US20080287944A1 - Tissue ablation apparatus and method - Google Patents
Tissue ablation apparatus and method Download PDFInfo
- Publication number
- US20080287944A1 US20080287944A1 US12/022,708 US2270808A US2008287944A1 US 20080287944 A1 US20080287944 A1 US 20080287944A1 US 2270808 A US2270808 A US 2270808A US 2008287944 A1 US2008287944 A1 US 2008287944A1
- Authority
- US
- United States
- Prior art keywords
- impedance
- tissue
- ablation
- electrodes
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00071—Electrical conductivity
- A61B2018/00083—Electrical conductivity low, i.e. electrically insulating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00184—Moving parts
- A61B2018/00196—Moving parts reciprocating lengthwise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00726—Duty cycle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00738—Depth, e.g. depth of ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00744—Fluid flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/0075—Phase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00755—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00761—Duration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00869—Phase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/124—Generators therefor switching the output to different electrodes, e.g. sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/1253—Generators therefor characterised by the output polarity monopolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
- A61B2018/143—Needle multiple needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
- A61B2018/1432—Needle curved
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2218/00—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2218/001—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
- A61B2218/002—Irrigation
Definitions
- This invention relates generally to a method for treating tissue using minimally invasive methods. More particularly, the invention relates to an apparatus and method for ablatively treating tumorous and diseased tissue. Still more particularly, the invention relates to an apparatus and method for ablatively treating tumorous tissue using impedance values to control and optimize the delivery of electromagnetic ablative energy to a target tissue site.
- ablative therapies such as radio-frequency, microwave and laser ablation can be used to treat benign and cancerous tumors.
- such methods are intended to produce physiological and structural changes to cause cell necrosis or destruction of the selected target tissue.
- ablative procedures to treat cancerous tissue include (i) locating the target tissue, (ii) identifying or biopsying the disease state of the tumorous tissue (iii) distinguishing between diseased tissue versus healthy tissue, (iii) placing and maintaining the position of the ablation apparatus within the target tissue site, (iv) monitoring the progress of ablation including the developing ablation volume, (v) minimizing injury to adjacent critical structures (vi) assuring complete ablation of the tumor mass including assurance of a sufficient healthy tissue margin and (vii) assessing degree of the completed ablation.
- Current ablative therapies have not considered nor provided solutions to these problems.
- An embodiment of the invention provides an impedance controlled tissue ablation apparatus and method that utilizes impedance determinations, such as localized tissue impedance to optimize the delivery of radio-frequency or other electromagnetic energy to a target tissue site and create larger ablation volumes using lower power levels and faster ablation times than currently possible with conventional RF tissue ablative technology.
- impedance determinations such as localized tissue impedance to optimize the delivery of radio-frequency or other electromagnetic energy to a target tissue site and create larger ablation volumes using lower power levels and faster ablation times than currently possible with conventional RF tissue ablative technology.
- impedance determinations such as localized tissue impedance to optimize the delivery of radio-frequency or other electromagnetic energy to a target tissue site and create larger ablation volumes using lower power levels and faster ablation times than currently possible with conventional RF tissue ablative technology.
- a related embodiment of the invention uses controlled infusion of electrolytic fluid at the tissue site to control and maintain tissue impedance at an optimal level for delivery of ablative energy.
- the apparatus comprises an elongated delivery device that includes a lumen and is maneuverable in tissue.
- An impedance sensor array is deployable from the elongated delivery device and configured to be coupled to at least one of an electromagnetic energy source or a switching device.
- the impedance array includes a plurality of resilient members, at least one of the plurality being positionable in the elongated delivery device in a compacted state and deployable with curvature into tissue from the elongated delivery device in a deployed state. In the deployed state, the plurality of resilient members defines a sample volume.
- At least one of the plurality of resilient members includes a sensor and at least a portion of the impedance array is configured to sample tissue impedance through a plurality of conductive pathways.
- An energy delivery device is coupled to one of the sensor array, the resilient member or the elongated delivery device.
- An embodiment of the invention provides a method for detecting and treating a tumor using tissue localized volumetric impedance determination.
- the method includes providing an impedance determination apparatus having a plurality of resilient members deployable with curvature and configured to sample tissue impedance through a plurality of conductive pathways.
- the apparatus is configured to be coupled to at least one of an energy delivery device, a power supply, a switching device or logic resources.
- the apparatus is then positioned at a selected tissue site and the impedance array deployed to define a sample volume.
- the impedance array is then utilized to make impedance determinations through a plurality of conductive pathways. Information from the impedance determinations is then utilized to determine a tissue condition of the sample volume. Energy is then delivered from the energy delivery device to ablate or necrose at least a portion of the tumor.
- the apparatus can be configured to detect, locate and identify tumorous tissue at a selected tissue site using impedance determinations such as multi-pathway determined impedance, complex impedance and impedance vector determinations.
- impedance determinations such as multi-pathway determined impedance, complex impedance and impedance vector determinations.
- real and imaginary components of the impedance signal can be used to determine more refined bioelectric parameters such as interstitial and intracellular impedance and cell membrane capacitance that provide greater sensitivity and predictive power of cell necrosis or malignancy.
- the apparatus can also be configured to utilize one or more impedance determinations to monitor a target tissue site and control the course of ablative therapy before during or after the delivery of ablative energy or other treatment to the tissue site.
- the apparatus can be configured to be used independently or in conjunction with another ablative apparatus such as an RF, microwave laser or other optical ablation apparatus. Further, the apparatus can be configured to utilize multi-path impedance determination to monitor two or more tissue volumes including a tumor volume, a developing ablation volume and an adjacent anatomical structure. Additional embodiments of the apparatus can also be configured to utilize impedance determinations such as complex, vector or locus impedance determinations to generate an image of a target tissue site and display the image to facilitate the location and monitoring of a tumor and/or ablation volume.
- impedance determinations such as complex, vector or locus impedance determinations to generate an image of a target tissue site and display the image to facilitate the location and monitoring of a tumor and/or ablation volume.
- the apparatus would be positioned at selected tissue site previously imaged and found to contain a tumor or other tissue mass.
- the apparatus would be introduced and positioned at the tissue site using the elongated delivery device or an introducing device known in the art such as a trocar or endoscopic device.
- the impedance array would then be deployed and used to determine impedance including complex impedance and capacitance through one or more conductive pathways. This information could be analyzed by coupled logic resources and then utilized to locate the position of and borders of the tumor volume and/or identify the tumor or tissue type.
- the information could be processed by the logic resources or other processing means to generate an image of the tissue site including the tumor volume which could utilize the locus of impedance as way to indicate the center of the tumor mass or otherwise visually enhance the detection and display of the tumor mass. This information could then be used to position the energy delivery to produce the desired ablation volume. Once the energy delivery device was positioned, the impedance array could then be utilized to monitor and/or control the delivery of ablative energy or therapy to the tumor volume including monitoring the size and shape of a developing ablation volume in relation to size and location of the tumor volume. This allows the medical practitioner to not only determine the degree to which the tumor volume has been ablated, but also allows for the control of the amount of healthy tissue margin around the tumor volume.
- Such control and related capability allows for the determination of a desired clinical endpoint. Further, it allows the practitioner to titrate or otherwise control the delivery of energy or other ablative therapy to control rate of growth of the ablation volume (and in turn the overall ablation time) as well as the final shape and size of the tumor volume.
- Multiple tissue volumes can be simultaneously monitored and compared to monitor progress of the ablation volume, assure uniform ablation or necrosis throughout the tumor or ablation volume and provide real time assurance that surrounding healthy tissues and structure were not injured. For example, tissue volumes at the center and one or more peripheries of the tumor mass could be simultaneously or near simultaneously monitored to assure uniform necrosis at these locations and hence throughout the tumor volume.
- Impedance determinations can be simultaneously or sequentially determined at multiple conductive pathways passing through the target volume (at convergent divergent and paths) to provide a higher confidence of uniform ablation by reducing the size of un-sampled zones within the target volume as well any directional bias of the measurements.
- the multiple conductive pathways can be selected electronically via a controllable switching device or manually by rotational, lateral or longitudinal movement of the impedance array within the target volume. In the former case, the user could program the conductive pathways via a coupled monitoring device and in the later the user could rotate, advance, retract or deflect the impedance array via the elongated delivery device or via a deployment, advancement or deflection device mechanically coupled to the impedance array or delivery device.
- measurements can also be taken post ablation at one or more pathways, (including pathways different than those used during inter-ablative monitoring) and compared to baseline measurements or an impedance database to provide a further indication of a complete ablation and/or clinical endpoint.
- Endpoints can also be determined based on ratios of intracellular to interstitial impedance as well a characteristic shape of the impedance or complex impedance curve including determinations of thresholds, slopes or inflection points.
- Various aspects of the invention can also be directed to display impedance determinations in a variety of manners that are both user-friendly and easily discernible by the user/medical practitioner.
- the loci of impedance of a sample volume or an impedance vector of the sample volume can be displayed as icons to facilitate tumor identification and positioning of an energy delivery or ablative device within the tumor mass.
- logic resource of the apparatus could be configured to use impedance vector measurements to determine the radial direction of the tumor from the impedance array or energy delivery device and display this information in the form of a directional or pointing icon.
- an apparatus for tissue ablation may include an elongated delivery device, an energy delivery device, an energy control, and optionally a fluid control.
- the energy delivery device may be operably coupled to an energy source.
- the energy delivery device may include a plurality of electrodes. Each of the electrodes may have a tissue piercing distal portion. Each of the electrodes may be positionable in the elongated delivery device. One or more of the electrodes may be preformed to assume a curved shape when deployed to a selected tissue site.
- Two or more of the electrodes may be infusion electrodes, each separately including an infusion lumen and one or more infusion ports for liquid infusion within the selected tissue site.
- the energy control may be operably coupled to the energy delivery device for impedance detection within the selected tissue site.
- the energy control may be configured for energy delivery control in response to the detected impedance.
- the optional fluid control may be operably coupled to the at least two infusion electrodes.
- the optional fluid control may be configured for infusion control in response to the
- FIG. 1 is a lateral view illustrating the placement at a tissue site of an embodiment of an apparatus for detecting and treating tumors using localized impedance determination.
- FIG. 2 is a lateral view illustrating the elements of an apparatus for detecting and treating tumors using impedance determination including an elongated delivery device, a sensor array, sensors, electrodes, energy delivery device and advancement member.
- FIG. 3 a is a schematic view of an embodiment of the impedance sensor array configured to determine impedance of a tissue volume via a plurality of selectable conductive pathways.
- FIG. 3 b is a schematic view illustrating of an embodiment of the apparatus illustrating the use of primary and secondary conductive pathways and conductive pathway angle.
- FIGS. 4 a - 4 c are perspective views illustrating various arrangements of the emitting and detecting members;
- FIG. 4 a illustrates an embodiment having a centrally positioned a return electrode surrounded by other electrodes;
- FIG. 4 b illustrates an embodiment having the return electrode eccentrically positioned respect to other electrodes;
- FIG. 4 c illustrates an embodiment having multiple and independently positionable impedance sensor arrays.
- FIG. 5 is a perspective view illustrating the use of multiple groups of conductive pathways to sample multiple tissue volumes in an embodiment of the invention as well as determine impedance vectors and loci of impedance for each sample volume.
- FIG. 6 is a perspective view illustrating an embodiment of an apparatus for detecting and treating tumors including an impedance monitoring device having memory resource and logic resources including software modules to analyze impedance data and generate impedance profiles and images.
- FIG. 7 a is a plot of tissue impedance curve illustrating the frequency dependency of impedance.
- FIG. 7 b is a plot of tissue complex impedance curves illustrating the frequency dependency of complex impedance.
- FIGS. 8 a - 8 d are plots of impedance curves illustrating the use of multiple frequency impedance curves to monitor the time course of an ablation.
- FIGS. 8 e - 8 g are plots of complex impedance curves (imaginary vs. real values) illustrating the use of complex impedance curves to monitor the time course of an ablation.
- FIGS. 9 a - 9 c are plots of complex impedance curves illustrating the use of complex impedance curves to identify tissue type or condition.
- FIG. 10 is a plot of spectral signal intensity verses time for a sample volume of ablating tissue illustrating quantitative determinants of an ablation endpoint.
- FIG. 11 is a perspective view illustrating a three-dimensional plot of complex impedance.
- FIG. 12 a is a lateral view illustrating an embodiment of the introducer.
- FIGS. 12 b and 12 c are cross sectional views illustrating cross-sectional profiles of the introducer.
- FIG. 13 is a lateral view illustrating an embodiment of a deflectable introducer along with the components of the introducer.
- FIG. 14 is a lateral view illustrating an embodiment of a tissue biopsy and treatment apparatus with a hand piece and coupled aspiration device, fluid delivery device and fluid reservoir.
- FIGS. 15 a - 15 h are lateral views illustrating various configurations of the electrode including ring-like, ball, hemispherical, cylindrical, conical and needle-like.
- FIG. 16 is lateral view illustrating an embodiment of a needle electrode configured to penetrate tissue.
- FIG. 17 is lateral view illustrating an embodiment of an electrode having at least one radius of curvature.
- FIG. 18 is lateral view illustrating an embodiment of the electrode having at least one radius of curvature, sensors and a coupled advancement device.
- FIG. 19 is a perspective view illustrating an embodiment of the electrode that includes insulation sleeves positioned at exterior surfaces of the resilient members or electrodes so as to define an impedance sensor length or an energy delivery surface.
- FIG. 20 is a perspective view illustrating an embodiment of the electrode that includes multiple insulation sleeves that circumferentially insulate selected sections of the electrode(s).
- FIG. 21 is a perspective view illustrating an embodiment of the electrode with insulation that extends along longitudinal sections of the electrodes to define adjacent longitudinal energy delivery surfaces.
- FIG. 22 is a cross-sectional view of the embodiment of FIG. 21 .
- FIG. 23 a is a lateral view illustrating an embodiment of the apparatus with an electrode having a lumen and apertures configured for the delivery of fluid and the use of infused fluid to create an enhanced electrode.
- FIG. 23 b is a perspective view illustrating the key components of a tissue infusion ablation apparatus including configurations of the infusion device having multiple syringes and multi-channel tubing.
- FIG. 23 c is an expanded view of the distal portion of the apparatus of the embodiment of FIG. 23 b illustrating the components of the distal tip as well as the conductive pathways of a device for measuring and controlling impedance.
- FIG. 23 d are plots of dissipated power verses impedance illustrate a novel approach of maximizing ablative power delivery at a target tissue site at a non-minimal impedance.
- FIG. 23 e is a plot of tissue resistance versus distance from embodiments of the electrode which illustrate the use of infusion to reduce tissue charring adjacent the electrode.
- FIG. 24 is a perspective view illustrating an embodiment of an impedance-sensing member that includes a conductive coating that can be configured to produce an impedance gradient within the sensing member.
- FIG. 25 a - 25 c are perspective views of an embodiment of an energy delivering ablation apparatus using frequency controlled positionable ablation fields.
- FIGS. 26 a - 26 c are plots of energy density or concentration versus lateral distance from the electrode/energy delivery device of the embodiment of FIGS. 25 a - 25 c.
- FIG. 27 is a flow chart illustrating a method for generating and displaying impedance derived images.
- FIG. 28 is a block diagram illustrating a controller, power source, power circuits and other electronic components used with an embodiment of a control system other embodiments of the invention.
- FIG. 29 is a block diagram illustrating an analog amplifier, multiplexer and microprocessor used with an embodiment of a control system or other embodiments of the invention.
- FIG. 30 is a lateral view illustrating a control and display unit used in various embodiments of the invention.
- FIG. 31 is a plot showing an embodiment of an impedance determination duty cycled signal super-imposable on an RF treatment signal under selectable threshold conditions.
- FIG. 32 is a diagram illustrating an embodiment of the device for impedance modulation with infusion.
- FIG. 33 is a flow chart illustrating the use of one embodiment of the device.
- Electrodes are interchangable and refer to a needle or wire for conducting energy to a tissue site. Electrodes may be passive, active or switchable between passive and active. Further, an electrode may be a ground pad electrode positionable at an exterior position on the patient.
- a “sensing member” is a passive or active electrode for sensing an ablation parameter.
- Fluid delivery device and “infusion device” are interchangable and refer to a device connected to, or including (i) a source of fluid to be infused, and (ii) one or more electrodes or the elongated delivery device for delivery of the fluid to a target tissue.
- “Feedback control device”, “control unit”, “control resources”, “feedback control system”, and “controller” are interchangable and refer to a control capable of modulating an ablation parameter, i.e. power, temperature, infusion, etc.
- the control may be automatically or manually operated.
- Impedance measurement or “impedance determination” are interchangable and refer to the calculation of impedance from a data source, i.e. current sensor, voltage sensor, or power source, using any suitable calculation device or algorithm known in the art.
- Embodiments of the present invention provide an apparatus and method for performing tissue characterization using localized impedance determination including complex impedance determination to locate and diagnose a tumor, accurately position an ablative apparatus, monitor the progress of an ablative treatment and determine clinical endpoints. Further these and other embodiments of the invention can be configured to measure and analyze bioelectric parameters with enhanced predictive power of cell metabolism along with associated images that allow for real time control of the ablative process awhile significantly reducing the risk of incomplete ablation or unwanted damage to critical anatomical structures. Each of the disclosed embodiments may be considered individually or in combination with other variations and aspects of the invention.
- the method and apparatus provided herein are useful in treating cancerous tumors in organs and tissue throughout the body including, but not limited to the liver, bone, breast, lung and brain. They are also useful and equally applicable to treatment of benign tumors, growths and otherwise abnormal or enlarged tissue that requires removal, resection or modification by surgical or minimally invasive means.
- Localized monitoring of impedance is particularly beneficial for use in the treatment of tumors and tumorous tissue by ablative therapies such as RF, microwave, laser and chemical ablation.
- ablative therapies such as RF, microwave, laser and chemical ablation.
- These and related ablative therapies causes disruption of cell membranes resulting in impedance change in the interstitial fluid but only in the affected tissue with minimal or no changes to the surrounding tissue.
- Previous attempts to determine impedance using a full electrical circuit through the patients body had the drawback of not being able to detect tissue localized impedance by failing to consider the problems involved including the following:
- Embodiments of present invention provide solutions to these problems to detect localized impedance changes, particularly those changes occurring during an ablation procedure through the use of impedance arrays positioned at the target tissue to determine impedance including complex impedance and other bioelectric properties described herein.
- tissue impedance or impedivity which typically has units of impedance/cc of tissue at 20° C.
- a current is applied across the tissue and the resulting voltages are measured.
- This current known as the excitation current or excitation signal is relatively small in comparison to an ablative RF or other ablative current and hence results in no appreciable ablative effect.
- the excitation current can range from 0.01 ma to 100 amps with specific embodiments of 0.1, 1.0 and 10 amps which can be delivered in a continuous or pulsed fashion using a duty cycle.
- the duty cycle can be in the range of 5 to 50% with a pulse duration of 10 to 200 ms.
- the average power delivered over the course of the duty cycle can be in the range of 0.1 to 10 watts.
- the excitation current source is used to measure voltage differences between two or more sites in a bipolar mode or one or more sites and a common ground. The known excitation current and measured voltage are then used to derive impedance using algorithms and methods described herein and/or known in the art.
- the sensing or excitation signal can be varied or otherwise controlled to improve one or more of the sensitivity, accuracy, precision and resolution of an impedance determination.
- the excitation signal can be a mono-frequency or a multi-frequency signal and can be constant or variable.
- improved signal resolution and thus more precise tissue analysis and characterization can be achieved by use of a multi-frequency excitation signal and/or an excitation signal varied across a broad range of frequencies.
- this range of frequencies can be from about 1 Hz to about 1 MHz with specific embodiments of 0.5 Hz, 1, 5, 10, 25, 50, 100, 250, 500 and 750 kHz. Since the bioelectric distinctions (e.g. phase angle, impedance) between cancerous and healthy tissue can be the greatest at low frequencies such as 100 Hz, in exemplary embodiments measurements can be taken over a plurality of excitation frequencies below 100 Hz, with specific embodiments of 3, 4, 10 and 20 frequencies below 100 Hz. Other embodiment can be combine measurements below 100 Hz with those between 100 Hz to 5 kHz.
- bioelectric distinctions e.g. phase angle, impedance
- Complex impedance includes both real and imaginary components, which reflect the phase shift between voltage and current (e.g. the voltage can lead or lag current depending on the electrical properties of the tissue).
- Various embodiments of the invention can be configured to record both the real and imaginary components of complex impedance. This provides the benefit of providing more comprehensive information on the tissue allowing analysis with a greater degree of accuracy, precision and resolution. These components can be determined by passing an excitation current through the target tissue and determining impedance and/or any phase shift between the current and voltage as the signal is conducted through the target tissue.
- real and imaginary components of impedance can be used to determine intracellular impedance, interstitial impedance and cell membrane capacitance. These three elements alone or in combination can be used to uniquely characterize and identify tissue type and condition with increased amounts of specificity.
- the monitoring device, or other logic resources can be configured to utilize one or more of these three parameters (the “three parameters”) to characterize an amount of ablation or progression of tissue ablation from an ablative treatment such as RF ablation or ablative method described herein. The characterization can be done by a software module resident within the monitoring device, power supply or coupled logic resources all described herein.
- the thee parameters can be used to detect various physiologic indicators of ablation and cell necrosis including cell lysis, cell membrane swelling (indicated by an increase in membrane capacitance), cell membrane rupture (indicated by a sharp decrease in membrane capacitance), a decrease in extracellular fluid (indicated by an increase in intracellular impedance) and in increase in intracellular fluid (indicated by a decrease in extracellular fluid).
- Other parameters which can be calculated and used for detection and control purposes include the absolute value of the impedance or admittance, the phase of the impedance (e.g. the phase difference between the current and the voltage), the capacitance or a function of a combination of the impedance and admittance components.
- Specific embodiments of the invention can be configured to detect and/or control for threshold increases or decreases in one or more of the three parameters (or other variables) including increases or decreases in the ranges of 1.1:1.0 to 100:1.0 with specific embodiments of 1.5:1.0, 2:1, 3:1, 4:1, 5:1, 10:1, 20:1 and 50:10.
- Related embodiments can be configured to detect and/or control for combinations of increases or decreases in the parameters including but not limited to a rise followed by a decrease in extracellular impedance, a decrease followed by an increase in intracellular impedance and an increase followed by a decrease in cell membrane capacitance.
- Other related embodiments can be configured to detect, monitor and control for changes in the slopes of the curves of one or more of the three parameters.
- Still other related embodiments can employ PID control methods known in the art utilizing combinations of proportional, integral or derivative changes in the three-parameter curves.
- Embodiments of the invention can incorporate the three parameters into electronic algorithms/software programs which are configured to do one or more of the following: (i) control the delivery of power to the target tissue site, (ii) provide the medical practitioner with prompts and diagnostic information about the course of the ablation/treatment process, and (iii) provide the medical practitioner with an indication of a clinical endpoint.
- FIG. 1 shows an embodiment of an impedance monitoring and treatment apparatus 10 configured to detect and treat a tumor mass 5 ′′ in a target tissue site 5 ′ by sampling the impedance of the tissue mass and delivering energy or other ablative treatment to produce an ablation volume 5 av .
- the apparatus can be configured to determine impedance, including complex impedance, before during and after an ablation so as to perform tissue identification at the target site, monitor the progress of an ablation procedure including the developing ablation volume and quantitatively determine a clinical endpoint for the procedure.
- an embodiment of impedance treatment apparatus 10 comprises an elongated member or introducer 12 having a lumen 13 , a proximal portion 14 , a distal end 16 , one or more resilient members 18 positionable in the introducer lumen 13 and one or more sensors 22 disposed on members 18 or sensing members 22 m positionable in electrode lumen(s) 72 disposed within members 18 .
- the electrode distal end may be sufficiently sharp to penetrate tissue including fibrous and/or encapsulated tumor masses, bone, cartilage and muscle.
- the introducer lumen 13 may extend over all or a portion of the length of introducer 12 .
- Members 18 can comprise a plurality 18 pl of resilient members 18 configured to be positionable in lumen 13 and advanceable in and out of distal end 16 by an advancement device 15 or advancement member or other means described herein.
- Resilient members 18 can be deployed with curvature from introducer 12 to collectively define a volume 5 av in target tissue site 5 ′.
- all, or a portion, of one or more members 18 can be an energy delivery device or energy delivery member described herein.
- Energy delivery device 18 e can be coupled to an energy source or power supply 20 and can also include one or more lumens 72 .
- Embodiments of the invention can be adapted, integrated otherwise applicable to a number of ablative therapies including, but not limited to, radio-frequency (RF) ablation, cryo-ablation, brachytherapy, alcohol tissue ablation, chemical ablation, microwave ablation, laser ablation, thermal ablation, electroporation ablation, conformal beam radiation ablation, standard radiation ablation, high intensity focused ultrasound ablation, photo-dynamic therapy ablation.
- RF radio-frequency
- the energy delivery and sensing apparatus will be an RF based apparatus and power supply 20 will be a RF power supply; however, all other embodiments discussed herein are equally applicable.
- the RF power supply can be an RF generator configured to deliver a treatment current 20 t for tissue ablation while simultaneously or near simultaneously (using a multiplexing/switching device) delivering a low power sensing or excitation signals 20 e across at one or more frequencies for making complex impedance determinations and subsequent analysis of the target tissue.
- the excitation signal 20 e can be delivered across a broad band of frequencies in the range of 1 to 1 MHz. In various embodiments, the excitation signal is delivered at a lower frequency then the treatment signal (typically 460+/ ⁇ 60 kHz).
- the excitation signal is less than 400 kHz.
- the sensing signal is in the range of 1 h to 100 kHz, with specific embodiments of 0.25, 0.5, 1, 5, 10, 25, 50 and 75 kHz.
- the excitation signal is delivered at frequencies above the treatment frequency and thus can be greater than 520 kHz.
- the frequency and power differences between the excitation and treatment signals 20 e and 20 t can be monitored and set point controlled using circuitry and control algorithms known in the art.
- the frequency and power difference between the two signals can varied responsive to one or more electrical parameters to maximize the accuracy and precision of impedance determinations and reduce interference (e.g. bleed over) from the treatment signal 20 t .
- These electrical parameters include but are not limited to impedance, treatment current, treatment frequency, excitation current and excitation frequency.
- introducer 12 can be flexible, articulated and steerable and can contain fiber optics (both illumination and imaging fibers), fluid and gas paths, and sensor and electronic cabling.
- introducer 12 can be configured to both pierce tissue and also be maneuverable within tissue. This can be achieved through the use of flexible portions coupled to a tissue piercing distal end 16 that can be a needle or trocar tip integral or joined to introducer 12 .
- Introducer 12 can be sufficiently flexible to move in any desired direction through tissue to a desired tissue site 5 ′.
- introducer 12 is sufficiently flexible to reverse its direction of travel and move in direction back upon itself. This can be achieved through the use of flexible materials and/or deflecting mechanisms described herein.
- introducer 12 can be coupled at its proximal end to a handle 24 or handpiece 24 .
- Handpiece 24 can be detachable and can include ports 24 ′ and actuators 24 ′′.
- sensors 22 can be coupled to introducer 12 , resilient members 18 or energy delivery device 18 e .
- sensors 22 can comprise one or more sensing members 22 m that can be positionable within lumens 72 of members 18 and configured to be advanceable in and out of individual members 18 or can be coupled to an exterior of resilient member 18 .
- Sensing members 22 m can comprise a plurality of members 22 mpl positioned in multiple resilient members 18 .
- apparatus 10 can also have sensors 22 disposed along elongated member 12 and other locations outside of the target tissue site for measurement and determination of the total impedance across the full electrical circuit between the terminals of power supply 20 (i.e. through the patient's body and into the ground pad). The total impedance can be monitored and otherwise utilized to improve the accuracy and precision of the localized impedance determination from the target site.
- Impedance sensing members 22 m , or sensors 22 coupled to resilient members 18 can be deployed independently or simultaneously to enable probing of target tissue 5 ′ in multiple locations so as to determine impedance in multiple locations and/or through multiple conductive pathways 22 cp . Deployment of impedance sensing member 22 m or sensors 22 can be controlled such that telemetry can be used with impedance feedback to identify tissue types and map the topography of tissue masses, tumors or tissue structures.
- Impedance sensing members 22 m can also be deployed with curvature from members 18 to collectively define a volume 5 sv (also called sample volume 5 sv ) that is volumetrically sampled by sensing member plurality 22 mpl .
- the plurality 22 mp of deployed impedance sensing members 22 m or plurality 18 pl of deployed resilient members 18 with coupled sensors 22 can comprise a three-dimensional or volumetric impedance sensor array 22 a .
- sensor array 22 a is configured to volumetrically sample (e.g. sample in multiple locations and through multiple conductive pathways) tissue within target tissue site 5 ′ including tumor mass 5 ′′.
- Sensor array 22 a is further configured to be able to simultaneously sample tissue at multiple locations within volume 5 sv or tissue site 5 ′ to perform one or more of the following: (i) locate the position of the tumor mass 5 ′′, (ii) discern the position or deployment distance of the energy delivery devices 18 , (iii) monitor the developing ablation volume, (iv) perform tissue sensing identification by comparing signals between two or more sites (e.g. known healthy tissue and suspected diseased tissue).
- tissue sensing identification by comparing signals between two or more sites (e.g. known healthy tissue and suspected diseased tissue).
- sensor array 22 a and/or member plurality 18 pl can be configured to define a variety of shapes for sample volumes 5 sv including, but not limited to, a hemisphere, a sphere, an oval, a cone, pyramidal, a polyhedron or a tetrahedron.
- Each resilient member 18 can have one or more impedance sensing members 22 m and/or sensors 22 that can be arranged in a variety of configurations to perform one or more desired functions described herein (e.g. tissue identification, ablative monitoring etc.).
- sensing members 22 m can be configured to determine impedance in either bipolar between two or more members 22 m or a mono-polar mode between one or more selected members 22 and a common ground such as a ground electrode or ground pad electrode. Switching between the two modes can be controlled by logic resources and/or a switching or device 29 coupled to or integral with an impedance monitoring device 19 or power supply 20 .
- switching device 29 can be configured to allow the user to define and select one or more conductive pathways 22 cp to determine impedance. In use, these and related embodiments allow the user to select any number of conductive pathways and in a pattern 22 pp that circumscribe or otherwise defines a sample volume 5 sv of interest. Also the use of switching device 29 in these embodiments allows the user to determine impedance simultaneously or sequentially through the selected pathways. Further switching device 29 and/or apparatus 10 can be so configured to allow the user to dynamically change or switch between pathways to do one or more of the following:
- conductive pathways 22 cp can include a primary pathway(s) and an alternative pathway(s).
- the alternative pathway can be at a selectable angle from the primary pathway and can share points in common with the primary pathway. Suitable angles include the range of 1 to 360° with particular embodiments of 30, 45, 90 and 270° from a lateral axis 22 la of the primary pathway.
- the alternative conductive pathway can share one or more points in common with the original pathway or be parallel with the original pathway but offset a selectable lateral distance 22 ld .
- repetitive scans of impedance including sweep scans and sequential sweep scans (e.g. sequentially sampling from one side of a sample volume to the other, similar to radar) can be made through one or more selected conductive pathway of a selected sample volume to monitor the time course of ablation as well obtain improved signal to noise ratios and signal resolution for image analysis.
- Changing the angle and/or lateral offset of the conductive pathway used to determine impedance can be accomplished through a variety of means including but not limited to: (i) selectively switching sensors 22 or sensing elements 22 m off and on (ii) selectively switching sensing elements 22 m from a monopolar mode to a bipolar mode and visa versa, (for RF embodiments) using switching device 29 (iii) configuring the probe array to be rotatable and/or deflectable, and (iv) the use and/or deployment of a second array either on the same or different device. Switching can be accomplished through the use of a switching or multiplexing device 29 which can be programmable or controlled by logic resources 19 lr described herein.
- the data from alternative conductive pathways or group of pathways can be integrated with measurements from the primary conductive pathways for analysis and imaging purpose or in an alternative embodiment can be analyzed and displayed separately allowing for a comparison of both measurement and image from the primary and alternative group of pathways.
- the benefit of the former is a more representative and uniform sample of impedance and the later the ability to detect for uniformities of impedance within the sample volume.
- such embodiments allow the medical practitioner to sample or image a larger tissue volume than single pathway sampling, sample multiple tissue volumes including simultaneous sampling without having to reposition the apparatus or impedance array. This capability reduces procedure time generally enhances the usability of the apparatus. Further, such embodiments also provides a more accurate and representative signal of the target tissue volume by selecting conductive pathways to control the shape and size of the sample volume to sample only the area of interest eliminating any potential masking or undesired impedance contribution from surrounding non-target tissue. Also the ability to switch the angle of the pathway eliminates or reduces any directional bias in the impedance determinations.
- the use of multiple conductive pathway impedance determinations provides a more representative measurement of impedance for the selected volume improving the accuracy and precision of the impedance determination as well as improving signal and image resolution in one or all three dimensions.
- impedance sensing members 22 m can be arranged in arrays 22 a having a variety of geometric arrangements and relationships so as to electrically sample different volumes of tissue 5 sv using different conductive pathways 22 cp .
- Such embodiments provide the benefit of improved acquisition, accuracy and analysis of the impedance signal 19 p from a given sample volume 5 sv to compensate for signal hysteresis, noise (due to energy delivery etc,) directional bias or other error. They also provide the benefit of simultaneous sampling and comparison of two or more tissue volumes to perform tissue identifications.
- conductive pathways 22 cp can have a variety of configuration and orientations all selectable by the user.
- the conductive pathways 22 cp can be evenly distributed or spaced within the sample volume 5 sv . This can be achieved by either the configuration of the members 22 m , through the use of switching device 29 or a combination of both.
- the conductive pathways can be aligned with respect to one or more sensing members 22 m , the introducer or the tumor volume 5 ′′ itself. In an embodiment shown in FIG.
- one member 22 mc can be positioned at the center of tissue volume 5 sv with other members 22 m positioned in a surrounding relationship so excitation current travels in a plurality 22 pp of conductive pathways 22 cp to and from the center of the sample volume 5 sv to the outlying impedance sensor members 22 m .
- this configuration results in an impedance determination for the sample volume 5 sv which is an average of the individual impedance for each conductive pathway providing the benefit of a more a statistically representative sample of impedance for a selected tissue volume than provided by a single pathway alone.
- Members 22 m can be collectively coupled to a positive terminal of power supply 20 with member 22 m configured as a return electrode and coupled to a return terminal of power supply 20 .
- member 22 m can be eccentrically positioned with respect to members 22 m and/or positioned on the periphery of a sample volume defined by members 22 m .
- this embodiment provides the benefit of an average and more representative impedance determination for the sample volume.
- this configuration also provides the benefit of being able to more readily detect and locate non-uniformities in impedance and hence tissue properties occurring on the boundaries or otherwise non centered portions of the tissue volume.
- Use of switching device 29 allows for the dynamic switching of any of the sensing members 22 m to a return electrode to more readily detect the location of a potential non-uniformity within the sample volume by rapidly scanning different portions of the periphery of the volume.
- members 22 m can comprise a first array (such as perpendicular array) and a second array.
- the first array can be rotated to obtain different conductive paths to the second array so as to sample different tissue volumes and/or provide multiple samplings of the same volume (via different conductive paths) to improve accuracy and precision of the measurement and reduce noise.
- this embodiment also allows detection of incomplete ablation by comparing a determined impedance from a first group of conductive pathways 22 cp 1 defined by first array 22 a 1 to a second group of conductive pathways 22 cp 2 defined by second array 22 a 2 .
- apparatus 10 can be configured to simultaneously sample different locations within target tissue site 5 ′ utilizing switching device or multiplexer 29 or other switching means described herein or known in the art.
- a first group of selected conductive pathways 22 cp ′ can be used to sample a local first volume 5 sv 1 and a second group of selected conductive pathways 22 cp ′′ can selected to do so for a second volume 5 sv 2 and a third group of selected conductive pathways 22 cp ′; can be so selected to do so for a larger or global sample volume 5 sv 3 defined or circumscribed by multiple sensor tipped members 18 or sensing members 22 m .
- Each sample volume results in a separate impedance profile 19 p .
- sample volumes 5 sv 1 , 5 sv 2 and 5 sv 3 produce impedance profiles 19 s 1 , 19 s 2 and 19 s 3 respectively, all or portion of which can be compared to one another or a database of impedance profiles 19 db using comparison/pattern recognition algorithms of module 19 m other software or computational means.
- the determined impedance signal for each sample volume can integrated or otherwise analyzed by module 19 m or other computational means to determine an impedance vector 22 v and loci of impedance 22 i for each respective sample volume (e.g. impedance vectors 22 v 1 , 22 v 2 , 22 v 3 ; and impedance loci 22 l 1 , 22 l 2 and 22 l 3 ).
- one or more sensors 22 or sensing members 22 m can be coupled to an impedance determination and monitoring device 19 .
- Monitoring device 19 includes circuitry described herein to measure voltage from the excitation current and subsequently calculate impedance. Further monitoring device 19 can also be configured to measure, calculate and record complex impedance, an impedance profile 19 p and a complex impedance profile 19 pc resulting from various tissue bioelectric properties including, impedance conductance, capacitance, etc.
- monitoring device 19 can include logic resources 19 lr such as a microprocessor and memory resources 19 mr such as RAM or DRAM chip configured to analyze, store and display tissue impedance profile 19 p and/or other bio-electric information derived from sensing member 22 m and/or sensing array 22 a .
- Impedance monitoring device 19 can also be coupled to a display device 21 so as to display real time or stored impedance profiles images and other data generated by impedance monitoring device 19 .
- Examples of display devices 21 include cathode ray tubes (CRTs), liquid crystal displays, plasma displays, flat panel displays and the like. Display device 21 can also be incorporated in an external computer coupled to impedance monitoring device 19 .
- impedance monitoring device 19 or power supply 20 can be equipped with a number of feature including but not limited to the following:
- apparatus 10 along with impedance monitoring device 19 can be configured to perform tissue identification, differentiation, ablation monitoring and mapping of tissue masses and structures.
- monitoring device 19 is configured to perform a tissue identification function using impedance information derived from sensors 22 , sensing members 22 m or array 22 a .
- impedance information derived from sensors 22 , sensing members 22 m or array 22 a .
- a discussion will now be presented on the background of tissue monitoring and identification using impedance determination. Owing to variations in composition and morphology various tissue types have different electrical properties (e.g. conductance, inductance, capacitance etc) and therefore conduct electrical energy differently particularly at certain frequencies. For example cancerous tissue will typically have a significantly higher phase than the health tissue, particularly at low frequencies.
- Impedance profile 19 p can have one or more peaks, curves and other shapes that serve as a fingerprint of the tissue type or tissue condition. Accordingly by analyzing the impedance profile 19 p and matching peaks, curve shapes, thresholds etc, profile 19 p can be utilized by embodiments of the invention to identify tissue types and conditions such as malignancy, vascularity, necrosis, thermal injury etc. Related conditions that can also be identified using this approach include abnormally mutated tissue, abnormally dividing tissue or hypoxic tissue.
- apparatus 10 can include electronic algorithms or software modules 19 m resident in logic resources 19 lr of monitoring device 19 or microprocessor 339 that are configured to analyze an impedance profile 19 p including real and imaginary components and perform tissue identification and/or tissue differentiation between one or more sampled volumes 5 sv .
- Modules 19 m can include pattern recognition algorithms, curve fitting, fuzzy logic or other numerical methods known in the art.
- modules 19 m can be configured to compare profile 19 p to a database of profiles 19 db stored in memory resources 19 mr an use curve fitting or other numerical methods known in the art to provide and display a correlation coefficient or statistic (e.g. p value) indicative of the probability of a match to a given tissue type or condition.
- a correlation coefficient or statistic e.g. p value
- the impedance and other bioelectric properties that can be analyzed to determine a tissue type or condition include, but are not limited to complex impedance (real and imaginary components), extracellular impedance, intracellular impedance, interstitial impedance, cell membrane capacitance, intracellular capacitance.
- monitoring device 19 can be configured to analyze only selected frequencies of an impedance profile or other bioelectric property measurement that are known to identify or correlate to selected tissue characteristics, rather than analyzing the full frequency spectrum of the profile. Such frequencies can be selected from a pre-existing database or determined in vivo using swept frequency methods described herein. This approach presents the advantage of faster signal processing times, allowing a faster tissue assessment and diagnosis using fewer computational resources. In turn this enables the size, power requirements and complexity of the control and display instrumentation to be reduced.
- apparatus 10 and monitoring device 19 can be configured to utilize complex impedance curves to identify and characterize different tissue types and conditions. Accordingly, monitoring device 19 can be configured to measure generate and display curves or profiles 19 pc of complex impedance. Curves can be both two-dimensional and three-dimensional. For two-dimensional plots the x-axis can be the real component and the y-axis the imaginary component while three-dimensional plots can include an axis for time or frequency.
- a particular frequency can be selected for subsequent impedance complex impedance determinations and analysis which has the greatest sensitivity for a given tissue type or condition and/or results in a complex impedance curve having the greatest predictive value for the desired tissue type or condition.
- the selection can done using methods described herein or by calibration against a set of in vitro standards representative of the desired tissue condition, by visual determination/estimation of the user or a combination of both.
- the course of an ablation can be monitored using impedance determinations made at multiple frequencies.
- the impedance at some frequencies will rise, fall or do both over the time course of the ablation.
- an ablation monitoring algorithm or module can be configured to look for impedance characteristic curve shapes, slopes threshold, etc. in two or more impedance curves made at different frequencies as a predictor of an ablation endpoint.
- Such information can be used to provide a more reliable indicator of clinical endpoint as well monitor and titrate the delivery of ablative energy or ablative therapy to the requirements.
- differences in the impedance-frequency spectrum, pre-, inter- and post-ablation can also be also be used to monitor and evaluate the ablation process.
- complex impedance curves can be used to monitor and assess the ablation process including determination of clinical endpoints as described herein.
- the apparatus can be configured to utilize complex impedance curves to identify and characterize different tissue types, tumors etc.
- Related embodiments can be configured to generate and display three-dimensional plots of complex impedance utilizing time and or position as the third axis. For positional 3-D plots the locus of impedance 502 can be calculated and graphically displayed as is shown in FIG. 10 or in another graphical format known in the arts including 2-D.
- the impedance locus can be utilized to characterize the ablation process and can be used to perform vector analysis of RF or microwave current or other ablative energy vector, (e.g. the magnitude and direction of the ablative energy), as well as vector analysis of physiologic indicators of cell necrosis, such as changes in interstitial conductivity.
- the impedance locus can be utilized to facilitate location and display of a tumor volume, ablation volume, or other desired tissue mass or volume at the target tissue site.
- the generation and display of the impedance locus 5 li in 2-D or 3-D) can be configured to provide the medical practitioner an easily discernable visual cue as to the location, size or movement of the ablation, tumor or other selected tissue volume.
- the monitoring device can also be employed to monitor in real time the progression of an ablative procedure including the progression of an ablation volume resulting from the delivery of energy to a target tissue volume. This reduces damage to tissue surrounding the targeted mass to be ablated.
- a determination of the selected tissue mass periphery can be made, as well as a determination of when cell necrosis is complete. If at any time sensor results determine that an impedance level or ablation endpoint has been met or exceeded, then an appropriate feedback signal is inputted to power source which then stops or otherwise adjust the levels of ablative energy delivered to the electrodes.
- the target tissue site can also be probed and interrogated by the sensor array after the completion of ablation to confirm that ablation is complete for the entire desired volume ablation volume.
- the three-dimensional volume of the ablation can be assessed and the margin of ablated healthy tissue beyond the tumor mass can also be measured.
- an embodiment for monitoring the ablative process the impedance signal intensity 510 for a sample volume of tissue bounded by two or sensing members or array can be monitored over time using a monitoring device, a power supply or other bioelectric signal monitoring means known in the art.
- An endpoint for ablation can be determined based on either a selectable threshold value 514 of signal 510 or an inflection point or change in slope 512 (e.g. a derivative) of curve 506 or a combination of both.
- signal 506 can comprise the subtraction of a baseline (or reference) impedance determination 508 of a nearby, but non-ablated tissue volume, from a real time measurement 504 of the target tissue volume during the time course of ablation.
- Threshold values 514 and signals 510 can be input and stored in logic resource coupled to the impedance monitoring device or incorporated into an electronic algorithm controlling the delivery of energy which can be stored in a controller or processor coupled to the power supply.
- introducer in various embodiments, can be a trocar, catheter, multi-lumen catheter, or a wire-reinforced or metal-braided polymer shaft, a port device, a subcutaneous port device, an elongated delivery device, or other medical introducing device known to those skilled in the art.
- the introducer as well as resilient member can be configured to have varying mechanical properties along their respective lengths including, but not limited to variable stiffness, torquability, column strength, flexural modulus, pushability, trackability and other mechanical performance parameters known in the catheter arts. Referring to FIG.
- stiff shafts sections 520 disposed within portions of the introducer along its length 522 . It can also be accomplished through the use of braids, varying/tapered diameters and different materials (e.g. stiffer materials joined to flexible materials) positioned over portions of introducer. Sections 520 made from different materials can be joined using introducer bonding methods known in the art such as hot melt junctions (with and without capture tubes/collates), adhesive joints, but joints and the like. The joining method can be controlled/selected so as to control the mechanical transition 12 mt between two sections to a desired gradient (e.g. smooth vs. abrupt).
- introducer bonding methods known in the art such as hot melt junctions (with and without capture tubes/collates), adhesive joints, but joints and the like. The joining method can be controlled/selected so as to control the mechanical transition 12 mt between two sections to a desired gradient (e.g. smooth vs. abrupt).
- introducer 12 and/or member 18 can be configured to have stiffer proximal portions and more flexible distal portions so as to facilitate one or more of the following (i) introducer steerability and positioning of the introducer distal tip 16 at a selectable target tissue site, (ii) reduced risk of perforation, abrasion and other trauma during the positioning the introducer to the tissue site.
- the transition from the stiffer to the more flexible portion can be configured to be either (i) gradual with a linear or curve-linear transition, (ii) a step or abrupt transition, and (iii) combinations thereof.
- introducer 12 can have a substantially circular, semicircular, oval or crescent shaped cross sectional profile 12 cs , as well as combinations thereof along its length.
- lumens 13 can have a circular, semicircular, oval or crescent shaped cross section for all or a portion of the length of introducer 12 .
- Suitable materials for introducer 12 and resilient member 18 include, but are not limited to, stainless steel, shape memory alloys such as nickel titanium alloys, polyesters, polyethylenes, polyurethanes, Pebax®, polyamides, nylons, copolymers thereof and other medical plastics known to those skilled in the art. All or portions of introducer 12 can be coated with a lubricious coating or film 524 which reduces the friction (and hence trauma) of introducer 12 with hepatic, pulmonary, bone and other tissue. Such coatings can include but are not limited to silicones, PTFE (including Teflon®) and other coatings known in the art.
- apparatus 10 can be constructed of materials known in the art that are optimized and/or compatible with radiation sterilizations (e.g. Gamma or E-beam).
- all or portions of apparatus 10 can be configured (e.g. lumen diameter to length ratio, etc.) to be sterilized by plasma (e.g. H 2 O 2 ) sterilization by systems.
- plasma e.g. H 2 O 2
- introducer 12 or resilient members 18 can be configured to be deflectable and/or steerable using deflection mechanisms 25 which can include pull wires 15 , ratchets, cams, latch and lock mechanisms, piezoelectric materials and other deflection means known in the art.
- deflection mechanisms 25 can include pull wires 15 , ratchets, cams, latch and lock mechanisms, piezoelectric materials and other deflection means known in the art.
- the amount of deflection of introducer 12 is selectable and can be configured to allow the maneuvering of introducer 12 through oblique turns in tissue, organs, organ ducts and blood vessels.
- the distal portions of introducer 12 can be configured to deflect 0-180° or more in up to three axes to allow the tip of introducer 12 to have retrograde positioning capability.
- Deflection mechanism 25 can be coupled to, or integral with, a moveable or slidable actuator 24 ′′, 25 ′ on handpiece 24 .
- Mechanism 25 and coupled actuator 25 ′ are configured to allow the physician to selectively control the amount of deflection 25 of distal tip 16 or other portion of introducer 12 .
- Actuator 25 ′ can be configured to both rotate and deflect distal tip 16 by a combination of rotation and longitudinal movement of the actuator.
- introducer 12 can be coupled at its proximal end 14 to a handle 24 or handpiece 24 .
- Handpiece 24 can be detachable and can include ports 24 ′ and actuators 24 ′′.
- Ports 24 ′ can be coupled to one or more introducer lumens 13 (and in turn electrode lumens 72 ) and can include fluid and gas ports/connectors and electrical, or optical connectors.
- ports can be configured for aspiration (including the aspiration of tissue), and the delivery of cooling, electrolytic, irrigation, polymer and other fluids (both liquid and gas) described herein.
- Ports can include but are not limited to luer fittings, valves (one-way, two-way), toughy-bourst connectors, swage fittings and other adaptors and medical fittings known in the art. Ports can also include lemo-connectors, computer connectors (serial, parallel, DIN, etc) micro connectors and other electrical varieties well known to those skilled in the art. Further, ports can include opto-electronic connections which allow optical and electronic coupling of optical fibers and/or viewing scopes to illuminating sources, eye pieces, video monitors and the like.
- Actuators 24 ′′ can include rocker switches, pivot bars, buttons, knobs, ratchets, levers, slides and other mechanical actuators known in the art, all or portion of which can be indexed. These actuators can be configured to be mechanically, electro-mechanically, or optically coupled to pull wires, deflection mechanisms and the like allowing selective control and steering of introducer 12 .
- Handpiece 24 can be coupled to tissue aspiration/collection devices 26 , fluid delivery devices 28 (e.g. infusion pumps) fluid reservoirs (cooling, electrolytic, irrigation etc) 30 or power source 20 through the use of ports 24 ′.
- Tissue aspiration/collection devices 26 can include syringes, vacuum sources coupled to a filter or collection chamber/bag.
- Fluid delivery device 28 can include medical infusion pumps, Harvard pumps, syringes and the like. In specific embodiments, aspiration device 26 can be configured for performing thoracentesis.
- Electrodes or resilient members 18 and sensing members 22 m these members can be of different sizes, shapes and configurations with various mechanical properties selected for the particular tissue site.
- members 18 can be needles, with sizes in the range of 28 to 12 gauge with specific embodiments of 14, 16 and 18 gauges.
- Resilient members 18 are configured to be in non-deployed positions while retained in introducer 12 . In the non-deployed positions, resilient members 18 may be in a compacted state, spring loaded and generally confined within introducer 12 or substantially straight if made of a suitable memory metal such as nitinol.
- resilient members 18 As resilient members 18 are advanced out of introducer 12 they become distended to a deployed state as a result of their spring or shape memory that collectively defines an ablative volume 5 av , from which tissue is ablated as illustrated more fully in FIGS. 1 and 2 .
- the selectable deployment of resilient members 18 can be achieved through one or more of the following approaches
- resilient member 18 can be an energy delivery device or member 18 e .
- energy delivery device As described herein, in various embodiments all or a portion of resilient member 18 can be an energy delivery device or member 18 e .
- the specific energy delivery devices 18 e and power sources 20 that can be employed in one or more embodiments of the invention include but are not limited to, the following:
- a microwave power source coupled to a microwave antenna providing microwave energy in the frequency range from about 915 MHz to about 2.45 GHz;
- a radio-frequency (RF) power source coupled to an RF electrode
- a heated fluid coupled to a catheter with a closed or at least partially open lumen configured to receive the heated fluid
- a cooled fluid coupled to a catheter with a closed or at least partially open lumen configured to receive the cooled fluid
- the energy delivery device 18 e is one or more RF electrodes 18 and the power source utilized is an RF power supply.
- RF power supply 20 can be configured to deliver 5 to 200 watts, preferably 5 to 100 watts, and still more preferably 5 to 50 watts of electromagnetic energy is to the electrodes of energy delivery device 18 e without impeding out.
- the electrodes 18 are electro magnetically coupled to energy source 20 .
- the coupling can be direct from energy source 20 to each electrode 18 respectively, or indirect by using a collet, sleeve and the like which couples one or more electrodes to energy source 20 .
- electrodes 18 include at least one sensor 22 and sensing members 22 m can have a variety of shapes and geometries.
- example shapes and geometries can include, but are not limited to, ring-like, ball, hemispherical, cylindrical, conical, needle-like and combinations thereof.
- electrode 18 can be a needle with sufficient sharpness to penetrate tissue including fibrous tissue including, encapsulated tumors cartilage and bone.
- the distal end of electrode 18 can have a cut angle that ranges from 1 to 60°, with preferred ranges of at least 25° or, at least 30° and specific embodiment of 25° and 30°.
- Electrode 18 can be smooth or textured and concave or convex. Electrode 18 can have different lengths 38 that are advanced from distal end 16 ′ of introducer 12 . The lengths can be determined by the actual physical length of electrode(s) 18 e , the length 38 ′ of an energy delivery surface 18 eds of electrode 18 and the length, 38 ′′ of electrode 18 that is covered by an insulator 36 . Suitable lengths 38 include but are not limited to a range from 1-30 cms with specific embodiments of 0.5, 1, 3, 5, 10, 15 and 25.0 cm. The conductive surface area of the electrode 18 can range from 0.05 mm 2 to 100 cm 2 .
- the actual length of the electrode 18 depends on the location of tissue site to be ablated, its distance from the site, its accessibility as well as whether or not the physician performs an endoscopic or surgical procedure. Meanwhile, the conductive surface area 18 eds depends on the desired ablation volume to be created.
- electrode 18 can also be configured to be flexible and or deflectable having one or more radii of curvature 70 which can exceed 180° of curvature.
- electrode 18 can be positioned to heat, necrose or ablate any selected target tissue volume.
- a radiopaque marker 11 can be coated on the electrodes 18 e for visualization purposes.
- Electrode 18 can be coupled to introducer 12 and or an advancement member or device 15 or an advancement-retraction member using soldering, brazing, welding, crimping, adhesive bonding and other joining methods known in the medical device arts.
- the electrode 18 can include one or more coupled sensors 22 to measure temperature and impedance (both of the electrode and surrounding tissue), voltage and current other physical properties of the electrode and adjacent tissue. Sensors 22 can be at exterior surfaces of electrodes 18 at their distal ends or intermediate sections.
- Electrode 18 can be made of a variety of conductive materials, both metallic and non-metallic. Suitable materials for electrode 18 include, steel such as 304 stainless steel of hypodermic quality, platinum, gold, silver and alloys and combinations thereof. Also, electrode 18 can be made of conductive solid or hollow straight wires of various shapes such as round, flat, triangular, rectangular, hexagonal, elliptical and the like. In a specific embodiment all or portions of electrodes 18 or a second electrode can be made of a shaped memory metal, such as NiTi, commercially available from Raychem Corporation, Menlo Park, Calif.
- one or more resilient members or electrodes 18 can be covered by an insulative layer 36 so as to have an exterior surface that is wholly or partially insulated and provide a non-insulated area which is an energy delivery surface.
- insulative layer 36 can comprise a sleeve that can be fixed or slidably positioned along the length of electrode 18 to vary and control the length of the energy delivery surface.
- Suitable material for insulative layer 36 includes polyamide and fluorocarbon polymers such as TEFLON.
- insulation 36 is formed at the exterior of the electrodes 18 in circumferential patterns, leaving a plurality of energy delivery surfaces.
- insulation 36 extends along a longitudinal exterior surface of the electrodes 18 .
- Insulation 36 can extend along a selected distance along a longitudinal length of the electrodes and around a selectable portion of a circumference of the electrodes.
- sections of the electrodes can have insulation 36 along selected longitudinal lengths of electrodes as well as completely surround one or more circumferential sections of electrodes.
- Insulation 36 positioned at the exterior of electrodes 18 can be varied to define any desired shape, size and geometry of energy delivery surface.
- electrode 18 can include one or more lumens 72 (which can be contiguous with or the same as lumen 13 ) coupled to a plurality of fluid distribution ports 23 (which can be apertures) from which a variety of fluids 27 can be introduced, including conductivity enhancing fluids, electrolytic solutions, saline solutions, cooling fluids, cryogenic fluids, gases, chemotherapeutic agents, medicaments, gene therapy agents, photo-therapeutic agents, contrast agents, infusion media and combinations thereof.
- fluids 27 including conductivity enhancing fluids, electrolytic solutions, saline solutions, cooling fluids, cryogenic fluids, gases, chemotherapeutic agents, medicaments, gene therapy agents, photo-therapeutic agents, contrast agents, infusion media and combinations thereof.
- a conductivity enhancing solution 27 can be infused into a target tissue site 5 ′ including a tissue mass.
- the conductivity enhancing solution can be infused before during or after the delivery of energy to the tissue site by the energy delivery device.
- the infusion of a conductivity enhancing solution 27 into the target tissue 5 ′ creates an infused tissue area that has an area of increased or otherwise controlled electrical conductivity (verses non-infused tissue) so as to act as an enhanced electrode 40 or an area of controlled tissue impedance 40 .
- tissue impedance and the current densities in enhanced electrode 40 are controlled to an optimum level allowing the delivery of greater amounts of RF power into electrode 40 and target tissue 5 ′ without shut downs of the RF power supply due to excessive localized impedance.
- the infusion of the target tissue site with conductivity enhancing solution provides two important benefits: (i) faster ablation times; (ii) the creation of larger lesions; and (iii) reduced incidence of impedance-related shut downs of the RF power supply. This is due to the fact that the conductivity enhancing solution reduces current densities and prevents desiccation of tissue adjacent the electrode that would otherwise result in increases in tissue impedance.
- these and related embodiments provide the benefit of a significantly reduced risk of pad burns to the patient due to the use of lower power levels which lowers the current density at the interface between the patients skin and a ground pad electrode.
- a preferred example of a conductivity enhancing solution is a hypertonic saline solution.
- Other examples include halide salt solutions, colloidal-ferro solutions and colloidal-silver solutions.
- the conductivity of enhanced electrode 40 can be increased by control of the rate and amount of infusion and the use of solutions with greater concentrations of electrolytes (e.g. saline) and hence greater conductivity.
- the use of conductivity enhancing solution 27 allows the delivery of up to 2000 watts of power into the tissue site impedance shut down, with specific embodiments of 50, 100, 150, 250, 500, 1000 and 1500 watts achieved by varying the flow, amount and concentration of infusion solution 27 .
- the infusion of solution 27 can be continuous, pulsed or combinations thereof and can be controlled by a feedback control system 329 described herein.
- a bolus of infusion solution 27 is delivered prior to energy delivery followed by a continuous delivery initiated before or during energy delivery with energy delivery device 18 e or other means.
- the apparatus can include impedance determination, tissue ablation capabilities and can be configured to not only infuse fluid but also to do so as to control tissue impedance at the target tissue site.
- An embodiment of an ablation apparatus configured for tissue infusion tissue for impedance control is shown in FIG. 23 b .
- fluid delivery device 28 can be a syringe pump configured with multiple syringes 28 s , multiple-bore syringes 28 b with each syringe coupled to a separate fluid lumen or channel 72 directly or via a valve such as an indexing valve.
- infusion device 28 can include an indexing valve as well as multi-lumen tubing or multi-channel tubing connected to one or more electrode lumens 72 via introducer lumen 13 or other channel within external to introducer 12 .
- Multi-channel tubing can be fabricated from PEBAX, silicone, polyurethane or other resilient polymer using extrusion technology known in the art.
- Use of an indexing valve allows independent control of flow rates through individual lumens 72 in turning allowing for independent control of infusion through electrodes 18 . This in turn, allows for greater control of the infusion process including the creation of smaller or larger zones of infusion around individual electrodes 18 .
- Such control is particularly beneficial for bipolar embodiments where, in order to prevent shorting, it is desirable not to have a continuous infusion zone between one or more bipolar electrodes 18 and a return electrode.
- the tissue ablation apparatus can be configured to infuse a fluid 27 to control or maintain tissue impedance at the target tissue site.
- this can be accomplished using feedback control devices, systems, a control for the fluid delivery device, and algorithms described herein and known in the art such as proportional, proportional-integral control or proportional-integral-derivative methods.
- feedback control system can be coupled to fluid delivery device (or the fluid delivery control, not shown) and the impedance monitoring device in order to receive an input or monitoring signal from the monitoring device and output a control signal to device.
- the delivery of fluid to tissue site can be flow or pressure controlled.
- control system regulates impedance by regulating the infusion flow rate through one or more channels, the infusion fluid pressure within channels or a combination of both.
- Flow rates can be controlled to a range of about 0.01 to about 2.5 ml/per channels with specific embodiments of 0.1, 0.25. 0.5, 0.75, 1.0, 1.5 and 2.0 ml/min.
- Pressure can be control to a range of 0.01 to 5 atms with specific embodiments of 0.1, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.5 atms.
- the local impedance is the impedance along a conductive pathway 22 within target tissue site which in bipolar embodiments can be measured between one or more electrodes.
- the system impedance is the cumulative impedance of the local impedance along conductive pathway, the impedance on the conductive pathway between the rest of the body (the abdomen, legs, skin etc) and a ground pad electrode, the impedance of the groundpad electrode, the impedance of the RF generator, the impedance of the trocar or delivery device, the impedance of electrodes and the impedance of all the associated cabling coupling one or more components of the apparatus to devices and component described herein (e.g. the RF generator, etc.).
- Local impedance can be measured directly by measuring the impedance along conductive pathways between one or more electrodes in bipolar embodiments.
- local impedance can be measured indirectly by taking baseline impedance determinations of system impedance prior to ablative therapy and then subtracting this value from impedance determinations during ablative therapy.
- the impedance of the apparatus and RF generator can be predetermined using a calibration device or a pre-calibrated tissue/body impedance simulator. Again these values can be stored and subtracted from real time system impedance determinations to yield local impedance.
- Local impedance can determined between one or more electrodes or can be determined between the interior and exterior of a hollow electrode by coating an exterior portion of electrode with an insulative coating such that current flows between non-insulated exterior portions of the electrode and the interior portions.
- all or portions of electrode can comprise a coaxial cable with an interior electrode and an exterior electrode.
- the impedance measured by impedance determination device or power generator is system impedance.
- System impedance includes the local impedance (LI) from the target tissue site and from the rest of the body (BI) as well as the groundpad and the generator and cables.
- the impedance from the rest of the body (BI) is fixed while the local impedance (LI) is variable.
- LI local impedance
- IE impedance efficiency
- This value is the ratio of local tissue impedance over the system impedance (LI/SI).
- the IE value allows for the determination of another parameter known as power dissipation efficiency (PDE).
- PDE power dissipation efficiency
- This value is the ratio of the amount of the RF power actually dissipated at the target tissue site (due to ohmic heating) to the total power delivered from the RF generator for a given power setting.
- PDE can be theoretically determined by multiplying the RF power setting by the IE. Maximizing PDE maximizes the amount of power dissipated at the lesion and hence lesion heating and thermally induced necrosis.
- PDE can be optimized/maximized by a variety of means including control systems and methods described herein. Accordingly, various embodiments of the invention can be configured to optimize PDE by control of one or more of the following parameters including, but not limited to, target tissue site impedance including target tissue impedance gradients as function of distance from the electrode, electrode impedance, electrode surface impedance, system impedance and target tissue current density including current density gradients as a function of distance from the electrode. One or more of these parameters can be set point controlled using control systems and methods described herein. In an embodiment shown in FIG. 23 d , PDE is maximized by controlling system impedance and/or local impedance to an optimal value 526 or range.
- Embodiments of the present invention utilize a contrary and novel approach by controlling impedance (either local or system) above a minimum value or to an optimum value in order to maximize PED.
- This optimal value is above a minimum value because when local impedance is too low, there is a reduced power dissipation at the target tissue site in relation to the rest of body, (e.g. the legs, torso and interface between the ground-pad and skin).
- This approach employed by various embodiments of the invention represents a radical departure from previous RF ablative methodologies which were based on the belief that the lower the tissue impedance the better.
- Embodiments of the present invention are configured to achieve increased power delivery to the tissue site by actually increasing local impedance to higher levels so as to obtain an increased IE value.
- tissue impedances below the optimal impedance 526 result in sharp drop off (e.g. a second order, curvilinear or logarithmic decrease) of the delivered power 528 on the curve 530 , while values above the optimal impedance results in a more gradual linear or asymptotic decrease.
- delivered power to the target tissue site can be controlled by controlling local impedance via the infusion rate of a conductive solution or other means described herein. Accordingly, in various embodiments local impedance can be controlled to be not only set at the optimal impedance value, or optimal impedance range 532 , but can also be maintained at values above or below the optimal impedance over the time course of the ablative therapy.
- this allows the medical practitioner to more precisely titrate the delivery of ablative energy to the size, shape and consistency of a specific tumor volume, as well as account for local anatomy such as nearby or internal blood vessels. Further, these and related embodiments allow the medical practitioner to rapidly increase or decrease delivered power over the time course of the ablation without having to change the power setting on the RF generator.
- Various embodiments of the invention can include preprogrammed flow rate profiles or programs (stored in memory resources described herein) so as to produce a time variable local impedance profile over the time course of the ablation.
- the flow rate could be programmed to operate to right of the linear portion of the curve 530 so as to gradually increase delivered power, then shift to impedance value at optimal impedance and then shift the impedance to the left of optimal impedance to rapidly decrease delivered power near the end of the ablation.
- This embodiment provides the benefit of minimizing damage to surrounding healthy tissue near the end of ablation.
- a reverse profile could be employed.
- Related embodiments could include infusion/impedance profiles that have multiple intervals shifting to the left and the right of the optimal impedance.
- the apparatus could also be configured to allow the practitioner to manually control the flow rate/impedance profile to meet the requirements of individual tumor volumes.
- a database of infusion/impedance profiles could be stored in a memory resources or a database.
- optimal impedance can be controlled and maintained by the infusion of a conductive solution to the target tissue site to control local impedance. This can be accomplished by inputting measurements from sensors and/or electrodes to a control system electronically coupled to an infusion device described herein.
- control system can be a closed loop system employing Proportional, PI, PID methods as well as fuzzy logic algorithms known in the art.
- a control system can be configured to control both the flow rate as well as the conductivity of the infused solution by controlling the electrolyte concentration/salinity of the infused solution.
- control valve can be utilized to mix the two solutions in a proportion to achieve the desired electrolyte concentration using conductivity/pH sensors known in the art to monitor the output electrolyte concentration.
- two or more process parameters can be controlled to maintain local or system impedance at an optimal impedance value.
- RF generator power and the infusion rate can be controlled in concert to control local or system impedance.
- RF power can be increased and infusion rate decreased. This serves to dry out the target tissue site by vaporizing or otherwise driving out fluid from the target tissue site and/or allowing the fluid to dissipate from the tissue site.
- the fluid delivery device can be coupled to a vacuum source or otherwise be configured to apply negative pressure to suction off fluid from the target tissue into the lumen(s) of the electrode or lumen(s) of the introducer.
- the optimal impedance or impedance range can be maintained in the range of 5 to 200 ohms with a preferred range of 30 to 150 ohms and specific embodiments of 10, 15, 20, 30, 40, 50, 75, 80, 90, 100, 110 and 120 ohms.
- the value of the optimal impedance can be determined using a calibration software program and/or a calibration test fixture (not shown) which can be configured to simulate local tissue and/or body impedance using biomedical instrument calibration methods known in the art.
- the doctor would connect an ablation apparatus or catheter to a RF generator in order to determine a unique value of the optimal impedance for given catheter generator combination.
- each catheter can be factory calibrated using biomedical instrument calibration methods known in the art.
- the value could be stored in a microprocessor or ROM chip known in the art that is integral or coupled to the apparatus and configured to electrically signal the measurement device and/or the generator. Also the control system, measurement device, or the generator can be configured to allow the medical practitioner to manually enter a value for the optimal impedance.
- the infusion of solution can be controlled to control the positional impedance profile or gradient 534 (that varies as a function of the distance from the electrode) and hence a power dissipation gradient 536 .
- An optimal impedance gradient 538 can be selected to in turn produce an optimal power dissipation gradient 540 to optimize the delivery of power in the target tissue site.
- the infusion flow rate can be controlled to maintain the impedance gradient substantially constant (ins shape and position) over the time course of the ablation.
- flow rates can be increased or decreased as needed by control system 329 to shift the impedance gradient over the time course of ablative RF power delivery to optimize ablation volume and minimize ablation times.
- Increase infusing rates allows the impedance gradient to be shifted to the left to minimize tissue desiccation and charring and prevent or reduce impedance induced shut downs of the generator (so called impeding out).
- the infusion of fluid can be configured to produce a constant impedance profile 546 , 548 or a increasing gradient 542 , 544 .
- the use of an optimal impedance gradient provides the benefit of a more precise or fine tuned control of the ablation process by accounting for impedance differences within the target tissue site particularly those adjacent the electrode.
- the impedance gradient 534 can be configured to be linear, logarithmic, second order, third order or other polynomial function.
- Flow rate programs or subroutines that can be used to produce such gradients can be stored in memory resources and/or logic resources.
- sensors can include all or a portion of the resilient members.
- resilient member 18 when resilient member 18 is made of a conductive material the length of the sensor 22 l can be defined by the placement of a slidable or fixed insulative layer 36 .
- sensors 22 can fabricated from a variety of conductive materials and metals known in the art including stainless steel, copper, silver, gold, platinum and alloys and combinations thereof. Referring now to FIG. 19
- sensing members 22 m and/or sensor 22 can be configured to have a resistance gradient 22 g along all or portions of their lengths 22 l .
- the resistance gradient can be increasing or decreasing in a linear, second order, third order, exponential or other fashion.
- the resistance gradient is configured to compensate for resistance losses (i.e.
- the gradient can be so configured to produce the least resistance (e.g. maximum conductance) at the distal tip 22 d of the sensor 22 and increasingly moving in a proximal direction along.
- the gradient can be produced via the use of coating 22 c either by varying the thickness or composition of the coating, or a combination of both along the length 22 l of the sensor using methods known in the art. Further, by compensating for such resistance changes or losses along the length or area of the sensor, these and related embodiments also improve the detection of real and imaginary components of complex impedance. In other related embodiments, the resistance gradient can be in a radial direction or a combination of radial and linear directions with respect to the sensor length 22 l.
- the sensors can comprise a number of biomedical sensors known in the art including but not limited to thermal sensors, acoustical sensors, optical sensors, voltage sensors, current sensors, pH sensors, gas sensors, flow sensors positional sensors and pressure/force sensors.
- Thermal sensors can include thermistors, thermocouples, resistive wires, optical sensors and the like.
- Acoustical sensors can include ultrasound sensors including piezoelectric sensors which can be configured in an array.
- Pressure and force sensors can include strain gauge sensors including silicon-based strain gauges.
- the senor can be selected to measure temperature along with impedance to compensate for any temperature related bias or hysteresis in the impedance determination. Accordingly, in an embodiment a feedback signal from a temperature sensor or temperature calculation device can be inputted to an impedance calculation device described herein to compensate for such variation. Temperature monitoring can also be used for real time monitoring of energy delivery. If at any time date from the sensors determines that a desired cell necrosis temperature is exceeded, then an appropriate signal is sent to the controller which then regulates the amount of electromagnetic energy delivered to the electrodes.
- the position and size of an ablation volume produced by the delivery of electromagnetic energy can be controlled via the frequency of the ablative energy delivered.
- Lower electromagnetic frequencies such as RF frequencies (e.g. 1 kHz to 1 MHZ) produce a more localized energy concentration (e.g. current density) with the resulting zone of energy concentration or ablation zone 5 az occurring close to the energy delivery electrode/antenna in terms of a lateral distance 18 dl or other direction.
- Higher frequencies such as microwaves result in a more distant energy concentration and resulting ablation zone. As shown in FIGS.
- the position, shape and size of the resulting lesion can be precisely controlled and even steered. This can be accomplished by electrically isolating one or more electrodes 18 to allow for the use of separate frequencies for each electrode. Further, one or more isolated electrodes can be coupled to multiplexing circuitry, and/or control resources coupled to the power sources and individual electrodes/antenna. Such circuitry and control resources can be used to turn individual electrodes or antenna off and on as well as control/set the frequency of each. In use, these and related embodiments provide the benefit of allowing the size, position and shape of the lesion to be precisely controlled and/or titrated in order to meet the therapeutic needs of the target tissue.
- frequency energy source e.g. microwave vs. RF
- one or more electrodes can have segmented portions 18 sp so as to allow the electrodes to emit or radiate energy at different wavelengths from different segmented portions 18 sp of the electrode 18 . Segmentation can be achieved through the use of electrically insulated sections 36 s.
- segmented electrodes allows the creation of segmented ablation zones 5 azs including a first and second segmented zone 5 azs 1 and 5 azs 2 .
- the size and shape of the segmented ablation zones can be controlled by be discontinuous or overlapping.
- Such embodiments also provide the ability to avoid injury to anatomical structure such as blood vessels, nerves etc., which may be in close proximity or actually be surrounded by the tumor to be treated. For example, in an embodiment shown in FIG.
- the segmented ablation zones 5 azs 1 and 5 azs 2 can be sized and positioned (via frequency control of the ablative frequencies delivered to each electrode) to have sufficient space between each zone to avoid damaging a blood vessel 5 bv or other critical structure 5 as which lies between two or more electrodes 18 .
- the ablative frequencies delivered to each electrode segmented portion 18 sp could be reconfigured to produce overlapping segmented ablation zones 5 azs as is shown in FIG. 25 c.
- the medical practitioner would position the apparatus and then image the target tissue site (using imaging systems known in the art such as medical ultrasound or CAT scan technology) to identify both the tumor and critical structures and then utilize that image to control the input frequency to the energy delivery device to produce the desires lesion size and shape to completely ablate the tumor while avoiding the critical structure.
- the image could be electronically stored and be analyzed to identify tumors and surrounding anatomy (using imaging processing methods known in the art such as edge detection algorithms resident within a processor of the imaging device) with the output feed into a power control software module, coupled to the power supply, that controls the power frequency to produce the desired ablation volume.
- Another benefit, of these and related embodiments is the ability to produce an energy or thermal gradient within a target tissue site.
- Exemplary embodiments for the use of this capability include delivering larger amounts of energy to the center of a tumor and less to the periphery in order to produce higher temperatures and ensure complete ablation at the center and minimize risk of thermal injury to surrounding healthy tissue.
- increased energy could also selectively be directed to the tissue tract made by the RF needle or probe (or other penetrating energy delivery device) in penetrating the tumor and surrounding tissue to ensure that no living malignant tissue is dragged back through the tract upon removal of the RF needle.
- a process 100 for generating and displaying an impedance map or impedance derived image 4 ′ includes one or more of the following steps, all or a portion of which, can be implemented as an electronic instruction set on a processor or logic resources described herein.
- Impedance array 22 a and/or apparatus 10 can be positioned 101 within or near the desired sample volume 5 sv and/or conductive paths 22 cp can be selected 105 so as to define, and thus select 110 , a particular sample volume 5 sv .
- the volume is then imaged 200 using all or a portion of the sensing members 22 m or sensors 22 that comprise array 22 a .
- a decision 300 can then be made to perform one or more re-images of the sample volume in order to enhance image resolution.
- different excitation currents can be applied to the target tissue site and the voltage measurements repeated over time to increase measurement accuracy and precision through increased sampling and reducing signal bias or noise that may occur at a particular excitation current.
- Signals 22 i from impedance array 22 a can then be signaled or inputted 400 to logic resources 19 lr include module 19 m which can include an image processing sub-module 19 mi .
- Sub-module 19 mi includes subroutines or algorithms configured to generate an impedance map or derived image 4 ′ of all or a portion of the target tissue volume 5 ′ using image/signal processing methods including, but not limited to, edge detection, filtering, approximating techniques, volume imaging, contrast enhancement, fuzzy logic and other methods known in the art.
- image/signal processing methods including, but not limited to, edge detection, filtering, approximating techniques, volume imaging, contrast enhancement, fuzzy logic and other methods known in the art.
- one or more signals 22 i from array 22 a can be inputted or signaled 500 to memory resources 19 mr (or an externally coupled data storage device) and stored as an impedance data set 22 ds in memory resources 19 mr .
- all or a portion of data set 22 ds can inputted to sub-module 19 mi and processed 600 as described herein to generate an impedance map or impedance derived image 4 ′ which can then be displayed 700 on display device 21 or other display means.
- a decision 800 can then be made to image a new sample volume and the process can repeated starting at the positioning step 101 or the selecting conductive pathway step 105 .
- the imaging or mapping process can be facilitated by rotating array 22 a about introducer axis 12 al or advancing and retracting one or more sensing members 22 m from members 18 or a combination of both.
- module 19 m or 19 mi can include an algorithm utilizing Laplace's equation to calculate impedivity or resistivity from the known voltages and currents measured at one or more conductive pathways 22 cp within the target tissue volume. Reference measurements or normalization methods may be used to account for noise in the measurements.
- impedance and other bioelectric measurements described herein can be analyzed and converted from the frequency domain to the time using transform function including Fourier transforms, fast Fourier transforms, wavelet analysis methods and other numerical methods known in the art. These functions and methods can be incorporated into algorithms or subroutine within module 19 m or 19 mi .
- These algorithms incorporating wavelet functions and transforms can be configured to analyze and solve multidimensional and multi-frequency data and associated functions and equations.
- modules 19 m or 19 mi utilizes spline wavelets to allow analysis and synthesis of discrete data on uniform or non-uniform tissue sample sites without any boundary effect.
- Image module 19 mi can also include subroutines to perform interpolation such as linear, quadratic or cubic spline interpolation between individual determined impedance values from image data set of a given sample volume. This improves image quality including resolution without any substantial loss of spatial or contrast detail.
- the image processing module 19 mi can be configured to allow the user to select both the interpolative or other image processing algorithms to be performed as well as the area of the image to be so processed. Thus, the user can select all or a portion of the image to enhance, providing faster image processing times (by not having to process the entire image) as well improving image quality and other overall usability of the imaging apparatus/system.
- the image processing module 19 mi can also include gray scale and color contrast capabilities which can be selectable.
- Both the gray scale and color can be scaled or normalized against a baseline measurement obtained from the individual patient, a calibration measurement or a statistic (e.g. mean) value for a patient sample group or a parameter (e.g. average) for a patient population or a combination thereof.
- a statistic e.g. mean
- a parameter e.g. average
- monitoring apparatus 19 and module 19 mi can be configured to generate impedance images with the maximum visual distinction or contrast between tumorous tissue and healthy tissue. This can be accomplished by using the frequency or combination of frequencies that yield the maximum sensitivity for selected tissue types or tissue conditions indicative of a tumor (e.g. degree of vascularity temperature etc). In an embodiment, such frequencies can be determined by performing swept frequency measurements and generating an impedance map or image using one or more frequencies which resulted in the best contrast between healthy tissue and tumorous tissue or other tissue condition (e.g. thermal injury, necrosis etc.).
- frequencies can be determined by performing swept frequency measurements and generating an impedance map or image using one or more frequencies which resulted in the best contrast between healthy tissue and tumorous tissue or other tissue condition (e.g. thermal injury, necrosis etc.).
- a feedback control system 329 can be connected to energy source 320 , sensors 324 impedance array 322 a and energy delivery devices 314 and 316 .
- Feedback control system 329 receives temperature or impedance data from sensors 324 and the amount of electromagnetic energy received by energy delivery devices 314 and 316 is modified from an initial setting of ablation energy output, ablation time, temperature, and current density (the “Four Parameters”).
- Feedback control system 329 can automatically change any of the Four Parameters.
- Feedback control system 329 can detect impedance or temperature and change any of the Four Parameters in response to either or a combination.
- Feedback control system 329 can include a multiplexer (digital or analog) to multiplex different electrodes, sensors, sensor arrays and a temperature detection circuit that provides a control signal representative of temperature or impedance detected at one or more sensors 324 .
- a microprocessor can be connected to the temperature control circuit.
- energy delivery devices 314 and 316 will now be referred to as RF electrodes/antennas 314 and 316 and energy source 320 will now be an RF energy source.
- RF electrodes/antennas 314 and 316 energy delivery devices 314 and 316 will now be referred to as RF electrodes/antennas 314 and 316 and energy source 320 will now be an RF energy source.
- all other energy delivery devices and sources discussed herein are equally applicable and devices similar to those associated with the treatment apparatus can be utilized with laser optical fibers, microwave devices and the like.
- the temperature of the tissue, or of RF electrodes 314 and 316 is monitored, and the output power of energy source 320 adjusted accordingly.
- the physician can, if desired, override the closed or open loop system.
- the user of the apparatus can input an impedance value that corresponds to a setting position located at the apparatus. Based on this value, along with determined impedance values, feedback control system 329 determines an optimal power and time needed in the delivery of RF energy. Temperature is also sensed for monitoring and feedback purposes. Temperature can be maintained to a certain level by having feedback control system 329 adjust the power output automatically to maintain that level.
- feedback control system 329 determines an optimal power and time for a baseline setting. Ablation volumes or lesions are formed at the baseline first. Larger lesions can be obtained by extending the time of ablation after a center core is formed at the baseline. The completion of lesion creation can be checked by advancing energy delivery device 316 from the distal end of the introducer to a position corresponding to a desired lesion size and monitoring the temperature at the periphery of the lesion such that a temperature sufficient to produce a lesion is attained.
- the closed loop system 329 can also utilize a controller 338 to monitor the temperature, adjust the RF power, analyze the result, refeed the result, and then modulate the power. More specifically, controller 338 governs the power levels, cycles, and duration that the RF energy is distributed to electrodes 314 and 316 to achieve and maintain power levels appropriate to achieve the desired treatment objectives and clinical endpoints. Controller 338 can also in tandem analyze spectral profile 19 p and perform tissue biopsy identification and ablation monitoring functions including endpoint determination. Further, controller 338 can in tandem govern the delivery of electrolytic, cooling fluid and, the removal of aspirated tissue. Controller 338 can be integral to or otherwise coupled to power source 320 .
- controller 338 can be coupled to a separate impedance determination current source 317 and can be configured to synchronize the delivery of pulsed power to tissue site to allow for sensing by sensors or sensor array 322 a during off power off intervals to prevent or minimize signal interference, artifacts or unwanted tissue effects during sampling by sensors 324 or sensor array 322 a .
- the controller 338 can also be coupled to an input/output (I/O) device such as a keyboard, touchpad, PDA, microphone (coupled to speech recognition software resident in controller 338 or other computer) and the like.
- current source 317 can be a multi-frequency generator such as those manufactured by the Hewlett Packard Corporation (Palo Alto, Calif.) and can include or be coupled to a spectrum analyzer manufactured by the same company.
- a control signal is generated by controller 338 that is proportional to the difference between an actual measured value and a desired value.
- the control signal is used by power circuits 340 to adjust the power output in an appropriate amount in order to maintain the desired power delivered at the respective primary and/or secondary antennas 314 and 316 .
- temperatures detected at sensors 324 provide feedback for maintaining a selected power.
- the actual temperatures are measured at temperature measurement device 342 , and the temperatures are displayed at user interface and display 336 .
- a control signal is generated by controller 338 that is proportional to the difference between an actual measured temperature, and a desired temperature.
- the control signal is used by power circuits 340 to adjust the power output in an appropriate amount in order to maintain the desired temperature delivered at the respective sensor 324 .
- a multiplexer 346 can be included to measure current, voltage and temperature, at the numerous sensors 324 as well as deliver and distribute energy between primary electrodes 314 and secondary electrodes 316 .
- Suitable multiplexers include but are not limited to those manufactured by the National Semiconductor® Corporation (Santa Clara, Calif.) such as the CLC 522 and CLC 533 series; and those manufactured the Analog Devices® Corporation (Norwood, Mass.).
- Controller 338 can be a digital or analog controller, or a computer with embedded, resident or otherwise coupled software.
- controller 338 can be a Pentium® family microprocessor manufacture by the Intel® Corporation (Santa Clara, Calif.).
- controller 338 is a computer it can include a CPU coupled through a system bus. On this system can be a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art. Also coupled to the bus are a program memory and a data memory.
- controller 338 can be coupled to imaging systems, including but not limited to ultrasound, CT scanners (including fast CT scanners such as those manufacture by the Imatron® Corporation (South San Francisco, Calif.), X-ray, MRI, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized.
- imaging systems including but not limited to ultrasound, CT scanners (including fast CT scanners such as those manufacture by the Imatron® Corporation (South San Francisco, Calif.), X-ray, MRI, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized.
- User interface and display 336 can include operator controls and a display.
- user interface 336 can be a PDA device known in the art such as a Palm® family computer manufactured by Palm® Computing (Santa Clara, Calif.).
- Interface 336 can be configured to allow the user to input control and processing variables, to enable the controller to generate appropriate command signals.
- Interface 336 can also receives real time processing feedback information from one or more sensors 324 for processing by controller 338 , to govern the delivery and distribution of energy, fluid etc.
- the output of current sensor 330 and voltage sensor 332 is used by controller 338 to maintain a selected power level at primary and secondary antennas 314 and 316 .
- the amount of RF energy delivered controls the amount of power.
- a profile of power delivered can be incorporated in controller 338 , and a preset amount of energy to be delivered can also be profiled.
- Circuitry, software and feedback to controller 338 results in process control, and the maintenance of the selected power, and are used to change, (i) the selected power, including RF, microwave, laser and the like, (ii) the duty cycle (on-off and wattage), (iii) bipolar or monopolar energy delivery and (iv) infusion medium delivery, including flow rate and pressure.
- process variables are controlled and varied, while maintaining the desired delivery of power independent of changes in voltage or current, based on temperatures monitored at sensors 324 .
- a controller 338 can be incorporated into feedback control system 329 to switch power on and off, as well as modulate the power.
- tissue adjacent to RF electrodes 314 and 316 can be maintained at a desired temperature for a selected period of time without causing a shut down of the power circuit to electrode 314 due to the development of excessive electrical impedance at electrode 314 or adjacent tissue.
- Analog amplifier 344 can be a conventional differential amplifier circuit for use with sensors 324 .
- the output of analog amplifier 344 is sequentially connected by an analog multiplexer 346 to the input of A/D converter 348 .
- the output of analog amplifier 344 is a voltage which represents the respective sensed temperatures.
- Digitized amplifier output voltages are supplied by A/D converter 348 to a microprocessor 350 .
- Microprocessor 350 may be a Power PC® chip available from Motorola or an Intel® Pentium® Series chip. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature or perform image processing and tissue identification functions.
- Microprocessor 350 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 350 corresponds to different temperatures and impedances. Calculated power and impedance values can be indicated on user interface and display 336 . Alternatively, or in addition to the numerical indication of power or impedance, calculated impedance and power values can be compared by microprocessor 350 with power and impedance limits. When the values exceed predetermined power or impedance values, a warning can be given on user interface and display 336 , and additionally, the delivery of RF energy can be reduced, modified or interrupted. A control signal from microprocessor 350 can modify the power level supplied by energy source 320 to RF electrodes 314 and 316 .
- temperatures detected at sensors 324 provide feedback for determining the extent and rate of (i) tissue hyperthermia (ii) cell necrosis; and (iii) when a boundary of desired cell necrosis has reached the physical location of sensors 324 .
- the controller can be incorporated or integrated into a single control and display device or unit 20 cd .
- Device 20 cd can configured to include display one or more of the following: impedance profile 19 p , tissue site image 4 ′, tumor volume image 4 ′′, ablation volume image 4 av , time temperature profiles, tissue identification information, and ablation setting information (e.g. power setting, delivery time etc.).
- the device 20 cd can also be configured to superimpose ablation volume image 4 av onto tumor volume image 4 ′′ or tissue site image 4 ′ as well as superimpose visual cues 4 c on the placement (including proper and improper placement) of the apparatus 10 including energy delivery devices within the tumor volume or a tissue site.
- the device 20 cd can also include controls knobs 20 ck for manipulating any of the images ( 4 ′, 4 ′′ or 4 av ) in one or more axis.
- impedance determination apparatus or the control system can be configured to switch from a first mode of measuring impedance to a second mode when certain system impedance or power conditions occur.
- the first mode of measuring impedance is done utilizing the RF treatment power and then impedance is calculated using a measured current and voltage as described herein.
- the accuracy and precision of localized impedance determinations decreases as a result due in part to the decrease in the impedance determination current in relation to noise levels of the RF power system. This is a problem not recognized nor addressed by current RF ablative/impedance determination devices.
- the threshold event causing the mode switching can be selectable and include one or more of the following: threshold decreases in treatment (e.g. RF) power, increases in system impedance, changes in slope (e.g. derivative) of the RF power or system impedance curves.
- threshold level of RF treatment power causing mode switching can be in the range from 1 to 50 watts with specific embodiments of 5, 10 and 25 watts.
- an alternative mode of measuring impedance comprising superimposing a duty cycled measurement signal 20 e onto the treatment signal 20 .
- the pulse duration 20 pd of signal 20 e can be in the range of 1 to 500 ms with specific embodiments of 50, 100 and 250 ms.
- the duty cycle 20 dc of signal 20 e can be in the range from 1 to 99% with specific embodiments of 10, 25, 50 and 75%.
- the monitoring device, power source or control system can be configured to control the power amplitude of the measurement signal to maintain a selected total signal amplitude 20 at .
- the total signal amplitude 20 at can range from about 5 to about 50 watts, with specific embodiments of 10, 20, 30 and 40 watts
- the duty cycle, pulse duration and total signal amplitude can be controlled to deliver a selectable average power over the duty cycle which can be in the range of about 0.5 to about 10 watts with specific embodiments 1, 2.5 and 5 watts.
- these and related embodiments of alternative measurement of impedance determinations including superimposed duty cycle measurement, provide the benefit of improved accuracy and signal to noise ratios of impedance and related bio-electric measurements under conditions of high system impedance and/or lower levels of delivered RF treatment power (i.e. ablative power).
- the duty cycle and/or pulse duration can be configured to vary responsive to one or more selected parameters which can include frequency of the treatment signal, power of the treatment signal, or impedance of the treatment signal.
- the variation in either the pulse duration or duty cycle can be controlled by a control system and/or logic resources of the impedance monitoring device or power supply using control methods known in the art such as PID control.
- PID control control methods known in the art such as PID control.
- these embodiments allow the impedance determinations to be continuously fine tuned to changing system conditions to improve the accuracy and precision of impedance and related bioelectric measurements.
- FIG. 32 illustrates a tissue ablation system or apparatus 550 , much of which has been described above.
- the apparatus generally includes a control unit 55 which is designed to operate in the manner described more fully below with respect to FIG. 33 .
- the control unit is operably connected to an RF energy source 554 , such as an energy source of the type described above, for controlling the energy output, e.g., power output, from the energy source to the electrodes in a multi-electrode ablation device 556 , of the type described above.
- the operable connection between unit 552 and energy source, indicated at 560 may be any conventional electronic or mechanical control, e.g., a servo motor, by which electronic signals from the control unit can be used to vary the power output of source 554 .
- the output of the energy source is electrically connected to the electrodes of a multi-electrode ablation device, as above, for varying the RF power delivered to the electrodes, for varying the rate of ablation by the device, when the electrodes are deployed in a target tissue, as detailed above.
- the control unit is also operably connected to an infusion device 558 , such as a pump or the like, to control the rate and/or pressure of fluid, e.g., saline solution, supplied to electrodes or other fluid-infusion channels in the ablation device through fluid-carrying tubes, indicated 561 .
- the operative connection between unit 552 and the infusion device is indicated at 562 , and may be may be any conventional electronic or mechanical control, e.g., a servo motor, by which electronic signals from the control unit can be used to vary the pumping rate or pressure at which fluid is supplied by device 558 to the ablation device.
- An electrical connection 553 between the ablation device and control unit is used for transmitting electrical signals related to the output of temperature sensors carried on the ablation device electrodes, as described above and/or for transmitting current-level information relating to current flow between electrodes and an exterior body surface, (for global impedance measurements) or between electrodes or regions of one electrode (for local impedance measurements).
- Such impedance and/or temperature measurements may be instantaneous values, or values relating to change in impedance and/or temperature over time.
- FIG. 33 is a flow diagram illustrating various functions and operations in the control unit, as they related to control of the RF energy source and control of the infusion device.
- control unit may automatically control the operation of the both the energy and infusion devices, without user intervention, or may provide information to the user which indicates how the user should control the operational levels of one or both of the energy device and infusion device, to optimize the ablation procedure, and in particular, to ensure complete tissue ablation with a minimum of charring and collateral damage to nearby healthy tissue.
- the user may input the type of target tissue, e.g., liver tumor, bone tumor, or the like, as indicated at 564 .
- the control unit preferably stores data relating to the impedance characteristics of tissue and/or rates of heating and changes in impedance for specific tissue types, when a given power level is applied, preferably in the presence of infusate. This internal data will be used, as seen below, to confirm that the tissue into which the electrodes of the ablation device have been deployed is the desired tissue type, based on impedance and/or temperature changes detected during an initial phase of system operation.
- the system When the user is ready to insert the device into the patient, and deploy the electrodes into the target tissue, to define a selected volume for tissue ablation, the system operates to begin fluid infusion through the device and also controls the energy device to deliver low-power, pulsed RF energy to the electrodes being deployed, as indicated at 566 .
- the low-power pulses are used to generate global or localized current values for purposes of measuring global or local impedance values as the electrodes are being deployed, as indicated at 568 and 570 .
- the power supplied to the electrodes during deployment may also be sufficient to cause very localized heating around the electrodes, to facilitate entry of the electrodes into the target tissue.
- the ablation device may also signal the control unit, through connection 553 ( FIG. 33 ) when a selected degree of electrode deployment, corresponding to a desired tissue volume, is reached.
- the Impedance (and/or temperature) measurements made during electrode deployment may be compared with the tissue-specific impedance or temperature data stored in the control unit, to confirm that the tissue enveloped by the electrodes is in fact the selected target tissue. If the program finds a mismatch, as at 574 , control unit may signal the user to redeploy the electrodes, as indicated. If a tissue-confirmation is made, the program proceeds, indicating to the user to initiate the ablation procedure, or automatically initiating the ablation phase of the operation, by advancing the power level delivered by the energy source to a desired level, and optionally, increasing the rate of fluid infusion to the tissue, as indicated at 576 .
- control unit operates to automatically adjust the power level and/or infusion rate of devices 554 , 562 , respectively ( FIG. 32 ).
- the control unit may have a display for indicating to the user the direction and extent of adjustment requirement, and controls for making those adjustments.
- the control unit is receiving periodic and repeated impedance and/or temperature data which is being processed to guide the control of the energy and infusion devices.
- the data-processing operations are indicated at the bottom in FIG. 32 .
- the program asks whether the temperature is rising adequately (it is desired to complete the ablation within as short a time as possible, consistent with the objective of optimal tissue ablation). If the rate of temperature rise is below a selected threshold, the control unit may operate (or instruct the user) to adjust the power and/or rate of infusion to the tissue, to enhance the rate of heating, for example, by increasing power or reducing infusion.
- the program also asks whether the measured impedance is above a desired threshold, as at 582 .
- the program will operate (or instruct the user) to adjust the power delivery to the electrodes and/or the rate of infusion of electrolyte to the tissue. This procedure is repeated until both temperature change and impedance levels are within selected acceptable ranges.
- the program also looks for impedance spikes, indicative of charring or over-heating. If these are observed, through logic decision 584 , the control unit may operate to adjust (or instruct the user to adjust) either power level of rate of infusion to minimize so as to reduce impedance spikes.
- the system is properly adjusted to maximize the ablation process, that is, to achieve ablation at about the highest rate that does not lead to tissue charring (or excessive tissue charring) or ablation damage to collateral healthy tissue.
- the program now monitors when complete ablation is achieved in the region of the electrodes, as at 586 . If ablation is incomplete, the program may continue ablation at the existing power and/or infusion rate levels, or adjust the levels as appropriate.
- the system may then ask whether ablation of the total target area is ablated, as at 558 . If it is, the program operation is at end, and the system may terminate or power down to a lower power/infusion levels. For example, some RF power may be supplied to the electrodes during electrode retraction or catheter retraction, to reduce the risk exposing healthy tissue to tumor cells, during removal of the ablation device from the patient.
- the system signals the user to advance the deployment of the electrodes, and the above ablation process is repeated until a final target-tissue ablation is achieved.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
A method and apparatus for carrying our thermal ablation of target tissue is disclosed. The apparatus includes an RF ablation device having a multi-electrode electrode assembly designed to be deployed in target tissue, defining a selected-volume tissue region to be ablated, and having infusion channels for infusing a liquid into the target tissue during the ablation process. A control unit in the apparatus is operably connected to an RF energy source, for controlling the RF power level supplied to the electrodes, and to an infusion device, for controlling the rate of infusion of a liquid through the device into the tissue. During both electrode deployment and tissue ablation, impedance and or temperature measurements made within the tissue are used to control the RF source and infusion device, for optimizing the time and extent of tissue ablation.
Description
- This is a continuation application claiming the benefit of U.S. application Ser. No. 10/260,187 filed Sep. 28, 2002, which claims the benefit of U.S. Provisional Application No. 60/326,043 filed Sep. 28, 2001; all related applications are incorporated herewith by reference in their entirety.
- This invention relates generally to a method for treating tissue using minimally invasive methods. More particularly, the invention relates to an apparatus and method for ablatively treating tumorous and diseased tissue. Still more particularly, the invention relates to an apparatus and method for ablatively treating tumorous tissue using impedance values to control and optimize the delivery of electromagnetic ablative energy to a target tissue site.
- Various ablative therapies such as radio-frequency, microwave and laser ablation can be used to treat benign and cancerous tumors. In theory, such methods are intended to produce physiological and structural changes to cause cell necrosis or destruction of the selected target tissue. However in practice, there are numerous difficulties in the use of ablative procedures to treat cancerous tissue, these include (i) locating the target tissue, (ii) identifying or biopsying the disease state of the tumorous tissue (iii) distinguishing between diseased tissue versus healthy tissue, (iii) placing and maintaining the position of the ablation apparatus within the target tissue site, (iv) monitoring the progress of ablation including the developing ablation volume, (v) minimizing injury to adjacent critical structures (vi) assuring complete ablation of the tumor mass including assurance of a sufficient healthy tissue margin and (vii) assessing degree of the completed ablation. Current ablative therapies have not considered nor provided solutions to these problems. Thus, there is a need for an apparatus and method to address these difficulties and other unmet needs in performing ablative therapies for the treatment of cancer, tumors and other diseases.
- An embodiment of the invention provides an impedance controlled tissue ablation apparatus and method that utilizes impedance determinations, such as localized tissue impedance to optimize the delivery of radio-frequency or other electromagnetic energy to a target tissue site and create larger ablation volumes using lower power levels and faster ablation times than currently possible with conventional RF tissue ablative technology. By lowering power levels required to produce an ablation volume the apparatus also provides the benefit of significantly reduced the risk of pad burns and other electroshock hazards associated with conventional RF ablation therapies. A related embodiment of the invention uses controlled infusion of electrolytic fluid at the tissue site to control and maintain tissue impedance at an optimal level for delivery of ablative energy.
- Another embodiment of the invention provides an apparatus for detecting and treating tumors using localized impedance determination. The apparatus comprises an elongated delivery device that includes a lumen and is maneuverable in tissue. An impedance sensor array is deployable from the elongated delivery device and configured to be coupled to at least one of an electromagnetic energy source or a switching device. The impedance array includes a plurality of resilient members, at least one of the plurality being positionable in the elongated delivery device in a compacted state and deployable with curvature into tissue from the elongated delivery device in a deployed state. In the deployed state, the plurality of resilient members defines a sample volume. At least one of the plurality of resilient members includes a sensor and at least a portion of the impedance array is configured to sample tissue impedance through a plurality of conductive pathways. An energy delivery device is coupled to one of the sensor array, the resilient member or the elongated delivery device.
- An embodiment of the invention provides a method for detecting and treating a tumor using tissue localized volumetric impedance determination. The method includes providing an impedance determination apparatus having a plurality of resilient members deployable with curvature and configured to sample tissue impedance through a plurality of conductive pathways. The apparatus is configured to be coupled to at least one of an energy delivery device, a power supply, a switching device or logic resources. The apparatus is then positioned at a selected tissue site and the impedance array deployed to define a sample volume. The impedance array is then utilized to make impedance determinations through a plurality of conductive pathways. Information from the impedance determinations is then utilized to determine a tissue condition of the sample volume. Energy is then delivered from the energy delivery device to ablate or necrose at least a portion of the tumor.
- The apparatus can be configured to detect, locate and identify tumorous tissue at a selected tissue site using impedance determinations such as multi-pathway determined impedance, complex impedance and impedance vector determinations. For complex impedance embodiments, real and imaginary components of the impedance signal can be used to determine more refined bioelectric parameters such as interstitial and intracellular impedance and cell membrane capacitance that provide greater sensitivity and predictive power of cell necrosis or malignancy. Also, the apparatus can also be configured to utilize one or more impedance determinations to monitor a target tissue site and control the course of ablative therapy before during or after the delivery of ablative energy or other treatment to the tissue site. Accordingly, the apparatus can be configured to be used independently or in conjunction with another ablative apparatus such as an RF, microwave laser or other optical ablation apparatus. Further, the apparatus can be configured to utilize multi-path impedance determination to monitor two or more tissue volumes including a tumor volume, a developing ablation volume and an adjacent anatomical structure. Additional embodiments of the apparatus can also be configured to utilize impedance determinations such as complex, vector or locus impedance determinations to generate an image of a target tissue site and display the image to facilitate the location and monitoring of a tumor and/or ablation volume.
- In the use, the apparatus would be positioned at selected tissue site previously imaged and found to contain a tumor or other tissue mass. The apparatus would be introduced and positioned at the tissue site using the elongated delivery device or an introducing device known in the art such as a trocar or endoscopic device. The impedance array would then be deployed and used to determine impedance including complex impedance and capacitance through one or more conductive pathways. This information could be analyzed by coupled logic resources and then utilized to locate the position of and borders of the tumor volume and/or identify the tumor or tissue type. Also, the information could be processed by the logic resources or other processing means to generate an image of the tissue site including the tumor volume which could utilize the locus of impedance as way to indicate the center of the tumor mass or otherwise visually enhance the detection and display of the tumor mass. This information could then be used to position the energy delivery to produce the desired ablation volume. Once the energy delivery device was positioned, the impedance array could then be utilized to monitor and/or control the delivery of ablative energy or therapy to the tumor volume including monitoring the size and shape of a developing ablation volume in relation to size and location of the tumor volume. This allows the medical practitioner to not only determine the degree to which the tumor volume has been ablated, but also allows for the control of the amount of healthy tissue margin around the tumor volume. Such control and related capability allows for the determination of a desired clinical endpoint. Further, it allows the practitioner to titrate or otherwise control the delivery of energy or other ablative therapy to control rate of growth of the ablation volume (and in turn the overall ablation time) as well as the final shape and size of the tumor volume. Multiple tissue volumes can be simultaneously monitored and compared to monitor progress of the ablation volume, assure uniform ablation or necrosis throughout the tumor or ablation volume and provide real time assurance that surrounding healthy tissues and structure were not injured. For example, tissue volumes at the center and one or more peripheries of the tumor mass could be simultaneously or near simultaneously monitored to assure uniform necrosis at these locations and hence throughout the tumor volume. Impedance determinations can be simultaneously or sequentially determined at multiple conductive pathways passing through the target volume (at convergent divergent and paths) to provide a higher confidence of uniform ablation by reducing the size of un-sampled zones within the target volume as well any directional bias of the measurements. The multiple conductive pathways can be selected electronically via a controllable switching device or manually by rotational, lateral or longitudinal movement of the impedance array within the target volume. In the former case, the user could program the conductive pathways via a coupled monitoring device and in the later the user could rotate, advance, retract or deflect the impedance array via the elongated delivery device or via a deployment, advancement or deflection device mechanically coupled to the impedance array or delivery device. In addition to real time impedance determination during the ablation process, measurements can also be taken post ablation at one or more pathways, (including pathways different than those used during inter-ablative monitoring) and compared to baseline measurements or an impedance database to provide a further indication of a complete ablation and/or clinical endpoint. Endpoints can also be determined based on ratios of intracellular to interstitial impedance as well a characteristic shape of the impedance or complex impedance curve including determinations of thresholds, slopes or inflection points.
- Various aspects of the invention can also be directed to display impedance determinations in a variety of manners that are both user-friendly and easily discernible by the user/medical practitioner. In an embodiment, the loci of impedance of a sample volume or an impedance vector of the sample volume can be displayed as icons to facilitate tumor identification and positioning of an energy delivery or ablative device within the tumor mass. In related embodiments logic resource of the apparatus could be configured to use impedance vector measurements to determine the radial direction of the tumor from the impedance array or energy delivery device and display this information in the form of a directional or pointing icon.
- In another embodiment, an apparatus for tissue ablation may include an elongated delivery device, an energy delivery device, an energy control, and optionally a fluid control. The energy delivery device may be operably coupled to an energy source. The energy delivery device may include a plurality of electrodes. Each of the electrodes may have a tissue piercing distal portion. Each of the electrodes may be positionable in the elongated delivery device. One or more of the electrodes may be preformed to assume a curved shape when deployed to a selected tissue site. Two or more of the electrodes may be infusion electrodes, each separately including an infusion lumen and one or more infusion ports for liquid infusion within the selected tissue site. The energy control may be operably coupled to the energy delivery device for impedance detection within the selected tissue site. The energy control may be configured for energy delivery control in response to the detected impedance. The optional fluid control may be operably coupled to the at least two infusion electrodes. The optional fluid control may be configured for infusion control in response to the detected impedance.
-
FIG. 1 is a lateral view illustrating the placement at a tissue site of an embodiment of an apparatus for detecting and treating tumors using localized impedance determination. -
FIG. 2 is a lateral view illustrating the elements of an apparatus for detecting and treating tumors using impedance determination including an elongated delivery device, a sensor array, sensors, electrodes, energy delivery device and advancement member. -
FIG. 3 a is a schematic view of an embodiment of the impedance sensor array configured to determine impedance of a tissue volume via a plurality of selectable conductive pathways. -
FIG. 3 b is a schematic view illustrating of an embodiment of the apparatus illustrating the use of primary and secondary conductive pathways and conductive pathway angle. -
FIGS. 4 a-4 c are perspective views illustrating various arrangements of the emitting and detecting members;FIG. 4 a illustrates an embodiment having a centrally positioned a return electrode surrounded by other electrodes;FIG. 4 b illustrates an embodiment having the return electrode eccentrically positioned respect to other electrodes;FIG. 4 c illustrates an embodiment having multiple and independently positionable impedance sensor arrays. -
FIG. 5 is a perspective view illustrating the use of multiple groups of conductive pathways to sample multiple tissue volumes in an embodiment of the invention as well as determine impedance vectors and loci of impedance for each sample volume. -
FIG. 6 is a perspective view illustrating an embodiment of an apparatus for detecting and treating tumors including an impedance monitoring device having memory resource and logic resources including software modules to analyze impedance data and generate impedance profiles and images. -
FIG. 7 a is a plot of tissue impedance curve illustrating the frequency dependency of impedance. -
FIG. 7 b is a plot of tissue complex impedance curves illustrating the frequency dependency of complex impedance. -
FIGS. 8 a-8 d are plots of impedance curves illustrating the use of multiple frequency impedance curves to monitor the time course of an ablation. -
FIGS. 8 e-8 g are plots of complex impedance curves (imaginary vs. real values) illustrating the use of complex impedance curves to monitor the time course of an ablation. -
FIGS. 9 a-9 c are plots of complex impedance curves illustrating the use of complex impedance curves to identify tissue type or condition. -
FIG. 10 is a plot of spectral signal intensity verses time for a sample volume of ablating tissue illustrating quantitative determinants of an ablation endpoint. -
FIG. 11 is a perspective view illustrating a three-dimensional plot of complex impedance. -
FIG. 12 a is a lateral view illustrating an embodiment of the introducer. -
FIGS. 12 b and 12 c are cross sectional views illustrating cross-sectional profiles of the introducer. -
FIG. 13 is a lateral view illustrating an embodiment of a deflectable introducer along with the components of the introducer. -
FIG. 14 is a lateral view illustrating an embodiment of a tissue biopsy and treatment apparatus with a hand piece and coupled aspiration device, fluid delivery device and fluid reservoir. -
FIGS. 15 a-15 h are lateral views illustrating various configurations of the electrode including ring-like, ball, hemispherical, cylindrical, conical and needle-like. -
FIG. 16 is lateral view illustrating an embodiment of a needle electrode configured to penetrate tissue. -
FIG. 17 is lateral view illustrating an embodiment of an electrode having at least one radius of curvature. -
FIG. 18 is lateral view illustrating an embodiment of the electrode having at least one radius of curvature, sensors and a coupled advancement device. -
FIG. 19 is a perspective view illustrating an embodiment of the electrode that includes insulation sleeves positioned at exterior surfaces of the resilient members or electrodes so as to define an impedance sensor length or an energy delivery surface. -
FIG. 20 is a perspective view illustrating an embodiment of the electrode that includes multiple insulation sleeves that circumferentially insulate selected sections of the electrode(s). -
FIG. 21 is a perspective view illustrating an embodiment of the electrode with insulation that extends along longitudinal sections of the electrodes to define adjacent longitudinal energy delivery surfaces. -
FIG. 22 is a cross-sectional view of the embodiment ofFIG. 21 . -
FIG. 23 a is a lateral view illustrating an embodiment of the apparatus with an electrode having a lumen and apertures configured for the delivery of fluid and the use of infused fluid to create an enhanced electrode. -
FIG. 23 b is a perspective view illustrating the key components of a tissue infusion ablation apparatus including configurations of the infusion device having multiple syringes and multi-channel tubing. -
FIG. 23 c is an expanded view of the distal portion of the apparatus of the embodiment ofFIG. 23 b illustrating the components of the distal tip as well as the conductive pathways of a device for measuring and controlling impedance. -
FIG. 23 d are plots of dissipated power verses impedance illustrate a novel approach of maximizing ablative power delivery at a target tissue site at a non-minimal impedance. -
FIG. 23 e is a plot of tissue resistance versus distance from embodiments of the electrode which illustrate the use of infusion to reduce tissue charring adjacent the electrode. -
FIG. 24 is a perspective view illustrating an embodiment of an impedance-sensing member that includes a conductive coating that can be configured to produce an impedance gradient within the sensing member. -
FIG. 25 a-25 c are perspective views of an embodiment of an energy delivering ablation apparatus using frequency controlled positionable ablation fields. -
FIGS. 26 a-26 c are plots of energy density or concentration versus lateral distance from the electrode/energy delivery device of the embodiment ofFIGS. 25 a-25 c. -
FIG. 27 is a flow chart illustrating a method for generating and displaying impedance derived images. -
FIG. 28 is a block diagram illustrating a controller, power source, power circuits and other electronic components used with an embodiment of a control system other embodiments of the invention. -
FIG. 29 is a block diagram illustrating an analog amplifier, multiplexer and microprocessor used with an embodiment of a control system or other embodiments of the invention. -
FIG. 30 is a lateral view illustrating a control and display unit used in various embodiments of the invention. -
FIG. 31 is a plot showing an embodiment of an impedance determination duty cycled signal super-imposable on an RF treatment signal under selectable threshold conditions. -
FIG. 32 is a diagram illustrating an embodiment of the device for impedance modulation with infusion. -
FIG. 33 is a flow chart illustrating the use of one embodiment of the device. - The terms below, as used herein, have the following meanings, unless indicated otherwise:
- “Electrode”, “resilient member” and “antenna” are interchangable and refer to a needle or wire for conducting energy to a tissue site. Electrodes may be passive, active or switchable between passive and active. Further, an electrode may be a ground pad electrode positionable at an exterior position on the patient.
- A “sensing member” is a passive or active electrode for sensing an ablation parameter.
- “Fluid delivery device” and “infusion device” are interchangable and refer to a device connected to, or including (i) a source of fluid to be infused, and (ii) one or more electrodes or the elongated delivery device for delivery of the fluid to a target tissue.
- “Feedback control device”, “control unit”, “control resources”, “feedback control system”, and “controller” are interchangable and refer to a control capable of modulating an ablation parameter, i.e. power, temperature, infusion, etc. The control may be automatically or manually operated.
- “Impedance measurement” or “impedance determination” are interchangable and refer to the calculation of impedance from a data source, i.e. current sensor, voltage sensor, or power source, using any suitable calculation device or algorithm known in the art.
- Embodiments of the present invention provide an apparatus and method for performing tissue characterization using localized impedance determination including complex impedance determination to locate and diagnose a tumor, accurately position an ablative apparatus, monitor the progress of an ablative treatment and determine clinical endpoints. Further these and other embodiments of the invention can be configured to measure and analyze bioelectric parameters with enhanced predictive power of cell metabolism along with associated images that allow for real time control of the ablative process awhile significantly reducing the risk of incomplete ablation or unwanted damage to critical anatomical structures. Each of the disclosed embodiments may be considered individually or in combination with other variations and aspects of the invention. The method and apparatus provided herein are useful in treating cancerous tumors in organs and tissue throughout the body including, but not limited to the liver, bone, breast, lung and brain. They are also useful and equally applicable to treatment of benign tumors, growths and otherwise abnormal or enlarged tissue that requires removal, resection or modification by surgical or minimally invasive means.
- Localized monitoring of impedance provided in various aspects of the invention is particularly beneficial for use in the treatment of tumors and tumorous tissue by ablative therapies such as RF, microwave, laser and chemical ablation. These and related ablative therapies causes disruption of cell membranes resulting in impedance change in the interstitial fluid but only in the affected tissue with minimal or no changes to the surrounding tissue. Previous attempts to determine impedance using a full electrical circuit through the patients body had the drawback of not being able to detect tissue localized impedance by failing to consider the problems involved including the following:
- (i) the signal is too small in relation to and/or mask out by the impedance of the entire impedance determination system including the conductive pathway through body the ground pad electrodes and associated wires;
- (ii) the measurement was made too far away on the body from the desired tissue site and is thus again masked out; and
- (iii) the localized impedance was masked out by RF or other ablative energy signal delivered to the tissue. Embodiments of present invention provide solutions to these problems to detect localized impedance changes, particularly those changes occurring during an ablation procedure through the use of impedance arrays positioned at the target tissue to determine impedance including complex impedance and other bioelectric properties described herein.
- A discussion will now be presented of impedance determination theory and impedance determination methods employed by embodiments of the invention. In order to determine tissue impedance or impedivity (which typically has units of impedance/cc of tissue at 20° C.) a current is applied across the tissue and the resulting voltages are measured. This current, known as the excitation current or excitation signal is relatively small in comparison to an ablative RF or other ablative current and hence results in no appreciable ablative effect. In various embodiments the excitation current can range from 0.01 ma to 100 amps with specific embodiments of 0.1, 1.0 and 10 amps which can be delivered in a continuous or pulsed fashion using a duty cycle. In various embodiments, the duty cycle can be in the range of 5 to 50% with a pulse duration of 10 to 200 ms. The average power delivered over the course of the duty cycle can be in the range of 0.1 to 10 watts. In these and related embodiments the excitation current source is used to measure voltage differences between two or more sites in a bipolar mode or one or more sites and a common ground. The known excitation current and measured voltage are then used to derive impedance using algorithms and methods described herein and/or known in the art.
- Because different frequencies conduct differently through different tissue types some tissue is more or less conductive at certain frequencies. Accordingly, depending upon the tissue type or condition to be detected, the sensing or excitation signal can be varied or otherwise controlled to improve one or more of the sensitivity, accuracy, precision and resolution of an impedance determination. In various embodiments the excitation signal can be a mono-frequency or a multi-frequency signal and can be constant or variable. In an embodiment, improved signal resolution and thus more precise tissue analysis and characterization can be achieved by use of a multi-frequency excitation signal and/or an excitation signal varied across a broad range of frequencies. In various embodiments, this range of frequencies can be from about 1 Hz to about 1 MHz with specific embodiments of 0.5 Hz, 1, 5, 10, 25, 50, 100, 250, 500 and 750 kHz. Since the bioelectric distinctions (e.g. phase angle, impedance) between cancerous and healthy tissue can be the greatest at low frequencies such as 100 Hz, in exemplary embodiments measurements can be taken over a plurality of excitation frequencies below 100 Hz, with specific embodiments of 3, 4, 10 and 20 frequencies below 100 Hz. Other embodiment can be combine measurements below 100 Hz with those between 100 Hz to 5 kHz.
- Further embodiments of the invention can be configured to determine impedance at different excitation frequencies (either concurrently or sequentially), to obtain more robust data and hence more refined clinical diagnostic information. Using these and other data and methods a plot of impedance versus frequency can be generated for a sampled tissue volume and analyzed to determine tissue type and tissue conditions of the sample volume as is more fully described herein.
- Complex impedance includes both real and imaginary components, which reflect the phase shift between voltage and current (e.g. the voltage can lead or lag current depending on the electrical properties of the tissue). Various embodiments of the invention can be configured to record both the real and imaginary components of complex impedance. This provides the benefit of providing more comprehensive information on the tissue allowing analysis with a greater degree of accuracy, precision and resolution. These components can be determined by passing an excitation current through the target tissue and determining impedance and/or any phase shift between the current and voltage as the signal is conducted through the target tissue.
- In related embodiments, real and imaginary components of impedance can be used to determine intracellular impedance, interstitial impedance and cell membrane capacitance. These three elements alone or in combination can be used to uniquely characterize and identify tissue type and condition with increased amounts of specificity. In an embodiment, the monitoring device, or other logic resources can be configured to utilize one or more of these three parameters (the “three parameters”) to characterize an amount of ablation or progression of tissue ablation from an ablative treatment such as RF ablation or ablative method described herein. The characterization can be done by a software module resident within the monitoring device, power supply or coupled logic resources all described herein.
- In specific embodiments, the thee parameters can be used to detect various physiologic indicators of ablation and cell necrosis including cell lysis, cell membrane swelling (indicated by an increase in membrane capacitance), cell membrane rupture (indicated by a sharp decrease in membrane capacitance), a decrease in extracellular fluid (indicated by an increase in intracellular impedance) and in increase in intracellular fluid (indicated by a decrease in extracellular fluid). Other parameters which can be calculated and used for detection and control purposes include the absolute value of the impedance or admittance, the phase of the impedance (e.g. the phase difference between the current and the voltage), the capacitance or a function of a combination of the impedance and admittance components.
- Specific embodiments of the invention can be configured to detect and/or control for threshold increases or decreases in one or more of the three parameters (or other variables) including increases or decreases in the ranges of 1.1:1.0 to 100:1.0 with specific embodiments of 1.5:1.0, 2:1, 3:1, 4:1, 5:1, 10:1, 20:1 and 50:10. Related embodiments can be configured to detect and/or control for combinations of increases or decreases in the parameters including but not limited to a rise followed by a decrease in extracellular impedance, a decrease followed by an increase in intracellular impedance and an increase followed by a decrease in cell membrane capacitance. Other related embodiments can be configured to detect, monitor and control for changes in the slopes of the curves of one or more of the three parameters. Still other related embodiments can employ PID control methods known in the art utilizing combinations of proportional, integral or derivative changes in the three-parameter curves.
- Embodiments of the invention can incorporate the three parameters into electronic algorithms/software programs which are configured to do one or more of the following: (i) control the delivery of power to the target tissue site, (ii) provide the medical practitioner with prompts and diagnostic information about the course of the ablation/treatment process, and (iii) provide the medical practitioner with an indication of a clinical endpoint.
- Referring now to the drawings,
FIG. 1 shows an embodiment of an impedance monitoring andtreatment apparatus 10 configured to detect and treat atumor mass 5″ in atarget tissue site 5′ by sampling the impedance of the tissue mass and delivering energy or other ablative treatment to produce anablation volume 5 av. The apparatus can be configured to determine impedance, including complex impedance, before during and after an ablation so as to perform tissue identification at the target site, monitor the progress of an ablation procedure including the developing ablation volume and quantitatively determine a clinical endpoint for the procedure. - Referring now to
FIGS. 1 and 2 , an embodiment ofimpedance treatment apparatus 10 comprises an elongated member orintroducer 12 having alumen 13, aproximal portion 14, adistal end 16, one or moreresilient members 18 positionable in theintroducer lumen 13 and one ormore sensors 22 disposed onmembers 18 orsensing members 22 m positionable in electrode lumen(s) 72 disposed withinmembers 18. The electrode distal end may be sufficiently sharp to penetrate tissue including fibrous and/or encapsulated tumor masses, bone, cartilage and muscle. Theintroducer lumen 13 may extend over all or a portion of the length ofintroducer 12.Members 18 can comprise aplurality 18 pl ofresilient members 18 configured to be positionable inlumen 13 and advanceable in and out ofdistal end 16 by anadvancement device 15 or advancement member or other means described herein.Resilient members 18 can be deployed with curvature fromintroducer 12 to collectively define avolume 5 av intarget tissue site 5′. In an embodiment all, or a portion, of one ormore members 18 can be an energy delivery device or energy delivery member described herein.Energy delivery device 18 e can be coupled to an energy source orpower supply 20 and can also include one ormore lumens 72. - Embodiments of the invention can be adapted, integrated otherwise applicable to a number of ablative therapies including, but not limited to, radio-frequency (RF) ablation, cryo-ablation, brachytherapy, alcohol tissue ablation, chemical ablation, microwave ablation, laser ablation, thermal ablation, electroporation ablation, conformal beam radiation ablation, standard radiation ablation, high intensity focused ultrasound ablation, photo-dynamic therapy ablation. These and related embodiments can comprise an energy delivery device and sensing device coupled to a power supply.
- For ease of discussion, the energy delivery and sensing apparatus will be an RF based apparatus and
power supply 20 will be a RF power supply; however, all other embodiments discussed herein are equally applicable. In and embodiment the RF power supply can be an RF generator configured to deliver a treatment current 20 t for tissue ablation while simultaneously or near simultaneously (using a multiplexing/switching device) delivering a low power sensing or excitation signals 20 e across at one or more frequencies for making complex impedance determinations and subsequent analysis of the target tissue. Theexcitation signal 20 e can be delivered across a broad band of frequencies in the range of 1 to 1 MHz. In various embodiments, the excitation signal is delivered at a lower frequency then the treatment signal (typically 460+/−60 kHz). In an embodiment, the excitation signal is less than 400 kHz. In other embodiments, the sensing signal is in the range of 1 h to 100 kHz, with specific embodiments of 0.25, 0.5, 1, 5, 10, 25, 50 and 75 kHz. In alternative embodiments, the excitation signal is delivered at frequencies above the treatment frequency and thus can be greater than 520 kHz. Further the frequency and power differences between the excitation and treatment signals 20 e and 20 t can be monitored and set point controlled using circuitry and control algorithms known in the art. Also the frequency and power difference between the two signals can varied responsive to one or more electrical parameters to maximize the accuracy and precision of impedance determinations and reduce interference (e.g. bleed over) from thetreatment signal 20 t. These electrical parameters include but are not limited to impedance, treatment current, treatment frequency, excitation current and excitation frequency. - In various embodiments,
introducer 12 can be flexible, articulated and steerable and can contain fiber optics (both illumination and imaging fibers), fluid and gas paths, and sensor and electronic cabling. In anembodiment introducer 12 can be configured to both pierce tissue and also be maneuverable within tissue. This can be achieved through the use of flexible portions coupled to a tissue piercingdistal end 16 that can be a needle or trocar tip integral or joined tointroducer 12.Introducer 12 can be sufficiently flexible to move in any desired direction through tissue to a desiredtissue site 5′. In related embodiments,introducer 12 is sufficiently flexible to reverse its direction of travel and move in direction back upon itself. This can be achieved through the use of flexible materials and/or deflecting mechanisms described herein. Also,introducer 12 can be coupled at its proximal end to ahandle 24 orhandpiece 24.Handpiece 24 can be detachable and can includeports 24′ andactuators 24″. - One or
more sensors 22 can be coupled tointroducer 12,resilient members 18 orenergy delivery device 18 e. In an embodiment,sensors 22 can comprise one ormore sensing members 22 m that can be positionable withinlumens 72 ofmembers 18 and configured to be advanceable in and out ofindividual members 18 or can be coupled to an exterior ofresilient member 18.Sensing members 22 m can comprise a plurality ofmembers 22 mpl positioned in multipleresilient members 18. Also,apparatus 10 can also havesensors 22 disposed along elongatedmember 12 and other locations outside of the target tissue site for measurement and determination of the total impedance across the full electrical circuit between the terminals of power supply 20 (i.e. through the patient's body and into the ground pad). The total impedance can be monitored and otherwise utilized to improve the accuracy and precision of the localized impedance determination from the target site. -
Impedance sensing members 22 m, orsensors 22 coupled toresilient members 18 can be deployed independently or simultaneously to enable probing oftarget tissue 5′ in multiple locations so as to determine impedance in multiple locations and/or through multipleconductive pathways 22 cp. Deployment ofimpedance sensing member 22 m orsensors 22 can be controlled such that telemetry can be used with impedance feedback to identify tissue types and map the topography of tissue masses, tumors or tissue structures. -
Impedance sensing members 22 m can also be deployed with curvature frommembers 18 to collectively define avolume 5 sv (also calledsample volume 5 sv) that is volumetrically sampled by sensingmember plurality 22 mpl. Collectively, theplurality 22 mp of deployedimpedance sensing members 22 m orplurality 18 pl of deployedresilient members 18 with coupledsensors 22 can comprise a three-dimensional or volumetricimpedance sensor array 22 a. By havingsensors 22 in multiple locations andplanes sensor array 22 a is configured to volumetrically sample (e.g. sample in multiple locations and through multiple conductive pathways) tissue withintarget tissue site 5′ includingtumor mass 5″.Sensor array 22 a is further configured to be able to simultaneously sample tissue at multiple locations withinvolume 5 sv ortissue site 5′ to perform one or more of the following: (i) locate the position of thetumor mass 5″, (ii) discern the position or deployment distance of theenergy delivery devices 18, (iii) monitor the developing ablation volume, (iv) perform tissue sensing identification by comparing signals between two or more sites (e.g. known healthy tissue and suspected diseased tissue). In variousembodiments sensor array 22 a and/ormember plurality 18 pl can be configured to define a variety of shapes forsample volumes 5 sv including, but not limited to, a hemisphere, a sphere, an oval, a cone, pyramidal, a polyhedron or a tetrahedron. - Each
resilient member 18 can have one or moreimpedance sensing members 22 m and/orsensors 22 that can be arranged in a variety of configurations to perform one or more desired functions described herein (e.g. tissue identification, ablative monitoring etc.). Referring now toFIG. 3 a, sensingmembers 22 m can be configured to determine impedance in either bipolar between two ormore members 22 m or a mono-polar mode between one or more selectedmembers 22 and a common ground such as a ground electrode or ground pad electrode. Switching between the two modes can be controlled by logic resources and/or a switching ordevice 29 coupled to or integral with animpedance monitoring device 19 orpower supply 20. Further, switchingdevice 29 can be configured to allow the user to define and select one or moreconductive pathways 22 cp to determine impedance. In use, these and related embodiments allow the user to select any number of conductive pathways and in apattern 22 pp that circumscribe or otherwise defines asample volume 5 sv of interest. Also the use of switchingdevice 29 in these embodiments allows the user to determine impedance simultaneously or sequentially through the selected pathways.Further switching device 29 and/orapparatus 10 can be so configured to allow the user to dynamically change or switch between pathways to do one or more of the following: - (i) change the number of pathways through a selected sample volume allowing increased signal resolution and statistical confidence of predicted tissue conditions;
- (ii) change the angle between two or more conductive pathways; and
- (iii) change the size of the sample volume (iv); switch between a first and second sample volume; and (v) compare two or sample volumes simultaneously.
- In an embodiment shown in
FIG. 3 b,conductive pathways 22 cp can include a primary pathway(s) and an alternative pathway(s). The alternative pathway can be at a selectable angle from the primary pathway and can share points in common with the primary pathway. Suitable angles include the range of 1 to 360° with particular embodiments of 30, 45, 90 and 270° from alateral axis 22 la of the primary pathway. Alternatively, the alternative conductive pathway can share one or more points in common with the original pathway or be parallel with the original pathway but offset aselectable lateral distance 22 ld. Also repetitive scans of impedance including sweep scans and sequential sweep scans (e.g. sequentially sampling from one side of a sample volume to the other, similar to radar) can be made through one or more selected conductive pathway of a selected sample volume to monitor the time course of ablation as well obtain improved signal to noise ratios and signal resolution for image analysis. - Changing the angle and/or lateral offset of the conductive pathway used to determine impedance can be accomplished through a variety of means including but not limited to: (i) selectively switching
sensors 22 orsensing elements 22 m off and on (ii) selectively switchingsensing elements 22 m from a monopolar mode to a bipolar mode and visa versa, (for RF embodiments) using switching device 29 (iii) configuring the probe array to be rotatable and/or deflectable, and (iv) the use and/or deployment of a second array either on the same or different device. Switching can be accomplished through the use of a switching or multiplexingdevice 29 which can be programmable or controlled bylogic resources 19 lr described herein. - In one embodiment the data from alternative conductive pathways or group of pathways can be integrated with measurements from the primary conductive pathways for analysis and imaging purpose or in an alternative embodiment can be analyzed and displayed separately allowing for a comparison of both measurement and image from the primary and alternative group of pathways. The benefit of the former is a more representative and uniform sample of impedance and the later the ability to detect for uniformities of impedance within the sample volume.
- In use, such embodiments allow the medical practitioner to sample or image a larger tissue volume than single pathway sampling, sample multiple tissue volumes including simultaneous sampling without having to reposition the apparatus or impedance array. This capability reduces procedure time generally enhances the usability of the apparatus. Further, such embodiments also provides a more accurate and representative signal of the target tissue volume by selecting conductive pathways to control the shape and size of the sample volume to sample only the area of interest eliminating any potential masking or undesired impedance contribution from surrounding non-target tissue. Also the ability to switch the angle of the pathway eliminates or reduces any directional bias in the impedance determinations. Finally, by virtue of having a larger and volume distributed sample size for a given volume of tissue, the use of multiple conductive pathway impedance determinations provides a more representative measurement of impedance for the selected volume improving the accuracy and precision of the impedance determination as well as improving signal and image resolution in one or all three dimensions.
- Referring now to
FIGS. 4 a-4 c in various embodiments,impedance sensing members 22 m can be arranged inarrays 22 a having a variety of geometric arrangements and relationships so as to electrically sample different volumes oftissue 5 sv using differentconductive pathways 22 cp. Such embodiments provide the benefit of improved acquisition, accuracy and analysis of theimpedance signal 19 p from a givensample volume 5 sv to compensate for signal hysteresis, noise (due to energy delivery etc,) directional bias or other error. They also provide the benefit of simultaneous sampling and comparison of two or more tissue volumes to perform tissue identifications. - Referring now to
FIGS. 4 a-4 c,conductive pathways 22 cp can have a variety of configuration and orientations all selectable by the user. In an embodiment theconductive pathways 22 cp can be evenly distributed or spaced within thesample volume 5 sv. This can be achieved by either the configuration of themembers 22 m, through the use of switchingdevice 29 or a combination of both. Alternatively, the conductive pathways can be aligned with respect to one ormore sensing members 22 m, the introducer or thetumor volume 5″ itself. In an embodiment shown inFIG. 4 a, onemember 22 mc can be positioned at the center oftissue volume 5 sv withother members 22 m positioned in a surrounding relationship so excitation current travels in aplurality 22 pp ofconductive pathways 22 cp to and from the center of thesample volume 5 sv to the outlyingimpedance sensor members 22 m. In use, this configuration results in an impedance determination for thesample volume 5 sv which is an average of the individual impedance for each conductive pathway providing the benefit of a more a statistically representative sample of impedance for a selected tissue volume than provided by a single pathway alone.Members 22 m can be collectively coupled to a positive terminal ofpower supply 20 withmember 22 m configured as a return electrode and coupled to a return terminal ofpower supply 20. - In a related embodiment shown in
FIG. 4 b,member 22 m can be eccentrically positioned with respect tomembers 22 m and/or positioned on the periphery of a sample volume defined bymembers 22 m. Again, this embodiment provides the benefit of an average and more representative impedance determination for the sample volume. However, this configuration also provides the benefit of being able to more readily detect and locate non-uniformities in impedance and hence tissue properties occurring on the boundaries or otherwise non centered portions of the tissue volume. Use of switchingdevice 29 allows for the dynamic switching of any of thesensing members 22 m to a return electrode to more readily detect the location of a potential non-uniformity within the sample volume by rapidly scanning different portions of the periphery of the volume. - Alternatively as shown
FIG. 4 c,members 22 m can comprise a first array (such as perpendicular array) and a second array. The first array can be rotated to obtain different conductive paths to the second array so as to sample different tissue volumes and/or provide multiple samplings of the same volume (via different conductive paths) to improve accuracy and precision of the measurement and reduce noise. In use, this embodiment also allows detection of incomplete ablation by comparing a determined impedance from a first group ofconductive pathways 22cp 1 defined byfirst array 22 a 1 to a second group ofconductive pathways 22cp 2 defined bysecond array 22 a 2. - In
various embodiments apparatus 10 can be configured to simultaneously sample different locations withintarget tissue site 5′ utilizing switching device ormultiplexer 29 or other switching means described herein or known in the art. In an embodiment shown inFIG. 5 a first group of selectedconductive pathways 22 cp′ can be used to sample a localfirst volume 5sv 1 and a second group of selectedconductive pathways 22 cp″ can selected to do so for asecond volume 5sv 2 and a third group of selectedconductive pathways 22 cp′; can be so selected to do so for a larger orglobal sample volume 5sv 3 defined or circumscribed by multiple sensor tippedmembers 18 orsensing members 22 m. Each sample volume results in aseparate impedance profile 19 p. Thussample volumes 5sv sv sv 3 produce impedance profiles 19s 1, 19s 2 and 19s 3 respectively, all or portion of which can be compared to one another or a database ofimpedance profiles 19 db using comparison/pattern recognition algorithms ofmodule 19 m other software or computational means. In a related embodiment the determined impedance signal for each sample volume can integrated or otherwise analyzed bymodule 19 m or other computational means to determine animpedance vector 22 v and loci of impedance 22 i for each respective sample volume (e.g. impedance vectors 22v v v 3; and impedance loci 22l 1, 22l 2 and 22 l 3). - Referring now to
FIG. 6 , in an embodiment one ormore sensors 22 orsensing members 22 m can be coupled to an impedance determination andmonitoring device 19.Monitoring device 19 includes circuitry described herein to measure voltage from the excitation current and subsequently calculate impedance.Further monitoring device 19 can also be configured to measure, calculate and record complex impedance, animpedance profile 19 p and acomplex impedance profile 19 pc resulting from various tissue bioelectric properties including, impedance conductance, capacitance, etc. In an embodiment,monitoring device 19 can includelogic resources 19 lr such as a microprocessor andmemory resources 19 mr such as RAM or DRAM chip configured to analyze, store and displaytissue impedance profile 19 p and/or other bio-electric information derived from sensingmember 22 m and/orsensing array 22 a.Impedance monitoring device 19 can also be coupled to adisplay device 21 so as to display real time or stored impedance profiles images and other data generated byimpedance monitoring device 19. Examples ofdisplay devices 21 include cathode ray tubes (CRTs), liquid crystal displays, plasma displays, flat panel displays and the like.Display device 21 can also be incorporated in an external computer coupled toimpedance monitoring device 19. - In various embodiments,
impedance monitoring device 19 orpower supply 20 can be equipped with a number of feature including but not limited to the following: - (i) memory resources containing a database of characteristic impedance profiles;
- (ii) a readout window for the impedance based diagnosis of tissue type and/or condition;
- (iii) artificial intelligence algorithms/programming enabling the generator to learn from newly acquired impedance scans;
- (iv) ability for the user to enter and teach the generator the correct tissue type and condition based on biopsy or pathology data;
- (v) ability to sense impedance on multiple frequencies simultaneously to improve speed, accuracy, and reduce effects of interference;
- (vi) ability to work with non-invasive pads (like electro-physiology pads) for measurement of complex impedance and performing targeted tissue assessment non-invasively;
- (vii) ability to monitor a reference signal and/or basic patient electro-physiological conditions for baseline comparisons with impedance readings and as additional information for the user; and
- (viii) programming to utilize the reference signal or signal to account for hysteresis, signal noise, cross talk and other signal interference using digital subtraction, suppression and other signal processing methods known in the art and thus improve a signal to noise ratio, signal sensitivity or resolution.
- In various embodiments,
apparatus 10 along withimpedance monitoring device 19 can be configured to perform tissue identification, differentiation, ablation monitoring and mapping of tissue masses and structures. In specific embodiments,monitoring device 19 is configured to perform a tissue identification function using impedance information derived fromsensors 22, sensingmembers 22 m orarray 22 a. A discussion will now be presented on the background of tissue monitoring and identification using impedance determination. Owing to variations in composition and morphology various tissue types have different electrical properties (e.g. conductance, inductance, capacitance etc) and therefore conduct electrical energy differently particularly at certain frequencies. For example cancerous tissue will typically have a significantly higher phase than the health tissue, particularly at low frequencies. These difference in electrical properties, particular conductance result, in acharacteristic impedance profile 19 p for a given tissue type or condition when the tissue is exposed to an excitation current at one or more specific frequencies.Impedance profile 19 p can have one or more peaks, curves and other shapes that serve as a fingerprint of the tissue type or tissue condition. Accordingly by analyzing theimpedance profile 19 p and matching peaks, curve shapes, thresholds etc,profile 19 p can be utilized by embodiments of the invention to identify tissue types and conditions such as malignancy, vascularity, necrosis, thermal injury etc. Related conditions that can also be identified using this approach include abnormally mutated tissue, abnormally dividing tissue or hypoxic tissue. - Further, many tissue types including cancerous tissue such as metastatic tissue, will have a
signature profile 19 p that can be readily identified and matched to a database of profiles using pattern recognition techniques or algorithms known in the art. Accordingly,apparatus 10 can include electronic algorithms orsoftware modules 19 m resident inlogic resources 19 lr ofmonitoring device 19 or microprocessor 339 that are configured to analyze animpedance profile 19 p including real and imaginary components and perform tissue identification and/or tissue differentiation between one or more sampledvolumes 5 sv.Modules 19 m can include pattern recognition algorithms, curve fitting, fuzzy logic or other numerical methods known in the art. Also in an embodiment,modules 19 m can be configured to compareprofile 19 p to a database ofprofiles 19 db stored inmemory resources 19 mr an use curve fitting or other numerical methods known in the art to provide and display a correlation coefficient or statistic (e.g. p value) indicative of the probability of a match to a given tissue type or condition. - In various embodiments the impedance and other bioelectric properties that can be analyzed to determine a tissue type or condition include, but are not limited to complex impedance (real and imaginary components), extracellular impedance, intracellular impedance, interstitial impedance, cell membrane capacitance, intracellular capacitance. In an embodiment,
monitoring device 19 can be configured to analyze only selected frequencies of an impedance profile or other bioelectric property measurement that are known to identify or correlate to selected tissue characteristics, rather than analyzing the full frequency spectrum of the profile. Such frequencies can be selected from a pre-existing database or determined in vivo using swept frequency methods described herein. This approach presents the advantage of faster signal processing times, allowing a faster tissue assessment and diagnosis using fewer computational resources. In turn this enables the size, power requirements and complexity of the control and display instrumentation to be reduced. - Referring now to
FIGS. 7-10 , inrelated embodiments apparatus 10 andmonitoring device 19 can be configured to utilize complex impedance curves to identify and characterize different tissue types and conditions. Accordingly,monitoring device 19 can be configured to measure generate and display curves orprofiles 19 pc of complex impedance. Curves can be both two-dimensional and three-dimensional. For two-dimensional plots the x-axis can be the real component and the y-axis the imaginary component while three-dimensional plots can include an axis for time or frequency. This can be accomplished via algorithms withinmodules 19 m that receive input fromimpedance array 22 a, perform complex impedance calculations known in the art and curve fitting or transform functions described herein and subsequently output animpedance profile 19 p that is displayed ondisplay device 21. As shown inFIGS. 7 a and 7 b, because tissue conducts differently at frequencies, measurements made across a range of excitation frequencies results in an impedance frequency response curve 500 (FIG. 7 a) or a series of complex impedance frequency response curves (FIG. 7 b). Using either of the frequency response curves fromFIG. 7 a or 7 b, a particular frequency can be selected for subsequent impedance complex impedance determinations and analysis which has the greatest sensitivity for a given tissue type or condition and/or results in a complex impedance curve having the greatest predictive value for the desired tissue type or condition. The selection can done using methods described herein or by calibration against a set of in vitro standards representative of the desired tissue condition, by visual determination/estimation of the user or a combination of both. - As shown in
FIGS. 8 a-8 c, in an embodiment, the course of an ablation can be monitored using impedance determinations made at multiple frequencies. The impedance at some frequencies will rise, fall or do both over the time course of the ablation. By combining impedance data from multiple curves the overall predictive value of the measurements for an ablation event or endpoint is greatly increased. Accordingly, using differential diagnosis methodology an ablation monitoring algorithm or module can be configured to look for impedance characteristic curve shapes, slopes threshold, etc. in two or more impedance curves made at different frequencies as a predictor of an ablation endpoint. Such information can be used to provide a more reliable indicator of clinical endpoint as well monitor and titrate the delivery of ablative energy or ablative therapy to the requirements. Similarly, as shown inFIG. 8 d, differences in the impedance-frequency spectrum, pre-, inter- and post-ablation can also be also be used to monitor and evaluate the ablation process. - In related embodiments shown in 8 e-8 g, complex impedance curves can be used to monitor and assess the ablation process including determination of clinical endpoints as described herein. Further as shown in
FIGS. 9 a-9 c, the apparatus can be configured to utilize complex impedance curves to identify and characterize different tissue types, tumors etc. Related embodiments can be configured to generate and display three-dimensional plots of complex impedance utilizing time and or position as the third axis. For positional 3-D plots the locus ofimpedance 502 can be calculated and graphically displayed as is shown inFIG. 10 or in another graphical format known in the arts including 2-D. Also, the impedance locus can be utilized to characterize the ablation process and can be used to perform vector analysis of RF or microwave current or other ablative energy vector, (e.g. the magnitude and direction of the ablative energy), as well as vector analysis of physiologic indicators of cell necrosis, such as changes in interstitial conductivity. In various embodiments, the impedance locus can be utilized to facilitate location and display of a tumor volume, ablation volume, or other desired tissue mass or volume at the target tissue site. The generation and display of theimpedance locus 5 li (in 2-D or 3-D) can be configured to provide the medical practitioner an easily discernable visual cue as to the location, size or movement of the ablation, tumor or other selected tissue volume. - In addition to identifying tissue types, the monitoring device, along with the impedance sensing array(s), can also be employed to monitor in real time the progression of an ablative procedure including the progression of an ablation volume resulting from the delivery of energy to a target tissue volume. This reduces damage to tissue surrounding the targeted mass to be ablated. By monitoring the impedance at various points within and outside of the interior of a tissue site, a determination of the selected tissue mass periphery can be made, as well as a determination of when cell necrosis is complete. If at any time sensor results determine that an impedance level or ablation endpoint has been met or exceeded, then an appropriate feedback signal is inputted to power source which then stops or otherwise adjust the levels of ablative energy delivered to the electrodes. The target tissue site can also be probed and interrogated by the sensor array after the completion of ablation to confirm that ablation is complete for the entire desired volume ablation volume. By probing the ablated region with the sensor array, the three-dimensional volume of the ablation can be assessed and the margin of ablated healthy tissue beyond the tumor mass can also be measured.
- Referring now to
FIG. 11 , an embodiment for monitoring the ablative process theimpedance signal intensity 510 for a sample volume of tissue bounded by two or sensing members or array can be monitored over time using a monitoring device, a power supply or other bioelectric signal monitoring means known in the art. An endpoint for ablation can be determined based on either aselectable threshold value 514 ofsignal 510 or an inflection point or change in slope 512 (e.g. a derivative) ofcurve 506 or a combination of both. In anembodiment signal 506 can comprise the subtraction of a baseline (or reference)impedance determination 508 of a nearby, but non-ablated tissue volume, from areal time measurement 504 of the target tissue volume during the time course of ablation. This compensates for any signal or tissue hysteresis over time. Threshold values 514 andsignals 510 can be input and stored in logic resource coupled to the impedance monitoring device or incorporated into an electronic algorithm controlling the delivery of energy which can be stored in a controller or processor coupled to the power supply. - Turning now to a further discussion of the introducer, in various embodiments, introducer can be a trocar, catheter, multi-lumen catheter, or a wire-reinforced or metal-braided polymer shaft, a port device, a subcutaneous port device, an elongated delivery device, or other medical introducing device known to those skilled in the art. In various embodiments, the introducer as well as resilient member can be configured to have varying mechanical properties along their respective lengths including, but not limited to variable stiffness, torquability, column strength, flexural modulus, pushability, trackability and other mechanical performance parameters known in the catheter arts. Referring to
FIG. 12 a, this can be achieved through the use ofstiff shafts sections 520 disposed within portions of the introducer along itslength 522. It can also be accomplished through the use of braids, varying/tapered diameters and different materials (e.g. stiffer materials joined to flexible materials) positioned over portions of introducer.Sections 520 made from different materials can be joined using introducer bonding methods known in the art such as hot melt junctions (with and without capture tubes/collates), adhesive joints, but joints and the like. The joining method can be controlled/selected so as to control themechanical transition 12 mt between two sections to a desired gradient (e.g. smooth vs. abrupt). In related embodiments,introducer 12 and/ormember 18 can be configured to have stiffer proximal portions and more flexible distal portions so as to facilitate one or more of the following (i) introducer steerability and positioning of the introducerdistal tip 16 at a selectable target tissue site, (ii) reduced risk of perforation, abrasion and other trauma during the positioning the introducer to the tissue site. In various embodiments, the transition from the stiffer to the more flexible portion can be configured to be either (i) gradual with a linear or curve-linear transition, (ii) a step or abrupt transition, and (iii) combinations thereof. - Referring to
FIGS. 12 b and 12 c,introducer 12 can have a substantially circular, semicircular, oval or crescent shaped crosssectional profile 12 cs, as well as combinations thereof along its length. Similarly,lumens 13 can have a circular, semicircular, oval or crescent shaped cross section for all or a portion of the length ofintroducer 12. - Suitable materials for
introducer 12 andresilient member 18 include, but are not limited to, stainless steel, shape memory alloys such as nickel titanium alloys, polyesters, polyethylenes, polyurethanes, Pebax®, polyamides, nylons, copolymers thereof and other medical plastics known to those skilled in the art. All or portions ofintroducer 12 can be coated with a lubricious coating orfilm 524 which reduces the friction (and hence trauma) ofintroducer 12 with hepatic, pulmonary, bone and other tissue. Such coatings can include but are not limited to silicones, PTFE (including Teflon®) and other coatings known in the art. Also, all or portions ofapparatus 10, includingintroducer 12 andmembers 18, can be constructed of materials known in the art that are optimized and/or compatible with radiation sterilizations (e.g. Gamma or E-beam). In related embodiments, all or portions ofapparatus 10 can be configured (e.g. lumen diameter to length ratio, etc.) to be sterilized by plasma (e.g. H2O2) sterilization by systems. - Referring now to
FIG. 13 , in other embodiments all or portions ofintroducer 12 orresilient members 18 can be configured to be deflectable and/or steerable usingdeflection mechanisms 25 which can include pullwires 15, ratchets, cams, latch and lock mechanisms, piezoelectric materials and other deflection means known in the art. The amount of deflection ofintroducer 12 is selectable and can be configured to allow the maneuvering ofintroducer 12 through oblique turns in tissue, organs, organ ducts and blood vessels. In specific embodiments, the distal portions ofintroducer 12 can be configured to deflect 0-180° or more in up to three axes to allow the tip ofintroducer 12 to have retrograde positioning capability.Deflection mechanism 25 can be coupled to, or integral with, a moveable orslidable actuator 24″, 25′ onhandpiece 24.Mechanism 25 and coupledactuator 25′ are configured to allow the physician to selectively control the amount ofdeflection 25 ofdistal tip 16 or other portion ofintroducer 12.Actuator 25′ can be configured to both rotate and deflectdistal tip 16 by a combination of rotation and longitudinal movement of the actuator. - Referring now to
FIG. 14 , in various embodiments introducer 12 can be coupled at itsproximal end 14 to ahandle 24 orhandpiece 24.Handpiece 24 can be detachable and can includeports 24′ andactuators 24″.Ports 24′ can be coupled to one or more introducer lumens 13 (and in turn electrode lumens 72) and can include fluid and gas ports/connectors and electrical, or optical connectors. In various embodiments, ports can be configured for aspiration (including the aspiration of tissue), and the delivery of cooling, electrolytic, irrigation, polymer and other fluids (both liquid and gas) described herein. Ports can include but are not limited to luer fittings, valves (one-way, two-way), toughy-bourst connectors, swage fittings and other adaptors and medical fittings known in the art. Ports can also include lemo-connectors, computer connectors (serial, parallel, DIN, etc) micro connectors and other electrical varieties well known to those skilled in the art. Further, ports can include opto-electronic connections which allow optical and electronic coupling of optical fibers and/or viewing scopes to illuminating sources, eye pieces, video monitors and the like.Actuators 24″ can include rocker switches, pivot bars, buttons, knobs, ratchets, levers, slides and other mechanical actuators known in the art, all or portion of which can be indexed. These actuators can be configured to be mechanically, electro-mechanically, or optically coupled to pull wires, deflection mechanisms and the like allowing selective control and steering ofintroducer 12.Handpiece 24 can be coupled to tissue aspiration/collection devices 26, fluid delivery devices 28 (e.g. infusion pumps) fluid reservoirs (cooling, electrolytic, irrigation etc) 30 orpower source 20 through the use ofports 24′. Tissue aspiration/collection devices 26 can include syringes, vacuum sources coupled to a filter or collection chamber/bag.Fluid delivery device 28 can include medical infusion pumps, Harvard pumps, syringes and the like. In specific embodiments,aspiration device 26 can be configured for performing thoracentesis. - Turning now to a discussion of electrodes or
resilient members 18 andsensing members 22 m, these members can be of different sizes, shapes and configurations with various mechanical properties selected for the particular tissue site. In one embodiment,members 18 can be needles, with sizes in the range of 28 to 12 gauge with specific embodiments of 14, 16 and 18 gauges.Resilient members 18 are configured to be in non-deployed positions while retained inintroducer 12. In the non-deployed positions,resilient members 18 may be in a compacted state, spring loaded and generally confined withinintroducer 12 or substantially straight if made of a suitable memory metal such as nitinol. Asresilient members 18 are advanced out ofintroducer 12 they become distended to a deployed state as a result of their spring or shape memory that collectively defines anablative volume 5 av, from which tissue is ablated as illustrated more fully inFIGS. 1 and 2 . The selectable deployment ofresilient members 18 can be achieved through one or more of the following approaches - (i) the amount of advancement of
resilient members 18 fromintroducer 12; - (ii) independent advancement of
resilient members 18 fromintroducer 12; - (iii) the lengths and/or sizes of energy delivery surfaces of
electrodes electrode 18; - (v) selection of the amount of spring loading or shape memory of
electrode 18; (vi) variation of the geometric configuration ofelectrode 18 in their deployed states; and - (vii) preformed to assume curvature when the
resilient members 18 are advanced from theintroducer 12. - As described herein, in various embodiments all or a portion of
resilient member 18 can be an energy delivery device ormember 18 e. Turning to a discussion of energy delivery device and power sources, the specificenergy delivery devices 18 e andpower sources 20 that can be employed in one or more embodiments of the invention include but are not limited to, the following: - (i) a microwave power source coupled to a microwave antenna providing microwave energy in the frequency range from about 915 MHz to about 2.45 GHz;
- (ii) a radio-frequency (RF) power source coupled to an RF electrode;
- (iii) a coherent light source coupled to an optical fiber or light pipe;
- (iv) an incoherent light source coupled to an optical fiber;
- (v) a heated fluid coupled to a catheter with a closed or at least partially open lumen configured to receive the heated fluid;
- (vi) a cooled fluid coupled to a catheter with a closed or at least partially open lumen configured to receive the cooled fluid;
- (vii) a cryogenic fluid;
- (viii) a resistive heating source coupled to a conductive wire;
- (ix) an ultrasound power source coupled to an ultrasound emitter, wherein the ultrasound power source produces ultrasound energy in the range of about 300 KHZ to about 3 GHz, (xi) and combinations thereof. For ease of discussion for the remainder of this application, the
energy delivery device 18 e is one ormore RF electrodes 18 and the power source utilized is an RF power supply. For these and related embodiments,RF power supply 20 can be configured to deliver 5 to 200 watts, preferably 5 to 100 watts, and still more preferably 5 to 50 watts of electromagnetic energy is to the electrodes ofenergy delivery device 18 e without impeding out. Theelectrodes 18 are electro magnetically coupled toenergy source 20. The coupling can be direct fromenergy source 20 to eachelectrode 18 respectively, or indirect by using a collet, sleeve and the like which couples one or more electrodes toenergy source 20. - In various embodiments,
electrodes 18 include at least onesensor 22 andsensing members 22 m can have a variety of shapes and geometries. Referring now toFIGS. 15 a-15 f, example shapes and geometries can include, but are not limited to, ring-like, ball, hemispherical, cylindrical, conical, needle-like and combinations thereof. Referring toFIG. 16 , in anembodiment electrode 18 can be a needle with sufficient sharpness to penetrate tissue including fibrous tissue including, encapsulated tumors cartilage and bone. The distal end ofelectrode 18 can have a cut angle that ranges from 1 to 60°, with preferred ranges of at least 25° or, at least 30° and specific embodiment of 25° and 30°. The surface ofelectrode 18 can be smooth or textured and concave or convex.Electrode 18 can havedifferent lengths 38 that are advanced fromdistal end 16′ ofintroducer 12. The lengths can be determined by the actual physical length of electrode(s) 18 e, thelength 38′ of anenergy delivery surface 18 eds ofelectrode 18 and the length, 38″ ofelectrode 18 that is covered by aninsulator 36.Suitable lengths 38 include but are not limited to a range from 1-30 cms with specific embodiments of 0.5, 1, 3, 5, 10, 15 and 25.0 cm. The conductive surface area of theelectrode 18 can range from 0.05 mm2 to 100 cm2. The actual length of theelectrode 18 depends on the location of tissue site to be ablated, its distance from the site, its accessibility as well as whether or not the physician performs an endoscopic or surgical procedure. Meanwhile, theconductive surface area 18 eds depends on the desired ablation volume to be created. - Referring now to
FIGS. 17 and 18 ,electrode 18 can also be configured to be flexible and or deflectable having one or more radii ofcurvature 70 which can exceed 180° of curvature. In use,electrode 18 can be positioned to heat, necrose or ablate any selected target tissue volume. Aradiopaque marker 11 can be coated on theelectrodes 18 e for visualization purposes.Electrode 18 can be coupled tointroducer 12 and or an advancement member ordevice 15 or an advancement-retraction member using soldering, brazing, welding, crimping, adhesive bonding and other joining methods known in the medical device arts. Also, theelectrode 18 can include one or more coupledsensors 22 to measure temperature and impedance (both of the electrode and surrounding tissue), voltage and current other physical properties of the electrode and adjacent tissue.Sensors 22 can be at exterior surfaces ofelectrodes 18 at their distal ends or intermediate sections. -
Electrode 18 can be made of a variety of conductive materials, both metallic and non-metallic. Suitable materials forelectrode 18 include, steel such as 304 stainless steel of hypodermic quality, platinum, gold, silver and alloys and combinations thereof. Also,electrode 18 can be made of conductive solid or hollow straight wires of various shapes such as round, flat, triangular, rectangular, hexagonal, elliptical and the like. In a specific embodiment all or portions ofelectrodes 18 or a second electrode can be made of a shaped memory metal, such as NiTi, commercially available from Raychem Corporation, Menlo Park, Calif. - Referring now to
FIGS. 19 through 22 in various embodiments one or more resilient members orelectrodes 18 can be covered by aninsulative layer 36 so as to have an exterior surface that is wholly or partially insulated and provide a non-insulated area which is an energy delivery surface. In an embodiment shown inFIG. 19 ,insulative layer 36 can comprise a sleeve that can be fixed or slidably positioned along the length ofelectrode 18 to vary and control the length of the energy delivery surface. Suitable material forinsulative layer 36 includes polyamide and fluorocarbon polymers such as TEFLON. - In the embodiment shown in
FIG. 20 ,insulation 36 is formed at the exterior of theelectrodes 18 in circumferential patterns, leaving a plurality of energy delivery surfaces. In an embodiment shown inFIGS. 21 and 22 ,insulation 36 extends along a longitudinal exterior surface of theelectrodes 18.Insulation 36 can extend along a selected distance along a longitudinal length of the electrodes and around a selectable portion of a circumference of the electrodes. In various embodiments, sections of the electrodes can haveinsulation 36 along selected longitudinal lengths of electrodes as well as completely surround one or more circumferential sections of electrodes.Insulation 36 positioned at the exterior ofelectrodes 18 can be varied to define any desired shape, size and geometry of energy delivery surface. - Referring now to
FIGS. 23 a and 23 b, in various embodiments electrode 18 can include one or more lumens 72 (which can be contiguous with or the same as lumen 13) coupled to a plurality of fluid distribution ports 23 (which can be apertures) from which a variety offluids 27 can be introduced, including conductivity enhancing fluids, electrolytic solutions, saline solutions, cooling fluids, cryogenic fluids, gases, chemotherapeutic agents, medicaments, gene therapy agents, photo-therapeutic agents, contrast agents, infusion media and combinations thereof. This is accomplished by having ports orapertures 23 that are fluidically coupled to one ormore lumens 72 coupled tolumens 13 in turn coupled tofluid reservoir 30 and/orfluid delivery device 28. - In an embodiment shown in
FIG. 23 a, aconductivity enhancing solution 27 can be infused into atarget tissue site 5′ including a tissue mass. The conductivity enhancing solution can be infused before during or after the delivery of energy to the tissue site by the energy delivery device. The infusion of aconductivity enhancing solution 27 into thetarget tissue 5′ creates an infused tissue area that has an area of increased or otherwise controlled electrical conductivity (verses non-infused tissue) so as to act as anenhanced electrode 40 or an area of controlledtissue impedance 40. During RF energy delivery, tissue impedance and the current densities inenhanced electrode 40 are controlled to an optimum level allowing the delivery of greater amounts of RF power intoelectrode 40 andtarget tissue 5′ without shut downs of the RF power supply due to excessive localized impedance. In use, the infusion of the target tissue site with conductivity enhancing solution provides two important benefits: (i) faster ablation times; (ii) the creation of larger lesions; and (iii) reduced incidence of impedance-related shut downs of the RF power supply. This is due to the fact that the conductivity enhancing solution reduces current densities and prevents desiccation of tissue adjacent the electrode that would otherwise result in increases in tissue impedance. Also, these and related embodiments provide the benefit of a significantly reduced risk of pad burns to the patient due to the use of lower power levels which lowers the current density at the interface between the patients skin and a ground pad electrode. - A preferred example of a conductivity enhancing solution is a hypertonic saline solution. Other examples include halide salt solutions, colloidal-ferro solutions and colloidal-silver solutions. The conductivity of enhanced
electrode 40 can be increased by control of the rate and amount of infusion and the use of solutions with greater concentrations of electrolytes (e.g. saline) and hence greater conductivity. In various embodiments, the use ofconductivity enhancing solution 27 allows the delivery of up to 2000 watts of power into the tissue site impedance shut down, with specific embodiments of 50, 100, 150, 250, 500, 1000 and 1500 watts achieved by varying the flow, amount and concentration ofinfusion solution 27. The infusion ofsolution 27 can be continuous, pulsed or combinations thereof and can be controlled by afeedback control system 329 described herein. In a specific embodiment, a bolus ofinfusion solution 27 is delivered prior to energy delivery followed by a continuous delivery initiated before or during energy delivery withenergy delivery device 18 e or other means. - In various embodiments, the apparatus can include impedance determination, tissue ablation capabilities and can be configured to not only infuse fluid but also to do so as to control tissue impedance at the target tissue site. An embodiment of an ablation apparatus configured for tissue infusion tissue for impedance control is shown in
FIG. 23 b. In this and related embodiments,fluid delivery device 28 can be a syringe pump configured with multiple syringes 28 s, multiple-bore syringes 28 b with each syringe coupled to a separate fluid lumen orchannel 72 directly or via a valve such as an indexing valve. Related embodiments ofinfusion device 28 can include an indexing valve as well as multi-lumen tubing or multi-channel tubing connected to one ormore electrode lumens 72 viaintroducer lumen 13 or other channel within external tointroducer 12. Multi-channel tubing can be fabricated from PEBAX, silicone, polyurethane or other resilient polymer using extrusion technology known in the art. Use of an indexing valve allows independent control of flow rates throughindividual lumens 72 in turning allowing for independent control of infusion throughelectrodes 18. This in turn, allows for greater control of the infusion process including the creation of smaller or larger zones of infusion aroundindividual electrodes 18. Such control is particularly beneficial for bipolar embodiments where, in order to prevent shorting, it is desirable not to have a continuous infusion zone between one or morebipolar electrodes 18 and a return electrode. - As described herein the tissue ablation apparatus can be configured to infuse a fluid 27 to control or maintain tissue impedance at the target tissue site. In various embodiments this can be accomplished using feedback control devices, systems, a control for the fluid delivery device, and algorithms described herein and known in the art such as proportional, proportional-integral control or proportional-integral-derivative methods. Further as shown in
FIG. 23 c, feedback control system can be coupled to fluid delivery device (or the fluid delivery control, not shown) and the impedance monitoring device in order to receive an input or monitoring signal from the monitoring device and output a control signal to device. The delivery of fluid to tissue site can be flow or pressure controlled. Accordingly, in various embodiments the control system regulates impedance by regulating the infusion flow rate through one or more channels, the infusion fluid pressure within channels or a combination of both. Flow rates can be controlled to a range of about 0.01 to about 2.5 ml/per channels with specific embodiments of 0.1, 0.25. 0.5, 0.75, 1.0, 1.5 and 2.0 ml/min. Pressure can be control to a range of 0.01 to 5 atms with specific embodiments of 0.1, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.5 atms. - Other embodiments of fluid delivery methods and ablation apparatus with associated features can be employed such as those described in U.S. Patent Application Ser. No. 60/290,060 filed May 10, 2001 which is fully incorporated by reference herein.
- A discussion will now be presented of types of impedance that can be measured and controlled in various embodiments of the invention, these include system impedance and local impedance. The local impedance is the impedance along a
conductive pathway 22 within target tissue site which in bipolar embodiments can be measured between one or more electrodes. The system impedance is the cumulative impedance of the local impedance along conductive pathway, the impedance on the conductive pathway between the rest of the body (the abdomen, legs, skin etc) and a ground pad electrode, the impedance of the groundpad electrode, the impedance of the RF generator, the impedance of the trocar or delivery device, the impedance of electrodes and the impedance of all the associated cabling coupling one or more components of the apparatus to devices and component described herein (e.g. the RF generator, etc.). Local impedance can be measured directly by measuring the impedance along conductive pathways between one or more electrodes in bipolar embodiments. Alternatively, local impedance can be measured indirectly by taking baseline impedance determinations of system impedance prior to ablative therapy and then subtracting this value from impedance determinations during ablative therapy. In related embodiments the impedance of the apparatus and RF generator can be predetermined using a calibration device or a pre-calibrated tissue/body impedance simulator. Again these values can be stored and subtracted from real time system impedance determinations to yield local impedance. - Local impedance can determined between one or more electrodes or can be determined between the interior and exterior of a hollow electrode by coating an exterior portion of electrode with an insulative coating such that current flows between non-insulated exterior portions of the electrode and the interior portions. Alternatively all or portions of electrode can comprise a coaxial cable with an interior electrode and an exterior electrode.
- A discussion will now be presented of the impedance determinations and calculations used by various embodiments of the invention. In an embodiment the impedance measured by impedance determination device or power generator is system impedance. System impedance includes the local impedance (LI) from the target tissue site and from the rest of the body (BI) as well as the groundpad and the generator and cables. Typically the impedance from the rest of the body (BI) is fixed while the local impedance (LI) is variable. This allows for an indirect determination of local tissue impedance by taking a baseline impedance determination (either before or at the onset of RF power delivery) and then subtracting out the baseline determination. Determination of local tissue impedance and system impedance allows for the determination of a parameter known as impedance efficiency (IE). This value is the ratio of local tissue impedance over the system impedance (LI/SI). The IE value allows for the determination of another parameter known as power dissipation efficiency (PDE). This value is the ratio of the amount of the RF power actually dissipated at the target tissue site (due to ohmic heating) to the total power delivered from the RF generator for a given power setting. PDE can be theoretically determined by multiplying the RF power setting by the IE. Maximizing PDE maximizes the amount of power dissipated at the lesion and hence lesion heating and thermally induced necrosis. Generally, higher PEDs allow for faster, larger and more optimal ablations while minimizing the risk of pad burns by reducing the amount of power required to produce an ablation volume and hence the resulting current density at the interface between the patients skin and a ground pad or return electrode coupled the RF generators.
- PDE can be optimized/maximized by a variety of means including control systems and methods described herein. Accordingly, various embodiments of the invention can be configured to optimize PDE by control of one or more of the following parameters including, but not limited to, target tissue site impedance including target tissue impedance gradients as function of distance from the electrode, electrode impedance, electrode surface impedance, system impedance and target tissue current density including current density gradients as a function of distance from the electrode. One or more of these parameters can be set point controlled using control systems and methods described herein. In an embodiment shown in
FIG. 23 d, PDE is maximized by controlling system impedance and/or local impedance to anoptimal value 526 or range. Prior RF ablative approaches sought to maximize the delivery of power to the tissue site by minimizing system impedance. Embodiments of the present invention utilize a contrary and novel approach by controlling impedance (either local or system) above a minimum value or to an optimum value in order to maximize PED. This optimal value is above a minimum value because when local impedance is too low, there is a reduced power dissipation at the target tissue site in relation to the rest of body, (e.g. the legs, torso and interface between the ground-pad and skin). This approach employed by various embodiments of the invention represents a radical departure from previous RF ablative methodologies which were based on the belief that the lower the tissue impedance the better. Embodiments of the present invention are configured to achieve increased power delivery to the tissue site by actually increasing local impedance to higher levels so as to obtain an increased IE value. - As shown in
FIG. 23 d, tissue impedances below theoptimal impedance 526 result in sharp drop off (e.g. a second order, curvilinear or logarithmic decrease) of the deliveredpower 528 on thecurve 530, while values above the optimal impedance results in a more gradual linear or asymptotic decrease. Using this and related curves, delivered power to the target tissue site can be controlled by controlling local impedance via the infusion rate of a conductive solution or other means described herein. Accordingly, in various embodiments local impedance can be controlled to be not only set at the optimal impedance value, oroptimal impedance range 532, but can also be maintained at values above or below the optimal impedance over the time course of the ablative therapy. In use, this allows the medical practitioner to more precisely titrate the delivery of ablative energy to the size, shape and consistency of a specific tumor volume, as well as account for local anatomy such as nearby or internal blood vessels. Further, these and related embodiments allow the medical practitioner to rapidly increase or decrease delivered power over the time course of the ablation without having to change the power setting on the RF generator. Various embodiments of the invention can include preprogrammed flow rate profiles or programs (stored in memory resources described herein) so as to produce a time variable local impedance profile over the time course of the ablation. For example, the flow rate could be programmed to operate to right of the linear portion of thecurve 530 so as to gradually increase delivered power, then shift to impedance value at optimal impedance and then shift the impedance to the left of optimal impedance to rapidly decrease delivered power near the end of the ablation. This embodiment provides the benefit of minimizing damage to surrounding healthy tissue near the end of ablation. Alternatively, a reverse profile could be employed. Related embodiments could include infusion/impedance profiles that have multiple intervals shifting to the left and the right of the optimal impedance. The apparatus could also be configured to allow the practitioner to manually control the flow rate/impedance profile to meet the requirements of individual tumor volumes. A database of infusion/impedance profiles could be stored in a memory resources or a database. - As described herein, in various embodiments optimal impedance can be controlled and maintained by the infusion of a conductive solution to the target tissue site to control local impedance. This can be accomplished by inputting measurements from sensors and/or electrodes to a control system electronically coupled to an infusion device described herein. In various embodiments control system can be a closed loop system employing Proportional, PI, PID methods as well as fuzzy logic algorithms known in the art. A control system can be configured to control both the flow rate as well as the conductivity of the infused solution by controlling the electrolyte concentration/salinity of the infused solution. Referring back to
FIG. 23 a, the latter can be accomplished by coupling a source of dilute solution to the reservoir via a control valve or by configuring the reservoir to have two or more chambers containing concentrated and dilute electrolytic solutions. In either embodiment, control valve can be utilized to mix the two solutions in a proportion to achieve the desired electrolyte concentration using conductivity/pH sensors known in the art to monitor the output electrolyte concentration. - In related embodiments, two or more process parameters can be controlled to maintain local or system impedance at an optimal impedance value. In an embodiment, RF generator power and the infusion rate can be controlled in concert to control local or system impedance. In situations where impedance is too low, RF power can be increased and infusion rate decreased. This serves to dry out the target tissue site by vaporizing or otherwise driving out fluid from the target tissue site and/or allowing the fluid to dissipate from the tissue site. Alternatively, the fluid delivery device can be coupled to a vacuum source or otherwise be configured to apply negative pressure to suction off fluid from the target tissue into the lumen(s) of the electrode or lumen(s) of the introducer. When impedance is too high infusion rates can be increased in combination with a decrease in RF power levels.
- In various embodiments, the optimal impedance or impedance range can be maintained in the range of 5 to 200 ohms with a preferred range of 30 to 150 ohms and specific embodiments of 10, 15, 20, 30, 40, 50, 75, 80, 90, 100, 110 and 120 ohms. The value of the optimal impedance can be determined using a calibration software program and/or a calibration test fixture (not shown) which can be configured to simulate local tissue and/or body impedance using biomedical instrument calibration methods known in the art. In use, the doctor would connect an ablation apparatus or catheter to a RF generator in order to determine a unique value of the optimal impedance for given catheter generator combination. Alternatively, each catheter can be factory calibrated using biomedical instrument calibration methods known in the art. The value could be stored in a microprocessor or ROM chip known in the art that is integral or coupled to the apparatus and configured to electrically signal the measurement device and/or the generator. Also the control system, measurement device, or the generator can be configured to allow the medical practitioner to manually enter a value for the optimal impedance.
- In embodiment shown in
FIG. 23 e, the infusion of solution can be controlled to control the positional impedance profile or gradient 534 (that varies as a function of the distance from the electrode) and hence apower dissipation gradient 536. Anoptimal impedance gradient 538 can be selected to in turn produce an optimalpower dissipation gradient 540 to optimize the delivery of power in the target tissue site. In an embodiment, the infusion flow rate can be controlled to maintain the impedance gradient substantially constant (ins shape and position) over the time course of the ablation. Alternatively, flow rates can be increased or decreased as needed bycontrol system 329 to shift the impedance gradient over the time course of ablative RF power delivery to optimize ablation volume and minimize ablation times. Decreasing infusion rates (and/or decreasing electrolytic concentration) shifts the impedance gradient to the right to allow more power to be delivered to target tissue to produce larger ablation volumes in short periods of time. Increase infusing rates allows the impedance gradient to be shifted to the left to minimize tissue desiccation and charring and prevent or reduce impedance induced shut downs of the generator (so called impeding out). In an alternative embodiment, the infusion of fluid can be configured to produce aconstant impedance profile impedance gradient 534 can be configured to be linear, logarithmic, second order, third order or other polynomial function. Flow rate programs or subroutines that can be used to produce such gradients can be stored in memory resources and/or logic resources. - Turning now to a discussion of sensors, in various embodiments, sensors can include all or a portion of the resilient members. Referring back to
FIG. 19 , whenresilient member 18 is made of a conductive material the length of the sensor 22 l can be defined by the placement of a slidable or fixedinsulative layer 36. Also in various embodiments,sensors 22 can fabricated from a variety of conductive materials and metals known in the art including stainless steel, copper, silver, gold, platinum and alloys and combinations thereof. Referring now toFIG. 24 , similarly all or portions ofsensors 22 orsensing members 22 m can comprise a conductive metal layer orconductive polymer coating 22 c that is coated or deposited (onto a selected portion ofresilient member 18 using methods known in the art such as sputtering, vacuum deposition, dip coating, photolithography and the like. In a related embodiment, sensingmembers 22 m and/orsensor 22 can be configured to have aresistance gradient 22 g along all or portions of their lengths 22 l. The resistance gradient can be increasing or decreasing in a linear, second order, third order, exponential or other fashion. In a specific embodiment, the resistance gradient is configured to compensate for resistance losses (i.e. of voltage) and/or hysteresis occurring along the length ofsensor 22, as well as changes in the overall resistance ofsensor 22 due changes in the temperature and/or conducting/sensing length 22 lc (and area) ofsensor 22 as might occur due to advancement or retraction of slidable insulation layer, or fowling of the sensor with, desiccated, burnt tissue or otherwise adherent tissue. In this, and related embodiments, the gradient can be so configured to produce the least resistance (e.g. maximum conductance) at thedistal tip 22 d of thesensor 22 and increasingly moving in a proximal direction along. The gradient can be produced via the use ofcoating 22 c either by varying the thickness or composition of the coating, or a combination of both along the length 22 l of the sensor using methods known in the art. Further, by compensating for such resistance changes or losses along the length or area of the sensor, these and related embodiments also improve the detection of real and imaginary components of complex impedance. In other related embodiments, the resistance gradient can be in a radial direction or a combination of radial and linear directions with respect to the sensor length 22 l. - In other embodiments the sensors can comprise a number of biomedical sensors known in the art including but not limited to thermal sensors, acoustical sensors, optical sensors, voltage sensors, current sensors, pH sensors, gas sensors, flow sensors positional sensors and pressure/force sensors. Thermal sensors can include thermistors, thermocouples, resistive wires, optical sensors and the like. Acoustical sensors can include ultrasound sensors including piezoelectric sensors which can be configured in an array. Pressure and force sensors can include strain gauge sensors including silicon-based strain gauges.
- In an embodiment, the sensor can be selected to measure temperature along with impedance to compensate for any temperature related bias or hysteresis in the impedance determination. Accordingly, in an embodiment a feedback signal from a temperature sensor or temperature calculation device can be inputted to an impedance calculation device described herein to compensate for such variation. Temperature monitoring can also be used for real time monitoring of energy delivery. If at any time date from the sensors determines that a desired cell necrosis temperature is exceeded, then an appropriate signal is sent to the controller which then regulates the amount of electromagnetic energy delivered to the electrodes.
- Referring now to
FIGS. 25 a-25 c and 26 a-26 c, in an embodiment, the position and size of an ablation volume produced by the delivery of electromagnetic energy can be controlled via the frequency of the ablative energy delivered. Lower electromagnetic frequencies such as RF frequencies (e.g. 1 kHz to 1 MHZ) produce a more localized energy concentration (e.g. current density) with the resulting zone of energy concentration orablation zone 5 az occurring close to the energy delivery electrode/antenna in terms of alateral distance 18 dl or other direction. Higher frequencies such as microwaves result in a more distant energy concentration and resulting ablation zone. As shown inFIGS. 25 a-25 c, by varying the frequency of the delivered energy and/or utilizing energy delivery electrodes/antenna coupled to different frequency energy source (e.g. microwave vs. RF) the position, shape and size of the resulting lesion can be precisely controlled and even steered. This can be accomplished by electrically isolating one ormore electrodes 18 to allow for the use of separate frequencies for each electrode. Further, one or more isolated electrodes can be coupled to multiplexing circuitry, and/or control resources coupled to the power sources and individual electrodes/antenna. Such circuitry and control resources can be used to turn individual electrodes or antenna off and on as well as control/set the frequency of each. In use, these and related embodiments provide the benefit of allowing the size, position and shape of the lesion to be precisely controlled and/or titrated in order to meet the therapeutic needs of the target tissue. - Referring now to
FIGS. 25 b and 25 c, in various embodiments, one or more electrodes can have segmentedportions 18 sp so as to allow the electrodes to emit or radiate energy at different wavelengths from differentsegmented portions 18 sp of theelectrode 18. Segmentation can be achieved through the use of electrically insulatedsections 36 s. - In an embodiment shown in
FIG. 25 b, the use of segmented electrodes allows the creation ofsegmented ablation zones 5 azs including a first and secondsegmented zone 5azs azs 2. The size and shape of the segmented ablation zones can be controlled by be discontinuous or overlapping. Such embodiments also provide the ability to avoid injury to anatomical structure such as blood vessels, nerves etc., which may be in close proximity or actually be surrounded by the tumor to be treated. For example, in an embodiment shown inFIG. 25 b, thesegmented ablation zones 5azs azs 2 can be sized and positioned (via frequency control of the ablative frequencies delivered to each electrode) to have sufficient space between each zone to avoid damaging ablood vessel 5 bv or othercritical structure 5 as which lies between two ormore electrodes 18. Alternatively, if desired, the ablative frequencies delivered to each electrode segmentedportion 18 sp could be reconfigured to produce overlappingsegmented ablation zones 5 azs as is shown inFIG. 25 c. - In use, the medical practitioner would position the apparatus and then image the target tissue site (using imaging systems known in the art such as medical ultrasound or CAT scan technology) to identify both the tumor and critical structures and then utilize that image to control the input frequency to the energy delivery device to produce the desires lesion size and shape to completely ablate the tumor while avoiding the critical structure. In an embodiment, the image could be electronically stored and be analyzed to identify tumors and surrounding anatomy (using imaging processing methods known in the art such as edge detection algorithms resident within a processor of the imaging device) with the output feed into a power control software module, coupled to the power supply, that controls the power frequency to produce the desired ablation volume. Another benefit, of these and related embodiments, is the ability to produce an energy or thermal gradient within a target tissue site. That is, the ability to deliver more or less energy to discrete sections of the target tissue volume in order to titrate the delivery of energy to address the physical and thermal conditions of a particular tumor mass and even subsections of the tumor mass. This is an important capability because tumors are often morphologically, and therefore thermally non-homogeneous, a problem which current ablative therapies have not recognized or addressed.
- Exemplary embodiments for the use of this capability include delivering larger amounts of energy to the center of a tumor and less to the periphery in order to produce higher temperatures and ensure complete ablation at the center and minimize risk of thermal injury to surrounding healthy tissue. Alternatively, increased energy could also selectively be directed to the tissue tract made by the RF needle or probe (or other penetrating energy delivery device) in penetrating the tumor and surrounding tissue to ensure that no living malignant tissue is dragged back through the tract upon removal of the RF needle.
- Referring now to
FIGS. 3 and 27 , various embodiments of the invention can be configured to generate and display images or maps from one or more impedance determinations including but not limited to complex impedance, impedance vectors, impedance loci and combinations thereof. In an embodiment, aprocess 100 for generating and displaying an impedance map or impedance derivedimage 4′ includes one or more of the following steps, all or a portion of which, can be implemented as an electronic instruction set on a processor or logic resources described herein.Impedance array 22 a and/orapparatus 10 can be positioned 101 within or near the desiredsample volume 5 sv and/orconductive paths 22 cp can be selected 105 so as to define, and thus select 110, aparticular sample volume 5 sv. The volume is then imaged 200 using all or a portion of thesensing members 22 m orsensors 22 that comprisearray 22 a. Adecision 300 can then be made to perform one or more re-images of the sample volume in order to enhance image resolution. Further, different excitation currents can be applied to the target tissue site and the voltage measurements repeated over time to increase measurement accuracy and precision through increased sampling and reducing signal bias or noise that may occur at a particular excitation current. Signals 22 i fromimpedance array 22 a can then be signaled or inputted 400 tologic resources 19 lr includemodule 19 m which can include animage processing sub-module 19 mi. Sub-module 19 mi includes subroutines or algorithms configured to generate an impedance map or derivedimage 4′ of all or a portion of thetarget tissue volume 5′ using image/signal processing methods including, but not limited to, edge detection, filtering, approximating techniques, volume imaging, contrast enhancement, fuzzy logic and other methods known in the art. Alternatively, one or more signals 22 i fromarray 22 a can be inputted or signaled 500 tomemory resources 19 mr (or an externally coupled data storage device) and stored as animpedance data set 22 ds inmemory resources 19 mr. Subsequently, all or a portion of data set 22 ds can inputted to sub-module 19 mi and processed 600 as described herein to generate an impedance map or impedance derivedimage 4′ which can then be displayed 700 ondisplay device 21 or other display means. Adecision 800 can then be made to image a new sample volume and the process can repeated starting at thepositioning step 101 or the selectingconductive pathway step 105. In an embodiment, the imaging or mapping process can be facilitated by rotatingarray 22 a aboutintroducer axis 12 al or advancing and retracting one ormore sensing members 22 m frommembers 18 or a combination of both. - In an embodiment,
module conductive pathways 22 cp within the target tissue volume. Reference measurements or normalization methods may be used to account for noise in the measurements. In related embodiments impedance and other bioelectric measurements described herein can be analyzed and converted from the frequency domain to the time using transform function including Fourier transforms, fast Fourier transforms, wavelet analysis methods and other numerical methods known in the art. These functions and methods can be incorporated into algorithms or subroutine withinmodule module exemplary embodiment modules -
Image module 19 mi can also include subroutines to perform interpolation such as linear, quadratic or cubic spline interpolation between individual determined impedance values from image data set of a given sample volume. This improves image quality including resolution without any substantial loss of spatial or contrast detail. In related embodiments, theimage processing module 19 mi can be configured to allow the user to select both the interpolative or other image processing algorithms to be performed as well as the area of the image to be so processed. Thus, the user can select all or a portion of the image to enhance, providing faster image processing times (by not having to process the entire image) as well improving image quality and other overall usability of the imaging apparatus/system. Theimage processing module 19 mi can also include gray scale and color contrast capabilities which can be selectable. Both the gray scale and color can be scaled or normalized against a baseline measurement obtained from the individual patient, a calibration measurement or a statistic (e.g. mean) value for a patient sample group or a parameter (e.g. average) for a patient population or a combination thereof. - In related embodiments,
monitoring apparatus 19 andmodule 19 mi can be configured to generate impedance images with the maximum visual distinction or contrast between tumorous tissue and healthy tissue. This can be accomplished by using the frequency or combination of frequencies that yield the maximum sensitivity for selected tissue types or tissue conditions indicative of a tumor (e.g. degree of vascularity temperature etc). In an embodiment, such frequencies can be determined by performing swept frequency measurements and generating an impedance map or image using one or more frequencies which resulted in the best contrast between healthy tissue and tumorous tissue or other tissue condition (e.g. thermal injury, necrosis etc.). - Referring now to
FIGS. 28 and 29 , afeedback control system 329 can be connected toenergy source 320, sensors 324impedance array 322 a andenergy delivery devices Feedback control system 329 receives temperature or impedance data from sensors 324 and the amount of electromagnetic energy received byenergy delivery devices Feedback control system 329 can automatically change any of the Four Parameters.Feedback control system 329 can detect impedance or temperature and change any of the Four Parameters in response to either or a combination.Feedback control system 329 can include a multiplexer (digital or analog) to multiplex different electrodes, sensors, sensor arrays and a temperature detection circuit that provides a control signal representative of temperature or impedance detected at one or more sensors 324. A microprocessor can be connected to the temperature control circuit. - The following discussion pertains particularly to the use of an RF energy as an ablative energy source for the apparatus. For purposes of this discussion,
energy delivery devices antennas energy source 320 will now be an RF energy source. However it will be appreciated that all other energy delivery devices and sources discussed herein are equally applicable and devices similar to those associated with the treatment apparatus can be utilized with laser optical fibers, microwave devices and the like. The temperature of the tissue, or ofRF electrodes energy source 320 adjusted accordingly. The physician can, if desired, override the closed or open loop system. - The user of the apparatus can input an impedance value that corresponds to a setting position located at the apparatus. Based on this value, along with determined impedance values,
feedback control system 329 determines an optimal power and time needed in the delivery of RF energy. Temperature is also sensed for monitoring and feedback purposes. Temperature can be maintained to a certain level by havingfeedback control system 329 adjust the power output automatically to maintain that level. - In another embodiment,
feedback control system 329 determines an optimal power and time for a baseline setting. Ablation volumes or lesions are formed at the baseline first. Larger lesions can be obtained by extending the time of ablation after a center core is formed at the baseline. The completion of lesion creation can be checked by advancingenergy delivery device 316 from the distal end of the introducer to a position corresponding to a desired lesion size and monitoring the temperature at the periphery of the lesion such that a temperature sufficient to produce a lesion is attained. - The
closed loop system 329 can also utilize acontroller 338 to monitor the temperature, adjust the RF power, analyze the result, refeed the result, and then modulate the power. More specifically,controller 338 governs the power levels, cycles, and duration that the RF energy is distributed toelectrodes Controller 338 can also in tandem analyzespectral profile 19 p and perform tissue biopsy identification and ablation monitoring functions including endpoint determination. Further,controller 338 can in tandem govern the delivery of electrolytic, cooling fluid and, the removal of aspirated tissue.Controller 338 can be integral to or otherwise coupled topower source 320. In this and related embodiments,controller 338 can be coupled to a separate impedance determinationcurrent source 317 and can be configured to synchronize the delivery of pulsed power to tissue site to allow for sensing by sensors orsensor array 322 a during off power off intervals to prevent or minimize signal interference, artifacts or unwanted tissue effects during sampling by sensors 324 orsensor array 322 a. Thecontroller 338 can also be coupled to an input/output (I/O) device such as a keyboard, touchpad, PDA, microphone (coupled to speech recognition software resident incontroller 338 or other computer) and the like. In an embodimentcurrent source 317 can be a multi-frequency generator such as those manufactured by the Hewlett Packard Corporation (Palo Alto, Calif.) and can include or be coupled to a spectrum analyzer manufactured by the same company. - Referring now to
FIG. 28 , all or portions offeedback control system 329 are illustrated. Current delivered throughRF electrodes 314 and 316 (also called primary and secondary RF electrodes/antennas 314 and 316) is measured by acurrent sensor 330. Voltage is measured byvoltage sensor 332. Impedance and power are then calculated at power andimpedance calculation device 334. These values can then be displayed at a user interface anddisplay 336. Signals representative of power and impedance values are received bycontroller 338 which can be amicroprocessor 338. - A control signal is generated by
controller 338 that is proportional to the difference between an actual measured value and a desired value. The control signal is used bypower circuits 340 to adjust the power output in an appropriate amount in order to maintain the desired power delivered at the respective primary and/orsecondary antennas temperature measurement device 342, and the temperatures are displayed at user interface anddisplay 336. A control signal is generated bycontroller 338 that is proportional to the difference between an actual measured temperature, and a desired temperature. The control signal is used bypower circuits 340 to adjust the power output in an appropriate amount in order to maintain the desired temperature delivered at the respective sensor 324. Amultiplexer 346 can be included to measure current, voltage and temperature, at the numerous sensors 324 as well as deliver and distribute energy betweenprimary electrodes 314 andsecondary electrodes 316. Suitable multiplexers include but are not limited to those manufactured by the National Semiconductor® Corporation (Santa Clara, Calif.) such as theCLC 522 and CLC 533 series; and those manufactured the Analog Devices® Corporation (Norwood, Mass.). -
Controller 338 can be a digital or analog controller, or a computer with embedded, resident or otherwise coupled software. In anembodiment controller 338 can be a Pentium® family microprocessor manufacture by the Intel® Corporation (Santa Clara, Calif.). Whencontroller 338 is a computer it can include a CPU coupled through a system bus. On this system can be a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art. Also coupled to the bus are a program memory and a data memory. In various embodiments,controller 338 can be coupled to imaging systems, including but not limited to ultrasound, CT scanners (including fast CT scanners such as those manufacture by the Imatron® Corporation (South San Francisco, Calif.), X-ray, MRI, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized. - User interface and display 336 can include operator controls and a display. In an
embodiment user interface 336 can be a PDA device known in the art such as a Palm® family computer manufactured by Palm® Computing (Santa Clara, Calif.).Interface 336 can be configured to allow the user to input control and processing variables, to enable the controller to generate appropriate command signals.Interface 336 can also receives real time processing feedback information from one or more sensors 324 for processing bycontroller 338, to govern the delivery and distribution of energy, fluid etc. - The output of
current sensor 330 andvoltage sensor 332 is used bycontroller 338 to maintain a selected power level at primary andsecondary antennas controller 338, and a preset amount of energy to be delivered can also be profiled. - Circuitry, software and feedback to
controller 338 results in process control, and the maintenance of the selected power, and are used to change, (i) the selected power, including RF, microwave, laser and the like, (ii) the duty cycle (on-off and wattage), (iii) bipolar or monopolar energy delivery and (iv) infusion medium delivery, including flow rate and pressure. These process variables are controlled and varied, while maintaining the desired delivery of power independent of changes in voltage or current, based on temperatures monitored at sensors 324. Acontroller 338 can be incorporated intofeedback control system 329 to switch power on and off, as well as modulate the power. Also, with the use of sensor 324 andfeedback control system 329, tissue adjacent toRF electrodes electrode 314 or adjacent tissue. - Referring now to
FIG. 29 ,current sensor 330 andvoltage sensor 332 are connected to the input of ananalog amplifier 344.Analog amplifier 344 can be a conventional differential amplifier circuit for use with sensors 324. The output ofanalog amplifier 344 is sequentially connected by ananalog multiplexer 346 to the input of A/D converter 348. The output ofanalog amplifier 344 is a voltage which represents the respective sensed temperatures. Digitized amplifier output voltages are supplied by A/D converter 348 to amicroprocessor 350.Microprocessor 350 may be a Power PC® chip available from Motorola or an Intel® Pentium® Series chip. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature or perform image processing and tissue identification functions. -
Microprocessor 350 sequentially receives and stores digital representations of impedance and temperature. Each digital value received bymicroprocessor 350 corresponds to different temperatures and impedances. Calculated power and impedance values can be indicated on user interface anddisplay 336. Alternatively, or in addition to the numerical indication of power or impedance, calculated impedance and power values can be compared bymicroprocessor 350 with power and impedance limits. When the values exceed predetermined power or impedance values, a warning can be given on user interface anddisplay 336, and additionally, the delivery of RF energy can be reduced, modified or interrupted. A control signal frommicroprocessor 350 can modify the power level supplied byenergy source 320 toRF electrodes - Referring now to
FIG. 30 , in an embodiment one or more of theimpedance determination device 19,power supply 20,display device 21 and control system, the controller can be incorporated or integrated into a single control and display device orunit 20 cd.Device 20 cd can configured to include display one or more of the following:impedance profile 19 p,tissue site image 4′,tumor volume image 4″,ablation volume image 4 av, time temperature profiles, tissue identification information, and ablation setting information (e.g. power setting, delivery time etc.). Thedevice 20 cd can also be configured to superimposeablation volume image 4 av ontotumor volume image 4″ ortissue site image 4′ as well as superimposevisual cues 4 c on the placement (including proper and improper placement) of theapparatus 10 including energy delivery devices within the tumor volume or a tissue site. Thedevice 20 cd can also include controls knobs 20 ck for manipulating any of the images (4′, 4″ or 4 av) in one or more axis. - Referring now to
FIG. 31 , in various embodiments, impedance determination apparatus or the control system can be configured to switch from a first mode of measuring impedance to a second mode when certain system impedance or power conditions occur. In an embodiment, the first mode of measuring impedance is done utilizing the RF treatment power and then impedance is calculated using a measured current and voltage as described herein. However, when system impedance rises greatly and the resulting RF power treatment power level drops below a threshold the accuracy and precision of localized impedance determinations decreases as a result due in part to the decrease in the impedance determination current in relation to noise levels of the RF power system. This is a problem not recognized nor addressed by current RF ablative/impedance determination devices. Under such conditions logic resources within monitoring device can be configured to switch to a second mode of measuring localized impedance. The threshold event causing the mode switching can be selectable and include one or more of the following: threshold decreases in treatment (e.g. RF) power, increases in system impedance, changes in slope (e.g. derivative) of the RF power or system impedance curves. In various embodiments, the threshold level of RF treatment power causing mode switching can be in the range from 1 to 50 watts with specific embodiments of 5, 10 and 25 watts. - In an embodiment shown in
FIG. 31 , an alternative mode of measuring impedance is shown comprising superimposing a duty cycledmeasurement signal 20 e onto thetreatment signal 20. Thepulse duration 20 pd ofsignal 20 e can be in the range of 1 to 500 ms with specific embodiments of 50, 100 and 250 ms. Theduty cycle 20 dc ofsignal 20 e can be in the range from 1 to 99% with specific embodiments of 10, 25, 50 and 75%. The monitoring device, power source or control system can be configured to control the power amplitude of the measurement signal to maintain a selectedtotal signal amplitude 20 at. In an embodiment thetotal signal amplitude 20 at can range from about 5 to about 50 watts, with specific embodiments of 10, 20, 30 and 40 watts Also the duty cycle, pulse duration and total signal amplitude can be controlled to deliver a selectable average power over the duty cycle which can be in the range of about 0.5 to about 10 watts withspecific embodiments 1, 2.5 and 5 watts. By controlling the average power delivered over the duty cycle higher measurements currents can be used in short pulse duration without appreciably affecting delivered treatment power, system performance or causing additional or unwanted energy delivery to the target tissue site. - In use, these and related embodiments of alternative measurement of impedance determinations including superimposed duty cycle measurement, provide the benefit of improved accuracy and signal to noise ratios of impedance and related bio-electric measurements under conditions of high system impedance and/or lower levels of delivered RF treatment power (i.e. ablative power).
- In related embodiments, the duty cycle and/or pulse duration can be configured to vary responsive to one or more selected parameters which can include frequency of the treatment signal, power of the treatment signal, or impedance of the treatment signal. The variation in either the pulse duration or duty cycle can be controlled by a control system and/or logic resources of the impedance monitoring device or power supply using control methods known in the art such as PID control. In use, these embodiments allow the impedance determinations to be continuously fine tuned to changing system conditions to improve the accuracy and precision of impedance and related bioelectric measurements.
-
FIG. 32 illustrates a tissue ablation system orapparatus 550, much of which has been described above. The apparatus generally includes a control unit 55 which is designed to operate in the manner described more fully below with respect toFIG. 33 . The control unit is operably connected to anRF energy source 554, such as an energy source of the type described above, for controlling the energy output, e.g., power output, from the energy source to the electrodes in amulti-electrode ablation device 556, of the type described above. The operable connection betweenunit 552 and energy source, indicated at 560, may be any conventional electronic or mechanical control, e.g., a servo motor, by which electronic signals from the control unit can be used to vary the power output ofsource 554. - The output of the energy source is electrically connected to the electrodes of a multi-electrode ablation device, as above, for varying the RF power delivered to the electrodes, for varying the rate of ablation by the device, when the electrodes are deployed in a target tissue, as detailed above.
- The control unit is also operably connected to an
infusion device 558, such as a pump or the like, to control the rate and/or pressure of fluid, e.g., saline solution, supplied to electrodes or other fluid-infusion channels in the ablation device through fluid-carrying tubes, indicated 561. The operative connection betweenunit 552 and the infusion device is indicated at 562, and may be may be any conventional electronic or mechanical control, e.g., a servo motor, by which electronic signals from the control unit can be used to vary the pumping rate or pressure at which fluid is supplied bydevice 558 to the ablation device. - An electrical connection 553 between the ablation device and control unit is used for transmitting electrical signals related to the output of temperature sensors carried on the ablation device electrodes, as described above and/or for transmitting current-level information relating to current flow between electrodes and an exterior body surface, (for global impedance measurements) or between electrodes or regions of one electrode (for local impedance measurements). Such impedance and/or temperature measurements may be instantaneous values, or values relating to change in impedance and/or temperature over time.
-
FIG. 33 is a flow diagram illustrating various functions and operations in the control unit, as they related to control of the RF energy source and control of the infusion device. At the outset, it is noted that control unit may automatically control the operation of the both the energy and infusion devices, without user intervention, or may provide information to the user which indicates how the user should control the operational levels of one or both of the energy device and infusion device, to optimize the ablation procedure, and in particular, to ensure complete tissue ablation with a minimum of charring and collateral damage to nearby healthy tissue. - Initially, the user may input the type of target tissue, e.g., liver tumor, bone tumor, or the like, as indicated at 564. The control unit preferably stores data relating to the impedance characteristics of tissue and/or rates of heating and changes in impedance for specific tissue types, when a given power level is applied, preferably in the presence of infusate. This internal data will be used, as seen below, to confirm that the tissue into which the electrodes of the ablation device have been deployed is the desired tissue type, based on impedance and/or temperature changes detected during an initial phase of system operation.
- When the user is ready to insert the device into the patient, and deploy the electrodes into the target tissue, to define a selected volume for tissue ablation, the system operates to begin fluid infusion through the device and also controls the energy device to deliver low-power, pulsed RF energy to the electrodes being deployed, as indicated at 566. The low-power pulses are used to generate global or localized current values for purposes of measuring global or local impedance values as the electrodes are being deployed, as indicated at 568 and 570. The power supplied to the electrodes during deployment may also be sufficient to cause very localized heating around the electrodes, to facilitate entry of the electrodes into the target tissue. The ablation device may also signal the control unit, through connection 553 (
FIG. 33 ) when a selected degree of electrode deployment, corresponding to a desired tissue volume, is reached. - The Impedance (and/or temperature) measurements made during electrode deployment may be compared with the tissue-specific impedance or temperature data stored in the control unit, to confirm that the tissue enveloped by the electrodes is in fact the selected target tissue. If the program finds a mismatch, as at 574, control unit may signal the user to redeploy the electrodes, as indicated. If a tissue-confirmation is made, the program proceeds, indicating to the user to initiate the ablation procedure, or automatically initiating the ablation phase of the operation, by advancing the power level delivered by the energy source to a desired level, and optionally, increasing the rate of fluid infusion to the tissue, as indicated at 576.
- Once the ablation operation is underway, system makes continual and periodic impedance and/or temperature measurements at the target-tissue site, and performs automatic or user-controlled adjustments in the power level and/or infusion rate, to achieve a desired rate and extent of ablation, as indicated at 570. As indicated above, when this adjustment is carried out automatically, the control unit operates to automatically adjust the power level and/or infusion rate of
devices FIG. 32 ). Alternatively, the control unit may have a display for indicating to the user the direction and extent of adjustment requirement, and controls for making those adjustments. - Throughout the period of adjustment, the control unit is receiving periodic and repeated impedance and/or temperature data which is being processed to guide the control of the energy and infusion devices. The data-processing operations are indicated at the bottom in
FIG. 32 . Initially, and as indicated at 580, the program asks whether the temperature is rising adequately (it is desired to complete the ablation within as short a time as possible, consistent with the objective of optimal tissue ablation). If the rate of temperature rise is below a selected threshold, the control unit may operate (or instruct the user) to adjust the power and/or rate of infusion to the tissue, to enhance the rate of heating, for example, by increasing power or reducing infusion. The program also asks whether the measured impedance is above a desired threshold, as at 582. If the measured impedance is too low, again the program will operate (or instruct the user) to adjust the power delivery to the electrodes and/or the rate of infusion of electrolyte to the tissue. This procedure is repeated until both temperature change and impedance levels are within selected acceptable ranges. - The program also looks for impedance spikes, indicative of charring or over-heating. If these are observed, through
logic decision 584, the control unit may operate to adjust (or instruct the user to adjust) either power level of rate of infusion to minimize so as to reduce impedance spikes. - Assuming all of these variables are within acceptable levels, the system is properly adjusted to maximize the ablation process, that is, to achieve ablation at about the highest rate that does not lead to tissue charring (or excessive tissue charring) or ablation damage to collateral healthy tissue. The program now monitors when complete ablation is achieved in the region of the electrodes, as at 586. If ablation is incomplete, the program may continue ablation at the existing power and/or infusion rate levels, or adjust the levels as appropriate.
- If complete local ablation is achieved, the system may then ask whether ablation of the total target area is ablated, as at 558. If it is, the program operation is at end, and the system may terminate or power down to a lower power/infusion levels. For example, some RF power may be supplied to the electrodes during electrode retraction or catheter retraction, to reduce the risk exposing healthy tissue to tumor cells, during removal of the ablation device from the patient.
- If the total ablation is incomplete, the system signals the user to advance the deployment of the electrodes, and the above ablation process is repeated until a final target-tissue ablation is achieved.
- It will be appreciated that the applicants have provided a novel and useful apparatus and method for the diagnosis and treatment of tumors using minimally invasive methods including tissue impedance determinations. The foregoing description of various embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Embodiments of the invention can be configured for the treatment of tumor and tissue masses at or beneath a tissue surface in a number of organs including but no limited to the liver, breast, bone and lung. However, embodiments of the invention are applicable to other organs and tissue as well. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. Further, elements from one embodiment can be readily recombined with elements from one or more other embodiments. Such combinations can form a number of embodiments within the scope of the invention. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Claims (1)
1. An apparatus for tissue ablation, comprising:
an elongated delivery device;
an energy delivery device operably coupled to an energy source, the energy delivery device comprising a plurality of electrodes, each of the electrodes having a tissue piercing distal portion and being positionable in the elongated delivery device, one or more of the electrodes configured to be curved when deployed to a selected tissue site, two or more of the electrodes being configured for liquid infusion to the selected tissue site and each separately comprising an infusion lumen;
an energy control configured to be operably coupled to the energy delivery device for impedance detection within the selected tissue site, and for energy delivery control in response to the detected impedance; and
a fluid control configured to be operably coupled to the at least two infusion electrodes for infusion control in response to the detected impedance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/022,708 US20080287944A1 (en) | 2001-09-28 | 2008-01-30 | Tissue ablation apparatus and method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32604301P | 2001-09-28 | 2001-09-28 | |
US10/260,187 US7344533B2 (en) | 2001-09-28 | 2002-09-28 | Impedance controlled tissue ablation apparatus and method |
US12/022,708 US20080287944A1 (en) | 2001-09-28 | 2008-01-30 | Tissue ablation apparatus and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/260,187 Continuation US7344533B2 (en) | 2001-09-28 | 2002-09-28 | Impedance controlled tissue ablation apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080287944A1 true US20080287944A1 (en) | 2008-11-20 |
Family
ID=23270584
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/260,187 Expired - Fee Related US7344533B2 (en) | 2001-09-28 | 2002-09-28 | Impedance controlled tissue ablation apparatus and method |
US12/022,708 Abandoned US20080287944A1 (en) | 2001-09-28 | 2008-01-30 | Tissue ablation apparatus and method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/260,187 Expired - Fee Related US7344533B2 (en) | 2001-09-28 | 2002-09-28 | Impedance controlled tissue ablation apparatus and method |
Country Status (8)
Country | Link |
---|---|
US (2) | US7344533B2 (en) |
EP (1) | EP1429678B1 (en) |
JP (1) | JP4450622B2 (en) |
CN (1) | CN100450456C (en) |
AT (1) | ATE320767T1 (en) |
AU (2) | AU2002327779B2 (en) |
DE (1) | DE60210111T2 (en) |
WO (1) | WO2003026525A1 (en) |
Cited By (611)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070032835A1 (en) * | 2005-08-02 | 2007-02-08 | Rittman William J Iii | Method and apparatus for diagnosing and treating neural dysfunction |
US20070043405A1 (en) * | 2005-08-18 | 2007-02-22 | Rittman William J Iii | Method and apparatus for diagnosing and treating neural dysfunction |
US20090204005A1 (en) * | 2008-02-07 | 2009-08-13 | Broncus Technologies, Inc. | Puncture resistant catheter for sensing vessels and for creating passages in tissue |
US20100030209A1 (en) * | 2008-07-15 | 2010-02-04 | Assaf Govari | Catheter with perforated tip |
US20100090696A1 (en) * | 2008-09-30 | 2010-04-15 | Michael Deimling | Method, processor, and magnetic resonance apparatus for selective presentation of lung movement |
DE102009017616A1 (en) * | 2009-04-16 | 2010-05-12 | Siemens Aktiengesellschaft | Radio frequency ablation device for ablation of regions of tissue volume, has probe provided with coding that comprises dimension and/or condition of probe differing from dimension and/or condition of other probes |
CN101972188A (en) * | 2010-11-10 | 2011-02-16 | 韩俊江 | Precise temperature-controlling tumor therapeutic apparatus and control method thereof |
WO2011031552A1 (en) * | 2009-08-27 | 2011-03-17 | Medtronic Inc. | Paravalvular leak closure devices and methods |
US20110098695A1 (en) * | 2009-10-27 | 2011-04-28 | Vivant Medical,Inc. | System and Method for Monitoring Ablation Size |
US20110184403A1 (en) * | 2010-01-25 | 2011-07-28 | Vivant Medical, Inc. | System and Method for Monitoring Ablation Size |
US20110270244A1 (en) * | 2010-04-28 | 2011-11-03 | Clark Jeffrey L | Irrigated ablation catheter with improved fluid flow |
US20110270246A1 (en) * | 2010-04-28 | 2011-11-03 | Clark Jeffrey L | Irrigated ablation catheter with improved fluid flow |
US20120157890A1 (en) * | 2010-12-16 | 2012-06-21 | Assaf Govari | System for controlling tissue ablation using temperature sensors |
US8360297B2 (en) | 2006-09-29 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling instrument with self adjusting anvil |
US8397971B2 (en) | 2009-02-05 | 2013-03-19 | Ethicon Endo-Surgery, Inc. | Sterilizable surgical instrument |
US8414577B2 (en) | 2009-02-05 | 2013-04-09 | Ethicon Endo-Surgery, Inc. | Surgical instruments and components for use in sterile environments |
US8424740B2 (en) | 2007-06-04 | 2013-04-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a directional switching mechanism |
US8459520B2 (en) | 2007-01-10 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and remote sensor |
US8459525B2 (en) | 2008-02-14 | 2013-06-11 | Ethicon Endo-Sugery, Inc. | Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device |
US8479969B2 (en) | 2007-01-10 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Drive interface for operably coupling a manipulatable surgical tool to a robot |
US8534528B2 (en) | 2007-06-04 | 2013-09-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a multiple rate directional switching mechanism |
US8540128B2 (en) | 2007-01-11 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with a curved end effector |
US8540130B2 (en) | 2008-02-14 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8573461B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with cam-driven staple deployment arrangements |
US8584919B2 (en) | 2008-02-14 | 2013-11-19 | Ethicon Endo-Sugery, Inc. | Surgical stapling apparatus with load-sensitive firing mechanism |
US8590762B2 (en) | 2007-03-15 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Staple cartridge cavity configurations |
US8602288B2 (en) | 2008-09-23 | 2013-12-10 | Ethicon Endo-Surgery. Inc. | Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds |
US8602287B2 (en) | 2008-09-23 | 2013-12-10 | Ethicon Endo-Surgery, Inc. | Motor driven surgical cutting instrument |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8616431B2 (en) | 2007-06-04 | 2013-12-31 | Ethicon Endo-Surgery, Inc. | Shiftable drive interface for robotically-controlled surgical tool |
US20140005652A1 (en) * | 2008-02-14 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US8622274B2 (en) | 2008-02-14 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Motorized cutting and fastening instrument having control circuit for optimizing battery usage |
US8636187B2 (en) | 2005-08-31 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Surgical stapling systems that produce formed staples having different lengths |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
US8746529B2 (en) | 2006-01-31 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US8747238B2 (en) | 2012-06-28 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Rotary drive shaft assemblies for surgical instruments with articulatable end effectors |
US8752749B2 (en) | 2008-02-14 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled disposable motor-driven loading unit |
US8752747B2 (en) | 2006-01-31 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US8763879B2 (en) | 2006-01-31 | 2014-07-01 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of surgical instrument |
US8783541B2 (en) | 2003-05-20 | 2014-07-22 | Frederick E. Shelton, IV | Robotically-controlled surgical end effector system |
US8789741B2 (en) | 2010-09-24 | 2014-07-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument with trigger assembly for generating multiple actuation motions |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8844789B2 (en) | 2006-01-31 | 2014-09-30 | Ethicon Endo-Surgery, Inc. | Automated end effector component reloading system for use with a robotic system |
WO2014181167A1 (en) * | 2013-05-06 | 2014-11-13 | Palti Yoram Prof | Apparatus and methods for treating a tumor with an alternating electric field and for selecting a treatment frequency based on estimated cell size |
US8893949B2 (en) | 2010-09-30 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Surgical stapler with floating anvil |
US8911471B2 (en) | 2006-03-23 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Articulatable surgical device |
EP2832291A1 (en) * | 2013-07-29 | 2015-02-04 | Covidien LP | Electrosurgical generator and methods for its use to provide power based on impedance thresholds |
US8978954B2 (en) | 2010-09-30 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising an adjustable distal portion |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9028519B2 (en) | 2008-09-23 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
US9055941B2 (en) | 2011-09-23 | 2015-06-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US9072515B2 (en) | 2008-02-14 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus |
US9101385B2 (en) | 2012-06-28 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Electrode connections for rotary driven surgical tools |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9119657B2 (en) | 2012-06-28 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Rotary actuatable closure arrangement for surgical end effector |
US9125662B2 (en) | 2012-06-28 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Multi-axis articulating and rotating surgical tools |
US9138225B2 (en) | 2007-06-22 | 2015-09-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US9198662B2 (en) | 2012-03-28 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator having improved visibility |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US9204878B2 (en) | 2008-02-14 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US9204880B2 (en) | 2012-03-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising capsules defining a low pressure environment |
US9211120B2 (en) | 2011-04-29 | 2015-12-15 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a plurality of medicaments |
US9220500B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising structure to produce a resilient load |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US9232941B2 (en) | 2010-09-30 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a reservoir |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US9272406B2 (en) | 2010-09-30 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator |
US20160058492A1 (en) * | 2014-08-26 | 2016-03-03 | Ethicon Endo-Surgery, Inc. | Managing tissue treatment |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US9283054B2 (en) | 2013-08-23 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Interactive displays |
US9282966B2 (en) | 2004-07-28 | 2016-03-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US9289212B2 (en) | 2010-09-17 | 2016-03-22 | Ethicon Endo-Surgery, Inc. | Surgical instruments and batteries for surgical instruments |
US9301752B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising a plurality of capsules |
US9307986B2 (en) | 2013-03-01 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Surgical instrument soft stop |
US9307989B2 (en) | 2012-03-28 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorportating a hydrophobic agent |
US9307988B2 (en) | 2005-08-31 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Staple cartridges for forming staples having differing formed staple heights |
US9314246B2 (en) | 2010-09-30 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent |
US9320521B2 (en) | 2006-06-27 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Surgical instrument |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US9326768B2 (en) | 2005-08-31 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Staple cartridges for forming staples having differing formed staple heights |
US9332974B2 (en) | 2010-09-30 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Layered tissue thickness compensator |
US9332987B2 (en) | 2013-03-14 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Control arrangements for a drive member of a surgical instrument |
US9332984B2 (en) | 2013-03-27 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Fastener cartridge assemblies |
US9345481B2 (en) | 2013-03-13 | 2016-05-24 | Ethicon Endo-Surgery, Llc | Staple cartridge tissue thickness sensor system |
US9358005B2 (en) | 2010-09-30 | 2016-06-07 | Ethicon Endo-Surgery, Llc | End effector layer including holding features |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9370358B2 (en) | 2006-01-31 | 2016-06-21 | Ethicon Endo-Surgery, Llc | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US9386984B2 (en) | 2013-02-08 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a releasable cover |
US9393015B2 (en) | 2009-02-06 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Motor driven surgical fastener device with cutting member reversing mechanism |
US20160270688A1 (en) * | 2009-10-27 | 2016-09-22 | Cardiac Pacemakers, Inc. | Multiple vector fluid localization |
US9486214B2 (en) | 2009-02-06 | 2016-11-08 | Ethicon Endo-Surgery, Llc | Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated |
US9510894B2 (en) | 2010-04-28 | 2016-12-06 | Biosense Webster (Israel) Ltd. | Irrigated ablation catheter having irrigation ports with reduced hydraulic resistance |
US9561038B2 (en) | 2012-06-28 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Interchangeable clip applier |
US9572577B2 (en) | 2013-03-27 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a tissue thickness compensator including openings therein |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
US9585657B2 (en) | 2008-02-15 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Actuator for releasing a layer of material from a surgical end effector |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9649110B2 (en) | 2013-04-16 | 2017-05-16 | Ethicon Llc | Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output |
US9690362B2 (en) | 2014-03-26 | 2017-06-27 | Ethicon Llc | Surgical instrument control circuit having a safety processor |
US9693777B2 (en) | 2014-02-24 | 2017-07-04 | Ethicon Llc | Implantable layers comprising a pressed region |
US9724098B2 (en) | 2012-03-28 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising an implantable layer |
US9724094B2 (en) | 2014-09-05 | 2017-08-08 | Ethicon Llc | Adjunct with integrated sensors to quantify tissue compression |
US9743929B2 (en) | 2014-03-26 | 2017-08-29 | Ethicon Llc | Modular powered surgical instrument with detachable shaft assemblies |
US9743928B2 (en) | 2006-01-31 | 2017-08-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US9795384B2 (en) | 2013-03-27 | 2017-10-24 | Ethicon Llc | Fastener cartridge comprising a tissue thickness compensator and a gap setting element |
US9795382B2 (en) | 2005-08-31 | 2017-10-24 | Ethicon Llc | Fastener cartridge assembly comprising a cam and driver arrangement |
US9801627B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Fastener cartridge for creating a flexible staple line |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US9814462B2 (en) | 2010-09-30 | 2017-11-14 | Ethicon Llc | Assembly for fastening tissue comprising a compressible layer |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
US9826978B2 (en) | 2010-09-30 | 2017-11-28 | Ethicon Llc | End effectors with same side closure and firing motions |
US9833241B2 (en) | 2014-04-16 | 2017-12-05 | Ethicon Llc | Surgical fastener cartridges with driver stabilizing arrangements |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9861359B2 (en) | 2006-01-31 | 2018-01-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US9895147B2 (en) | 2005-11-09 | 2018-02-20 | Ethicon Llc | End effectors for surgical staplers |
US9901399B2 (en) | 2012-12-17 | 2018-02-27 | Covidien Lp | Ablation probe with tissue sensing configuration |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US9931118B2 (en) | 2015-02-27 | 2018-04-03 | Ethicon Endo-Surgery, Llc | Reinforced battery for a surgical instrument |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US9949791B2 (en) | 2010-04-26 | 2018-04-24 | Biosense Webster, Inc. | Irrigated catheter with internal position sensor |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10004498B2 (en) | 2006-01-31 | 2018-06-26 | Ethicon Llc | Surgical instrument comprising a plurality of articulation joints |
US10039529B2 (en) | 2010-09-17 | 2018-08-07 | Ethicon Llc | Power control arrangements for surgical instruments and batteries |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
US10052102B2 (en) | 2015-06-18 | 2018-08-21 | Ethicon Llc | Surgical end effectors with dual cam actuated jaw closing features |
US10052044B2 (en) | 2015-03-06 | 2018-08-21 | Ethicon Llc | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10092292B2 (en) | 2013-02-28 | 2018-10-09 | Ethicon Llc | Staple forming features for surgical stapling instrument |
US10098642B2 (en) | 2015-08-26 | 2018-10-16 | Ethicon Llc | Surgical staples comprising features for improved fastening of tissue |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US10130359B2 (en) | 2006-09-29 | 2018-11-20 | Ethicon Llc | Method for forming a staple |
US10172619B2 (en) | 2015-09-02 | 2019-01-08 | Ethicon Llc | Surgical staple driver arrays |
US10172620B2 (en) | 2015-09-30 | 2019-01-08 | Ethicon Llc | Compressible adjuncts with bonding nodes |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10206676B2 (en) | 2008-02-14 | 2019-02-19 | Ethicon Llc | Surgical cutting and fastening instrument |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
US10226249B2 (en) | 2013-03-01 | 2019-03-12 | Ethicon Llc | Articulatable surgical instruments with conductive pathways for signal communication |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10245029B2 (en) | 2016-02-09 | 2019-04-02 | Ethicon Llc | Surgical instrument with articulating and axially translatable end effector |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258336B2 (en) | 2008-09-19 | 2019-04-16 | Ethicon Llc | Stapling system configured to produce different formed staple heights |
US10265065B2 (en) | 2013-12-23 | 2019-04-23 | Ethicon Llc | Surgical staples and staple cartridges |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10271849B2 (en) | 2015-09-30 | 2019-04-30 | Ethicon Llc | Woven constructs with interlocked standing fibers |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10293100B2 (en) | 2004-07-28 | 2019-05-21 | Ethicon Llc | Surgical stapling instrument having a medical substance dispenser |
US10299810B2 (en) | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10335183B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Feedback devices for surgical control systems |
US10335614B2 (en) | 2008-08-06 | 2019-07-02 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10376263B2 (en) | 2016-04-01 | 2019-08-13 | Ethicon Llc | Anvil modification members for surgical staplers |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10398433B2 (en) | 2007-03-28 | 2019-09-03 | Ethicon Llc | Laparoscopic clamp load measuring devices |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10413294B2 (en) | 2012-06-28 | 2019-09-17 | Ethicon Llc | Shaft assembly arrangements for surgical instruments |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10426481B2 (en) | 2014-02-24 | 2019-10-01 | Ethicon Llc | Implantable layer assemblies |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10448950B2 (en) | 2016-12-21 | 2019-10-22 | Ethicon Llc | Surgical staplers with independently actuatable closing and firing systems |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10492785B2 (en) | 2016-12-21 | 2019-12-03 | Ethicon Llc | Shaft assembly comprising a lockout |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US10499890B2 (en) | 2006-01-31 | 2019-12-10 | Ethicon Llc | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10517595B2 (en) | 2016-12-21 | 2019-12-31 | Ethicon Llc | Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US10524872B2 (en) | 2012-06-29 | 2020-01-07 | Ethicon Llc | Closed feedback control for electrosurgical device |
US10537324B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Stepped staple cartridge with asymmetrical staples |
US10537325B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Staple forming pocket arrangement to accommodate different types of staples |
US10542979B2 (en) | 2016-06-24 | 2020-01-28 | Ethicon Llc | Stamped staples and staple cartridges using the same |
US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US10568626B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaw opening features for increasing a jaw opening distance |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US10575868B2 (en) | 2013-03-01 | 2020-03-03 | Ethicon Llc | Surgical instrument with coupler assembly |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
US10588633B2 (en) | 2017-06-28 | 2020-03-17 | Ethicon Llc | Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10617463B2 (en) | 2015-04-23 | 2020-04-14 | Covidien Lp | Systems and methods for controlling power in an electrosurgical generator |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10667809B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Staple cartridge and staple cartridge channel comprising windows defined therein |
US10675028B2 (en) | 2006-01-31 | 2020-06-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US10682134B2 (en) | 2017-12-21 | 2020-06-16 | Ethicon Llc | Continuous use self-propelled stapling instrument |
US10688321B2 (en) | 2009-07-15 | 2020-06-23 | Ethicon Llc | Ultrasonic surgical instruments |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10695062B2 (en) | 2010-10-01 | 2020-06-30 | Ethicon Llc | Surgical instrument including a retractable firing member |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US10729494B2 (en) | 2012-02-10 | 2020-08-04 | Ethicon Llc | Robotically controlled surgical instrument |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10743851B2 (en) | 2008-02-14 | 2020-08-18 | Ethicon Llc | Interchangeable tools for surgical instruments |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10751076B2 (en) | 2009-12-24 | 2020-08-25 | Ethicon Llc | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
USD894389S1 (en) | 2016-06-24 | 2020-08-25 | Ethicon Llc | Surgical fastener |
US10758233B2 (en) | 2009-02-05 | 2020-09-01 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
WO2020174403A1 (en) * | 2019-02-26 | 2020-09-03 | Moshe Giladi | Determining a frequency for ttfields treatment based on an electrical characteristic of targeted cancer cells |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10765424B2 (en) | 2008-02-13 | 2020-09-08 | Ethicon Llc | Surgical stapling instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10765473B2 (en) | 2010-11-08 | 2020-09-08 | Baylis Medical Company Inc. | Electrosurgical device having a lumen |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US10779875B2 (en) | 2013-05-06 | 2020-09-22 | Novocure Gmbh | Optimizing treatment using TTfields by changing the frequency during the course of long term tumor treatment |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US10779824B2 (en) | 2017-06-28 | 2020-09-22 | Ethicon Llc | Surgical instrument comprising an articulation system lockable by a closure system |
US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10925599B2 (en) | 2013-12-23 | 2021-02-23 | Ethicon Llc | Modular surgical instruments |
US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US10952788B2 (en) | 2015-06-30 | 2021-03-23 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10987102B2 (en) | 2010-09-30 | 2021-04-27 | Ethicon Llc | Tissue thickness compensator comprising a plurality of layers |
US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10993763B2 (en) | 2012-06-29 | 2021-05-04 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US11013511B2 (en) | 2007-06-22 | 2021-05-25 | Ethicon Llc | Surgical stapling instrument with an articulatable end effector |
US11020109B2 (en) | 2013-12-23 | 2021-06-01 | Ethicon Llc | Surgical stapling assembly for use with a powered surgical interface |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
WO2021108292A1 (en) * | 2019-11-27 | 2021-06-03 | North Carolina State University | Methods for controlling treatment volumes, thermal gradients, muscle stimulation, and immune responses in pulsed electric field treatments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11051813B2 (en) | 2006-01-31 | 2021-07-06 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US11071545B2 (en) | 2014-09-05 | 2021-07-27 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11123065B2 (en) | 2013-12-23 | 2021-09-21 | Cilag Gmbh International | Surgical cutting and stapling instruments with independent jaw control features |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11133106B2 (en) | 2013-08-23 | 2021-09-28 | Cilag Gmbh International | Surgical instrument assembly comprising a retraction assembly |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11179173B2 (en) | 2012-10-22 | 2021-11-23 | Cilag Gmbh International | Surgical instrument |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US11202633B2 (en) | 2014-09-26 | 2021-12-21 | Cilag Gmbh International | Surgical stapling buttresses and adjunct materials |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US11213295B2 (en) | 2015-09-02 | 2022-01-04 | Cilag Gmbh International | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US11219456B2 (en) | 2015-08-26 | 2022-01-11 | Cilag Gmbh International | Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US11224428B2 (en) | 2016-12-21 | 2022-01-18 | Cilag Gmbh International | Surgical stapling systems |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11229963B2 (en) * | 2019-06-24 | 2022-01-25 | Black & Decker Inc. | Force and moment canceling reciprocating mechanism and power tool having same |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11241230B2 (en) | 2012-06-28 | 2022-02-08 | Cilag Gmbh International | Clip applier tool for use with a robotic surgical system |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11259799B2 (en) | 2014-03-26 | 2022-03-01 | Cilag Gmbh International | Interface systems for use with surgical instruments |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US11266409B2 (en) | 2014-04-16 | 2022-03-08 | Cilag Gmbh International | Fastener cartridge comprising a sled including longitudinally-staggered ramps |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11272975B2 (en) | 2017-09-22 | 2022-03-15 | Covidien Lp | Systems and methods for controlled electrosurgical dissection |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US11284898B2 (en) | 2014-09-18 | 2022-03-29 | Cilag Gmbh International | Surgical instrument including a deployable knife |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11291449B2 (en) | 2009-12-24 | 2022-04-05 | Cilag Gmbh International | Surgical cutting instrument that analyzes tissue thickness |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US11317913B2 (en) | 2016-12-21 | 2022-05-03 | Cilag Gmbh International | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
US11350928B2 (en) | 2016-04-18 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising a tissue thickness lockout and speed control system |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11382627B2 (en) | 2014-04-16 | 2022-07-12 | Cilag Gmbh International | Surgical stapling assembly comprising a firing member including a lateral extension |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11453093B2 (en) | 2019-06-24 | 2022-09-27 | Black & Decker Inc. | Reciprocating tool having planetary gear assembly and counterweighting assembly |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
US11464513B2 (en) | 2012-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument system including replaceable end effectors |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11478247B2 (en) | 2010-07-30 | 2022-10-25 | Cilag Gmbh International | Tissue acquisition arrangements and methods for surgical stapling devices |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US11523823B2 (en) | 2016-02-09 | 2022-12-13 | Cilag Gmbh International | Surgical instruments with non-symmetrical articulation arrangements |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11534226B2 (en) | 2017-09-22 | 2022-12-27 | Covidien Lp | Systems and methods for minimizing arcing of bipolar forceps |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11571215B2 (en) | 2010-09-30 | 2023-02-07 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11622763B2 (en) | 2013-04-16 | 2023-04-11 | Cilag Gmbh International | Stapling assembly comprising a shiftable drive |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11638582B2 (en) | 2020-07-28 | 2023-05-02 | Cilag Gmbh International | Surgical instruments with torsion spine drive arrangements |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11678877B2 (en) | 2014-12-18 | 2023-06-20 | Cilag Gmbh International | Surgical instrument including a flexible support configured to support a flexible firing member |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11690619B2 (en) | 2016-06-24 | 2023-07-04 | Cilag Gmbh International | Staple cartridge comprising staples having different geometries |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11717294B2 (en) | 2014-04-16 | 2023-08-08 | Cilag Gmbh International | End effector arrangements comprising indicators |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11723662B2 (en) | 2021-05-28 | 2023-08-15 | Cilag Gmbh International | Stapling instrument comprising an articulation control display |
US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11744631B2 (en) | 2017-09-22 | 2023-09-05 | Covidien Lp | Systems and methods for controlled electrosurgical coagulation |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11766260B2 (en) | 2016-12-21 | 2023-09-26 | Cilag Gmbh International | Methods of stapling tissue |
US11766259B2 (en) | 2016-12-21 | 2023-09-26 | Cilag Gmbh International | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11793522B2 (en) | 2015-09-30 | 2023-10-24 | Cilag Gmbh International | Staple cartridge assembly including a compressible adjunct |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11826048B2 (en) | 2017-06-28 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising selectively actuatable rotatable couplers |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11826132B2 (en) | 2015-03-06 | 2023-11-28 | Cilag Gmbh International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11839964B2 (en) | 2022-03-09 | 2023-12-12 | Black & Decker Inc. | Counterbalancing mechanism and power tool having same |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11883026B2 (en) | 2014-04-16 | 2024-01-30 | Cilag Gmbh International | Fastener cartridge assemblies and staple retainer cover arrangements |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11890012B2 (en) | 2004-07-28 | 2024-02-06 | Cilag Gmbh International | Staple cartridge comprising cartridge body and attached support |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
EP4295871A3 (en) * | 2013-10-28 | 2024-02-14 | Boston Scientific Scimed, Inc. | Fluid management system and methods |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11937873B2 (en) | 2013-03-12 | 2024-03-26 | Boston Scientific Medical Device Limited | Electrosurgical device having a lumen |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11944306B2 (en) | 2008-09-19 | 2024-04-02 | Cilag Gmbh International | Surgical stapler including a replaceable staple cartridge |
US11944338B2 (en) | 2015-03-06 | 2024-04-02 | Cilag Gmbh International | Multiple level thresholds to modify operation of powered surgical instruments |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11958121B2 (en) | 2022-03-04 | 2024-04-16 | Black & Decker Inc. | Reciprocating tool having orbit function |
US11963682B2 (en) | 2015-08-26 | 2024-04-23 | Cilag Gmbh International | Surgical staples comprising hardness variations for improved fastening of tissue |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US12004745B2 (en) | 2016-12-21 | 2024-06-11 | Cilag Gmbh International | Surgical instrument system comprising an end effector lockout and a firing assembly lockout |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
EP4115827A4 (en) * | 2020-12-09 | 2024-07-03 | Hangzhou Broncus Medical Co Ltd | Perfusion control method, apparatus and system for syringe pump, and computer-readable storage medium |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
EP4272667A4 (en) * | 2020-12-31 | 2024-10-02 | Hangzhou Broncus Medical Co Ltd | Multi-path perfusion control method and apparatus for injection pump, and injection pump and storage medium |
US12108983B2 (en) | 2019-05-03 | 2024-10-08 | Biosense Webster (Israel) Ltd. | Device, system and method to ablate cardiac tissue |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
KR102727585B1 (en) | 2019-02-26 | 2024-11-06 | 노보큐어 게엠베하 | Frequency determination of tumor treatment therapy based on electrical characteristics of target cancer cells |
Families Citing this family (644)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6805130B2 (en) * | 1995-11-22 | 2004-10-19 | Arthrocare Corporation | Methods for electrosurgical tendon vascularization |
US7604633B2 (en) | 1996-04-12 | 2009-10-20 | Cytyc Corporation | Moisture transport system for contact electrocoagulation |
US6104959A (en) | 1997-07-31 | 2000-08-15 | Microwave Medical Corp. | Method and apparatus for treating subcutaneous histological features |
US8551082B2 (en) | 1998-05-08 | 2013-10-08 | Cytyc Surgical Products | Radio-frequency generator for powering an ablation device |
US7276063B2 (en) | 1998-08-11 | 2007-10-02 | Arthrocare Corporation | Instrument for electrosurgical tissue treatment |
US6300108B1 (en) * | 1999-07-21 | 2001-10-09 | The Regents Of The University Of California | Controlled electroporation and mass transfer across cell membranes |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
US7678106B2 (en) * | 2000-08-09 | 2010-03-16 | Halt Medical, Inc. | Gynecological ablation procedure and system |
US6840935B2 (en) * | 2000-08-09 | 2005-01-11 | Bekl Corporation | Gynecological ablation procedure and system using an ablation needle |
US6892099B2 (en) | 2001-02-08 | 2005-05-10 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation |
US6795728B2 (en) | 2001-08-17 | 2004-09-21 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation |
US8251986B2 (en) * | 2000-08-17 | 2012-08-28 | Angiodynamics, Inc. | Method of destroying tissue cells by eletroporation |
US6697670B2 (en) * | 2001-08-17 | 2004-02-24 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients |
US6620157B1 (en) * | 2000-12-28 | 2003-09-16 | Senorx, Inc. | High frequency power source |
US8133218B2 (en) | 2000-12-28 | 2012-03-13 | Senorx, Inc. | Electrosurgical medical system and method |
US20050004559A1 (en) * | 2003-06-03 | 2005-01-06 | Senorx, Inc. | Universal medical device control console |
US6994706B2 (en) | 2001-08-13 | 2006-02-07 | Minnesota Medical Physics, Llc | Apparatus and method for treatment of benign prostatic hyperplasia |
US7130697B2 (en) * | 2002-08-13 | 2006-10-31 | Minnesota Medical Physics Llc | Apparatus and method for the treatment of benign prostatic hyperplasia |
USRE42016E1 (en) | 2001-08-13 | 2010-12-28 | Angiodynamics, Inc. | Apparatus and method for the treatment of benign prostatic hyperplasia |
DE60210111T2 (en) * | 2001-09-28 | 2007-03-29 | Rita Medical Systems, Inc., Mountain View | IMPEDANCE-CONTROLLED DEVICE FOR THE ABLATION OF TISSUE |
GB0129940D0 (en) * | 2001-12-13 | 2002-02-06 | Nuvotek Ltd | Surgical tool with electrical supply |
US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US7310545B1 (en) * | 2002-04-12 | 2007-12-18 | Medtronic, Inc. | Method and device to form a sensor using isolated cardiomyocytes |
US6752767B2 (en) * | 2002-04-16 | 2004-06-22 | Vivant Medical, Inc. | Localization element with energized tip |
WO2004037341A2 (en) | 2002-05-07 | 2004-05-06 | Schroeppel Edward A | Method and device for treating concer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy |
US10172538B2 (en) | 2003-02-21 | 2019-01-08 | 3Dt Holdings, Llc | Body lumen junction localization |
US10413211B2 (en) | 2003-02-21 | 2019-09-17 | 3Dt Holdings, Llc | Systems, devices, and methods for mapping organ profiles |
US7818053B2 (en) | 2003-02-21 | 2010-10-19 | Dtherapeutics, Llc | Devices, systems and methods for plaque type determination |
US8078274B2 (en) | 2003-02-21 | 2011-12-13 | Dtherapeutics, Llc | Device, system and method for measuring cross-sectional areas in luminal organs |
JP2004290266A (en) * | 2003-03-25 | 2004-10-21 | Olympus Corp | Treating apparatus |
US7025768B2 (en) * | 2003-05-06 | 2006-04-11 | Boston Scientific Scimed, Inc. | Systems and methods for ablation of tissue |
JP4231743B2 (en) * | 2003-07-07 | 2009-03-04 | オリンパス株式会社 | Biological tissue resection device |
DE202004021947U1 (en) | 2003-09-12 | 2013-05-13 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
GB2409326B (en) * | 2003-12-19 | 2005-12-07 | Keymed | A dummy medical instrument for use in a simulator |
US7500973B2 (en) * | 2003-12-22 | 2009-03-10 | Ams Research Corporation | Cryosurgical devices and methods for endometrial ablation |
US20050171574A1 (en) | 2003-12-24 | 2005-08-04 | The Regents Of The University Of California | Electroporation to interrupt blood flow |
US8298222B2 (en) * | 2003-12-24 | 2012-10-30 | The Regents Of The University Of California | Electroporation to deliver chemotherapeutics and enhance tumor regression |
EP1715792A2 (en) | 2004-01-30 | 2006-11-02 | NMT Medical, Inc. | Welding systems for closure of cardiac openings |
CN2722849Y (en) * | 2004-03-12 | 2005-09-07 | 王洪奎 | Radio frequency melting incisal mergin electrode |
JP4443278B2 (en) * | 2004-03-26 | 2010-03-31 | テルモ株式会社 | Catheter with expansion body |
AU2005231443B2 (en) | 2004-04-01 | 2012-02-23 | The General Hospital Corporation | Method and apparatus for dermatological treatment and tissue reshaping |
US20050267553A1 (en) * | 2004-05-05 | 2005-12-01 | Doug Staunton | System and method for controlling electrical stimulation and radiofrequency output for use in an electrosurgical procedure |
US20050267466A1 (en) * | 2004-05-26 | 2005-12-01 | Staunton Douglas A | Thermocouple electrode |
EP1748726B1 (en) * | 2004-05-26 | 2010-11-24 | Medical Device Innovations Limited | Tissue detection and ablation apparatus |
US7632265B2 (en) * | 2004-05-28 | 2009-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Radio frequency ablation servo catheter and method |
US10863945B2 (en) * | 2004-05-28 | 2020-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system with contact sensing feature |
US7974674B2 (en) * | 2004-05-28 | 2011-07-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for surface modeling |
US8755864B2 (en) | 2004-05-28 | 2014-06-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for diagnostic data mapping |
US8528565B2 (en) | 2004-05-28 | 2013-09-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated therapy delivery |
US10258285B2 (en) * | 2004-05-28 | 2019-04-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated creation of ablation lesions |
US9782130B2 (en) | 2004-05-28 | 2017-10-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system |
WO2005122934A1 (en) * | 2004-06-21 | 2005-12-29 | Consorzio I.P.O.Te.S.I | Electrosurgical apparatus |
GB2416458B (en) * | 2004-07-20 | 2008-11-26 | Sra Dev Ltd | Ultrasonic generator system |
DE102004041681A1 (en) * | 2004-08-20 | 2006-02-23 | Celon Ag Medical Instruments | Device for the electrosurgical desquamation of body tissue |
US20080154153A1 (en) * | 2004-08-25 | 2008-06-26 | Heuser Richard R | Multiple-wire systems and methods for ablation of occlusions within blood vessels |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US20090054887A1 (en) * | 2004-10-06 | 2009-02-26 | Covidien Ag | Systems and Methods for Thermally Profiling Radiofrequency Electrodes |
US20080015664A1 (en) * | 2004-10-06 | 2008-01-17 | Podhajsky Ronald J | Systems and methods for thermally profiling radiofrequency electrodes |
US7776035B2 (en) * | 2004-10-08 | 2010-08-17 | Covidien Ag | Cool-tip combined electrode introducer |
US7282049B2 (en) | 2004-10-08 | 2007-10-16 | Sherwood Services Ag | Electrosurgical system employing multiple electrodes and method thereof |
US20060079774A1 (en) * | 2004-10-08 | 2006-04-13 | Wendell Anderson | Microwave biopsy probe |
US7553309B2 (en) | 2004-10-08 | 2009-06-30 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
US8795195B2 (en) * | 2004-11-29 | 2014-08-05 | Senorx, Inc. | Graphical user interface for tissue biopsy system |
US7731712B2 (en) | 2004-12-20 | 2010-06-08 | Cytyc Corporation | Method and system for transcervical tubal occlusion |
US8872906B2 (en) | 2005-01-05 | 2014-10-28 | Avantis Medical Systems, Inc. | Endoscope assembly with a polarizing filter |
US8797392B2 (en) | 2005-01-05 | 2014-08-05 | Avantis Medical Sytems, Inc. | Endoscope assembly with a polarizing filter |
US8235887B2 (en) | 2006-01-23 | 2012-08-07 | Avantis Medical Systems, Inc. | Endoscope assembly with retroscope |
US8289381B2 (en) | 2005-01-05 | 2012-10-16 | Avantis Medical Systems, Inc. | Endoscope with an imaging catheter assembly and method of configuring an endoscope |
US8182422B2 (en) | 2005-12-13 | 2012-05-22 | Avantis Medical Systems, Inc. | Endoscope having detachable imaging device and method of using |
US20060161147A1 (en) * | 2005-01-18 | 2006-07-20 | Salvatore Privitera | Method and apparatus for controlling a surgical ablation device |
GB0502384D0 (en) * | 2005-02-04 | 2005-03-16 | Instrumedical Ltd | Electro-surgical needle apparatus |
US7942873B2 (en) * | 2005-03-25 | 2011-05-17 | Angiodynamics, Inc. | Cavity ablation apparatus and method |
US20060264752A1 (en) * | 2005-04-27 | 2006-11-23 | The Regents Of The University Of California | Electroporation controlled with real time imaging |
US20060247615A1 (en) * | 2005-04-28 | 2006-11-02 | Boston Scientific Scimed, Inc. | Multi-element bi-polar ablation electrode |
US7674260B2 (en) * | 2005-04-28 | 2010-03-09 | Cytyc Corporation | Emergency hemostasis device utilizing energy |
US8155910B2 (en) | 2005-05-27 | 2012-04-10 | St. Jude Medical, Atrial Fibrillation Divison, Inc. | Robotically controlled catheter and method of its calibration |
US20060293730A1 (en) * | 2005-06-24 | 2006-12-28 | Boris Rubinsky | Methods and systems for treating restenosis sites using electroporation |
US8114070B2 (en) * | 2005-06-24 | 2012-02-14 | Angiodynamics, Inc. | Methods and systems for treating BPH using electroporation |
US20060293731A1 (en) * | 2005-06-24 | 2006-12-28 | Boris Rubinsky | Methods and systems for treating tumors using electroporation |
US20060293725A1 (en) * | 2005-06-24 | 2006-12-28 | Boris Rubinsky | Methods and systems for treating fatty tissue sites using electroporation |
US8080009B2 (en) * | 2005-07-01 | 2011-12-20 | Halt Medical Inc. | Radio frequency ablation device for the destruction of tissue masses |
US8512333B2 (en) * | 2005-07-01 | 2013-08-20 | Halt Medical Inc. | Anchored RF ablation device for the destruction of tissue masses |
US20070015989A1 (en) * | 2005-07-01 | 2007-01-18 | Avantis Medical Systems, Inc. | Endoscope Image Recognition System and Method |
US20070055229A1 (en) * | 2005-09-06 | 2007-03-08 | Kladakis Stephanie M | In tunnel electrode for sealing intracardiac defects |
US9259267B2 (en) | 2005-09-06 | 2016-02-16 | W.L. Gore & Associates, Inc. | Devices and methods for treating cardiac tissue |
US10548659B2 (en) * | 2006-01-17 | 2020-02-04 | Ulthera, Inc. | High pressure pre-burst for improved fluid delivery |
US9486274B2 (en) | 2005-09-07 | 2016-11-08 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
EP1928540A4 (en) * | 2005-09-07 | 2010-03-10 | The Foundry Inc | Apparatus and method for disrupting subcutaneous structures |
US9011473B2 (en) | 2005-09-07 | 2015-04-21 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US7967763B2 (en) | 2005-09-07 | 2011-06-28 | Cabochon Aesthetics, Inc. | Method for treating subcutaneous tissues |
US8518069B2 (en) | 2005-09-07 | 2013-08-27 | Cabochon Aesthetics, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9358033B2 (en) | 2005-09-07 | 2016-06-07 | Ulthera, Inc. | Fluid-jet dissection system and method for reducing the appearance of cellulite |
US20070073277A1 (en) * | 2005-09-16 | 2007-03-29 | Medicalcv, Inc. | Controlled guided ablation treatment |
US20100292603A1 (en) * | 2005-09-21 | 2010-11-18 | Beth Israel Deaconess Medical Center, Inc. | Electrical Impedance Myography |
US20070066971A1 (en) * | 2005-09-21 | 2007-03-22 | Podhajsky Ronald J | Method and system for treating pain during an electrosurgical procedure |
US7879031B2 (en) * | 2005-09-27 | 2011-02-01 | Covidien Ag | Cooled RF ablation needle |
US20070078454A1 (en) * | 2005-09-30 | 2007-04-05 | Mcpherson James W | System and method for creating lesions using bipolar electrodes |
US20070078453A1 (en) * | 2005-10-04 | 2007-04-05 | Johnson Kristin D | System and method for performing cardiac ablation |
US8430863B2 (en) * | 2005-12-02 | 2013-04-30 | Abbott Cardiovascular Systems Inc. | Visualization of a catheter viewed under ultrasound imaging |
US7885793B2 (en) | 2007-05-22 | 2011-02-08 | International Business Machines Corporation | Method and system for developing a conceptual model to facilitate generating a business-aligned information technology solution |
US9248317B2 (en) | 2005-12-02 | 2016-02-02 | Ulthera, Inc. | Devices and methods for selectively lysing cells |
US8603084B2 (en) | 2005-12-06 | 2013-12-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the formation of a lesion in tissue |
US9492226B2 (en) | 2005-12-06 | 2016-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US9254163B2 (en) | 2005-12-06 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US8998890B2 (en) | 2005-12-06 | 2015-04-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
EP1962945B1 (en) | 2005-12-06 | 2016-04-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US8403925B2 (en) | 2006-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
US8406866B2 (en) | 2005-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
US10362959B2 (en) | 2005-12-06 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the proximity of an electrode to tissue in a body |
US20070156135A1 (en) * | 2006-01-03 | 2007-07-05 | Boris Rubinsky | System and methods for treating atrial fibrillation using electroporation |
US20070179491A1 (en) * | 2006-01-31 | 2007-08-02 | Medtronic, Inc. | Sensing needle for ablation therapy |
EP3797721A1 (en) | 2006-03-24 | 2021-03-31 | Neuwave Medical, Inc. | Transmission line with heat transfer ability |
EP1839581A1 (en) * | 2006-03-28 | 2007-10-03 | VibraTech AB | Anti-seeding arrangement |
WO2007126949A1 (en) * | 2006-03-31 | 2007-11-08 | Wilson-Cook Medical, Inc. | Electrosurgical cutting device |
US8287446B2 (en) | 2006-04-18 | 2012-10-16 | Avantis Medical Systems, Inc. | Vibratory device, endoscope having such a device, method for configuring an endoscope, and method of reducing looping of an endoscope |
US20070255270A1 (en) * | 2006-04-27 | 2007-11-01 | Medtronic Vascular, Inc. | Intraluminal guidance system using bioelectric impedance |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US20070258838A1 (en) * | 2006-05-03 | 2007-11-08 | Sherwood Services Ag | Peristaltic cooling pump system |
US20070260240A1 (en) | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Soft tissue RF transection and resection device |
EP2023795A2 (en) | 2006-05-19 | 2009-02-18 | Avantis Medical Systems, Inc. | Device and method for reducing effects of video artifacts |
WO2007140331A2 (en) | 2006-05-25 | 2007-12-06 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
KR101458067B1 (en) | 2006-06-05 | 2014-11-04 | 세녹스, 아이엔씨 | Biopsy System With Integrated Ultrasonic Imaging |
GB0613500D0 (en) * | 2006-07-07 | 2006-08-16 | Lectus Therapeutics Ltd | Apparatus and Methods |
US10376314B2 (en) | 2006-07-14 | 2019-08-13 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US11389235B2 (en) | 2006-07-14 | 2022-07-19 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
JP2009544357A (en) | 2006-07-20 | 2009-12-17 | ボストン サイエンティフィック リミテッド | Multifunctional medical device and related methods of use |
US7763018B2 (en) * | 2006-07-28 | 2010-07-27 | Covidien Ag | Cool-tip thermocouple including two-piece hub |
US20080033418A1 (en) * | 2006-08-04 | 2008-02-07 | Nields Morgan W | Methods for monitoring thermal ablation |
US20080033419A1 (en) * | 2006-08-04 | 2008-02-07 | Nields Morgan W | Method for planning, performing and monitoring thermal ablation |
US8155416B2 (en) * | 2008-02-04 | 2012-04-10 | INTIO, Inc. | Methods and apparatuses for planning, performing, monitoring and assessing thermal ablation |
US20080221650A1 (en) * | 2006-08-04 | 2008-09-11 | Turner Paul F | Microwave applicator with adjustable heating length |
US20080033422A1 (en) * | 2006-08-04 | 2008-02-07 | Turner Paul F | Microwave applicator with margin temperature sensing element |
US8556888B2 (en) * | 2006-08-04 | 2013-10-15 | INTIO, Inc. | Methods and apparatuses for performing and monitoring thermal ablation |
US7871406B2 (en) * | 2006-08-04 | 2011-01-18 | INTIO, Inc. | Methods for planning and performing thermal ablation |
US20080033417A1 (en) * | 2006-08-04 | 2008-02-07 | Nields Morgan W | Apparatus for planning and performing thermal ablation |
EP2068736A4 (en) * | 2006-08-04 | 2009-12-30 | Abla Tx Inc | Methods and systems for planning, performing and monitoring thermal ablation |
CN101553180B (en) * | 2006-09-14 | 2013-08-07 | 拉热尔技术有限公司 | Device for destruction of cancer cells |
US8486060B2 (en) | 2006-09-18 | 2013-07-16 | Cytyc Corporation | Power ramping during RF ablation |
US8048069B2 (en) * | 2006-09-29 | 2011-11-01 | Medtronic, Inc. | User interface for ablation therapy |
JP2010506657A (en) * | 2006-10-16 | 2010-03-04 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Gel with a certain conductivity used for irreversible electroporation of tissue |
AU2007310988B2 (en) | 2006-10-18 | 2013-08-15 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
CA2666663C (en) | 2006-10-18 | 2016-02-09 | Minnow Medical, Inc. | System for inducing desirable temperature effects on body tissue |
US20080114351A1 (en) * | 2006-10-31 | 2008-05-15 | Takashi Irisawa | High-frequency operation apparatus and method for controlling high-frequency output based on change with time of electrical parameter |
US20080132884A1 (en) * | 2006-12-01 | 2008-06-05 | Boris Rubinsky | Systems for treating tissue sites using electroporation |
US7846160B2 (en) | 2006-12-21 | 2010-12-07 | Cytyc Corporation | Method and apparatus for sterilization |
US8211099B2 (en) | 2007-01-31 | 2012-07-03 | Tyco Healthcare Group Lp | Thermal feedback systems and methods of using the same |
US20080228180A1 (en) * | 2007-03-13 | 2008-09-18 | Halt Medical, Inc | Ablation system and heat preventing electrodes therefor |
US20090187183A1 (en) * | 2007-03-13 | 2009-07-23 | Gordon Epstein | Temperature responsive ablation rf driving for moderating return electrode temperature |
US20090138011A1 (en) * | 2007-03-13 | 2009-05-28 | Gordon Epstein | Intermittent ablation rf driving for moderating return electrode temperature |
US8064666B2 (en) | 2007-04-10 | 2011-11-22 | Avantis Medical Systems, Inc. | Method and device for examining or imaging an interior surface of a cavity |
EP2837351B1 (en) * | 2007-04-19 | 2018-05-30 | Miramar Labs, Inc. | Systems for creating an effect using microwave energy to specified tissue |
WO2008131306A1 (en) | 2007-04-19 | 2008-10-30 | The Foundry, Inc. | Systems and methods for creating an effect using microwave energy to specified tissue |
JP2010524589A (en) | 2007-04-19 | 2010-07-22 | ザ ファウンドリー, インコーポレイテッド | Method, apparatus and system for non-invasive delivery of microwave therapy |
US9149331B2 (en) | 2007-04-19 | 2015-10-06 | Miramar Labs, Inc. | Methods and apparatus for reducing sweat production |
ES2307426B2 (en) * | 2007-04-30 | 2009-10-01 | Universidad Politecnica De Valencia | APPLICATOR DEVICE FOR RADIOFREQUENCY ABLATION OF BIOLOGICAL FABRICS. |
US20080275440A1 (en) * | 2007-05-03 | 2008-11-06 | Medtronic, Inc. | Post-ablation verification of lesion size |
US9486269B2 (en) * | 2007-06-22 | 2016-11-08 | Covidien Lp | Electrosurgical systems and cartridges for use therewith |
WO2009012057A2 (en) * | 2007-07-13 | 2009-01-22 | Boston Scientific Scimed, Inc. | Hybrid and portable power supplies for electrolytically detaching implantable medical devices |
WO2009015278A1 (en) * | 2007-07-24 | 2009-01-29 | Asthmatx, Inc. | System and method for controlling power based on impedance detection, such as controlling power to tissue treatment devices |
US8181995B2 (en) | 2007-09-07 | 2012-05-22 | Tyco Healthcare Group Lp | Cool tip junction |
US20090076500A1 (en) * | 2007-09-14 | 2009-03-19 | Lazure Technologies, Llc | Multi-tine probe and treatment by activation of opposing tines |
US20160184006A1 (en) * | 2007-09-14 | 2016-06-30 | Lazure Scientific, Inc. | Ablation probe with deployable electrodes |
US20090157068A1 (en) * | 2007-10-01 | 2009-06-18 | Faouzi Kallel | Intraoperative electrical conduction mapping system |
US8439940B2 (en) | 2010-12-22 | 2013-05-14 | Cabochon Aesthetics, Inc. | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
US8396806B2 (en) * | 2007-10-30 | 2013-03-12 | Red Hat, Inc. | End user license agreements associated with messages |
US8251991B2 (en) | 2007-11-14 | 2012-08-28 | Halt Medical Inc. | Anchored RF ablation device for the destruction of tissue masses |
US8241276B2 (en) * | 2007-11-14 | 2012-08-14 | Halt Medical Inc. | RF ablation device with jam-preventing electrical coupling member |
US8292880B2 (en) * | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
KR101826243B1 (en) | 2007-12-12 | 2018-02-06 | 미라마 랩스 인코포레이티드 | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
CA2708765C (en) | 2007-12-12 | 2019-01-08 | Miramar Labs, Inc. | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
US9204927B2 (en) | 2009-05-13 | 2015-12-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US20110264000A1 (en) * | 2007-12-28 | 2011-10-27 | Saurav Paul | System and method for determining tissue type and mapping tissue morphology |
US8290578B2 (en) | 2007-12-28 | 2012-10-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for complex impedance compensation |
US10660690B2 (en) * | 2007-12-28 | 2020-05-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for measurement of an impedance using a catheter such as an ablation catheter |
US8353902B2 (en) * | 2008-01-31 | 2013-01-15 | Vivant Medical, Inc. | Articulating ablation device and method |
US9949794B2 (en) | 2008-03-27 | 2018-04-24 | Covidien Lp | Microwave ablation devices including expandable antennas and methods of use |
US20090247933A1 (en) * | 2008-03-27 | 2009-10-01 | The Regents Of The University Of California; Angiodynamics, Inc. | Balloon catheter method for reducing restenosis via irreversible electroporation |
US20100004623A1 (en) * | 2008-03-27 | 2010-01-07 | Angiodynamics, Inc. | Method for Treatment of Complications Associated with Arteriovenous Grafts and Fistulas Using Electroporation |
EP2907465A1 (en) | 2008-04-17 | 2015-08-19 | Miramar Labs, Inc. | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
US9283051B2 (en) | 2008-04-29 | 2016-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies |
US10117707B2 (en) | 2008-04-29 | 2018-11-06 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US11254926B2 (en) | 2008-04-29 | 2022-02-22 | Virginia Tech Intellectual Properties, Inc. | Devices and methods for high frequency electroporation |
US10702326B2 (en) | 2011-07-15 | 2020-07-07 | Virginia Tech Intellectual Properties, Inc. | Device and method for electroporation based treatment of stenosis of a tubular body part |
US11272979B2 (en) | 2008-04-29 | 2022-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
WO2009134876A1 (en) | 2008-04-29 | 2009-11-05 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds |
US9867652B2 (en) | 2008-04-29 | 2018-01-16 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US9198733B2 (en) | 2008-04-29 | 2015-12-01 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for electroporation-based therapies |
US10245098B2 (en) | 2008-04-29 | 2019-04-02 | Virginia Tech Intellectual Properties, Inc. | Acute blood-brain barrier disruption using electrical energy based therapy |
US10238447B2 (en) | 2008-04-29 | 2019-03-26 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
US10272178B2 (en) | 2008-04-29 | 2019-04-30 | Virginia Tech Intellectual Properties Inc. | Methods for blood-brain barrier disruption using electrical energy |
US8992517B2 (en) * | 2008-04-29 | 2015-03-31 | Virginia Tech Intellectual Properties Inc. | Irreversible electroporation to treat aberrant cell masses |
WO2009137800A2 (en) * | 2008-05-09 | 2009-11-12 | Angiodynamics, Inc. | Electroporation device and method |
WO2009155526A2 (en) * | 2008-06-20 | 2009-12-23 | Angiodynamics, Inc. | Device and method for the ablation of fibrin sheath formation on a venous catheter |
WO2010008834A2 (en) * | 2008-06-23 | 2010-01-21 | Angiodynamics, Inc. | Treatment devices and methods |
US8608739B2 (en) | 2008-07-22 | 2013-12-17 | Covidien Lp | Electrosurgical devices, systems and methods of using the same |
US8747400B2 (en) * | 2008-08-13 | 2014-06-10 | Arthrocare Corporation | Systems and methods for screen electrode securement |
EP2326273B1 (en) * | 2008-08-20 | 2021-11-24 | Prostacare Pty Ltd | System including a catheter and deployable electrodes for the non-thermal ablation of tissue |
US10736689B2 (en) | 2008-08-20 | 2020-08-11 | Prostacare Pty Ltd | Low-corrosion electrode for treating tissue |
US8403924B2 (en) | 2008-09-03 | 2013-03-26 | Vivant Medical, Inc. | Shielding for an isolation apparatus used in a microwave generator |
US20100082083A1 (en) * | 2008-09-30 | 2010-04-01 | Brannan Joseph D | Microwave system tuner |
US8346370B2 (en) * | 2008-09-30 | 2013-01-01 | Vivant Medical, Inc. | Delivered energy generator for microwave ablation |
US8287527B2 (en) * | 2008-09-30 | 2012-10-16 | Vivant Medical, Inc. | Microwave system calibration apparatus and method of use |
US8180433B2 (en) * | 2008-09-30 | 2012-05-15 | Vivant Medical, Inc. | Microwave system calibration apparatus, system and method of use |
US8242782B2 (en) | 2008-09-30 | 2012-08-14 | Vivant Medical, Inc. | Microwave ablation generator control system |
US8174267B2 (en) * | 2008-09-30 | 2012-05-08 | Vivant Medical, Inc. | Intermittent microwave energy delivery system |
US8248075B2 (en) * | 2008-09-30 | 2012-08-21 | Vivant Medical, Inc. | System, apparatus and method for dissipating standing wave in a microwave delivery system |
US9795442B2 (en) | 2008-11-11 | 2017-10-24 | Shifamed Holdings, Llc | Ablation catheters |
US8400164B2 (en) * | 2008-11-12 | 2013-03-19 | Biosense Webster, Inc. | Calibration and compensation for errors in position measurement |
CN102271603A (en) | 2008-11-17 | 2011-12-07 | 明诺医学股份有限公司 | Selective accumulation of energy with or without knowledge of tissue topography |
US8355799B2 (en) | 2008-12-12 | 2013-01-15 | Arthrocare Corporation | Systems and methods for limiting joint temperature |
US20100152725A1 (en) * | 2008-12-12 | 2010-06-17 | Angiodynamics, Inc. | Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation |
US20100168568A1 (en) * | 2008-12-30 | 2010-07-01 | St. Jude Medical, Atrial Fibrillation Division Inc. | Combined Diagnostic and Therapeutic Device Using Aligned Energy Beams |
US8753335B2 (en) * | 2009-01-23 | 2014-06-17 | Angiodynamics, Inc. | Therapeutic energy delivery device with rotational mechanism |
US8231603B2 (en) * | 2009-02-10 | 2012-07-31 | Angiodynamics, Inc. | Irreversible electroporation and tissue regeneration |
US9277969B2 (en) | 2009-04-01 | 2016-03-08 | Covidien Lp | Microwave ablation system with user-controlled ablation size and method of use |
WO2010113147A1 (en) * | 2009-04-01 | 2010-10-07 | Syneron Medical Ltd. | A method and apparatus for liposuction |
US20100256735A1 (en) * | 2009-04-03 | 2010-10-07 | Board Of Regents, The University Of Texas System | Intraluminal stent with seam |
US11382681B2 (en) | 2009-04-09 | 2022-07-12 | Virginia Tech Intellectual Properties, Inc. | Device and methods for delivery of high frequency electrical pulses for non-thermal ablation |
WO2010118387A1 (en) | 2009-04-09 | 2010-10-14 | Virginia Tech Intellectual Properties, Inc. | Integration of very short electric pulses for minimally to noninvasive electroporation |
US11638603B2 (en) | 2009-04-09 | 2023-05-02 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US20100268223A1 (en) * | 2009-04-15 | 2010-10-21 | Tyco Health Group Lp | Methods for Image Analysis and Visualization of Medical Image Data Suitable for Use in Assessing Tissue Ablation and Systems and Methods for Controlling Tissue Ablation Using Same |
US20100268225A1 (en) * | 2009-04-15 | 2010-10-21 | Tyco Healthcare Group Lp | Methods for Image Analysis and Visualization of Medical Image Data Suitable for Use in Assessing Tissue Ablation and Systems and Methods for Controlling Tissue Ablation Using Same |
WO2010127369A1 (en) * | 2009-05-01 | 2010-11-04 | Rational Biotechnology Inc. | Eit (electrical impedance tomography) guided sonoporation, ultrasound tissue ablation and their use thereof |
USD630321S1 (en) | 2009-05-08 | 2011-01-04 | Angio Dynamics, Inc. | Probe handle |
US8663210B2 (en) | 2009-05-13 | 2014-03-04 | Novian Health, Inc. | Methods and apparatus for performing interstitial laser therapy and interstitial brachytherapy |
US8246615B2 (en) * | 2009-05-19 | 2012-08-21 | Vivant Medical, Inc. | Tissue impedance measurement using a secondary frequency |
WO2010133578A2 (en) * | 2009-05-20 | 2010-11-25 | Sonion A/S | Electroporation device with improved tip and electrode support |
US8903488B2 (en) | 2009-05-28 | 2014-12-02 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
US20120089141A1 (en) * | 2009-06-09 | 2012-04-12 | Korea University Research And Business Foundation | Direction-controllable electrode body for selectively removing bodily tissue, and guide pipe |
US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
EP2459096B1 (en) | 2009-07-28 | 2014-10-22 | Neuwave Medical, Inc. | Ablation device |
US9358064B2 (en) | 2009-08-07 | 2016-06-07 | Ulthera, Inc. | Handpiece and methods for performing subcutaneous surgery |
US11096708B2 (en) | 2009-08-07 | 2021-08-24 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
US9974463B2 (en) * | 2009-08-21 | 2018-05-22 | Beth Israel Deaconess Medical Center, Inc. | Hand-held device for electrical impedance myography |
US10828100B2 (en) * | 2009-08-25 | 2020-11-10 | Covidien Lp | Microwave ablation with tissue temperature monitoring |
US8317786B2 (en) | 2009-09-25 | 2012-11-27 | AthroCare Corporation | System, method and apparatus for electrosurgical instrument with movable suction sheath |
US8323279B2 (en) | 2009-09-25 | 2012-12-04 | Arthocare Corporation | System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath |
US8568398B2 (en) | 2009-09-29 | 2013-10-29 | Covidien Lp | Flow rate monitor for fluid cooled microwave ablation probe |
US8382750B2 (en) | 2009-10-28 | 2013-02-26 | Vivant Medical, Inc. | System and method for monitoring ablation size |
CA2778997C (en) | 2009-11-05 | 2022-03-08 | Nimbus Concepts, Llc | Methods and systems for radio frequency neurotomy |
US8551083B2 (en) * | 2009-11-17 | 2013-10-08 | Bsd Medical Corporation | Microwave coagulation applicator and system |
US8414570B2 (en) * | 2009-11-17 | 2013-04-09 | Bsd Medical Corporation | Microwave coagulation applicator and system |
US9993294B2 (en) * | 2009-11-17 | 2018-06-12 | Perseon Corporation | Microwave coagulation applicator and system with fluid injection |
US20110118732A1 (en) | 2009-11-19 | 2011-05-19 | The Regents Of The University Of California | Controlled irreversible electroporation |
US8882759B2 (en) * | 2009-12-18 | 2014-11-11 | Covidien Lp | Microwave ablation system with dielectric temperature probe |
US20110172659A1 (en) * | 2010-01-13 | 2011-07-14 | Vivant Medical, Inc. | Ablation Device With User Interface at Device Handle, System Including Same, and Method of Ablating Tissue Using Same |
EP2523613B1 (en) * | 2010-01-15 | 2015-04-08 | Immersion Corporation | Systems for minimally invasive surgical tools with haptic feedback |
US20110202052A1 (en) * | 2010-02-12 | 2011-08-18 | Daniel Gelbart | System for treating benign prostatic hyperplasia |
WO2011103096A2 (en) * | 2010-02-16 | 2011-08-25 | Angiodynamics, Inc. | Ablation device with guide sleeves |
US8568404B2 (en) | 2010-02-19 | 2013-10-29 | Covidien Lp | Bipolar electrode probe for ablation monitoring |
US20110208180A1 (en) * | 2010-02-25 | 2011-08-25 | Vivant Medical, Inc. | System and Method for Monitoring Ablation Size |
JP2013523318A (en) | 2010-04-09 | 2013-06-17 | べシックス・バスキュラー・インコーポレイテッド | Power generation and control equipment for tissue treatment |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US9173700B2 (en) | 2010-04-26 | 2015-11-03 | 9234438 Canada Inc. | Electrosurgical device and methods |
US12076074B2 (en) | 2010-04-26 | 2024-09-03 | Medtronic Holding Company Sàrl | Electrosurgical device and methods |
US8696659B2 (en) * | 2010-04-30 | 2014-04-15 | Arthrocare Corporation | Electrosurgical system and method having enhanced temperature measurement |
JP6153865B2 (en) | 2010-05-03 | 2017-06-28 | ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. | Energy delivery system |
US9655677B2 (en) | 2010-05-12 | 2017-05-23 | Shifamed Holdings, Llc | Ablation catheters including a balloon and electrodes |
KR20150031339A (en) | 2010-05-21 | 2015-03-23 | 님버스 컨셉츠, 엘엘씨 | Systems and methods for tissue ablation |
US9192436B2 (en) | 2010-05-25 | 2015-11-24 | Covidien Lp | Flow rate verification monitor for fluid-cooled microwave ablation probe |
US9241762B2 (en) | 2010-06-03 | 2016-01-26 | Covidien Lp | Specific absorption rate measurement and energy-delivery device characterization using image analysis |
US9377367B2 (en) | 2010-06-03 | 2016-06-28 | Covidien Lp | Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis |
US8188435B2 (en) | 2010-06-03 | 2012-05-29 | Tyco Healthcare Group Lp | Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis |
US9468492B2 (en) | 2010-06-03 | 2016-10-18 | Covidien Lp | Specific absorption rate measurement and energy-delivery device characterization using image analysis |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
JP2016209620A (en) * | 2010-06-13 | 2016-12-15 | アンジオメトリックス コーポレーション | Method and system for determining information on vascular lumen and guiding medical device |
WO2011161474A1 (en) * | 2010-06-24 | 2011-12-29 | Emcision Limited | Enhanced ablation apparatus |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US20120029505A1 (en) * | 2010-07-30 | 2012-02-02 | Jenson Mark L | Self-Leveling Electrode Sets for Renal Nerve Ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9289606B2 (en) * | 2010-09-02 | 2016-03-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for electroporation therapy |
JP6448905B2 (en) * | 2010-09-29 | 2019-01-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | System and method for temperature feedback for adaptive radio frequency ablation |
WO2012051433A2 (en) | 2010-10-13 | 2012-04-19 | Angiodynamics, Inc. | System and method for electrically ablating tissue of a patient |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
EP2632373B1 (en) * | 2010-10-25 | 2018-07-18 | Medtronic Ardian Luxembourg S.à.r.l. | System for evaluation and feedback of neuromodulation treatment |
US9220558B2 (en) * | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US20120105443A1 (en) * | 2010-10-29 | 2012-05-03 | Jon Alan Klingborg | System and Method for Generating A Three-Dimensional Patient Display |
US9005192B2 (en) | 2010-11-08 | 2015-04-14 | Biosense Webster (Israel) Ltd. | Simultaneous ablation by multiple electrodes |
US9005193B2 (en) | 2010-11-08 | 2015-04-14 | Biosense Webster (Israel) Ltd. | Multichannel ablation with frequency differentiation |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
US9788891B2 (en) | 2010-12-28 | 2017-10-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation electrode assemblies and methods for using same |
US8979840B2 (en) | 2010-12-17 | 2015-03-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigant distribution system for flexible electrodes |
US9855094B2 (en) * | 2010-12-28 | 2018-01-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-rate fluid flow and variable power delivery for ablation electrode assemblies used in catheter ablation procedures |
WO2012088149A2 (en) | 2010-12-20 | 2012-06-28 | Virginia Tech Intellectual Properties, Inc. | High-frequency electroporation for cancer therapy |
WO2012100095A1 (en) | 2011-01-19 | 2012-07-26 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US9265557B2 (en) | 2011-01-31 | 2016-02-23 | Medtronic Ablation Frontiers Llc | Multi frequency and multi polarity complex impedance measurements to assess ablation lesions |
EP2500740A1 (en) * | 2011-03-17 | 2012-09-19 | Koninklijke Philips Electronics N.V. | Accelerated magnetic resonance thermometry |
US10092349B2 (en) * | 2011-05-04 | 2018-10-09 | The University Of Akron | Variable-frequency stimulator for electrosurgery |
RU2014104566A (en) * | 2011-07-11 | 2015-08-20 | Конинклейке Филипс Н.В. | ENERGY APPLICATION PLANNING DEVICE |
CN103813745B (en) | 2011-07-20 | 2016-06-29 | 波士顿科学西美德公司 | In order to visualize, be directed at and to melt transcutaneous device and the method for nerve |
AU2012287189B2 (en) | 2011-07-22 | 2016-10-06 | Boston Scientific Scimed, Inc. | Nerve modulation system with a nerve modulation element positionable in a helical guide |
US9314301B2 (en) | 2011-08-01 | 2016-04-19 | Miramar Labs, Inc. | Applicator and tissue interface module for dermatological device |
US9486625B2 (en) | 2011-08-08 | 2016-11-08 | Medamp Electronics, Llc | Method for treating benign prostate hyperplasia |
US8706258B2 (en) | 2011-08-08 | 2014-04-22 | Medamp Electronics, Llc | Method and apparatus for treating cancer |
US9078665B2 (en) | 2011-09-28 | 2015-07-14 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
WO2013055826A1 (en) | 2011-10-10 | 2013-04-18 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US10085799B2 (en) | 2011-10-11 | 2018-10-02 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
WO2013059202A1 (en) | 2011-10-18 | 2013-04-25 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
WO2013070724A1 (en) | 2011-11-08 | 2013-05-16 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
WO2013074813A1 (en) | 2011-11-15 | 2013-05-23 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
EP3769712A1 (en) | 2011-12-21 | 2021-01-27 | Neuwave Medical, Inc. | Energy delivery systems |
EP2793689B1 (en) | 2011-12-23 | 2023-05-10 | Vessix Vascular, Inc. | Tissue remodeling systems |
CN104135958B (en) | 2011-12-28 | 2017-05-03 | 波士顿科学西美德公司 | By the apparatus and method that have the new ablation catheter modulation nerve of polymer ablation |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US9119648B2 (en) | 2012-01-06 | 2015-09-01 | Covidien Lp | System and method for treating tissue using an expandable antenna |
US9113931B2 (en) | 2012-01-06 | 2015-08-25 | Covidien Lp | System and method for treating tissue using an expandable antenna |
US10076383B2 (en) | 2012-01-25 | 2018-09-18 | Covidien Lp | Electrosurgical device having a multiplexer |
US9414881B2 (en) | 2012-02-08 | 2016-08-16 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
KR101139940B1 (en) * | 2012-02-15 | 2012-05-07 | (주)인투케어 | Electrodes for electrical surgical procedures and device for surgical procedures including it |
EP3808259A1 (en) | 2012-04-05 | 2021-04-21 | Bard Access Systems, Inc. | Devices and systems for navigation and positioning a central venous catheter within a patient |
US10159531B2 (en) | 2012-04-05 | 2018-12-25 | C. R. Bard, Inc. | Apparatus and methods relating to intravascular positioning of distal end of catheter |
US11759268B2 (en) | 2012-04-05 | 2023-09-19 | C. R. Bard, Inc. | Apparatus and methods relating to intravascular positioning of distal end of catheter |
ITMI20120677A1 (en) * | 2012-04-24 | 2013-10-25 | Valentina Lara Garbagnati | ACTIVE HIGH-FREQUENCY ELECTROMAGNETIC ABLATION DEVICE |
US9216050B2 (en) | 2012-05-01 | 2015-12-22 | Medtronic Ablation Frontiers Llc | Detection of microbubble formation during catheter ablation |
US9060778B2 (en) | 2012-04-26 | 2015-06-23 | Medtronic Ablation Frontiers Llc | Intermittent short circuit detection on a multi-electrode catheter |
CN104582619B (en) * | 2012-04-26 | 2018-12-04 | 麦德托尼克消融前沿有限公司 | System for organizing contact during detecting ablation |
US20130296840A1 (en) | 2012-05-01 | 2013-11-07 | Medtronic Ablation Frontiers Llc | Systems and methods for detecting tissue contact during ablation |
US9095350B2 (en) | 2012-05-01 | 2015-08-04 | Medtronic Ablation Frontiers Llc | Impedance detection of venous placement of multi-electrode catheters |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
DE102012013534B3 (en) | 2012-07-05 | 2013-09-19 | Tobias Sokolowski | Apparatus for repetitive nerve stimulation for the degradation of adipose tissue by means of inductive magnetic fields |
US9144459B2 (en) | 2012-07-19 | 2015-09-29 | Cook Medical Technologies Llc | Endoscopic ultrasound ablation needle |
CA2881462C (en) | 2012-08-09 | 2020-07-14 | University Of Iowa Research Foundation | Catheters, catheter systems, and methods for puncturing through a tissue structure |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
EP2895095A2 (en) | 2012-09-17 | 2015-07-22 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
WO2014047454A2 (en) | 2012-09-21 | 2014-03-27 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
WO2014047411A1 (en) | 2012-09-21 | 2014-03-27 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US9993283B2 (en) | 2012-10-02 | 2018-06-12 | Covidien Lp | Selectively deformable ablation device |
EP2906135A2 (en) | 2012-10-10 | 2015-08-19 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
CA3183802A1 (en) * | 2012-11-05 | 2014-05-08 | Autonomix Medical, Inc. | Systems, methods, and devices for monitoring and treatment of tissues within and/or through a lumen wall |
US9888956B2 (en) | 2013-01-22 | 2018-02-13 | Angiodynamics, Inc. | Integrated pump and generator device and method of use |
MY179432A (en) | 2013-02-07 | 2020-11-06 | Shanghai Golden Leaf Med Tec Co Ltd | Radio frequency ablation method, system and radio frequency ablation device thereof |
CN103519888B (en) * | 2013-10-30 | 2016-02-10 | 上海魅丽纬叶医疗科技有限公司 | Have radio-frequency electrode and the radiofrequency melting instrument of temp sensing function and survey impedance function concurrently |
BR112015021441A2 (en) | 2013-03-07 | 2017-07-18 | Arthrocare Corp | electrosurgical systems and methods |
US9877707B2 (en) | 2013-03-07 | 2018-01-30 | Kyphon SÀRL | Systems and methods for track coagulation |
WO2014163987A1 (en) | 2013-03-11 | 2014-10-09 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
WO2014153149A1 (en) | 2013-03-14 | 2014-09-25 | Ellman International, Inc. | Electrosurgical systems and methods |
CN105228546B (en) | 2013-03-15 | 2017-11-14 | 波士顿科学国际有限公司 | Utilize the impedance-compensated medicine equipment and method that are used to treat hypertension |
US9827039B2 (en) | 2013-03-15 | 2017-11-28 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
EP2967711B1 (en) | 2013-03-15 | 2020-05-06 | Cynosure, LLC | Electrosurgical instruments with multimodes of operation |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
CN105377128B (en) | 2013-03-15 | 2019-02-22 | 9234438加拿大股份有限公司 | Electrosurgery mapping tool and method |
EP4233991A1 (en) | 2013-03-15 | 2023-08-30 | Medtronic Ardian Luxembourg S.à.r.l. | Controlled neuromodulation systems |
AU2014251039B2 (en) | 2013-04-08 | 2018-12-06 | Apama Medical, Inc. | Cardiac ablation catheters and methods of use thereof |
US10349824B2 (en) | 2013-04-08 | 2019-07-16 | Apama Medical, Inc. | Tissue mapping and visualization systems |
US10098694B2 (en) | 2013-04-08 | 2018-10-16 | Apama Medical, Inc. | Tissue ablation and monitoring thereof |
WO2014205388A1 (en) | 2013-06-21 | 2014-12-24 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
CN105473092B (en) | 2013-06-21 | 2019-05-17 | 波士顿科学国际有限公司 | The medical instrument for renal nerve ablation with rotatable shaft |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
EP3016605B1 (en) | 2013-07-01 | 2019-06-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
CN105377169B (en) | 2013-07-11 | 2019-04-19 | 波士顿科学国际有限公司 | Device and method for neuromodulation |
CN105377170A (en) | 2013-07-11 | 2016-03-02 | 波士顿科学国际有限公司 | Medical device with stretchable electrode assemblies |
EP3049007B1 (en) | 2013-07-19 | 2019-06-12 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
JP2016527959A (en) | 2013-07-22 | 2016-09-15 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Renal nerve ablation medical device |
EP3024405A1 (en) | 2013-07-22 | 2016-06-01 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
US10779885B2 (en) | 2013-07-24 | 2020-09-22 | Miradry. Inc. | Apparatus and methods for the treatment of tissue using microwave energy |
EP4049605A1 (en) | 2013-08-22 | 2022-08-31 | Boston Scientific Scimed Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
EP3041425B1 (en) | 2013-09-04 | 2022-04-13 | Boston Scientific Scimed, Inc. | Radio frequency (rf) balloon catheter having flushing and cooling capability |
CN105530885B (en) | 2013-09-13 | 2020-09-22 | 波士顿科学国际有限公司 | Ablation balloon with vapor deposited covering |
CN104510532A (en) * | 2013-09-30 | 2015-04-15 | 王新 | Conformal radio frequency ablation electrode |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
EP3057488B1 (en) | 2013-10-14 | 2018-05-16 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
EP3057520A1 (en) | 2013-10-15 | 2016-08-24 | Boston Scientific Scimed, Inc. | Medical device balloon |
WO2015057961A1 (en) | 2013-10-18 | 2015-04-23 | Boston Scientific Scimed, Inc. | Balloon catheters with flexible conducting wires and related methods of use and manufacture |
CN105658163B (en) | 2013-10-25 | 2020-08-18 | 波士顿科学国际有限公司 | Embedded thermocouple in denervation flexible circuit |
WO2015073397A1 (en) | 2013-11-13 | 2015-05-21 | Thixos Llc | Devices, kits and methods relating to treatment of facet joints |
JP6342000B2 (en) | 2013-11-13 | 2018-06-13 | ジャイラス・エイシーエムアイ・インコーポレイテッド | Fibroid-like ablation positioning device and method |
WO2015073877A1 (en) | 2013-11-14 | 2015-05-21 | Paul Mikus | Methods, systems, and apparatuses for delivery of electrolysis products |
US11096736B2 (en) * | 2013-12-09 | 2021-08-24 | Biosense Webster (Israel) Ltd. | Pericardial catheter with temperature sensing array |
US11202671B2 (en) | 2014-01-06 | 2021-12-21 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
EP3091921B1 (en) | 2014-01-06 | 2019-06-19 | Farapulse, Inc. | Apparatus for renal denervation ablation |
US10166321B2 (en) | 2014-01-09 | 2019-01-01 | Angiodynamics, Inc. | High-flow port and infusion needle systems |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
CN106572881B (en) | 2014-02-04 | 2019-07-26 | 波士顿科学国际有限公司 | Substitution of the heat sensor on bipolar electrode is placed |
JP5897230B1 (en) * | 2014-04-11 | 2016-03-30 | オリンパス株式会社 | Plasma treatment system |
WO2015171921A2 (en) | 2014-05-07 | 2015-11-12 | Mickelson Steven R | Methods and apparatus for selective tissue ablation |
WO2015175570A1 (en) | 2014-05-12 | 2015-11-19 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
WO2015175944A1 (en) * | 2014-05-16 | 2015-11-19 | Gary Long | Methods and apparatus for multi-catheter tissue ablation |
WO2015192027A1 (en) | 2014-06-12 | 2015-12-17 | Iowa Approach Inc. | Method and apparatus for rapid and selective transurethral tissue ablation |
EP3154464A4 (en) | 2014-06-12 | 2018-01-24 | Iowa Approach Inc. | Method and apparatus for rapid and selective tissue ablation with cooling |
CN104068855A (en) * | 2014-07-02 | 2014-10-01 | 高少斌 | Direct-detection channel and collateral scanning device |
US9649148B2 (en) | 2014-07-24 | 2017-05-16 | Arthrocare Corporation | Electrosurgical system and method having enhanced arc prevention |
US9597142B2 (en) | 2014-07-24 | 2017-03-21 | Arthrocare Corporation | Method and system related to electrosurgical procedures |
US20160051221A1 (en) * | 2014-08-25 | 2016-02-25 | Covidien Lp | System and Method for Planning, Monitoring, and Confirming Treatment |
US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
GB2531619A (en) * | 2014-09-12 | 2016-04-27 | Innovarius Ltd | Apparatus and method for providing hyperthermia therapy |
US10368938B2 (en) * | 2014-10-07 | 2019-08-06 | City Of Hope | Margin extension device and method |
GB201417963D0 (en) * | 2014-10-10 | 2014-11-26 | Univ Oslo Hf | Measurement of impedance of body tissue |
EP3206613B1 (en) | 2014-10-14 | 2019-07-03 | Farapulse, Inc. | Apparatus for rapid and safe pulmonary vein cardiac ablation |
CN104287828A (en) * | 2014-10-20 | 2015-01-21 | 周稼 | Flexible hollow radiofrequency treatment electrode |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10842554B2 (en) * | 2014-11-13 | 2020-11-24 | Alan Ellman | Electrosurgical electrode |
SG11201703943VA (en) | 2014-11-19 | 2017-06-29 | Advanced Cardiac Therapeutics Inc | Ablation devices, systems and methods of using a high-resolution electrode assembly |
EP3220841B1 (en) | 2014-11-19 | 2023-01-25 | EPiX Therapeutics, Inc. | High-resolution mapping of tissue with pacing |
CA2967829A1 (en) | 2014-11-19 | 2016-05-26 | Advanced Cardiac Therapeutics, Inc. | Systems and methods for high-resolution mapping of tissue |
US10004529B2 (en) * | 2014-11-25 | 2018-06-26 | Ethicon Llc | Features to drive fluid toward an ultrasonic blade of a surgical instrument |
EP3223716B1 (en) | 2014-11-26 | 2021-08-04 | Devicor Medical Products, Inc. | Graphical user interface for biopsy device |
WO2016100325A1 (en) | 2014-12-15 | 2016-06-23 | Virginia Tech Intellectual Properties, Inc. | Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment |
US20160256218A1 (en) * | 2015-03-04 | 2016-09-08 | The Board Of Trustees Of The Leland Stanford Junior University | Perivascular Electroporation Device and Method for Extending Vascular Patency |
US9636164B2 (en) | 2015-03-25 | 2017-05-02 | Advanced Cardiac Therapeutics, Inc. | Contact sensing systems and methods |
US11491342B2 (en) | 2015-07-01 | 2022-11-08 | Btl Medical Solutions A.S. | Magnetic stimulation methods and devices for therapeutic treatments |
EP3685782B1 (en) | 2015-04-29 | 2021-11-03 | Innoblative Designs, Inc. | Cavitary tissue ablation |
CN108472071B (en) | 2015-05-01 | 2021-03-16 | 因特科学股份有限公司 | Methods, systems, and apparatus for tissue ablation using pulse shape design |
US20180001107A1 (en) | 2016-07-01 | 2018-01-04 | Btl Holdings Limited | Aesthetic method of biological structure treatment by magnetic field |
US10695575B1 (en) | 2016-05-10 | 2020-06-30 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US11266850B2 (en) | 2015-07-01 | 2022-03-08 | Btl Healthcare Technologies A.S. | High power time varying magnetic field therapy |
US20190117303A1 (en) * | 2015-08-06 | 2019-04-25 | Apama Medical, Inc. | Multipurpose electrode |
US10357173B2 (en) * | 2015-09-14 | 2019-07-23 | Biosense Webster (Israel) Ltd. | Dual multiray electrode catheter |
US10517668B2 (en) | 2015-09-14 | 2019-12-31 | Boisense Webster (Israel) Ltd. | Dual node multiray electrode catheter |
US10524858B2 (en) | 2015-09-14 | 2020-01-07 | Biosense Webster (Israel) Ltd. | Dual node multiray electrode catheter |
US20170086871A1 (en) * | 2015-09-24 | 2017-03-30 | Katalyst Surgical, Llc | Asymmetric membrane removing forceps |
US10660691B2 (en) | 2015-10-07 | 2020-05-26 | Angiodynamics, Inc. | Multiple use subassembly with integrated fluid delivery system for use with single or dual-lumen peristaltic tubing |
CN113367788B (en) | 2015-10-26 | 2024-09-06 | 纽韦弗医疗设备公司 | Energy delivery system and use thereof |
JP6933857B2 (en) | 2015-10-29 | 2021-09-08 | イノブレイティブ デザインズ, インコーポレイテッド | Net spherical tissue ablation device and method |
US11253717B2 (en) | 2015-10-29 | 2022-02-22 | Btl Healthcare Technologies A.S. | Aesthetic method of biological structure treatment by magnetic field |
US10751123B2 (en) * | 2015-10-30 | 2020-08-25 | Washington University | Thermoablation probe |
EP3376936B1 (en) | 2015-11-16 | 2024-01-03 | Boston Scientific Scimed, Inc. | Energy delivery devices |
US10441339B2 (en) | 2015-11-17 | 2019-10-15 | Medtronic Holding Company Sárl | Spinal tissue ablation apparatus, system, and method |
US11324442B1 (en) | 2015-11-25 | 2022-05-10 | Maquet Cardiovascular Llc | Broadband impedance spectroscopy and its use for tissue welding |
US20170189097A1 (en) | 2016-01-05 | 2017-07-06 | Iowa Approach Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
US10172673B2 (en) | 2016-01-05 | 2019-01-08 | Farapulse, Inc. | Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue |
US10130423B1 (en) | 2017-07-06 | 2018-11-20 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
US10660702B2 (en) | 2016-01-05 | 2020-05-26 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
CN108463181B (en) * | 2016-01-15 | 2020-11-24 | 奥林巴斯株式会社 | Energy control device and treatment system |
WO2017136261A1 (en) | 2016-02-02 | 2017-08-10 | Innoblative Designs, Inc. | Cavitary tissue ablation system |
US10869714B2 (en) | 2016-03-01 | 2020-12-22 | Innoblative Designs, Inc. | Resecting and coagulating tissue |
US11517758B2 (en) | 2016-03-04 | 2022-12-06 | El.En. S.P.A. | Delivery device with coaxial cable, apparatus comprising said device and method |
ITUA20161370A1 (en) * | 2016-03-04 | 2017-09-04 | El En Spa | COAXIAL CABLE APPLICATOR, UNIT INCLUDING THE DEVICE AND METHOD |
SG11201807618QA (en) | 2016-03-15 | 2018-10-30 | Epix Therapeutics Inc | Improved devices, systems and methods for irrigated ablation |
CA2925827A1 (en) * | 2016-04-05 | 2017-10-05 | Atlantic Cancer Research Institute | Microwave-assisted medical technologies and apparatus therfor |
US10098684B2 (en) | 2016-04-06 | 2018-10-16 | Biosense Webster (Israel) Ltd. | Uncalibrated thermocouple system |
BR112018071018A2 (en) | 2016-04-15 | 2019-02-12 | Neuwave Medical, Inc. | energy application systems and methods |
US11247039B2 (en) | 2016-05-03 | 2022-02-15 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US11464993B2 (en) | 2016-05-03 | 2022-10-11 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US11534619B2 (en) | 2016-05-10 | 2022-12-27 | Btl Medical Solutions A.S. | Aesthetic method of biological structure treatment by magnetic field |
US10583287B2 (en) | 2016-05-23 | 2020-03-10 | Btl Medical Technologies S.R.O. | Systems and methods for tissue treatment |
WO2017218734A1 (en) | 2016-06-16 | 2017-12-21 | Iowa Approach, Inc. | Systems, apparatuses, and methods for guide wire delivery |
EP4209190A1 (en) | 2016-06-27 | 2023-07-12 | Galvanize Therapeutics, Inc. | System comprising a generator and a catheter with an electrode for treating a lung passageway |
US10556122B1 (en) | 2016-07-01 | 2020-02-11 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
JP2019536509A (en) | 2016-10-17 | 2019-12-19 | イノブレイティブ デザインズ, インコーポレイテッド | Treatment device and method |
EP3538000A4 (en) | 2016-11-08 | 2020-04-01 | Innoblative Designs, Inc. | Electrosurgical tissue and vessel sealing device |
US10905492B2 (en) | 2016-11-17 | 2021-02-02 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
RU2665627C2 (en) * | 2016-12-21 | 2018-09-03 | Общество с ограниченной ответственностью "ЛОРГЕ медикал" | Bipolar electrosurgical instrument for ablation of the atrial myocardium for the treatment of supraventricular arrhythmias |
GB2559595B (en) * | 2017-02-10 | 2021-09-01 | Creo Medical Ltd | Electrosurgical apparatus and electrosurgical instrument |
US10555768B2 (en) * | 2017-02-14 | 2020-02-11 | Medtronic, Inc. | Method of confirming safe delivery pathway to patient prior to energy delivery |
JP2020508152A (en) * | 2017-02-23 | 2020-03-19 | イノブレイティブ デザインズ, インコーポレイテッド | System and method for ablation status monitoring and custom ablation molding |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
WO2018167877A1 (en) * | 2017-03-15 | 2018-09-20 | オリンパス株式会社 | Energy source device |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
WO2018200865A1 (en) | 2017-04-27 | 2018-11-01 | Epix Therapeutics, Inc. | Determining nature of contact between catheter tip and tissue |
US9987081B1 (en) | 2017-04-27 | 2018-06-05 | Iowa Approach, Inc. | Systems, devices, and methods for signal generation |
US10617867B2 (en) | 2017-04-28 | 2020-04-14 | Farapulse, Inc. | Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue |
US10610296B2 (en) | 2017-05-31 | 2020-04-07 | Biosense Webster (Israel) Ltd. | Cardiac electrophysiology machine including catheter stability while estimating impedance drop |
US11116585B2 (en) * | 2017-06-21 | 2021-09-14 | Apama Medical, Inc. | Graphical user interfaces for ablation systems |
JP2020530785A (en) | 2017-07-26 | 2020-10-29 | イノブレイティブ デザインズ, インコーポレイテッド | Minimally invasive joint motion assembly with ablation capability |
US11052246B2 (en) * | 2017-07-28 | 2021-07-06 | Medtronic, Inc. | Expandable elements for delivery of electric fields |
CN109464186B (en) | 2017-09-08 | 2023-12-22 | 泽丹医疗股份有限公司 | Device and method for treating lung tumors |
WO2019055512A1 (en) | 2017-09-12 | 2019-03-21 | Farapulse, Inc. | Systems, apparatuses, and methods for ventricular focal ablation |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
GB2567469A (en) * | 2017-10-13 | 2019-04-17 | Creo Medical Ltd | Electrosurgical apparatus |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11109878B2 (en) | 2017-10-30 | 2021-09-07 | Cilag Gmbh International | Surgical clip applier comprising an automatic clip feeding system |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11141160B2 (en) | 2017-10-30 | 2021-10-12 | Cilag Gmbh International | Clip applier comprising a motor controller |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US10771167B2 (en) | 2017-11-02 | 2020-09-08 | Covidien Lp | System and methods for mitigating interferences between electrosurgical systems |
KR20190001355U (en) | 2017-11-27 | 2019-06-07 | 프로스타캐어 피티와이 엘티디 | An apparatus and a method for the treatment of a prostatic disease |
US11607537B2 (en) | 2017-12-05 | 2023-03-21 | Virginia Tech Intellectual Properties, Inc. | Method for treating neurological disorders, including tumors, with electroporation |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US20190201042A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Determining the state of an ultrasonic electromechanical system according to frequency shift |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
WO2019133144A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
CA3234911A1 (en) | 2018-02-07 | 2019-08-15 | Cynosure, Llc | Methods and apparatus for controlled rf treatments and rf generator system |
US11672596B2 (en) | 2018-02-26 | 2023-06-13 | Neuwave Medical, Inc. | Energy delivery devices with flexible and adjustable tips |
WO2019168949A1 (en) | 2018-02-28 | 2019-09-06 | Prostacare Pty Ltd | System for managing high impedance changes in a non-thermal ablation system for bph |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11589915B2 (en) | 2018-03-08 | 2023-02-28 | Cilag Gmbh International | In-the-jaw classifier based on a model |
CN111601564B (en) * | 2018-03-08 | 2024-05-14 | 爱惜康有限责任公司 | Assessing the status of an ultrasonic end effector and control system therefor |
US11457944B2 (en) | 2018-03-08 | 2022-10-04 | Cilag Gmbh International | Adaptive advanced tissue treatment pad saver mode |
US11925405B2 (en) | 2018-03-13 | 2024-03-12 | Virginia Tech Intellectual Properties, Inc. | Treatment planning system for immunotherapy enhancement via non-thermal ablation |
DE102018105812B4 (en) * | 2018-03-13 | 2020-01-02 | Olympus Winter & Ibe Gmbh | Radio frequency generator, control unit, method for operating a radio frequency generator |
US11311329B2 (en) | 2018-03-13 | 2022-04-26 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for immunotherapy based treatments using non-thermal ablation techniques |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11589865B2 (en) | 2018-03-28 | 2023-02-28 | Cilag Gmbh International | Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems |
US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
WO2019191616A1 (en) | 2018-03-30 | 2019-10-03 | Minnetronix, Inc. | Medical devices for ablating tissue |
US20190336198A1 (en) | 2018-05-03 | 2019-11-07 | Farapulse, Inc. | Systems, devices, and methods for ablation using surgical clamps |
EP3790485B1 (en) | 2018-05-07 | 2024-06-26 | Boston Scientific Scimed, Inc. | Epicardial ablation catheter |
JP2021522903A (en) | 2018-05-07 | 2021-09-02 | ファラパルス,インコーポレイテッド | Systems, devices, and methods for delivering ablation energy to tissues |
EP3790483B1 (en) | 2018-05-07 | 2024-08-28 | Boston Scientific Scimed, Inc. | Systems for filtering high voltage noise induced by pulsed electric field ablation |
EP3801339A1 (en) | 2018-05-30 | 2021-04-14 | Avent, Inc. | System and method for generating lesions of a certain size by controlling energy delivered and pump flow rate |
JP7465561B2 (en) * | 2018-07-17 | 2024-04-11 | オハイオ・ステイト・イノベーション・ファウンデーション | Portable Ultra-Wideband Radar for Monitoring Thoracic Fluid Levels and Cardiopulmonary Function |
WO2020051241A1 (en) | 2018-09-04 | 2020-03-12 | Inter Science Gmbh | Methods, systems, and apparatuses for tissue ablation using a modulated exponential decay pulse |
EP3852868A4 (en) | 2018-09-18 | 2022-06-15 | Virginia Tech Intellectual Properties, Inc. | Treatment planning system for immunotherapy enhancement via non-thermal ablation |
CN112955088A (en) | 2018-09-20 | 2021-06-11 | 法拉普尔赛股份有限公司 | Systems, devices, and methods for delivering pulsed electric field ablation energy to endocardial tissue |
JP7146310B2 (en) | 2018-11-08 | 2022-10-04 | オールド ドミニオン ユニバーシティ リサーチ ファウンデーション | Megahertz compression of nanosecond pulse bursts |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
CN109646109B (en) * | 2019-02-19 | 2021-04-13 | 深圳市世格赛思医疗科技有限公司 | Self-adaptive cutting hemostasis control method and device for ultrasonic knife tissue |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
CN109646108B (en) * | 2019-02-19 | 2021-01-22 | 深圳市世格赛思医疗科技有限公司 | Ultrasonic knife and cutting hemostasis system |
US11832879B2 (en) | 2019-03-08 | 2023-12-05 | Neuwave Medical, Inc. | Systems and methods for energy delivery |
CA3116569C (en) | 2019-04-11 | 2023-08-15 | Btl Medical Technologies S.R.O. | Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy |
CR20210617A (en) | 2019-05-09 | 2022-05-03 | Gyrus Acmi Inc D/B/A Olympus Surgical Tech America | Electrosurgical systems and methods |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11950835B2 (en) | 2019-06-28 | 2024-04-09 | Virginia Tech Intellectual Properties, Inc. | Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy |
US20210015550A1 (en) | 2019-07-17 | 2021-01-21 | Biosense Webster (Israel) Ltd. | Catheter for endovascular sympathetic denervation of spasmed intracranial arteries |
USD1005484S1 (en) | 2019-07-19 | 2023-11-21 | Cynosure, Llc | Handheld medical instrument and docking base |
JP7524305B2 (en) | 2019-08-12 | 2024-07-29 | バード・アクセス・システムズ,インコーポレーテッド | Shape sensing system for medical devices |
US10625080B1 (en) | 2019-09-17 | 2020-04-21 | Farapulse, Inc. | Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation |
US11701021B2 (en) * | 2019-10-10 | 2023-07-18 | Medtronic, Inc. | Lesion assessment using peak-to-peak impedance amplitude measurement |
US11065047B2 (en) | 2019-11-20 | 2021-07-20 | Farapulse, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
US11497541B2 (en) | 2019-11-20 | 2022-11-15 | Boston Scientific Scimed, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
US10842572B1 (en) | 2019-11-25 | 2020-11-24 | Farapulse, Inc. | Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines |
US11525670B2 (en) | 2019-11-25 | 2022-12-13 | Bard Access Systems, Inc. | Shape-sensing systems with filters and methods thereof |
CN214804697U (en) | 2019-11-25 | 2021-11-23 | 巴德阿克塞斯系统股份有限公司 | Optical tip tracking system |
CN112807071B (en) * | 2020-12-31 | 2022-03-04 | 杭州堃博生物科技有限公司 | Radio frequency host in radio frequency operation |
CN112712884B (en) * | 2020-12-31 | 2021-09-28 | 杭州堃博生物科技有限公司 | Method and device for dynamically adjusting radio frequency parameters and radio frequency host |
CN215340440U (en) * | 2020-02-28 | 2021-12-28 | 巴德阿克塞斯系统股份有限公司 | Electrical and optical connection system |
US20210282850A1 (en) * | 2020-03-13 | 2021-09-16 | Biocompatibles Uk Limited | Cycling of ablation devices |
CN215305864U (en) | 2020-03-30 | 2021-12-28 | 巴德阿克塞斯系统股份有限公司 | Relay module and medical system comprising same |
US11878167B2 (en) | 2020-05-04 | 2024-01-23 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
JP2023515722A (en) | 2020-05-04 | 2023-04-13 | ビーティーエル ヘルスケア テクノロジーズ エー.エス. | Devices and methods for unattended care of patients |
CN113842536A (en) | 2020-06-26 | 2021-12-28 | 巴德阿克塞斯系统股份有限公司 | Dislocation detection system |
CN216136534U (en) | 2020-06-29 | 2022-03-29 | 巴德阿克塞斯系统股份有限公司 | Medical device system for placing a medical device into the body of a patient |
CN111728691B (en) * | 2020-07-07 | 2022-12-27 | 昆山雷盛医疗科技有限公司 | Catheter-type thermal ablation therapeutic apparatus and contact condition detection method thereof |
CN113907705A (en) | 2020-07-10 | 2022-01-11 | 巴德阿克塞斯系统股份有限公司 | Continuous optical fiber function monitoring and self-diagnosis reporting system |
CN114052658A (en) | 2020-08-03 | 2022-02-18 | 巴德阿克塞斯系统股份有限公司 | Bragg grating optical fiber fluctuation sensing and monitoring system |
WO2022067096A1 (en) | 2020-09-25 | 2022-03-31 | Bard Access Systems, Inc. | Fiber optics oximetry system for detection and confirmation |
US11899249B2 (en) | 2020-10-13 | 2024-02-13 | Bard Access Systems, Inc. | Disinfecting covers for functional connectors of medical devices and methods thereof |
US11617619B2 (en) | 2020-11-04 | 2023-04-04 | Advanced Neuromodulation Systems, Inc. | System and method for detecting application of grounding pad for ablation devices |
CN112741681B (en) * | 2020-12-31 | 2022-07-12 | 杭州堃博生物科技有限公司 | Electronic device, radio frequency operation prompting system and storage medium |
CN112791262B (en) * | 2020-12-31 | 2023-02-03 | 杭州堃博生物科技有限公司 | Radio frequency operation data regulation and control method and device and injection pump |
CN113143443B (en) * | 2020-12-31 | 2022-09-27 | 杭州堃博生物科技有限公司 | Power adjustment method of multi-electrode radio frequency probe and radio frequency host |
CN112790858B (en) * | 2020-12-31 | 2021-11-09 | 杭州堃博生物科技有限公司 | Ablation parameter configuration method, device, system and computer readable storage medium |
US20220233235A1 (en) * | 2021-01-22 | 2022-07-28 | CRC EP, Inc. | Ablation Catheter for Pulsed-Field Ablation and Method for Electrode Position Assessment for Such Catheter |
US20220233770A1 (en) * | 2021-01-22 | 2022-07-28 | The Board Of Trustees Of The Leland Stanford Junior University | Automatic monitoring of fluid injection procedures using a sensing catheter |
US12082877B2 (en) | 2021-01-22 | 2024-09-10 | CRC EP, Inc. | Ablation catheter and operation method of same |
EP4340759A1 (en) * | 2021-05-22 | 2024-03-27 | Snipe Medical Ltd | Tumor ablation tools and techniques |
US20220395322A1 (en) * | 2021-06-15 | 2022-12-15 | Biosense Webster (Israel) Ltd. | Catheter for high-power focal ablation |
EP4415812A1 (en) | 2021-10-13 | 2024-08-21 | BTL Medical Solutions a.s. | Devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
US11896816B2 (en) | 2021-11-03 | 2024-02-13 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
US12089815B2 (en) | 2022-03-17 | 2024-09-17 | Bard Access Systems, Inc. | Fiber optic medical systems and devices with atraumatic tip |
US20230301710A1 (en) * | 2022-03-22 | 2023-09-28 | DIXI Neurolab, Inc. | Multi-Sensor Ablation Probe with Treatment Electrode |
CN117679147A (en) * | 2022-09-02 | 2024-03-12 | 杭州堃博生物科技有限公司 | Method and system for automatically adjusting power |
WO2024057203A1 (en) * | 2022-09-13 | 2024-03-21 | Covidien Lp | System for optimizing tissue treatment using fluid control |
CN116077172A (en) * | 2023-03-06 | 2023-05-09 | 杭州堃博生物科技有限公司 | Method and device for testing radio frequency ablation and system for testing radio frequency ablation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5370675A (en) * | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5536267A (en) * | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
US5683384A (en) * | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5810804A (en) * | 1995-08-15 | 1998-09-22 | Rita Medical Systems | Multiple antenna ablation apparatus and method with cooling element |
US7160296B2 (en) * | 2001-05-10 | 2007-01-09 | Rita Medical Systems, Inc. | Tissue ablation apparatus and method |
US7344533B2 (en) * | 2001-09-28 | 2008-03-18 | Angiodynamics, Inc. | Impedance controlled tissue ablation apparatus and method |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2124684A1 (en) | 1971-05-18 | 1972-11-30 | Stadelmann W | Puncture electrode |
US5620481A (en) | 1991-07-05 | 1997-04-15 | Desai; Jawahar M. | Device for multi-phase radio-frequency ablation |
US6086585A (en) | 1995-06-07 | 2000-07-11 | Arthrocare Corporation | System and methods for electrosurgical treatment of sleep obstructive disorders |
US5891095A (en) | 1993-05-10 | 1999-04-06 | Arthrocare Corporation | Electrosurgical treatment of tissue in electrically conductive fluid |
US5254117A (en) * | 1992-03-17 | 1993-10-19 | Alton Dean Medical | Multi-functional endoscopic probe apparatus |
US5281218A (en) | 1992-06-05 | 1994-01-25 | Cardiac Pathways Corporation | Catheter having needle electrode for radiofrequency ablation |
US5556377A (en) | 1992-08-12 | 1996-09-17 | Vidamed, Inc. | Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe |
US5334193A (en) | 1992-11-13 | 1994-08-02 | American Cardiac Ablation Co., Inc. | Fluid cooled ablation catheter |
US5342357A (en) * | 1992-11-13 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Fluid cooled electrosurgical cauterization system |
DE4338758C2 (en) | 1992-11-13 | 2001-08-09 | Scimed Life Systems Inc | Catheter assembly |
US5336222A (en) | 1993-03-29 | 1994-08-09 | Boston Scientific Corporation | Integrated catheter for diverse in situ tissue therapy |
US5403311A (en) | 1993-03-29 | 1995-04-04 | Boston Scientific Corporation | Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue |
US5454807A (en) | 1993-05-14 | 1995-10-03 | Boston Scientific Corporation | Medical treatment of deeply seated tissue using optical radiation |
US5431649A (en) | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5807395A (en) | 1993-08-27 | 1998-09-15 | Medtronic, Inc. | Method and apparatus for RF ablation and hyperthermia |
US5599345A (en) | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment apparatus |
US5730719A (en) * | 1994-05-09 | 1998-03-24 | Somnus Medical Technologies, Inc. | Method and apparatus for cosmetically remodeling a body structure |
US5876398A (en) | 1994-09-08 | 1999-03-02 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5609151A (en) | 1994-09-08 | 1997-03-11 | Medtronic, Inc. | Method for R-F ablation |
US6063081A (en) | 1995-02-22 | 2000-05-16 | Medtronic, Inc. | Fluid-assisted electrocautery device |
US5897553A (en) | 1995-11-02 | 1999-04-27 | Medtronic, Inc. | Ball point fluid-assisted electrocautery device |
US5868740A (en) | 1995-03-24 | 1999-02-09 | Board Of Regents-Univ Of Nebraska | Method for volumetric tissue ablation |
US6030379A (en) | 1995-05-01 | 2000-02-29 | Ep Technologies, Inc. | Systems and methods for seeking sub-surface temperature conditions during tissue ablation |
US6090105A (en) | 1995-08-15 | 2000-07-18 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method |
US6235023B1 (en) * | 1995-08-15 | 2001-05-22 | Rita Medical Systems, Inc. | Cell necrosis apparatus |
US6059780A (en) * | 1995-08-15 | 2000-05-09 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method with cooling element |
US5980517A (en) * | 1995-08-15 | 1999-11-09 | Rita Medical Systems, Inc. | Cell necrosis apparatus |
US5817092A (en) | 1995-11-09 | 1998-10-06 | Radio Therapeutics Corporation | Apparatus, system and method for delivering radio frequency energy to a treatment site |
US6032077A (en) | 1996-03-06 | 2000-02-29 | Cardiac Pathways Corporation | Ablation catheter with electrical coupling via foam drenched with a conductive fluid |
US5800482A (en) | 1996-03-06 | 1998-09-01 | Cardiac Pathways Corporation | Apparatus and method for linear lesion ablation |
US5776176A (en) * | 1996-06-17 | 1998-07-07 | Urologix Inc. | Microwave antenna for arterial for arterial microwave applicator |
US6056747A (en) | 1997-08-04 | 2000-05-02 | Gynecare, Inc. | Apparatus and method for treatment of body tissues |
US6024739A (en) | 1997-09-05 | 2000-02-15 | Cordis Webster, Inc. | Method for detecting and revascularizing ischemic myocardial tissue |
US6401719B1 (en) * | 1997-09-11 | 2002-06-11 | Vnus Medical Technologies, Inc. | Method of ligating hollow anatomical structures |
US6059778A (en) * | 1998-05-05 | 2000-05-09 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method using unipolar and bipolar techniques |
ATE280617T1 (en) | 1998-08-14 | 2004-11-15 | Leuven K U Res & Dev | LIQUID-COOLED WET ELECTRODE |
AU2001279026B2 (en) * | 2000-07-25 | 2005-12-22 | Angiodynamics, Inc. | Apparatus for detecting and treating tumors using localized impedance measurement |
-
2002
- 2002-09-28 DE DE60210111T patent/DE60210111T2/en not_active Expired - Lifetime
- 2002-09-28 US US10/260,187 patent/US7344533B2/en not_active Expired - Fee Related
- 2002-09-28 CN CNB028235568A patent/CN100450456C/en not_active Expired - Fee Related
- 2002-09-28 JP JP2003530166A patent/JP4450622B2/en not_active Expired - Fee Related
- 2002-09-28 EP EP02763788A patent/EP1429678B1/en not_active Expired - Lifetime
- 2002-09-28 AT AT02763788T patent/ATE320767T1/en not_active IP Right Cessation
- 2002-09-28 AU AU2002327779A patent/AU2002327779B2/en not_active Ceased
- 2002-09-28 WO PCT/US2002/031006 patent/WO2003026525A1/en active IP Right Grant
-
2008
- 2008-01-30 US US12/022,708 patent/US20080287944A1/en not_active Abandoned
- 2008-09-24 AU AU2008224345A patent/AU2008224345B8/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5370675A (en) * | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5536267A (en) * | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
US5683384A (en) * | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5810804A (en) * | 1995-08-15 | 1998-09-22 | Rita Medical Systems | Multiple antenna ablation apparatus and method with cooling element |
US7160296B2 (en) * | 2001-05-10 | 2007-01-09 | Rita Medical Systems, Inc. | Tissue ablation apparatus and method |
US7344533B2 (en) * | 2001-09-28 | 2008-03-18 | Angiodynamics, Inc. | Impedance controlled tissue ablation apparatus and method |
Cited By (1599)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US8783541B2 (en) | 2003-05-20 | 2014-07-22 | Frederick E. Shelton, IV | Robotically-controlled surgical end effector system |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US11882987B2 (en) | 2004-07-28 | 2024-01-30 | Cilag Gmbh International | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US9737302B2 (en) | 2004-07-28 | 2017-08-22 | Ethicon Llc | Surgical stapling instrument having a restraining member |
US10485547B2 (en) | 2004-07-28 | 2019-11-26 | Ethicon Llc | Surgical staple cartridges |
US10293100B2 (en) | 2004-07-28 | 2019-05-21 | Ethicon Llc | Surgical stapling instrument having a medical substance dispenser |
US11963679B2 (en) | 2004-07-28 | 2024-04-23 | Cilag Gmbh International | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US9282966B2 (en) | 2004-07-28 | 2016-03-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US11684365B2 (en) | 2004-07-28 | 2023-06-27 | Cilag Gmbh International | Replaceable staple cartridges for surgical instruments |
US10568629B2 (en) | 2004-07-28 | 2020-02-25 | Ethicon Llc | Articulating surgical stapling instrument |
US9844379B2 (en) | 2004-07-28 | 2017-12-19 | Ethicon Llc | Surgical stapling instrument having a clearanced opening |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US10314590B2 (en) | 2004-07-28 | 2019-06-11 | Ethicon Llc | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9510830B2 (en) | 2004-07-28 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Staple cartridge |
US12011165B2 (en) | 2004-07-28 | 2024-06-18 | Cilag Gmbh International | Surgical stapling instrument comprising replaceable staple cartridge |
US10687817B2 (en) | 2004-07-28 | 2020-06-23 | Ethicon Llc | Stapling device comprising a firing member lockout |
US10383634B2 (en) | 2004-07-28 | 2019-08-20 | Ethicon Llc | Stapling system incorporating a firing lockout |
US9585663B2 (en) | 2004-07-28 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Surgical stapling instrument configured to apply a compressive pressure to tissue |
US9737303B2 (en) | 2004-07-28 | 2017-08-22 | Ethicon Llc | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US10799240B2 (en) | 2004-07-28 | 2020-10-13 | Ethicon Llc | Surgical instrument comprising a staple firing lockout |
US10716563B2 (en) | 2004-07-28 | 2020-07-21 | Ethicon Llc | Stapling system comprising an instrument assembly including a lockout |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11083456B2 (en) | 2004-07-28 | 2021-08-10 | Cilag Gmbh International | Articulating surgical instrument incorporating a two-piece firing mechanism |
US10278702B2 (en) | 2004-07-28 | 2019-05-07 | Ethicon Llc | Stapling system comprising a firing bar and a lockout |
US11116502B2 (en) | 2004-07-28 | 2021-09-14 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece firing mechanism |
US12029423B2 (en) | 2004-07-28 | 2024-07-09 | Cilag Gmbh International | Surgical stapling instrument comprising a staple cartridge |
US11890012B2 (en) | 2004-07-28 | 2024-02-06 | Cilag Gmbh International | Staple cartridge comprising cartridge body and attached support |
US11812960B2 (en) | 2004-07-28 | 2023-11-14 | Cilag Gmbh International | Method of segmenting the operation of a surgical stapling instrument |
US10292707B2 (en) | 2004-07-28 | 2019-05-21 | Ethicon Llc | Articulating surgical stapling instrument incorporating a firing mechanism |
US11135352B2 (en) | 2004-07-28 | 2021-10-05 | Cilag Gmbh International | End effector including a gradually releasable medical adjunct |
US20100016926A1 (en) * | 2005-08-02 | 2010-01-21 | Rittman Iii William J | Method and apparatus for diagnosing and treating neural dysfunction |
US20070032835A1 (en) * | 2005-08-02 | 2007-02-08 | Rittman William J Iii | Method and apparatus for diagnosing and treating neural dysfunction |
US8265747B2 (en) * | 2005-08-02 | 2012-09-11 | Neurotherm, Inc. | Method and apparatus for diagnosing and treating neural dysfunction |
US8560062B2 (en) * | 2005-08-02 | 2013-10-15 | Neurotherm, Inc. | Method and apparatus for diagnosing and treating neural dysfunction |
US8818503B2 (en) * | 2005-08-02 | 2014-08-26 | Neurotherm, Inc. | Method and apparatus for diagnosing and treating neural dysfunction |
US20120029592A1 (en) * | 2005-08-02 | 2012-02-02 | Neurotherm, Inc. | Method and Apparatus for Diagnosing and Treating Neural Dysfunction |
US8000785B2 (en) * | 2005-08-02 | 2011-08-16 | Neurotherm, Inc. | Method and apparatus for diagnosing and treating neural dysfunction |
US20110144634A1 (en) * | 2005-08-02 | 2011-06-16 | Neurotherm, Inc. | Method and Apparatus for Diagnosing and Treating Neural Dysfunction |
US7853326B2 (en) * | 2005-08-02 | 2010-12-14 | Neurotherm, Inc. | Method and apparatus for diagnosing and treating neural dysfunction |
US7574257B2 (en) * | 2005-08-02 | 2009-08-11 | Neurotherm, Inc. | Method and apparatus for diagnosing and treating neural dysfunction |
US20070043405A1 (en) * | 2005-08-18 | 2007-02-22 | Rittman William J Iii | Method and apparatus for diagnosing and treating neural dysfunction |
US11179153B2 (en) | 2005-08-31 | 2021-11-23 | Cilag Gmbh International | Staple cartridges for forming staples having differing formed staple heights |
US11771425B2 (en) | 2005-08-31 | 2023-10-03 | Cilag Gmbh International | Stapling assembly for forming staples to different formed heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US9844373B2 (en) | 2005-08-31 | 2017-12-19 | Ethicon Llc | Fastener cartridge assembly comprising a driver row arrangement |
US10070863B2 (en) | 2005-08-31 | 2018-09-11 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil |
US8636187B2 (en) | 2005-08-31 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Surgical stapling systems that produce formed staples having different lengths |
US9848873B2 (en) | 2005-08-31 | 2017-12-26 | Ethicon Llc | Fastener cartridge assembly comprising a driver and staple cavity arrangement |
US11134947B2 (en) | 2005-08-31 | 2021-10-05 | Cilag Gmbh International | Fastener cartridge assembly comprising a camming sled with variable cam arrangements |
US10321909B2 (en) | 2005-08-31 | 2019-06-18 | Ethicon Llc | Staple cartridge comprising a staple including deformable members |
US9795382B2 (en) | 2005-08-31 | 2017-10-24 | Ethicon Llc | Fastener cartridge assembly comprising a cam and driver arrangement |
US10842489B2 (en) | 2005-08-31 | 2020-11-24 | Ethicon Llc | Fastener cartridge assembly comprising a cam and driver arrangement |
US11399828B2 (en) | 2005-08-31 | 2022-08-02 | Cilag Gmbh International | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US10869664B2 (en) | 2005-08-31 | 2020-12-22 | Ethicon Llc | End effector for use with a surgical stapling instrument |
US10278697B2 (en) | 2005-08-31 | 2019-05-07 | Ethicon Llc | Staple cartridge comprising a staple driver arrangement |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US11484311B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11172927B2 (en) | 2005-08-31 | 2021-11-16 | Cilag Gmbh International | Staple cartridges for forming staples having differing formed staple heights |
US10463369B2 (en) | 2005-08-31 | 2019-11-05 | Ethicon Llc | Disposable end effector for use with a surgical instrument |
US11839375B2 (en) | 2005-08-31 | 2023-12-12 | Cilag Gmbh International | Fastener cartridge assembly comprising an anvil and different staple heights |
US11090045B2 (en) | 2005-08-31 | 2021-08-17 | Cilag Gmbh International | Staple cartridges for forming staples having differing formed staple heights |
US10271845B2 (en) | 2005-08-31 | 2019-04-30 | Ethicon Llc | Fastener cartridge assembly comprising a cam and driver arrangement |
US10271846B2 (en) | 2005-08-31 | 2019-04-30 | Ethicon Llc | Staple cartridge for use with a surgical stapler |
US11576673B2 (en) | 2005-08-31 | 2023-02-14 | Cilag Gmbh International | Stapling assembly for forming staples to different heights |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US9592052B2 (en) | 2005-08-31 | 2017-03-14 | Ethicon Endo-Surgery, Llc | Stapling assembly for forming different formed staple heights |
US10245035B2 (en) | 2005-08-31 | 2019-04-02 | Ethicon Llc | Stapling assembly configured to produce different formed staple heights |
US10245032B2 (en) | 2005-08-31 | 2019-04-02 | Ethicon Llc | Staple cartridges for forming staples having differing formed staple heights |
US10729436B2 (en) | 2005-08-31 | 2020-08-04 | Ethicon Llc | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US9561032B2 (en) | 2005-08-31 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a staple driver arrangement |
US10842488B2 (en) | 2005-08-31 | 2020-11-24 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US11272928B2 (en) | 2005-08-31 | 2022-03-15 | Cilag GmbH Intemational | Staple cartridges for forming staples having differing formed staple heights |
US11793512B2 (en) | 2005-08-31 | 2023-10-24 | Cilag Gmbh International | Staple cartridges for forming staples having differing formed staple heights |
US9839427B2 (en) | 2005-08-31 | 2017-12-12 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement |
US10420553B2 (en) | 2005-08-31 | 2019-09-24 | Ethicon Llc | Staple cartridge comprising a staple driver arrangement |
US11730474B2 (en) | 2005-08-31 | 2023-08-22 | Cilag Gmbh International | Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement |
US10932774B2 (en) | 2005-08-31 | 2021-03-02 | Ethicon Llc | Surgical end effector for forming staples to different heights |
US9326768B2 (en) | 2005-08-31 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Staple cartridges for forming staples having differing formed staple heights |
US9307988B2 (en) | 2005-08-31 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Staple cartridges for forming staples having differing formed staple heights |
US11793511B2 (en) | 2005-11-09 | 2023-10-24 | Cilag Gmbh International | Surgical instruments |
US10028742B2 (en) | 2005-11-09 | 2018-07-24 | Ethicon Llc | Staple cartridge comprising staples with different unformed heights |
US9968356B2 (en) | 2005-11-09 | 2018-05-15 | Ethicon Llc | Surgical instrument drive systems |
US9895147B2 (en) | 2005-11-09 | 2018-02-20 | Ethicon Llc | End effectors for surgical staplers |
US10806449B2 (en) | 2005-11-09 | 2020-10-20 | Ethicon Llc | End effectors for surgical staplers |
US10993713B2 (en) | 2005-11-09 | 2021-05-04 | Ethicon Llc | Surgical instruments |
US10149679B2 (en) | 2005-11-09 | 2018-12-11 | Ethicon Llc | Surgical instrument comprising drive systems |
US10278722B2 (en) | 2006-01-31 | 2019-05-07 | Ethicon Llc | Motor-driven surgical cutting and fastening instrument |
US10675028B2 (en) | 2006-01-31 | 2020-06-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US11648024B2 (en) | 2006-01-31 | 2023-05-16 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with position feedback |
US10499890B2 (en) | 2006-01-31 | 2019-12-10 | Ethicon Llc | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US10201363B2 (en) | 2006-01-31 | 2019-02-12 | Ethicon Llc | Motor-driven surgical instrument |
US10743849B2 (en) | 2006-01-31 | 2020-08-18 | Ethicon Llc | Stapling system including an articulation system |
US11000275B2 (en) | 2006-01-31 | 2021-05-11 | Ethicon Llc | Surgical instrument |
US8820605B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instruments |
US11660110B2 (en) | 2006-01-31 | 2023-05-30 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US11801051B2 (en) | 2006-01-31 | 2023-10-31 | Cilag Gmbh International | Accessing data stored in a memory of a surgical instrument |
US10893853B2 (en) | 2006-01-31 | 2021-01-19 | Ethicon Llc | Stapling assembly including motor drive systems |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US10485539B2 (en) | 2006-01-31 | 2019-11-26 | Ethicon Llc | Surgical instrument with firing lockout |
US9113874B2 (en) | 2006-01-31 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Surgical instrument system |
US9517068B2 (en) | 2006-01-31 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Surgical instrument with automatically-returned firing member |
US10098636B2 (en) | 2006-01-31 | 2018-10-16 | Ethicon Llc | Surgical instrument having force feedback capabilities |
US8844789B2 (en) | 2006-01-31 | 2014-09-30 | Ethicon Endo-Surgery, Inc. | Automated end effector component reloading system for use with a robotic system |
US8763879B2 (en) | 2006-01-31 | 2014-07-01 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of surgical instrument |
US10993717B2 (en) | 2006-01-31 | 2021-05-04 | Ethicon Llc | Surgical stapling system comprising a control system |
US10342533B2 (en) | 2006-01-31 | 2019-07-09 | Ethicon Llc | Surgical instrument |
US11103269B2 (en) | 2006-01-31 | 2021-08-31 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US9451958B2 (en) | 2006-01-31 | 2016-09-27 | Ethicon Endo-Surgery, Llc | Surgical instrument with firing actuator lockout |
US11350916B2 (en) | 2006-01-31 | 2022-06-07 | Cilag Gmbh International | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US10058963B2 (en) | 2006-01-31 | 2018-08-28 | Ethicon Llc | Automated end effector component reloading system for use with a robotic system |
US10052099B2 (en) | 2006-01-31 | 2018-08-21 | Ethicon Llc | Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps |
US10052100B2 (en) | 2006-01-31 | 2018-08-21 | Ethicon Llc | Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement |
US10335144B2 (en) | 2006-01-31 | 2019-07-02 | Ethicon Llc | Surgical instrument |
US9439649B2 (en) | 2006-01-31 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Surgical instrument having force feedback capabilities |
US10010322B2 (en) | 2006-01-31 | 2018-07-03 | Ethicon Llc | Surgical instrument |
US10004498B2 (en) | 2006-01-31 | 2018-06-26 | Ethicon Llc | Surgical instrument comprising a plurality of articulation joints |
US11020113B2 (en) | 2006-01-31 | 2021-06-01 | Cilag Gmbh International | Surgical instrument having force feedback capabilities |
US11246616B2 (en) | 2006-01-31 | 2022-02-15 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US8752747B2 (en) | 2006-01-31 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US10918380B2 (en) | 2006-01-31 | 2021-02-16 | Ethicon Llc | Surgical instrument system including a control system |
US11364046B2 (en) | 2006-01-31 | 2022-06-21 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US10463384B2 (en) | 2006-01-31 | 2019-11-05 | Ethicon Llc | Stapling assembly |
US11058420B2 (en) | 2006-01-31 | 2021-07-13 | Cilag Gmbh International | Surgical stapling apparatus comprising a lockout system |
US8746529B2 (en) | 2006-01-31 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US10463383B2 (en) | 2006-01-31 | 2019-11-05 | Ethicon Llc | Stapling instrument including a sensing system |
US10959722B2 (en) | 2006-01-31 | 2021-03-30 | Ethicon Llc | Surgical instrument for deploying fasteners by way of rotational motion |
US11612393B2 (en) | 2006-01-31 | 2023-03-28 | Cilag Gmbh International | Robotically-controlled end effector |
US11890029B2 (en) | 2006-01-31 | 2024-02-06 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument |
US10952728B2 (en) | 2006-01-31 | 2021-03-23 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US10709468B2 (en) | 2006-01-31 | 2020-07-14 | Ethicon Llc | Motor-driven surgical cutting and fastening instrument |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11051811B2 (en) | 2006-01-31 | 2021-07-06 | Ethicon Llc | End effector for use with a surgical instrument |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US11224454B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US9743928B2 (en) | 2006-01-31 | 2017-08-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US9370358B2 (en) | 2006-01-31 | 2016-06-21 | Ethicon Endo-Surgery, Llc | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US10842491B2 (en) | 2006-01-31 | 2020-11-24 | Ethicon Llc | Surgical system with an actuation console |
US11648008B2 (en) | 2006-01-31 | 2023-05-16 | Cilag Gmbh International | Surgical instrument having force feedback capabilities |
US10806479B2 (en) | 2006-01-31 | 2020-10-20 | Ethicon Llc | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US11944299B2 (en) | 2006-01-31 | 2024-04-02 | Cilag Gmbh International | Surgical instrument having force feedback capabilities |
US10426463B2 (en) | 2006-01-31 | 2019-10-01 | Ehticon LLC | Surgical instrument having a feedback system |
US11166717B2 (en) | 2006-01-31 | 2021-11-09 | Cilag Gmbh International | Surgical instrument with firing lockout |
US9320520B2 (en) | 2006-01-31 | 2016-04-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument system |
US9861359B2 (en) | 2006-01-31 | 2018-01-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US9326770B2 (en) | 2006-01-31 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Surgical instrument |
US9326769B2 (en) | 2006-01-31 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Surgical instrument |
US11890008B2 (en) | 2006-01-31 | 2024-02-06 | Cilag Gmbh International | Surgical instrument with firing lockout |
US10653417B2 (en) | 2006-01-31 | 2020-05-19 | Ethicon Llc | Surgical instrument |
US11883020B2 (en) | 2006-01-31 | 2024-01-30 | Cilag Gmbh International | Surgical instrument having a feedback system |
US10653435B2 (en) | 2006-01-31 | 2020-05-19 | Ethicon Llc | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
US10299817B2 (en) | 2006-01-31 | 2019-05-28 | Ethicon Llc | Motor-driven fastening assembly |
US11051813B2 (en) | 2006-01-31 | 2021-07-06 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US9492167B2 (en) | 2006-03-23 | 2016-11-15 | Ethicon Endo-Surgery, Llc | Articulatable surgical device with rotary driven cutting member |
US10213262B2 (en) | 2006-03-23 | 2019-02-26 | Ethicon Llc | Manipulatable surgical systems with selectively articulatable fastening device |
US9149274B2 (en) | 2006-03-23 | 2015-10-06 | Ethicon Endo-Surgery, Inc. | Articulating endoscopic accessory channel |
US8911471B2 (en) | 2006-03-23 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Articulatable surgical device |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US10070861B2 (en) | 2006-03-23 | 2018-09-11 | Ethicon Llc | Articulatable surgical device |
US10064688B2 (en) | 2006-03-23 | 2018-09-04 | Ethicon Llc | Surgical system with selectively articulatable end effector |
US9301759B2 (en) | 2006-03-23 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Robotically-controlled surgical instrument with selectively articulatable end effector |
US9402626B2 (en) | 2006-03-23 | 2016-08-02 | Ethicon Endo-Surgery, Llc | Rotary actuatable surgical fastener and cutter |
US9320521B2 (en) | 2006-06-27 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Surgical instrument |
US10314589B2 (en) | 2006-06-27 | 2019-06-11 | Ethicon Llc | Surgical instrument including a shifting assembly |
US10420560B2 (en) | 2006-06-27 | 2019-09-24 | Ethicon Llc | Manually driven surgical cutting and fastening instrument |
US11272938B2 (en) | 2006-06-27 | 2022-03-15 | Cilag Gmbh International | Surgical instrument including dedicated firing and retraction assemblies |
US8485412B2 (en) | 2006-09-29 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical staples having attached drivers and stapling instruments for deploying the same |
US9706991B2 (en) | 2006-09-29 | 2017-07-18 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples including a lateral base |
US8973804B2 (en) | 2006-09-29 | 2015-03-10 | Ethicon Endo-Surgery, Inc. | Cartridge assembly having a buttressing member |
US9408604B2 (en) | 2006-09-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instrument comprising a firing system including a compliant portion |
US8360297B2 (en) | 2006-09-29 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling instrument with self adjusting anvil |
US10595862B2 (en) | 2006-09-29 | 2020-03-24 | Ethicon Llc | Staple cartridge including a compressible member |
US11406379B2 (en) | 2006-09-29 | 2022-08-09 | Cilag Gmbh International | Surgical end effectors with staple cartridges |
US11678876B2 (en) | 2006-09-29 | 2023-06-20 | Cilag Gmbh International | Powered surgical instrument |
US11622785B2 (en) | 2006-09-29 | 2023-04-11 | Cilag Gmbh International | Surgical staples having attached drivers and stapling instruments for deploying the same |
US10695053B2 (en) | 2006-09-29 | 2020-06-30 | Ethicon Llc | Surgical end effectors with staple cartridges |
US10448952B2 (en) | 2006-09-29 | 2019-10-22 | Ethicon Llc | End effector for use with a surgical fastening instrument |
US8899465B2 (en) | 2006-09-29 | 2014-12-02 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising drivers for deploying a plurality of staples |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US8365976B2 (en) | 2006-09-29 | 2013-02-05 | Ethicon Endo-Surgery, Inc. | Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same |
US8499993B2 (en) | 2006-09-29 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridge |
US10172616B2 (en) | 2006-09-29 | 2019-01-08 | Ethicon Llc | Surgical staple cartridge |
US9179911B2 (en) | 2006-09-29 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | End effector for use with a surgical fastening instrument |
US10130359B2 (en) | 2006-09-29 | 2018-11-20 | Ethicon Llc | Method for forming a staple |
US11571231B2 (en) | 2006-09-29 | 2023-02-07 | Cilag Gmbh International | Staple cartridge having a driver for driving multiple staples |
US8763875B2 (en) | 2006-09-29 | 2014-07-01 | Ethicon Endo-Surgery, Inc. | End effector for use with a surgical fastening instrument |
US8808325B2 (en) | 2006-09-29 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with staples having crown features for increasing formed staple footprint |
US11633182B2 (en) | 2006-09-29 | 2023-04-25 | Cilag Gmbh International | Surgical stapling assemblies |
US9603595B2 (en) | 2006-09-29 | 2017-03-28 | Ethicon Endo-Surgery, Llc | Surgical instrument comprising an adjustable system configured to accommodate different jaw heights |
US11382626B2 (en) | 2006-10-03 | 2022-07-12 | Cilag Gmbh International | Surgical system including a knife bar supported for rotational and axial travel |
US10206678B2 (en) | 2006-10-03 | 2019-02-19 | Ethicon Llc | Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US11877748B2 (en) | 2006-10-03 | 2024-01-23 | Cilag Gmbh International | Robotically-driven surgical instrument with E-beam driver |
US10342541B2 (en) | 2006-10-03 | 2019-07-09 | Ethicon Llc | Surgical instruments with E-beam driver and rotary drive arrangements |
US8746530B2 (en) | 2007-01-10 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and remote sensor |
US10945729B2 (en) | 2007-01-10 | 2021-03-16 | Ethicon Llc | Interlock and surgical instrument including same |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US11937814B2 (en) | 2007-01-10 | 2024-03-26 | Cilag Gmbh International | Surgical instrument for use with a robotic system |
US11849947B2 (en) | 2007-01-10 | 2023-12-26 | Cilag Gmbh International | Surgical system including a control circuit and a passively-powered transponder |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11166720B2 (en) | 2007-01-10 | 2021-11-09 | Cilag Gmbh International | Surgical instrument including a control module for assessing an end effector |
US11000277B2 (en) | 2007-01-10 | 2021-05-11 | Ethicon Llc | Surgical instrument with wireless communication between control unit and remote sensor |
US11844521B2 (en) | 2007-01-10 | 2023-12-19 | Cilag Gmbh International | Surgical instrument for use with a robotic system |
US11064998B2 (en) | 2007-01-10 | 2021-07-20 | Cilag Gmbh International | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US10952727B2 (en) | 2007-01-10 | 2021-03-23 | Ethicon Llc | Surgical instrument for assessing the state of a staple cartridge |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US11812961B2 (en) | 2007-01-10 | 2023-11-14 | Cilag Gmbh International | Surgical instrument including a motor control system |
US11931032B2 (en) | 2007-01-10 | 2024-03-19 | Cilag Gmbh International | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US10433918B2 (en) | 2007-01-10 | 2019-10-08 | Ethicon Llc | Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke |
US10517682B2 (en) | 2007-01-10 | 2019-12-31 | Ethicon Llc | Surgical instrument with wireless communication between control unit and remote sensor |
US10751138B2 (en) | 2007-01-10 | 2020-08-25 | Ethicon Llc | Surgical instrument for use with a robotic system |
US11350929B2 (en) | 2007-01-10 | 2022-06-07 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and sensor transponders |
US9757123B2 (en) | 2007-01-10 | 2017-09-12 | Ethicon Llc | Powered surgical instrument having a transmission system |
US11134943B2 (en) | 2007-01-10 | 2021-10-05 | Cilag Gmbh International | Powered surgical instrument including a control unit and sensor |
US10441369B2 (en) | 2007-01-10 | 2019-10-15 | Ethicon Llc | Articulatable surgical instrument configured for detachable use with a robotic system |
US10517590B2 (en) | 2007-01-10 | 2019-12-31 | Ethicon Llc | Powered surgical instrument having a transmission system |
US11666332B2 (en) | 2007-01-10 | 2023-06-06 | Cilag Gmbh International | Surgical instrument comprising a control circuit configured to adjust the operation of a motor |
US11006951B2 (en) | 2007-01-10 | 2021-05-18 | Ethicon Llc | Surgical instrument with wireless communication between control unit and sensor transponders |
US12082806B2 (en) | 2007-01-10 | 2024-09-10 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and sensor transponders |
US11771426B2 (en) | 2007-01-10 | 2023-10-03 | Cilag Gmbh International | Surgical instrument with wireless communication |
US10918386B2 (en) | 2007-01-10 | 2021-02-16 | Ethicon Llc | Interlock and surgical instrument including same |
US8517243B2 (en) | 2007-01-10 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11918211B2 (en) | 2007-01-10 | 2024-03-05 | Cilag Gmbh International | Surgical stapling instrument for use with a robotic system |
US10278780B2 (en) | 2007-01-10 | 2019-05-07 | Ethicon Llc | Surgical instrument for use with robotic system |
US12004743B2 (en) | 2007-01-10 | 2024-06-11 | Cilag Gmbh International | Staple cartridge comprising a sloped wall |
US8459520B2 (en) | 2007-01-10 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and remote sensor |
US8479969B2 (en) | 2007-01-10 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Drive interface for operably coupling a manipulatable surgical tool to a robot |
US9999431B2 (en) | 2007-01-11 | 2018-06-19 | Ethicon Endo-Surgery, Llc | Surgical stapling device having supports for a flexible drive mechanism |
US8540128B2 (en) | 2007-01-11 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with a curved end effector |
US10912575B2 (en) | 2007-01-11 | 2021-02-09 | Ethicon Llc | Surgical stapling device having supports for a flexible drive mechanism |
US9700321B2 (en) | 2007-01-11 | 2017-07-11 | Ethicon Llc | Surgical stapling device having supports for a flexible drive mechanism |
US9730692B2 (en) | 2007-01-11 | 2017-08-15 | Ethicon Llc | Surgical stapling device with a curved staple cartridge |
US9775613B2 (en) | 2007-01-11 | 2017-10-03 | Ethicon Llc | Surgical stapling device with a curved end effector |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US9603598B2 (en) | 2007-01-11 | 2017-03-28 | Ethicon Endo-Surgery, Llc | Surgical stapling device with a curved end effector |
US9675355B2 (en) | 2007-01-11 | 2017-06-13 | Ethicon Llc | Surgical stapling device with a curved end effector |
US9724091B2 (en) | 2007-01-11 | 2017-08-08 | Ethicon Llc | Surgical stapling device |
US11839352B2 (en) | 2007-01-11 | 2023-12-12 | Cilag Gmbh International | Surgical stapling device with an end effector |
US9750501B2 (en) | 2007-01-11 | 2017-09-05 | Ethicon Endo-Surgery, Llc | Surgical stapling devices having laterally movable anvils |
US9655624B2 (en) | 2007-01-11 | 2017-05-23 | Ethicon Llc | Surgical stapling device with a curved end effector |
US9757130B2 (en) | 2007-02-28 | 2017-09-12 | Ethicon Llc | Stapling assembly for forming different formed staple heights |
US8668130B2 (en) | 2007-03-15 | 2014-03-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features |
US9872682B2 (en) | 2007-03-15 | 2018-01-23 | Ethicon Llc | Surgical stapling instrument having a releasable buttress material |
US9289206B2 (en) | 2007-03-15 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Lateral securement members for surgical staple cartridges |
US8925788B2 (en) | 2007-03-15 | 2015-01-06 | Ethicon Endo-Surgery, Inc. | End effectors for surgical stapling instruments |
US8672208B2 (en) | 2007-03-15 | 2014-03-18 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a releasable buttress material |
US11337693B2 (en) | 2007-03-15 | 2022-05-24 | Cilag Gmbh International | Surgical stapling instrument having a releasable buttress material |
US10702267B2 (en) | 2007-03-15 | 2020-07-07 | Ethicon Llc | Surgical stapling instrument having a releasable buttress material |
US8590762B2 (en) | 2007-03-15 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Staple cartridge cavity configurations |
US10398433B2 (en) | 2007-03-28 | 2019-09-03 | Ethicon Llc | Laparoscopic clamp load measuring devices |
US11911028B2 (en) | 2007-06-04 | 2024-02-27 | Cilag Gmbh International | Surgical instruments for use with a robotic surgical system |
US10368863B2 (en) | 2007-06-04 | 2019-08-06 | Ethicon Llc | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US12023024B2 (en) | 2007-06-04 | 2024-07-02 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US9585658B2 (en) | 2007-06-04 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Stapling systems |
US11648006B2 (en) | 2007-06-04 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US9795381B2 (en) | 2007-06-04 | 2017-10-24 | Ethicon Endo-Surgery, Llc | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US9750498B2 (en) | 2007-06-04 | 2017-09-05 | Ethicon Endo Surgery, Llc | Drive systems for surgical instruments |
US11134938B2 (en) | 2007-06-04 | 2021-10-05 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11857181B2 (en) | 2007-06-04 | 2024-01-02 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US8424740B2 (en) | 2007-06-04 | 2013-04-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a directional switching mechanism |
US9987003B2 (en) | 2007-06-04 | 2018-06-05 | Ethicon Llc | Robotic actuator assembly |
US11559302B2 (en) | 2007-06-04 | 2023-01-24 | Cilag Gmbh International | Surgical instrument including a firing member movable at different speeds |
US11154298B2 (en) | 2007-06-04 | 2021-10-26 | Cilag Gmbh International | Stapling system for use with a robotic surgical system |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US12035906B2 (en) | 2007-06-04 | 2024-07-16 | Cilag Gmbh International | Surgical instrument including a handle system for advancing a cutting member |
US10363033B2 (en) | 2007-06-04 | 2019-07-30 | Ethicon Llc | Robotically-controlled surgical instruments |
US10327765B2 (en) | 2007-06-04 | 2019-06-25 | Ethicon Llc | Drive systems for surgical instruments |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US9186143B2 (en) | 2007-06-04 | 2015-11-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US8534528B2 (en) | 2007-06-04 | 2013-09-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a multiple rate directional switching mechanism |
US11147549B2 (en) | 2007-06-04 | 2021-10-19 | Cilag Gmbh International | Stapling instrument including a firing system and a closure system |
US11992208B2 (en) | 2007-06-04 | 2024-05-28 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US8616431B2 (en) | 2007-06-04 | 2013-12-31 | Ethicon Endo-Surgery, Inc. | Shiftable drive interface for robotically-controlled surgical tool |
US10441280B2 (en) | 2007-06-04 | 2019-10-15 | Ethicon Llc | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US10299787B2 (en) | 2007-06-04 | 2019-05-28 | Ethicon Llc | Stapling system comprising rotary inputs |
US11013511B2 (en) | 2007-06-22 | 2021-05-25 | Ethicon Llc | Surgical stapling instrument with an articulatable end effector |
US9662110B2 (en) | 2007-06-22 | 2017-05-30 | Ethicon Endo-Surgery, Llc | Surgical stapling instrument with an articulatable end effector |
US9138225B2 (en) | 2007-06-22 | 2015-09-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US11998200B2 (en) | 2007-06-22 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument with an articulatable end effector |
US11925346B2 (en) | 2007-06-29 | 2024-03-12 | Cilag Gmbh International | Surgical staple cartridge including tissue supporting surfaces |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US12023025B2 (en) | 2007-06-29 | 2024-07-02 | Cilag Gmbh International | Surgical stapling instrument having a releasable buttress material |
US20090204005A1 (en) * | 2008-02-07 | 2009-08-13 | Broncus Technologies, Inc. | Puncture resistant catheter for sensing vessels and for creating passages in tissue |
US10765424B2 (en) | 2008-02-13 | 2020-09-08 | Ethicon Llc | Surgical stapling instrument |
US9872684B2 (en) | 2008-02-14 | 2018-01-23 | Ethicon Llc | Surgical stapling apparatus including firing force regulation |
US10888330B2 (en) | 2008-02-14 | 2021-01-12 | Ethicon Llc | Surgical system |
US8584919B2 (en) | 2008-02-14 | 2013-11-19 | Ethicon Endo-Sugery, Inc. | Surgical stapling apparatus with load-sensitive firing mechanism |
US11717285B2 (en) | 2008-02-14 | 2023-08-08 | Cilag Gmbh International | Surgical cutting and fastening instrument having RF electrodes |
US10905426B2 (en) | 2008-02-14 | 2021-02-02 | Ethicon Llc | Detachable motor powered surgical instrument |
US8573461B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with cam-driven staple deployment arrangements |
US10743870B2 (en) | 2008-02-14 | 2020-08-18 | Ethicon Llc | Surgical stapling apparatus with interlockable firing system |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US9867618B2 (en) | 2008-02-14 | 2018-01-16 | Ethicon Llc | Surgical stapling apparatus including firing force regulation |
US10905427B2 (en) | 2008-02-14 | 2021-02-02 | Ethicon Llc | Surgical System |
US11801047B2 (en) | 2008-02-14 | 2023-10-31 | Cilag Gmbh International | Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor |
US10743851B2 (en) | 2008-02-14 | 2020-08-18 | Ethicon Llc | Interchangeable tools for surgical instruments |
US10682142B2 (en) | 2008-02-14 | 2020-06-16 | Ethicon Llc | Surgical stapling apparatus including an articulation system |
US9877723B2 (en) | 2008-02-14 | 2018-01-30 | Ethicon Llc | Surgical stapling assembly comprising a selector arrangement |
US11446034B2 (en) | 2008-02-14 | 2022-09-20 | Cilag Gmbh International | Surgical stapling assembly comprising first and second actuation systems configured to perform different functions |
US10206676B2 (en) | 2008-02-14 | 2019-02-19 | Ethicon Llc | Surgical cutting and fastening instrument |
US8540130B2 (en) | 2008-02-14 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus |
US10660640B2 (en) | 2008-02-14 | 2020-05-26 | Ethicon Llc | Motorized surgical cutting and fastening instrument |
US20140005652A1 (en) * | 2008-02-14 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US8622274B2 (en) | 2008-02-14 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Motorized cutting and fastening instrument having control circuit for optimizing battery usage |
US9901344B2 (en) | 2008-02-14 | 2018-02-27 | Ethicon Llc | Stapling assembly |
US10779822B2 (en) | 2008-02-14 | 2020-09-22 | Ethicon Llc | System including a surgical cutting and fastening instrument |
US9901346B2 (en) | 2008-02-14 | 2018-02-27 | Ethicon Llc | Stapling assembly |
US11464514B2 (en) | 2008-02-14 | 2022-10-11 | Cilag Gmbh International | Motorized surgical stapling system including a sensing array |
US9901345B2 (en) | 2008-02-14 | 2018-02-27 | Ethicon Llc | Stapling assembly |
US9072515B2 (en) | 2008-02-14 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus |
US10307163B2 (en) | 2008-02-14 | 2019-06-04 | Ethicon Llc | Detachable motor powered surgical instrument |
US10639036B2 (en) | 2008-02-14 | 2020-05-05 | Ethicon Llc | Robotically-controlled motorized surgical cutting and fastening instrument |
US9084601B2 (en) | 2008-02-14 | 2015-07-21 | Ethicon Endo-Surgery, Inc. | Detachable motor powered surgical instrument |
US8459525B2 (en) | 2008-02-14 | 2013-06-11 | Ethicon Endo-Sugery, Inc. | Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device |
US10898195B2 (en) | 2008-02-14 | 2021-01-26 | Ethicon Llc | Detachable motor powered surgical instrument |
US9095339B2 (en) | 2008-02-14 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Detachable motor powered surgical instrument |
US8636736B2 (en) * | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US10898194B2 (en) | 2008-02-14 | 2021-01-26 | Ethicon Llc | Detachable motor powered surgical instrument |
US10925605B2 (en) | 2008-02-14 | 2021-02-23 | Ethicon Llc | Surgical stapling system |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
US8657178B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus |
US10265067B2 (en) | 2008-02-14 | 2019-04-23 | Ethicon Llc | Surgical instrument including a regulator and a control system |
US9522029B2 (en) | 2008-02-14 | 2016-12-20 | Ethicon Endo-Surgery, Llc | Motorized surgical cutting and fastening instrument having handle based power source |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US9962158B2 (en) | 2008-02-14 | 2018-05-08 | Ethicon Llc | Surgical stapling apparatuses with lockable end effector positioning systems |
US10542974B2 (en) | 2008-02-14 | 2020-01-28 | Ethicon Llc | Surgical instrument including a control system |
US10806450B2 (en) | 2008-02-14 | 2020-10-20 | Ethicon Llc | Surgical cutting and fastening instrument having a control system |
US10716568B2 (en) | 2008-02-14 | 2020-07-21 | Ethicon Llc | Surgical stapling apparatus with control features operable with one hand |
US9980729B2 (en) | 2008-02-14 | 2018-05-29 | Ethicon Endo-Surgery, Llc | Detachable motor powered surgical instrument |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US11571212B2 (en) | 2008-02-14 | 2023-02-07 | Cilag Gmbh International | Surgical stapling system including an impedance sensor |
US10874396B2 (en) | 2008-02-14 | 2020-12-29 | Ethicon Llc | Stapling instrument for use with a surgical robot |
US8991677B2 (en) | 2008-02-14 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Detachable motor powered surgical instrument |
US10463370B2 (en) | 2008-02-14 | 2019-11-05 | Ethicon Llc | Motorized surgical instrument |
US10238387B2 (en) | 2008-02-14 | 2019-03-26 | Ethicon Llc | Surgical instrument comprising a control system |
US10682141B2 (en) | 2008-02-14 | 2020-06-16 | Ethicon Llc | Surgical device including a control system |
US9999426B2 (en) | 2008-02-14 | 2018-06-19 | Ethicon Llc | Detachable motor powered surgical instrument |
US8998058B2 (en) | 2008-02-14 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Detachable motor powered surgical instrument |
US10004505B2 (en) | 2008-02-14 | 2018-06-26 | Ethicon Llc | Detachable motor powered surgical instrument |
US9498219B2 (en) | 2008-02-14 | 2016-11-22 | Ethicon Endo-Surgery, Llc | Detachable motor powered surgical instrument |
US11484307B2 (en) | 2008-02-14 | 2022-11-01 | Cilag Gmbh International | Loading unit coupleable to a surgical stapling system |
US11638583B2 (en) | 2008-02-14 | 2023-05-02 | Cilag Gmbh International | Motorized surgical system having a plurality of power sources |
US8752749B2 (en) | 2008-02-14 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled disposable motor-driven loading unit |
US9204878B2 (en) | 2008-02-14 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US10470763B2 (en) | 2008-02-14 | 2019-11-12 | Ethicon Llc | Surgical cutting and fastening instrument including a sensing system |
US9211121B2 (en) | 2008-02-14 | 2015-12-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus |
US11998206B2 (en) | 2008-02-14 | 2024-06-04 | Cilag Gmbh International | Detachable motor powered surgical instrument |
US10722232B2 (en) | 2008-02-14 | 2020-07-28 | Ethicon Llc | Surgical instrument for use with different cartridges |
US10765432B2 (en) | 2008-02-14 | 2020-09-08 | Ethicon Llc | Surgical device including a control system |
US10888329B2 (en) | 2008-02-14 | 2021-01-12 | Ethicon Llc | Detachable motor powered surgical instrument |
US10238385B2 (en) | 2008-02-14 | 2019-03-26 | Ethicon Llc | Surgical instrument system for evaluating tissue impedance |
US11612395B2 (en) | 2008-02-14 | 2023-03-28 | Cilag Gmbh International | Surgical system including a control system having an RFID tag reader |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US11058418B2 (en) | 2008-02-15 | 2021-07-13 | Cilag Gmbh International | Surgical end effector having buttress retention features |
US9770245B2 (en) | 2008-02-15 | 2017-09-26 | Ethicon Llc | Layer arrangements for surgical staple cartridges |
US11998194B2 (en) | 2008-02-15 | 2024-06-04 | Cilag Gmbh International | Surgical stapling assembly comprising an adjunct applicator |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
US9585657B2 (en) | 2008-02-15 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Actuator for releasing a layer of material from a surgical end effector |
US10856866B2 (en) | 2008-02-15 | 2020-12-08 | Ethicon Llc | Surgical end effector having buttress retention features |
US11154297B2 (en) | 2008-02-15 | 2021-10-26 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US20100030209A1 (en) * | 2008-07-15 | 2010-02-04 | Assaf Govari | Catheter with perforated tip |
US9675411B2 (en) | 2008-07-15 | 2017-06-13 | Biosense Webster, Inc. | Catheter with perforated tip |
US11890491B2 (en) | 2008-08-06 | 2024-02-06 | Cilag Gmbh International | Devices and techniques for cutting and coagulating tissue |
US10335614B2 (en) | 2008-08-06 | 2019-07-02 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US10258336B2 (en) | 2008-09-19 | 2019-04-16 | Ethicon Llc | Stapling system configured to produce different formed staple heights |
US11123071B2 (en) | 2008-09-19 | 2021-09-21 | Cilag Gmbh International | Staple cartridge for us with a surgical instrument |
US11944306B2 (en) | 2008-09-19 | 2024-04-02 | Cilag Gmbh International | Surgical stapler including a replaceable staple cartridge |
US10485537B2 (en) | 2008-09-23 | 2019-11-26 | Ethicon Llc | Motorized surgical instrument |
US10130361B2 (en) | 2008-09-23 | 2018-11-20 | Ethicon Llc | Robotically-controller motorized surgical tool with an end effector |
US11406380B2 (en) | 2008-09-23 | 2022-08-09 | Cilag Gmbh International | Motorized surgical instrument |
US11517304B2 (en) | 2008-09-23 | 2022-12-06 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US11812954B2 (en) | 2008-09-23 | 2023-11-14 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US10980535B2 (en) | 2008-09-23 | 2021-04-20 | Ethicon Llc | Motorized surgical instrument with an end effector |
US10045778B2 (en) | 2008-09-23 | 2018-08-14 | Ethicon Llc | Robotically-controlled motorized surgical instrument with an end effector |
US10105136B2 (en) | 2008-09-23 | 2018-10-23 | Ethicon Llc | Robotically-controlled motorized surgical instrument with an end effector |
US11684361B2 (en) | 2008-09-23 | 2023-06-27 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US9655614B2 (en) | 2008-09-23 | 2017-05-23 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument with an end effector |
US9549732B2 (en) | 2008-09-23 | 2017-01-24 | Ethicon Endo-Surgery, Llc | Motor-driven surgical cutting instrument |
US12029415B2 (en) | 2008-09-23 | 2024-07-09 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US10238389B2 (en) | 2008-09-23 | 2019-03-26 | Ethicon Llc | Robotically-controlled motorized surgical instrument with an end effector |
US10456133B2 (en) | 2008-09-23 | 2019-10-29 | Ethicon Llc | Motorized surgical instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US10420549B2 (en) | 2008-09-23 | 2019-09-24 | Ethicon Llc | Motorized surgical instrument |
US11871923B2 (en) | 2008-09-23 | 2024-01-16 | Cilag Gmbh International | Motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US11045189B2 (en) | 2008-09-23 | 2021-06-29 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US11617575B2 (en) | 2008-09-23 | 2023-04-04 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US9028519B2 (en) | 2008-09-23 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9050083B2 (en) | 2008-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US10898184B2 (en) | 2008-09-23 | 2021-01-26 | Ethicon Llc | Motor-driven surgical cutting instrument |
US11617576B2 (en) | 2008-09-23 | 2023-04-04 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US10736628B2 (en) | 2008-09-23 | 2020-08-11 | Ethicon Llc | Motor-driven surgical cutting instrument |
US10765425B2 (en) | 2008-09-23 | 2020-09-08 | Ethicon Llc | Robotically-controlled motorized surgical instrument with an end effector |
US11103241B2 (en) | 2008-09-23 | 2021-08-31 | Cilag Gmbh International | Motor-driven surgical cutting instrument |
US8602287B2 (en) | 2008-09-23 | 2013-12-10 | Ethicon Endo-Surgery, Inc. | Motor driven surgical cutting instrument |
US8602288B2 (en) | 2008-09-23 | 2013-12-10 | Ethicon Endo-Surgery. Inc. | Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds |
US20100090696A1 (en) * | 2008-09-30 | 2010-04-15 | Michael Deimling | Method, processor, and magnetic resonance apparatus for selective presentation of lung movement |
US8154288B2 (en) * | 2008-09-30 | 2012-04-10 | Siemens Aktiengesellschaft | Method, processor, and magnetic resonance apparatus for selective presentation of lung movement |
US10932778B2 (en) | 2008-10-10 | 2021-03-02 | Ethicon Llc | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US11730477B2 (en) | 2008-10-10 | 2023-08-22 | Cilag Gmbh International | Powered surgical system with manually retractable firing system |
US11793521B2 (en) | 2008-10-10 | 2023-10-24 | Cilag Gmbh International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US9370364B2 (en) | 2008-10-10 | 2016-06-21 | Ethicon Endo-Surgery, Llc | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US11583279B2 (en) | 2008-10-10 | 2023-02-21 | Cilag Gmbh International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US10149683B2 (en) | 2008-10-10 | 2018-12-11 | Ethicon Llc | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8397971B2 (en) | 2009-02-05 | 2013-03-19 | Ethicon Endo-Surgery, Inc. | Sterilizable surgical instrument |
US8414577B2 (en) | 2009-02-05 | 2013-04-09 | Ethicon Endo-Surgery, Inc. | Surgical instruments and components for use in sterile environments |
US10758233B2 (en) | 2009-02-05 | 2020-09-01 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
US11129615B2 (en) | 2009-02-05 | 2021-09-28 | Cilag Gmbh International | Surgical stapling system |
US9393015B2 (en) | 2009-02-06 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Motor driven surgical fastener device with cutting member reversing mechanism |
US10420550B2 (en) | 2009-02-06 | 2019-09-24 | Ethicon Llc | Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated |
US9486214B2 (en) | 2009-02-06 | 2016-11-08 | Ethicon Endo-Surgery, Llc | Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated |
DE102009017616A1 (en) * | 2009-04-16 | 2010-05-12 | Siemens Aktiengesellschaft | Radio frequency ablation device for ablation of regions of tissue volume, has probe provided with coding that comprises dimension and/or condition of probe differing from dimension and/or condition of other probes |
US10688321B2 (en) | 2009-07-15 | 2020-06-23 | Ethicon Llc | Ultrasonic surgical instruments |
US11717706B2 (en) | 2009-07-15 | 2023-08-08 | Cilag Gmbh International | Ultrasonic surgical instruments |
US8801706B2 (en) | 2009-08-27 | 2014-08-12 | Medtronic, Inc. | Paravalvular leak closure devices and methods |
WO2011031552A1 (en) * | 2009-08-27 | 2011-03-17 | Medtronic Inc. | Paravalvular leak closure devices and methods |
AU2010292485B2 (en) * | 2009-08-27 | 2014-07-31 | Medtronic Inc. | Paravalvular leak closure devices and methods |
US11871982B2 (en) | 2009-10-09 | 2024-01-16 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US10265117B2 (en) | 2009-10-09 | 2019-04-23 | Ethicon Llc | Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices |
US8568401B2 (en) * | 2009-10-27 | 2013-10-29 | Covidien Lp | System for monitoring ablation size |
US20160270688A1 (en) * | 2009-10-27 | 2016-09-22 | Cardiac Pacemakers, Inc. | Multiple vector fluid localization |
US20110098695A1 (en) * | 2009-10-27 | 2011-04-28 | Vivant Medical,Inc. | System and Method for Monitoring Ablation Size |
US8894641B2 (en) * | 2009-10-27 | 2014-11-25 | Covidien Lp | System and method for monitoring ablation size |
US10292649B2 (en) * | 2009-10-27 | 2019-05-21 | Cardiac Pacemakers, Inc. | Multiple vector fluid localization |
US10004559B2 (en) | 2009-10-27 | 2018-06-26 | Covidien Lp | System and method for monitoring ablation size |
US10751076B2 (en) | 2009-12-24 | 2020-08-25 | Ethicon Llc | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US11291449B2 (en) | 2009-12-24 | 2022-04-05 | Cilag Gmbh International | Surgical cutting instrument that analyzes tissue thickness |
US9820813B2 (en) | 2010-01-25 | 2017-11-21 | Covidien Lp | System and method for monitoring ablation size |
US10327845B2 (en) | 2010-01-25 | 2019-06-25 | Covidien Lp | System and method for monitoring ablation size |
US20110184403A1 (en) * | 2010-01-25 | 2011-07-28 | Vivant Medical, Inc. | System and Method for Monitoring Ablation Size |
US8764744B2 (en) * | 2010-01-25 | 2014-07-01 | Covidien Lp | System for monitoring ablation size |
US10299810B2 (en) | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US11382642B2 (en) | 2010-02-11 | 2022-07-12 | Cilag Gmbh International | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US12011216B2 (en) | 2010-04-26 | 2024-06-18 | Biosense Webster (Israel) Ltd. | Irrigated catheter with internal position sensor |
US10265124B2 (en) | 2010-04-26 | 2019-04-23 | Biosense Webster, Inc. | Irrigated catheter with internal position sensor |
US11337752B2 (en) | 2010-04-26 | 2022-05-24 | Biosense Webster, Inc. | Irrigated catheter with internal position sensor |
US9949791B2 (en) | 2010-04-26 | 2018-04-24 | Biosense Webster, Inc. | Irrigated catheter with internal position sensor |
US10881457B2 (en) | 2010-04-28 | 2021-01-05 | Biosense Webster (Israel) Ltd. | Irrigated ablation catheter having irrigation ports with reduced hydraulic resistance |
US9943362B2 (en) * | 2010-04-28 | 2018-04-17 | Biosense Webster, Inc. | Irrigated ablation catheter with improved fluid flow |
US10925667B2 (en) | 2010-04-28 | 2021-02-23 | Biosense Webster (Israel) Ltd. | Irrigated ablation catheter with improved fluid flow |
US12076078B2 (en) | 2010-04-28 | 2024-09-03 | Biosense Webster (Israel) Ltd. | Irrigated ablation catheter having irrigation ports with reduced hydraulic resistance |
US20110270244A1 (en) * | 2010-04-28 | 2011-11-03 | Clark Jeffrey L | Irrigated ablation catheter with improved fluid flow |
US9943363B2 (en) * | 2010-04-28 | 2018-04-17 | Biosense Webster, Inc. | Irrigated ablation catheter with improved fluid flow |
US9913685B2 (en) | 2010-04-28 | 2018-03-13 | Biosense Webster (Israel) Ltd. | Irrigated ablation catheter having irrigation ports with reduced hydraulic resistance |
US20110270246A1 (en) * | 2010-04-28 | 2011-11-03 | Clark Jeffrey L | Irrigated ablation catheter with improved fluid flow |
US9510894B2 (en) | 2010-04-28 | 2016-12-06 | Biosense Webster (Israel) Ltd. | Irrigated ablation catheter having irrigation ports with reduced hydraulic resistance |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US11478247B2 (en) | 2010-07-30 | 2022-10-25 | Cilag Gmbh International | Tissue acquisition arrangements and methods for surgical stapling devices |
US12016563B2 (en) | 2010-09-17 | 2024-06-25 | Cilag Gmbh International | Surgical instrument battery comprising a plurality of cells |
US10595835B2 (en) | 2010-09-17 | 2020-03-24 | Ethicon Llc | Surgical instrument comprising a removable battery |
US10039529B2 (en) | 2010-09-17 | 2018-08-07 | Ethicon Llc | Power control arrangements for surgical instruments and batteries |
US11471138B2 (en) | 2010-09-17 | 2022-10-18 | Cilag Gmbh International | Power control arrangements for surgical instruments and batteries |
US9289212B2 (en) | 2010-09-17 | 2016-03-22 | Ethicon Endo-Surgery, Inc. | Surgical instruments and batteries for surgical instruments |
US10188393B2 (en) | 2010-09-17 | 2019-01-29 | Ethicon Llc | Surgical instrument battery comprising a plurality of cells |
US10492787B2 (en) | 2010-09-17 | 2019-12-03 | Ethicon Llc | Orientable battery for a surgical instrument |
US8789741B2 (en) | 2010-09-24 | 2014-07-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument with trigger assembly for generating multiple actuation motions |
US10258332B2 (en) | 2010-09-30 | 2019-04-16 | Ethicon Llc | Stapling system comprising an adjunct and a flowable adhesive |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
US9848875B2 (en) | 2010-09-30 | 2017-12-26 | Ethicon Llc | Anvil layer attached to a proximal end of an end effector |
US9844372B2 (en) | 2010-09-30 | 2017-12-19 | Ethicon Llc | Retainer assembly including a tissue thickness compensator |
US9861361B2 (en) | 2010-09-30 | 2018-01-09 | Ethicon Llc | Releasable tissue thickness compensator and fastener cartridge having the same |
US9883861B2 (en) | 2010-09-30 | 2018-02-06 | Ethicon Llc | Retainer assembly including a tissue thickness compensator |
US9301753B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Expandable tissue thickness compensator |
US9301752B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising a plurality of capsules |
US11154296B2 (en) | 2010-09-30 | 2021-10-26 | Cilag Gmbh International | Anvil layer attached to a proximal end of an end effector |
US9839420B2 (en) | 2010-09-30 | 2017-12-12 | Ethicon Llc | Tissue thickness compensator comprising at least one medicament |
US9924947B2 (en) | 2010-09-30 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising a compressible portion |
US9833238B2 (en) | 2010-09-30 | 2017-12-05 | Ethicon Endo-Surgery, Llc | Retainer assembly including a tissue thickness compensator |
US9833236B2 (en) | 2010-09-30 | 2017-12-05 | Ethicon Llc | Tissue thickness compensator for surgical staplers |
US9833242B2 (en) | 2010-09-30 | 2017-12-05 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators |
US10182819B2 (en) | 2010-09-30 | 2019-01-22 | Ethicon Llc | Implantable layer assemblies |
US9826978B2 (en) | 2010-09-30 | 2017-11-28 | Ethicon Llc | End effectors with same side closure and firing motions |
US10265074B2 (en) | 2010-09-30 | 2019-04-23 | Ethicon Llc | Implantable layers for surgical stapling devices |
US10265072B2 (en) | 2010-09-30 | 2019-04-23 | Ethicon Llc | Surgical stapling system comprising an end effector including an implantable layer |
US9814462B2 (en) | 2010-09-30 | 2017-11-14 | Ethicon Llc | Assembly for fastening tissue comprising a compressible layer |
US10835251B2 (en) | 2010-09-30 | 2020-11-17 | Ethicon Llc | Surgical instrument assembly including an end effector configurable in different positions |
US9808247B2 (en) | 2010-09-30 | 2017-11-07 | Ethicon Llc | Stapling system comprising implantable layers |
US10258330B2 (en) | 2010-09-30 | 2019-04-16 | Ethicon Llc | End effector including an implantable arrangement |
US9801634B2 (en) | 2010-09-30 | 2017-10-31 | Ethicon Llc | Tissue thickness compensator for a surgical stapler |
US11857187B2 (en) | 2010-09-30 | 2024-01-02 | Cilag Gmbh International | Tissue thickness compensator comprising controlled release and expansion |
US11559496B2 (en) | 2010-09-30 | 2023-01-24 | Cilag Gmbh International | Tissue thickness compensator configured to redistribute compressive forces |
US11395651B2 (en) | 2010-09-30 | 2022-07-26 | Cilag Gmbh International | Adhesive film laminate |
US9795383B2 (en) | 2010-09-30 | 2017-10-24 | Ethicon Llc | Tissue thickness compensator comprising resilient members |
US9788834B2 (en) | 2010-09-30 | 2017-10-17 | Ethicon Llc | Layer comprising deployable attachment members |
US9307965B2 (en) | 2010-09-30 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-microbial agent |
US10743877B2 (en) | 2010-09-30 | 2020-08-18 | Ethicon Llc | Surgical stapler with floating anvil |
US11850310B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge including an adjunct |
US11540824B2 (en) | 2010-09-30 | 2023-01-03 | Cilag Gmbh International | Tissue thickness compensator |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9282962B2 (en) | 2010-09-30 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Adhesive film laminate |
US10869669B2 (en) | 2010-09-30 | 2020-12-22 | Ethicon Llc | Surgical instrument assembly |
US9277919B2 (en) | 2010-09-30 | 2016-03-08 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising fibers to produce a resilient load |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US10335150B2 (en) | 2010-09-30 | 2019-07-02 | Ethicon Llc | Staple cartridge comprising an implantable layer |
US9314246B2 (en) | 2010-09-30 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent |
US10335148B2 (en) | 2010-09-30 | 2019-07-02 | Ethicon Llc | Staple cartridge including a tissue thickness compensator for a surgical stapler |
US11911027B2 (en) | 2010-09-30 | 2024-02-27 | Cilag Gmbh International | Adhesive film laminate |
US10548600B2 (en) | 2010-09-30 | 2020-02-04 | Ethicon Llc | Multiple thickness implantable layers for surgical stapling devices |
US10888328B2 (en) | 2010-09-30 | 2021-01-12 | Ethicon Llc | Surgical end effector |
US9700317B2 (en) | 2010-09-30 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a releasable tissue thickness compensator |
US10028743B2 (en) | 2010-09-30 | 2018-07-24 | Ethicon Llc | Staple cartridge assembly comprising an implantable layer |
US11602340B2 (en) | 2010-09-30 | 2023-03-14 | Cilag Gmbh International | Adhesive film laminate |
US10064624B2 (en) | 2010-09-30 | 2018-09-04 | Ethicon Llc | End effector with implantable layer |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11083452B2 (en) | 2010-09-30 | 2021-08-10 | Cilag Gmbh International | Staple cartridge including a tissue thickness compensator |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US10898193B2 (en) | 2010-09-30 | 2021-01-26 | Ethicon Llc | End effector for use with a surgical instrument |
US10363031B2 (en) | 2010-09-30 | 2019-07-30 | Ethicon Llc | Tissue thickness compensators for surgical staplers |
US9615826B2 (en) | 2010-09-30 | 2017-04-11 | Ethicon Endo-Surgery, Llc | Multiple thickness implantable layers for surgical stapling devices |
US11883025B2 (en) | 2010-09-30 | 2024-01-30 | Cilag Gmbh International | Tissue thickness compensator comprising a plurality of layers |
US8893949B2 (en) | 2010-09-30 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Surgical stapler with floating anvil |
US10588623B2 (en) | 2010-09-30 | 2020-03-17 | Ethicon Llc | Adhesive film laminate |
US9592053B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising multiple regions |
US11571215B2 (en) | 2010-09-30 | 2023-02-07 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9572574B2 (en) | 2010-09-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators comprising therapeutic agents |
US10987102B2 (en) | 2010-09-30 | 2021-04-27 | Ethicon Llc | Tissue thickness compensator comprising a plurality of layers |
US9566061B2 (en) | 2010-09-30 | 2017-02-14 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a releasably attached tissue thickness compensator |
US8978954B2 (en) | 2010-09-30 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising an adjustable distal portion |
US10213198B2 (en) | 2010-09-30 | 2019-02-26 | Ethicon Llc | Actuator for releasing a tissue thickness compensator from a fastener cartridge |
US10123798B2 (en) | 2010-09-30 | 2018-11-13 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9480476B2 (en) | 2010-09-30 | 2016-11-01 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising resilient members |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US10398436B2 (en) | 2010-09-30 | 2019-09-03 | Ethicon Llc | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9272406B2 (en) | 2010-09-30 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator |
US9433419B2 (en) | 2010-09-30 | 2016-09-06 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a plurality of layers |
US9320518B2 (en) | 2010-09-30 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an oxygen generating agent |
US10405854B2 (en) | 2010-09-30 | 2019-09-10 | Ethicon Llc | Surgical stapling cartridge with layer retention features |
US11406377B2 (en) | 2010-09-30 | 2022-08-09 | Cilag Gmbh International | Adhesive film laminate |
US10136890B2 (en) | 2010-09-30 | 2018-11-27 | Ethicon Llc | Staple cartridge comprising a variable thickness compressible portion |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US11672536B2 (en) | 2010-09-30 | 2023-06-13 | Cilag Gmbh International | Layer of material for a surgical end effector |
US10463372B2 (en) | 2010-09-30 | 2019-11-05 | Ethicon Llc | Staple cartridge comprising multiple regions |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US10485536B2 (en) | 2010-09-30 | 2019-11-26 | Ethicon Llc | Tissue stapler having an anti-microbial agent |
US11944292B2 (en) | 2010-09-30 | 2024-04-02 | Cilag Gmbh International | Anvil layer attached to a proximal end of an end effector |
US10149682B2 (en) | 2010-09-30 | 2018-12-11 | Ethicon Llc | Stapling system including an actuation system |
US10624861B2 (en) | 2010-09-30 | 2020-04-21 | Ethicon Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9358005B2 (en) | 2010-09-30 | 2016-06-07 | Ethicon Endo-Surgery, Llc | End effector layer including holding features |
US11737754B2 (en) | 2010-09-30 | 2023-08-29 | Cilag Gmbh International | Surgical stapler with floating anvil |
US11957795B2 (en) | 2010-09-30 | 2024-04-16 | Cilag Gmbh International | Tissue thickness compensator configured to redistribute compressive forces |
US11583277B2 (en) | 2010-09-30 | 2023-02-21 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9220500B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising structure to produce a resilient load |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US9345477B2 (en) | 2010-09-30 | 2016-05-24 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent |
US10194910B2 (en) | 2010-09-30 | 2019-02-05 | Ethicon Llc | Stapling assemblies comprising a layer |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9332974B2 (en) | 2010-09-30 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Layered tissue thickness compensator |
US9232941B2 (en) | 2010-09-30 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a reservoir |
US11684360B2 (en) | 2010-09-30 | 2023-06-27 | Cilag Gmbh International | Staple cartridge comprising a variable thickness compressible portion |
US11529142B2 (en) | 2010-10-01 | 2022-12-20 | Cilag Gmbh International | Surgical instrument having a power control circuit |
US10695062B2 (en) | 2010-10-01 | 2020-06-30 | Ethicon Llc | Surgical instrument including a retractable firing member |
US10792096B2 (en) | 2010-11-08 | 2020-10-06 | Baylis Medical Company Inc. | Medical device having a support structure |
US10765473B2 (en) | 2010-11-08 | 2020-09-08 | Baylis Medical Company Inc. | Electrosurgical device having a lumen |
CN101972188A (en) * | 2010-11-10 | 2011-02-16 | 韩俊江 | Precise temperature-controlling tumor therapeutic apparatus and control method thereof |
US9993285B2 (en) | 2010-12-16 | 2018-06-12 | Biosense Webster (Israel) Ltd. | System for controlling tissue ablation using temperature sensors |
US10206733B2 (en) | 2010-12-16 | 2019-02-19 | Biosense Webster (Israel) Ltd. | System for controlling tissue ablation using temperature sensors |
US9737353B2 (en) * | 2010-12-16 | 2017-08-22 | Biosense Webster (Israel) Ltd. | System for controlling tissue ablation using temperature sensors |
US11382680B2 (en) | 2010-12-16 | 2022-07-12 | Biosense Webster (Israel) Ltd. | System for controlling tissue ablation using temperature sensors |
US20120157890A1 (en) * | 2010-12-16 | 2012-06-21 | Assaf Govari | System for controlling tissue ablation using temperature sensors |
AU2011254026B2 (en) * | 2010-12-16 | 2015-07-09 | Biosense Webster (Israel), Ltd. | System for controlling tissue ablation using temperature sensors |
CN102652690A (en) * | 2010-12-16 | 2012-09-05 | 韦伯斯特生物官能(以色列)有限公司 | System for controlling tissue ablation using temperature sensors |
US10729485B2 (en) | 2010-12-16 | 2020-08-04 | Biosense Webster (Israel) Ltd. | System for controlling tissue ablation using temperature sensors |
US9241714B2 (en) | 2011-04-29 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator and method for making the same |
US10117652B2 (en) | 2011-04-29 | 2018-11-06 | Ethicon Llc | End effector comprising a tissue thickness compensator and progressively released attachment members |
US11504116B2 (en) | 2011-04-29 | 2022-11-22 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9211120B2 (en) | 2011-04-29 | 2015-12-15 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a plurality of medicaments |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US10485546B2 (en) | 2011-05-27 | 2019-11-26 | Ethicon Llc | Robotically-driven surgical assembly |
US9775614B2 (en) | 2011-05-27 | 2017-10-03 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with rotatable staple deployment arrangements |
US11439470B2 (en) | 2011-05-27 | 2022-09-13 | Cilag Gmbh International | Robotically-controlled surgical instrument with selectively articulatable end effector |
US11974747B2 (en) | 2011-05-27 | 2024-05-07 | Cilag Gmbh International | Surgical stapling instruments with rotatable staple deployment arrangements |
US10813641B2 (en) | 2011-05-27 | 2020-10-27 | Ethicon Llc | Robotically-driven surgical instrument |
US11583278B2 (en) | 2011-05-27 | 2023-02-21 | Cilag Gmbh International | Surgical stapling system having multi-direction articulation |
US10426478B2 (en) | 2011-05-27 | 2019-10-01 | Ethicon Llc | Surgical stapling systems |
US10780539B2 (en) | 2011-05-27 | 2020-09-22 | Ethicon Llc | Stapling instrument for use with a robotic system |
US10004506B2 (en) | 2011-05-27 | 2018-06-26 | Ethicon Llc | Surgical system |
US10231794B2 (en) | 2011-05-27 | 2019-03-19 | Ethicon Llc | Surgical stapling instruments with rotatable staple deployment arrangements |
US10420561B2 (en) | 2011-05-27 | 2019-09-24 | Ethicon Llc | Robotically-driven surgical instrument |
US10071452B2 (en) | 2011-05-27 | 2018-09-11 | Ethicon Llc | Automated end effector component reloading system for use with a robotic system |
US11129616B2 (en) | 2011-05-27 | 2021-09-28 | Cilag Gmbh International | Surgical stapling system |
US11918208B2 (en) | 2011-05-27 | 2024-03-05 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11266410B2 (en) | 2011-05-27 | 2022-03-08 | Cilag Gmbh International | Surgical device for use with a robotic system |
US10980534B2 (en) | 2011-05-27 | 2021-04-20 | Ethicon Llc | Robotically-controlled motorized surgical instrument with an end effector |
US10335151B2 (en) | 2011-05-27 | 2019-07-02 | Ethicon Llc | Robotically-driven surgical instrument |
US10736634B2 (en) | 2011-05-27 | 2020-08-11 | Ethicon Llc | Robotically-driven surgical instrument including a drive system |
US10130366B2 (en) | 2011-05-27 | 2018-11-20 | Ethicon Llc | Automated reloading devices for replacing used end effectors on robotic surgical systems |
US9271799B2 (en) | 2011-05-27 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Robotic surgical system with removable motor housing |
US11612394B2 (en) | 2011-05-27 | 2023-03-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US12059154B2 (en) | 2011-05-27 | 2024-08-13 | Cilag Gmbh International | Surgical instrument with detachable motor control unit |
US10524790B2 (en) | 2011-05-27 | 2020-01-07 | Ethicon Llc | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US10617420B2 (en) | 2011-05-27 | 2020-04-14 | Ethicon Llc | Surgical system comprising drive systems |
US10383633B2 (en) | 2011-05-27 | 2019-08-20 | Ethicon Llc | Robotically-driven surgical assembly |
US9913648B2 (en) | 2011-05-27 | 2018-03-13 | Ethicon Endo-Surgery, Llc | Surgical system |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
US9592054B2 (en) | 2011-09-23 | 2017-03-14 | Ethicon Endo-Surgery, Llc | Surgical stapler with stationary staple drivers |
US9687237B2 (en) | 2011-09-23 | 2017-06-27 | Ethicon Endo-Surgery, Llc | Staple cartridge including collapsible deck arrangement |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
US9055941B2 (en) | 2011-09-23 | 2015-06-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck |
US9216019B2 (en) | 2011-09-23 | 2015-12-22 | Ethicon Endo-Surgery, Inc. | Surgical stapler with stationary staple drivers |
US10729494B2 (en) | 2012-02-10 | 2020-08-04 | Ethicon Llc | Robotically controlled surgical instrument |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US10695063B2 (en) | 2012-02-13 | 2020-06-30 | Ethicon Llc | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US9730697B2 (en) | 2012-02-13 | 2017-08-15 | Ethicon Endo-Surgery, Llc | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US9198662B2 (en) | 2012-03-28 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator having improved visibility |
US10667808B2 (en) | 2012-03-28 | 2020-06-02 | Ethicon Llc | Staple cartridge comprising an absorbable adjunct |
US9724098B2 (en) | 2012-03-28 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising an implantable layer |
US9314247B2 (en) | 2012-03-28 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating a hydrophilic agent |
US11793509B2 (en) | 2012-03-28 | 2023-10-24 | Cilag Gmbh International | Staple cartridge including an implantable layer |
US9918716B2 (en) | 2012-03-28 | 2018-03-20 | Ethicon Llc | Staple cartridge comprising implantable layers |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US11406378B2 (en) | 2012-03-28 | 2022-08-09 | Cilag Gmbh International | Staple cartridge comprising a compressible tissue thickness compensator |
US9974538B2 (en) | 2012-03-28 | 2018-05-22 | Ethicon Llc | Staple cartridge comprising a compressible layer |
US9414838B2 (en) | 2012-03-28 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprised of a plurality of materials |
US10441285B2 (en) | 2012-03-28 | 2019-10-15 | Ethicon Llc | Tissue thickness compensator comprising tissue ingrowth features |
US12121234B2 (en) | 2012-03-28 | 2024-10-22 | Cilag Gmbh International | Staple cartridge assembly comprising a compensator |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US9307989B2 (en) | 2012-03-28 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorportating a hydrophobic agent |
US9204880B2 (en) | 2012-03-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising capsules defining a low pressure environment |
US11918220B2 (en) | 2012-03-28 | 2024-03-05 | Cilag Gmbh International | Tissue thickness compensator comprising tissue ingrowth features |
US11419626B2 (en) | 2012-04-09 | 2022-08-23 | Cilag Gmbh International | Switch arrangements for ultrasonic surgical instruments |
US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
US10064621B2 (en) | 2012-06-15 | 2018-09-04 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
US11707273B2 (en) | 2012-06-15 | 2023-07-25 | Cilag Gmbh International | Articulatable surgical instrument comprising a firing drive |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US10959725B2 (en) | 2012-06-15 | 2021-03-30 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
US10258333B2 (en) | 2012-06-28 | 2019-04-16 | Ethicon Llc | Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US9907620B2 (en) | 2012-06-28 | 2018-03-06 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US8747238B2 (en) | 2012-06-28 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Rotary drive shaft assemblies for surgical instruments with articulatable end effectors |
US11202631B2 (en) | 2012-06-28 | 2021-12-21 | Cilag Gmbh International | Stapling assembly comprising a firing lockout |
US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
US11241230B2 (en) | 2012-06-28 | 2022-02-08 | Cilag Gmbh International | Clip applier tool for use with a robotic surgical system |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US11602346B2 (en) | 2012-06-28 | 2023-03-14 | Cilag Gmbh International | Robotically powered surgical device with manually-actuatable reversing system |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
US11622766B2 (en) | 2012-06-28 | 2023-04-11 | Cilag Gmbh International | Empty clip cartridge lockout |
US11540829B2 (en) | 2012-06-28 | 2023-01-03 | Cilag Gmbh International | Surgical instrument system including replaceable end effectors |
US11154299B2 (en) | 2012-06-28 | 2021-10-26 | Cilag Gmbh International | Stapling assembly comprising a firing lockout |
US11534162B2 (en) | 2012-06-28 | 2022-12-27 | Cilag GmbH Inlernational | Robotically powered surgical device with manually-actuatable reversing system |
US11141155B2 (en) | 2012-06-28 | 2021-10-12 | Cilag Gmbh International | Drive system for surgical tool |
US11141156B2 (en) | 2012-06-28 | 2021-10-12 | Cilag Gmbh International | Surgical stapling assembly comprising flexible output shaft |
US11278284B2 (en) | 2012-06-28 | 2022-03-22 | Cilag Gmbh International | Rotary drive arrangements for surgical instruments |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US10687812B2 (en) | 2012-06-28 | 2020-06-23 | Ethicon Llc | Surgical instrument system including replaceable end effectors |
US10874391B2 (en) | 2012-06-28 | 2020-12-29 | Ethicon Llc | Surgical instrument system including replaceable end effectors |
US11510671B2 (en) | 2012-06-28 | 2022-11-29 | Cilag Gmbh International | Firing system lockout arrangements for surgical instruments |
US9101385B2 (en) | 2012-06-28 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Electrode connections for rotary driven surgical tools |
US9119657B2 (en) | 2012-06-28 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Rotary actuatable closure arrangement for surgical end effector |
US10485541B2 (en) | 2012-06-28 | 2019-11-26 | Ethicon Llc | Robotically powered surgical device with manually-actuatable reversing system |
US9364230B2 (en) | 2012-06-28 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with rotary joint assemblies |
US10932775B2 (en) | 2012-06-28 | 2021-03-02 | Ethicon Llc | Firing system lockout arrangements for surgical instruments |
US11806013B2 (en) | 2012-06-28 | 2023-11-07 | Cilag Gmbh International | Firing system arrangements for surgical instruments |
US11007004B2 (en) | 2012-06-28 | 2021-05-18 | Ethicon Llc | Powered multi-axial articulable electrosurgical device with external dissection features |
US9125662B2 (en) | 2012-06-28 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Multi-axis articulating and rotating surgical tools |
US11109860B2 (en) | 2012-06-28 | 2021-09-07 | Cilag Gmbh International | Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US11857189B2 (en) | 2012-06-28 | 2024-01-02 | Cilag Gmbh International | Surgical instrument including first and second articulation joints |
US10383630B2 (en) | 2012-06-28 | 2019-08-20 | Ethicon Llc | Surgical stapling device with rotary driven firing member |
US9649111B2 (en) | 2012-06-28 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Replaceable clip cartridge for a clip applier |
US9408606B2 (en) | 2012-06-28 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Robotically powered surgical device with manually-actuatable reversing system |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US11464513B2 (en) | 2012-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument system including replaceable end effectors |
US10639115B2 (en) | 2012-06-28 | 2020-05-05 | Ethicon Llc | Surgical end effectors having angled tissue-contacting surfaces |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US11779420B2 (en) | 2012-06-28 | 2023-10-10 | Cilag Gmbh International | Robotic surgical attachments having manually-actuated retraction assemblies |
US11058423B2 (en) | 2012-06-28 | 2021-07-13 | Cilag Gmbh International | Stapling system including first and second closure systems for use with a surgical robot |
US11918213B2 (en) | 2012-06-28 | 2024-03-05 | Cilag Gmbh International | Surgical stapler including couplers for attaching a shaft to an end effector |
US11083457B2 (en) | 2012-06-28 | 2021-08-10 | Cilag Gmbh International | Surgical instrument system including replaceable end effectors |
US10413294B2 (en) | 2012-06-28 | 2019-09-17 | Ethicon Llc | Shaft assembly arrangements for surgical instruments |
US9561038B2 (en) | 2012-06-28 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Interchangeable clip applier |
US11039837B2 (en) | 2012-06-28 | 2021-06-22 | Cilag Gmbh International | Firing system lockout arrangements for surgical instruments |
US10420555B2 (en) | 2012-06-28 | 2019-09-24 | Ethicon Llc | Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes |
US11871955B2 (en) | 2012-06-29 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US10993763B2 (en) | 2012-06-29 | 2021-05-04 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US11583306B2 (en) | 2012-06-29 | 2023-02-21 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US11717311B2 (en) | 2012-06-29 | 2023-08-08 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
US10966747B2 (en) | 2012-06-29 | 2021-04-06 | Ethicon Llc | Haptic feedback devices for surgical robot |
US11426191B2 (en) | 2012-06-29 | 2022-08-30 | Cilag Gmbh International | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US11096752B2 (en) | 2012-06-29 | 2021-08-24 | Cilag Gmbh International | Closed feedback control for electrosurgical device |
US10335183B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Feedback devices for surgical control systems |
US10524872B2 (en) | 2012-06-29 | 2020-01-07 | Ethicon Llc | Closed feedback control for electrosurgical device |
US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US11373755B2 (en) | 2012-08-23 | 2022-06-28 | Cilag Gmbh International | Surgical device drive system including a ratchet mechanism |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US11179173B2 (en) | 2012-10-22 | 2021-11-23 | Cilag Gmbh International | Surgical instrument |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
US9901399B2 (en) | 2012-12-17 | 2018-02-27 | Covidien Lp | Ablation probe with tissue sensing configuration |
US10828102B2 (en) | 2012-12-17 | 2020-11-10 | Covidien Lp | Ablation probe with tissue sensing configuration |
US9386984B2 (en) | 2013-02-08 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a releasable cover |
US10092292B2 (en) | 2013-02-28 | 2018-10-09 | Ethicon Llc | Staple forming features for surgical stapling instrument |
US9554794B2 (en) | 2013-03-01 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Multiple processor motor control for modular surgical instruments |
US11529138B2 (en) | 2013-03-01 | 2022-12-20 | Cilag Gmbh International | Powered surgical instrument including a rotary drive screw |
US9468438B2 (en) | 2013-03-01 | 2016-10-18 | Eticon Endo-Surgery, LLC | Sensor straightened end effector during removal through trocar |
US9398911B2 (en) | 2013-03-01 | 2016-07-26 | Ethicon Endo-Surgery, Llc | Rotary powered surgical instruments with multiple degrees of freedom |
US9307986B2 (en) | 2013-03-01 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Surgical instrument soft stop |
US11246618B2 (en) | 2013-03-01 | 2022-02-15 | Cilag Gmbh International | Surgical instrument soft stop |
US10285695B2 (en) | 2013-03-01 | 2019-05-14 | Ethicon Llc | Articulatable surgical instruments with conductive pathways |
US10226249B2 (en) | 2013-03-01 | 2019-03-12 | Ethicon Llc | Articulatable surgical instruments with conductive pathways for signal communication |
US10575868B2 (en) | 2013-03-01 | 2020-03-03 | Ethicon Llc | Surgical instrument with coupler assembly |
US9782169B2 (en) | 2013-03-01 | 2017-10-10 | Ethicon Llc | Rotary powered articulation joints for surgical instruments |
US11957345B2 (en) | 2013-03-01 | 2024-04-16 | Cilag Gmbh International | Articulatable surgical instruments with conductive pathways for signal communication |
US9700309B2 (en) | 2013-03-01 | 2017-07-11 | Ethicon Llc | Articulatable surgical instruments with conductive pathways for signal communication |
US9358003B2 (en) | 2013-03-01 | 2016-06-07 | Ethicon Endo-Surgery, Llc | Electromechanical surgical device with signal relay arrangement |
US9326767B2 (en) | 2013-03-01 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Joystick switch assemblies for surgical instruments |
US11937873B2 (en) | 2013-03-12 | 2024-03-26 | Boston Scientific Medical Device Limited | Electrosurgical device having a lumen |
US9345481B2 (en) | 2013-03-13 | 2016-05-24 | Ethicon Endo-Surgery, Llc | Staple cartridge tissue thickness sensor system |
US11992214B2 (en) | 2013-03-14 | 2024-05-28 | Cilag Gmbh International | Control systems for surgical instruments |
US9808244B2 (en) | 2013-03-14 | 2017-11-07 | Ethicon Llc | Sensor arrangements for absolute positioning system for surgical instruments |
US9351726B2 (en) | 2013-03-14 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Articulation control system for articulatable surgical instruments |
US9351727B2 (en) | 2013-03-14 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Drive train control arrangements for modular surgical instruments |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9888919B2 (en) | 2013-03-14 | 2018-02-13 | Ethicon Llc | Method and system for operating a surgical instrument |
US9687230B2 (en) | 2013-03-14 | 2017-06-27 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
US10893867B2 (en) | 2013-03-14 | 2021-01-19 | Ethicon Llc | Drive train control arrangements for modular surgical instruments |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US9629623B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Drive system lockout arrangements for modular surgical instruments |
US9332987B2 (en) | 2013-03-14 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Control arrangements for a drive member of a surgical instrument |
US11266406B2 (en) | 2013-03-14 | 2022-03-08 | Cilag Gmbh International | Control systems for surgical instruments |
US10470762B2 (en) | 2013-03-14 | 2019-11-12 | Ethicon Llc | Multi-function motor for a surgical instrument |
US10238391B2 (en) | 2013-03-14 | 2019-03-26 | Ethicon Llc | Drive train control arrangements for modular surgical instruments |
US10617416B2 (en) | 2013-03-14 | 2020-04-14 | Ethicon Llc | Control systems for surgical instruments |
US9332984B2 (en) | 2013-03-27 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Fastener cartridge assemblies |
US9572577B2 (en) | 2013-03-27 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a tissue thickness compensator including openings therein |
US9795384B2 (en) | 2013-03-27 | 2017-10-24 | Ethicon Llc | Fastener cartridge comprising a tissue thickness compensator and a gap setting element |
US11690615B2 (en) | 2013-04-16 | 2023-07-04 | Cilag Gmbh International | Surgical system including an electric motor and a surgical instrument |
US10702266B2 (en) | 2013-04-16 | 2020-07-07 | Ethicon Llc | Surgical instrument system |
US10136887B2 (en) | 2013-04-16 | 2018-11-27 | Ethicon Llc | Drive system decoupling arrangement for a surgical instrument |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
US11638581B2 (en) | 2013-04-16 | 2023-05-02 | Cilag Gmbh International | Powered surgical stapler |
US9649110B2 (en) | 2013-04-16 | 2017-05-16 | Ethicon Llc | Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output |
US9814460B2 (en) | 2013-04-16 | 2017-11-14 | Ethicon Llc | Modular motor driven surgical instruments with status indication arrangements |
US11633183B2 (en) | 2013-04-16 | 2023-04-25 | Cilag International GmbH | Stapling assembly comprising a retraction drive |
US10149680B2 (en) | 2013-04-16 | 2018-12-11 | Ethicon Llc | Surgical instrument comprising a gap setting system |
US11395652B2 (en) | 2013-04-16 | 2022-07-26 | Cilag Gmbh International | Powered surgical stapler |
US11406381B2 (en) | 2013-04-16 | 2022-08-09 | Cilag Gmbh International | Powered surgical stapler |
US11564679B2 (en) | 2013-04-16 | 2023-01-31 | Cilag Gmbh International | Powered surgical stapler |
US9826976B2 (en) | 2013-04-16 | 2017-11-28 | Ethicon Llc | Motor driven surgical instruments with lockable dual drive shafts |
US10405857B2 (en) | 2013-04-16 | 2019-09-10 | Ethicon Llc | Powered linear surgical stapler |
US11622763B2 (en) | 2013-04-16 | 2023-04-11 | Cilag Gmbh International | Stapling assembly comprising a shiftable drive |
US9844368B2 (en) | 2013-04-16 | 2017-12-19 | Ethicon Llc | Surgical system comprising first and second drive systems |
US9867612B2 (en) | 2013-04-16 | 2018-01-16 | Ethicon Llc | Powered surgical stapler |
US10888318B2 (en) | 2013-04-16 | 2021-01-12 | Ethicon Llc | Powered surgical stapler |
US9655669B2 (en) | 2013-05-06 | 2017-05-23 | Novocure Limited | Optimizing treatment using TTFields by changing the frequency during the course of long term tumor treatment |
US11701161B2 (en) | 2013-05-06 | 2023-07-18 | Novocure Gmbh | Optimizing treatment using TTFields by changing the frequency during the course of long term tumor treatment |
WO2014181167A1 (en) * | 2013-05-06 | 2014-11-13 | Palti Yoram Prof | Apparatus and methods for treating a tumor with an alternating electric field and for selecting a treatment frequency based on estimated cell size |
EP3569144A1 (en) * | 2013-05-06 | 2019-11-20 | Novocure Limited | Apparatus for treating a tumor with an alternating electric field and for selecting a treatment frequency based on estimated cell size |
US10779875B2 (en) | 2013-05-06 | 2020-09-22 | Novocure Gmbh | Optimizing treatment using TTfields by changing the frequency during the course of long term tumor treatment |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
AU2014203332B2 (en) * | 2013-07-29 | 2018-12-06 | Covidien Lp | Systems and methods for operating an electrosurgical generator |
US10285750B2 (en) | 2013-07-29 | 2019-05-14 | Covidien Lp | Systems and methods for operating an electrosurgical generator |
EP2832291A1 (en) * | 2013-07-29 | 2015-02-04 | Covidien LP | Electrosurgical generator and methods for its use to provide power based on impedance thresholds |
US9924942B2 (en) | 2013-08-23 | 2018-03-27 | Ethicon Llc | Motor-powered articulatable surgical instruments |
US10828032B2 (en) | 2013-08-23 | 2020-11-10 | Ethicon Llc | End effector detection systems for surgical instruments |
US11109858B2 (en) | 2013-08-23 | 2021-09-07 | Cilag Gmbh International | Surgical instrument including a display which displays the position of a firing element |
US11504119B2 (en) | 2013-08-23 | 2022-11-22 | Cilag Gmbh International | Surgical instrument including an electronic firing lockout |
US9700310B2 (en) | 2013-08-23 | 2017-07-11 | Ethicon Llc | Firing member retraction devices for powered surgical instruments |
US10201349B2 (en) | 2013-08-23 | 2019-02-12 | Ethicon Llc | End effector detection and firing rate modulation systems for surgical instruments |
US9987006B2 (en) | 2013-08-23 | 2018-06-05 | Ethicon Llc | Shroud retention arrangement for sterilizable surgical instruments |
US11000274B2 (en) | 2013-08-23 | 2021-05-11 | Ethicon Llc | Powered surgical instrument |
US10624634B2 (en) | 2013-08-23 | 2020-04-21 | Ethicon Llc | Firing trigger lockout arrangements for surgical instruments |
US10898190B2 (en) | 2013-08-23 | 2021-01-26 | Ethicon Llc | Secondary battery arrangements for powered surgical instruments |
US10869665B2 (en) | 2013-08-23 | 2020-12-22 | Ethicon Llc | Surgical instrument system including a control system |
US12053176B2 (en) | 2013-08-23 | 2024-08-06 | Cilag Gmbh International | End effector detention systems for surgical instruments |
US11701110B2 (en) | 2013-08-23 | 2023-07-18 | Cilag Gmbh International | Surgical instrument including a drive assembly movable in a non-motorized mode of operation |
US9775609B2 (en) | 2013-08-23 | 2017-10-03 | Ethicon Llc | Tamper proof circuit for surgical instrument battery pack |
US11133106B2 (en) | 2013-08-23 | 2021-09-28 | Cilag Gmbh International | Surgical instrument assembly comprising a retraction assembly |
US11026680B2 (en) | 2013-08-23 | 2021-06-08 | Cilag Gmbh International | Surgical instrument configured to operate in different states |
US11918209B2 (en) | 2013-08-23 | 2024-03-05 | Cilag Gmbh International | Torque optimization for surgical instruments |
US9283054B2 (en) | 2013-08-23 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Interactive displays |
US10441281B2 (en) | 2013-08-23 | 2019-10-15 | Ethicon Llc | surgical instrument including securing and aligning features |
US11134940B2 (en) | 2013-08-23 | 2021-10-05 | Cilag Gmbh International | Surgical instrument including a variable speed firing member |
US11376001B2 (en) | 2013-08-23 | 2022-07-05 | Cilag Gmbh International | Surgical stapling device with rotary multi-turn retraction mechanism |
US9808249B2 (en) | 2013-08-23 | 2017-11-07 | Ethicon Llc | Attachment portions for surgical instrument assemblies |
US9510828B2 (en) | 2013-08-23 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Conductor arrangements for electrically powered surgical instruments with rotatable end effectors |
US9445813B2 (en) | 2013-08-23 | 2016-09-20 | Ethicon Endo-Surgery, Llc | Closure indicator systems for surgical instruments |
US11389160B2 (en) | 2013-08-23 | 2022-07-19 | Cilag Gmbh International | Surgical system comprising a display |
US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
EP4295871A3 (en) * | 2013-10-28 | 2024-02-14 | Boston Scientific Scimed, Inc. | Fluid management system and methods |
US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
US11759201B2 (en) | 2013-12-23 | 2023-09-19 | Cilag Gmbh International | Surgical stapling system comprising an end effector including an anvil with an anvil cap |
US11246587B2 (en) | 2013-12-23 | 2022-02-15 | Cilag Gmbh International | Surgical cutting and stapling instruments |
US11583273B2 (en) | 2013-12-23 | 2023-02-21 | Cilag Gmbh International | Surgical stapling system including a firing beam extending through an articulation region |
US10588624B2 (en) | 2013-12-23 | 2020-03-17 | Ethicon Llc | Surgical staples, staple cartridges and surgical end effectors |
US11950776B2 (en) | 2013-12-23 | 2024-04-09 | Cilag Gmbh International | Modular surgical instruments |
US11123065B2 (en) | 2013-12-23 | 2021-09-21 | Cilag Gmbh International | Surgical cutting and stapling instruments with independent jaw control features |
US10265065B2 (en) | 2013-12-23 | 2019-04-23 | Ethicon Llc | Surgical staples and staple cartridges |
US11896223B2 (en) | 2013-12-23 | 2024-02-13 | Cilag Gmbh International | Surgical cutting and stapling instruments with independent jaw control features |
US11779327B2 (en) | 2013-12-23 | 2023-10-10 | Cilag Gmbh International | Surgical stapling system including a push bar |
US11020109B2 (en) | 2013-12-23 | 2021-06-01 | Ethicon Llc | Surgical stapling assembly for use with a powered surgical interface |
US11364028B2 (en) | 2013-12-23 | 2022-06-21 | Cilag Gmbh International | Modular surgical system |
US10925599B2 (en) | 2013-12-23 | 2021-02-23 | Ethicon Llc | Modular surgical instruments |
US11026677B2 (en) | 2013-12-23 | 2021-06-08 | Cilag Gmbh International | Surgical stapling assembly |
US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
US11020115B2 (en) | 2014-02-12 | 2021-06-01 | Cilag Gmbh International | Deliverable surgical instrument |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
US9884456B2 (en) | 2014-02-24 | 2018-02-06 | Ethicon Llc | Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments |
US9775608B2 (en) | 2014-02-24 | 2017-10-03 | Ethicon Llc | Fastening system comprising a firing member lockout |
US10426481B2 (en) | 2014-02-24 | 2019-10-01 | Ethicon Llc | Implantable layer assemblies |
US9757124B2 (en) | 2014-02-24 | 2017-09-12 | Ethicon Llc | Implantable layer assemblies |
US9839423B2 (en) | 2014-02-24 | 2017-12-12 | Ethicon Llc | Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument |
US9693777B2 (en) | 2014-02-24 | 2017-07-04 | Ethicon Llc | Implantable layers comprising a pressed region |
US9839422B2 (en) | 2014-02-24 | 2017-12-12 | Ethicon Llc | Implantable layers and methods for altering implantable layers for use with surgical fastening instruments |
US10932847B2 (en) | 2014-03-18 | 2021-03-02 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US10117653B2 (en) | 2014-03-26 | 2018-11-06 | Ethicon Llc | Systems and methods for controlling a segmented circuit |
US11259799B2 (en) | 2014-03-26 | 2022-03-01 | Cilag Gmbh International | Interface systems for use with surgical instruments |
US12023023B2 (en) | 2014-03-26 | 2024-07-02 | Cilag Gmbh International | Interface systems for use with surgical instruments |
US9733663B2 (en) | 2014-03-26 | 2017-08-15 | Ethicon Llc | Power management through segmented circuit and variable voltage protection |
US9730695B2 (en) | 2014-03-26 | 2017-08-15 | Ethicon Endo-Surgery, Llc | Power management through segmented circuit |
US10588626B2 (en) | 2014-03-26 | 2020-03-17 | Ethicon Llc | Surgical instrument displaying subsequent step of use |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
US11497488B2 (en) | 2014-03-26 | 2022-11-15 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
US9743929B2 (en) | 2014-03-26 | 2017-08-29 | Ethicon Llc | Modular powered surgical instrument with detachable shaft assemblies |
US9750499B2 (en) | 2014-03-26 | 2017-09-05 | Ethicon Llc | Surgical stapling instrument system |
US12023022B2 (en) | 2014-03-26 | 2024-07-02 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
US9690362B2 (en) | 2014-03-26 | 2017-06-27 | Ethicon Llc | Surgical instrument control circuit having a safety processor |
US10201364B2 (en) | 2014-03-26 | 2019-02-12 | Ethicon Llc | Surgical instrument comprising a rotatable shaft |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
US10898185B2 (en) | 2014-03-26 | 2021-01-26 | Ethicon Llc | Surgical instrument power management through sleep and wake up control |
US9804618B2 (en) | 2014-03-26 | 2017-10-31 | Ethicon Llc | Systems and methods for controlling a segmented circuit |
US10013049B2 (en) | 2014-03-26 | 2018-07-03 | Ethicon Llc | Power management through sleep options of segmented circuit and wake up control |
US10863981B2 (en) | 2014-03-26 | 2020-12-15 | Ethicon Llc | Interface systems for use with surgical instruments |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US10136889B2 (en) | 2014-03-26 | 2018-11-27 | Ethicon Llc | Systems and methods for controlling a segmented circuit |
US10028761B2 (en) | 2014-03-26 | 2018-07-24 | Ethicon Llc | Feedback algorithms for manual bailout systems for surgical instruments |
US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US11471209B2 (en) | 2014-03-31 | 2022-10-18 | Cilag Gmbh International | Controlling impedance rise in electrosurgical medical devices |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
US11883026B2 (en) | 2014-04-16 | 2024-01-30 | Cilag Gmbh International | Fastener cartridge assemblies and staple retainer cover arrangements |
US11517315B2 (en) | 2014-04-16 | 2022-12-06 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US11382627B2 (en) | 2014-04-16 | 2022-07-12 | Cilag Gmbh International | Surgical stapling assembly comprising a firing member including a lateral extension |
US11298134B2 (en) | 2014-04-16 | 2022-04-12 | Cilag Gmbh International | Fastener cartridge comprising non-uniform fasteners |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
US10561422B2 (en) | 2014-04-16 | 2020-02-18 | Ethicon Llc | Fastener cartridge comprising deployable tissue engaging members |
US11382625B2 (en) | 2014-04-16 | 2022-07-12 | Cilag Gmbh International | Fastener cartridge comprising non-uniform fasteners |
US11974746B2 (en) | 2014-04-16 | 2024-05-07 | Cilag Gmbh International | Anvil for use with a surgical stapling assembly |
US10299792B2 (en) | 2014-04-16 | 2019-05-28 | Ethicon Llc | Fastener cartridge comprising non-uniform fasteners |
US10542988B2 (en) | 2014-04-16 | 2020-01-28 | Ethicon Llc | End effector comprising an anvil including projections extending therefrom |
US12089849B2 (en) | 2014-04-16 | 2024-09-17 | Cilag Gmbh International | Staple cartridges including a projection |
US11185330B2 (en) | 2014-04-16 | 2021-11-30 | Cilag Gmbh International | Fastener cartridge assemblies and staple retainer cover arrangements |
US11266409B2 (en) | 2014-04-16 | 2022-03-08 | Cilag Gmbh International | Fastener cartridge comprising a sled including longitudinally-staggered ramps |
US11944307B2 (en) | 2014-04-16 | 2024-04-02 | Cilag Gmbh International | Surgical stapling system including jaw windows |
US10327776B2 (en) | 2014-04-16 | 2019-06-25 | Ethicon Llc | Surgical stapling buttresses and adjunct materials |
US10470768B2 (en) | 2014-04-16 | 2019-11-12 | Ethicon Llc | Fastener cartridge including a layer attached thereto |
US11918222B2 (en) | 2014-04-16 | 2024-03-05 | Cilag Gmbh International | Stapling assembly having firing member viewing windows |
US11963678B2 (en) | 2014-04-16 | 2024-04-23 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US9877721B2 (en) | 2014-04-16 | 2018-01-30 | Ethicon Llc | Fastener cartridge comprising tissue control features |
US9833241B2 (en) | 2014-04-16 | 2017-12-05 | Ethicon Llc | Surgical fastener cartridges with driver stabilizing arrangements |
US11717294B2 (en) | 2014-04-16 | 2023-08-08 | Cilag Gmbh International | End effector arrangements comprising indicators |
US10010324B2 (en) | 2014-04-16 | 2018-07-03 | Ethicon Llc | Fastener cartridge compromising fastener cavities including fastener control features |
US11596406B2 (en) | 2014-04-16 | 2023-03-07 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US11925353B2 (en) | 2014-04-16 | 2024-03-12 | Cilag Gmbh International | Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
US11413060B2 (en) | 2014-07-31 | 2022-08-16 | Cilag Gmbh International | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US20160058492A1 (en) * | 2014-08-26 | 2016-03-03 | Ethicon Endo-Surgery, Inc. | Managing tissue treatment |
US10194972B2 (en) * | 2014-08-26 | 2019-02-05 | Ethicon Llc | Managing tissue treatment |
US9724094B2 (en) | 2014-09-05 | 2017-08-08 | Ethicon Llc | Adjunct with integrated sensors to quantify tissue compression |
US11076854B2 (en) | 2014-09-05 | 2021-08-03 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US9757128B2 (en) | 2014-09-05 | 2017-09-12 | Ethicon Llc | Multiple sensors with one sensor affecting a second sensor's output or interpretation |
US11071545B2 (en) | 2014-09-05 | 2021-07-27 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US10135242B2 (en) | 2014-09-05 | 2018-11-20 | Ethicon Llc | Smart cartridge wake up operation and data retention |
US9737301B2 (en) | 2014-09-05 | 2017-08-22 | Ethicon Llc | Monitoring device degradation based on component evaluation |
US11389162B2 (en) | 2014-09-05 | 2022-07-19 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US12042147B2 (en) | 2014-09-05 | 2024-07-23 | Cllag GmbH International | Smart cartridge wake up operation and data retention |
US9788836B2 (en) | 2014-09-05 | 2017-10-17 | Ethicon Llc | Multiple motor control for powered medical device |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US11653918B2 (en) | 2014-09-05 | 2023-05-23 | Cilag Gmbh International | Local display of tissue parameter stabilization |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US11717297B2 (en) | 2014-09-05 | 2023-08-08 | Cilag Gmbh International | Smart cartridge wake up operation and data retention |
US11406386B2 (en) | 2014-09-05 | 2022-08-09 | Cilag Gmbh International | End effector including magnetic and impedance sensors |
US10111679B2 (en) | 2014-09-05 | 2018-10-30 | Ethicon Llc | Circuitry and sensors for powered medical device |
US10905423B2 (en) | 2014-09-05 | 2021-02-02 | Ethicon Llc | Smart cartridge wake up operation and data retention |
US11284898B2 (en) | 2014-09-18 | 2022-03-29 | Cilag Gmbh International | Surgical instrument including a deployable knife |
US12076017B2 (en) | 2014-09-18 | 2024-09-03 | Cilag Gmbh International | Surgical instrument including a deployable knife |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US11202633B2 (en) | 2014-09-26 | 2021-12-21 | Cilag Gmbh International | Surgical stapling buttresses and adjunct materials |
US9801627B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Fastener cartridge for creating a flexible staple line |
US12016564B2 (en) | 2014-09-26 | 2024-06-25 | Cilag Gmbh International | Circular fastener cartridges for applying radially expandable fastener lines |
US10327764B2 (en) | 2014-09-26 | 2019-06-25 | Ethicon Llc | Method for creating a flexible staple line |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
US10426476B2 (en) | 2014-09-26 | 2019-10-01 | Ethicon Llc | Circular fastener cartridges for applying radially expandable fastener lines |
US10751053B2 (en) | 2014-09-26 | 2020-08-25 | Ethicon Llc | Fastener cartridges for applying expandable fastener lines |
US10426477B2 (en) | 2014-09-26 | 2019-10-01 | Ethicon Llc | Staple cartridge assembly including a ramp |
US10206677B2 (en) | 2014-09-26 | 2019-02-19 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
US10736630B2 (en) | 2014-10-13 | 2020-08-11 | Ethicon Llc | Staple cartridge |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US11918210B2 (en) | 2014-10-16 | 2024-03-05 | Cilag Gmbh International | Staple cartridge comprising a cartridge body including a plurality of wells |
US11931031B2 (en) | 2014-10-16 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a deck including an upper surface and a lower surface |
US10905418B2 (en) | 2014-10-16 | 2021-02-02 | Ethicon Llc | Staple cartridge comprising a tissue thickness compensator |
US11701114B2 (en) | 2014-10-16 | 2023-07-18 | Cilag Gmbh International | Staple cartridge |
US10052104B2 (en) | 2014-10-16 | 2018-08-21 | Ethicon Llc | Staple cartridge comprising a tissue thickness compensator |
US11185325B2 (en) | 2014-10-16 | 2021-11-30 | Cilag Gmbh International | End effector including different tissue gaps |
US12004741B2 (en) | 2014-10-16 | 2024-06-11 | Cilag Gmbh International | Staple cartridge comprising a tissue thickness compensator |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US11931038B2 (en) | 2014-10-29 | 2024-03-19 | Cilag Gmbh International | Cartridge assemblies for surgical staplers |
US11457918B2 (en) | 2014-10-29 | 2022-10-04 | Cilag Gmbh International | Cartridge assemblies for surgical staplers |
US11864760B2 (en) | 2014-10-29 | 2024-01-09 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US11241229B2 (en) | 2014-10-29 | 2022-02-08 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US11337698B2 (en) | 2014-11-06 | 2022-05-24 | Cilag Gmbh International | Staple cartridge comprising a releasable adjunct material |
US10617417B2 (en) | 2014-11-06 | 2020-04-14 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US11382628B2 (en) | 2014-12-10 | 2022-07-12 | Cilag Gmbh International | Articulatable surgical instrument system |
US12114859B2 (en) | 2014-12-10 | 2024-10-15 | Cilag Gmbh International | Articulatable surgical instrument system |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10004501B2 (en) | 2014-12-18 | 2018-06-26 | Ethicon Llc | Surgical instruments with improved closure arrangements |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US11517311B2 (en) | 2014-12-18 | 2022-12-06 | Cilag Gmbh International | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10245027B2 (en) | 2014-12-18 | 2019-04-02 | Ethicon Llc | Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge |
US10743873B2 (en) | 2014-12-18 | 2020-08-18 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US12029419B2 (en) | 2014-12-18 | 2024-07-09 | Cilag Gmbh International | Surgical instrument including a flexible support configured to support a flexible firing member |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10945728B2 (en) | 2014-12-18 | 2021-03-16 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US12108950B2 (en) | 2014-12-18 | 2024-10-08 | Cilag Gmbh International | Surgical instrument assembly comprising a flexible articulation system |
US11812958B2 (en) | 2014-12-18 | 2023-11-14 | Cilag Gmbh International | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US11678877B2 (en) | 2014-12-18 | 2023-06-20 | Cilag Gmbh International | Surgical instrument including a flexible support configured to support a flexible firing member |
US11547403B2 (en) | 2014-12-18 | 2023-01-10 | Cilag Gmbh International | Surgical instrument having a laminate firing actuator and lateral buckling supports |
US11547404B2 (en) | 2014-12-18 | 2023-01-10 | Cilag Gmbh International | Surgical instrument assembly comprising a flexible articulation system |
US11083453B2 (en) | 2014-12-18 | 2021-08-10 | Cilag Gmbh International | Surgical stapling system including a flexible firing actuator and lateral buckling supports |
US9968355B2 (en) | 2014-12-18 | 2018-05-15 | Ethicon Llc | Surgical instruments with articulatable end effectors and improved firing beam support arrangements |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US10806448B2 (en) | 2014-12-18 | 2020-10-20 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US11553911B2 (en) | 2014-12-18 | 2023-01-17 | Cilag Gmbh International | Surgical instrument assembly comprising a flexible articulation system |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US10695058B2 (en) | 2014-12-18 | 2020-06-30 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US11571207B2 (en) | 2014-12-18 | 2023-02-07 | Cilag Gmbh International | Surgical system including lateral supports for a flexible drive member |
US11399831B2 (en) | 2014-12-18 | 2022-08-02 | Cilag Gmbh International | Drive arrangements for articulatable surgical instruments |
US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
US10226250B2 (en) | 2015-02-27 | 2019-03-12 | Ethicon Llc | Modular stapling assembly |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US11324506B2 (en) | 2015-02-27 | 2022-05-10 | Cilag Gmbh International | Modular stapling assembly |
US10159483B2 (en) | 2015-02-27 | 2018-12-25 | Ethicon Llc | Surgical apparatus configured to track an end-of-life parameter |
US11744588B2 (en) | 2015-02-27 | 2023-09-05 | Cilag Gmbh International | Surgical stapling instrument including a removably attachable battery pack |
US10245028B2 (en) | 2015-02-27 | 2019-04-02 | Ethicon Llc | Power adapter for a surgical instrument |
US9931118B2 (en) | 2015-02-27 | 2018-04-03 | Ethicon Endo-Surgery, Llc | Reinforced battery for a surgical instrument |
US10321907B2 (en) | 2015-02-27 | 2019-06-18 | Ethicon Llc | System for monitoring whether a surgical instrument needs to be serviced |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US12076018B2 (en) | 2015-02-27 | 2024-09-03 | Cilag Gmbh International | Modular stapling assembly |
US10045779B2 (en) | 2015-02-27 | 2018-08-14 | Ethicon Llc | Surgical instrument system comprising an inspection station |
US10182816B2 (en) | 2015-02-27 | 2019-01-22 | Ethicon Llc | Charging system that enables emergency resolutions for charging a battery |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10206605B2 (en) | 2015-03-06 | 2019-02-19 | Ethicon Llc | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US11944338B2 (en) | 2015-03-06 | 2024-04-02 | Cilag Gmbh International | Multiple level thresholds to modify operation of powered surgical instruments |
US11109859B2 (en) | 2015-03-06 | 2021-09-07 | Cilag Gmbh International | Surgical instrument comprising a lockable battery housing |
US10531887B2 (en) | 2015-03-06 | 2020-01-14 | Ethicon Llc | Powered surgical instrument including speed display |
US10524787B2 (en) | 2015-03-06 | 2020-01-07 | Ethicon Llc | Powered surgical instrument with parameter-based firing rate |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10966627B2 (en) | 2015-03-06 | 2021-04-06 | Ethicon Llc | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US10729432B2 (en) | 2015-03-06 | 2020-08-04 | Ethicon Llc | Methods for operating a powered surgical instrument |
US11350843B2 (en) | 2015-03-06 | 2022-06-07 | Cilag Gmbh International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US11826132B2 (en) | 2015-03-06 | 2023-11-28 | Cilag Gmbh International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US11426160B2 (en) | 2015-03-06 | 2022-08-30 | Cilag Gmbh International | Smart sensors with local signal processing |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10772625B2 (en) | 2015-03-06 | 2020-09-15 | Ethicon Llc | Signal and power communication system positioned on a rotatable shaft |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10052044B2 (en) | 2015-03-06 | 2018-08-21 | Ethicon Llc | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US11224423B2 (en) | 2015-03-06 | 2022-01-18 | Cilag Gmbh International | Smart sensors with local signal processing |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US11918212B2 (en) | 2015-03-31 | 2024-03-05 | Cilag Gmbh International | Surgical instrument with selectively disengageable drive systems |
US10390825B2 (en) | 2015-03-31 | 2019-08-27 | Ethicon Llc | Surgical instrument with progressive rotary drive systems |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
US10433844B2 (en) | 2015-03-31 | 2019-10-08 | Ethicon Llc | Surgical instrument with selectively disengageable threaded drive systems |
US10617463B2 (en) | 2015-04-23 | 2020-04-14 | Covidien Lp | Systems and methods for controlling power in an electrosurgical generator |
US11129667B2 (en) | 2015-04-23 | 2021-09-28 | Covidien Lp | Systems and methods for controlling power in an electrosurgical generator |
US10052102B2 (en) | 2015-06-18 | 2018-08-21 | Ethicon Llc | Surgical end effectors with dual cam actuated jaw closing features |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US10952788B2 (en) | 2015-06-30 | 2021-03-23 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US11903634B2 (en) | 2015-06-30 | 2024-02-20 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
US11058425B2 (en) | 2015-08-17 | 2021-07-13 | Ethicon Llc | Implantable layers for a surgical instrument |
US10390829B2 (en) | 2015-08-26 | 2019-08-27 | Ethicon Llc | Staples comprising a cover |
US10357251B2 (en) | 2015-08-26 | 2019-07-23 | Ethicon Llc | Surgical staples comprising hardness variations for improved fastening of tissue |
US10470769B2 (en) | 2015-08-26 | 2019-11-12 | Ethicon Llc | Staple cartridge assembly comprising staple alignment features on a firing member |
US11963682B2 (en) | 2015-08-26 | 2024-04-23 | Cilag Gmbh International | Surgical staples comprising hardness variations for improved fastening of tissue |
US10166026B2 (en) | 2015-08-26 | 2019-01-01 | Ethicon Llc | Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom |
US11103248B2 (en) | 2015-08-26 | 2021-08-31 | Cilag Gmbh International | Surgical staples for minimizing staple roll |
US11058426B2 (en) | 2015-08-26 | 2021-07-13 | Cilag Gmbh International | Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps |
US10188394B2 (en) | 2015-08-26 | 2019-01-29 | Ethicon Llc | Staples configured to support an implantable adjunct |
US11051817B2 (en) | 2015-08-26 | 2021-07-06 | Cilag Gmbh International | Method for forming a staple against an anvil of a surgical stapling instrument |
US10098642B2 (en) | 2015-08-26 | 2018-10-16 | Ethicon Llc | Surgical staples comprising features for improved fastening of tissue |
US10517599B2 (en) | 2015-08-26 | 2019-12-31 | Ethicon Llc | Staple cartridge assembly comprising staple cavities for providing better staple guidance |
US11510675B2 (en) | 2015-08-26 | 2022-11-29 | Cilag Gmbh International | Surgical end effector assembly including a connector strip interconnecting a plurality of staples |
US10433845B2 (en) | 2015-08-26 | 2019-10-08 | Ethicon Llc | Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading |
US10213203B2 (en) | 2015-08-26 | 2019-02-26 | Ethicon Llc | Staple cartridge assembly without a bottom cover |
US12035915B2 (en) | 2015-08-26 | 2024-07-16 | Cilag Gmbh International | Surgical staples comprising hardness variations for improved fastening of tissue |
US10966724B2 (en) | 2015-08-26 | 2021-04-06 | Ethicon Llc | Surgical staples comprising a guide |
US10980538B2 (en) | 2015-08-26 | 2021-04-20 | Ethicon Llc | Surgical stapling configurations for curved and circular stapling instruments |
US11219456B2 (en) | 2015-08-26 | 2022-01-11 | Cilag Gmbh International | Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading |
US10172619B2 (en) | 2015-09-02 | 2019-01-08 | Ethicon Llc | Surgical staple driver arrays |
US10238390B2 (en) | 2015-09-02 | 2019-03-26 | Ethicon Llc | Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns |
US11213295B2 (en) | 2015-09-02 | 2022-01-04 | Cilag Gmbh International | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
US10251648B2 (en) | 2015-09-02 | 2019-04-09 | Ethicon Llc | Surgical staple cartridge staple drivers with central support features |
US10357252B2 (en) | 2015-09-02 | 2019-07-23 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
US11382624B2 (en) | 2015-09-02 | 2022-07-12 | Cilag Gmbh International | Surgical staple cartridge with improved staple driver configurations |
US11589868B2 (en) | 2015-09-02 | 2023-02-28 | Cilag Gmbh International | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
US10314587B2 (en) | 2015-09-02 | 2019-06-11 | Ethicon Llc | Surgical staple cartridge with improved staple driver configurations |
US11849946B2 (en) | 2015-09-23 | 2023-12-26 | Cilag Gmbh International | Surgical stapler having downstream current-based motor control |
US11490889B2 (en) | 2015-09-23 | 2022-11-08 | Cilag Gmbh International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US11026678B2 (en) | 2015-09-23 | 2021-06-08 | Cilag Gmbh International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US11344299B2 (en) | 2015-09-23 | 2022-05-31 | Cilag Gmbh International | Surgical stapler having downstream current-based motor control |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10863986B2 (en) | 2015-09-23 | 2020-12-15 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US11076929B2 (en) | 2015-09-25 | 2021-08-03 | Cilag Gmbh International | Implantable adjunct systems for determining adjunct skew |
US10561420B2 (en) | 2015-09-30 | 2020-02-18 | Ethicon Llc | Tubular absorbable constructs |
US10932779B2 (en) | 2015-09-30 | 2021-03-02 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
US10172620B2 (en) | 2015-09-30 | 2019-01-08 | Ethicon Llc | Compressible adjuncts with bonding nodes |
US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
US10285699B2 (en) | 2015-09-30 | 2019-05-14 | Ethicon Llc | Compressible adjunct |
US10610286B2 (en) | 2015-09-30 | 2020-04-07 | Ethicon Llc | Techniques for circuit topologies for combined generator |
US10603039B2 (en) | 2015-09-30 | 2020-03-31 | Ethicon Llc | Progressively releasable implantable adjunct for use with a surgical stapling instrument |
US11793522B2 (en) | 2015-09-30 | 2023-10-24 | Cilag Gmbh International | Staple cartridge assembly including a compressible adjunct |
US11690623B2 (en) | 2015-09-30 | 2023-07-04 | Cilag Gmbh International | Method for applying an implantable layer to a fastener cartridge |
US10271849B2 (en) | 2015-09-30 | 2019-04-30 | Ethicon Llc | Woven constructs with interlocked standing fibers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US11058475B2 (en) | 2015-09-30 | 2021-07-13 | Cilag Gmbh International | Method and apparatus for selecting operations of a surgical instrument based on user intention |
US11553916B2 (en) | 2015-09-30 | 2023-01-17 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US11766287B2 (en) | 2015-09-30 | 2023-09-26 | Cilag Gmbh International | Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments |
US11944308B2 (en) | 2015-09-30 | 2024-04-02 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10327777B2 (en) | 2015-09-30 | 2019-06-25 | Ethicon Llc | Implantable layer comprising plastically deformed fibers |
US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
US11559347B2 (en) | 2015-09-30 | 2023-01-24 | Cilag Gmbh International | Techniques for circuit topologies for combined generator |
US10751108B2 (en) | 2015-09-30 | 2020-08-25 | Ethicon Llc | Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms |
US10307160B2 (en) | 2015-09-30 | 2019-06-04 | Ethicon Llc | Compressible adjunct assemblies with attachment layers |
US10524788B2 (en) | 2015-09-30 | 2020-01-07 | Ethicon Llc | Compressible adjunct with attachment regions |
US11712244B2 (en) | 2015-09-30 | 2023-08-01 | Cilag Gmbh International | Implantable layer with spacer fibers |
US10687884B2 (en) | 2015-09-30 | 2020-06-23 | Ethicon Llc | Circuits for supplying isolated direct current (DC) voltage to surgical instruments |
US11903586B2 (en) | 2015-09-30 | 2024-02-20 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US10624691B2 (en) | 2015-09-30 | 2020-04-21 | Ethicon Llc | Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments |
US10433846B2 (en) | 2015-09-30 | 2019-10-08 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US11666375B2 (en) | 2015-10-16 | 2023-06-06 | Cilag Gmbh International | Electrode wiping surgical device |
US11484309B2 (en) | 2015-12-30 | 2022-11-01 | Cilag Gmbh International | Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence |
US11129613B2 (en) | 2015-12-30 | 2021-09-28 | Cilag Gmbh International | Surgical instruments with separable motors and motor control circuits |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US11759208B2 (en) | 2015-12-30 | 2023-09-19 | Cilag Gmbh International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US11058422B2 (en) | 2015-12-30 | 2021-07-13 | Cilag Gmbh International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US11083454B2 (en) | 2015-12-30 | 2021-08-10 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US10709469B2 (en) | 2016-01-15 | 2020-07-14 | Ethicon Llc | Modular battery powered handheld surgical instrument with energy conservation techniques |
US11684402B2 (en) | 2016-01-15 | 2023-06-27 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
US10828058B2 (en) | 2016-01-15 | 2020-11-10 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization |
US10779849B2 (en) | 2016-01-15 | 2020-09-22 | Ethicon Llc | Modular battery powered handheld surgical instrument with voltage sag resistant battery pack |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US11058448B2 (en) | 2016-01-15 | 2021-07-13 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multistage generator circuits |
US11974772B2 (en) | 2016-01-15 | 2024-05-07 | Cilag GmbH Intemational | Modular battery powered handheld surgical instrument with variable motor control limits |
US10842523B2 (en) | 2016-01-15 | 2020-11-24 | Ethicon Llc | Modular battery powered handheld surgical instrument and methods therefor |
US11896280B2 (en) | 2016-01-15 | 2024-02-13 | Cilag Gmbh International | Clamp arm comprising a circuit |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11134978B2 (en) | 2016-01-15 | 2021-10-05 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
US11751929B2 (en) | 2016-01-15 | 2023-09-12 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10299821B2 (en) | 2016-01-15 | 2019-05-28 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limit profile |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11051840B2 (en) | 2016-01-15 | 2021-07-06 | Ethicon Llc | Modular battery powered handheld surgical instrument with reusable asymmetric handle housing |
US10245029B2 (en) | 2016-02-09 | 2019-04-02 | Ethicon Llc | Surgical instrument with articulating and axially translatable end effector |
US11523823B2 (en) | 2016-02-09 | 2022-12-13 | Cilag Gmbh International | Surgical instruments with non-symmetrical articulation arrangements |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
US10245030B2 (en) | 2016-02-09 | 2019-04-02 | Ethicon Llc | Surgical instruments with tensioning arrangements for cable driven articulation systems |
US10653413B2 (en) | 2016-02-09 | 2020-05-19 | Ethicon Llc | Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly |
US11730471B2 (en) | 2016-02-09 | 2023-08-22 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10413291B2 (en) | 2016-02-09 | 2019-09-17 | Ethicon Llc | Surgical instrument articulation mechanism with slotted secondary constraint |
US10470764B2 (en) | 2016-02-09 | 2019-11-12 | Ethicon Llc | Surgical instruments with closure stroke reduction arrangements |
US10588625B2 (en) | 2016-02-09 | 2020-03-17 | Ethicon Llc | Articulatable surgical instruments with off-axis firing beam arrangements |
US11779336B2 (en) | 2016-02-12 | 2023-10-10 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11344303B2 (en) | 2016-02-12 | 2022-05-31 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11826045B2 (en) | 2016-02-12 | 2023-11-28 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US11202670B2 (en) | 2016-02-22 | 2021-12-21 | Cilag Gmbh International | Method of manufacturing a flexible circuit electrode for electrosurgical instrument |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10376263B2 (en) | 2016-04-01 | 2019-08-13 | Ethicon Llc | Anvil modification members for surgical staplers |
US11284891B2 (en) | 2016-04-15 | 2022-03-29 | Cilag Gmbh International | Surgical instrument with multiple program responses during a firing motion |
US11191545B2 (en) | 2016-04-15 | 2021-12-07 | Cilag Gmbh International | Staple formation detection mechanisms |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US11931028B2 (en) | 2016-04-15 | 2024-03-19 | Cilag Gmbh International | Surgical instrument with multiple program responses during a firing motion |
US11311292B2 (en) | 2016-04-15 | 2022-04-26 | Cilag Gmbh International | Surgical instrument with detection sensors |
US11642125B2 (en) | 2016-04-15 | 2023-05-09 | Cilag Gmbh International | Robotic surgical system including a user interface and a control circuit |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11051810B2 (en) | 2016-04-15 | 2021-07-06 | Cilag Gmbh International | Modular surgical instrument with configurable operating mode |
US11771454B2 (en) | 2016-04-15 | 2023-10-03 | Cilag Gmbh International | Stapling assembly including a controller for monitoring a clamping laod |
US11317910B2 (en) | 2016-04-15 | 2022-05-03 | Cilag Gmbh International | Surgical instrument with detection sensors |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11026684B2 (en) | 2016-04-15 | 2021-06-08 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11350932B2 (en) | 2016-04-15 | 2022-06-07 | Cilag Gmbh International | Surgical instrument with improved stop/start control during a firing motion |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11517306B2 (en) | 2016-04-15 | 2022-12-06 | Cilag Gmbh International | Surgical instrument with detection sensors |
US11147554B2 (en) | 2016-04-18 | 2021-10-19 | Cilag Gmbh International | Surgical instrument system comprising a magnetic lockout |
US11811253B2 (en) | 2016-04-18 | 2023-11-07 | Cilag Gmbh International | Surgical robotic system with fault state detection configurations based on motor current draw |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
US10478181B2 (en) | 2016-04-18 | 2019-11-19 | Ethicon Llc | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
US10433840B2 (en) | 2016-04-18 | 2019-10-08 | Ethicon Llc | Surgical instrument comprising a replaceable cartridge jaw |
US10368867B2 (en) | 2016-04-18 | 2019-08-06 | Ethicon Llc | Surgical instrument comprising a lockout |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10426469B2 (en) | 2016-04-18 | 2019-10-01 | Ethicon Llc | Surgical instrument comprising a primary firing lockout and a secondary firing lockout |
US11350928B2 (en) | 2016-04-18 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising a tissue thickness lockout and speed control system |
US11559303B2 (en) | 2016-04-18 | 2023-01-24 | Cilag Gmbh International | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US11864820B2 (en) | 2016-05-03 | 2024-01-09 | Cilag Gmbh International | Medical device with a bilateral jaw configuration for nerve stimulation |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
US10702270B2 (en) | 2016-06-24 | 2020-07-07 | Ethicon Llc | Stapling system for use with wire staples and stamped staples |
USD896380S1 (en) | 2016-06-24 | 2020-09-15 | Ethicon Llc | Surgical fastener cartridge |
US11000278B2 (en) | 2016-06-24 | 2021-05-11 | Ethicon Llc | Staple cartridge comprising wire staples and stamped staples |
US11690619B2 (en) | 2016-06-24 | 2023-07-04 | Cilag Gmbh International | Staple cartridge comprising staples having different geometries |
USD896379S1 (en) | 2016-06-24 | 2020-09-15 | Ethicon Llc | Surgical fastener cartridge |
US10675024B2 (en) | 2016-06-24 | 2020-06-09 | Ethicon Llc | Staple cartridge comprising overdriven staples |
US10893863B2 (en) | 2016-06-24 | 2021-01-19 | Ethicon Llc | Staple cartridge comprising offset longitudinal staple rows |
US10542979B2 (en) | 2016-06-24 | 2020-01-28 | Ethicon Llc | Stamped staples and staple cartridges using the same |
USD948043S1 (en) | 2016-06-24 | 2022-04-05 | Cilag Gmbh International | Surgical fastener |
USD894389S1 (en) | 2016-06-24 | 2020-08-25 | Ethicon Llc | Surgical fastener |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
US11786246B2 (en) | 2016-06-24 | 2023-10-17 | Cilag Gmbh International | Stapling system for use with wire staples and stamped staples |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US11344362B2 (en) | 2016-08-05 | 2022-05-31 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
US12114914B2 (en) | 2016-08-05 | 2024-10-15 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
US11998230B2 (en) | 2016-11-29 | 2024-06-04 | Cilag Gmbh International | End effector control and calibration |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US12011166B2 (en) | 2016-12-21 | 2024-06-18 | Cilag Gmbh International | Articulatable surgical stapling instruments |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US11497499B2 (en) | 2016-12-21 | 2022-11-15 | Cilag Gmbh International | Articulatable surgical stapling instruments |
US11090048B2 (en) | 2016-12-21 | 2021-08-17 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US11096689B2 (en) | 2016-12-21 | 2021-08-24 | Cilag Gmbh International | Shaft assembly comprising a lockout |
US10881401B2 (en) | 2016-12-21 | 2021-01-05 | Ethicon Llc | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US11931034B2 (en) | 2016-12-21 | 2024-03-19 | Cilag Gmbh International | Surgical stapling instruments with smart staple cartridges |
US10667811B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Surgical stapling instruments and staple-forming anvils |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US11918215B2 (en) | 2016-12-21 | 2024-03-05 | Cilag Gmbh International | Staple cartridge with array of staple pockets |
US10617414B2 (en) | 2016-12-21 | 2020-04-14 | Ethicon Llc | Closure member arrangements for surgical instruments |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10667809B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Staple cartridge and staple cartridge channel comprising windows defined therein |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10610224B2 (en) | 2016-12-21 | 2020-04-07 | Ethicon Llc | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
US10835245B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot |
US11160551B2 (en) | 2016-12-21 | 2021-11-02 | Cilag Gmbh International | Articulatable surgical stapling instruments |
US11160553B2 (en) | 2016-12-21 | 2021-11-02 | Cilag Gmbh International | Surgical stapling systems |
US10893864B2 (en) | 2016-12-21 | 2021-01-19 | Ethicon | Staple cartridges and arrangements of staples and staple cavities therein |
US10813638B2 (en) | 2016-12-21 | 2020-10-27 | Ethicon Llc | Surgical end effectors with expandable tissue stop arrangements |
US11179155B2 (en) | 2016-12-21 | 2021-11-23 | Cilag Gmbh International | Anvil arrangements for surgical staplers |
US11191543B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Assembly comprising a lock |
US10898186B2 (en) | 2016-12-21 | 2021-01-26 | Ethicon Llc | Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls |
US10675025B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Shaft assembly comprising separately actuatable and retractable systems |
US11191540B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument |
US10682138B2 (en) | 2016-12-21 | 2020-06-16 | Ethicon Llc | Bilaterally asymmetric staple forming pocket pairs |
US11992213B2 (en) | 2016-12-21 | 2024-05-28 | Cilag Gmbh International | Surgical stapling instruments with replaceable staple cartridges |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US10779823B2 (en) | 2016-12-21 | 2020-09-22 | Ethicon Llc | Firing member pin angle |
US11849948B2 (en) | 2016-12-21 | 2023-12-26 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
US11224428B2 (en) | 2016-12-21 | 2022-01-18 | Cilag Gmbh International | Surgical stapling systems |
US10905422B2 (en) | 2016-12-21 | 2021-02-02 | Ethicon Llc | Surgical instrument for use with a robotic surgical system |
US10918385B2 (en) | 2016-12-21 | 2021-02-16 | Ethicon Llc | Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US12004745B2 (en) | 2016-12-21 | 2024-06-11 | Cilag Gmbh International | Surgical instrument system comprising an end effector lockout and a firing assembly lockout |
US10603036B2 (en) | 2016-12-21 | 2020-03-31 | Ethicon Llc | Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock |
US11957344B2 (en) | 2016-12-21 | 2024-04-16 | Cilag Gmbh International | Surgical stapler having rows of obliquely oriented staples |
US10639035B2 (en) | 2016-12-21 | 2020-05-05 | Ethicon Llc | Surgical stapling instruments and replaceable tool assemblies thereof |
US10687809B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Surgical staple cartridge with movable camming member configured to disengage firing member lockout features |
US11564688B2 (en) | 2016-12-21 | 2023-01-31 | Cilag Gmbh International | Robotic surgical tool having a retraction mechanism |
US11766259B2 (en) | 2016-12-21 | 2023-09-26 | Cilag Gmbh International | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US11766260B2 (en) | 2016-12-21 | 2023-09-26 | Cilag Gmbh International | Methods of stapling tissue |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10588630B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical tool assemblies with closure stroke reduction features |
US10588631B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical instruments with positive jaw opening features |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US11571210B2 (en) | 2016-12-21 | 2023-02-07 | Cilag Gmbh International | Firing assembly comprising a multiple failed-state fuse |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US10959727B2 (en) | 2016-12-21 | 2021-03-30 | Ethicon Llc | Articulatable surgical end effector with asymmetric shaft arrangement |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
US10448950B2 (en) | 2016-12-21 | 2019-10-22 | Ethicon Llc | Surgical staplers with independently actuatable closing and firing systems |
US10582928B2 (en) | 2016-12-21 | 2020-03-10 | Ethicon Llc | Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US10568626B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaw opening features for increasing a jaw opening distance |
US11701115B2 (en) | 2016-12-21 | 2023-07-18 | Cilag Gmbh International | Methods of stapling tissue |
US10568624B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems |
US10639034B2 (en) | 2016-12-21 | 2020-05-05 | Ethicon Llc | Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present |
US10973516B2 (en) | 2016-12-21 | 2021-04-13 | Ethicon Llc | Surgical end effectors and adaptable firing members therefor |
US11317913B2 (en) | 2016-12-21 | 2022-05-03 | Cilag Gmbh International | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US10980536B2 (en) | 2016-12-21 | 2021-04-20 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
US10736629B2 (en) | 2016-12-21 | 2020-08-11 | Ethicon Llc | Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US11000276B2 (en) | 2016-12-21 | 2021-05-11 | Ethicon Llc | Stepped staple cartridge with asymmetrical staples |
US10542982B2 (en) | 2016-12-21 | 2020-01-28 | Ethicon Llc | Shaft assembly comprising first and second articulation lockouts |
US11350934B2 (en) | 2016-12-21 | 2022-06-07 | Cilag Gmbh International | Staple forming pocket arrangement to accommodate different types of staples |
US11350935B2 (en) | 2016-12-21 | 2022-06-07 | Cilag Gmbh International | Surgical tool assemblies with closure stroke reduction features |
US10492785B2 (en) | 2016-12-21 | 2019-12-03 | Ethicon Llc | Shaft assembly comprising a lockout |
US10537325B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Staple forming pocket arrangement to accommodate different types of staples |
US10537324B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Stepped staple cartridge with asymmetrical staples |
US11369376B2 (en) | 2016-12-21 | 2022-06-28 | Cilag Gmbh International | Surgical stapling systems |
US10524789B2 (en) | 2016-12-21 | 2020-01-07 | Ethicon Llc | Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration |
US11653917B2 (en) | 2016-12-21 | 2023-05-23 | Cilag Gmbh International | Surgical stapling systems |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US10517595B2 (en) | 2016-12-21 | 2019-12-31 | Ethicon Llc | Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector |
US10517596B2 (en) | 2016-12-21 | 2019-12-31 | Ethicon Llc | Articulatable surgical instruments with articulation stroke amplification features |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10595882B2 (en) | 2017-06-20 | 2020-03-24 | Ethicon Llc | Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US11793513B2 (en) | 2017-06-20 | 2023-10-24 | Cilag Gmbh International | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11213302B2 (en) | 2017-06-20 | 2022-01-04 | Cilag Gmbh International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
USD1039559S1 (en) | 2017-06-20 | 2024-08-20 | Cilag Gmbh International | Display panel with changeable graphical user interface |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US11871939B2 (en) | 2017-06-20 | 2024-01-16 | Cilag Gmbh International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11672532B2 (en) | 2017-06-20 | 2023-06-13 | Cilag Gmbh International | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11090049B2 (en) | 2017-06-27 | 2021-08-17 | Cilag Gmbh International | Staple forming pocket arrangements |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US11141154B2 (en) | 2017-06-27 | 2021-10-12 | Cilag Gmbh International | Surgical end effectors and anvils |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11766258B2 (en) | 2017-06-27 | 2023-09-26 | Cilag Gmbh International | Surgical anvil arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
US10758232B2 (en) | 2017-06-28 | 2020-09-01 | Ethicon Llc | Surgical instrument with positive jaw opening features |
US11478242B2 (en) | 2017-06-28 | 2022-10-25 | Cilag Gmbh International | Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US11696759B2 (en) | 2017-06-28 | 2023-07-11 | Cilag Gmbh International | Surgical stapling instruments comprising shortened staple cartridge noses |
US10786253B2 (en) | 2017-06-28 | 2020-09-29 | Ethicon Llc | Surgical end effectors with improved jaw aperture arrangements |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
USD1018577S1 (en) | 2017-06-28 | 2024-03-19 | Cilag Gmbh International | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US11826048B2 (en) | 2017-06-28 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US10695057B2 (en) | 2017-06-28 | 2020-06-30 | Ethicon Llc | Surgical instrument lockout arrangement |
US11389161B2 (en) | 2017-06-28 | 2022-07-19 | Cilag Gmbh International | Surgical instrument comprising selectively actuatable rotatable couplers |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US11529140B2 (en) | 2017-06-28 | 2022-12-20 | Cilag Gmbh International | Surgical instrument lockout arrangement |
US11484310B2 (en) | 2017-06-28 | 2022-11-01 | Cilag Gmbh International | Surgical instrument comprising a shaft including a closure tube profile |
US10779824B2 (en) | 2017-06-28 | 2020-09-22 | Ethicon Llc | Surgical instrument comprising an articulation system lockable by a closure system |
US11083455B2 (en) | 2017-06-28 | 2021-08-10 | Cilag Gmbh International | Surgical instrument comprising an articulation system ratio |
US11000279B2 (en) | 2017-06-28 | 2021-05-11 | Ethicon Llc | Surgical instrument comprising an articulation system ratio |
US11642128B2 (en) | 2017-06-28 | 2023-05-09 | Cilag Gmbh International | Method for articulating a surgical instrument |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US11678880B2 (en) | 2017-06-28 | 2023-06-20 | Cilag Gmbh International | Surgical instrument comprising a shaft including a housing arrangement |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US11020114B2 (en) | 2017-06-28 | 2021-06-01 | Cilag Gmbh International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10588633B2 (en) | 2017-06-28 | 2020-03-17 | Ethicon Llc | Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11890005B2 (en) | 2017-06-29 | 2024-02-06 | Cilag Gmbh International | Methods for closed loop velocity control for robotic surgical instrument |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11272975B2 (en) | 2017-09-22 | 2022-03-15 | Covidien Lp | Systems and methods for controlled electrosurgical dissection |
US11744631B2 (en) | 2017-09-22 | 2023-09-05 | Covidien Lp | Systems and methods for controlled electrosurgical coagulation |
US11534226B2 (en) | 2017-09-22 | 2022-12-27 | Covidien Lp | Systems and methods for minimizing arcing of bipolar forceps |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US11998199B2 (en) | 2017-09-29 | 2024-06-04 | Cllag GmbH International | System and methods for controlling a display of a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US12076011B2 (en) | 2017-10-30 | 2024-09-03 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11963680B2 (en) | 2017-10-31 | 2024-04-23 | Cilag Gmbh International | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US11478244B2 (en) | 2017-10-31 | 2022-10-25 | Cilag Gmbh International | Cartridge body design with force reduction based on firing completion |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US11896222B2 (en) | 2017-12-15 | 2024-02-13 | Cilag Gmbh International | Methods of operating surgical end effectors |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US11284953B2 (en) | 2017-12-19 | 2022-03-29 | Cilag Gmbh International | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US12076096B2 (en) | 2017-12-19 | 2024-09-03 | Cilag Gmbh International | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US11883019B2 (en) | 2017-12-21 | 2024-01-30 | Cilag Gmbh International | Stapling instrument comprising a staple feeding system |
US11179151B2 (en) | 2017-12-21 | 2021-11-23 | Cilag Gmbh International | Surgical instrument comprising a display |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11583274B2 (en) | 2017-12-21 | 2023-02-21 | Cilag Gmbh International | Self-guiding stapling instrument |
US10682134B2 (en) | 2017-12-21 | 2020-06-16 | Ethicon Llc | Continuous use self-propelled stapling instrument |
US11576668B2 (en) | 2017-12-21 | 2023-02-14 | Cilag Gmbh International | Staple instrument comprising a firing path display |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11337691B2 (en) | 2017-12-21 | 2022-05-24 | Cilag Gmbh International | Surgical instrument configured to determine firing path |
US11849939B2 (en) | 2017-12-21 | 2023-12-26 | Cilag Gmbh International | Continuous use self-propelled stapling instrument |
US11751867B2 (en) | 2017-12-21 | 2023-09-12 | Cilag Gmbh International | Surgical instrument comprising sequenced systems |
US11369368B2 (en) | 2017-12-21 | 2022-06-28 | Cilag Gmbh International | Surgical instrument comprising synchronized drive systems |
US11364027B2 (en) | 2017-12-21 | 2022-06-21 | Cilag Gmbh International | Surgical instrument comprising speed control |
US11179152B2 (en) | 2017-12-21 | 2021-11-23 | Cilag Gmbh International | Surgical instrument comprising a tissue grasping system |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US12076008B2 (en) | 2018-08-20 | 2024-09-03 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11957339B2 (en) | 2018-08-20 | 2024-04-16 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11554262B2 (en) | 2019-02-26 | 2023-01-17 | Novocure Gmbh | Determining a frequency for TTFields treatment based on an electrical characteristic of targeted cancer cells |
WO2020174403A1 (en) * | 2019-02-26 | 2020-09-03 | Moshe Giladi | Determining a frequency for ttfields treatment based on an electrical characteristic of targeted cancer cells |
KR102727585B1 (en) | 2019-02-26 | 2024-11-06 | 노보큐어 게엠베하 | Frequency determination of tumor treatment therapy based on electrical characteristics of target cancer cells |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US12108983B2 (en) | 2019-05-03 | 2024-10-08 | Biosense Webster (Israel) Ltd. | Device, system and method to ablate cardiac tissue |
US11229963B2 (en) * | 2019-06-24 | 2022-01-25 | Black & Decker Inc. | Force and moment canceling reciprocating mechanism and power tool having same |
US11453093B2 (en) | 2019-06-24 | 2022-09-27 | Black & Decker Inc. | Reciprocating tool having planetary gear assembly and counterweighting assembly |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11684369B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11744593B2 (en) | 2019-06-28 | 2023-09-05 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11350938B2 (en) | 2019-06-28 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising an aligned rfid sensor |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11553919B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
WO2021108292A1 (en) * | 2019-11-27 | 2021-06-03 | North Carolina State University | Methods for controlling treatment volumes, thermal gradients, muscle stimulation, and immune responses in pulsed electric field treatments |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US11744636B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Electrosurgical systems with integrated and external power sources |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11986234B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Surgical system communication pathways |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US12137912B2 (en) | 2020-01-03 | 2024-11-12 | Cilag Gmbh International | Compressible adjunct with attachment regions |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
US12144500B2 (en) | 2020-07-02 | 2024-11-19 | Cilag Gmbh International | Surgical instrument with multiple program responses during a firing motion |
US11737748B2 (en) | 2020-07-28 | 2023-08-29 | Cilag Gmbh International | Surgical instruments with double spherical articulation joints with pivotable links |
US11883024B2 (en) | 2020-07-28 | 2024-01-30 | Cilag Gmbh International | Method of operating a surgical instrument |
US11826013B2 (en) | 2020-07-28 | 2023-11-28 | Cilag Gmbh International | Surgical instruments with firing member closure features |
US11864756B2 (en) | 2020-07-28 | 2024-01-09 | Cilag Gmbh International | Surgical instruments with flexible ball chain drive arrangements |
US11974741B2 (en) | 2020-07-28 | 2024-05-07 | Cilag Gmbh International | Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators |
US11871925B2 (en) | 2020-07-28 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with dual spherical articulation joint arrangements |
US11638582B2 (en) | 2020-07-28 | 2023-05-02 | Cilag Gmbh International | Surgical instruments with torsion spine drive arrangements |
US11660090B2 (en) | 2020-07-28 | 2023-05-30 | Cllag GmbH International | Surgical instruments with segmented flexible drive arrangements |
US11857182B2 (en) | 2020-07-28 | 2024-01-02 | Cilag Gmbh International | Surgical instruments with combination function articulation joint arrangements |
US12064107B2 (en) | 2020-07-28 | 2024-08-20 | Cilag Gmbh International | Articulatable surgical instruments with articulation joints comprising flexible exoskeleton arrangements |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US12029421B2 (en) | 2020-10-29 | 2024-07-09 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US12076194B2 (en) | 2020-10-29 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US12016559B2 (en) | 2020-12-02 | 2024-06-25 | Cllag GmbH International | Powered surgical instruments with communication interfaces through sterile barrier |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US12133648B2 (en) | 2020-12-02 | 2024-11-05 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
EP4115827A4 (en) * | 2020-12-09 | 2024-07-03 | Hangzhou Broncus Medical Co Ltd | Perfusion control method, apparatus and system for syringe pump, and computer-readable storage medium |
EP4272667A4 (en) * | 2020-12-31 | 2024-10-02 | Hangzhou Broncus Medical Co Ltd | Multi-path perfusion control method and apparatus for injection pump, and injection pump and storage medium |
US12035910B2 (en) | 2021-02-26 | 2024-07-16 | Cllag GmbH International | Monitoring of internal systems to detect and track cartridge motion status |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US12035911B2 (en) | 2021-02-26 | 2024-07-16 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US12035912B2 (en) | 2021-02-26 | 2024-07-16 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US12042146B2 (en) | 2021-03-22 | 2024-07-23 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US12023026B2 (en) | 2021-03-22 | 2024-07-02 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11918217B2 (en) | 2021-05-28 | 2024-03-05 | Cilag Gmbh International | Stapling instrument comprising a staple cartridge insertion stop |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
US11723662B2 (en) | 2021-05-28 | 2023-08-15 | Cilag Gmbh International | Stapling instrument comprising an articulation control display |
US11998201B2 (en) | 2021-05-28 | 2024-06-04 | Cilag CmbH International | Stapling instrument comprising a firing lockout |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US11958121B2 (en) | 2022-03-04 | 2024-04-16 | Black & Decker Inc. | Reciprocating tool having orbit function |
US11839964B2 (en) | 2022-03-09 | 2023-12-12 | Black & Decker Inc. | Counterbalancing mechanism and power tool having same |
US12137913B2 (en) | 2022-06-13 | 2024-11-12 | Cilag Gmbh International | Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps |
US12137901B2 (en) | 2023-05-01 | 2024-11-12 | Cilag Gmbh International | Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same |
US12144501B2 (en) | 2023-05-31 | 2024-11-19 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
Also Published As
Publication number | Publication date |
---|---|
EP1429678B1 (en) | 2006-03-22 |
AU2002327779B2 (en) | 2008-06-26 |
EP1429678A1 (en) | 2004-06-23 |
AU2008224345B8 (en) | 2011-11-24 |
AU2008224345A1 (en) | 2008-10-16 |
DE60210111T2 (en) | 2007-03-29 |
JP4450622B2 (en) | 2010-04-14 |
US7344533B2 (en) | 2008-03-18 |
CN1596085A (en) | 2005-03-16 |
AU2008224345B2 (en) | 2011-11-17 |
WO2003026525A1 (en) | 2003-04-03 |
JP2005503864A (en) | 2005-02-10 |
ATE320767T1 (en) | 2006-04-15 |
DE60210111D1 (en) | 2006-05-11 |
CN100450456C (en) | 2009-01-14 |
US20030130711A1 (en) | 2003-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7344533B2 (en) | Impedance controlled tissue ablation apparatus and method | |
US6962587B2 (en) | Method for detecting and treating tumors using localized impedance measurement | |
AU2002327779A1 (en) | Impedance controlled tissue ablation apparatus and method | |
AU2001279026A1 (en) | Apparatus for detecting and treating tumors using localized impedance measurement | |
US6632221B1 (en) | Method of creating a lesion in tissue with infusion | |
US6641580B1 (en) | Infusion array ablation apparatus | |
US6632222B1 (en) | Tissue ablation apparatus | |
US6569159B1 (en) | Cell necrosis apparatus | |
US7160296B2 (en) | Tissue ablation apparatus and method | |
US6660002B1 (en) | RF treatment apparatus | |
US6071280A (en) | Multiple electrode ablation apparatus | |
US20110306969A1 (en) | System and method for directing energy to tissue and method of assessing ablation size as a function of temperature information associated with an energy applicator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY AGREEMENT;ASSIGNOR:ANGIODYNAMICS, INC.;REEL/FRAME:028260/0329 Effective date: 20120522 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ANGIODYNAMICS, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:031315/0361 Effective date: 20130919 |