US20080287464A1 - Depot Formulations - Google Patents
Depot Formulations Download PDFInfo
- Publication number
- US20080287464A1 US20080287464A1 US12/152,764 US15276408A US2008287464A1 US 20080287464 A1 US20080287464 A1 US 20080287464A1 US 15276408 A US15276408 A US 15276408A US 2008287464 A1 US2008287464 A1 US 2008287464A1
- Authority
- US
- United States
- Prior art keywords
- formulation
- linear polymer
- solvents
- equal
- repeat units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 215
- 238000009472 formulation Methods 0.000 title claims abstract description 188
- 229920000642 polymer Polymers 0.000 claims abstract description 154
- 239000002904 solvent Substances 0.000 claims abstract description 145
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical group CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 claims abstract description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000007788 liquid Substances 0.000 claims abstract description 29
- 239000012876 carrier material Substances 0.000 claims abstract description 22
- 230000004962 physiological condition Effects 0.000 claims abstract description 20
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims description 106
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 104
- 239000001797 sucrose acetate isobutyrate Substances 0.000 claims description 76
- UVGUPMLLGBCFEJ-SWTLDUCYSA-N sucrose acetate isobutyrate Chemical compound CC(C)C(=O)O[C@H]1[C@H](OC(=O)C(C)C)[C@@H](COC(=O)C(C)C)O[C@@]1(COC(C)=O)O[C@@H]1[C@H](OC(=O)C(C)C)[C@@H](OC(=O)C(C)C)[C@H](OC(=O)C(C)C)[C@@H](COC(C)=O)O1 UVGUPMLLGBCFEJ-SWTLDUCYSA-N 0.000 claims description 76
- 235000010983 sucrose acetate isobutyrate Nutrition 0.000 claims description 76
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 73
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 52
- 229940088623 biologically active substance Drugs 0.000 claims description 20
- -1 miglyol Chemical compound 0.000 claims description 18
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 17
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 15
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 12
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 claims description 12
- 239000003693 atypical antipsychotic agent Substances 0.000 claims description 11
- 229940127236 atypical antipsychotics Drugs 0.000 claims description 10
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 claims description 10
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 claims description 10
- 229960001534 risperidone Drugs 0.000 claims description 9
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 claims description 9
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 claims description 8
- 235000013772 propylene glycol Nutrition 0.000 claims description 7
- 229940116333 ethyl lactate Drugs 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- CTPDSKVQLSDPLC-UHFFFAOYSA-N 2-(oxolan-2-ylmethoxy)ethanol Chemical compound OCCOCC1CCCO1 CTPDSKVQLSDPLC-UHFFFAOYSA-N 0.000 claims description 5
- 229960002903 benzyl benzoate Drugs 0.000 claims description 5
- 239000001087 glyceryl triacetate Substances 0.000 claims description 5
- 235000013773 glyceryl triacetate Nutrition 0.000 claims description 5
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 5
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 claims description 5
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 229960002622 triacetin Drugs 0.000 claims description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 4
- AXTGDCSMTYGJND-UHFFFAOYSA-N 1-dodecylazepan-2-one Chemical compound CCCCCCCCCCCCN1CCCCCC1=O AXTGDCSMTYGJND-UHFFFAOYSA-N 0.000 claims description 4
- NZJXADCEESMBPW-UHFFFAOYSA-N 1-methylsulfinyldecane Chemical compound CCCCCCCCCCS(C)=O NZJXADCEESMBPW-UHFFFAOYSA-N 0.000 claims description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 4
- 239000005642 Oleic acid Substances 0.000 claims description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 4
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 4
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 15
- 239000012071 phase Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 15
- 238000002156 mixing Methods 0.000 description 13
- 239000000654 additive Substances 0.000 description 11
- 238000005227 gel permeation chromatography Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 235000019198 oils Nutrition 0.000 description 10
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 9
- 238000005191 phase separation Methods 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 239000000427 antigen Substances 0.000 description 8
- 102000036639 antigens Human genes 0.000 description 8
- 108091007433 antigens Proteins 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000003981 vehicle Substances 0.000 description 8
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical group O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 5
- 229920006362 Teflon® Polymers 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 4
- 235000019483 Peanut oil Nutrition 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 229920002988 biodegradable polymer Polymers 0.000 description 4
- 239000004621 biodegradable polymer Substances 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229940093499 ethyl acetate Drugs 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 description 4
- 229960003086 naltrexone Drugs 0.000 description 4
- 239000000312 peanut oil Substances 0.000 description 4
- 229920000747 poly(lactic acid) Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 229930003231 vitamin Natural products 0.000 description 4
- 239000011782 vitamin Substances 0.000 description 4
- 229940088594 vitamin Drugs 0.000 description 4
- 235000013343 vitamin Nutrition 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 229960004217 benzyl alcohol Drugs 0.000 description 3
- 235000019445 benzyl alcohol Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 239000013022 formulation composition Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 230000009851 immunogenic response Effects 0.000 description 3
- 229940032007 methylethyl ketone Drugs 0.000 description 3
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- CNIIGCLFLJGOGP-UHFFFAOYSA-N 2-(1-naphthalenylmethyl)-4,5-dihydro-1H-imidazole Chemical compound C=1C=CC2=CC=CC=C2C=1CC1=NCCN1 CNIIGCLFLJGOGP-UHFFFAOYSA-N 0.000 description 2
- GIKNHHRFLCDOEU-UHFFFAOYSA-N 4-(2-aminopropyl)phenol Chemical compound CC(N)CC1=CC=C(O)C=C1 GIKNHHRFLCDOEU-UHFFFAOYSA-N 0.000 description 2
- JBMKAUGHUNFTOL-UHFFFAOYSA-N Aldoclor Chemical class C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NC=NS2(=O)=O JBMKAUGHUNFTOL-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229940125715 antihistaminic agent Drugs 0.000 description 2
- 239000000739 antihistaminic agent Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000000164 antipsychotic agent Substances 0.000 description 2
- 229940005529 antipsychotics Drugs 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 229940121357 antivirals Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- ZAKOWWREFLAJOT-UHFFFAOYSA-N d-alpha-Tocopheryl acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 235000014593 oils and fats Nutrition 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- XQYZDYMELSJDRZ-UHFFFAOYSA-N papaverine Chemical compound C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 XQYZDYMELSJDRZ-UHFFFAOYSA-N 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 229940094938 stannous 2-ethylhexanoate Drugs 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 2
- 229940042585 tocopherol acetate Drugs 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 description 1
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- DQCKKXVULJGBQN-UWFFTQNDSA-N (4r,4as,12bs)-3-(cyclopropylmethyl)-4a,9-dihydroxy-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-one Chemical compound C([C@@]12[C@@]3(O)CCC(=O)C1OC=1C(O)=CC=C(C2=1)C[C@]31[H])CN1CC1CC1 DQCKKXVULJGBQN-UWFFTQNDSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- RPOUGULCGNMIBX-UHFFFAOYSA-N 1-chlorophenazine Chemical compound C1=CC=C2N=C3C(Cl)=CC=CC3=NC2=C1 RPOUGULCGNMIBX-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- GCKMFJBGXUYNAG-UHFFFAOYSA-N 17alpha-methyltestosterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C)(O)C1(C)CC2 GCKMFJBGXUYNAG-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- NVUUMOOKVFONOM-GPBSYSOESA-N 19-Norprogesterone Chemical compound C1CC2=CC(=O)CC[C@@H]2[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 NVUUMOOKVFONOM-GPBSYSOESA-N 0.000 description 1
- QSAVEGSLJISCDF-UHFFFAOYSA-N 2-hydroxy-2-phenylacetic acid (1,2,2,6-tetramethyl-4-piperidinyl) ester Chemical compound C1C(C)(C)N(C)C(C)CC1OC(=O)C(O)C1=CC=CC=C1 QSAVEGSLJISCDF-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- PMXMIIMHBWHSKN-UHFFFAOYSA-N 3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCC(O)C4=NC=3C)=NOC2=C1 PMXMIIMHBWHSKN-UHFFFAOYSA-N 0.000 description 1
- 150000005011 4-aminoquinolines Chemical class 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical class OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical group O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 1
- 150000005012 8-aminoquinolines Chemical class 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- 229930008281 A03AD01 - Papaverine Natural products 0.000 description 1
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 208000035285 Allergic Seasonal Rhinitis Diseases 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 229930003347 Atropine Natural products 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 101710117545 C protein Proteins 0.000 description 1
- 201000006082 Chickenpox Diseases 0.000 description 1
- QMBJSIBWORFWQT-DFXBJWIESA-N Chlormadinone acetate Chemical compound C1=C(Cl)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 QMBJSIBWORFWQT-DFXBJWIESA-N 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 241000272201 Columbiformes Species 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 208000000655 Distemper Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- ZTVIKZXZYLEVOL-MCOXGKPRSA-N Homatropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(O)C1=CC=CC=C1 ZTVIKZXZYLEVOL-MCOXGKPRSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 1
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- GZENKSODFLBBHQ-ILSZZQPISA-N Medrysone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@H](C(C)=O)CC[C@H]21 GZENKSODFLBBHQ-ILSZZQPISA-N 0.000 description 1
- UDKABVSQKJNZBH-DWNQPYOZSA-N Melengestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC(=C)[C@](OC(=O)C)(C(C)=O)[C@@]1(C)CC2 UDKABVSQKJNZBH-DWNQPYOZSA-N 0.000 description 1
- GZHFODJQISUKAY-UHFFFAOYSA-N Methantheline Chemical compound C1=CC=C2C(C(=O)OCC[N+](C)(CC)CC)C3=CC=CC=C3OC2=C1 GZHFODJQISUKAY-UHFFFAOYSA-N 0.000 description 1
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 1
- 102000001621 Mucoproteins Human genes 0.000 description 1
- 108010093825 Mucoproteins Proteins 0.000 description 1
- 208000005647 Mumps Diseases 0.000 description 1
- IJHNSHDBIRRJRN-UHFFFAOYSA-N N,N-dimethyl-3-phenyl-3-(2-pyridinyl)-1-propanamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=CC=C1 IJHNSHDBIRRJRN-UHFFFAOYSA-N 0.000 description 1
- OTGQIQQTPXJQRG-UHFFFAOYSA-N N-(octadecanoyl)ethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCO OTGQIQQTPXJQRG-UHFFFAOYSA-N 0.000 description 1
- STECJAGHUSJQJN-UHFFFAOYSA-N N-Methyl-scopolamin Natural products C1C(C2C3O2)N(C)C3CC1OC(=O)C(CO)C1=CC=CC=C1 STECJAGHUSJQJN-UHFFFAOYSA-N 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 208000010359 Newcastle Disease Diseases 0.000 description 1
- ICTXHFFSOAJUMG-SLHNCBLASA-N Norethynodrel Chemical compound C1CC(=O)CC2=C1[C@H]1CC[C@](C)([C@](CC3)(O)C#C)[C@@H]3[C@@H]1CC2 ICTXHFFSOAJUMG-SLHNCBLASA-N 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- QGMRQYFBGABWDR-UHFFFAOYSA-M Pentobarbital sodium Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)[N-]C1=O QGMRQYFBGABWDR-UHFFFAOYSA-M 0.000 description 1
- RGCVKNLCSQQDEP-UHFFFAOYSA-N Perphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 RGCVKNLCSQQDEP-UHFFFAOYSA-N 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- LRJOMUJRLNCICJ-JZYPGELDSA-N Prednisolone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O LRJOMUJRLNCICJ-JZYPGELDSA-N 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- QCHFTSOMWOSFHM-UHFFFAOYSA-N SJ000285536 Natural products C1OC(=O)C(CC)C1CC1=CN=CN1C QCHFTSOMWOSFHM-UHFFFAOYSA-N 0.000 description 1
- SKZKKFZAGNVIMN-UHFFFAOYSA-N Salicilamide Chemical compound NC(=O)C1=CC=CC=C1O SKZKKFZAGNVIMN-UHFFFAOYSA-N 0.000 description 1
- 206010039587 Scarlet Fever Diseases 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 1
- NHUHCSRWZMLRLA-UHFFFAOYSA-N Sulfisoxazole Chemical compound CC1=NOC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1C NHUHCSRWZMLRLA-UHFFFAOYSA-N 0.000 description 1
- 239000000150 Sympathomimetic Substances 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- UFLGIAIHIAPJJC-UHFFFAOYSA-N Tripelennamine Chemical compound C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CC=C1 UFLGIAIHIAPJJC-UHFFFAOYSA-N 0.000 description 1
- BGDKAVGWHJFAGW-UHFFFAOYSA-N Tropicamide Chemical compound C=1C=CC=CC=1C(CO)C(=O)N(CC)CC1=CC=NC=C1 BGDKAVGWHJFAGW-UHFFFAOYSA-N 0.000 description 1
- 206010046980 Varicella Diseases 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 208000003152 Yellow Fever Diseases 0.000 description 1
- HOBWAPHTEJGALG-JKCMADFCSA-N [(1r,5s)-8-methyl-8-azoniabicyclo[3.2.1]octan-3-yl] 3-hydroxy-2-phenylpropanoate;sulfate Chemical compound [O-]S([O-])(=O)=O.C([C@H]1CC[C@@H](C2)[NH+]1C)C2OC(=O)C(CO)C1=CC=CC=C1.C([C@H]1CC[C@@H](C2)[NH+]1C)C2OC(=O)C(CO)C1=CC=CC=C1 HOBWAPHTEJGALG-JKCMADFCSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- TUQLBJAHRWROHB-UHFFFAOYSA-N acetic acid;1-(1h-indol-3-yl)butan-2-amine Chemical compound CC(O)=O.C1=CC=C2C(CC(N)CC)=CNC2=C1 TUQLBJAHRWROHB-UHFFFAOYSA-N 0.000 description 1
- NMZSAMXFINECBQ-UHFFFAOYSA-N acetic acid;1-(1h-indol-3-yl)propan-2-amine Chemical compound CC([O-])=O.C1=CC=C2C(CC([NH3+])C)=CNC2=C1 NMZSAMXFINECBQ-UHFFFAOYSA-N 0.000 description 1
- 229940116342 acetylated sucrose distearate Drugs 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 230000001548 androgenic effect Effects 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- REYFJDPCWQRWAA-UHFFFAOYSA-N antazoline Chemical compound N=1CCNC=1CN(C=1C=CC=CC=1)CC1=CC=CC=C1 REYFJDPCWQRWAA-UHFFFAOYSA-N 0.000 description 1
- 229960002469 antazoline Drugs 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 230000002921 anti-spasmodic effect Effects 0.000 description 1
- 230000002303 anti-venom Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940055075 anticholinesterase parasympathomimetics Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940125716 antipyretic agent Drugs 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 229940124575 antispasmodic agent Drugs 0.000 description 1
- 229960000396 atropine Drugs 0.000 description 1
- RKUNBYITZUJHSG-SPUOUPEWSA-N atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 1
- 229960002028 atropine sulfate Drugs 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000010495 camellia oil Substances 0.000 description 1
- 229960004484 carbachol Drugs 0.000 description 1
- AIXAANGOTKPUOY-UHFFFAOYSA-N carbachol Chemical compound [Cl-].C[N+](C)(C)CCOC(N)=O AIXAANGOTKPUOY-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001719 carbohydrate derivatives Chemical class 0.000 description 1
- OPNPQXLQERQBBV-UHFFFAOYSA-N carbromal Chemical compound CCC(Br)(CC)C(=O)NC(N)=O OPNPQXLQERQBBV-UHFFFAOYSA-N 0.000 description 1
- 229960001658 carbromal Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 108010015046 cell aggregation factors Proteins 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960003996 chlormadinone Drugs 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- CYDMQBQPVICBEU-UHFFFAOYSA-N chlorotetracycline Natural products C1=CC(Cl)=C2C(O)(C)C3CC4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-UHFFFAOYSA-N 0.000 description 1
- 229960002155 chlorothiazide Drugs 0.000 description 1
- 229960003291 chlorphenamine Drugs 0.000 description 1
- SOYKEARSMXGVTM-UHFFFAOYSA-N chlorphenamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 SOYKEARSMXGVTM-UHFFFAOYSA-N 0.000 description 1
- CYDMQBQPVICBEU-XRNKAMNCSA-N chlortetracycline Chemical compound C1=CC(Cl)=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-XRNKAMNCSA-N 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- ALEXXDVDDISNDU-JZYPGELDSA-N cortisol 21-acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ALEXXDVDDISNDU-JZYPGELDSA-N 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 229960001815 cyclopentolate Drugs 0.000 description 1
- SKYSRIRYMSLOIN-UHFFFAOYSA-N cyclopentolate Chemical compound C1CCCC1(O)C(C(=O)OCCN(C)C)C1=CC=CC=C1 SKYSRIRYMSLOIN-UHFFFAOYSA-N 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- YHKBUDZECQDYBR-UHFFFAOYSA-L demecarium bromide Chemical compound [Br-].[Br-].C=1C=CC([N+](C)(C)C)=CC=1OC(=O)N(C)CCCCCCCCCCN(C)C(=O)OC1=CC=CC([N+](C)(C)C)=C1 YHKBUDZECQDYBR-UHFFFAOYSA-L 0.000 description 1
- 229960003715 demecarium bromide Drugs 0.000 description 1
- 239000003975 dentin desensitizing agent Substances 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- VQODGRNSFPNSQE-CXSFZGCWSA-N dexamethasone phosphate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COP(O)(O)=O)(O)[C@@]1(C)C[C@@H]2O VQODGRNSFPNSQE-CXSFZGCWSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- MUCZHBLJLSDCSD-UHFFFAOYSA-N diisopropyl fluorophosphate Chemical compound CC(C)OP(F)(=O)OC(C)C MUCZHBLJLSDCSD-UHFFFAOYSA-N 0.000 description 1
- 229960004993 dimenhydrinate Drugs 0.000 description 1
- MZDOIJOUFRQXHC-UHFFFAOYSA-N dimenhydrinate Chemical compound O=C1N(C)C(=O)N(C)C2=NC(Cl)=N[C]21.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 MZDOIJOUFRQXHC-UHFFFAOYSA-N 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- OVXQHPWHMXOFRD-UHFFFAOYSA-M ecothiopate iodide Chemical compound [I-].CCOP(=O)(OCC)SCC[N+](C)(C)C OVXQHPWHMXOFRD-UHFFFAOYSA-M 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229960003399 estrone Drugs 0.000 description 1
- 229960004756 ethanol Drugs 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- CHNXZKVNWQUJIB-CEGNMAFCSA-N ethisterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 CHNXZKVNWQUJIB-CEGNMAFCSA-N 0.000 description 1
- 229960000445 ethisterone Drugs 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 229950002420 eucatropine Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000010643 fennel seed oil Substances 0.000 description 1
- RGUQWGXAYZNLMI-UHFFFAOYSA-N flumethiazide Chemical compound C1=C(C(F)(F)F)C(S(=O)(=O)N)=CC2=C1NC=NS2(=O)=O RGUQWGXAYZNLMI-UHFFFAOYSA-N 0.000 description 1
- 229960003028 flumethiazide Drugs 0.000 description 1
- 229940043075 fluocinolone Drugs 0.000 description 1
- FEBLZLNTKCEFIT-VSXGLTOVSA-N fluocinolone acetonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O FEBLZLNTKCEFIT-VSXGLTOVSA-N 0.000 description 1
- 229960005051 fluostigmine Drugs 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N glycerol 1-phosphate Chemical class OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 239000007952 growth promoter Substances 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 229960000857 homatropine Drugs 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229960001067 hydrocortisone acetate Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229950005360 hydroxyamfetamine Drugs 0.000 description 1
- 229960002899 hydroxyprogesterone Drugs 0.000 description 1
- 239000005554 hypnotics and sedatives Substances 0.000 description 1
- 229960004716 idoxuridine Drugs 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000004041 inotropic agent Substances 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical group CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229940057917 medium chain triglycerides Drugs 0.000 description 1
- 229960004616 medroxyprogesterone Drugs 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 229960001011 medrysone Drugs 0.000 description 1
- 229960001786 megestrol Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 230000001802 melanotrophic effect Effects 0.000 description 1
- 229960004805 melengestrol Drugs 0.000 description 1
- 229960000582 mepyramine Drugs 0.000 description 1
- YECBIJXISLIIDS-UHFFFAOYSA-N mepyramine Chemical compound C1=CC(OC)=CC=C1CN(CCN(C)C)C1=CC=CC=N1 YECBIJXISLIIDS-UHFFFAOYSA-N 0.000 description 1
- 229960001470 methantheline Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- LZCOQTDXKCNBEE-IKIFYQGPSA-N methscopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3[N+]([C@H](C2)[C@@H]2[C@H]3O2)(C)C)=CC=CC=C1 LZCOQTDXKCNBEE-IKIFYQGPSA-N 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 229960001383 methylscopolamine Drugs 0.000 description 1
- 229960001566 methyltestosterone Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 229940029985 mineral supplement Drugs 0.000 description 1
- 235000020786 mineral supplement Nutrition 0.000 description 1
- 230000003547 miosis Effects 0.000 description 1
- 239000003604 miotic agent Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 208000010805 mumps infectious disease Diseases 0.000 description 1
- 229940078812 myristyl myristate Drugs 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 229960005016 naphazoline Drugs 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- IAIWVQXQOWNYOU-FPYGCLRLSA-N nitrofural Chemical compound NC(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-FPYGCLRLSA-N 0.000 description 1
- 229960001907 nitrofurazone Drugs 0.000 description 1
- 229940053934 norethindrone Drugs 0.000 description 1
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 description 1
- 229960001858 norethynodrel Drugs 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229960005017 olanzapine Drugs 0.000 description 1
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 229960001057 paliperidone Drugs 0.000 description 1
- 229960001789 papaverine Drugs 0.000 description 1
- 230000002445 parasympatholytic effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229960002275 pentobarbital sodium Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229960000762 perphenazine Drugs 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 229960001190 pheniramine Drugs 0.000 description 1
- DDBREPKUVSBGFI-UHFFFAOYSA-N phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 1
- 229960002695 phenobarbital Drugs 0.000 description 1
- 229960001802 phenylephrine Drugs 0.000 description 1
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 1
- 229940100008 phospholine iodide Drugs 0.000 description 1
- 229960001416 pilocarpine Drugs 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960002800 prednisolone acetate Drugs 0.000 description 1
- FKKAEMQFOIDZNY-CODXZCKSSA-M prednisolone sodium succinate Chemical compound [Na+].O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COC(=O)CCC([O-])=O)[C@@H]4[C@@H]3CCC2=C1 FKKAEMQFOIDZNY-CODXZCKSSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000003236 psychic effect Effects 0.000 description 1
- WKSAUQYGYAYLPV-UHFFFAOYSA-N pyrimethamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C=C1 WKSAUQYGYAYLPV-UHFFFAOYSA-N 0.000 description 1
- 229960000611 pyrimethamine Drugs 0.000 description 1
- 239000006100 radiation absorber Substances 0.000 description 1
- 239000009342 ragweed pollen Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010517 refined sesame oil Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- 239000003128 rodenticide Substances 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- 229960000581 salicylamide Drugs 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960002646 scopolamine Drugs 0.000 description 1
- STECJAGHUSJQJN-FWXGHANASA-N scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 1
- 229960003141 secobarbital sodium Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 235000021309 simple sugar Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 229960004025 sodium salicylate Drugs 0.000 description 1
- AXXJTNXVUHVOJW-UHFFFAOYSA-M sodium;5-pentan-2-yl-5-prop-2-enylpyrimidin-3-ide-2,4,6-trione Chemical compound [Na+].CCCC(C)C1(CC=C)C(=O)NC(=O)[N-]C1=O AXXJTNXVUHVOJW-UHFFFAOYSA-M 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229960002673 sulfacetamide Drugs 0.000 description 1
- SKIVFJLNDNKQPD-UHFFFAOYSA-N sulfacetamide Chemical compound CC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 SKIVFJLNDNKQPD-UHFFFAOYSA-N 0.000 description 1
- 229960004306 sulfadiazine Drugs 0.000 description 1
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 1
- 229960002135 sulfadimidine Drugs 0.000 description 1
- 229960000654 sulfafurazole Drugs 0.000 description 1
- 229960002597 sulfamerazine Drugs 0.000 description 1
- QPPBRPIAZZHUNT-UHFFFAOYSA-N sulfamerazine Chemical compound CC1=CC=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 QPPBRPIAZZHUNT-UHFFFAOYSA-N 0.000 description 1
- ASWVTGNCAZCNNR-UHFFFAOYSA-N sulfamethazine Chemical compound CC1=CC(C)=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 ASWVTGNCAZCNNR-UHFFFAOYSA-N 0.000 description 1
- 229960005158 sulfamethizole Drugs 0.000 description 1
- VACCAVUAMIDAGB-UHFFFAOYSA-N sulfamethizole Chemical compound S1C(C)=NN=C1NS(=O)(=O)C1=CC=C(N)C=C1 VACCAVUAMIDAGB-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000001975 sympathomimetic effect Effects 0.000 description 1
- 229940064707 sympathomimetics Drugs 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- DZKXJUASMGQEMA-UHFFFAOYSA-N tetradecyl tetradecanoate Chemical compound CCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCC DZKXJUASMGQEMA-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000003451 thiazide diuretic agent Substances 0.000 description 1
- 229960004728 thiopropazate Drugs 0.000 description 1
- AIUHRQHVWSUTGJ-UHFFFAOYSA-N thiopropazate Chemical compound C1CN(CCOC(=O)C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 AIUHRQHVWSUTGJ-UHFFFAOYSA-N 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- 229960003223 tripelennamine Drugs 0.000 description 1
- HWKQNAWCHQMZHK-UHFFFAOYSA-N trolnitrate Chemical compound [O-][N+](=O)OCCN(CCO[N+]([O-])=O)CCO[N+]([O-])=O HWKQNAWCHQMZHK-UHFFFAOYSA-N 0.000 description 1
- 229960002485 trolnitrate Drugs 0.000 description 1
- 229960004791 tropicamide Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical group O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
Definitions
- the invention relates to formulations comprising non-polymeric, non-water soluble high viscosity liquid carrier materials, linear polymers and one or more solvents. More particularly, the invention relates to such formulations and their use in biologically active substance delivery.
- Biodegradable matrices for drug delivery are useful because they obviate the need to remove the drug-depleted device.
- polymers The most common matrix materials for drug delivery are polymers.
- the field of biodegradable polymers has developed rapidly since the synthesis and biodegradability of polylactic acid was reported by Kulkarni et al., in 1966 (“Polylactic acid for surgical implants,” Arch. Surg., 93:839).
- examples of other polymers which have been reported as useful as a matrix material for delivery devices include polyanhydrides, polyesters such as polyglycolides and polylactide-co-glycolides, polyamino acids such as polylysine, polymers and copolymers of polyethylene oxide, acrylic terminated polyethylene oxide, polyamides, polyurethanes, polyorthoesters, polyacrylonitriles, and polyphosphazenes.
- Degradable materials of biological origin are well known, for example, crosslinked gelatin.
- Hyaluronic acid has been crosslinked and used as a degradable swelling polymer for biomedical applications (U.S. Pat. No. 4,957,744 to Della Valle et al.; (1991) “Surface modification of polymeric biomaterials for reduced thrombogenicity,” Polym. Mater. Sci. Eng., 62:731-735).
- Biodegradable hydrogels have also been developed for use in controlled drug delivery as carriers of biologically active materials such as hormones, enzymes, antibiotics, antineoplastic agents, and cell suspensions. Temporary preservation of functional properties of a carried species, as well as the controlled release of the species into local tissues or systemic circulation, have been achieved. See for example, U.S. Pat. No. 5,149,543 to Cohen. Proper choice of hydrogel macromers can produce membranes with a range of permeability, pore sizes and degradation rates suitable for a variety of applications in surgery, medical diagnosis and treatment.
- Dispersion systems are currently in use as, or being explored for use as, carriers of substances, particularly biologically active compounds.
- Dispersion systems used for pharmaceutical and cosmetic formulations can be categorized as either suspensions or emulsions.
- Suspensions are defined as solid particles ranging in size from a few nanometers up to hundreds of microns, dispersed in a liquid medium using suspending agents. Solid particles include microspheres, microcapsules, and nanospheres.
- Emulsions are defined as dispersions of one liquid in another, stabilized by an interfacial film of emulsifiers such as surfactants and lipids.
- Emulsion formulations include water in oil and oil in water emulsions, multiple emulsions, microemulsions, microdroplets, and liposomes.
- Microdroplets are unilamellar phospholipid vesicles that consist of a spherical lipid layer with an oil phase inside, as defined in U.S. Pat. Nos. 4,622,219 and 4,725,442 issued to Haynes.
- Liposomes are phospholipid vesicles prepared by mixing water-insoluble polar lipids with an aqueous solution. The unfavorable entropy caused by mixing the insoluble lipid in the water produces a highly ordered assembly of concentric closed membranes of phospholipid with entrapped aqueous solution.
- U.S. Pat. No. 4,938,763 to Dunn, et al. discloses a method for forming an implant in situ by dissolving a non-reactive, water insoluble thermoplastic polymer in a biocompatible, water soluble solvent to form a liquid, placing the liquid within the body, and allowing the solvent to dissipate to produce a solid implant.
- the polymer solution can be placed in the body via syringe.
- the implant can assume the shape of its surrounding cavity.
- the implant is formed from reactive, liquid oligomeric polymers which contain no solvent and which cure in place to form solids, usually with the addition of a curing catalyst.
- U.S. Pat. No. 5,747,058 to Tipton et al. discloses a composition for the controlled release of substances that includes: (i) a non-polymeric, non-water soluble liquid carrier material (HVLCM) of viscosity of at least 5,000 cP at 37.degree. C. that does not crystallize neat under ambient or physiological conditions; and (ii) a substance to be delivered.
- HVLCM non-polymeric, non-water soluble liquid carrier material
- the invention relates to formulations comprising: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein (a) R satisfies the following: about 0.55 ⁇ R ⁇ about 0.95; (b) when R satisfies the following: about 0.55 ⁇ R ⁇ 0.85, the solvent capacity of the one or more solvents is greater than or equal to about 20%; and (c) when R satisfies the following: greater than about 0.85 to about 0.95, the solvent capacity of the one
- the invention in another aspect, relates to formulations comprising: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein: (a) R satisfies the following: about 0.55 ⁇ R ⁇ 0.85; and (b) the solvent capacity of the one or more solvents is greater than or equal to about 20%.
- the invention relates to formulations comprising: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein (a) R satisfies the following: greater than about 0.85 to about 0.95; and (b) the solvent capacity of the one or more solvents is greater than or equal to about 10%.
- the invention relates to formulations comprising: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer, wherein R satisfies the following: about 0.55 ⁇ R ⁇ about 0.95; and (iii) one or more solvents present in an amount ranging from about one weight percent up to about 35 weight percent, based on the total weight of the formulation; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein the one or more solvents comprise ethanol, ethyl lactate, propylene carbonate, glycofurol, N-methylpyrrolidone, 2-pyrrolidone, benzyl
- formulations that comprise: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C.
- a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein (a) R satisfies the following: about 0.55 ⁇ R ⁇ about 0.95; (b) when R satisfies the following: about 0.55 ⁇ R ⁇ 0.85, the solvent capacity of the one or more solvents is greater than or equal to about 20%; and (c) when R satisfies the following: greater than about 0.85 to about 0.95, the solvent capacity of the one or more solvents is greater than or equal to about 10%.
- formulations that comprise: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C.
- a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein: (a) R satisfies the following: about 0.55 ⁇ R ⁇ 0.85; and (b) the solvent capacity of the one or more solvents is greater than or equal to about 20%.
- formulations that comprise: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C.
- a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein (a) R satisfies the following: greater than about 0.85 to about 0.95; and (b) the solvent capacity of the one or more solvents is greater than or equal to about 10%.
- formulations that comprise: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C.
- a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer, wherein R satisfies the following: about 0.55 ⁇ R ⁇ about 0.95; and (iii) one or more solvents present in an amount ranging from about one weight percent up to about 35 weight percent, based on the total weight of the formulation; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein the one or more solvents comprise ethanol, ethyl lactate, propylene carbonate, glycofurol, N-methylpyrrolidone, 2-pyrrolidone, benzyl benzoate, miglyol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, benzyl alcohol, triacetin, dimethyl
- Linear polymers according to the invention can be used to alter the release profile of the biologically active substance to be delivered, to add integrity to the formulation, or to otherwise modify the properties of the formulation.
- Such linear polymers according to the invention comprise lactide repeat units.
- An example of such a polymer is poly(lactide-co-glycolide).
- the ratio R which is the ratio of lactide repeat units to total repeat units in the linear polymer, is given in the “R column” of Table 1.
- formulations according to the invention An important consideration in development of formulations according to the invention is the miscibility or solubility of the polymer in the formulation with the HVLCM.
- phase separation of the polymer and the HVLCM may occur. Once this occurs, it may be very difficult to remix the polymer and the HVLCM, especially at the point of use. Should improper remixing of the formulation occur, it might not release drug in a desired manner. Additionally, the formulations might be difficult to administer. Accordingly, formulations that have high miscibility or solubility of the polymer in the formulation with the HVLCM are desirable.
- inventive formulations possess this high miscibility or solubility of the linear polymer in the formulation with the HVLCM.
- Table 1 As can be seen by inspecting Table 1, not all formulations comprising linear polymers, HVLCMs, and solvents result in useful formulations.
- the formulations listed as “Comparative Formulations” are examples of formulations that were not considered to be useful in the context of the present invention.
- the inventive embodiments, such as those exemplified in Table 1 are useful and exhibit little if any phase separation.
- Formulation 6 which exhibits acceptable solubility behavior.
- This Formulation comprises 55 wt % sucrose acetate isobutyrate (SAIB), 25 wt % NMP, and 20 wt % of a poly(lactide-co-glycolide) (PLGA) having an R of 0.65 and a Mw of 5300.
- SAIB sucrose acetate isobutyrate
- PLGA poly(lactide-co-glycolide)
- Formulation 6 has a solvent capacity of 25 wt %.
- Formulations C11 and C12 are also presented.
- Formulation C11 comprises 55 wt % sucrose acetate isobutyrate (SAIB), 20 wt % NMP, 5 wt % of DMSO, and 20 wt % of a poly(lactide-co-glycolide) (PLGA) having an R of 0.65 and a Mw of 5300.
- Formulation C12 comprises 55 wt % sucrose acetate isobutyrate (SAIB), 20 wt % NMP, 5 wt % of benzyl benzoate, and 20 wt % of a poly(lactide-co-glycolide) (PLGA) having an R of 0.65 and a Mw of 5300.
- Formulations C11 and C12 comprise less than 25 wt % NMP, and are inadequate with respect to their solubility performance. Therefore, the formulations C11 and C12 do not meet the solvent capability requirements and are thus not inventive embodiments of the present invention.
- Examples 7 and 8 show how it is possible to determine the solvent capacity for the inventive formulations. This is performed for two additional solvent systems, besides the baseline NMP solvent system, and in two different embodiments of the inventive formulations.
- Examples 9 and 10 show embodiments of the inventive formulations that comprise biologically active substances.
- administering means providing a drug to a subject in a manner that is pharmacologically useful.
- Bioly active substance means molecule(s) including a drug, peptide, protein, carbohydrate (including monosaccharides, oligosaccharides, and polysaccharides), nucleoprotein, mucoprotein, lipoprotein, synthetic polypeptide or protein, or a small molecule linked to a protein, glycoprotein, steroid, nucleic acid (any form of DNA, including cDNA, or RNA, or a fragment thereof), nucleotide, nucleoside, oligonucleotides (including antisense oligonucleotides), gene, lipid, hormone, mineral supplement, vitamin including vitamin C and vitamin E, or combinations of any of the above, that cause(s) a biological effect when administered in vivo to an animal, including but not limited to birds and mammals, including humans.
- Drug means any substance used internally or externally as a medicine for the treatment, cure, or prevention of a disease or disorder, and includes but is not limited to immunosuppressants, antioxidants, anesthetics, chemotherapeutic agents, steroids (including retinoids), hormones, antibiotics, antivirals, antifungals, antiproliferatives, antihistamines, anticoagulants, antiphotoaging agents, melanotropic peptides, nonsteroidal and steroidal anti-inflammatory compounds, antipsychotics, and radiation absorbers, including UV-absorbers.
- biologically active substance also includes agents such as insecticides, pesticides, fungicides, rodenticides, and plant nutrients and growth promoters.
- the formulation is a vaccine and the substance to be delivered is an antigen.
- the antigen can be derived from a cell, bacteria, or virus particle, or portion thereof.
- antigen may be a protein, peptide, polysaccharide, glycoprotein, glycolipid, nucleic acid, or combination thereof, which elicits an immunogenic response in an animal, for example, a mammal, bird, or fish.
- the immunogenic response can be humoral or cell-mediated.
- the material to which the immunogenic response is to be directed is poorly antigenic, it may be conjugated to a carrier such as albumin or to a hapten, using standard covalent binding techniques, for example, with one of the several commercially available reagent kits.
- antigens examples include viral proteins such as influenza proteins, human immunodeficiency virus (HIV) proteins, and hepatitis A, B, or C proteins, and bacterial proteins, lipopolysaccharides such as gram negative bacterial cell walls and Neisseria gonorrhea proteins, and parvovirus.
- viral proteins such as influenza proteins, human immunodeficiency virus (HIV) proteins, and hepatitis A, B, or C proteins
- bacterial proteins such as gram negative bacterial cell walls and Neisseria gonorrhea proteins, and parvovirus.
- Non-limiting examples of pharmacological materials include anti-infectives such as nitrofurazone, sodium propionate, antibiotics, including penicillin, tetracycline, oxytetracycline, chlorotetracycline, bacitracin, nystatin, streptomycin, neomycin, polymyxin, gramicidin, chloramphenicol, erythromycin, and azithromycin; sulfonamides, including sulfacetamide, sulfamethizole, sulfamethazine, sulfadiazine, sulfamerazine, and sulfisoxazole, and anti-virals including idoxuridine; antiallergenics such as antazoline, methapyritene, chlorpheniramine, pyrilamine prophenpyridamine, hydrocortisone, cortisone, hydrocortisone acetate, dexamethasone, dexamethasone 21-phosphat
- the biologically active substance is included in the composition in an amount sufficient to deliver to the host animal or plant an effective amount to achieve a desired effect.
- the amount of biologically active substance incorporated into the composition depends upon the desired release profile, the concentration of biologically active substance required for a biological effect, and the desired period of release of the biologically active substance.
- the concentration of biologically active substance in the composition will also depend on absorption, inactivation, and excretion rates of the biologically active substance as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the inventive formulations, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed invention.
- the formulations may be administered in one dosage, or may be divided into a number of smaller doses to be administered at varying intervals of time.
- the biologically active substance is typically present in the formulations in the range from about 0.5 percent to about 30 percent by weight relative to the total weight of the formulations, and more typically, between approximately 1 percent to about 20 percent by weight, and more. Another preferred range is from about 2 percent to about 10 percent by weight. For very active biologically active substances, such as growth factors, preferred ranges are less than 1% by weight, and less than 0.0001%.
- Formulation means a pharmaceutical composition useful in the practice of this invention.
- Linear means a polymer in which the molecules form long chains substantially without branches or cross-linked structures.
- Non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions means a high viscosity liquid carrier material (“HVLCM”) that is non-polymeric, non-water soluble, and has a viscosity of at least 5,000 cP; preferably at least 10,000, 15,000; 20,000; 25,000 or even 50,000 cP; at 37° C. that does not crystallize neat under ambient or physiological conditions.
- HVLCM high viscosity liquid carrier material
- non-water soluble refers to a material that is soluble in water to a degree of less than one percent by weight under ambient conditions.
- the HVLCM significantly decreases in viscosity when mixed with a solvent to form a low viscosity liquid carrier material (“LVLCM”) that can be mixed with a substrate for controlled delivery.
- the LVLCM/substrate composition is typically easier to place in the body than a HVLCM/substrate composition, because it flows more easily into and out of syringes or other implantation means, and can easily be formulated as an emulsion.
- the LVLCM can have any desired viscosity. It has been found that a viscosity range for the LVLCM of less than approximately 2000 cP, and more particularly less than 1000 cP, is typically useful for in vivo applications.
- sucrose acetate isobutyrate (SAIB”), a sucrose molecule nominally esterified preferably with two acetic acid and six isobutyric acid moieties, is used as the HVLCM.
- SAIB is orally non-toxic and is currently used as to stabilize emulsions in the food industry. It is a very viscous liquid and has an unusual property that there is a dramatic change in viscosity with small additions of heat or with the addition of solvents. It is soluble in a large number of biocompatible solvents.
- SAIB can be applied via injection or an aerosol spray. SAIB is compatible with cellulose esters and other polymers that can affect the rate of delivery of the substance.
- the HVLCM can be stearate esters such as those of propylene glycol, glyceryl, diethylaminoethyl, and glycol, stearate amides and other long-chain fatty acid amides, such as N,N′-ethylene distearamide, stearamide MEA and DEA, ethylene bistearamide, cocoamine oxide, long-chain fatty alcohols, such as cetyl alcohol and stearyl alcohol, long-chain esters such as myristyl myristate, beheny erucate, and glyceryl phosphates.
- the HVLCM is acetylated sucrose distearate (Crodesta A-10). Additional materials suitable for use as the HVLCM are disclosed in US Patent Application Publication US 2004/0101557 by Gibson et al.
- the amount of HVLCM in a formulation will depend on the desired properties of a formulation and the solvent capacity of the chosen solvent. If the chosen solvent has poor solvent capacity performance, then the actual amount of solvent may be large, with a corresponding reduction in the amount of HVLCM in the formulation.
- the HVLCM is typically present in controlled delivery compositions in an amount in the range from about 99.5 percent to about 10 percent by weight, more typically, between 95 and 25 percent, and most typically, between 85 and 45, relative to the total weight of the composition.
- Polymer means a naturally occurring or synthetic compound made up of a linked series of repeat units.
- Polymer(s) include, but are not limited to, thermoplastic polymers and thermoset polymers.
- Polymer(s) may comprise linear polymers and/or branched polymers. Polymers may be synthesized from a single species of monomers, or may be copolymers that may be synthesized from more than one species of monomers.
- polymers according to the invention comprise polymers that comprise lactide repeat units. Polymers according to the invention may also comprise repeat units of other suitable materials, including but not limited to glycolide repeat units, polyethylene glycol repeat units, caprolactone repeat units, valerolactone repeat units, and the like.
- Initiators for such polymers include but are not limited to diol initiators including 1,6-hexanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol and the like; diol initiators including difunctional poly(ethylene glycol)s (PEGs); monofunctional alcohol initiators including 1-dodecanol, methyl lactate, ethyl lactate and the like; monofunctional PEGs including methoxy(polyethylene glycol) (mPEG); and other initiators including water, glycolic acid, lactic acid, citric acid, and the like.
- the polymer comprises a biodegradable polymer.
- the polymer comprises a biocompatible polymer.
- the polymer may be present in amounts ranging from about 1 wt % to about 45 wt %; more preferably, the polymer may be present in amounts ranging from about 5 wt % to about 35 wt %; and yet more preferably the polymer may be present in amounts ranging from about 5 wt % to about 25 wt %, all based on the total weight of the formulation.
- the polymer may be present in an amount ranging from about 15 wt % to about 45 wt %; preferably the polymer may be present in amounts ranging from about 15 wt % to about 35 wt %, all based on the total weight of the formulation.
- “Repeat units” means residues of monomers that are covalently incorporated into a polymer.
- lactide repeat units comprise lactide residues.
- glycolide repeat units comprise glycolide residues.
- a linear polymer may possess a ratio R of lactide repeat units to total repeat units in the linear polymer, wherein R may range from about 0.55 to about 0.95. Ranges of R of particular interest are from about 0.55 to 0.85, and from great than 0.85 to about 0.95. R may be determined experimentally or analytically for each polymer by proton NMR or similar techniques.
- solvent(s) means materials that are capable of dissolving other materials.
- solvents used in the practice of the present invention are biocompatible, water miscible and/or water soluble, and/or non-toxic.
- the biologically active substance may be soluble in the solvent.
- the solvents used to inject the inventive formulations into animals should not cause significant tissue irritation or necrosis at the site of implantation, unless irritation or necrosis is the desired effect.
- the solvent is preferably water miscible and/or water soluble, so that it will diffuse into bodily fluids or other aqueous environment, causing the formulation to assume a more viscous form. Certain solvents that are not water miscible and/or not water soluble may also be used in the practice of the invention.
- Suitable solvents include but are not limited to ethanol, ethyl lactate, propylene carbonate, glycofurol, N-methylpyrrolidone, 2-pyrrolidone, benzyl benzoate, miglyol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, benzyl alcohol, triacetin, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, caprolactam, decylmethylsulfoxide, oleic acid, and/or 1-dodecylazacycloheptan-2-one, and combinations of any of the above; with the proviso that one or more of the above listed solvents may be specifically excluded from the scope of the invention if it is to be disclaimed.
- the preferred solvents include ethanol, dimethylsulfoxide, ethyl lactate, ethyl acetate, benzyl alcohol, triacetin, N-methylpyrrolidone, propylene carbonate, and glycofurol.
- SAIB is not miscible with glycerol, corn oil, peanut oil, 1,2-propanediol, polyethylene glycol (PEG200), super refined sesame oil, and super refined peanut oil. Accordingly, the latter group of solvents are not preferred for use with SAIB.
- Solvent capacity means amount(s) of the one or more solvents that dissolves the HVLCM and linear polymer in the formulation to the same extent as would a hypothetical amount of N-methylpyrrolidone in the formulation. Solvent capacity is expressed as that hypothetical weight percent of N-methylpyrrolidone in the formulation, based on the total weight of the hypothetical formulation that would contain the N-methylpyrrolidone.
- a formulation having a solvent capacity of about 20% would have sufficient amounts of one or more solvents to dissolve the HVLCM and linear polymer to the same extent as if about 20% by weight of NMP were added to the formulation instead of the one or more solvents. If NMP were present as the one or more solvents in this embodiment, it would be present in an amount of about 20% by weight, based on the total weight of the formulation. If the one or more solvents were poorer solvents for the HVLCM and linear polymer, then the one or more solvents would be present in an amount greater than about 20% by weight, based on the total weight of the formulation. This is illustrated further in Examples 10 and 11.
- the solvent capacity of the one or more solvents is greater than or equal to about 35%, more preferably greater than or equal to about 25%; and still more preferably greater than or equal to about 20%.
- R ranges from greater than 0.85 to about 0.95
- the solvent capacity of the one or more solvents is greater than or equal to about 25%, more preferably greater than or equal to about 15%, and still more preferably greater than or equal to about 10%.
- Decrease in the lower boundary of solvent capacities represents a physical narrowing of the range of claimed formulations. This is because the number of formulations that exhibit satisfactory solubility behavior over the full range of recited solvent capacities decreases as the lower boundary of solvent capacity decreases.
- Subject is used interchangeably with “individual” and means any human or animal with which it is desired to practice the present invention.
- the term “subject” does not denote a particular age, and the present systems are thus suited for use with subjects of any age, such as infant, adolescent, adult and senior aged subjects
- a subject may comprise a patient.
- Weight average molecular weight or “Mw” means the weighted average molecular weight of polymers of interest. It can be expressed at the first moment of a plot of the weight of polymer in each molecular weight range against molecular weight.
- GPC is a column fractionation method wherein polymer molecules in solutions are separated based on their sizes. The separated polymer molecules are observed by a detector to generate the GPC chromatogram, which is a plot of elution volume or time (related to molecular size) versus abundance. The GPC chromatogram may be integrated to determine Mw, Mn, and MWD.
- GPC samples of polymer(s) of interest are filtered through a 0.2 ⁇ m Teflon filter before injection into the instrument. Injections of 50-200 ⁇ L are made to generate chromatograms. Chromatograms may be generated using various systems.
- a system comprises an Agilent LC 1100 using Chemstation software.
- a system comprises a Waters 510 pump, a Shimadzu CTO-10A column oven, and a Waters 410 differential refractometer. Data may be recorded directly to a PC via a Polymer Labs data capture unit using Caliber® software. A calibration curve may be generated using polystyrene standards.
- Preferred solvents for use in GPC comprise: chloroform, dichlormethane (methylene chloride), and tetrahydrofuran (THF).
- Preferred different column sets comprise: (1) two Polymer Labs Mixed C columns in series, (2) two Polymer Labs Mixed D columns in series, or (3) two Polymer Labs Mesopore columns in series.
- Preferred polystyrene calibrants comprise: Polymer Labs Easical PS1 kit, Polymer Labs Easical PS2 kit, Polymer Labs S-L-10 kit.
- the weight average molecular weight of polymers useful in the practice of the present invention is less than or equal to about 15,000 Daltons, additionally more preferably less than or equal to about 12,500 Daltons, and yet more preferably less than or equal to about 10,000 Daltons.
- miscibility or solubility of the polymer in the formulation with the HVLCM is important consideration in development of formulations according to the invention.
- phase separation of the polymer and the HVLCM in the formulation may occur. Once this occurs, it may be very difficult to remix the polymer and the HVLCM, especially at the point of use. Should improper remixing occur, undesirably wide variations in release performance might result. Accordingly, formulations that have high miscibility or solubility of the polymer in the formulation with the HVLCM are desirable.
- the inventive formulations possess this high miscibility or solubility of the polymer in the formulation with the HVLCM.
- Other points useful to consider in terms of formulation strategy may include the following.
- Minimizing total solvent content of the formulations is generally biologically desirable, for instance in an embodiment having a solvent content ranging from about one weight percent up to about 35 wt % solvent, preferably ranging from about one weight percent up to about 30 wt %, and yet more preferably ranging from about one weight percent up to about 25 wt %, based on the total weight of the formulation.
- increasing solvent content can move a HVLCM/linear polymer/solvent composition from phase separation to single phase behavior.
- the one or more solvents should be biocompatible, which may eliminate some solvents from use in the invention.
- the one or more solvents should be good solvents for both the polymer and HVLCM.
- the formulation may comprise the HVLCM, the linear polymer, one or more good solvents for the linear polymer and one or more good solvents for the HVLCM, with the resultant formulation being a single phase.
- Solubility and phase separation of various HVLVM/linear polymer/solvent formulation may be investigated by visual techniques well known to those skilled in the art.
- the linear polymer may absorb solvent but remain as a separated, very viscous layer or phase in the formulation.
- Other formulations might be rendered into a uniform clear solution by sufficient heating and mixing.
- two clear liquid phases may form.
- the two clear layers may not be easy to detect, thus requiring strong light and a thorough inspection of the formulation to discern the boundary between the two phases.
- formulations may appear clear and uniform on initial cooling to room temperature, but when left quiescent at room temperature for a period of several days or greater, the formulations may separate into two phases. For formulations that are at the border of phase separation, the formulation may turn cloudy and sometimes slowly separate into two phases.
- additives can optionally be included in the inventive formulations to modify the properties of the formulations as desired.
- the additives can be present in any amount that is sufficient to impart the desired properties to the formulations.
- the amount of additive used will in general be a function of the nature of the additive and the effect to be achieved, and can be easily determined by one of skill in the art.
- additive(s) are typically present in the formulations in an amount in the range from about 0.1 percent to about 20 percent by weight, relative to the total weight of the formulation, and more typically, is present in the composition in an amount in the range from about 1, 2, or 5 percent to about 10 percent by weight, relative to the total weight of the formulation.
- Certain additives, such as buffers, may be present only in small amounts in the relative to the total weight of the formulation.
- Non-biodegradable polymers are non-biodegradable polymers.
- Non-limiting examples of non-erodible polymers which can be used as additives include: polyacrylates, ethylene-vinyl acetate polymers, cellulose and cellulose derivatives, acyl substituted cellulose acetates and derivatives thereof, non-erodible polyurethanes, polystyrenes, polyvinyl chloride, polyvinyl fluoride, poly(vinyl imidazole), chlorosulphonated polyolefins, and polyethylene oxide.
- Preferred non-biodegradable polymers include polyethylene, polyvinyl pyrrolidone, ethylene vinylacetate, polyethylene glycol, cellulose acetate butyrate (“CAB”) and cellulose acetate propionate (“CAP”).
- a further class of additives which can be used in the inventive formulations are natural and synthetic oils and fats.
- Oils derived from animals or from plant seeds of nuts typically include glycerides of the fatty acids, chiefly oleic, palmitic, stearic, and linolenic. As a rule the more hydrogen the molecule contains, the thicker the oil becomes.
- Non-limiting examples of suitable natural and synthetic oils include vegetable oil, peanut oil, medium chain triglycerides, soybean oil, almond oil, olive oil, sesame oil, peanut oil, fennel oil, camellia oil, corn oil, castor oil, cotton seed oil, and soybean oil, either crude or refined, and medium chain fatty acid triglycerides.
- Fats are typically glyceryl esters of higher fatty acids such as stearic and palmitic. Such esters and their mixtures are solids at room temperatures and exhibit crystalline structure. Lard and tallow are examples. In general oils and fats increase the hydrophobicity of the formulation, slowing degradation and water uptake.
- Another class of additives which can be used in the inventive formulations comprise carbohydrates and carbohydrate derivatives.
- Non-limiting examples of these compounds include monosaccarides (simple sugars such as fructose and its isomer glucose (dextrose); disaccharides such as sucrose, maltose, cellobiose, and lactose; and polysaccarides.
- additives such as preservatives, stabilizers, anti-oxidants, coloring agents, isotonic agents, humectants, sequesterants, vitamins and vitamin precursors, surfactants and the like, may be added as needed.
- preservatives paraben derivatives are given with methyl paraben and propyl paraben given as most preferred preservatives.
- anti-oxidants butyl hydroxyanisole, butyl hydroxytoluene, propyl gallate, vitamin E acetate, and purified hydroquinone are given with vitamin E acetate and butyl hydroxytoluene given as most preferred anti-oxidants.
- humectant is sorbitol.
- sequesterant is citric acid.
- Inventive formulations may be made according to a number of methods.
- Add hot HVLCM (heated at up to 80° C.).
- dissolve the linear polymer in some of the solvent(s). Mix the remainder of the solvent(s) with the HVLCM.
- Inventive formulations are preferably prepared at temperatures above room temperature. Once mixed, the formulations may be cooled back to room temperature and initially observed for cloudiness (indication of incipient phase separation), the presence of two liquid layers (usually of low to moderate viscosity) or the presence of a viscous layer underneath a less viscous layer. The formulations may then be left at room temperature for a significant period (usually one week or greater) and observed again for cloudiness, separation into two layers of moderate viscosity or the presence of a viscous layer.
- inventive formulations may be administered to subjects using conventional routes of administration, such as injection. Effective amounts of biologically active substances may be incorporated into the inventive formulations so as to achieve a desired pharmacological effect.
- a 500 mL three-neck round bottom flask, a glass stirrer bearing, a gas joint, and a glass stirring shaft were dried in a glassware oven at 100° C. to remove all traces of moisture.
- the following materials were transferred to the flask: 179.00 g DL-lactide, 71.00 g of glycolide, and 13.75 g 1,6-hexanediol.
- the flask was equipped with the stirring shaft with a Teflon paddle, the stirrer bearing, and a gas joint connected to a manifold with vacuum and nitrogen gas supply.
- the stirrer shaft/bearing was sealed with a rubber balloon and the reaction mixture was evacuated for several minutes and the flask was backfilled with nitrogen gas.
- the flask was immersed in an oil bath maintained at 150° C. and stirred using an overhead stirrer attached to the shaft/paddle assembly. Once all of the monomer had melted, a charge of stannous 2-ethylhexanoate was added, 0.075 g in a solution of toluene (559 mL of a solution with a concentration of 0.13416 g/mL) was added to the melt. Stirring was continued for 4 hours Next, the temperature of the oil bath was reduced to 115° C., stirring was stopped, and the stirrer shaft/bearing was sealed with a rubber balloon and the reaction mixture was evacuated under full vacuum for 1 hour.
- the polymer was then poured onto a piece of Teflon film in a glass dish and allowed to cool.
- the finished polymer was stored protected from ambient moisture in a vacuum oven and/or plastic bags.
- the resulting polymer had a Mw of 5300 Da as determined approximately by GPC, and an R ratio of 0.65.
- PLGA polymer produced according to Example 2 was removed from cold storage & allowed to warm to room temperature.
- SAIB in a glass jar
- 2.59 grams of NMP were dispensed into the glass jar.
- 2.05 grams of 65/35 PLGA polymer were dispensed into the glass jar.
- the jar was sealed and fastened to a rotating mixing wheel. The mixing wheel was placed into an 80° C. oven and turned on so that the jar rotated at the outside of a circular path at a rate sufficient to achieve mixing. After two hours of mixing at 80° C., the jar was removed from the mixing wheel and allowed to cool to room temperature.
- the formulation composition was 55% SAIB, 25% NMP and 20% PLGA. On standing, the formulation remained clear and did not exhibit any evidence of phase separation.
- a 1 L three-neck round bottom flask, a glass stirrer bearing, a gas joint, and a stirring shaft were dried in a glassware oven at 100° C. to remove all traces of moisture.
- the following materials were transferred to the flask: 179.00 g DL-lactide, 71.00 g of glycolide, and 2.1 g of water.
- the flask was equipped with a stirring shaft and a Teflon paddle, a stirrer bearing, and a gas joint connected to a manifold with vacuum and nitrogen gas supply.
- the stirrer shaft/bearing was sealed and the reaction mixture was evacuated for several minutes and the flask was backfilled with nitrogen gas. This was repeated 4 additional times.
- the flask was immersed in an oil bath maintained at 159° C. and stirred using an overhead stirrer attached to the shaft/paddle assembly. Once all of the monomer had melted, a charge of stannous 2-ethylhexanoate, 0.1125 g in a solution of toluene, was added to the melt. Stirring was continued for 15 hours. Next, the temperature of the oil bath was reduced to 115° C., stirring was stopped, and the stirrer shaft/bearing was sealed and the reaction mixture was evacuated under full vacuum for 1 hour. The polymer was then poured onto a piece of Teflon film in a glass dish and allowed to cool. The finished polymer was stored protected from ambient moisture in a vacuum oven and/or plastic bags. The resulting polymer had a Mw of 7200 Da as determined approximately by GPC, and an R ratio of 0.65.
- PLGA polymer produced according to Example 2 was removed from cold storage & allowed to warm to room temperature. 20.36 grams of 65/35 PLGA polymer were dispensed into a glass jar. 25.45 grams of NMP were added to the jar and the jar was sealed. The jar was fastened to a rotating mixing wheel (Glas Col, Terre Haute, Ind.). The mixing wheel was turned on so that the jar rotated at the outside of a circular path, with heating at approximately 80° C. until the polymer was dissolved in the NMP. 55.49 grams of SAIB (warmed) were added to the polymer/NMP solution. The jar was sealed and fastened to a rotating mixing wheel (Glas Col, Terre Haute, Ind.).
- the mixing wheel was turned on so that the jar rotated at the outside of a circular path at a speed sufficient to achieve mixing.
- the solution was mixed until a uniform preparation was achieved.
- the formulation composition was 55% SAIB, 25% NMP and 20% PLGA, all expressed as wt % based on total weight of the formulation. On standing, the vehicle remained clear and did not exhibit any evidence of phase separation.
- Example 3 The atypical antipsychotic drug risperidone was added to the formulation of Example 3 (Formulation 26) as follows:
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Inorganic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Dispersion Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Neurology (AREA)
- Psychiatry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Disclosed are formulations and related methods that comprise a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; a specified linear polymer comprising lactide repeat units; and one or more solvents that have a solvent capacity.
Description
- 1. Field of the Invention
- The invention relates to formulations comprising non-polymeric, non-water soluble high viscosity liquid carrier materials, linear polymers and one or more solvents. More particularly, the invention relates to such formulations and their use in biologically active substance delivery.
- 2. Description of Related Art
- There has been extensive research in the area of biodegradable controlled release systems for bioactive compounds. Biodegradable matrices for drug delivery are useful because they obviate the need to remove the drug-depleted device.
- The most common matrix materials for drug delivery are polymers. The field of biodegradable polymers has developed rapidly since the synthesis and biodegradability of polylactic acid was reported by Kulkarni et al., in 1966 (“Polylactic acid for surgical implants,” Arch. Surg., 93:839). Examples of other polymers which have been reported as useful as a matrix material for delivery devices include polyanhydrides, polyesters such as polyglycolides and polylactide-co-glycolides, polyamino acids such as polylysine, polymers and copolymers of polyethylene oxide, acrylic terminated polyethylene oxide, polyamides, polyurethanes, polyorthoesters, polyacrylonitriles, and polyphosphazenes. See, for example, U.S. Pat. Nos. 4,891,225 and 4,906,474 to Langer (polyanhydrides), U.S. Pat. No. 4,767,628 to Hutchinson (polylactide, polylactide-co-glycolide acid), and U.S. Pat. No. 4,530,840 to Tice, et al. (polylactide, polyglycolide, and copolymers).
- Degradable materials of biological origin are well known, for example, crosslinked gelatin. Hyaluronic acid has been crosslinked and used as a degradable swelling polymer for biomedical applications (U.S. Pat. No. 4,957,744 to Della Valle et al.; (1991) “Surface modification of polymeric biomaterials for reduced thrombogenicity,” Polym. Mater. Sci. Eng., 62:731-735).
- Biodegradable hydrogels have also been developed for use in controlled drug delivery as carriers of biologically active materials such as hormones, enzymes, antibiotics, antineoplastic agents, and cell suspensions. Temporary preservation of functional properties of a carried species, as well as the controlled release of the species into local tissues or systemic circulation, have been achieved. See for example, U.S. Pat. No. 5,149,543 to Cohen. Proper choice of hydrogel macromers can produce membranes with a range of permeability, pore sizes and degradation rates suitable for a variety of applications in surgery, medical diagnosis and treatment.
- Many dispersion systems are currently in use as, or being explored for use as, carriers of substances, particularly biologically active compounds. Dispersion systems used for pharmaceutical and cosmetic formulations can be categorized as either suspensions or emulsions. Suspensions are defined as solid particles ranging in size from a few nanometers up to hundreds of microns, dispersed in a liquid medium using suspending agents. Solid particles include microspheres, microcapsules, and nanospheres. Emulsions are defined as dispersions of one liquid in another, stabilized by an interfacial film of emulsifiers such as surfactants and lipids. Emulsion formulations include water in oil and oil in water emulsions, multiple emulsions, microemulsions, microdroplets, and liposomes. Microdroplets are unilamellar phospholipid vesicles that consist of a spherical lipid layer with an oil phase inside, as defined in U.S. Pat. Nos. 4,622,219 and 4,725,442 issued to Haynes. Liposomes are phospholipid vesicles prepared by mixing water-insoluble polar lipids with an aqueous solution. The unfavorable entropy caused by mixing the insoluble lipid in the water produces a highly ordered assembly of concentric closed membranes of phospholipid with entrapped aqueous solution.
- U.S. Pat. No. 4,938,763 to Dunn, et al., discloses a method for forming an implant in situ by dissolving a non-reactive, water insoluble thermoplastic polymer in a biocompatible, water soluble solvent to form a liquid, placing the liquid within the body, and allowing the solvent to dissipate to produce a solid implant. The polymer solution can be placed in the body via syringe. The implant can assume the shape of its surrounding cavity. In an alternative embodiment, the implant is formed from reactive, liquid oligomeric polymers which contain no solvent and which cure in place to form solids, usually with the addition of a curing catalyst.
- U.S. Pat. No. 5,747,058 to Tipton et al., discloses a composition for the controlled release of substances that includes: (i) a non-polymeric, non-water soluble liquid carrier material (HVLCM) of viscosity of at least 5,000 cP at 37.degree. C. that does not crystallize neat under ambient or physiological conditions; and (ii) a substance to be delivered.
- While a number of materials have been evaluated for use in the controlled delivery of substances, there remains a need for formulations and methods that provide controlled delivery of biologically active substances with low toxicity.
- In an aspect, the invention relates to formulations comprising: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein (a) R satisfies the following: about 0.55≦R≦about 0.95; (b) when R satisfies the following: about 0.55≦R≦0.85, the solvent capacity of the one or more solvents is greater than or equal to about 20%; and (c) when R satisfies the following: greater than about 0.85 to about 0.95, the solvent capacity of the one or more solvents is greater than or equal to about 10%.
- In another aspect, the invention relates to formulations comprising: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein: (a) R satisfies the following: about 0.55≦R≦0.85; and (b) the solvent capacity of the one or more solvents is greater than or equal to about 20%.
- In yet another aspect, the invention relates to formulations comprising: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein (a) R satisfies the following: greater than about 0.85 to about 0.95; and (b) the solvent capacity of the one or more solvents is greater than or equal to about 10%.
- In still another aspect, the invention relates to formulations comprising: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer, wherein R satisfies the following: about 0.55≦R≦about 0.95; and (iii) one or more solvents present in an amount ranging from about one weight percent up to about 35 weight percent, based on the total weight of the formulation; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein the one or more solvents comprise ethanol, ethyl lactate, propylene carbonate, glycofurol, N-methylpyrrolidone, 2-pyrrolidone, benzyl benzoate, miglyol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, benzyl alcohol, triacetin, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, caprolactam, decylmethylsulfoxide, oleic acid, and/or 1-dodecylazacycloheptan-2-one, and combinations of any of the above.
- Before describing the present invention in detail, it is to be understood that this invention is not limited to particularly exemplified materials or process parameters as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting.
- All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety for all purposes.
- As used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the content clearly dictates otherwise. For example, reference to “a polymer” includes a mixture of two or more such molecules, reference to “a solvent” includes a mixture of two or more such compositions, reference to “an adhesive” includes mixtures of two or more such materials, and the like.
- Surprisingly, the inventors have found that the problems in the art may be addressed by providing formulations that comprise: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein (a) R satisfies the following: about 0.55≦R≦about 0.95; (b) when R satisfies the following: about 0.55≦R≦0.85, the solvent capacity of the one or more solvents is greater than or equal to about 20%; and (c) when R satisfies the following: greater than about 0.85 to about 0.95, the solvent capacity of the one or more solvents is greater than or equal to about 10%.
- Surprisingly, the inventors further have found that the problems in the art may be addressed by providing formulations that comprise: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein: (a) R satisfies the following: about 0.55≦R≦0.85; and (b) the solvent capacity of the one or more solvents is greater than or equal to about 20%.
- Additionally surprisingly, the inventors have found that the problems in the art may be addressed by providing formulations that comprise: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and (iii) one or more solvents that have a solvent capacity; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein (a) R satisfies the following: greater than about 0.85 to about 0.95; and (b) the solvent capacity of the one or more solvents is greater than or equal to about 10%.
- In addition, surprisingly, the inventors have found that the problems in the art may be addressed by providing formulations that comprise: (i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions; (ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer, wherein R satisfies the following: about 0.55≦R≦about 0.95; and (iii) one or more solvents present in an amount ranging from about one weight percent up to about 35 weight percent, based on the total weight of the formulation; wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and wherein the one or more solvents comprise ethanol, ethyl lactate, propylene carbonate, glycofurol, N-methylpyrrolidone, 2-pyrrolidone, benzyl benzoate, miglyol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, benzyl alcohol, triacetin, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, caprolactam, decylmethylsulfoxide, oleic acid, and/or 1-dodecylazacycloheptan-2-one, and combinations of any of the above.
- Linear polymers according to the invention can be used to alter the release profile of the biologically active substance to be delivered, to add integrity to the formulation, or to otherwise modify the properties of the formulation. Such linear polymers according to the invention comprise lactide repeat units. An example of such a polymer is poly(lactide-co-glycolide). The ratio R, which is the ratio of lactide repeat units to total repeat units in the linear polymer, is given in the “R column” of Table 1.
- An important consideration in development of formulations according to the invention is the miscibility or solubility of the polymer in the formulation with the HVLCM. In situations where the polymer is not miscible or soluble in the formulation with the HVLCM, phase separation of the polymer and the HVLCM may occur. Once this occurs, it may be very difficult to remix the polymer and the HVLCM, especially at the point of use. Should improper remixing of the formulation occur, it might not release drug in a desired manner. Additionally, the formulations might be difficult to administer. Accordingly, formulations that have high miscibility or solubility of the polymer in the formulation with the HVLCM are desirable.
- The inventive formulations possess this high miscibility or solubility of the linear polymer in the formulation with the HVLCM. As can be seen by inspecting Table 1, not all formulations comprising linear polymers, HVLCMs, and solvents result in useful formulations. The formulations listed as “Comparative Formulations” are examples of formulations that were not considered to be useful in the context of the present invention. In contrast, the inventive embodiments, such as those exemplified in Table 1, are useful and exhibit little if any phase separation.
- The effect of solvent capacity can be seen, for instance, by examining Formulation 6, which exhibits acceptable solubility behavior. This Formulation comprises 55 wt % sucrose acetate isobutyrate (SAIB), 25 wt % NMP, and 20 wt % of a poly(lactide-co-glycolide) (PLGA) having an R of 0.65 and a Mw of 5300. Formulation 6 has a solvent capacity of 25 wt %. By way of comparison, Formulations C11 and C12 are also presented. Formulation C11 comprises 55 wt % sucrose acetate isobutyrate (SAIB), 20 wt % NMP, 5 wt % of DMSO, and 20 wt % of a poly(lactide-co-glycolide) (PLGA) having an R of 0.65 and a Mw of 5300. Likewise, Formulation C12 comprises 55 wt % sucrose acetate isobutyrate (SAIB), 20 wt % NMP, 5 wt % of benzyl benzoate, and 20 wt % of a poly(lactide-co-glycolide) (PLGA) having an R of 0.65 and a Mw of 5300. Formulations C11 and C12 comprise less than 25 wt % NMP, and are inadequate with respect to their solubility performance. Therefore, the formulations C11 and C12 do not meet the solvent capability requirements and are thus not inventive embodiments of the present invention.
- Another way of understanding solvent capacity is shown in Examples 7 and 8. These Examples show how it is possible to determine the solvent capacity for the inventive formulations. This is performed for two additional solvent systems, besides the baseline NMP solvent system, and in two different embodiments of the inventive formulations.
- Examples 9 and 10 show embodiments of the inventive formulations that comprise biologically active substances.
- The invention will now be described in more detail.
- All percentages are weight percent unless otherwise noted.
- All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes and/or reproduced fully herein. The discussion of references herein is intended merely to summarize the assertions made by their authors and no admission is made that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinence of the cited references.
- The present invention is best understood by reference to the following definitions, the drawings and exemplary disclosure provided herein.
- “Administering” or “administration” means providing a drug to a subject in a manner that is pharmacologically useful.
- “Biologically active substance” means molecule(s) including a drug, peptide, protein, carbohydrate (including monosaccharides, oligosaccharides, and polysaccharides), nucleoprotein, mucoprotein, lipoprotein, synthetic polypeptide or protein, or a small molecule linked to a protein, glycoprotein, steroid, nucleic acid (any form of DNA, including cDNA, or RNA, or a fragment thereof), nucleotide, nucleoside, oligonucleotides (including antisense oligonucleotides), gene, lipid, hormone, mineral supplement, vitamin including vitamin C and vitamin E, or combinations of any of the above, that cause(s) a biological effect when administered in vivo to an animal, including but not limited to birds and mammals, including humans.
- Drug means any substance used internally or externally as a medicine for the treatment, cure, or prevention of a disease or disorder, and includes but is not limited to immunosuppressants, antioxidants, anesthetics, chemotherapeutic agents, steroids (including retinoids), hormones, antibiotics, antivirals, antifungals, antiproliferatives, antihistamines, anticoagulants, antiphotoaging agents, melanotropic peptides, nonsteroidal and steroidal anti-inflammatory compounds, antipsychotics, and radiation absorbers, including UV-absorbers.
- The term biologically active substance also includes agents such as insecticides, pesticides, fungicides, rodenticides, and plant nutrients and growth promoters.
- In one embodiment, the formulation is a vaccine and the substance to be delivered is an antigen. The antigen can be derived from a cell, bacteria, or virus particle, or portion thereof. As defined herein, antigen may be a protein, peptide, polysaccharide, glycoprotein, glycolipid, nucleic acid, or combination thereof, which elicits an immunogenic response in an animal, for example, a mammal, bird, or fish. As defined herein, the immunogenic response can be humoral or cell-mediated. In the event the material to which the immunogenic response is to be directed is poorly antigenic, it may be conjugated to a carrier such as albumin or to a hapten, using standard covalent binding techniques, for example, with one of the several commercially available reagent kits.
- Examples of preferred antigens include viral proteins such as influenza proteins, human immunodeficiency virus (HIV) proteins, and hepatitis A, B, or C proteins, and bacterial proteins, lipopolysaccharides such as gram negative bacterial cell walls and Neisseria gonorrhea proteins, and parvovirus.
- Non-limiting examples of pharmacological materials include anti-infectives such as nitrofurazone, sodium propionate, antibiotics, including penicillin, tetracycline, oxytetracycline, chlorotetracycline, bacitracin, nystatin, streptomycin, neomycin, polymyxin, gramicidin, chloramphenicol, erythromycin, and azithromycin; sulfonamides, including sulfacetamide, sulfamethizole, sulfamethazine, sulfadiazine, sulfamerazine, and sulfisoxazole, and anti-virals including idoxuridine; antiallergenics such as antazoline, methapyritene, chlorpheniramine, pyrilamine prophenpyridamine, hydrocortisone, cortisone, hydrocortisone acetate, dexamethasone, dexamethasone 21-phosphate, fluocinolone, triamcinolone, medrysone, prednisolone, prednisolone 21-sodium succinate, and prednisolone acetate; desensitizing agents such as ragweed pollen antigens, hay fever pollen antigens, dust antigen and milk antigen; vaccines such as smallpox, yellow fever, distemper, hog cholera, chicken pox, antivenom, scarlet fever, dyptheria toxoid, tetanus toxoid, pigeon pox, whooping cough, influenzae rabies, mumps, measles, poliomyelitic, and Newcastle disease; decongestants such as phenylephrine, naphazoline, and tetrahydrazoline; miotics and anticholinesterases such as pilocarpine, esperine salicylate, carbachol, diisopropyl fluorophosphate, phospholine iodide, and demecarium bromide; parasympatholytics such as atropine sulfate, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine, and hydroxyamphetamine; sympathomimetics such as epinephrine; sedatives and hypnotics such as pentobarbital sodium, phenobarbital, secobarbital sodium, codeine, (a-bromoisovaleryl) urea, carbromal; psychic energizers such as 3-(2-aminopropyl)indole acetate and 3-(2-aminobutyl)indole acetate; tranquilizers such as reserpine, chlorpromayline, and thiopropazate; androgenic steroids such as methyl-testosterone and fluorymesterone; estrogens such as estrone, 17-.beta.-estradiol, ethinyl estradiol, and diethyl stilbestrol; progestational agents such as progesterone, megestrol, melengestrol, chlormadinone, ethisterone, norethynodrel, 19-norprogesterone, norethindrone, medroxyprogesterone and 17-.beta.-hydroxy-progesterone; humoral agents such as the prostaglandins, for example PGE.sub.1, PGE.sub.2 and PGF.sub.2; antipyretics such as aspirin, sodium salicylate, and salicylamide; antispasmodics such as atropine, methantheline, papaverine, and methscopolamine bromide; antimalarials such as the 4-aminoquinolines, 8-aminoquinolines, chloroquine, and pyrimethamine, antihistamines such as diphenhydramine, dimenhydrinate, tripelennamine, perphenazine, and chlorphenazine; cardioactive agents such as dibenzhydroflume thiazide, flumethiazide, chlorothiazide, and aminotrate; antipsychotics including typical and atypical antipsychotics, wherein the atypical antipsychotics comprise risperidone, paliperidone, or olanzapine; nutritional agents such as vitamins, natural and synthetic bioactive peptides and proteins, including growth factors, cell adhesion factors, cytokines, and biological response modifiers; together with pharmaceutically acceptable salts and polymorphs of the above.
- The biologically active substance is included in the composition in an amount sufficient to deliver to the host animal or plant an effective amount to achieve a desired effect. The amount of biologically active substance incorporated into the composition depends upon the desired release profile, the concentration of biologically active substance required for a biological effect, and the desired period of release of the biologically active substance.
- The concentration of biologically active substance in the composition will also depend on absorption, inactivation, and excretion rates of the biologically active substance as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the inventive formulations, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed invention. The formulations may be administered in one dosage, or may be divided into a number of smaller doses to be administered at varying intervals of time.
- The biologically active substance is typically present in the formulations in the range from about 0.5 percent to about 30 percent by weight relative to the total weight of the formulations, and more typically, between approximately 1 percent to about 20 percent by weight, and more. Another preferred range is from about 2 percent to about 10 percent by weight. For very active biologically active substances, such as growth factors, preferred ranges are less than 1% by weight, and less than 0.0001%.
- “Formulation” means a pharmaceutical composition useful in the practice of this invention.
- “Linear” means a polymer in which the molecules form long chains substantially without branches or cross-linked structures.
- “Non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions” means a high viscosity liquid carrier material (“HVLCM”) that is non-polymeric, non-water soluble, and has a viscosity of at least 5,000 cP; preferably at least 10,000, 15,000; 20,000; 25,000 or even 50,000 cP; at 37° C. that does not crystallize neat under ambient or physiological conditions. The term non-water soluble refers to a material that is soluble in water to a degree of less than one percent by weight under ambient conditions.
- In a preferred embodiment, the HVLCM significantly decreases in viscosity when mixed with a solvent to form a low viscosity liquid carrier material (“LVLCM”) that can be mixed with a substrate for controlled delivery. The LVLCM/substrate composition is typically easier to place in the body than a HVLCM/substrate composition, because it flows more easily into and out of syringes or other implantation means, and can easily be formulated as an emulsion. The LVLCM can have any desired viscosity. It has been found that a viscosity range for the LVLCM of less than approximately 2000 cP, and more particularly less than 1000 cP, is typically useful for in vivo applications.
- In a preferred embodiment, sucrose acetate isobutyrate (“SAIB”), a sucrose molecule nominally esterified preferably with two acetic acid and six isobutyric acid moieties, is used as the HVLCM.
- SAIB is orally non-toxic and is currently used as to stabilize emulsions in the food industry. It is a very viscous liquid and has an unusual property that there is a dramatic change in viscosity with small additions of heat or with the addition of solvents. It is soluble in a large number of biocompatible solvents. When in solution or in an emulsion, SAIB can be applied via injection or an aerosol spray. SAIB is compatible with cellulose esters and other polymers that can affect the rate of delivery of the substance.
- In other embodiments, the HVLCM can be stearate esters such as those of propylene glycol, glyceryl, diethylaminoethyl, and glycol, stearate amides and other long-chain fatty acid amides, such as N,N′-ethylene distearamide, stearamide MEA and DEA, ethylene bistearamide, cocoamine oxide, long-chain fatty alcohols, such as cetyl alcohol and stearyl alcohol, long-chain esters such as myristyl myristate, beheny erucate, and glyceryl phosphates. In a particular embodiment, the HVLCM is acetylated sucrose distearate (Crodesta A-10). Additional materials suitable for use as the HVLCM are disclosed in US Patent Application Publication US 2004/0101557 by Gibson et al.
- The amount of HVLCM in a formulation will depend on the desired properties of a formulation and the solvent capacity of the chosen solvent. If the chosen solvent has poor solvent capacity performance, then the actual amount of solvent may be large, with a corresponding reduction in the amount of HVLCM in the formulation. The HVLCM is typically present in controlled delivery compositions in an amount in the range from about 99.5 percent to about 10 percent by weight, more typically, between 95 and 25 percent, and most typically, between 85 and 45, relative to the total weight of the composition.
- “Polymer” means a naturally occurring or synthetic compound made up of a linked series of repeat units. Polymer(s) include, but are not limited to, thermoplastic polymers and thermoset polymers. Polymer(s) may comprise linear polymers and/or branched polymers. Polymers may be synthesized from a single species of monomers, or may be copolymers that may be synthesized from more than one species of monomers. In embodiments, polymers according to the invention comprise polymers that comprise lactide repeat units. Polymers according to the invention may also comprise repeat units of other suitable materials, including but not limited to glycolide repeat units, polyethylene glycol repeat units, caprolactone repeat units, valerolactone repeat units, and the like. Initiators for such polymers include but are not limited to diol initiators including 1,6-hexanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol and the like; diol initiators including difunctional poly(ethylene glycol)s (PEGs); monofunctional alcohol initiators including 1-dodecanol, methyl lactate, ethyl lactate and the like; monofunctional PEGs including methoxy(polyethylene glycol) (mPEG); and other initiators including water, glycolic acid, lactic acid, citric acid, and the like. In preferred embodiments, the polymer comprises a biodegradable polymer. In additional preferred embodiments, the polymer comprises a biocompatible polymer. In embodiments, the polymer may be present in amounts ranging from about 1 wt % to about 45 wt %; more preferably, the polymer may be present in amounts ranging from about 5 wt % to about 35 wt %; and yet more preferably the polymer may be present in amounts ranging from about 5 wt % to about 25 wt %, all based on the total weight of the formulation. In other embodiments, the polymer may be present in an amount ranging from about 15 wt % to about 45 wt %; preferably the polymer may be present in amounts ranging from about 15 wt % to about 35 wt %, all based on the total weight of the formulation.
- “Repeat units” means residues of monomers that are covalently incorporated into a polymer. In embodiments, lactide repeat units comprise lactide residues. In certain embodiments, glycolide repeat units comprise glycolide residues. In embodiments, a linear polymer may possess a ratio R of lactide repeat units to total repeat units in the linear polymer, wherein R may range from about 0.55 to about 0.95. Ranges of R of particular interest are from about 0.55 to 0.85, and from great than 0.85 to about 0.95. R may be determined experimentally or analytically for each polymer by proton NMR or similar techniques.
- “Solvent(s) means materials that are capable of dissolving other materials. Preferably, solvents used in the practice of the present invention are biocompatible, water miscible and/or water soluble, and/or non-toxic. In embodiments, the biologically active substance may be soluble in the solvent. The solvents used to inject the inventive formulations into animals should not cause significant tissue irritation or necrosis at the site of implantation, unless irritation or necrosis is the desired effect.
- The solvent is preferably water miscible and/or water soluble, so that it will diffuse into bodily fluids or other aqueous environment, causing the formulation to assume a more viscous form. Certain solvents that are not water miscible and/or not water soluble may also be used in the practice of the invention. Examples of suitable solvents include but are not limited to ethanol, ethyl lactate, propylene carbonate, glycofurol, N-methylpyrrolidone, 2-pyrrolidone, benzyl benzoate, miglyol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, benzyl alcohol, triacetin, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, caprolactam, decylmethylsulfoxide, oleic acid, and/or 1-dodecylazacycloheptan-2-one, and combinations of any of the above; with the proviso that one or more of the above listed solvents may be specifically excluded from the scope of the invention if it is to be disclaimed.
- When SAIB is used as the HVLCM, the preferred solvents include ethanol, dimethylsulfoxide, ethyl lactate, ethyl acetate, benzyl alcohol, triacetin, N-methylpyrrolidone, propylene carbonate, and glycofurol. SAIB is not miscible with glycerol, corn oil, peanut oil, 1,2-propanediol, polyethylene glycol (PEG200), super refined sesame oil, and super refined peanut oil. Accordingly, the latter group of solvents are not preferred for use with SAIB.
- “Solvent capacity” means amount(s) of the one or more solvents that dissolves the HVLCM and linear polymer in the formulation to the same extent as would a hypothetical amount of N-methylpyrrolidone in the formulation. Solvent capacity is expressed as that hypothetical weight percent of N-methylpyrrolidone in the formulation, based on the total weight of the hypothetical formulation that would contain the N-methylpyrrolidone.
- Thus, in an embodiment, a formulation having a solvent capacity of about 20% would have sufficient amounts of one or more solvents to dissolve the HVLCM and linear polymer to the same extent as if about 20% by weight of NMP were added to the formulation instead of the one or more solvents. If NMP were present as the one or more solvents in this embodiment, it would be present in an amount of about 20% by weight, based on the total weight of the formulation. If the one or more solvents were poorer solvents for the HVLCM and linear polymer, then the one or more solvents would be present in an amount greater than about 20% by weight, based on the total weight of the formulation. This is illustrated further in Examples 10 and 11.
- In certain embodiments, when R (the ratio of lactide repeat units to total repeat units in the linear polymer) is between about 0.55 to 0.85, the solvent capacity of the one or more solvents is greater than or equal to about 35%, more preferably greater than or equal to about 25%; and still more preferably greater than or equal to about 20%. Likewise, in certain embodiments, when R ranges from greater than 0.85 to about 0.95, the solvent capacity of the one or more solvents is greater than or equal to about 25%, more preferably greater than or equal to about 15%, and still more preferably greater than or equal to about 10%. Decrease in the lower boundary of solvent capacities represents a physical narrowing of the range of claimed formulations. This is because the number of formulations that exhibit satisfactory solubility behavior over the full range of recited solvent capacities decreases as the lower boundary of solvent capacity decreases.
- “Subject” is used interchangeably with “individual” and means any human or animal with which it is desired to practice the present invention. The term “subject” does not denote a particular age, and the present systems are thus suited for use with subjects of any age, such as infant, adolescent, adult and senior aged subjects In certain embodiments, a subject may comprise a patient.
- “Weight average molecular weight” or “Mw” means the weighted average molecular weight of polymers of interest. It can be expressed at the first moment of a plot of the weight of polymer in each molecular weight range against molecular weight. In certain embodiments, weight-average molecular weight, Number-average molecular weight (Mn), and the molecular weight distribution (MWD=Mw/Mn) may be measured by gel permeation chromatography (GPC). GPC is a column fractionation method wherein polymer molecules in solutions are separated based on their sizes. The separated polymer molecules are observed by a detector to generate the GPC chromatogram, which is a plot of elution volume or time (related to molecular size) versus abundance. The GPC chromatogram may be integrated to determine Mw, Mn, and MWD.
- GPC samples of polymer(s) of interest, approximately 50 mg in 10 mL solvent, are filtered through a 0.2 μm Teflon filter before injection into the instrument. Injections of 50-200 μL are made to generate chromatograms. Chromatograms may be generated using various systems. In an embodiment, a system comprises an Agilent LC 1100 using Chemstation software. In another embodiment, a system comprises a Waters 510 pump, a Shimadzu CTO-10A column oven, and a Waters 410 differential refractometer. Data may be recorded directly to a PC via a Polymer Labs data capture unit using Caliber® software. A calibration curve may be generated using polystyrene standards. Mw, Mn, and MWD relative to polystyrene are calculated. Preferred solvents for use in GPC comprise: chloroform, dichlormethane (methylene chloride), and tetrahydrofuran (THF). Preferred different column sets comprise: (1) two Polymer Labs Mixed C columns in series, (2) two Polymer Labs Mixed D columns in series, or (3) two Polymer Labs Mesopore columns in series. Preferred polystyrene calibrants comprise: Polymer Labs Easical PS1 kit, Polymer Labs Easical PS2 kit, Polymer Labs S-L-10 kit.
- In embodiments, the weight average molecular weight of polymers useful in the practice of the present invention is less than or equal to about 15,000 Daltons, additionally more preferably less than or equal to about 12,500 Daltons, and yet more preferably less than or equal to about 10,000 Daltons.
- As noted above, an important consideration in development of formulations according to the invention is the miscibility or solubility of the polymer in the formulation with the HVLCM. In situations where the polymer is not miscible or soluble in the formulation with the HVLCM, phase separation of the polymer and the HVLCM in the formulation may occur. Once this occurs, it may be very difficult to remix the polymer and the HVLCM, especially at the point of use. Should improper remixing occur, undesirably wide variations in release performance might result. Accordingly, formulations that have high miscibility or solubility of the polymer in the formulation with the HVLCM are desirable.
- The inventive formulations possess this high miscibility or solubility of the polymer in the formulation with the HVLCM. Other points useful to consider in terms of formulation strategy may include the following. Minimizing total solvent content of the formulations is generally biologically desirable, for instance in an embodiment having a solvent content ranging from about one weight percent up to about 35 wt % solvent, preferably ranging from about one weight percent up to about 30 wt %, and yet more preferably ranging from about one weight percent up to about 25 wt %, based on the total weight of the formulation. In contrast, increasing solvent content can move a HVLCM/linear polymer/solvent composition from phase separation to single phase behavior. The one or more solvents should be biocompatible, which may eliminate some solvents from use in the invention. In an embodiment, the one or more solvents should be good solvents for both the polymer and HVLCM. In an alternate embodiment, the formulation may comprise the HVLCM, the linear polymer, one or more good solvents for the linear polymer and one or more good solvents for the HVLCM, with the resultant formulation being a single phase.
- Solubility and phase separation of various HVLVM/linear polymer/solvent formulation may be investigated by visual techniques well known to those skilled in the art. For formulations with significant instability or tendency to phase-separate, the linear polymer may absorb solvent but remain as a separated, very viscous layer or phase in the formulation. Other formulations might be rendered into a uniform clear solution by sufficient heating and mixing. However, when cooled to room temperature, two clear liquid phases may form. Sometimes, the two clear layers may not be easy to detect, thus requiring strong light and a thorough inspection of the formulation to discern the boundary between the two phases. In a number of cases, formulations may appear clear and uniform on initial cooling to room temperature, but when left quiescent at room temperature for a period of several days or greater, the formulations may separate into two phases. For formulations that are at the border of phase separation, the formulation may turn cloudy and sometimes slowly separate into two phases.
- A variety of additives can optionally be included in the inventive formulations to modify the properties of the formulations as desired. The additives can be present in any amount that is sufficient to impart the desired properties to the formulations. The amount of additive used will in general be a function of the nature of the additive and the effect to be achieved, and can be easily determined by one of skill in the art.
- When present, additive(s) are typically present in the formulations in an amount in the range from about 0.1 percent to about 20 percent by weight, relative to the total weight of the formulation, and more typically, is present in the composition in an amount in the range from about 1, 2, or 5 percent to about 10 percent by weight, relative to the total weight of the formulation. Certain additives, such as buffers, may be present only in small amounts in the relative to the total weight of the formulation.
- Another additive for use with the present compositions are non-biodegradable polymers. Non-limiting examples of non-erodible polymers which can be used as additives include: polyacrylates, ethylene-vinyl acetate polymers, cellulose and cellulose derivatives, acyl substituted cellulose acetates and derivatives thereof, non-erodible polyurethanes, polystyrenes, polyvinyl chloride, polyvinyl fluoride, poly(vinyl imidazole), chlorosulphonated polyolefins, and polyethylene oxide.
- Preferred non-biodegradable polymers include polyethylene, polyvinyl pyrrolidone, ethylene vinylacetate, polyethylene glycol, cellulose acetate butyrate (“CAB”) and cellulose acetate propionate (“CAP”).
- A further class of additives which can be used in the inventive formulations are natural and synthetic oils and fats. Oils derived from animals or from plant seeds of nuts typically include glycerides of the fatty acids, chiefly oleic, palmitic, stearic, and linolenic. As a rule the more hydrogen the molecule contains, the thicker the oil becomes.
- Non-limiting examples of suitable natural and synthetic oils include vegetable oil, peanut oil, medium chain triglycerides, soybean oil, almond oil, olive oil, sesame oil, peanut oil, fennel oil, camellia oil, corn oil, castor oil, cotton seed oil, and soybean oil, either crude or refined, and medium chain fatty acid triglycerides.
- Fats are typically glyceryl esters of higher fatty acids such as stearic and palmitic. Such esters and their mixtures are solids at room temperatures and exhibit crystalline structure. Lard and tallow are examples. In general oils and fats increase the hydrophobicity of the formulation, slowing degradation and water uptake.
- Another class of additives which can be used in the inventive formulations comprise carbohydrates and carbohydrate derivatives. Non-limiting examples of these compounds include monosaccarides (simple sugars such as fructose and its isomer glucose (dextrose); disaccharides such as sucrose, maltose, cellobiose, and lactose; and polysaccarides.
- Other additives, such as preservatives, stabilizers, anti-oxidants, coloring agents, isotonic agents, humectants, sequesterants, vitamins and vitamin precursors, surfactants and the like, may be added as needed. As preferred examples of preservatives, paraben derivatives are given with methyl paraben and propyl paraben given as most preferred preservatives. As preferred examples of anti-oxidants, butyl hydroxyanisole, butyl hydroxytoluene, propyl gallate, vitamin E acetate, and purified hydroquinone are given with vitamin E acetate and butyl hydroxytoluene given as most preferred anti-oxidants. Given as preferred examples of humectant is sorbitol. Given as preferred examples of sequesterant is citric acid.
- Inventive formulations may be made according to a number of methods. In certain embodiments, first combine room temperature solvent(s), room temperature linear polymer and HVLCM heated to 80° C. Next, mix at 60-80° C. for a period of several hours to overnight (8-16 hours) until the formulation is well-mixed. In other embodiments, dissolve the linear polymer in all of the solvent(s). Add hot HVLCM (heated at up to 80° C.). Then, mix at temperature of room temperature to 80° C. for 1 hour to overnight (8-16 hours) until the formulation is well-mixed. In yet other embodiments, dissolve the linear polymer in some of the solvent(s). Mix the remainder of the solvent(s) with the HVLCM. Add hot HVLCM/solvent mixture (heated at up to 80° C.) to the linear polymer/solvent(s) mixture. Then, mix at temperatures that may range from room temperature to 80° C. for 1 hour to overnight (8-16 hours), until the formulation is well-mixed.
- Inventive formulations are preferably prepared at temperatures above room temperature. Once mixed, the formulations may be cooled back to room temperature and initially observed for cloudiness (indication of incipient phase separation), the presence of two liquid layers (usually of low to moderate viscosity) or the presence of a viscous layer underneath a less viscous layer. The formulations may then be left at room temperature for a significant period (usually one week or greater) and observed again for cloudiness, separation into two layers of moderate viscosity or the presence of a viscous layer.
- Inventive formulations may be administered to subjects using conventional routes of administration, such as injection. Effective amounts of biologically active substances may be incorporated into the inventive formulations so as to achieve a desired pharmacological effect.
- While there has been described and pointed out features and advantages of the invention, as applied to present embodiments, those skilled in the medical art will appreciate that various modifications, changes, additions, and omissions in the method described in the specification can be made without departing from the spirit of the invention.
- The present invention is not to be limited in terms of the particular embodiments described in this application, which are intended as single illustrations of individual aspects of the invention. Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods within the scope of the invention, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing description. Such modifications and variations are intended to fall within the scope of the appended claims. The present invention is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.
- The following Examples are meant to be illustrative of the claimed invention, and not limiting in any way.
- Various formulation examples according to the invention, together with various comparative formulation examples, were prepared. Information relating to these examples is set forth in Table 1. The polymer synthesis, and formulation techniques for several representative examples have been set forth below. The remaining non-representative examples were prepared using such representative techniques, and with conventionally obtainable modifications to the representative techniques.
- A 500 mL three-neck round bottom flask, a glass stirrer bearing, a gas joint, and a glass stirring shaft were dried in a glassware oven at 100° C. to remove all traces of moisture. The following materials were transferred to the flask: 179.00 g DL-lactide, 71.00 g of glycolide, and 13.75 g 1,6-hexanediol. The flask was equipped with the stirring shaft with a Teflon paddle, the stirrer bearing, and a gas joint connected to a manifold with vacuum and nitrogen gas supply. The stirrer shaft/bearing was sealed with a rubber balloon and the reaction mixture was evacuated for several minutes and the flask was backfilled with nitrogen gas. The flask was immersed in an oil bath maintained at 150° C. and stirred using an overhead stirrer attached to the shaft/paddle assembly. Once all of the monomer had melted, a charge of stannous 2-ethylhexanoate was added, 0.075 g in a solution of toluene (559 mL of a solution with a concentration of 0.13416 g/mL) was added to the melt. Stirring was continued for 4 hours Next, the temperature of the oil bath was reduced to 115° C., stirring was stopped, and the stirrer shaft/bearing was sealed with a rubber balloon and the reaction mixture was evacuated under full vacuum for 1 hour. The polymer was then poured onto a piece of Teflon film in a glass dish and allowed to cool. The finished polymer was stored protected from ambient moisture in a vacuum oven and/or plastic bags. The resulting polymer had a Mw of 5300 Da as determined approximately by GPC, and an R ratio of 0.65.
- PLGA polymer produced according to Example 2 was removed from cold storage & allowed to warm to room temperature. SAIB (in a glass jar) was heated to 80° C. for several hours. 5.69 grams of hot SAIB were poured into a glass jar. Next, 2.59 grams of NMP were dispensed into the glass jar. Next, 2.05 grams of 65/35 PLGA polymer were dispensed into the glass jar. The jar was sealed and fastened to a rotating mixing wheel. The mixing wheel was placed into an 80° C. oven and turned on so that the jar rotated at the outside of a circular path at a rate sufficient to achieve mixing. After two hours of mixing at 80° C., the jar was removed from the mixing wheel and allowed to cool to room temperature. The formulation composition was 55% SAIB, 25% NMP and 20% PLGA. On standing, the formulation remained clear and did not exhibit any evidence of phase separation.
- A 1 L three-neck round bottom flask, a glass stirrer bearing, a gas joint, and a stirring shaft were dried in a glassware oven at 100° C. to remove all traces of moisture. The following materials were transferred to the flask: 179.00 g DL-lactide, 71.00 g of glycolide, and 2.1 g of water. The flask was equipped with a stirring shaft and a Teflon paddle, a stirrer bearing, and a gas joint connected to a manifold with vacuum and nitrogen gas supply. The stirrer shaft/bearing was sealed and the reaction mixture was evacuated for several minutes and the flask was backfilled with nitrogen gas. This was repeated 4 additional times. The flask was immersed in an oil bath maintained at 159° C. and stirred using an overhead stirrer attached to the shaft/paddle assembly. Once all of the monomer had melted, a charge of stannous 2-ethylhexanoate, 0.1125 g in a solution of toluene, was added to the melt. Stirring was continued for 15 hours. Next, the temperature of the oil bath was reduced to 115° C., stirring was stopped, and the stirrer shaft/bearing was sealed and the reaction mixture was evacuated under full vacuum for 1 hour. The polymer was then poured onto a piece of Teflon film in a glass dish and allowed to cool. The finished polymer was stored protected from ambient moisture in a vacuum oven and/or plastic bags. The resulting polymer had a Mw of 7200 Da as determined approximately by GPC, and an R ratio of 0.65.
- 3.28 grams of PLGA polymer made according to Example 4 were dissolved in a mixture of 1.55 grams of DMSO and 1.55 grams of ethanol. 24.98 grams of warm SAIB were added, with a resulting nominal formulation of 10.5% PLGA, 4.9% DMSO, 4.9% ethanol and 79.7% SAIB. The formulation separated into two phases at room temperature. Additional DMSO (3.90 grams) and additional ethanol (2.25 grams) were added to yield a nominal formulation of 8.8% PLGA, 14.5% DMSO, 10.1% ethanol and 66.6% SAIB. The formulation remained separated into two phases.
- PLGA polymer produced according to Example 2 was removed from cold storage & allowed to warm to room temperature. 20.36 grams of 65/35 PLGA polymer were dispensed into a glass jar. 25.45 grams of NMP were added to the jar and the jar was sealed. The jar was fastened to a rotating mixing wheel (Glas Col, Terre Haute, Ind.). The mixing wheel was turned on so that the jar rotated at the outside of a circular path, with heating at approximately 80° C. until the polymer was dissolved in the NMP. 55.49 grams of SAIB (warmed) were added to the polymer/NMP solution. The jar was sealed and fastened to a rotating mixing wheel (Glas Col, Terre Haute, Ind.). The mixing wheel was turned on so that the jar rotated at the outside of a circular path at a speed sufficient to achieve mixing. The solution was mixed until a uniform preparation was achieved. The formulation composition was 55% SAIB, 25% NMP and 20% PLGA, all expressed as wt % based on total weight of the formulation. On standing, the vehicle remained clear and did not exhibit any evidence of phase separation.
- Approximately 2.5 g of PLGA having a molecular weight of 4700 Da, a lactide/glycolide ratio of 65/35, and initiated by hexanediol; and 6.855 g of SAIB were added to a vial (i.e. fixed weight relationship of polymer to SAIB). Solvents, as shown in Table 2 below, were slowly added and the formulation was mixed at 60° C. in a Emprotech Unitherm® oven until a single phase solution was formed. The solution was then removed from the oven and allowed to sit on a bench top at roughly room temperature for approximately a week. If the solution phase separated more solvent was added and the formulation was mixed at 60° C. until a single phase solution was formed and remained a single phase for one week while sitting on the bench top at roughly room temperature. The final compositions are shown in Table as shown in Table 2 below. The solvent capacity of this vehicle was 25.61 wt %. 26.44 wt % wt % of BA or 42.64 wt % of DMSO were needed to achieve that solvent capacity.
-
TABLE 2 (figures are weight percent of total final weight) Material Trial A Trial B Trial C SAIB 53.86 41.99 54.55 PLGA 19.70 15.37 19.84 NMP 25.61 BA 26.44 DMSO 42.64 - Approximately 2.5 g of PLGA having a molecular weight of 6600 Da, a lactide/glycolide ratio of 65/35, and initiated with dodecanol; and 6.855 g of SAIB were added to a vial. Solvents, as shown in Table 3 below, were slowly added and the formulation was mixed at 60° C. in a Emprotech Unitherm® oven until a single phase solution was formed. The solution was then removed from the oven and allowed to sit on a bench top at roughly room temperature for approximately a week. If the solution phase separated more solvent was added and the formulation was mixed at 60° C. until a single phase solution was formed and remained a single phase for one week while sitting on the bench top at roughly room temperature. The final compositions are shown in Table 3 below. The solvent capacity of this vehicle was 17.36 wt %. 19.70 wt % of BA or 31.22 wt % of DMSO were needed to achieve that solvent capacity.
-
TABLE 3 (Figures are weight percent of total final weight) Material Trial D Trial E Trial F SAIB 58.83 50.37 60.58 PLGA 21.47 18.41 22.06 NMP 17.36 BA 19.70 DMSO 31.22 - 0.555 grams of PLGA (65/35 UG, 1-dodecanol initiated, MW of 6400 Daltons by GPC, from DURECT® Birmingham) was mixed with 3.620 grams of Benzyl Alcohol (from J. T. Baker) in a sealed bottle by gentle inversion inside a Lindberg/Blue M oven at 60° C. for 35 minutes, resulting in homogeneous solution. To this mixture was added 6.094 grams of hot SAIB (from Eastman Chemicals). The vehicle was mixed by gentle inversion for approximately 65 hours at room temperature. A uniform vehicle resulted (SAIB/benzyl alcohol/PLGA 59.34/35.25/5.40). 0.118 grams of naltrexone base (Mallinckrodt) was added to a separate bottle. 4.205 grams of the vehicle was added to this bottle. The naltrexone was dissolved in the vehicle by gentle inversion for approximately 3 hours, resulting in a uniform clear solution that was pale yellow in color. The composition of the naltrexone formulation (in wt % based on total formulation weight) was:
-
PLGA: 5.3% Benzyl alcohol 34.3% SAIB 57.7% Naltrexone 2.7% - The atypical antipsychotic drug risperidone was added to the formulation of Example 3 (Formulation 26) as follows:
- To 7.33 grams of Formulation 26, 1.095 grams of risperidone (from Kemprotec) were added. The vial was placed on a Glas-Col rotating wheel set at 30% for approximately two hours until a homogeneous suspension was obtained. The resulting formulation had the composition of 48% SAIB, 22% NMP, 17% PLGA and 13% Risperidone, with percentages expressed as weight percent based on total weight of the formulation. The resulting vehicle was a stable homogeneous suspension.
-
TABLE 1 Mw Formulation #: Polymer R (GPC) Formulation composition Solubility Behavior 1 PLGA 65/35- 0.65 7200 SAIB/NMP/EtOH/PLGA-COOH: Soluble COOH 68.4/13.2/9.2/9.3 2 PLGA 65/35 0.65 5300 SAIB/NMP/PLGA: 70/25/5 Soluble 3 PLGA 65/35 0.65 5300 SAIB/NMP/PLGA: 70.3/20.3/9.4 Soluble 4 PLGA 65/35 0.65 5300 SAIB/NMP/PLGA: 59.7/26.5/13.8 Soluble 5 PLGA 65/35 0.65 5300 SAIB/NMP/PLGA: 65/30/15 Soluble 6 PLGA 65/35 0.65 5300 SAIB/NMP/PLGA: 55/25/20 Soluble 7 PLGA 65/35 0.65 5300 SAIB/NMP/EtOH/PLGA: 58.6/14.0/9.4/18.0 cloudy but single phase 8 PLGA 65/35 0.65 5300 SAIB/NMP/EtOH/PLGA: Soluble 55.0/15.1/10.0/20.0 9 PLGA 65/35 0.65 5300 SAIB/NMP/EtOH/PLGA: 55.1/19.9/5.0/20.0 Soluble 10 PLGA 65/35 0.65 5300 SAIB/NMP/DMSO/PLGA: Soluble 54.1/19.8/6.0/20.1 11 PLGA 65/35 0.65 5300 SAIB/NMP/BA/PLGA: 55/20/5/20 Soluble 12 PLGA 65/35 0.65 5300 SAIB/DMSO/EtOH/PLGA: 65/25/5/5 Soluble 13 PLGA 65/35 0.65 5300 SAIB/DMSO/BA/PLGA: 65/25/5/5 Soluble 14 PLGA 65/35 0.65 5300 SAIB/DMSO/NMP/PLGA: 65/25/5/5 Soluble 15 PLGA 65/35 0.65 4100 SAIB/NMP/PLGA: 53.1/21.9/25.0 Soluble 16 PLGA 65/35 0.65 4100 SAIB/NMP/PLGA: 49.2/22.6/28.2 Soluble 17 PLGA 65/35 0.65 4100 SAIB/NMP/PLGA: 29.7/33.9/36.4 Soluble 18 PLGA 65/35 0.65 3200 SAIB/NMP/PLGA: 70.0/20.0/10.0 Soluble 19 PLGA 65/35 0.65 4700 SAIB/NMP/PLGA: 55/25/20 Soluble 20 PLGA 65/35 0.65 6600 SAIB/NMP/PLGA: 55/25/20 Soluble 21 PLGA 65/35 0.65 6600 SAIB/NMP/EtOH/PLGA: 55/15/10/20 Soluble 22 PLGA 60/40 0.6 3200 SAIB/NMP/PLGA: 70.0/20.0/10.0 Soluble 23 PLGA 55/45 0.55 3200 SAIB/NMP/PLGA: 65/25/10 Soluble C1 PLGA 0.65 7200 SAIB/NMP/PLGA-COOH: 70/25/5 not soluble 65/35- COOH C2 PLGA 0.65 7200 SAIB/BA/EtOH/PLGA-COOH: not soluble 65/35- 65.3/14.1/11.1/9.5 COOH C3 PLGA 0.65 7200 SAIB/DMSO/EtOH/PLGA: not soluble 65/35- 66.6/14.5/10.1/8.8 COOH C4 PLGA 65/35 0.65 5300 SAIB/NMP/PLGA: 75/15/10 not soluble C5 PLGA 65/35 0.65 5300 SAIB/NMP/PLGA: 65/20/15 not soluble C6 PLGA 65/35 0.65 5300 SAIB/NMP/PLGA: 60/20/20 not soluble C7 PLGA 65/35 0.65 5300 SAIB/NMP/EtOH/PLGA: 72.9/8.8/8.6/9.6 not soluble C8 PLGA 65/35 0.65 5300 SAIB/NMP/EtOH/PLGA: 62.0/17.2/4.6/16.2 separates long term C9 PLGA 65/35 0.65 5300 SAIB/NMP/DMSO/PLGA: separates long term 53.8/15.4/10.8/20.1 C10 PLGA 65/35 0.65 5300 SAIB/NMP/DMSO/PLGA: separates long term 54.9/15.0/9.8/20.1 C11 PLGA 65/35 0.65 5300 SAIB/NMP/DMSO/PLGA: 55/20/5/20 separates long term C12 PLGA 65/35 0.65 5300 SAIB/NMP/BB/PLGA: 55/20/5/20 not soluble C13 PLGA 65/35 0.65 5300 SAIB/DMSO/PLGA: 70/25/5 not soluble C14 PLGA 65/35 0.65 5300 SAIB/DMSO/PLGA: 65/30/5 not soluble C15 PLGA 65/35 0.65 5300 SAIB/DMSO/EtOH/PLGA: 71.7/10.0/8.7/9.7 not soluble C16 PLGA 65/35 0.65 5300 SAIB/DMSO/BB/PLGA: 65/25/5/5 not soluble C17 PLGA 65/35 0.65 5300 SAIB/BA/EtOH/PLGA: 69.8/11.8/8.8/9.5 not soluble C18 PLGA 0.50 5500 SAIB/NMP/PLGA-COOH: 70/25/5 separates at RT & 37 C. 50/50- COOH
Claims (40)
1. A formulation comprising:
(i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions;
(ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and
(iii) one or more solvents that have a solvent capacity;
wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and
wherein
(a) R satisfies the following: about 0.55≦R≦about 0.95;
(b) when R satisfies the following: about 0.55≦R≦0.85, the solvent capacity of the one or more solvents is greater than or equal to about 20%; and
(c) when R satisfies the following: greater than about 0.85 to about 0.95, the solvent capacity of the one or more solvents is greater than or equal to about 10%.
2. The formulation of claim 1 , wherein when R satisfies the following: about 0.55≦R≦0.85, the solvent capacity of the one or more solvents is greater than or equal to about 25%; and when R satisfies the following: greater than about 0.85 to about 0.95, the solvent capacity of the one or more solvents is greater than or equal to about 15%.
3. The formulation of claim 2 , wherein: wherein when R satisfies the following: about 0.55≦R≦0.85, the solvent capacity of the one or more solvents is greater than or equal to about 35%; and when R satisfies the following: greater than about 0.85 to about 0.95, the solvent capacity of the one or more solvents is greater than or equal to about 25%.
4. The formulation of claim 1 , wherein the non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions comprises sucrose acetate isobutyrate.
5. The formulation of claim 1 , further comprising a biologically active substance.
6. The formulation of claim 5 , wherein the biologically active substance comprises an atypical antipsychotic.
7. The formulation of claim 6 , wherein the atypical antipsychotic comprises risperidone or a pharmaceutically acceptable salt or polymorph thereof.
8. The formulation of claim 1 , wherein the linear polymer comprises poly (lactide-co-glycolide).
9. The formulation of claim 1 , wherein the linear polymer is present in an amount ranging from about 1 wt % to about 45 wt %, based on the total weight of the formulation.
10. The formulation of claim 9 , wherein the linear polymer is present in an amount ranging from about 15 wt % to about 45 wt %, based on the total weight of the formulation.
11. A formulation comprising:
(i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions;
(ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and
(iii) one or more solvents that have a solvent capacity;
wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and
wherein:
(a) R satisfies the following: about 0.55≦R≦0.85; and
(b) the solvent capacity of the one or more solvents is greater than or equal to about 20%.
12. The formulation of claim 11 , the solvent capacity of the one or more solvents is greater than or equal to about 25%.
13. The formulation of claim 12 , the solvent capacity of the one or more solvents is greater than or equal to about 35%.
14. The formulation of claim 11 , wherein the non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions comprises sucrose acetate isobutyrate.
15. The formulation of claim 11 , further comprising a biologically active substance.
16. The formulation of claim 15 , wherein the biologically active substance comprises an atypical antipsychotic.
17. The formulation of claim 16 , wherein the atypical antipsychotic comprises risperidone or a pharmaceutically acceptable salt or polymorph thereof.
18. The formulation of claim 11 , wherein the linear polymer comprises poly (lactide-co-glycolide).
19. The formulation of claim 11 , wherein the linear polymer is present in an amount ranging from about 1 wt % to about 45 wt %, based on the total weight of the formulation.
20. The formulation of claim 19 , wherein the linear polymer is present in an amount ranging from about 15 wt % to about 45 wt %, based on the total weight of the formulation.
21. A formulation comprising:
(i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions;
(ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer; and
(iii) one or more solvents that have a solvent capacity;
wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and
wherein
(a) R satisfies the following: greater than about 0.85 to about 0.95; and
(b) the solvent capacity of the one or more solvents is greater than or equal to about 10%.
22. The formulation of claim 21 , wherein the solvent capacity of the one or more solvents is greater than or equal to about 15%.
23. The formulation of claim 22 , wherein the solvent capacity of the one or more solvents is greater than or equal to about 25%.
24. The formulation of claim 21 , wherein the non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions comprises sucrose acetate isobutyrate.
25. The formulation of claim 21 , further comprising a biologically active substance.
26. The formulation of claim 21 , wherein the biologically active substance comprises an atypical antipsychotic.
27. The formulation of claim 26 , wherein the atypical antipsychotic comprises risperidone or a pharmaceutically acceptable salt or polymorph thereof.
28. The formulation of claim 21 , wherein the linear polymer comprises poly (lactide-co-glycolide).
29. The formulation of claim 21 , wherein the linear polymer is present in an amount ranging from about 1 wt % to about 45 wt %, based on the total weight of the formulation.
30. The formulation of claim 29 , wherein the linear polymer is present in an amount ranging from about 15 wt % to about 45 wt %, based on the total weight of the formulation.
31. A formulation comprising:
(i) a non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions;
(ii) a linear polymer comprising lactide repeat units, wherein the linear polymer possesses a ratio R of lactide repeat units to total repeat units in the linear polymer, wherein R satisfies the following: about 0.55≦R≦about 0.95; and
(iii) one or more solvents present in an amount ranging from about one weight percent up to about 35 weight percent, based on the total weight of the formulation;
wherein the linear polymer has a weight average molecular weight less than or equal to about 15,000 Daltons, and
wherein the one or more solvents comprise ethanol, ethyl lactate, propylene carbonate, glycofurol, N-methylpyrrolidone, 2-pyrrolidone, benzyl benzoate, miglyol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, benzyl alcohol, triacetin, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, caprolactam, decylmethylsulfoxide, oleic acid, and/or 1-dodecylazacycloheptan-2-one, and combinations of any of the above.
32. The formulation of claim 31 , wherein the non-polymeric, non-water soluble high viscosity liquid carrier material having a viscosity of at least 5,000 cP at 37° C. that does not crystallize neat under ambient or physiological conditions comprises sucrose acetate isobutyrate.
33. The formulation of claim 31 , further comprising a biologically active substance.
34. The formulation of claim 33 , wherein the biologically active substance comprises an atypical antipsychotic.
35. The formulation of claim 34 , wherein the atypical antipsychotic comprises risperidone or a pharmaceutically acceptable salt or polymorph thereof.
36. The formulation of claim 31 , wherein the linear polymer comprises poly (lactide-co-glycolide).
37. The formulation of claim 31 , wherein the one or more solvents are present in an amount ranging from about one weight percent up to about 30 weight percent, based on the total weight of the formulation.
38. The formulation of claim 37 , wherein the one or more solvents are present in an amount ranging from about one weight percent up to about 25 weight percent, based on the total weight of the formulation.
39. The formulation of claim 31 , wherein the linear polymer is present in an amount ranging from about 1 wt % to about 45 wt %, based on the total weight of the formulation.
40. The formulation of claim 39 , wherein the linear polymer is present in an amount ranging from about 15 wt % to about 45 wt %, based on the total weight of the formulation.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/152,764 US20080287464A1 (en) | 2007-05-18 | 2008-05-16 | Depot Formulations |
US13/790,902 US10028957B2 (en) | 2007-05-18 | 2013-03-08 | Depot formulations |
US14/801,141 US20160045601A1 (en) | 2007-05-18 | 2015-07-16 | Depot formulations |
US15/054,473 US20160279131A1 (en) | 2007-05-18 | 2016-02-26 | Depot formulations |
US16/017,477 US20190030032A1 (en) | 2007-05-18 | 2018-06-25 | Depot formulations |
US16/559,155 US20200101073A1 (en) | 2007-05-18 | 2019-09-03 | Depot formulations |
US17/063,095 US20210121467A1 (en) | 2007-05-18 | 2020-10-05 | Depot formulations |
US18/093,240 US20230146925A1 (en) | 2007-05-18 | 2023-01-04 | Depot formulations |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US93073907P | 2007-05-18 | 2007-05-18 | |
US12/152,764 US20080287464A1 (en) | 2007-05-18 | 2008-05-16 | Depot Formulations |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/790,902 Continuation US10028957B2 (en) | 2007-05-18 | 2013-03-08 | Depot formulations |
US14/801,141 Continuation US20160045601A1 (en) | 2007-05-18 | 2015-07-16 | Depot formulations |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080287464A1 true US20080287464A1 (en) | 2008-11-20 |
Family
ID=39708928
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/152,764 Abandoned US20080287464A1 (en) | 2007-05-18 | 2008-05-16 | Depot Formulations |
US13/790,902 Active 2030-03-13 US10028957B2 (en) | 2007-05-18 | 2013-03-08 | Depot formulations |
US14/801,141 Abandoned US20160045601A1 (en) | 2007-05-18 | 2015-07-16 | Depot formulations |
US15/054,473 Abandoned US20160279131A1 (en) | 2007-05-18 | 2016-02-26 | Depot formulations |
US16/017,477 Abandoned US20190030032A1 (en) | 2007-05-18 | 2018-06-25 | Depot formulations |
US16/559,155 Abandoned US20200101073A1 (en) | 2007-05-18 | 2019-09-03 | Depot formulations |
US17/063,095 Abandoned US20210121467A1 (en) | 2007-05-18 | 2020-10-05 | Depot formulations |
US18/093,240 Pending US20230146925A1 (en) | 2007-05-18 | 2023-01-04 | Depot formulations |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/790,902 Active 2030-03-13 US10028957B2 (en) | 2007-05-18 | 2013-03-08 | Depot formulations |
US14/801,141 Abandoned US20160045601A1 (en) | 2007-05-18 | 2015-07-16 | Depot formulations |
US15/054,473 Abandoned US20160279131A1 (en) | 2007-05-18 | 2016-02-26 | Depot formulations |
US16/017,477 Abandoned US20190030032A1 (en) | 2007-05-18 | 2018-06-25 | Depot formulations |
US16/559,155 Abandoned US20200101073A1 (en) | 2007-05-18 | 2019-09-03 | Depot formulations |
US17/063,095 Abandoned US20210121467A1 (en) | 2007-05-18 | 2020-10-05 | Depot formulations |
US18/093,240 Pending US20230146925A1 (en) | 2007-05-18 | 2023-01-04 | Depot formulations |
Country Status (12)
Country | Link |
---|---|
US (8) | US20080287464A1 (en) |
EP (2) | EP3115038A1 (en) |
JP (4) | JP5599705B2 (en) |
CN (2) | CN103007288B (en) |
AU (1) | AU2008254538B2 (en) |
CA (1) | CA2686137C (en) |
DK (1) | DK2167039T3 (en) |
ES (1) | ES2606951T3 (en) |
HU (1) | HUE030789T2 (en) |
IL (1) | IL202181A (en) |
PL (1) | PL2167039T3 (en) |
WO (1) | WO2008143992A2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090263455A1 (en) * | 2008-04-18 | 2009-10-22 | Warsaw Orthopedic, Inc. | Dexamethasone Formulations in a Bioegradable Material |
WO2011151355A1 (en) * | 2010-05-31 | 2011-12-08 | Laboratorios Farmacéuticos Rovi, S.A. | Antipsychotic injectable depot composition |
WO2013078396A2 (en) | 2011-11-23 | 2013-05-30 | Durect Corporation | Radiation-sterilized biodegradable drug delivery compositions |
US20130177603A1 (en) * | 2010-05-31 | 2013-07-11 | Laboratorios Farmaceuticos Rovi, S.A. | Methods for the Preparation of Injectable Depot Compositions |
EP2529756A3 (en) * | 2011-05-31 | 2013-08-07 | Laboratorios Farmaceuticos Rovi, S.A. | Risperidone and/or Paliperidone implant formulation |
EP2643009A1 (en) * | 2010-11-24 | 2013-10-02 | Durect Corporation | Biodegradable drug delivery composition |
WO2014164754A1 (en) | 2013-03-11 | 2014-10-09 | Durect Corporation | Injectable controlled release composition comprising high viscosity liquid carrier |
US9044450B2 (en) | 2005-09-30 | 2015-06-02 | Durect Corporation | Sustained release small molecule drug formulation |
US9572812B2 (en) | 2013-03-11 | 2017-02-21 | Durect Corporation | Compositions and methods involving polymer, solvent, and high viscosity liquid carrier material |
US10010612B2 (en) | 2007-05-25 | 2018-07-03 | Indivior Uk Limited | Sustained delivery formulations of risperidone compounds |
US10028957B2 (en) | 2007-05-18 | 2018-07-24 | Durect Corporation | Depot formulations |
US10285936B2 (en) | 2010-05-31 | 2019-05-14 | Laboratorios Farmacéuticos Rovi, S.A. | Injectable composition with aromatase inhibitor |
US10335366B2 (en) | 2010-05-31 | 2019-07-02 | Laboratorios Farmacéuticos Rovi, S.A. | Risperidone or paliperidone implant formulation |
US10350159B2 (en) | 2010-05-31 | 2019-07-16 | Laboratories Farmacéuticos Rovi, S.A. | Paliperidone implant formulation |
US10463607B2 (en) | 2010-05-31 | 2019-11-05 | Laboratorios Farmaceutics Rofi S.A. | Antipsychotic Injectable Depot Composition |
US10758623B2 (en) | 2013-12-09 | 2020-09-01 | Durect Corporation | Pharmaceutically active agent complexes, polymer complexes, and compositions and methods involving the same |
US10881605B2 (en) | 2010-05-31 | 2021-01-05 | Laboratorios Farmaceuticos Rovi, S.A. | Methods for the preparation of injectable depot compositions |
US11083796B2 (en) | 2005-07-26 | 2021-08-10 | Durect Corporation | Peroxide removal from drug delivery vehicle |
US11400019B2 (en) | 2020-01-13 | 2022-08-02 | Durect Corporation | Sustained release drug delivery systems with reduced impurities and related methods |
WO2023046731A1 (en) | 2021-09-21 | 2023-03-30 | Laboratorios Farmacéuticos Rovi, S.A. | Antipsychotic injectable extended-release composition |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100016142A (en) * | 2007-04-03 | 2010-02-12 | 트라이머리스, 인코퍼레이티드 | Novel formulations for delivery of antiviral peptide therapeutics |
AR105947A1 (en) | 2015-03-18 | 2017-11-29 | Santen Pharmaceutical Co Ltd | OPTIONAL PHARMACEUTICAL COMPOSITION OF PROLONGED RELEASE AND METHOD TO STABILIZE A DRUG CONTAINED IN AN OPHTHALMIC DEPOSIT PREPARATION |
US10682340B2 (en) | 2016-06-30 | 2020-06-16 | Durect Corporation | Depot formulations |
CN109310680B (en) | 2016-06-30 | 2022-11-01 | 度瑞公司 | Long-acting formulations |
WO2021011891A1 (en) * | 2019-07-18 | 2021-01-21 | Gilead Sciences, Inc. | Long-acting formulations of tenofovir alafenamide |
EP3999046A4 (en) * | 2019-07-18 | 2023-08-09 | Durect Corporation | Long-acting formulations and vehicles |
CN117815172A (en) * | 2024-01-08 | 2024-04-05 | 江苏诺和必拓新药研发有限公司 | Meloxicam sustained-release injection, preparation method thereof and medicine for relieving pain of arthritis |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4530840A (en) * | 1982-07-29 | 1985-07-23 | The Stolle Research And Development Corporation | Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents |
US4622219A (en) * | 1983-06-17 | 1986-11-11 | Haynes Duncan H | Method of inducing local anesthesia using microdroplets of a general anesthetic |
US4725442A (en) * | 1983-06-17 | 1988-02-16 | Haynes Duncan H | Microdroplets of water-insoluble drugs and injectable formulations containing same |
US4767628A (en) * | 1981-02-16 | 1988-08-30 | Imperial Chemical Industries Plc | Continuous release pharmaceutical compositions |
US4891225A (en) * | 1984-05-21 | 1990-01-02 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4906474A (en) * | 1983-03-22 | 1990-03-06 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4938763A (en) * | 1988-10-03 | 1990-07-03 | Dunn Richard L | Biodegradable in-situ forming implants and methods of producing the same |
US4957744A (en) * | 1986-10-13 | 1990-09-18 | Fidia, S.P.A. | Cross-linked esters of hyaluronic acid |
US5149543A (en) * | 1990-10-05 | 1992-09-22 | Massachusetts Institute Of Technology | Ionically cross-linked polymeric microcapsules |
US5534269A (en) * | 1993-07-05 | 1996-07-09 | Takeda Chemical Industries, Ltd. | Method of producing sustained-release preparation |
US5643605A (en) * | 1993-10-25 | 1997-07-01 | Genentech, Inc. | Methods and compositions for microencapsulation of adjuvants |
US5747058A (en) * | 1995-06-07 | 1998-05-05 | Southern Biosystems, Inc. | High viscosity liquid controlled delivery system |
US5968542A (en) * | 1995-06-07 | 1999-10-19 | Southern Biosystems, Inc. | High viscosity liquid controlled delivery system as a device |
US6130200A (en) * | 1996-12-20 | 2000-10-10 | Alza Corporation | Gel composition and methods |
US6291013B1 (en) * | 1999-05-03 | 2001-09-18 | Southern Biosystems, Inc. | Emulsion-based processes for making microparticles |
US20020064547A1 (en) * | 1998-03-19 | 2002-05-30 | Rey T. Chern | Liquid polymeric compositions for controlled release of bioactive substances |
US6413536B1 (en) * | 1995-06-07 | 2002-07-02 | Southern Biosystems, Inc. | High viscosity liquid controlled delivery system and medical or surgical device |
US20030009145A1 (en) * | 2001-03-23 | 2003-01-09 | Struijker-Boudier Harry A.J. | Delivery of drugs from sustained release devices implanted in myocardial tissue or in the pericardial space |
US20040018238A1 (en) * | 2001-02-26 | 2004-01-29 | Shukla Atul J | Biodegradable vehicles and delivery systems of biolgically active substances |
US20040101557A1 (en) * | 1995-06-07 | 2004-05-27 | Gibson John W. | High viscosity liquid controlled delivery system and medical or surgical device |
US6956059B2 (en) * | 2001-05-21 | 2005-10-18 | Croda International, Plc | Anti-inflammatory and immunomodulatory amino acid derivatives, their preparation and use |
US20070077304A1 (en) * | 2005-09-30 | 2007-04-05 | Alza Corporation | Sustained Release Small Molecule Drug Formulation |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3332922B2 (en) * | 1991-10-22 | 2002-10-07 | 康博 小池 | Refractive index distribution type optical resin material, method for producing the same, and optical transmission body |
CA2176716C (en) | 1993-11-19 | 2009-04-07 | Ramstack, J. Michael | Preparation of biodegradable microparticles containing a biologically active agent |
PT904063E (en) | 1996-05-07 | 2003-01-31 | Janssen Pharmaceutica Nv | PROCESS FOR THE PREPARATION OF MICROPARTICLES |
US7208011B2 (en) * | 2001-08-20 | 2007-04-24 | Conor Medsystems, Inc. | Implantable medical device with drug filled holes |
US6143314A (en) | 1998-10-28 | 2000-11-07 | Atrix Laboratories, Inc. | Controlled release liquid delivery compositions with low initial drug burst |
CA2413157A1 (en) | 2000-06-28 | 2002-01-03 | Atul J. Shukla | Biodegradable vehicles and delivery systems of biologically active substances |
EP1335704A2 (en) * | 2000-11-16 | 2003-08-20 | Durect Corporation | Implant dosage form and use thereof for the delivery of a cholesterol lowering agent |
NZ533434A (en) | 2001-11-14 | 2006-11-30 | Alza Corp | Thixotropic gel composition for injectable deposition |
BR0206984A (en) | 2001-11-14 | 2004-02-03 | Alza Corp | Injectable Depot Compositions and Use of These |
BR0206987A (en) | 2001-11-14 | 2004-02-10 | Alza Corp | Catheter injectable depot compositions and uses thereof |
US20040258731A1 (en) | 2001-11-21 | 2004-12-23 | Tsuyoshi Shimoboji | Preparation approriate for cartilage tissue formation |
TWI314464B (en) | 2002-06-24 | 2009-09-11 | Alza Corp | Reusable, spring driven autoinjector |
US20040109893A1 (en) * | 2002-06-25 | 2004-06-10 | Guohua Chen | Sustained release dosage forms of anesthetics for pain management |
AR039729A1 (en) | 2002-06-25 | 2005-03-09 | Alza Corp | SHORT-TERM DEPOSIT FORMULATIONS |
US7097634B2 (en) | 2002-07-31 | 2006-08-29 | Alza Corporation | Injection device providing automatic needle retraction |
MXPA05001244A (en) | 2002-07-31 | 2005-06-08 | Alza Corp | Injectable multimodal polymer depot compositions and uses thereof. |
MXPA05004927A (en) | 2002-11-06 | 2005-09-08 | Alza Corp | Controlled release depot formulations. |
US7005225B2 (en) * | 2002-11-12 | 2006-02-28 | Samsung Electronics Company | Organosol including amphipathic copolymeric binder having crystalline material, and use of the organosol to make dry tones for electrographic applications |
ATE482695T1 (en) | 2002-12-13 | 2010-10-15 | Durect Corp | ORAL DOSAGE FORM WITH HIGH VISCOSITY LIQUID CARRIER SYSTEMS |
DE10312346A1 (en) * | 2003-03-20 | 2004-09-30 | Bayer Healthcare Ag | Controlled release system |
US20070108405A1 (en) | 2003-09-01 | 2007-05-17 | Fh Faulding & Co., Ltd. | Compositions and methods for delivery of biologically active agents |
MY158342A (en) * | 2003-11-14 | 2016-09-30 | Novartis Ag | Pharmaceutical composition |
US20050281879A1 (en) | 2003-11-14 | 2005-12-22 | Guohua Chen | Excipients in drug delivery vehicles |
US20100016267A1 (en) * | 2004-03-15 | 2010-01-21 | Felix Theeuwes | Pharmaceutical compositions for administraton to a sinus |
US20050240166A1 (en) * | 2004-04-26 | 2005-10-27 | Microsolutions, Inc. | Implantable device, formulation and method for anti-psychotic therapy using risperidone |
GB0412866D0 (en) * | 2004-06-09 | 2004-07-14 | Novartis Ag | Organic compounds |
US20070196416A1 (en) | 2006-01-18 | 2007-08-23 | Quest Pharmaceutical Services | Pharmaceutical compositions with enhanced stability |
AU2008254538B2 (en) * | 2007-05-18 | 2013-11-07 | Durect Corporation | Improved depot formulations |
WO2009100222A1 (en) | 2008-02-08 | 2009-08-13 | Qps Llc | Non-polymeric compositions for controlled drug delivery |
US20140308352A1 (en) | 2013-03-11 | 2014-10-16 | Zogenix Inc. | Compositions and methods involving polymer, solvent, and high viscosity liquid carrier material |
-
2008
- 2008-05-16 AU AU2008254538A patent/AU2008254538B2/en not_active Ceased
- 2008-05-16 HU HUE08767765A patent/HUE030789T2/en unknown
- 2008-05-16 PL PL08767765T patent/PL2167039T3/en unknown
- 2008-05-16 ES ES08767765.4T patent/ES2606951T3/en active Active
- 2008-05-16 CN CN201210392622.4A patent/CN103007288B/en not_active Expired - Fee Related
- 2008-05-16 EP EP16182848.8A patent/EP3115038A1/en not_active Withdrawn
- 2008-05-16 US US12/152,764 patent/US20080287464A1/en not_active Abandoned
- 2008-05-16 JP JP2010508444A patent/JP5599705B2/en not_active Expired - Fee Related
- 2008-05-16 DK DK08767765.4T patent/DK2167039T3/en active
- 2008-05-16 CA CA2686137A patent/CA2686137C/en active Active
- 2008-05-16 WO PCT/US2008/006320 patent/WO2008143992A2/en active Application Filing
- 2008-05-16 EP EP08767765.4A patent/EP2167039B1/en not_active Not-in-force
- 2008-05-16 CN CN2008800208290A patent/CN101677952B/en not_active Expired - Fee Related
-
2009
- 2009-11-17 IL IL202181A patent/IL202181A/en active IP Right Grant
-
2013
- 2013-03-08 US US13/790,902 patent/US10028957B2/en active Active
-
2014
- 2014-05-07 JP JP2014095775A patent/JP6018603B2/en not_active Expired - Fee Related
-
2015
- 2015-07-16 US US14/801,141 patent/US20160045601A1/en not_active Abandoned
-
2016
- 2016-02-26 US US15/054,473 patent/US20160279131A1/en not_active Abandoned
- 2016-07-29 JP JP2016149343A patent/JP6339640B2/en not_active Expired - Fee Related
-
2018
- 2018-05-10 JP JP2018091049A patent/JP2018158921A/en active Pending
- 2018-06-25 US US16/017,477 patent/US20190030032A1/en not_active Abandoned
-
2019
- 2019-09-03 US US16/559,155 patent/US20200101073A1/en not_active Abandoned
-
2020
- 2020-10-05 US US17/063,095 patent/US20210121467A1/en not_active Abandoned
-
2023
- 2023-01-04 US US18/093,240 patent/US20230146925A1/en active Pending
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4767628A (en) * | 1981-02-16 | 1988-08-30 | Imperial Chemical Industries Plc | Continuous release pharmaceutical compositions |
US4767628B1 (en) * | 1981-02-16 | 1990-07-17 | Ici Plc | |
US4530840A (en) * | 1982-07-29 | 1985-07-23 | The Stolle Research And Development Corporation | Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents |
US4906474A (en) * | 1983-03-22 | 1990-03-06 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4622219A (en) * | 1983-06-17 | 1986-11-11 | Haynes Duncan H | Method of inducing local anesthesia using microdroplets of a general anesthetic |
US4725442A (en) * | 1983-06-17 | 1988-02-16 | Haynes Duncan H | Microdroplets of water-insoluble drugs and injectable formulations containing same |
US4891225A (en) * | 1984-05-21 | 1990-01-02 | Massachusetts Institute Of Technology | Bioerodible polyanhydrides for controlled drug delivery |
US4957744A (en) * | 1986-10-13 | 1990-09-18 | Fidia, S.P.A. | Cross-linked esters of hyaluronic acid |
US4938763A (en) * | 1988-10-03 | 1990-07-03 | Dunn Richard L | Biodegradable in-situ forming implants and methods of producing the same |
US4938763B1 (en) * | 1988-10-03 | 1995-07-04 | Atrix Lab Inc | Biodegradable in-situ forming implants and method of producing the same |
US5149543A (en) * | 1990-10-05 | 1992-09-22 | Massachusetts Institute Of Technology | Ionically cross-linked polymeric microcapsules |
US5534269A (en) * | 1993-07-05 | 1996-07-09 | Takeda Chemical Industries, Ltd. | Method of producing sustained-release preparation |
US5643605A (en) * | 1993-10-25 | 1997-07-01 | Genentech, Inc. | Methods and compositions for microencapsulation of adjuvants |
US5968542A (en) * | 1995-06-07 | 1999-10-19 | Southern Biosystems, Inc. | High viscosity liquid controlled delivery system as a device |
US6413536B1 (en) * | 1995-06-07 | 2002-07-02 | Southern Biosystems, Inc. | High viscosity liquid controlled delivery system and medical or surgical device |
US7833543B2 (en) * | 1995-06-07 | 2010-11-16 | Durect Corporation | High viscosity liquid controlled delivery system and medical or surgical device |
US20040101557A1 (en) * | 1995-06-07 | 2004-05-27 | Gibson John W. | High viscosity liquid controlled delivery system and medical or surgical device |
US5747058A (en) * | 1995-06-07 | 1998-05-05 | Southern Biosystems, Inc. | High viscosity liquid controlled delivery system |
US6468961B1 (en) * | 1996-12-20 | 2002-10-22 | Alza Corporation | Gel composition and methods |
US6331311B1 (en) * | 1996-12-20 | 2001-12-18 | Alza Corporation | Injectable depot gel composition and method of preparing the composition |
US6673767B1 (en) * | 1996-12-20 | 2004-01-06 | Alza Corporation | Gel composition and methods |
US6130200A (en) * | 1996-12-20 | 2000-10-10 | Alza Corporation | Gel composition and methods |
US20020064547A1 (en) * | 1998-03-19 | 2002-05-30 | Rey T. Chern | Liquid polymeric compositions for controlled release of bioactive substances |
US6291013B1 (en) * | 1999-05-03 | 2001-09-18 | Southern Biosystems, Inc. | Emulsion-based processes for making microparticles |
US20040018238A1 (en) * | 2001-02-26 | 2004-01-29 | Shukla Atul J | Biodegradable vehicles and delivery systems of biolgically active substances |
US20030009145A1 (en) * | 2001-03-23 | 2003-01-09 | Struijker-Boudier Harry A.J. | Delivery of drugs from sustained release devices implanted in myocardial tissue or in the pericardial space |
US6956059B2 (en) * | 2001-05-21 | 2005-10-18 | Croda International, Plc | Anti-inflammatory and immunomodulatory amino acid derivatives, their preparation and use |
US20070077304A1 (en) * | 2005-09-30 | 2007-04-05 | Alza Corporation | Sustained Release Small Molecule Drug Formulation |
Non-Patent Citations (1)
Title |
---|
Middleton et al. MDDI Medical Device and Diagnostic Industry News Products and Suppliers 1998 * |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11083796B2 (en) | 2005-07-26 | 2021-08-10 | Durect Corporation | Peroxide removal from drug delivery vehicle |
US10058554B2 (en) | 2005-09-30 | 2018-08-28 | Indivior Uk Limited | Sustained release small molecule drug formulation |
US11110093B2 (en) | 2005-09-30 | 2021-09-07 | Indivior Uk Limited | Sustained release small molecule drug formulation |
US9597402B2 (en) | 2005-09-30 | 2017-03-21 | Durect Corporation | Sustained release small molecule drug formulation |
US9044450B2 (en) | 2005-09-30 | 2015-06-02 | Durect Corporation | Sustained release small molecule drug formulation |
US10028957B2 (en) | 2007-05-18 | 2018-07-24 | Durect Corporation | Depot formulations |
US11013809B2 (en) | 2007-05-25 | 2021-05-25 | Indivior Uk Limited | Sustained delivery formulations of risperidone compound |
US10376590B2 (en) | 2007-05-25 | 2019-08-13 | Indivior Uk Limited | Sustained delivery formulations of risperidone compound |
US11712475B2 (en) | 2007-05-25 | 2023-08-01 | Indivior Uk Limited | Sustained delivery formulations of risperidone compound |
US10010612B2 (en) | 2007-05-25 | 2018-07-03 | Indivior Uk Limited | Sustained delivery formulations of risperidone compounds |
US8877226B2 (en) | 2008-04-18 | 2014-11-04 | Medtronic, Inc. | Dexamethasone formulations in a biodegradable material |
US8524267B2 (en) * | 2008-04-18 | 2013-09-03 | Warsaw Orthopedic, Inc. | Dexamethasone formulations in a biodegradable material |
US20090263455A1 (en) * | 2008-04-18 | 2009-10-22 | Warsaw Orthopedic, Inc. | Dexamethasone Formulations in a Bioegradable Material |
US9700567B2 (en) | 2008-04-18 | 2017-07-11 | Warsaw Orthopedic, Inc. | Dexamethasone formulations in a biodegradable material |
US10933015B2 (en) | 2010-05-21 | 2021-03-02 | Laboratorios Farmaceuticos Rovi, S.A. | Injectable composition with aromatase inhibitor |
US10912735B2 (en) | 2010-05-21 | 2021-02-09 | Laboratorios Farmacéuticos Rovi, S.A. | Injectable composition with aromatase inhibitor |
US11007139B2 (en) | 2010-05-31 | 2021-05-18 | Laboratorios Farmacéuticos Rovi, S.A. | Risperidone or paliperidone implant formulation |
US11241377B2 (en) | 2010-05-31 | 2022-02-08 | Laboratorios Farmaceuticos Rovi S.A. | Antipsychotic injectable depot composition |
US11918682B2 (en) | 2010-05-31 | 2024-03-05 | Laboratorios Farmacéuticos Rovi, S.A. | Injectable composition with aromatase inhibitor |
US11759416B2 (en) | 2010-05-31 | 2023-09-19 | Laboratorios Farmaceuticos Rovi S.A. | Antipsychotic injectable depot composition |
US11752094B2 (en) | 2010-05-31 | 2023-09-12 | Laboratorios Farmaceuticos Rovi S.A. | Antipsychotic injectable depot composition |
US11752093B2 (en) | 2010-05-31 | 2023-09-12 | Laboratorios Farmaceuticos Rovi S.A. | Antipsychotic injectable depot composition |
AP3524A (en) * | 2010-05-31 | 2016-01-11 | Rovi Lab Farmaceut Sa | Antipsychotic injectable depot composition |
US11752092B2 (en) | 2010-05-31 | 2023-09-12 | Laboratorios Farmaceuticos Rovi, S.A. | Methods for the preparation of injectable depot compositions |
US10058504B2 (en) * | 2010-05-31 | 2018-08-28 | Laboratorios Farmaceuticos Rovi, S.A. | Methods for the preparation of injectable depot compositions |
WO2011151355A1 (en) * | 2010-05-31 | 2011-12-08 | Laboratorios Farmacéuticos Rovi, S.A. | Antipsychotic injectable depot composition |
US10085936B2 (en) | 2010-05-31 | 2018-10-02 | Laboratorios Farmaceuticos Rovi, S.A. | Antipsychotic injectable depot composition |
US10182982B2 (en) | 2010-05-31 | 2019-01-22 | Laboratorios Farmaceuticos Rovi S.A. | Antipsychotic injectable depot composition |
US10195138B2 (en) | 2010-05-31 | 2019-02-05 | Laboratorios Farmaceuticos Rovi, S.A. | Methods for the preparation of injectable depot compositions |
US11173110B2 (en) | 2010-05-31 | 2021-11-16 | Laboratorios Farmacéuticos Rovi, S.A. | Risperidone or paliperidone implant formulation |
US10285936B2 (en) | 2010-05-31 | 2019-05-14 | Laboratorios Farmacéuticos Rovi, S.A. | Injectable composition with aromatase inhibitor |
US10335366B2 (en) | 2010-05-31 | 2019-07-02 | Laboratorios Farmacéuticos Rovi, S.A. | Risperidone or paliperidone implant formulation |
US10350159B2 (en) | 2010-05-31 | 2019-07-16 | Laboratories Farmacéuticos Rovi, S.A. | Paliperidone implant formulation |
AU2011260318B2 (en) * | 2010-05-31 | 2014-11-27 | Laboratorios Farmaceuticos Rovi, S.A. | Antipsychotic injectable depot composition |
EP2394664A1 (en) * | 2010-05-31 | 2011-12-14 | Laboratorios Farmaceuticos Rovi, S.A. | Antipsychotic injectable depot composition |
US10463607B2 (en) | 2010-05-31 | 2019-11-05 | Laboratorios Farmaceutics Rofi S.A. | Antipsychotic Injectable Depot Composition |
US20130177603A1 (en) * | 2010-05-31 | 2013-07-11 | Laboratorios Farmaceuticos Rovi, S.A. | Methods for the Preparation of Injectable Depot Compositions |
US11013683B2 (en) | 2010-05-31 | 2021-05-25 | Laboratorios Farmacéuticos Rovi, S.A. | Paliperidone implant formulation |
US10881605B2 (en) | 2010-05-31 | 2021-01-05 | Laboratorios Farmaceuticos Rovi, S.A. | Methods for the preparation of injectable depot compositions |
EP2643009A1 (en) * | 2010-11-24 | 2013-10-02 | Durect Corporation | Biodegradable drug delivery composition |
EP2643009A4 (en) * | 2010-11-24 | 2015-04-01 | Durect Corp | Biodegradable drug delivery composition |
EP2529756A3 (en) * | 2011-05-31 | 2013-08-07 | Laboratorios Farmaceuticos Rovi, S.A. | Risperidone and/or Paliperidone implant formulation |
WO2013078396A2 (en) | 2011-11-23 | 2013-05-30 | Durect Corporation | Radiation-sterilized biodegradable drug delivery compositions |
EP2782590A4 (en) * | 2011-11-23 | 2016-08-03 | Durect Corp | Radiation-sterilized biodegradable drug delivery compositions |
US9737605B2 (en) * | 2013-03-11 | 2017-08-22 | Durect Corporation | Injectable controlled release composition comprising high viscosity liquid carrier |
WO2014164754A1 (en) | 2013-03-11 | 2014-10-09 | Durect Corporation | Injectable controlled release composition comprising high viscosity liquid carrier |
US10226532B2 (en) * | 2013-03-11 | 2019-03-12 | Durect Corporation | Compositions and methods involving polymer, solvent, and high viscosity liquid carrier material |
US9572812B2 (en) | 2013-03-11 | 2017-02-21 | Durect Corporation | Compositions and methods involving polymer, solvent, and high viscosity liquid carrier material |
US11285217B2 (en) | 2013-03-11 | 2022-03-29 | Durect Corporation | Compositions and methods involving polymer, solvent, and high viscosity liquid carrier material |
US20170143721A1 (en) * | 2013-03-11 | 2017-05-25 | Durect Corporation | Compositions and methods involving polymer, solvent, and high viscosity liquid carrier material |
US20160038596A1 (en) * | 2013-03-11 | 2016-02-11 | Durect Corporation | Injectable controlled release composition comprising high viscosity liquid carrier |
EA033537B1 (en) * | 2013-03-11 | 2019-10-31 | Durect Corp | Injectable controlled release composition comprising high viscosity liquid carrier |
AU2019201172B2 (en) * | 2013-03-11 | 2020-07-16 | Durect Corporation | Injectable controlled release composition comprising high viscosity liquid carrier |
CN105163719A (en) * | 2013-03-11 | 2015-12-16 | 度瑞公司 | Injectable controlled release composition comprising high viscosity liquid carrier |
US11529420B2 (en) | 2013-12-09 | 2022-12-20 | Durect Corporation | Pharmaceutically active agent complexes, polymer complexes, and compositions and methods involving the same |
US10758623B2 (en) | 2013-12-09 | 2020-09-01 | Durect Corporation | Pharmaceutically active agent complexes, polymer complexes, and compositions and methods involving the same |
US11400019B2 (en) | 2020-01-13 | 2022-08-02 | Durect Corporation | Sustained release drug delivery systems with reduced impurities and related methods |
US11771624B2 (en) | 2020-01-13 | 2023-10-03 | Durect Corporation | Sustained release drug delivery systems with reduced impurities and related methods |
WO2023046731A1 (en) | 2021-09-21 | 2023-03-30 | Laboratorios Farmacéuticos Rovi, S.A. | Antipsychotic injectable extended-release composition |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230146925A1 (en) | Depot formulations | |
US7053209B1 (en) | High viscosity liquid controlled delivery system and medical or surgical device | |
DE69634277T2 (en) | CONTROLLED FEEDING SYSTEM WITH A LIQUID OF HIGH VISCOSITY | |
US5747058A (en) | High viscosity liquid controlled delivery system | |
US20040101557A1 (en) | High viscosity liquid controlled delivery system and medical or surgical device | |
AU2013202476B2 (en) | Improved depot formulations | |
MXPA97009606A (en) | Liquid system of controlled release and viscosity elev |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DURECT CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WRIGHT, JEREMY C.;THEEUWES, FELIX;GIBSON, JOHN W.;AND OTHERS;SIGNING DATES FROM 20111012 TO 20111206;REEL/FRAME:027370/0339 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |