US20080290602A1 - Self energizing seal element - Google Patents
Self energizing seal element Download PDFInfo
- Publication number
- US20080290602A1 US20080290602A1 US11/751,305 US75130507A US2008290602A1 US 20080290602 A1 US20080290602 A1 US 20080290602A1 US 75130507 A US75130507 A US 75130507A US 2008290602 A1 US2008290602 A1 US 2008290602A1
- Authority
- US
- United States
- Prior art keywords
- seal
- self
- outside
- dimension
- seal element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007789 sealing Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims description 13
- 230000001939 inductive effect Effects 0.000 claims description 4
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 description 6
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920001967 Metal rubber Polymers 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/1208—Packers; Plugs characterised by the construction of the sealing or packing means
- E21B33/1212—Packers; Plugs characterised by the construction of the sealing or packing means including a metal-to-metal seal element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/08—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
- F16J15/0881—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by plastic deformation of the packing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/01—Sealings characterised by their shape
Definitions
- seals are needed to fluid restrictively assist in the joining of various components of a downhole system.
- Many types of seals not surprisingly, have been developed over the years to satisfy this need. These include, among others, “Chevron” seals and elastomeric seals.
- seals utilize different types of actuation mechanisms or inputs, with some being self-energizing seals and some not.
- the seal requires some kind of external input to create the desired impediment to fluid passage such as mechanical compression of the seal (for example, axial compression), inflation, etc.
- mechanical compression of the seal for example, axial compression
- inflation etc.
- seals that require nothing more than stabbing into place but, commonly, these seals are nonspecifically modified in the process of stabbing in and often thereafter are not suitable for reuse.
- the types of seals that are designed to be self-energizing tend to comprise softer material that degrades relatively easily in the downhole environment due to the inherently chemically harsh environmental conditions by processes such as flow cutting or wear.
- These seals also have temperature compatibility limitations that are much more significant than the metallic components upon which they are mounted.
- a self-energizing seal element includes at least one inside interference surface having a dimension smaller than an inside dimension of an annulus in which the seal is to be disposed in use, at least one outside interference surface having a dimension larger than an outside dimension of the annulus in which the seal is to be disposed in use, the at least one inside interference surface being axially offset from the at least one outside interference surface and at least one angular flange extending between the at least one outside interference surface and the at least one inside interference surface.
- a method for creating a metal-to-metal seal between at least a seal element and a component at an outside dimension of a seal element includes urging the element axially into contact with the component, interferingly engaging at least a maximum annular dimension of the element with the component and inducing axial extension of the element to produce sealing stress in the element.
- a method for creating a metal to metal seal includes urging a first tubular member into a second tubular member, one of the first or second tubular members carrying a metal seal element, elongating the seal element through interference with the other of the first or second tubular members and inducing a radial expansion stress in the element against the tubular interfering with the element.
- FIG. 1 is a half-section view of a self-energizing seal element
- FIG. 2 is similar to FIG. 1 except that it contains elastomeric members for another embodiment.
- a half section of a self-energizing seal element 10 is depicted.
- the seal element begins as a simple tubular structure and is then machined to the profile illustrated.
- a size of annulus (not shown) that the element is intended to seal.
- the dimension at an inside diameter (such as for example a mandrel) and at an outside dimension (such as for example a seal bore) is calculated such that the element to be constructed is machined to present an interference fit with the mandrel and seal bore.
- Dimensions facilitative of an interference fit, in combination with the profile of the element as illustrated create a sealing element that is radially deformable while maintaining the element within the elastic limit of the material thereof.
- a sealing element that generates its own sealing force through radial stress created by the relative size of the seal and an annulus into which the seal is disposed. Such a seal therefore requires no external compression force to energize the seal element and provides substantial benefit to the art.
- the element 10 requires a maximum outside dimension at surfaces 12 and 14 and an inside dimension at surfaces 16 and 18 that is a minimum for the element. Consequently, a blank (not shown) for this seal element must have a minimum outside dimension equal to or greater than those of surfaces 12 and 14 and an inside dimension equal to or smaller than that defined by surfaces 16 and 18 .
