2008-08-22 | Stent having helical elements |
US12/243,392 Expired - Fee Related US7682384B2 (en) | 1997-06-13 | 2008-10-01 | Stent with helical elements |
US12/727,567 Expired - Fee Related US8372135B2 (en) | 1997-06-13 | 2010-03-19 | Stent having helical elements |
US12/878,341 Expired - Fee Related US7942922B2 (en) | 1997-06-13 | 2010-09-09 | Stent having helical elements |
US12/878,232 Expired - Fee Related US7967852B2 (en) | 1997-06-13 | 2010-09-09 | Stent having helical elements |
Family Applications Before (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/511,481 Expired - Lifetime US7108714B1 (en) | 1997-06-13 | 2000-02-23 | Expandable intraluminal endoprosthesis |
US10/071,071 Expired - Lifetime US6821292B2 (en) | 1997-06-13 | 2002-02-08 | Crimpable intraluminal endoprosthesis having helical elements |
US10/390,100 Abandoned US20030149474A1 (en) | 1997-06-13 | 2003-03-17 | Expandable intraluminal endoprosthesis |
US10/993,380 Abandoned US20050090894A1 (en) | 1997-06-13 | 2004-11-19 | Crimpable intraluminal endoprosthesis having helical elements |
US11/523,726 Abandoned US20070203570A1 (en) | 1997-06-13 | 2006-09-19 | Expandable intraluminal endoprosthesis |
US12/027,382 Expired - Fee Related US8486133B2 (en) | 1997-06-13 | 2008-02-07 | Stent having helical elements |
US12/178,396 Abandoned US20080288051A1 (en) | 1997-06-13 | 2008-07-23 | Stent having helical elements |
US12/178,387 Abandoned US20080288050A1 (en) | 1997-06-13 | 2008-07-23 | Stent having helical elements |
US12/178,915 Expired - Fee Related US8382820B2 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,883 Abandoned US20080281406A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,898 Abandoned US20080294244A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/178,906 Expired - Fee Related US8968385B2 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,909 Abandoned US20080288052A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/178,889 Abandoned US20080281407A1 (en) | 1997-06-13 | 2008-07-24 | Stent having helical elements |
US12/196,761 Abandoned US20080319537A1 (en) | 1997-06-13 | 2008-08-22 | Stent having helical elements |
US12/243,392 Expired - Fee Related US7682384B2 (en) | 1997-06-13 | 2008-10-01 | Stent with helical elements |
US12/727,567 Expired - Fee Related US8372135B2 (en) | 1997-06-13 | 2010-03-19 | Stent having helical elements |
US12/878,341 Expired - Fee Related US7942922B2 (en) | 1997-06-13 | 2010-09-09 | Stent having helical elements |
US12/878,232 Expired - Fee Related US7967852B2 (en) | 1997-06-13 | 2010-09-09 | Stent having helical elements |
Country Status (3)
Country | Link |
---|---|
US (20) | US7108714B1 (en) |
EP (1) | EP0884029B1 (en) |
JP (2) | JP4704528B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080288053A1 (en) * | 1997-06-13 | 2008-11-20 | Orbusneich Medical, Inc. | Stent having helical elements |
US20090156999A1 (en) * | 2007-12-13 | 2009-06-18 | Boston Scientific Scimed, Inc. | Coil member for a medical device |
US8449597B2 (en) | 1995-03-01 | 2013-05-28 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
Families Citing this family (206)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7329277B2 (en) | 1997-06-13 | 2008-02-12 | Orbusneich Medical, Inc. | Stent having helical elements |
US6013091A (en) * | 1997-10-09 | 2000-01-11 | Scimed Life Systems, Inc. | Stent configurations |
US6503271B2 (en) | 1998-01-09 | 2003-01-07 | Cordis Corporation | Intravascular device with improved radiopacity |
US6129755A (en) * | 1998-01-09 | 2000-10-10 | Nitinol Development Corporation | Intravascular stent having an improved strut configuration |
US6395019B2 (en) | 1998-02-09 | 2002-05-28 | Trivascular, Inc. | Endovascular graft |
US7815763B2 (en) | 2001-09-28 | 2010-10-19 | Abbott Laboratories Vascular Enterprises Limited | Porous membranes for medical implants and methods of manufacture |
US7887578B2 (en) | 1998-09-05 | 2011-02-15 | Abbott Laboratories Vascular Enterprises Limited | Stent having an expandable web structure |
US6682554B2 (en) | 1998-09-05 | 2004-01-27 | Jomed Gmbh | Methods and apparatus for a stent having an expandable web structure |
US6755856B2 (en) | 1998-09-05 | 2004-06-29 | Abbott Laboratories Vascular Enterprises Limited | Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation |
US6254564B1 (en) | 1998-09-10 | 2001-07-03 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US6641610B2 (en) | 1998-09-10 | 2003-11-04 | Percardia, Inc. | Valve designs for left ventricular conduits |
ATE322230T1 (en) * | 1998-09-10 | 2006-04-15 | Percardia Inc | TMR DEVICE |
US6042597A (en) † | 1998-10-23 | 2000-03-28 | Scimed Life Systems, Inc. | Helical stent design |
US8382821B2 (en) | 1998-12-03 | 2013-02-26 | Medinol Ltd. | Helical hybrid stent |
US20040267349A1 (en) | 2003-06-27 | 2004-12-30 | Kobi Richter | Amorphous metal alloy medical devices |
US6660030B2 (en) | 1998-12-11 | 2003-12-09 | Endologix, Inc. | Bifurcation graft deployment catheter |
EP1020166A1 (en) * | 1999-01-12 | 2000-07-19 | Orbus Medical Technologies, Inc. | Expandable intraluminal endoprosthesis |
EP1027870B1 (en) * | 1999-01-12 | 2005-03-30 | Orbus Medical Technologies, Inc. | Expandable intraluminal endoprosthesis |
US6355057B1 (en) † | 1999-01-14 | 2002-03-12 | Medtronic, Inc. | Staggered endoluminal stent |
US8034100B2 (en) | 1999-03-11 | 2011-10-11 | Endologix, Inc. | Graft deployment system |
US6261316B1 (en) | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
FR2793673B1 (en) * | 1999-05-18 | 2001-10-12 | Jean Marie Lefebvre | TUBULAR STENT TYPE WITH LOW CRUSHING RESISTANCE |
US6605053B1 (en) | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
FR2799363B1 (en) * | 1999-10-11 | 2001-11-30 | Braun Celsa Sa | MEDICAL IMPLANT IN MEANDRES IN ZIGZAG |
US9522217B2 (en) | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
US8088060B2 (en) | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US6423091B1 (en) * | 2000-05-16 | 2002-07-23 | Cordis Corporation | Helical stent having flat ends |
JP2003533335A (en) * | 2000-05-22 | 2003-11-11 | オーバス メディカル テクノロジーズ インク. | Self-expanding stent |
US20020032478A1 (en) | 2000-08-07 | 2002-03-14 | Percardia, Inc. | Myocardial stents and related methods of providing direct blood flow from a heart chamber to a coronary vessel |
US7101391B2 (en) | 2000-09-18 | 2006-09-05 | Inflow Dynamics Inc. | Primarily niobium stent |
US7402173B2 (en) | 2000-09-18 | 2008-07-22 | Boston Scientific Scimed, Inc. | Metal stent with surface layer of noble metal oxide and method of fabrication |
EP2311411B1 (en) * | 2000-12-11 | 2015-09-23 | OrbusNeich Medical, Inc. | Stent having helical elements |
US8038708B2 (en) | 2001-02-05 | 2011-10-18 | Cook Medical Technologies Llc | Implantable device with remodelable material and covering material |
EP3123984A1 (en) * | 2001-02-09 | 2017-02-01 | OrbusNeich Medical, Inc. | Crimpable intraluminal endoprosthesis having helical elements |
US6790227B2 (en) | 2001-03-01 | 2004-09-14 | Cordis Corporation | Flexible stent |
US6679911B2 (en) * | 2001-03-01 | 2004-01-20 | Cordis Corporation | Flexible stent |
US20050021123A1 (en) | 2001-04-30 | 2005-01-27 | Jurgen Dorn | Variable speed self-expanding stent delivery system and luer locking connector |
DE10154163A1 (en) | 2001-11-03 | 2003-05-22 | Advanced Med Tech | Device for straightening and stabilizing the spine |
US20040111108A1 (en) | 2001-11-09 | 2004-06-10 | Farnan Robert C. | Balloon catheter with non-deployable stent |
JP4404630B2 (en) | 2001-11-09 | 2010-01-27 | ノヴォスト コーポレイション | Balloon catheter with non-stationary stent |
US7537607B2 (en) * | 2001-12-21 | 2009-05-26 | Boston Scientific Scimed, Inc. | Stent geometry for improved flexibility |
AU2003239369A1 (en) * | 2002-05-06 | 2003-11-17 | Abbott Laboratories | Endoprosthesis for controlled contraction and expansion |
WO2003094798A1 (en) * | 2002-05-08 | 2003-11-20 | Abbott Laboratories | Endoprosthesis having foot extensions |
US8080052B2 (en) | 2002-06-28 | 2011-12-20 | Cordis Corporation | Stent with diagonal flexible connecting links |
US7223283B2 (en) * | 2002-10-09 | 2007-05-29 | Boston Scientific Scimed, Inc. | Stent with improved flexibility |
US7875068B2 (en) | 2002-11-05 | 2011-01-25 | Merit Medical Systems, Inc. | Removable biliary stent |
US7959671B2 (en) | 2002-11-05 | 2011-06-14 | Merit Medical Systems, Inc. | Differential covering and coating methods |
US7637942B2 (en) | 2002-11-05 | 2009-12-29 | Merit Medical Systems, Inc. | Coated stent with geometry determinated functionality and method of making the same |
FR2846520B1 (en) * | 2002-11-06 | 2006-09-29 | Roquette Freres | USE OF MALTODEXTRINS BRANCHED AS BLEACHES OF GRANULATION |
US7901448B2 (en) * | 2002-12-24 | 2011-03-08 | Novostent Corporation | Vascular prothesis having interdigitating edges and methods of use |
US7316710B1 (en) * | 2002-12-30 | 2008-01-08 | Advanced Cardiovascular Systems, Inc. | Flexible stent |
US20070239251A1 (en) * | 2002-12-31 | 2007-10-11 | Abbott Cardiovascular Systems Inc. | Flexible stent |
US8080026B2 (en) | 2003-01-21 | 2011-12-20 | Angioscore, Inc. | Apparatus and methods for treating hardened vascular lesions |
US7625399B2 (en) * | 2003-04-24 | 2009-12-01 | Cook Incorporated | Intralumenally-implantable frames |
ATE446061T1 (en) | 2003-04-24 | 2009-11-15 | Cook Inc | ARTIFICIAL BLOOD VESSEL VALVE WITH IMPROVED FLOW BEHAVIOR |
US7717952B2 (en) | 2003-04-24 | 2010-05-18 | Cook Incorporated | Artificial prostheses with preferred geometries |
US7658759B2 (en) | 2003-04-24 | 2010-02-09 | Cook Incorporated | Intralumenally implantable frames |
US7625401B2 (en) * | 2003-05-06 | 2009-12-01 | Abbott Laboratories | Endoprosthesis having foot extensions |
US8048146B2 (en) * | 2003-05-06 | 2011-11-01 | Abbott Laboratories | Endoprosthesis having foot extensions |
US7625398B2 (en) * | 2003-05-06 | 2009-12-01 | Abbott Laboratories | Endoprosthesis having foot extensions |
US9155639B2 (en) | 2009-04-22 | 2015-10-13 | Medinol Ltd. | Helical hybrid stent |
US9039755B2 (en) * | 2003-06-27 | 2015-05-26 | Medinol Ltd. | Helical hybrid stent |
US20050182474A1 (en) * | 2004-02-13 | 2005-08-18 | Medtronic Vascular, Inc. | Coated stent having protruding crowns and elongated struts |
TW200605910A (en) | 2004-04-30 | 2006-02-16 | Orbus Medical Technologies Inc | Medical device with coating for capturing genetically-altered cells and methods for using same |
US7763064B2 (en) * | 2004-06-08 | 2010-07-27 | Medinol, Ltd. | Stent having struts with reverse direction curvature |
US7763065B2 (en) | 2004-07-21 | 2010-07-27 | Reva Medical, Inc. | Balloon expandable crush-recoverable stent device |
US7894174B2 (en) * | 2004-08-23 | 2011-02-22 | Monolithic Power Systems, Inc. | Method and apparatus for fault detection scheme for cold cathode fluorescent lamp (CCFL) integrated circuits |
US20060058869A1 (en) * | 2004-09-14 | 2006-03-16 | Vascular Architects, Inc., A Delaware Corporation | Coiled ladder stent |
US7887579B2 (en) | 2004-09-29 | 2011-02-15 | Merit Medical Systems, Inc. | Active stent |
US8292944B2 (en) | 2004-12-17 | 2012-10-23 | Reva Medical, Inc. | Slide-and-lock stent |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
WO2006108010A2 (en) | 2005-04-04 | 2006-10-12 | Burpee Materials Technology, Llc | Flexible stent |
US10076641B2 (en) | 2005-05-11 | 2018-09-18 | The Spectranetics Corporation | Methods and systems for delivering substances into luminal walls |
US7731654B2 (en) | 2005-05-13 | 2010-06-08 | Merit Medical Systems, Inc. | Delivery device with viewing window and associated method |
US7637939B2 (en) * | 2005-06-30 | 2009-12-29 | Boston Scientific Scimed, Inc. | Hybrid stent |
KR100633020B1 (en) * | 2005-07-15 | 2006-10-11 | 주식회사 스텐다드싸이텍 | Stent and method for manufacturing the same |
US9642726B2 (en) | 2005-07-25 | 2017-05-09 | Vascular Dynamics, Inc. | Devices and methods for control of blood pressure |
US9125567B2 (en) * | 2005-07-25 | 2015-09-08 | Vascular Dynamics, Inc. | Devices and methods for control of blood pressure |
US8923972B2 (en) | 2005-07-25 | 2014-12-30 | Vascular Dynamics, Inc. | Elliptical element for blood pressure reduction |
US20110077729A1 (en) * | 2009-09-29 | 2011-03-31 | Vascular Dynamics Inc. | Devices and methods for control of blood pressure |
US9592136B2 (en) | 2005-07-25 | 2017-03-14 | Vascular Dynamics, Inc. | Devices and methods for control of blood pressure |
US9125732B2 (en) * | 2005-07-25 | 2015-09-08 | Vascular Dynamics, Inc. | Devices and methods for control of blood pressure |
US7914574B2 (en) | 2005-08-02 | 2011-03-29 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US9149378B2 (en) * | 2005-08-02 | 2015-10-06 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
ATE459312T1 (en) | 2005-08-17 | 2010-03-15 | Bard Inc C R | VARIABLE SPEED STENT DELIVERY SYSTEM |
US8956400B2 (en) * | 2005-10-14 | 2015-02-17 | Flexible Stenting Solutions, Inc. | Helical stent |
US7404823B2 (en) | 2005-10-31 | 2008-07-29 | Boston Scientific Scimed, Inc. | Stent configurations |
US7381217B2 (en) | 2005-12-23 | 2008-06-03 | Boston Scientific Scimed, Inc. | Serpentine stent pattern |
US8808346B2 (en) | 2006-01-13 | 2014-08-19 | C. R. Bard, Inc. | Stent delivery system |
US11026822B2 (en) | 2006-01-13 | 2021-06-08 | C. R. Bard, Inc. | Stent delivery system |
US8348991B2 (en) * | 2006-03-29 | 2013-01-08 | Boston Scientific Scimed, Inc. | Stent with overlap and high expansion |
US8043358B2 (en) * | 2006-03-29 | 2011-10-25 | Boston Scientific Scimed, Inc. | Stent with overlap and high extension |
WO2008011615A2 (en) | 2006-07-20 | 2008-01-24 | Orbusneich Medical, Inc. | Bioabsorbable polymeric composition for a medical device |
US7833260B2 (en) * | 2006-07-20 | 2010-11-16 | Orbusneich Medical, Inc. | Bioabsorbable polymeric medical device |
GB0615658D0 (en) | 2006-08-07 | 2006-09-13 | Angiomed Ag | Hand-held actuator device |
US7988720B2 (en) | 2006-09-12 | 2011-08-02 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US7959942B2 (en) * | 2006-10-20 | 2011-06-14 | Orbusneich Medical, Inc. | Bioabsorbable medical device with coating |
WO2008070304A2 (en) | 2006-10-20 | 2008-06-12 | Orbusneich Medical, Inc. | Bioabsorbable polymeric composition and medical device background |
US20080177389A1 (en) * | 2006-12-21 | 2008-07-24 | Rob Gene Parrish | Intervertebral disc spacer |
JP5078346B2 (en) * | 2006-12-28 | 2012-11-21 | テルモ株式会社 | Self-expanding stent |
US8523931B2 (en) | 2007-01-12 | 2013-09-03 | Endologix, Inc. | Dual concentric guidewire and methods of bifurcated graft deployment |
US7704275B2 (en) | 2007-01-26 | 2010-04-27 | Reva Medical, Inc. | Circumferentially nested expandable device |
US8512392B2 (en) * | 2007-03-09 | 2013-08-20 | Boston Scientific Scimed, Inc. | Stent design with struts of various angles and stiffness |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US20080269745A1 (en) * | 2007-04-24 | 2008-10-30 | Osteolign, Inc. | Thermo-chemically activated intramedullary bone stent |
US8016874B2 (en) | 2007-05-23 | 2011-09-13 | Abbott Laboratories Vascular Enterprises Limited | Flexible stent with elevated scaffolding properties |
US8128679B2 (en) | 2007-05-23 | 2012-03-06 | Abbott Laboratories Vascular Enterprises Limited | Flexible stent with torque-absorbing connectors |
US9265636B2 (en) * | 2007-05-25 | 2016-02-23 | C. R. Bard, Inc. | Twisted stent |
US7867273B2 (en) * | 2007-06-27 | 2011-01-11 | Abbott Laboratories | Endoprostheses for peripheral arteries and other body vessels |
GB0713497D0 (en) | 2007-07-11 | 2007-08-22 | Angiomed Ag | Device for catheter sheath retraction |
US20110130822A1 (en) * | 2007-07-20 | 2011-06-02 | Orbusneich Medical, Inc. | Bioabsorbable Polymeric Compositions and Medical Devices |
US7988723B2 (en) | 2007-08-02 | 2011-08-02 | Flexible Stenting Solutions, Inc. | Flexible stent |
US8663309B2 (en) | 2007-09-26 | 2014-03-04 | Trivascular, Inc. | Asymmetric stent apparatus and method |
US8066755B2 (en) | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
US8226701B2 (en) | 2007-09-26 | 2012-07-24 | Trivascular, Inc. | Stent and delivery system for deployment thereof |
EP2186492B1 (en) | 2007-09-27 | 2012-08-15 | Terumo Kabushiki Kaisha | Stent and living organ dilator |
US10159557B2 (en) | 2007-10-04 | 2018-12-25 | Trivascular, Inc. | Modular vascular graft for low profile percutaneous delivery |
US20090157161A1 (en) * | 2007-10-24 | 2009-06-18 | Edwards Lifesciences Corporation | Percutaneous Nitinol Stent Extraction Device |
US8328861B2 (en) | 2007-11-16 | 2012-12-11 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US8083789B2 (en) | 2007-11-16 | 2011-12-27 | Trivascular, Inc. | Securement assembly and method for expandable endovascular device |
CN101453818B (en) | 2007-11-29 | 2014-03-19 | 杭州茂力半导体技术有限公司 | Discharge lamp circuit protection and regulation apparatus |
AU2007361843B2 (en) | 2007-11-30 | 2013-07-04 | Reva Medical, Inc. | Axially-radially nested expandable device |
US8920488B2 (en) | 2007-12-20 | 2014-12-30 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having a stable architecture |
US8337544B2 (en) | 2007-12-20 | 2012-12-25 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having flexible connectors |
US7850726B2 (en) | 2007-12-20 | 2010-12-14 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having struts linked by foot extensions |
US8221494B2 (en) | 2008-02-22 | 2012-07-17 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
WO2011104269A1 (en) | 2008-02-26 | 2011-09-01 | Jenavalve Technology Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US8052738B2 (en) * | 2008-03-20 | 2011-11-08 | Medtronic Vascular, Inc. | Intraluminal flexible stent device |
US8236040B2 (en) | 2008-04-11 | 2012-08-07 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
EP2293838B1 (en) | 2008-07-01 | 2012-08-08 | Endologix, Inc. | Catheter system |
US8128678B2 (en) * | 2008-09-02 | 2012-03-06 | Cook Medical Technologies Llc | Stent having less invasive ends and improved radial force |
US9149376B2 (en) | 2008-10-06 | 2015-10-06 | Cordis Corporation | Reconstrainable stent delivery system |
CN102245132A (en) * | 2008-10-10 | 2011-11-16 | 奥巴斯尼茨医学公司 | Bioabsorbable polymeric medical device |
US7947071B2 (en) | 2008-10-10 | 2011-05-24 | Reva Medical, Inc. | Expandable slide and lock stent |
EP2349077A4 (en) * | 2008-10-11 | 2015-01-21 | Orbusneich Medical Inc | Bioabsorbable polymeric compositions and medical devices |
US20110054587A1 (en) | 2009-04-28 | 2011-03-03 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
WO2010127305A2 (en) | 2009-05-01 | 2010-11-04 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US8795317B2 (en) * | 2009-07-08 | 2014-08-05 | Concentric Medical, Inc. | Embolic obstruction retrieval devices and methods |
US8357178B2 (en) * | 2009-07-08 | 2013-01-22 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8795345B2 (en) * | 2009-07-08 | 2014-08-05 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8529596B2 (en) | 2009-07-08 | 2013-09-10 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8357179B2 (en) * | 2009-07-08 | 2013-01-22 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US20110009941A1 (en) * | 2009-07-08 | 2011-01-13 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US9072537B2 (en) | 2009-07-08 | 2015-07-07 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
WO2011008989A2 (en) | 2009-07-15 | 2011-01-20 | Endologix, Inc. | Stent graft |
EP2459127B1 (en) | 2009-07-27 | 2015-09-23 | Endologix, Inc. | Stent graft |
US8597343B2 (en) * | 2009-09-18 | 2013-12-03 | Medtronic Vascular, Inc. | Stent with constant stiffness along the length of the stent |
WO2011053693A1 (en) | 2009-10-30 | 2011-05-05 | Cordis Corporation | Intraluminal device with improved flexibility and durability |
US20110218615A1 (en) * | 2010-03-02 | 2011-09-08 | Medtronic Vascular, Inc. | Stent With Multi-Crown Constraint and Method for Ending Helical Wound Stents |
US8206434B2 (en) | 2010-03-02 | 2012-06-26 | Medtronic Vascular, Inc. | Stent with sinusoidal wave form and orthogonal end and method for making same |
WO2011127452A1 (en) | 2010-04-10 | 2011-10-13 | Reva Medical, Inc | Expandable slide and lock stent |
EP2380604A1 (en) | 2010-04-19 | 2011-10-26 | InnoRa Gmbh | Improved coating formulations for scoring or cutting balloon catheters |
WO2011132803A1 (en) * | 2010-04-20 | 2011-10-27 | 주식회사 엠아이텍 | Stent for expanding blood vessels, with improved structure |
WO2011147849A1 (en) | 2010-05-25 | 2011-12-01 | Jenavalve Technology Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US8328072B2 (en) | 2010-07-19 | 2012-12-11 | Medtronic Vascular, Inc. | Method for forming a wave form used to make wound stents |
CN103124539B (en) * | 2010-08-02 | 2016-02-24 | 科迪斯公司 | There is the flexible helical stent of different coil region |
US8632559B2 (en) | 2010-09-21 | 2014-01-21 | Angioscore, Inc. | Method and system for treating valve stenosis |
GB201017834D0 (en) | 2010-10-21 | 2010-12-01 | Angiomed Ag | System to deliver a bodily implant |
EP2635241B1 (en) | 2010-11-02 | 2019-02-20 | Endologix, Inc. | Apparatus for placement of a graft or graft system |
US9393100B2 (en) | 2010-11-17 | 2016-07-19 | Endologix, Inc. | Devices and methods to treat vascular dissections |
EP2658484A1 (en) | 2010-12-30 | 2013-11-06 | Boston Scientific Scimed, Inc. | Multi stage opening stent designs |
RU2581871C2 (en) * | 2011-01-28 | 2016-04-20 | Мерит Медикал Системз, Инк. | Electrospun ptfe coated stent and method of use |
CN105232195B (en) | 2011-03-01 | 2018-06-08 | 恩朵罗杰克斯股份有限公司 | Delivery catheter system |
WO2012119037A1 (en) | 2011-03-03 | 2012-09-07 | Boston Scientific Scimed, Inc. | Stent with reduced profile |
US8663313B2 (en) | 2011-03-03 | 2014-03-04 | Boston Scientific Scimed, Inc. | Low strain high strength stent |
USD665500S1 (en) * | 2011-04-15 | 2012-08-14 | Novostent Corporation | Stent |
US9296034B2 (en) | 2011-07-26 | 2016-03-29 | Medtronic Vascular, Inc. | Apparatus and method for forming a wave form for a stent from a wire |
AU2013209965B2 (en) | 2012-01-16 | 2016-06-30 | Merit Medical Systems, Inc. | Rotational spun material covered medical appliances and methods of manufacture |
US10940167B2 (en) | 2012-02-10 | 2021-03-09 | Cvdevices, Llc | Methods and uses of biological tissues for various stent and other medical applications |
US9242290B2 (en) | 2012-04-03 | 2016-01-26 | Medtronic Vascular, Inc. | Method and apparatus for creating formed elements used to make wound stents |
US8992595B2 (en) | 2012-04-04 | 2015-03-31 | Trivascular, Inc. | Durable stent graft with tapered struts and stable delivery methods and devices |
US9498363B2 (en) | 2012-04-06 | 2016-11-22 | Trivascular, Inc. | Delivery catheter for endovascular device |
US9238260B2 (en) | 2012-04-18 | 2016-01-19 | Medtronic Vascular, Inc. | Method and apparatus for creating formed elements used to make wound stents |
US9364351B2 (en) | 2012-04-23 | 2016-06-14 | Medtronic Vascular, Inc. | Method for forming a stent |
CN104302250B (en) | 2012-05-14 | 2017-03-15 | C·R·巴德公司 | Can even inflation support |
US10507268B2 (en) | 2012-09-19 | 2019-12-17 | Merit Medical Systems, Inc. | Electrospun material covered medical appliances and methods of manufacture |
US9198999B2 (en) | 2012-09-21 | 2015-12-01 | Merit Medical Systems, Inc. | Drug-eluting rotational spun coatings and methods of use |
US20140114434A1 (en) * | 2012-10-22 | 2014-04-24 | Orbusneich Medical, Inc. | Medical device for implantation into luminal structures |
AU2014214700B2 (en) | 2013-02-11 | 2018-01-18 | Cook Medical Technologies Llc | Expandable support frame and medical device |
USD723165S1 (en) * | 2013-03-12 | 2015-02-24 | C. R. Bard, Inc. | Stent |
US10799617B2 (en) | 2013-03-13 | 2020-10-13 | Merit Medical Systems, Inc. | Serially deposited fiber materials and associated devices and methods |
WO2014159399A1 (en) | 2013-03-13 | 2014-10-02 | Merit Medical Systems, Inc. | Methods, systems, and apparatuses for manufacturing rotational spun appliances |
WO2014159337A1 (en) | 2013-03-14 | 2014-10-02 | Reva Medical, Inc. | Reduced - profile slide and lock stent |
DE102013104550B4 (en) | 2013-05-03 | 2021-07-01 | Acandis Gmbh | Medical device for insertion into a hollow organ in the body |
US9867694B2 (en) | 2013-08-30 | 2018-01-16 | Jenavalve Technology Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US10117668B2 (en) | 2013-10-08 | 2018-11-06 | The Spectranetics Corporation | Balloon catheter with non-deployable stent having improved stability |
US9980835B2 (en) * | 2013-10-22 | 2018-05-29 | Orbusneich Medical Inc. | Medical device for implantation into luminal structures incorporating corrugated structural elements |
JP6045036B2 (en) * | 2014-01-28 | 2016-12-14 | 日本ライフライン株式会社 | Stent |
EP3261589B1 (en) | 2015-02-26 | 2020-09-16 | Merit Medical Systems, Inc. | Layered medical appliances |
WO2016150806A1 (en) | 2015-03-20 | 2016-09-29 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
US10709555B2 (en) | 2015-05-01 | 2020-07-14 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
KR101593223B1 (en) * | 2015-05-15 | 2016-02-12 | (주)시지바이오 | Hybrid stent |
WO2017004265A1 (en) | 2015-06-30 | 2017-01-05 | Endologix, Inc. | Locking assembly for coupling guidewire to delivery system |
EP4183371A1 (en) | 2016-05-13 | 2023-05-24 | JenaValve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11622872B2 (en) | 2016-05-16 | 2023-04-11 | Elixir Medical Corporation | Uncaging stent |
CN113143536B (en) | 2016-05-16 | 2022-08-30 | 万能医药公司 | Opening support |
WO2018138658A1 (en) | 2017-01-27 | 2018-08-02 | Jenavalve Technology, Inc. | Heart valve mimicry |
US10368991B2 (en) | 2017-02-06 | 2019-08-06 | C. R. Bard, Inc. | Device and associated percutaneous minimally invasive method for creating a venous valve |
US11027046B2 (en) | 2017-10-31 | 2021-06-08 | Hothouse Medical Limited | Textile products having selectively applied sealant or coating and method of manufacture |
GB201717885D0 (en) | 2017-10-31 | 2017-12-13 | Hothouse Medical Ltd | Prothesis and method of manufacture |
US11154410B2 (en) * | 2018-06-29 | 2021-10-26 | Monarch Biosciences, Inc. | Spiral-based thin-film mesh systems and related methods |
US11802646B2 (en) * | 2019-08-09 | 2023-10-31 | Mueller International, Llc | Pipe repair device |
US11986408B2 (en) | 2020-07-24 | 2024-05-21 | Medtronic Vascular, Inc. | Stent with mid-crowns |
US11998464B2 (en) * | 2020-07-24 | 2024-06-04 | Medtronic Vascular, Inc. | Stent with angled struts and crowns |
Citations (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) * | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US4464722A (en) * | 1980-06-14 | 1984-08-07 | U.S. Philips Corporation | Data input or output apparatus incorporating functional testing |
US5102417A (en) * | 1985-11-07 | 1992-04-07 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US5104404A (en) * | 1989-10-02 | 1992-04-14 | Medtronic, Inc. | Articulated stent |
US5133732A (en) * | 1987-10-19 | 1992-07-28 | Medtronic, Inc. | Intravascular stent |
US5158548A (en) * | 1990-04-25 | 1992-10-27 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
US5217483A (en) * | 1990-11-28 | 1993-06-08 | Numed, Inc. | Intravascular radially expandable stent |
US5226913A (en) * | 1988-09-01 | 1993-07-13 | Corvita Corporation | Method of making a radially expandable prosthesis |
US5304200A (en) * | 1991-05-29 | 1994-04-19 | Cordis Corporation | Welded radially expandable endoprosthesis and the like |
US5354308A (en) * | 1992-05-01 | 1994-10-11 | Beth Israel Hospital Association | Metal wire stent |
US5356423A (en) * | 1991-01-04 | 1994-10-18 | American Medical Systems, Inc. | Resectable self-expanding stent |
US5370683A (en) * | 1992-03-25 | 1994-12-06 | Cook Incorporated | Vascular stent |
US5421955A (en) * | 1991-10-28 | 1995-06-06 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5443498A (en) * | 1991-10-01 | 1995-08-22 | Cook Incorporated | Vascular stent and method of making and implanting a vacsular stent |
US5449373A (en) * | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
WO1995026695A2 (en) * | 1994-04-01 | 1995-10-12 | Prograft Medical, Inc. | Self-expandable stent and stent-graft and method of using them |
US5507767A (en) * | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5527354A (en) * | 1991-06-28 | 1996-06-18 | Cook Incorporated | Stent formed of half-round wire |
US5545210A (en) * | 1994-09-22 | 1996-08-13 | Advanced Coronary Technology, Inc. | Method of implanting a permanent shape memory alloy stent |
US5549663A (en) * | 1994-03-09 | 1996-08-27 | Cordis Corporation | Endoprosthesis having graft member and exposed welded end junctions, method and procedure |
US5591230A (en) * | 1994-09-07 | 1997-01-07 | Global Therapeutics, Inc. | Radially expandable stent |
US5630829A (en) * | 1994-12-09 | 1997-05-20 | Intervascular, Inc. | High hoop strength intraluminal stent |
US5667523A (en) * | 1995-04-28 | 1997-09-16 | Impra, Inc. | Dual supported intraluminal graft |
US5697971A (en) * | 1996-06-11 | 1997-12-16 | Fischell; Robert E. | Multi-cell stent with cells having differing characteristics |
US5716393A (en) * | 1994-05-26 | 1998-02-10 | Angiomed Gmbh & Co. Medizintechnik Kg | Stent with an end of greater diameter than its main body |
US5716396A (en) * | 1993-09-16 | 1998-02-10 | Cordis Corporation | Endoprosthesis having multiple laser welded junctions method and procedure |
US5725572A (en) * | 1994-04-25 | 1998-03-10 | Advanced Cardiovascular Systems, Inc. | Radiopaque stent |
US5733303A (en) * | 1994-03-17 | 1998-03-31 | Medinol Ltd. | Flexible expandable stent |
US5741327A (en) * | 1997-05-06 | 1998-04-21 | Global Therapeutics, Inc. | Surgical stent featuring radiopaque markers |
US5755776A (en) * | 1996-10-04 | 1998-05-26 | Al-Saadon; Khalid | Permanent expandable intraluminal tubular stent |
US5755781A (en) * | 1996-08-06 | 1998-05-26 | Iowa-India Investments Company Limited | Embodiments of multiple interconnected stents |
US5776161A (en) * | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
WO1998035634A1 (en) * | 1997-02-17 | 1998-08-20 | Jomed Implantate Gmbh | Stent |
US5800521A (en) * | 1994-11-09 | 1998-09-01 | Endotex Interventional Systems, Inc. | Prosthetic graft and method for aneurysm repair |
US5810872A (en) * | 1997-03-14 | 1998-09-22 | Kanesaka; Nozomu | Flexible stent |
US5824040A (en) * | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
US5843120A (en) * | 1994-03-17 | 1998-12-01 | Medinol Ltd. | Flexible-expandable stent |
US5843164A (en) * | 1994-11-15 | 1998-12-01 | Advanced Carrdiovascular Systems, Inc. | Intraluminal stent for attaching a graft |
US5843175A (en) * | 1997-06-13 | 1998-12-01 | Global Therapeutics, Inc. | Enhanced flexibility surgical stent |
US5843117A (en) * | 1996-02-14 | 1998-12-01 | Inflow Dynamics Inc. | Implantable vascular and endoluminal stents and process of fabricating the same |
US5846246A (en) * | 1994-10-21 | 1998-12-08 | Cordis Corporation | Dual-balloon rapid-exchange stent delivery catheter with guidewire channel |
US5855597A (en) * | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery |
US5860999A (en) * | 1993-02-04 | 1999-01-19 | Angiomed Gmbh & Co.Medizintechnik Kg | Stent and method of using same |
US5876449A (en) * | 1995-04-01 | 1999-03-02 | Variomed Ag | Stent for the transluminal implantation in hollow organs |
US5879381A (en) * | 1996-03-10 | 1999-03-09 | Terumo Kabushiki Kaisha | Expandable stent for implanting in a body |
US5882335A (en) * | 1994-09-12 | 1999-03-16 | Cordis Corporation | Retrievable drug delivery stent |
US5895406A (en) * | 1996-01-26 | 1999-04-20 | Cordis Corporation | Axially flexible stent |
US5902317A (en) * | 1994-06-01 | 1999-05-11 | Nitinol Medical Technologies, Inc. | Stent and method and apparatus for forming and delivering the same |
US5911754A (en) * | 1998-07-24 | 1999-06-15 | Uni-Cath Inc. | Flexible stent with effective strut and connector patterns |
US5913897A (en) * | 1993-09-16 | 1999-06-22 | Cordis Corporation | Endoprosthesis having multiple bridging junctions and procedure |
US5925061A (en) * | 1997-01-13 | 1999-07-20 | Gore Enterprise Holdings, Inc. | Low profile vascular stent |
US5935161A (en) * | 1993-11-04 | 1999-08-10 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US5938697A (en) * | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US5948016A (en) * | 1997-09-25 | 1999-09-07 | Jang; G. David | Intravascular stent with non-parallel slots |
US5964798A (en) * | 1997-12-16 | 1999-10-12 | Cardiovasc, Inc. | Stent having high radial strength |
US6013854A (en) * | 1994-06-17 | 2000-01-11 | Terumo Kabushiki Kaisha | Indwelling stent and the method for manufacturing the same |
US6017365A (en) * | 1997-05-20 | 2000-01-25 | Jomed Implantate Gmbh | Coronary stent |
US6019789A (en) * | 1998-04-01 | 2000-02-01 | Quanam Medical Corporation | Expandable unit cell and intraluminal stent |
US6033433A (en) * | 1997-04-25 | 2000-03-07 | Scimed Life Systems, Inc. | Stent configurations including spirals |
US6042597A (en) * | 1998-10-23 | 2000-03-28 | Scimed Life Systems, Inc. | Helical stent design |
US6053940A (en) * | 1995-10-20 | 2000-04-25 | Wijay; Bandula | Vascular stent |
US6083259A (en) * | 1998-11-16 | 2000-07-04 | Frantzen; John J. | Axially non-contracting flexible radially expandable stent |
US6099561A (en) * | 1996-10-21 | 2000-08-08 | Inflow Dynamics, Inc. | Vascular and endoluminal stents with improved coatings |
US6099559A (en) * | 1998-05-28 | 2000-08-08 | Medtronic Ave, Inc. | Endoluminal support assembly with capped ends |
US6106548A (en) * | 1997-02-07 | 2000-08-22 | Endosystems Llc | Non-foreshortening intraluminal prosthesis |
US6123721A (en) * | 1998-02-17 | 2000-09-26 | Jang; G. David | Tubular stent consists of chevron-shape expansion struts and ipsilaterally attached M-frame connectors |
US6124523A (en) * | 1995-03-10 | 2000-09-26 | Impra, Inc. | Encapsulated stent |
US6129755A (en) * | 1998-01-09 | 2000-10-10 | Nitinol Development Corporation | Intravascular stent having an improved strut configuration |
US6132460A (en) * | 1998-03-27 | 2000-10-17 | Intratherapeutics, Inc. | Stent |
US6132461A (en) * | 1998-03-27 | 2000-10-17 | Intratherapeutics, Inc. | Stent with dual support structure |
US6136023A (en) * | 1996-04-16 | 2000-10-24 | Medtronic, Inc. | Welded sinusoidal wave stent |
US6171334B1 (en) * | 1998-06-17 | 2001-01-09 | Advanced Cardiovascular Systems, Inc. | Expandable stent and method of use |
US6174326B1 (en) * | 1996-09-25 | 2001-01-16 | Terumo Kabushiki Kaisha | Radiopaque, antithrombogenic stent and method for its production |
US6179867B1 (en) * | 1998-01-16 | 2001-01-30 | Advanced Cardiovascular Systems, Inc. | Flexible stent and method of use |
US6190403B1 (en) * | 1998-11-13 | 2001-02-20 | Cordis Corporation | Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity |
US6200334B1 (en) * | 1998-02-03 | 2001-03-13 | G. David Jang | Tubular stent consists of non-parallel expansion struts and contralaterally attached diagonal connectors |
US6203569B1 (en) * | 1996-01-04 | 2001-03-20 | Bandula Wijay | Flexible stent |
US6231598B1 (en) * | 1997-09-24 | 2001-05-15 | Med Institute, Inc. | Radially expandable stent |
US6238409B1 (en) * | 1997-03-10 | 2001-05-29 | Johnson & Johnson Interventional Systems Co. | Articulated expandable intraluminal stent |
US6241762B1 (en) * | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US6245101B1 (en) * | 1999-05-03 | 2001-06-12 | William J. Drasler | Intravascular hinge stent |
US6254632B1 (en) * | 2000-09-28 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Implantable medical device having protruding surface structures for drug delivery and cover attachment |
US6254628B1 (en) * | 1996-12-09 | 2001-07-03 | Micro Therapeutics, Inc. | Intracranial stent |
US6261319B1 (en) * | 1998-07-08 | 2001-07-17 | Scimed Life Systems, Inc. | Stent |
US6264689B1 (en) * | 1998-03-31 | 2001-07-24 | Scimed Life Systems, Incorporated | Low profile medical stent |
US6270524B1 (en) * | 1996-11-12 | 2001-08-07 | Medtronic, Inc. | Flexible, radially expansible luminal prostheses |
US20010029397A1 (en) * | 1998-03-27 | 2001-10-11 | Thompson Paul J. | Stent |
US6331189B1 (en) * | 1999-10-18 | 2001-12-18 | Medtronic, Inc. | Flexible medical stent |
US20030083736A1 (en) * | 1995-03-01 | 2003-05-01 | Brian J. Brown | Longitudinally flexible expandable stent |
US6602285B1 (en) * | 1998-09-05 | 2003-08-05 | Jomed Gmbh | Compact stent |
US7204848B1 (en) * | 1995-03-01 | 2007-04-17 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US7329277B2 (en) * | 1997-06-13 | 2008-02-12 | Orbusneich Medical, Inc. | Stent having helical elements |
US20090024207A1 (en) * | 1997-06-13 | 2009-01-22 | Addonizio Scott J | Stent Having Helical Elements |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US6974475B1 (en) * | 1987-12-08 | 2005-12-13 | Wall W Henry | Angioplasty stent |
CA1322628C (en) * | 1988-10-04 | 1993-10-05 | Richard A. Schatz | Expandable intraluminal graft |
US5019085A (en) * | 1988-10-25 | 1991-05-28 | Cordis Corporation | Apparatus and method for placement of a stent within a subject vessel |
CH678393A5 (en) * | 1989-01-26 | 1991-09-13 | Ulrich Prof Dr Med Sigwart | |
DE69318614T2 (en) * | 1992-03-25 | 1998-11-05 | Cook Inc | Device for widening blood vessels |
US5342348A (en) * | 1992-12-04 | 1994-08-30 | Kaplan Aaron V | Method and device for treating and enlarging body lumens |
US5419760A (en) * | 1993-01-08 | 1995-05-30 | Pdt Systems, Inc. | Medicament dispensing stent for prevention of restenosis of a blood vessel |
KR970004845Y1 (en) * | 1993-09-27 | 1997-05-21 | 주식회사 수호메디테크 | Stent for expanding a lumen |
JP2703510B2 (en) * | 1993-12-28 | 1998-01-26 | アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド | Expandable stent and method of manufacturing the same |
US6461381B2 (en) * | 1994-03-17 | 2002-10-08 | Medinol, Ltd. | Flexible expandable stent |
US6464722B2 (en) * | 1994-03-17 | 2002-10-15 | Medinol, Ltd. | Flexible expandable stent |
CA2190012C (en) * | 1994-05-19 | 2005-09-20 | Paul H. Burmeister | Improved tissue supporting devices |
US5476508A (en) * | 1994-05-26 | 1995-12-19 | Tfx Medical | Stent with mutually interlocking filaments |
DE69518435T3 (en) | 1994-06-08 | 2004-07-22 | CardioVascular Concepts, Inc., Portola Valley | A branching graft manufacturing system |
JP3577353B2 (en) * | 1995-01-27 | 2004-10-13 | テルモ株式会社 | In-vivo stent |
US5575816A (en) * | 1994-08-12 | 1996-11-19 | Meadox Medicals, Inc. | High strength and high density intraluminal wire stent |
US6331188B1 (en) * | 1994-08-31 | 2001-12-18 | Gore Enterprise Holdings, Inc. | Exterior supported self-expanding stent-graft |
CA2134997C (en) * | 1994-11-03 | 2009-06-02 | Ian M. Penn | Stent |
US6981986B1 (en) * | 1995-03-01 | 2006-01-03 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US20070073384A1 (en) | 1995-03-01 | 2007-03-29 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
JP3505603B2 (en) * | 1995-03-01 | 2004-03-08 | サイメド ライフ システムズ,インコーポレイテッド | Longitudinal flexible expandable improved stent |
US6579314B1 (en) * | 1995-03-10 | 2003-06-17 | C.R. Bard, Inc. | Covered stent with encapsulated ends |
US5591197A (en) * | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
CA2171896C (en) * | 1995-03-17 | 2007-05-15 | Scott C. Anderson | Multi-anchor stent |
US5649997A (en) * | 1995-05-19 | 1997-07-22 | Cavallero; Thomas | Air vacuum apparatus |
US5728131A (en) * | 1995-06-12 | 1998-03-17 | Endotex Interventional Systems, Inc. | Coupling device and method of use |
DK171865B1 (en) * | 1995-09-11 | 1997-07-21 | Cook William Europ | Expandable endovascular stent |
EP0871413B1 (en) * | 1995-12-11 | 2001-08-22 | Ali Hassan | Device for stabilising angioplastically treated partial regions of a vessel wall (stent) |
US5843158A (en) * | 1996-01-05 | 1998-12-01 | Medtronic, Inc. | Limited expansion endoluminal prostheses and methods for their use |
JPH09215753A (en) * | 1996-02-08 | 1997-08-19 | Schneider Usa Inc | Self-expanding stent made of titanium alloy |
US5695516A (en) * | 1996-02-21 | 1997-12-09 | Iso Stent, Inc. | Longitudinally elongating balloon expandable stent |
EP1477133B9 (en) | 1996-03-05 | 2007-11-21 | Evysio Medical Devices Ulc | Expandable stent |
US5707387A (en) * | 1996-03-25 | 1998-01-13 | Wijay; Bandula | Flexible stent |
DE19614160A1 (en) * | 1996-04-10 | 1997-10-16 | Variomed Ag | Stent for transluminal implantation in hollow organs |
US6241760B1 (en) * | 1996-04-26 | 2001-06-05 | G. David Jang | Intravascular stent |
AU4593997A (en) * | 1996-10-01 | 1998-04-24 | Numed, Inc. | Expandable stent |
US5868781A (en) * | 1996-10-22 | 1999-02-09 | Scimed Life Systems, Inc. | Locking stent |
US6551350B1 (en) * | 1996-12-23 | 2003-04-22 | Gore Enterprise Holdings, Inc. | Kink resistant bifurcated prosthesis |
FR2758253B1 (en) | 1997-01-10 | 1999-04-02 | Nycomed Lab Sa | IMPLANTABLE DEVICE FOR THE TREATMENT OF A BODY DUCT |
FR2760351B1 (en) * | 1997-03-04 | 1999-05-28 | Bernard Glatt | HELICAL STENT FORMING DEVICE AND MANUFACTURING METHOD THEREOF |
AU6464298A (en) | 1997-03-13 | 1998-09-29 | United States Surgical Corporation | Flexible tissue supporting device |
US5853419A (en) * | 1997-03-17 | 1998-12-29 | Surface Genesis, Inc. | Stent |
US5718713A (en) * | 1997-04-10 | 1998-02-17 | Global Therapeutics, Inc. | Surgical stent having a streamlined contour |
DE19717475C1 (en) | 1997-04-25 | 1998-09-03 | Heraeus Gmbh W C | Radially expandable support structure or stent for tubular vessel in body |
FR2762777B1 (en) | 1997-05-05 | 1999-10-22 | Patrick Sabaria | VASCULAR AND CORONARY EXTENDERS, USUALLY DESIGNATED UNDER THE NAME OF "STENT" |
DE29708689U1 (en) * | 1997-05-15 | 1997-07-17 | Jomed Implantate GmbH, 72414 Rangendingen | Coronary stent |
EP0890346A1 (en) * | 1997-06-13 | 1999-01-13 | Gary J. Becker | Expandable intraluminal endoprosthesis |
WO1998056312A1 (en) | 1997-06-13 | 1998-12-17 | Scimed Life Systems, Inc. | Stents having multiple layers of biodegradable polymeric composition |
DE19834956B9 (en) * | 1997-08-01 | 2005-10-20 | Eckhard Alt | Supporting prosthesis (stent) |
DE29716117U1 (en) | 1997-09-09 | 1999-01-14 | Micro Science Medical AG, 75443 Ötisheim | Stent |
US6013091A (en) * | 1997-10-09 | 2000-01-11 | Scimed Life Systems, Inc. | Stent configurations |
US6309414B1 (en) * | 1997-11-04 | 2001-10-30 | Sorin Biomedica Cardio S.P.A. | Angioplasty stents |
US6190406B1 (en) | 1998-01-09 | 2001-02-20 | Nitinal Development Corporation | Intravascular stent having tapered struts |
EP0945107A3 (en) | 1998-01-23 | 2000-01-19 | Arterial Vascular Engineering, Inc. | Helical stent |
US6113627A (en) * | 1998-02-03 | 2000-09-05 | Jang; G. David | Tubular stent consists of horizontal expansion struts and contralaterally attached diagonal-connectors |
WO1999039660A1 (en) * | 1998-02-03 | 1999-08-12 | B. Braun Celsa | Prosthesis with undulating longitudinal braces |
EP1059896B1 (en) * | 1998-03-04 | 2006-05-24 | Boston Scientific Limited | Improved stent cell configurations |
EP2277477B1 (en) * | 1998-03-05 | 2012-05-09 | Boston Scientific Limited | Intraluminal stent |
DE19829702C1 (en) | 1998-07-03 | 2000-03-16 | Heraeus Gmbh W C | Radially expandable support device V |
DE19829701C1 (en) * | 1998-07-03 | 2000-03-16 | Heraeus Gmbh W C | Radially expandable support device IV |
US6682554B2 (en) * | 1998-09-05 | 2004-01-27 | Jomed Gmbh | Methods and apparatus for a stent having an expandable web structure |
US6193744B1 (en) * | 1998-09-10 | 2001-02-27 | Scimed Life Systems, Inc. | Stent configurations |
EP1049421B1 (en) | 1998-11-20 | 2005-01-26 | Boston Scientific Limited | Longitudinally flexible expandable stent |
FR2786685B1 (en) | 1998-12-08 | 2001-07-13 | Stent Tech | VASCULAR AND CORONARY EXTENDERS, USUALLY DESIGNATED UNDER THE NAME OF "STENT" |
US6340366B2 (en) | 1998-12-08 | 2002-01-22 | Bandula Wijay | Stent with nested or overlapping rings |
EP1020166A1 (en) * | 1999-01-12 | 2000-07-19 | Orbus Medical Technologies, Inc. | Expandable intraluminal endoprosthesis |
US6355057B1 (en) * | 1999-01-14 | 2002-03-12 | Medtronic, Inc. | Staggered endoluminal stent |
US6350277B1 (en) * | 1999-01-15 | 2002-02-26 | Scimed Life Systems, Inc. | Stents with temporary retaining bands |
US6730116B1 (en) * | 1999-04-16 | 2004-05-04 | Medtronic, Inc. | Medical device for intraluminal endovascular stenting |
AU4924500A (en) | 1999-05-19 | 2000-12-12 | Malte Neuss | Radially expandable vessel support |
US6295078B1 (en) * | 1999-05-26 | 2001-09-25 | Hewlett-Packard Company | Methods of providing lower resolution format data into a higher resolution format |
US6312459B1 (en) * | 1999-06-30 | 2001-11-06 | Advanced Cardiovascular Systems, Inc. | Stent design for use in small vessels |
US6364904B1 (en) * | 1999-07-02 | 2002-04-02 | Scimed Life Systems, Inc. | Helically formed stent/graft assembly |
ATE296591T1 (en) * | 1999-07-02 | 2005-06-15 | Endotex Interventional Sys Inc | PENDABLE, STRETCHABLE WRAPPED STENT |
US6569193B1 (en) * | 1999-07-22 | 2003-05-27 | Advanced Cardiovascular Systems, Inc. | Tapered self-expanding stent |
FR2799363B1 (en) * | 1999-10-11 | 2001-11-30 | Braun Celsa Sa | MEDICAL IMPLANT IN MEANDRES IN ZIGZAG |
GB0003387D0 (en) | 2000-02-14 | 2000-04-05 | Angiomed Ag | Stent matrix |
US6423091B1 (en) * | 2000-05-16 | 2002-07-23 | Cordis Corporation | Helical stent having flat ends |
JP2003533335A (en) | 2000-05-22 | 2003-11-11 | オーバス メディカル テクノロジーズ インク. | Self-expanding stent |
US6652579B1 (en) * | 2000-06-22 | 2003-11-25 | Advanced Cardiovascular Systems, Inc. | Radiopaque stent |
US8070792B2 (en) * | 2000-09-22 | 2011-12-06 | Boston Scientific Scimed, Inc. | Stent |
US6485508B1 (en) * | 2000-10-13 | 2002-11-26 | Mcguinness Colm P. | Low profile stent |
US6506211B1 (en) * | 2000-11-13 | 2003-01-14 | Scimed Life Systems, Inc. | Stent designs |
US6929660B1 (en) * | 2000-12-22 | 2005-08-16 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US20020116644A1 (en) * | 2001-01-30 | 2002-08-22 | Galea Secured Networks Inc. | Adapter card for wirespeed security treatment of communications traffic |
EP3123984A1 (en) | 2001-02-09 | 2017-02-01 | OrbusNeich Medical, Inc. | Crimpable intraluminal endoprosthesis having helical elements |
US20030225448A1 (en) | 2002-05-28 | 2003-12-04 | Scimed Life Systems, Inc. | Polar radiopaque marker for stent |
US6962203B2 (en) | 2003-03-24 | 2005-11-08 | Owen Oil Tools Lp | One trip completion process |
US7112216B2 (en) | 2003-05-28 | 2006-09-26 | Boston Scientific Scimed, Inc. | Stent with tapered flexibility |
US7404823B2 (en) * | 2005-10-31 | 2008-07-29 | Boston Scientific Scimed, Inc. | Stent configurations |
US7988720B2 (en) | 2006-09-12 | 2011-08-02 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
-
1998
- 1998-05-06 EP EP98201446A patent/EP0884029B1/en not_active Expired - Lifetime
- 1998-06-15 JP JP16714798A patent/JP4704528B2/en not_active Expired - Fee Related
-
2000
- 2000-02-23 US US09/511,481 patent/US7108714B1/en not_active Expired - Lifetime
-
2002
- 2002-02-08 US US10/071,071 patent/US6821292B2/en not_active Expired - Lifetime
-
2003
- 2003-03-17 US US10/390,100 patent/US20030149474A1/en not_active Abandoned
-
2004
- 2004-11-19 US US10/993,380 patent/US20050090894A1/en not_active Abandoned
-
2006
- 2006-09-19 US US11/523,726 patent/US20070203570A1/en not_active Abandoned
-
2008
- 2008-02-07 US US12/027,382 patent/US8486133B2/en not_active Expired - Fee Related
- 2008-07-23 US US12/178,396 patent/US20080288051A1/en not_active Abandoned
- 2008-07-23 US US12/178,387 patent/US20080288050A1/en not_active Abandoned
- 2008-07-24 US US12/178,915 patent/US8382820B2/en not_active Expired - Fee Related
- 2008-07-24 US US12/178,883 patent/US20080281406A1/en not_active Abandoned
- 2008-07-24 US US12/178,898 patent/US20080294244A1/en not_active Abandoned
- 2008-07-24 US US12/178,895 patent/US20080294243A1/en not_active Abandoned
- 2008-07-24 US US12/178,906 patent/US8968385B2/en not_active Expired - Fee Related
- 2008-07-24 US US12/178,909 patent/US20080288052A1/en not_active Abandoned
- 2008-07-24 US US12/178,889 patent/US20080281407A1/en not_active Abandoned
- 2008-08-22 US US12/196,761 patent/US20080319537A1/en not_active Abandoned
- 2008-10-01 US US12/243,392 patent/US7682384B2/en not_active Expired - Fee Related
-
2010
- 2010-03-19 US US12/727,567 patent/US8372135B2/en not_active Expired - Fee Related
- 2010-08-05 JP JP2010176484A patent/JP5016708B2/en not_active Expired - Lifetime
- 2010-09-09 US US12/878,341 patent/US7942922B2/en not_active Expired - Fee Related
- 2010-09-09 US US12/878,232 patent/US7967852B2/en not_active Expired - Fee Related
Patent Citations (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) * | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US4464722A (en) * | 1980-06-14 | 1984-08-07 | U.S. Philips Corporation | Data input or output apparatus incorporating functional testing |
US5102417A (en) * | 1985-11-07 | 1992-04-07 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US5133732A (en) * | 1987-10-19 | 1992-07-28 | Medtronic, Inc. | Intravascular stent |
US5226913A (en) * | 1988-09-01 | 1993-07-13 | Corvita Corporation | Method of making a radially expandable prosthesis |
US5104404A (en) * | 1989-10-02 | 1992-04-14 | Medtronic, Inc. | Articulated stent |
US5158548A (en) * | 1990-04-25 | 1992-10-27 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
US5217483A (en) * | 1990-11-28 | 1993-06-08 | Numed, Inc. | Intravascular radially expandable stent |
US5356423A (en) * | 1991-01-04 | 1994-10-18 | American Medical Systems, Inc. | Resectable self-expanding stent |
US5304200A (en) * | 1991-05-29 | 1994-04-19 | Cordis Corporation | Welded radially expandable endoprosthesis and the like |
US5527354A (en) * | 1991-06-28 | 1996-06-18 | Cook Incorporated | Stent formed of half-round wire |
US5443498A (en) * | 1991-10-01 | 1995-08-22 | Cook Incorporated | Vascular stent and method of making and implanting a vacsular stent |
US5421955B1 (en) * | 1991-10-28 | 1998-01-20 | Advanced Cardiovascular System | Expandable stents and method for making same |
US5421955A (en) * | 1991-10-28 | 1995-06-06 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5514154A (en) * | 1991-10-28 | 1996-05-07 | Advanced Cardiovascular Systems, Inc. | Expandable stents |
US5507767A (en) * | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5370683A (en) * | 1992-03-25 | 1994-12-06 | Cook Incorporated | Vascular stent |
US5354308A (en) * | 1992-05-01 | 1994-10-11 | Beth Israel Hospital Association | Metal wire stent |
US5860999A (en) * | 1993-02-04 | 1999-01-19 | Angiomed Gmbh & Co.Medizintechnik Kg | Stent and method of using same |
US5716396A (en) * | 1993-09-16 | 1998-02-10 | Cordis Corporation | Endoprosthesis having multiple laser welded junctions method and procedure |
US5913897A (en) * | 1993-09-16 | 1999-06-22 | Cordis Corporation | Endoprosthesis having multiple bridging junctions and procedure |
US5935161A (en) * | 1993-11-04 | 1999-08-10 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US5824043A (en) * | 1994-03-09 | 1998-10-20 | Cordis Corporation | Endoprosthesis having graft member and exposed welded end junctions, method and procedure |
US5549663A (en) * | 1994-03-09 | 1996-08-27 | Cordis Corporation | Endoprosthesis having graft member and exposed welded end junctions, method and procedure |
US5980552A (en) * | 1994-03-17 | 1999-11-09 | Medinol Ltd. | Articulated stent |
US5843120A (en) * | 1994-03-17 | 1998-12-01 | Medinol Ltd. | Flexible-expandable stent |
US5972018A (en) * | 1994-03-17 | 1999-10-26 | Medinol Ltd. | Flexible expandable stent |
US6059811A (en) * | 1994-03-17 | 2000-05-09 | Medinol Ltd. | Articulated stent |
US5733303A (en) * | 1994-03-17 | 1998-03-31 | Medinol Ltd. | Flexible expandable stent |
US5449373A (en) * | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
WO1995026695A2 (en) * | 1994-04-01 | 1995-10-12 | Prograft Medical, Inc. | Self-expandable stent and stent-graft and method of using them |
US5725572A (en) * | 1994-04-25 | 1998-03-10 | Advanced Cardiovascular Systems, Inc. | Radiopaque stent |
US5716393A (en) * | 1994-05-26 | 1998-02-10 | Angiomed Gmbh & Co. Medizintechnik Kg | Stent with an end of greater diameter than its main body |
US5902317A (en) * | 1994-06-01 | 1999-05-11 | Nitinol Medical Technologies, Inc. | Stent and method and apparatus for forming and delivering the same |
US6013854A (en) * | 1994-06-17 | 2000-01-11 | Terumo Kabushiki Kaisha | Indwelling stent and the method for manufacturing the same |
US5591230A (en) * | 1994-09-07 | 1997-01-07 | Global Therapeutics, Inc. | Radially expandable stent |
US5882335A (en) * | 1994-09-12 | 1999-03-16 | Cordis Corporation | Retrievable drug delivery stent |
US5545210A (en) * | 1994-09-22 | 1996-08-13 | Advanced Coronary Technology, Inc. | Method of implanting a permanent shape memory alloy stent |
US5846246A (en) * | 1994-10-21 | 1998-12-08 | Cordis Corporation | Dual-balloon rapid-exchange stent delivery catheter with guidewire channel |
US5800521A (en) * | 1994-11-09 | 1998-09-01 | Endotex Interventional Systems, Inc. | Prosthetic graft and method for aneurysm repair |
US5843164A (en) * | 1994-11-15 | 1998-12-01 | Advanced Carrdiovascular Systems, Inc. | Intraluminal stent for attaching a graft |
US5630829A (en) * | 1994-12-09 | 1997-05-20 | Intervascular, Inc. | High hoop strength intraluminal stent |
US20030083736A1 (en) * | 1995-03-01 | 2003-05-01 | Brian J. Brown | Longitudinally flexible expandable stent |
US7204848B1 (en) * | 1995-03-01 | 2007-04-17 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US6124523A (en) * | 1995-03-10 | 2000-09-26 | Impra, Inc. | Encapsulated stent |
US5876449A (en) * | 1995-04-01 | 1999-03-02 | Variomed Ag | Stent for the transluminal implantation in hollow organs |
US5667523A (en) * | 1995-04-28 | 1997-09-16 | Impra, Inc. | Dual supported intraluminal graft |
US5776161A (en) * | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
US6053940A (en) * | 1995-10-20 | 2000-04-25 | Wijay; Bandula | Vascular stent |
US5824040A (en) * | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
US6203569B1 (en) * | 1996-01-04 | 2001-03-20 | Bandula Wijay | Flexible stent |
US5895406A (en) * | 1996-01-26 | 1999-04-20 | Cordis Corporation | Axially flexible stent |
US5843117A (en) * | 1996-02-14 | 1998-12-01 | Inflow Dynamics Inc. | Implantable vascular and endoluminal stents and process of fabricating the same |
US5879381A (en) * | 1996-03-10 | 1999-03-09 | Terumo Kabushiki Kaisha | Expandable stent for implanting in a body |
US6200337B1 (en) * | 1996-03-10 | 2001-03-13 | Terumo Kabushiki Kaisha | Implanting stent |
US6136023A (en) * | 1996-04-16 | 2000-10-24 | Medtronic, Inc. | Welded sinusoidal wave stent |
US5697971A (en) * | 1996-06-11 | 1997-12-16 | Fischell; Robert E. | Multi-cell stent with cells having differing characteristics |
US5755781A (en) * | 1996-08-06 | 1998-05-26 | Iowa-India Investments Company Limited | Embodiments of multiple interconnected stents |
US6174326B1 (en) * | 1996-09-25 | 2001-01-16 | Terumo Kabushiki Kaisha | Radiopaque, antithrombogenic stent and method for its production |
US5755776A (en) * | 1996-10-04 | 1998-05-26 | Al-Saadon; Khalid | Permanent expandable intraluminal tubular stent |
US6099561A (en) * | 1996-10-21 | 2000-08-08 | Inflow Dynamics, Inc. | Vascular and endoluminal stents with improved coatings |
US6270524B1 (en) * | 1996-11-12 | 2001-08-07 | Medtronic, Inc. | Flexible, radially expansible luminal prostheses |
US6254628B1 (en) * | 1996-12-09 | 2001-07-03 | Micro Therapeutics, Inc. | Intracranial stent |
US5925061A (en) * | 1997-01-13 | 1999-07-20 | Gore Enterprise Holdings, Inc. | Low profile vascular stent |
US6106548A (en) * | 1997-02-07 | 2000-08-22 | Endosystems Llc | Non-foreshortening intraluminal prosthesis |
WO1998035634A1 (en) * | 1997-02-17 | 1998-08-20 | Jomed Implantate Gmbh | Stent |
US6238409B1 (en) * | 1997-03-10 | 2001-05-29 | Johnson & Johnson Interventional Systems Co. | Articulated expandable intraluminal stent |
US5810872A (en) * | 1997-03-14 | 1998-09-22 | Kanesaka; Nozomu | Flexible stent |
US6033433A (en) * | 1997-04-25 | 2000-03-07 | Scimed Life Systems, Inc. | Stent configurations including spirals |
US20020010507A1 (en) * | 1997-04-25 | 2002-01-24 | Ehr Timothy G. J. | Stent cell configurations including spirals |
US5741327A (en) * | 1997-05-06 | 1998-04-21 | Global Therapeutics, Inc. | Surgical stent featuring radiopaque markers |
US5855597A (en) * | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery |
US6017365A (en) * | 1997-05-20 | 2000-01-25 | Jomed Implantate Gmbh | Coronary stent |
US5843175A (en) * | 1997-06-13 | 1998-12-01 | Global Therapeutics, Inc. | Enhanced flexibility surgical stent |
US7329277B2 (en) * | 1997-06-13 | 2008-02-12 | Orbusneich Medical, Inc. | Stent having helical elements |
US20090024207A1 (en) * | 1997-06-13 | 2009-01-22 | Addonizio Scott J | Stent Having Helical Elements |
US7682384B2 (en) * | 1997-06-13 | 2010-03-23 | Orbusneich Medical, Inc. | Stent with helical elements |
US6231598B1 (en) * | 1997-09-24 | 2001-05-15 | Med Institute, Inc. | Radially expandable stent |
US5948016A (en) * | 1997-09-25 | 1999-09-07 | Jang; G. David | Intravascular stent with non-parallel slots |
US5964798A (en) * | 1997-12-16 | 1999-10-12 | Cardiovasc, Inc. | Stent having high radial strength |
US6129755A (en) * | 1998-01-09 | 2000-10-10 | Nitinol Development Corporation | Intravascular stent having an improved strut configuration |
US6179867B1 (en) * | 1998-01-16 | 2001-01-30 | Advanced Cardiovascular Systems, Inc. | Flexible stent and method of use |
US6200334B1 (en) * | 1998-02-03 | 2001-03-13 | G. David Jang | Tubular stent consists of non-parallel expansion struts and contralaterally attached diagonal connectors |
US6123721A (en) * | 1998-02-17 | 2000-09-26 | Jang; G. David | Tubular stent consists of chevron-shape expansion struts and ipsilaterally attached M-frame connectors |
US5938697A (en) * | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US6132461A (en) * | 1998-03-27 | 2000-10-17 | Intratherapeutics, Inc. | Stent with dual support structure |
US20010029397A1 (en) * | 1998-03-27 | 2001-10-11 | Thompson Paul J. | Stent |
US6132460A (en) * | 1998-03-27 | 2000-10-17 | Intratherapeutics, Inc. | Stent |
US6241762B1 (en) * | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US6264689B1 (en) * | 1998-03-31 | 2001-07-24 | Scimed Life Systems, Incorporated | Low profile medical stent |
US6019789A (en) * | 1998-04-01 | 2000-02-01 | Quanam Medical Corporation | Expandable unit cell and intraluminal stent |
US6099559A (en) * | 1998-05-28 | 2000-08-08 | Medtronic Ave, Inc. | Endoluminal support assembly with capped ends |
US6171334B1 (en) * | 1998-06-17 | 2001-01-09 | Advanced Cardiovascular Systems, Inc. | Expandable stent and method of use |
US6261319B1 (en) * | 1998-07-08 | 2001-07-17 | Scimed Life Systems, Inc. | Stent |
US5911754A (en) * | 1998-07-24 | 1999-06-15 | Uni-Cath Inc. | Flexible stent with effective strut and connector patterns |
US6602285B1 (en) * | 1998-09-05 | 2003-08-05 | Jomed Gmbh | Compact stent |
US6042597A (en) * | 1998-10-23 | 2000-03-28 | Scimed Life Systems, Inc. | Helical stent design |
US6190403B1 (en) * | 1998-11-13 | 2001-02-20 | Cordis Corporation | Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity |
US6083259A (en) * | 1998-11-16 | 2000-07-04 | Frantzen; John J. | Axially non-contracting flexible radially expandable stent |
US6245101B1 (en) * | 1999-05-03 | 2001-06-12 | William J. Drasler | Intravascular hinge stent |
US6331189B1 (en) * | 1999-10-18 | 2001-12-18 | Medtronic, Inc. | Flexible medical stent |
US6254632B1 (en) * | 2000-09-28 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Implantable medical device having protruding surface structures for drug delivery and cover attachment |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8449597B2 (en) | 1995-03-01 | 2013-05-28 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US8728147B2 (en) | 1995-03-01 | 2014-05-20 | Boston Scientific Limited | Longitudinally flexible expandable stent |
US20080288053A1 (en) * | 1997-06-13 | 2008-11-20 | Orbusneich Medical, Inc. | Stent having helical elements |
US20080294241A1 (en) * | 1997-06-13 | 2008-11-27 | Orbusneich Medical, Inc. | Stent having helical elements |
US8382820B2 (en) * | 1997-06-13 | 2013-02-26 | Orbusneich Medical, Inc. | Stent having helical elements |
US8968385B2 (en) * | 1997-06-13 | 2015-03-03 | Orbusneich Medical, Inc. | Stent having helical elements |
US20090156999A1 (en) * | 2007-12-13 | 2009-06-18 | Boston Scientific Scimed, Inc. | Coil member for a medical device |
US8157751B2 (en) * | 2007-12-13 | 2012-04-17 | Boston Scientific Scimed, Inc. | Coil member for a medical device |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7682384B2 (en) | Stent with helical elements | |
US7329277B2 (en) | Stent having helical elements | |
EP1341482B1 (en) | Stent having helical elements | |
EP1357858B1 (en) | Crimpable intraluminal endoprosthesis having helical elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ORBUSNEICH MEDICAL PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORBUSNEICH MEDICAL, INC.;REEL/FRAME:048043/0879 Effective date: 20181101 |