- surfaces 12 and 14 are illustrated as having the same outside dimensions and surfaces 16 and 18 are illustrated as having the same inside dimension, this is not a requirement, but merely is one embodiment. Rather it should be noted that these surfaces 16 and 18 can have distinct dimensions to provide different contact pressure against a mandrel or seal bore, respectively, which can change the loading characteristics of the seal.
- the element 10 is illustrated with two interference surfaces on the inside and two interference surfaces on the outside, this is but one embodiment hereof.
- One or more interference surfaces may be constructed on either the inside or outside dimensions of the element.
- the number of interference surfaces need not be the same inside to outside. Any number of interference surfaces may be utilized, the important consideration being the relative location of the surface and grooves therebetween. This will be more specifically addressed hereunder. It is further to be understood that these dimensions are of a relative nature and are not bounded by any particular numeric range.
- the seal element 10 may be manufactured in any desired size; the importance is the relative location of the largest outside dimension and smallest inside dimension of the finished seal element 10 .
- the interference fit surfaces With respect to positioning of the interference fit surfaces relative to the clearance fit surfaces and features, the interference fit surfaces must, individually or in groups of outside and inside interference surfaces, be off set from one another in an axial direction of the element 10 . It is this offset in individual or group interference fit surfaces that facilitates the self energizing of the seal element 10 by causing intermediary walls of the element 10 to move from a relative orientation that is more orthogonal to the axis of the element to a relative orientation closer to axial of the element 10 . It will be appreciated that the element will lengthen axially in response to the deformation.
- element 10 metal rubber, plastic, other resilient material
- Element 10 in this embodiment, includes inside housing surfaces 20 and 22 . These may be of the same inside dimension as each other or may be of different inside dimensions providing they are both clearance dimensions relative to be mandrel outside dimension upon which they are intended to fit.
- a pair of larger grooves (as shown; one or more are possible) 24 and 26 are disposed in the inside of element 10 along with a smaller groove 28 (again could be one or more) disposed between the two (this embodiment) interference surfaces 16 and 18 .
- outside end housing surfaces 30 and 32 bound a very similar pattern of construction with a pair of (again one or more) larger grooves 34 and 36 and a smaller groove 38 , each of which is offset to its mirror image on the inside of the element 10 .
- the offset grooves create a series of angular flanges 40 extending between the end housings, the flanges together representing a zig-zag shape.
- an alternate embodiment includes one or more seal component(s) 42 , such as elastomeric, rubber, plastic or even soft metal, may be inserted into one or more of the grooves 28 and 38 to enhance the low-pressure sealing performance of the seal.
- seal component(s) 42 such as elastomeric, rubber, plastic or even soft metal, may be inserted into one or more of the grooves 28 and 38 to enhance the low-pressure sealing performance of the seal.
- the element 10 as described herein must be constructed for a relatively narrow range of mandrel and seal bore sizes to perform properly. Due to standardization of components and tight tolerances held in the downhole industry, however, these elements are constructible in bulk for a wide range of applications.
- the material of element 10 in the embodiment is metal, what is achieved is a non-elastomeric unloading seal capable of high temperature and pressure with no or not significant degradation. Such a seal is of great value to the art.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Gasket Seals (AREA)
- Flanged Joints, Insulating Joints, And Other Joints (AREA)
Abstract
A self-energizing seal element includes at least one inside interference surface having a dimension smaller than an inside dimension of an annulus in which the seal is to be disposed in use, at least one outside interference surface having a dimension larger than an outside dimension of the annulus in which the seal is to be disposed in use, the at least one inside interference surface being axially offset from the at least one outside interference surface and at least one angular flange extending between the at least one outside interference surface and the at least one inside interference surface and method for sealing.
Description
- In any downhole fluid recovery operation that includes a number of different components and potentially a number of zones, there will be required a substantial number of seals. The seals are needed to fluid restrictively assist in the joining of various components of a downhole system. Many types of seals, not surprisingly, have been developed over the years to satisfy this need. These include, among others, “Chevron” seals and elastomeric seals.
- Different types of seals utilize different types of actuation mechanisms or inputs, with some being self-energizing seals and some not. Generally speaking, the seal requires some kind of external input to create the desired impediment to fluid passage such as mechanical compression of the seal (for example, axial compression), inflation, etc. There are of course seals that require nothing more than stabbing into place but, commonly, these seals are nonspecifically modified in the process of stabbing in and often thereafter are not suitable for reuse. Further, the types of seals that are designed to be self-energizing tend to comprise softer material that degrades relatively easily in the downhole environment due to the inherently chemically harsh environmental conditions by processes such as flow cutting or wear. These seals also have temperature compatibility limitations that are much more significant than the metallic components upon which they are mounted.
- In view of the foregoing, and although the presently marketed seals perform acceptably, an alternative seal that is self-energizing (if necessary) while maintaining simplicity would be well received by the art.
- A self-energizing seal element includes at least one inside interference surface having a dimension smaller than an inside dimension of an annulus in which the seal is to be disposed in use, at least one outside interference surface having a dimension larger than an outside dimension of the annulus in which the seal is to be disposed in use, the at least one inside interference surface being axially offset from the at least one outside interference surface and at least one angular flange extending between the at least one outside interference surface and the at least one inside interference surface.
- A method for creating a metal-to-metal seal between at least a seal element and a component at an outside dimension of a seal element includes urging the element axially into contact with the component, interferingly engaging at least a maximum annular dimension of the element with the component and inducing axial extension of the element to produce sealing stress in the element.
- A method for creating a metal to metal seal includes urging a first tubular member into a second tubular member, one of the first or second tubular members carrying a metal seal element, elongating the seal element through interference with the other of the first or second tubular members and inducing a radial expansion stress in the element against the tubular interfering with the element.
- Referring now to the drawings wherein like elements are numbered alike in the several Figures:
-
FIG. 1 is a half-section view of a self-energizing seal element; and -
FIG. 2 is similar toFIG. 1 except that it contains elastomeric members for another embodiment. - Referring to
FIG. 1 , a half section of a self-energizingseal element 10 is depicted. The seal element begins as a simple tubular structure and is then machined to the profile illustrated. Taken into consideration before machining is a size of annulus (not shown) that the element is intended to seal. More specifically, the dimension at an inside diameter (such as for example a mandrel) and at an outside dimension (such as for example a seal bore) is calculated such that the element to be constructed is machined to present an interference fit with the mandrel and seal bore. Dimensions facilitative of an interference fit, in combination with the profile of the element as illustrated create a sealing element that is radially deformable while maintaining the element within the elastic limit of the material thereof. Resultantly, a sealing element is presented that generates its own sealing force through radial stress created by the relative size of the seal and an annulus into which the seal is disposed. Such a seal therefore requires no external compression force to energize the seal element and provides substantial benefit to the art. - The benefits created by the self-energizable seal element hereof are occasioned by consideration of the profile of the element itself of which
FIG. 1 is an embodiment. It is to be appreciated that the machining done to a simple tubular structure creates both the interference tolerance and the radial resiliency of the seal element. - Still referring to
FIG. 1 , it is to be understood that theelement 10 requires a maximum outside dimension atsurfaces surfaces surfaces surfaces surfaces surfaces surfaces element 10 is illustrated with two interference surfaces on the inside and two interference surfaces on the outside, this is but one embodiment hereof. One or more interference surfaces may be constructed on either the inside or outside dimensions of the element. Moreover, the number of interference surfaces need not be the same inside to outside. Any number of interference surfaces may be utilized, the important consideration being the relative location of the surface and grooves therebetween. This will be more specifically addressed hereunder. It is further to be understood that these dimensions are of a relative nature and are not bounded by any particular numeric range. Stated alternatively, theseal element 10 may be manufactured in any desired size; the importance is the relative location of the largest outside dimension and smallest inside dimension of the finishedseal element 10. It is these surfaces that provide both the interference fit against a selected mandrel (not shown) and seal bore (not shown) and the energization of the seal due to radial compression within the elastic range of the element. Other surfaces of theelement 10 are of various clearance fit relative to the same mandrel and seal bore. - With respect to positioning of the interference fit surfaces relative to the clearance fit surfaces and features, the interference fit surfaces must, individually or in groups of outside and inside interference surfaces, be off set from one another in an axial direction of the
element 10. It is this offset in individual or group interference fit surfaces that facilitates the self energizing of theseal element 10 by causing intermediary walls of theelement 10 to move from a relative orientation that is more orthogonal to the axis of the element to a relative orientation closer to axial of theelement 10. It will be appreciated that the element will lengthen axially in response to the deformation. Additionally, providing the elastic limit of the material of element 10 (metal rubber, plastic, other resilient material) is not exceeded during this deformation, theelement 10 will “want” to axially shrink, radially expand and thus create its own energization with respect to sealing between the mandrel and the seal bore. - Referring still to
FIG. 1 , one embodiment is illustrated in detail.Element 10, in this embodiment, includes insidehousing surfaces - Further, a pair of larger grooves (as shown; one or more are possible) 24 and 26 are disposed in the inside of
element 10 along with a smaller groove 28 (again could be one or more) disposed between the two (this embodiment)interference surfaces end housing surfaces larger grooves smaller groove 38, each of which is offset to its mirror image on the inside of theelement 10. The offset grooves create a series ofangular flanges 40 extending between the end housings, the flanges together representing a zig-zag shape. The construction as such facilitates radial deflection of theelement 10 and thereby, providing deflection stays within the elastic limits of the material, facilitates radial rebound and therefore sealing. - Referring to
FIG. 2 , an alternate embodiment includes one or more seal component(s) 42, such as elastomeric, rubber, plastic or even soft metal, may be inserted into one or more of thegrooves element 10 is in sealing engagement with the tubulars in which it is set, the elastomeric seal component(s) 42 are entirely confined by the interference fit of the metal surfaces of theelement 10 thereby protecting the less robust material of the component(s) 42. Other than the addition of component(s) 42, theelement 10 operates and is configured identically to that of theFIG. 1 embodiment. - As should be understood by those of skill in the art, the
element 10 as described herein must be constructed for a relatively narrow range of mandrel and seal bore sizes to perform properly. Due to standardization of components and tight tolerances held in the downhole industry, however, these elements are constructible in bulk for a wide range of applications. - In one embodiment, because the material of
element 10 in the embodiment is metal, what is achieved is a non-elastomeric unloading seal capable of high temperature and pressure with no or not significant degradation. Such a seal is of great value to the art. - While preferred embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.
Claims (17)
1. A self-energizing seal element comprising:
at least one inside interference surface having a dimension smaller than an inside dimension of an annulus in which the seal is to be disposed in use;
at least one outside interference surface having a dimension larger than an outside dimension of the annulus in which the seal is to be disposed in use, the at least one inside interference surface being axially offset from the at least one outside interference surface; and
at least one angular flange extending between the at least one outside interference surface and the at least one inside interference surface.
2. The self-energizing seal element as claimed in claim 1 wherein the element further includes end housings bounding the element.
3. The self-energizing seal element as claimed in claim 1 wherein the at least one outside interference surface is two outside interference surfaces.
4. The self-energizing seal element as claimed in claim 3 wherein two outside interference surfaces have equal outside dimensions.
5. The self-energizing seal element as claimed in claim 3 wherein two outside interference surfaces have unequal outside dimensions.
6. The self-energizing seal element as claimed in claim 1 wherein at least one inside interference surface is two inside interference surfaces.
7. The self-energizing seal element as claimed in claim 6 wherein two inside interference surfaces have equal inside dimensions.
8. The self-energizing seal element as claimed in claim 6 wherein two inside interference surfaces have unequal inside dimensions.
9. The self-energizing seal element as claimed in claim 1 wherein the element further includes at least one groove at an inside aspect of the element or at an outside aspect of the element directly radially inwardly of the at least one outside interference surface or directly radially outwardly of the at least one inside interference surface, respectively.
10. The self-energizing seal element as claimed in claim 9 wherein the at least one groove houses at least one seal component.
11. The self-energizing seal element as claimed in claim 10 wherein the seal component is elastomeric.
12. The self-energizing seal element as claimed in claim 10 wherein the seal component is soft metal.
13. The self-energizing seal element as claimed in claim 1 wherein the dimension larger than an outside dimension of the annulus in which the seal is to be disposed in use is larger by about 0.015″
14. The self-energizing seal element as claimed in claim 1 wherein the dimension smaller than an inside dimension of the annulus in which the seal is to be disposed in use is smaller by about 0.015″.
15. A method for creating a metal to metal seal between at least a seal element and a component at an outside dimension of a seal element, the method comprising:
urging the element axially into contact with the component;
interferingly engaging at least a maximum annular dimension of the element with the component; and
inducing axial extension of the element to produce sealing stress in the element.
16. A method for creating a metal to metal seal comprising:
urging a first tubular member into a second tubular member, one of the first or second tubular members carrying a metal seal element;
elongating the seal element through interference with the other of the first or second tubular members; and
inducing a radial expansion stress in the element against the tubular interfering with the element.
17. The method as claimed in claim 16 wherein the interfering fit is at both the first and second tubulars.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/751,305 US20080290602A1 (en) | 2007-05-21 | 2007-05-21 | Self energizing seal element |
PCT/US2008/063699 WO2008147707A2 (en) | 2007-05-21 | 2008-05-15 | A self energizing seal element |
EP08755532A EP2153016A2 (en) | 2007-05-21 | 2008-05-15 | A self energizing seal element |
AU2008257033A AU2008257033A1 (en) | 2007-05-21 | 2008-05-15 | A self energizing seal element |
RU2009147817/03A RU2009147817A (en) | 2007-05-21 | 2008-05-15 | SELF-SEALING SEAL |
CA002687824A CA2687824A1 (en) | 2007-05-21 | 2008-05-15 | A self energizing seal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/751,305 US20080290602A1 (en) | 2007-05-21 | 2007-05-21 | Self energizing seal element |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080290602A1 true US20080290602A1 (en) | 2008-11-27 |
Family
ID=39830381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/751,305 Abandoned US20080290602A1 (en) | 2007-05-21 | 2007-05-21 | Self energizing seal element |
Country Status (6)
Country | Link |
---|---|
US (1) | US20080290602A1 (en) |
EP (1) | EP2153016A2 (en) |
AU (1) | AU2008257033A1 (en) |
CA (1) | CA2687824A1 (en) |
RU (1) | RU2009147817A (en) |
WO (1) | WO2008147707A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012005871A2 (en) * | 2010-07-06 | 2012-01-12 | Halliburton Energy Services, Inc. | Packing element system with profiled surface |
US8602116B2 (en) | 2010-04-12 | 2013-12-10 | Halliburton Energy Services, Inc. | Sequenced packing element system |
GB2504321A (en) * | 2012-07-26 | 2014-01-29 | Rubberatkins Ltd | Annular compression seal element |
US20170081937A1 (en) * | 2015-09-23 | 2017-03-23 | Weatherford Technology Holdings, Llc | Downhole seal |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1840312A (en) * | 1928-02-21 | 1932-01-12 | Russell P Dunmire | Threadless connecter |
US2356947A (en) * | 1941-04-11 | 1944-08-29 | Guiberson Corp | Packer for pressure drilling head |
US2401960A (en) * | 1942-05-15 | 1946-06-11 | Guiberson Corp | Pressure drilling head |
US3446507A (en) * | 1966-09-21 | 1969-05-27 | Gen Motors Corp | Universal joint bearing seal assembly |
US3554587A (en) * | 1967-08-02 | 1971-01-12 | Dunlop Co Ltd | Sealing members |
US3906746A (en) * | 1974-06-20 | 1975-09-23 | Dana Corp | Universal joint sealing |
US4486002A (en) * | 1982-09-24 | 1984-12-04 | Fmc Corporation | Combined metallic and flexible non-metallic pressure seal |
US4530675A (en) * | 1983-02-16 | 1985-07-23 | The Zeller Corporation | Internal universal joint seal with multiple lips |
US4553759A (en) * | 1984-12-10 | 1985-11-19 | Cameron Iron Works, Inc. | Valve and improved stem seal therefor |
US4702481A (en) * | 1986-07-31 | 1987-10-27 | Vetco Gray Inc | Wellhead pack-off with undulated metallic seal ring section |
US5094297A (en) * | 1990-10-30 | 1992-03-10 | Abb Vetco Gray Inc. | Casing weight set seal ring |
US5626520A (en) * | 1995-06-14 | 1997-05-06 | The Zeller Corporation | Reversible universal joint seal |
US5799954A (en) * | 1997-01-13 | 1998-09-01 | Eg&G Pressure Science, Inc. | Coaxial sealing ring |
US6149163A (en) * | 1994-07-13 | 2000-11-21 | Dowty Aerospace Gloucester Limited | Ring seal assembly |
US6189894B1 (en) * | 1999-04-19 | 2001-02-20 | The Texacone Company | Urethane packing member with improved geometric configuration |
US6561521B2 (en) * | 2001-03-27 | 2003-05-13 | Fmc Technologies, Inc. | Metal-to-metal seal with soft metal insert |
US6896049B2 (en) * | 2000-07-07 | 2005-05-24 | Zeroth Technology Ltd. | Deformable member |
US6983940B2 (en) * | 2003-07-29 | 2006-01-10 | American Seal And Engineering Company, Inc. | Metallic seal |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB569803A (en) * | 1943-11-12 | 1945-06-08 | Francis Frederick Cook | Improvements in and relating to gland sealing rings |
US4457523A (en) * | 1982-10-29 | 1984-07-03 | Pressure Science Incorporated | Torsionally flexible metallic annular seal |
-
2007
- 2007-05-21 US US11/751,305 patent/US20080290602A1/en not_active Abandoned
-
2008
- 2008-05-15 RU RU2009147817/03A patent/RU2009147817A/en not_active Application Discontinuation
- 2008-05-15 WO PCT/US2008/063699 patent/WO2008147707A2/en active Application Filing
- 2008-05-15 EP EP08755532A patent/EP2153016A2/en not_active Withdrawn
- 2008-05-15 AU AU2008257033A patent/AU2008257033A1/en not_active Abandoned
- 2008-05-15 CA CA002687824A patent/CA2687824A1/en not_active Abandoned
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1840312A (en) * | 1928-02-21 | 1932-01-12 | Russell P Dunmire | Threadless connecter |
US2356947A (en) * | 1941-04-11 | 1944-08-29 | Guiberson Corp | Packer for pressure drilling head |
US2401960A (en) * | 1942-05-15 | 1946-06-11 | Guiberson Corp | Pressure drilling head |
US3446507A (en) * | 1966-09-21 | 1969-05-27 | Gen Motors Corp | Universal joint bearing seal assembly |
US3554587A (en) * | 1967-08-02 | 1971-01-12 | Dunlop Co Ltd | Sealing members |
US3906746A (en) * | 1974-06-20 | 1975-09-23 | Dana Corp | Universal joint sealing |
US4486002A (en) * | 1982-09-24 | 1984-12-04 | Fmc Corporation | Combined metallic and flexible non-metallic pressure seal |
US4530675A (en) * | 1983-02-16 | 1985-07-23 | The Zeller Corporation | Internal universal joint seal with multiple lips |
US4553759A (en) * | 1984-12-10 | 1985-11-19 | Cameron Iron Works, Inc. | Valve and improved stem seal therefor |
US4702481A (en) * | 1986-07-31 | 1987-10-27 | Vetco Gray Inc | Wellhead pack-off with undulated metallic seal ring section |
US5094297A (en) * | 1990-10-30 | 1992-03-10 | Abb Vetco Gray Inc. | Casing weight set seal ring |
US6149163A (en) * | 1994-07-13 | 2000-11-21 | Dowty Aerospace Gloucester Limited | Ring seal assembly |
US5626520A (en) * | 1995-06-14 | 1997-05-06 | The Zeller Corporation | Reversible universal joint seal |
US5799954A (en) * | 1997-01-13 | 1998-09-01 | Eg&G Pressure Science, Inc. | Coaxial sealing ring |
US6189894B1 (en) * | 1999-04-19 | 2001-02-20 | The Texacone Company | Urethane packing member with improved geometric configuration |
US6896049B2 (en) * | 2000-07-07 | 2005-05-24 | Zeroth Technology Ltd. | Deformable member |
US6561521B2 (en) * | 2001-03-27 | 2003-05-13 | Fmc Technologies, Inc. | Metal-to-metal seal with soft metal insert |
US6983940B2 (en) * | 2003-07-29 | 2006-01-10 | American Seal And Engineering Company, Inc. | Metallic seal |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8602116B2 (en) | 2010-04-12 | 2013-12-10 | Halliburton Energy Services, Inc. | Sequenced packing element system |
WO2012005871A2 (en) * | 2010-07-06 | 2012-01-12 | Halliburton Energy Services, Inc. | Packing element system with profiled surface |
WO2012005871A3 (en) * | 2010-07-06 | 2012-04-05 | Halliburton Energy Services, Inc. | Packing element system with profiled surface |
US8397803B2 (en) | 2010-07-06 | 2013-03-19 | Halliburton Energy Services, Inc. | Packing element system with profiled surface |
GB2504321A (en) * | 2012-07-26 | 2014-01-29 | Rubberatkins Ltd | Annular compression seal element |
GB2504321B (en) * | 2012-07-26 | 2019-08-28 | Rubberatkins Ltd | Seal element |
US20170081937A1 (en) * | 2015-09-23 | 2017-03-23 | Weatherford Technology Holdings, Llc | Downhole seal |
Also Published As
Publication number | Publication date |
---|---|
EP2153016A2 (en) | 2010-02-17 |
AU2008257033A1 (en) | 2008-12-04 |
WO2008147707A4 (en) | 2009-04-16 |
CA2687824A1 (en) | 2008-12-04 |
WO2008147707A3 (en) | 2009-02-26 |
WO2008147707A2 (en) | 2008-12-04 |
RU2009147817A (en) | 2011-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7740248B2 (en) | Annular seal | |
US5833245A (en) | Elastomer ring seal for pressurized fluids | |
AU2013200901B2 (en) | Energized composite metal to metal seal | |
US11131385B2 (en) | Press-in retainer ring | |
US20060186601A1 (en) | Fluid seals | |
JP2015510570A (en) | SEALING DEVICE AND SEALING DEVICE MANUFACTURING METHOD | |
US20080290602A1 (en) | Self energizing seal element | |
US6565093B2 (en) | Seal structure for downhole tool | |
AU2017232171A1 (en) | A tubular connection | |
WO2015171768A1 (en) | Tubular connecting arrangement and method of sealingly connecting tubulars | |
US9556700B2 (en) | Downhole sealing assembly | |
US7588077B2 (en) | Downhole tubular seal system and method | |
US8210267B2 (en) | Downhole pressure chamber and method of making same | |
US7604056B2 (en) | Downhole valve and method of making | |
EP1950473B1 (en) | Carbon dioxide gas sealing enclosed device | |
US9746080B2 (en) | High pressure seal assembly for a moveable shaft | |
US9267357B2 (en) | Multi-component diffuser assembly | |
CA1202889A (en) | Circular seal with integral backup rings | |
GB2561961A (en) | Mechanical seal | |
JP2007139055A (en) | Sealing device and sealing structure | |
US6834719B2 (en) | Drillpipe sub | |
US11300208B2 (en) | Seal assembly with anti-rotation and stability features |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAKER HUGHES INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CORONADO, MARTIN P.;REEL/FRAME:019536/0131 Effective date: 20070530 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |