US20080243120A1 - Bipolar forceps having monopolar extension - Google Patents
Bipolar forceps having monopolar extension Download PDFInfo
- Publication number
- US20080243120A1 US20080243120A1 US11/904,123 US90412307A US2008243120A1 US 20080243120 A1 US20080243120 A1 US 20080243120A1 US 90412307 A US90412307 A US 90412307A US 2008243120 A1 US2008243120 A1 US 2008243120A1
- Authority
- US
- United States
- Prior art keywords
- jaw members
- tissue
- jaw
- jaw member
- knife
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004913 activation Effects 0.000 claims description 34
- 238000007789 sealing Methods 0.000 claims description 30
- 238000005520 cutting process Methods 0.000 claims description 15
- 230000003213 activating effect Effects 0.000 claims description 14
- 239000012636 effector Substances 0.000 description 39
- 238000000034 method Methods 0.000 description 16
- 230000008901 benefit Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 239000012212 insulator Substances 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 6
- 230000001112 coagulating effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 241001631457 Cannula Species 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 238000002192 cholecystectomy Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012976 endoscopic surgical procedure Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002355 open surgical procedure Methods 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 210000001096 cystic duct Anatomy 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00589—Coagulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00595—Cauterization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00601—Cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/0063—Sealing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/1253—Generators therefor characterised by the output polarity monopolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/126—Generators therefor characterised by the output polarity bipolar
Definitions
- the present disclosure relates to an electrosurgical forceps and more particularly, the present disclosure relates to an endoscopic bipolar electrosurgical forceps for coagulating, sealing and/or cutting tissue having a selectively energizable and/or extendable monopolar extension for enhanced electrosurgical effect.
- Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue.
- endoscopes and endoscopic instruments are used for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.
- Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar.
- Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.
- Tissue sealing is fundamentally different than simply coagulating or cauterizing vessels.
- coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried.
- vessel sealing or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass with limited demarcation between adjacent tissue structures.
- the pressure applied to the vessel (tissue) preferably about 3 kg/cm 2 to about 16 kg/cm 2 and the gap distance between the electrodes preferably about 0.001 inches to about 0.006 inches.
- the electrical configuration of electrosurgical forceps can be categorized in two classifications: 1) monopolar electrosurgical forceps; and 2) bipolar electrosurgical forceps.
- Monopolar forceps utilize one active electrode associated with the clamping end effector and a remote patient return electrode or pad which is attached externally to the patient. When the electrosurgical energy is applied, the energy travels from the active electrode, to the surgical site, through the patient and to the return electrode.
- Bipolar electrosurgical forceps utilize two generally opposing electrodes which are disposed on the inner opposing surfaces of end effectors and which are both electrically coupled to an electrosurgical generator. Each electrode is charged to a different electric potential. Since tissue is a conductor of electrical energy, when the effectors are utilized to grasp, seal or cut tissue therebetween, the electrical energy can be selectively transferred through the tissue.
- bipolar endoscopic forceps for cauterizing, coagulating cutting or sealing vessels and other tissues
- monopolar instruments i.e., monopolar instruments have the ability to move through avascular tissue and dissect through narrow tissue planes
- the gallbladder is dissected from the liver which would typically entail using an endoscopic monopolar instrument, e.g., electrosurgical blade, electrosurgical pencil, loop electrode, etc.
- an endoscopic monopolar instrument e.g., electrosurgical blade, electrosurgical pencil, loop electrode, etc.
- there may also be a need to seal the cystic duct or cystic artery which may require a bipolar vessel sealing instrument necessitating the need to replace the monopolar instrument.
- the surgeon may need to repeatedly remove the monopolar instrument from the operating cavity to utilize the bipolar instrument and vice versa.
- the present disclosure relates to an endoscopic forceps for treating tissue and includes a housing having a shaft affixed thereto and first and second jaw members attached to a distal end of the shaft.
- the forceps also includes an actuator for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween.
- a source of electrosurgical energy is connected to each jaw member such that the jaw members are selectively capable of operating in a bipolar mode which enables the jaw members to conduct bipolar energy through tissue held therebetween to treat tissue.
- the forceps also includes a monopolar element housed within at least the first jaw member which is selectively movable from a first position within the first jaw member to a second position distal to the first jaw member.
- the monopolar element is connected to the source of electrosurgical energy and is selectively activateable independent of the jaw members.
- the forceps includes a knife which is selectively moveable within a knife channel defined within at least one of the first and second jaw members to cut tissue disposed between the first and second jaw members.
- a knife actuator allows a user to selectively move the knife to cut tissue disposed between the jaw members.
- the source of electrosurgical energy carries electrical potentials to each respective jaw member such that the jaw members are capable of conducting bipolar energy through tissue held therebetween to effect a tissue seal.
- the knife is designed to initially cut tissue disposed between the first and second jaw members and subsequently extend distally from the jaw members to treat tissue in a monopolar fashion.
- the forceps includes a safety (e.g. a safety circuit or mechanical safety element) which only allows electrical activation of the knife (or monopolar element) when the knife (or monopolar element) is extended from the distal ends of the jaw members.
- the safety may also deactivate the jaw members through circuitry or utilizing a mechanical safety element.
- first jaw member and the second jaw member each include an elongated slot which runs in opposition substantially along the respective lengths thereof such that the two opposing elongated slots form the knife channel for reciprocating the knife to divide tissue disposed between the two jaw members.
- the forceps is a vessel sealing forceps and at least one of the jaw members includes at least one non-conductive stop member disposed thereon which controls the distance between the first and second jaw members when tissue is held therebetween.
- the stop member(s) maintains a gap distance of about 0.001 inches to about 0.006 inches between the jaw members when tissue is compressed between the jaw members.
- the forceps includes an actuator which operates to both move the knife to cut tissue disposed between jaw members and to extend the knife or a separate monopolar element from the first position within the first jaw member to the second position distal to the first jaw member.
- the forceps includes an actuator which operates to both move the jaw members relative to one another from the first to second positions to grasp tissue therebetween and to extend the monopolar element from the first position within the first jaw member to the second position distal to the first jaw member.
- a first actuator may be designed to operate the jaw members for grasping tissue and a second actuator may be included which operates to extend the monopolar element from the first position within the first jaw member to the second position distal to the first jaw member.
- the present disclosure also relates to an endoscopic forceps which includes a housing having a shaft affixed thereto and first and second jaw members attached to a distal end of the shaft.
- the first jaw member is configured to extend distally relative to the second jaw member.
- a actuator is includes for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween.
- the jaw members are connected to a source of electrosurgical energy such that the jaw members are selectively capable of operating in a bipolar mode which enables the jaw members to conduct bipolar energy through tissue held therebetween.
- the forceps also includes a control switch which, upon selective activation, deactivates the second jaw member and activates the first jaw member with a first electrical potential. At relatively the same time, the control switch also activates a return electrode or return pad with a different electrical potential which is placed adjacent to the patient to enable the first jaw member to selectively treat tissue in a monopolar fashion.
- a safety is included which limits electrical activation of the control switch to when the jaw members are disposed in the second position.
- the present disclosure also relates to an endoscopic forceps which includes a housing having a shaft affixed thereto.
- the shaft includes first and second jaw members attached to a distal end thereof.
- the first and second jaw members each include a tapered or elongated distal end.
- the forceps also includes an actuator for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween.
- a source of electrosurgical energy is connected to each jaw member such that the jaw members are selectively capable of operating in a bipolar mode which enables the jaw members to conduct bipolar energy through tissue held therebetween.
- a control switch is also included which, upon selective activation thereof, activates the first jaw member and the second jaw member with a first electrical potential and activates a return electrode with a different electrical potential.
- the return electrode is preferably placed adjacent to the patient which enables the first and second jaw members to selectively treat tissue in a monopolar fashion.
- the forceps includes a safety which only allows electrical activation of the control switch when the jaw members are disposed in the second position.
- the actuator is selectively lockable to maintain a closure pressure in the range of about 3 kg/cm 2 to about 16 kg/cm 2 and, preferably, about 7 kg/cm 2 to about 13 kg/cm 2 between the jaw members which is advantageous in producing effective and reliable tissue seals.
- the forceps may also include a rotating assembly for rotating the jaw members about a longitudinal axis defined through the shaft.
- the forceps includes a unilateral jaw assembly, i.e., the first jaw member is movable relative to the second jaw member and the second jaw member is substantially fixed.
- the forceps may include a bilateral jaw assembly, i.e., both jaw members move relative to one another.
- a spring is included with the actuator or drive assembly to facilitate actuation of the movable handle and to assure the closure force is maintained within a working range of about 3 kg/cm 2 to about 16 kg/cm 2 .
- the present disclosure also relates to a method for treating tissue with electrosurgical energy from an electrosurgical generator which includes the steps of: providing an endoscopic forceps including a housing having a shaft affixed thereto.
- the shaft includes first and second jaw members attached to a distal end thereof.
- An actuator is included for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween.
- a monopolar element is also included which is housed within at least the first jaw member and selectively movable from a first position within the first jaw member to a second position distal to the first jaw member.
- a return electrode is provided and placed in contact with patient tissue.
- the method also includes the steps of: connecting to each jaw member, the monopolar element and the return electrode to the electrosurgical generator; grasping tissue between the jaw members; selectively activating the jaw members to treat tissue disposed between the jaw members in a bipolar fashion; and selectively activating the monopolar element and the return electrode independent of the jaw members to treat tissue in a monopolar fashion.
- the method includes the step of: extending the monopolar element from the distal end of the jaw members.
- the step of selectively activating the monopolar element includes deactivating the jaw members.
- the method may include the step of: releasing the tissue from the jaw members.
- FIG. 1A is a side view of an endoscopic forceps showing a housing, a shaft, an end effector assembly and a trigger assembly in a first position according to the present disclosure
- FIG. 1B is an enlarged, cross section taken along line 1 B- 1 B of FIG. 1A ;
- FIG. 1C is an enlarged, side view of the trigger assembly of FIG. 1A ;
- FIG. 1D is an enlarged, side view of the embodiment of an end effector assembly of FIG. 1A showing relative extension of a monopolar element from a distal end of the end effector assembly;
- FIG. 2 is a side view of the trigger assembly is a second position for advancing a knife within the end effector assembly;
- FIG. 3 is a side view of the trigger assembly in a third position for extending a monopolar element from a distal end of the end effector assembly;
- FIG. 4 is a side view of an alternate embodiment of the present invention showing a second actuator advancing the monopolar element relative to the distal end of the end effector assembly;
- FIG. 5A is an enlarged, side schematic view of one embodiment of an end effector assembly showing relative movement of a first jaw member relative to a second jaw member prior to advancement of the knife through the end effector assembly;
- FIG. 5B is an enlarged, side schematic view of the end effector assembly showing relative movement of the knife through the end effector assembly to divide tissue;
- FIG. 5C is an enlarged, side schematic view of the end effector assembly showing relative movement of the knife extending from the distal end of the end effector assembly;
- FIG. 6A is an enlarged, side schematic view of another embodiment of an end effector assembly showing a first jaw member extending beyond a second jaw member;
- FIG. 6B is schematic view of another embodiment of an end effector assembly showing a series of electrical connections to a control switch and a generator to enable both bipolar activation and monopolar activation;
- FIG. 6C is a table showing the various modes of operation of the forceps utilizing the end effector configuration of FIG. 6B .
- FIGS. 1A-1D one embodiment of an endoscopic forceps 10 is shown for use with various surgical procedures.
- a vessel sealing forceps is shown and described, however, it is envisioned that other types of forceps or scissors may be utilized which both treat tissue for cauterization, coagulation or other purposes and which may be configured for monopolar applications as described herein.
- the figure drawings depict a forceps 10 for use in connection with endoscopic surgical procedures, the present disclosure may be used for more traditional open surgical procedures.
- the forceps 10 is described in terms of an endoscopic instrument, however, it is contemplated that an open version of the forceps 10 may also include the same or similar operating components and features as described below.
- Forceps 10 generally includes a housing 20 , a handle assembly 30 , a rotating assembly 80 , a trigger assembly 70 and an end effector assembly 100 which mutually cooperate to grasp, treat and divide tissue.
- the handle assembly 30 , rotating assembly, trigger assembly 70 and end effector assembly 100 are only generally described. A more detailed explanation of all of these cooperating elements are described in commonly owned, co-pending U.S. patent application Ser. No. 10/460,926 the entire contents of which is hereby incorporated by reference herein.
- Forceps 10 includes a shaft 12 which has a distal end 16 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 14 which mechanically engages the housing 20 .
- proximal as is traditional, will refer to the end of the forceps 10 which is closer to the user, while the term “distal” will refer to the end which is further from the user. Details of how the shaft 12 connects to the end effector assembly 100 and how the proximal end connects to the housing 20 are explained in the above-mentioned commonly owned, co-pending U.S. patent application Ser. No. 10/460,926.
- forceps 10 also includes an electrosurgical cable 310 which connects the forceps 10 to a source of electrosurgical energy, e.g., a generator 300 .
- Cable 310 is internally divided into cable leads 310 a , 310 b and 310 c which each transmit electrosurgical energy through their respective feed paths through the forceps 10 to the end effector assembly 100 as explained in more detail with respect to U.S. patent application Ser. No. 10/460,926.
- generators such as those sold by Valleylab—a division of Tyco Healthcare LP, located in Boulder Colo.
- Electrosurgical energy e.g., FORCE EZTM Electrosurgical Generator, FORCE FXM Electrosurgical Generator, FORCE 1CTM Electrosurgical Generator, FORCE 2TM Electrosurgical Generator, SurgiStatTM II Electrosurgical Generator.
- FORCE EZTM Electrosurgical Generator FORCE FXM Electrosurgical Generator
- FORCE 1CTM Electrosurgical Generator FORCE 2TM Electrosurgical Generator
- SurgiStatTM II Electrosurgical Generator One such system is described in commonly-owned U.S. Pat. No. 6,033,399 the entire contents of which are hereby incorporated by reference herein.
- Other systems have been described in commonly-owned U.S. Pat. No. 6,187,003 the entire contents of which is also incorporated by reference herein.
- the generator 300 includes various safety and performance features including isolated output, independent activation of accessories.
- the electrosurgical generator 300 includes Valleylab's Instant Response technology which provides an advanced feedback system to sense changes in tissue 200 times per second and adjust voltage and current to maintain appropriate power.
- Handle assembly 30 includes a fixed handle 50 and a movable handle 40 .
- Fixed handle 50 is integrally associated with housing 20 and handle 40 is movable relative to fixed handle 50 .
- Rotating assembly 80 is preferably integrally associated with the housing 20 and is rotatable approximately 180 degrees in either direction about a longitudinal axis “A”. Details of the handle assembly 30 and the rotating assembly 80 are described in more detail with respect to U.S. patent application Ser. No. 10/460,926.
- end effector assembly 100 is attached at the distal end 16 of shaft 12 and includes a pair of opposing jaw members 110 and 120 .
- Movable handle 40 of handle assembly 30 is ultimately connected to an internally disposed drive assembly (not shown) which, together, mechanically cooperate to impart movement of the jaw members 110 and 120 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween.
- movable handle 40 includes an aperture 42 defined therethrough which enables a user to grasp and move the handle 40 relative to the fixed handle 50 . More particularly, handle 40 is selectively moveable about a pivot (not shown) from a first position relative to fixed handle 50 to a second position in closer proximity to the fixed handle 50 which imparts movement of the jaw members 110 and 120 relative to one another.
- the lower end of the movable handle 40 includes a flange 90 which, upon movement of the handle 40 proximally, is reciprocated within fixed handle 50 .
- Flange 90 rides within a predefined channel (not shown) disposed within fixed handle 50 to lock the movable handle 40 relative to the fixed handle 50 .
- a locking flange 44 is disposed on the outer periphery of the handle 40 above the upper portion of the handle 40 . Locking flange 44 prevents the trigger assembly 70 from firing when the handle 40 is oriented in a non-actuated position, i.e., the jaw members 110 and 120 are open. As can be appreciated, this prevents accidental or premature severing of tissue prior to completion of a tissue seal.
- movable handle 40 is designed to provide a distinct mechanical advantage over conventional handle assemblies due to the unique position of the pivot point relative to the longitudinal axis “A” of the shaft 12 .
- the pivot point by positioning the pivot point above the driving element, the user gains lever-like mechanical advantage to actuate the jaw members 110 and 120 enabling the user to close the jaw members 110 and 120 with lesser force while still generating the required forces necessary to effect a proper and effective tissue seal.
- the unilateral design of the end effector assembly 100 will also increase mechanical advantage.
- the end effector assembly 100 includes opposing jaw members 110 and 120 which cooperate to effectively grasp tissue for sealing purposes.
- the end effector assembly 100 is designed as a unilateral assembly, i.e., jaw member 120 is fixed relative to the shaft 12 and jaw member 110 pivots about a pivot pin 103 to grasp tissue.
- the unilateral end effector assembly 100 includes one stationary or fixed jaw member 120 mounted in fixed relation to the shaft 12 and pivoting jaw member 110 mounted about a pivot pin 103 attached to the stationary jaw member 120 .
- a reciprocating sleeve 60 is slidingly disposed within the shaft 12 and is remotely operable by the drive assembly (not shown) which cooperates with handle 40 as explained above to open and close the jaw members 110 and 120 .
- the pivoting jaw member 110 includes a detent or protrusion 117 which extends from jaw member 110 through an aperture 62 disposed within the reciprocating sleeve 60 ( FIG. 1D ).
- the pivoting jaw member 110 is actuated by sliding the sleeve 60 axially within the shaft 12 such that aperture 62 abuts against the detent 117 on the pivoting jaw member 110 . Pulling the sleeve 60 proximally closes the jaw members 110 and 120 about tissue grasped therebetween and pushing the sleeve 60 distally opens the jaw members 110 and 120 for approximating and grasping purposes.
- handle 40 moves in a generally arcuate fashion towards fixed handle 50 about the pivot point which forces the driving flange (not shown) proximally against the drive assembly (not shown) which, in turn, pulls reciprocating sleeve 60 in a generally proximal direction to close jaw member 110 relative to jaw member 120 .
- proximal rotation of the handle 40 causes the locking flange 44 to release, i.e., “unlock” the trigger assembly 70 for selective actuation.
- a knife channel 115 a and 115 b runs through the center of the jaw members 110 and 120 , respectively, such that a blade 185 can cut tissue grasped between the jaw members 110 and 120 when the jaw members 110 and 120 are in a closed position. More particularly, the blade 185 can only be advanced through the tissue when the jaw members 110 and 120 are closed thus preventing accidental or premature activation of the blade 185 through tissue. Put simply, the knife channel 115 (made up of half channels 115 a and 115 b ) is blocked when the jaws members 110 and 120 are opened and aligned for distal activation when the jaw members 110 and 120 are closed.
- jaw member 110 includes a jaw housing 116 which has an insulative substrate or insulator 114 and an electrically conducive surface 112 .
- Insulator 114 is preferably dimensioned to securely engage the electrically conductive sealing surface 112 . This may be accomplished by stamping, by overmolding, by overmolding a stamped electrically conductive sealing plate, by overmolding a metal injection molded seal plate and/or other ways known in the art. It is envisioned a trigger lead 311 from switch 200 electrically connects to the seal plate 112 .
- jaw member 110 having an electrically conductive surface 112 which is substantially surrounded by an insulating substrate 114 .
- the insulator 114 , electrically conductive sealing surface 112 and the outer, non-conductive jaw housing 116 are preferably dimensioned to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread and stray current dissipation.
- jaw member 110 also includes a pivot flange 118 which includes protrusion 117 .
- Protrusion 117 extends from pivot flange 118 and includes an arcuately-shaped inner surface dimensioned to matingly engage the aperture 62 of sleeve 60 upon retraction thereof.
- Pivot flange 118 is also dimensioned to engage pivot pin 103 to allow jaw member 110 to rotate relative to jaw member 120 upon retraction of the reciprocating sleeve 60 .
- Pivot pin 103 also mounts to the stationary jaw member 120 within a proximal portion of jaw member 120 .
- the electrically conductive surface 112 and the insulator 114 when assembled, form the longitudinally-oriented knife slot 115 a defined therethrough for reciprocation of the knife blade 185 .
- knife channel 115 a cooperates with corresponding knife channel 115 b defined in stationary jaw member 120 to facilitate longitudinal translation of the knife blade 185 along a preferred cutting plane to effectively and accurately separate tissue along the formed tissue seal.
- Jaw member 120 includes similar elements to jaw member 110 such as jaw housing 126 having an insulator 124 and an electrically conductive sealing surface 122 which is dimensioned to securely engage the insulator 124 .
- the electrically conductive surface 122 and the insulator 124 when assembled, include longitudinally-oriented channel 115 b defined therethrough for reciprocation of the knife blade 185 .
- knife channels 115 a and 115 b form a complete knife channel 115 to allow longitudinal translation of the knife 185 in a distal fashion to sever tissue along the tissue seal.
- jaw member 120 may include a series of stop members 150 a - 150 c preferably disposed on the inner facing surfaces of the electrically conductive sealing surface 122 to facilitate gripping and manipulation of tissue and to define a gap “G” ( FIG. 5A ) between opposing jaw members 110 and 120 during sealing and cutting of tissue. It is envisioned that the series of stop members 150 a - 150 c may be employed on one or both jaw members 110 and 120 depending upon a particular purpose or to achieve a desired result.
- stop members 150 a - 150 c as well as various manufacturing and assembling processes for attaching and/or affixing the stop members 150 a - 150 c to the electrically conductive sealing surfaces 112 , 122 are described in commonly-assigned, co-pending U.S. Application Serial No. PCT/US01/11413 which is hereby incorporated by reference in its entirety herein.
- Jaw member 120 is designed to be fixed to the end of a rotating tube (not shown) which is part of the rotating assembly 80 such that rotation of the tube will impart rotation to the end effector assembly 100 .
- Jaw member 120 is connected to a second electrical potential through the rotating tube (not shown) which is connected at its proximal end to a lead 310 c from cable 310 . Details relating to the mechanical and electromechanical engagement of the jaw member 120 to the rotating assembly 80 are described in above-mentioned, commonly-owned, co-pending U.S. patent application Ser. No. 10/460,926.
- the jaw members 110 and 120 may be opened, closed and rotated to manipulate tissue until sealing is desired. This enables the user to position and re-position the forceps 10 prior to activation and sealing.
- the end effector assembly 100 is rotatable about longitudinal axis “A” through rotation of the rotating assembly 80 . It is envisioned that the unique feed path of the trigger lead 311 from the switch 200 through the rotating assembly 80 , along shaft 12 and, ultimately, to the jaw member 110 enables the user to rotate the end effector assembly 100 about 180 degrees in both the clockwise and counterclockwise direction without tangling or causing undue strain on the cable lead.
- the other cable lead 310 c from cable 310 is fused or clipped to the proximal end of the rotating tube (not shown) and is generally unaffected by rotation of the jaw members 110 and 120 . As can be appreciated, this facilitates the grasping and manipulation of tissue.
- trigger assembly 70 mounts atop movable handle 40 and cooperates with the knife assembly 180 ( FIGS. 2 , 3 , 4 , and 5 A- 5 C) to selectively translate knife 185 through a tissue seal. More particularly, the trigger assembly 70 includes a finger actuator 71 and a pivot pin 73 which mounts the trigger assembly 70 to the housing 20 . Finger actuator 71 is dimensioned to abut the locking flange 44 on handle 40 when the handle 40 is disposed in a non-actuated position, i.e., the jaw members 110 and 120 are opened.
- the trigger assembly 70 is designed to cooperate with a drive bar 64 which connects to the knife assembly 180 .
- Proximal activation of the finger actuator 71 rotates the trigger assembly 70 about pivot pin 73 which, in turn, forces the drive bar 64 distally, which ultimately extends the knife 185 through tissue.
- a spring (not shown) may be employed to bias the knife assembly 180 in a retracted position such that after severing tissue the knife 185 and the knife assembly 180 are automatically returned to a pre-firing position.
- the locking flange 44 moves proximally allowing activation of the trigger assembly 70 .
- the cable 310 is fed through the bottom of the housing 20 through fixed handle 50 .
- a first lead 310 c extends directly from cable 310 into the rotating assembly 80 and connects (via a fused clip or spring clip or the like) to tube 60 to conduct the second electrical potential to fixed jaw member 120 .
- Second and third leads 310 a and 310 b extend from cable 310 and connect to the hand switch or joy-stick-like toggle switch 200 .
- Switch 200 permits the user to selectively activate the forceps 10 in a variety of different orientations, i.e., multi-oriented activation which simplifies activation.
- a trigger lead 311 carries the first electrical potential to jaw member 110 .
- the trigger lead 311 extends from switch 200 through the rotating assembly 80 and along the upper portion of the rotating tube (not shown) and eventually connects to the movable jaw member 110 .
- locating the switch 200 on the forceps 10 has many advantages.
- the switch 200 reduces the amount of electrical cable in the operating room and eliminates the possibility of activating the wrong instrument during a surgical procedure due to “line-of-sight” activation.
- the second electrical potential (i.e., lead 310 c ) is conducted to jaw member 120 through the rotating tube.
- the two potentials are preferably isolated from one another by insulative sheathing (or the like) which surrounds the trigger lead.
- the jaw members 110 and 120 are electrically isolated from one another such that bipolar electrosurgical energy can be effectively transferred through the tissue to form a tissue seal.
- handle 40 may be compressed fully such that the flange 90 is reciprocated and locked within fixed handle 50 .
- Handle 40 is now secured in position relative to fixed handle 50 which, in turn, locks the jaw members 110 and 120 in a closed position about tissue.
- the forceps 10 is now ready for selective application of electrosurgical energy and subsequent separation of tissue, i.e., when movable handle 10 reciprocates within fixed handle 50 , locking flange 44 moves into a position to permit activation of the trigger assembly 70 as explained above.
- At least one jaw member e.g., 120
- a series of stop members are to yield a consistent and accurate gap distance “G” during sealing ( FIG.
- tissue seal forms isolating two tissue halves.
- the user must remove and replace the forceps 10 with a cutting instrument (not shown) to divide the tissue halves along the tissue seal which is both time consuming and tedious and may result in inaccurate tissue division across the tissue seal due to misalignment or misplacement of the cutting instrument along the ideal tissue cutting plane.
- the present disclosure incorporates knife assembly 180 which, when activated via the trigger assembly 70 , progressively and selectively divides the tissue along an ideal tissue plane in precise manner to effectively and reliably divide the tissue.
- the knife assembly 180 allows the user to quickly separate the tissue immediately after sealing without substituting a cutting instrument through a cannula or trocar port. As can be appreciated, accurate sealing and dividing of tissue is accomplished with the same forceps 10 .
- the jaw members 110 and 120 may be opened by re-grasping the handle 40 which release the flange 90 from fixed handle 50 . Details relating to the releasing of the flange from handle are described in commonly-owned, co-pending U.S. application Ser. No. 10/460,926.
- forceps 10 is designed for both bipolar electrosurgical treatment of tissue (either by vessel sealing as described above or coagulation or cauterization with other similar instruments) and monopolar treatment of tissue.
- FIGS. 1A-D and 2 - 4 show one embodiment of a forceps 10 which includes a monopolar element 154 which may be selectively extended and selectively activated to treat tissue.
- FIGS. 5A-5C show an alternate embodiment of the present disclosure which shows that the knife 185 maybe extended from the distal end of the end effector assembly 100 and selectively energized to treat tissue in a monopolar fashion.
- FIG. 6A shows another embodiment wherein the bottom jaw member 120 ′ extends distally from the top jaw member 110 ′ to allow the surgeon to selectively energize the bottom jaw member 120 ′ and treat tissue in a monopolar fashion.
- FIG. 6B shows yet another embodiment wherein the jaw members 110 ′′ and 120 ′′ include tapered distal ends which are selectively energized with a single electrical potential to treat tissue in a monopolar fashion.
- FIGS. 1A-1D and 2 - 4 show one embodiment wherein a monopolar element 154 is housed for selective extension within one jaw member, e.g., jaw member 120 , of the end effector assembly 100 . More particularly, monopolar element 154 is designed to move independently from knife assembly 180 and may be extended by further proximal movement of the trigger assembly 70 ( FIGS. 1A , 2 and 3 ) or by a separate actuator 450 ( FIG. 4 ).
- the monopolar element 154 is connected to a reciprocating rod 65 which extends through an elongated notch 13 in the outer periphery of the shaft 12 as best seen in FIG. 1B .
- Drive rod 60 which actuates the knife 185 extends through the inner periphery of shaft 12 .
- the jaw members 110 and 120 are initially closed and the knife 185 is advanced distally utilizing the trigger assembly 70 (See FIG. 2 ).
- the trigger 71 is initially advanced to translate the knife 185 distally to cut through tissue, i.e., the “cut” stage (shown in phantom). Thereafter and as shown in FIG. 3 , the trigger 71 may be further actuated in a proximal direction to extend the monopolar element 154 , i.e., the “extend” stage (shown in phantom).
- the trigger assembly 70 may be designed such that the monopolar element 154 may be extended when the jaw members 110 and 120 are in the open position.
- the trigger 71 may be moved distally (or upwardly) from its original, rested, neutral or pre-actuated position to advance the monopolar element 154 .
- the monopolar element 154 may be advanced irrespective of the orientation of the jaw members 110 and 120 .
- the trigger assembly 70 could be designed such that the it can be moved laterally (i.e., perpendicular to the longitudinal axis “A”) to advance the monopolar element 154 or the trigger assembly 70 could be designed such that the monopolar element 154 is extendible when the trigger 71 is moved to a proximal-most position (i.e., past the “cut” position as described above) and/or when the trigger 71 is advanced distally from the neutral or pre-actuated orientation.
- a return spring (not shown) may be included to return the monopolar element 154 to a non-extended position upon release of the trigger 71 .
- the generator 300 Upon extension of the monopolar element 154 , the generator 300 is preferably configured to automatically switch the forceps 10 from a bipolar activation mode (i.e., deactivating energy delivery to jaw members 110 and 120 ) to a monopolar activation mode (i.e., activating the monopolar element 154 ).
- a bipolar activation mode i.e., deactivating energy delivery to jaw members 110 and 120
- a monopolar activation mode i.e., activating the monopolar element 154
- the forceps 10 may also (or alternatively) be configured for manual switching between the bipolar activation mode and the monopolar activation mode.
- the activation of switch 200 transfers energy from jaw member 110 through the tissue and to jaw member 120 to treat tissue.
- activation of switch 200 (or a separate switch, e.g., a footswitch), transfers energy to the monopolar element 154 , through the tissue and to a return electrode 550 , e.g., a return pad, placed adjacent to or in contact with the patient.
- the monopolar activation mode allows the monopolar element 154 to quickly treat avascular tissue structures and/or quickly dissect narrow tissue planes.
- the trigger assembly 70 may be electrically configured to transmit electrical energy to the monopolar element 154 when extended.
- the trigger assembly 70 may be configured such that proximal-most actuation of the trigger 71 ( FIG. 1C ) both extends and activates the monopolar element 154 .
- An automatic safety circuit 460 (or mechanical safety lock (not shown)) may be employed which prevents the switch 200 from energizing the jaw members 110 and 120 when the monopolar element 154 is extended.
- FIG. 4 shows another embodiment of the present disclosure wherein the monopolar element 154 is selectively extendible utilizing a second actuator 450 .
- the knife 185 is advanced by actuating the trigger 71 in a generally proximal direction.
- the monopolar element 154 is selectively advanceable independently of the knife 185 and may be extended when the jaw members 110 and 120 are disposed in either the open configuration or closed configuration.
- the actuator 450 may be electrically configured to activate the monopolar element 154 automatically once extended or manually by activation switch 200 or perhaps another switch (not shown).
- a safety circuit 460 may be employed to deactivate jaw members 110 and 120 when the monopolar element 154 is extended such that activation of the switch 200 energizes the monopolar element 154 . In the case of a separate activation switch for the monopolar element, the safety circuit would deactivate the switch 200 .
- FIG. 5A-5C show an alternate embodiment of the present disclosure wherein the knife 185 can be extended distally beyond the jaw members 110 and 120 and separately energized to treat tissue. In this instance, when the knife is extended beyond the jaw members 110 and 120 , the knife 185 becomes the monopolar element.
- the knife 185 is initially seated in a neutral position during tissue approximation and grasping and during the sealing process.
- the elongated knife channel 115 (defined by upper and lower knife channels 115 a and 115 b , respectively) is formed to allow selective translation of the knife 185 through tissue disposed between the jaw members 110 and 120 .
- the knife bar 64 forces the knife 185 distally through the tissue to the distal end of the knife channel 115 .
- a stop 119 is included to temporarily limit the movement of the knife 185 and provide the user with positive tactile feedback as to the end of the cutting stroke.
- the knife 185 overcomes the limiting forces associated with the stop 119 and is forced by the knife bar to further extend out of the knife channel 115 and beyond the distal ends of the jaw members 110 and 120 .
- a safety or switch deactivates energizing circuitry to the jaw members 110 and 120 and activates the energizing circuitry to the knife 185 such that activation of the switch 200 energizes the knife 185 and the jaw members remain neutral.
- the stop 119 may act as a safety switch such that upon being forced by the knife 185 out of or away from the knife channel 115 , the stop 119 deactivates circuitry to the jaw members 110 and 120 and activates circuitry to the monopolar knife 185 and the return electrode 550 .
- a separate lead 69 may be used to electrically communicate with the generator 300 .
- the knife 185 may now be used in a monopolar fashion to treat tissue.
- the knife 185 Upon release of the trigger 71 , the knife 185 automatically retracts into the knife channel 115 and back to the pre-actuated position as shown in FIG. 5A . At the same time the stop 119 reverts to its original position to temporarily block the knife channel 115 for subsequent actuation.
- FIG. 6A shows another embodiment of a forceps 10 ′ according to the present disclosure wherein the lower jaw member 120 ′ is designed to extend beyond the distal end of jaw member 110 ′.
- the surgeon activates a switch or control which energizes jaw member 120 ′ to a first potential and activates a return pad 550 to a second potential.
- Energy is transferred from jaw member 120 , through tissue, and to the return pad 550 to treat tissue.
- the distal end of jaw member 120 ′ acts as the monopolar element for treating the tissue and may be shaped accordingly to enhance electrosurgical effect.
- FIG. 6B shows yet another schematic embodiment of a forceps 10 ′′ according to the present disclosure wherein the distal ends of both jaw members 110 and 120 are shaped to treat tissue when disposed in a monopolar mode. More particularly, the distal tips 112 a ′′ and 122 a ′′ are preferably elongated or tapered to enhance energy delivery when the forceps 10 ′′ is disposed in the monopolar mode. When disposed in the bipolar mode, the tapered ends 112 a ′′ and 122 a ′′ do not effect treating tissue between electrically conductive plates 112 ′′ and 122 ′′.
- a control switch 500 is preferably included which regulates the transition between bipolar mode and monopolar mode.
- Control switch 500 is connected to generator 300 via cables 360 and 370 .
- a series of leads 510 , 520 and 530 are connected to the jaw members 110 , 120 and the return electrode 550 , respectively.
- each lead 510 , 520 , and 530 is provided with an electrical potential or remains neutral depending upon the particular “mode” of the forceps 10 ′′.
- lead 510 (and, in turn, jaw member 110 ′′) is energized with a first electrical potential
- lead 520 and, in turn, jaw member 120 ′′
- electrosurgical energy is transferred from jaw member 110 ′′ through the tissue and to jaw member 120 ′′.
- the return electrode 550 remains off or neutral.
- jaw member 110 ′′ and 120 ′′ are both energized with the same electrical potential and the return pad 550 is energized with a second electrical potential forcing the electrical current to travel from the jaw members 110 ′′ and 120 ′′, through the tissue and to the return electrode 550 .
- This enables the jaw members 110 ′′ and 120 ′′ to treat tissue in a monopolar fashion which, as mentioned above, advantageously treats avascular tissue structures and/or allows quick dissection of narrow tissue planes.
- all of the leads 510 , 520 and 530 may be deactivated when the forceps 10 ′′ is turned off or idle.
- the present disclosure also relates to a method for treating tissue with electrosurgical energy from the electrosurgical generator 300 which includes the steps of: providing an endoscopic forceps 10 including a housing 20 having a shaft 12 affixed thereto.
- the shaft 12 includes first and second jaw members, 110 and 120 , respectively, attached to a distal end of the shaft 12 .
- An actuator or handle assembly 30 is included for moving jaw members 110 and 120 relative to one another from a first position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another to a second position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween.
- a monopolar element 154 is also included which is housed within at least the first jaw member 120 and selectively movable from a first position within the first jaw member 120 to a second position distal to the first jaw member 120 .
- a return electrode 550 is provided and placed in contact with patient tissue.
- the method also includes the steps of: connecting to each jaw member 110 and 120 , the monopolar element 154 and the return electrode 550 to the electrosurgical generator 300 ; grasping tissue between the jaw members 110 and 120 ; selectively activating the jaw members 110 and 120 to treat tissue disposed between the jaw members 110 and 120 in a bipolar fashion; and selectively activating the monopolar element 154 and the return electrode 550 independent of the jaw members 110 and 120 to treat tissue in a monopolar fashion.
- the method includes the step of: extending the monopolar element 154 from the distal end of the jaw members 110 and 120 .
- the step of selectively activating the monopolar element 154 includes deactivating the jaw members 110 and 120 .
- the method may include the step of: releasing the tissue from the jaw members 110 and 120 .
- the forceps 10 may be designed such that it is fully or partially disposable depending upon a particular purpose or to achieve a particular result.
- end effector assembly 100 may be selectively and releasably engageable with the distal end 16 of the shaft 12 and/or the proximal end 14 of shaft 12 may be selectively and releasably engageable with the housing 20 and the handle assembly 30 .
- the forceps 10 would be considered “partially disposable” or “reposable”, i.e., a new or different end effector assembly 100 (or end effector assembly 100 and shaft 12 ) selectively replaces the old end effector assembly 100 as needed.
- the presently disclosed electrical connections would have to be altered to modify the instrument to a reposable forceps.
- the switch 200 may be decommissioned during the cutting process. Decommissioning the switch 200 when the trigger 71 is actuated eliminates unintentionally activating the forceps during the cutting process. It is also envisioned that the switch 200 may be disposed on another part of the forceps 10 , e.g., the fixed handle 40 , rotating assembly 80 , housing 20 , etc.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Endoscopes (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 10/988,950 entitled “BIPOLAR FORCEPS HAVING MONOPOLAR EXTENSION” filed Nov. 15, 2004 by Lawes et al. which claims the benefit of priority to U.S. Provisional Application Ser. No. 60/520,579 file on Nov. 17, 2003 by Lawes et al. Entitled “BIPOLAR FORCEPS HAVING MONOPOLAR EXTENSION” the entire contents of both of which being incorporated by reference herein.
- The present disclosure relates to an electrosurgical forceps and more particularly, the present disclosure relates to an endoscopic bipolar electrosurgical forceps for coagulating, sealing and/or cutting tissue having a selectively energizable and/or extendable monopolar extension for enhanced electrosurgical effect.
- Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopes and endoscopic instruments for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.
- Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.
- Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an electrosurgical scissors, the surgeon may cut tissue during a given surgical procedure utilizing a combination of mechanical cutting action and electrosurgical cutting. By utilizing an endoscopic electrosurgical forceps, a surgeon can cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue.
- For treating larger vessels, a surgeon may opt to seal the tissue or vessel. Tissue sealing is fundamentally different than simply coagulating or cauterizing vessels. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass with limited demarcation between adjacent tissue structures. In order to effectively seal larger vessels (or tissue) two predominant mechanical parameters must be accurately controlled—the pressure applied to the vessel (tissue) preferably about 3 kg/cm2 to about 16 kg/cm2 and the gap distance between the electrodes preferably about 0.001 inches to about 0.006 inches. Several examples of endoscopic vessel sealing instruments are disclosed in commonly-owned U.S. patent application Ser. Nos. 10/116,944, 10/179,863, 10/369,894 and 10/180,926 and PCT/US01/11340 the entire contents of all of which are hereby incorporated by reference herein.
- Generally, the electrical configuration of electrosurgical forceps can be categorized in two classifications: 1) monopolar electrosurgical forceps; and 2) bipolar electrosurgical forceps. Monopolar forceps utilize one active electrode associated with the clamping end effector and a remote patient return electrode or pad which is attached externally to the patient. When the electrosurgical energy is applied, the energy travels from the active electrode, to the surgical site, through the patient and to the return electrode.
- Bipolar electrosurgical forceps utilize two generally opposing electrodes which are disposed on the inner opposing surfaces of end effectors and which are both electrically coupled to an electrosurgical generator. Each electrode is charged to a different electric potential. Since tissue is a conductor of electrical energy, when the effectors are utilized to grasp, seal or cut tissue therebetween, the electrical energy can be selectively transferred through the tissue.
- One of the inherent disadvantages to utilizing a bipolar endoscopic forceps for cauterizing, coagulating cutting or sealing vessels and other tissues is the inability of the bipolar forceps to match the benefits or advantages of monopolar instruments (i.e., monopolar instruments have the ability to move through avascular tissue and dissect through narrow tissue planes) necessitating the need for the surgeon to replace the bipolar forceps during surgery to reap the benefits of using the monopolar instrument for certain applications. Likewise, during some monopolar endoscopic applications it may be advantageous to replace the monopolar instrument with a bipolar forceps, e.g., for sealing large tissue structures. For example, during a cholecystectomy the gallbladder is dissected from the liver which would typically entail using an endoscopic monopolar instrument, e.g., electrosurgical blade, electrosurgical pencil, loop electrode, etc. However, during the cholecystectomy procedure there may also be a need to seal the cystic duct or cystic artery which may require a bipolar vessel sealing instrument necessitating the need to replace the monopolar instrument. The surgeon may need to repeatedly remove the monopolar instrument from the operating cavity to utilize the bipolar instrument and vice versa.
- Thus there exists a need to develop an instrument which can combine the benefits of both monopolar and bipolar operation thereby reducing the need for the surgeon to substitute instruments during surgical certain procedures.
- The present disclosure relates to an endoscopic forceps for treating tissue and includes a housing having a shaft affixed thereto and first and second jaw members attached to a distal end of the shaft. The forceps also includes an actuator for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. A source of electrosurgical energy is connected to each jaw member such that the jaw members are selectively capable of operating in a bipolar mode which enables the jaw members to conduct bipolar energy through tissue held therebetween to treat tissue. The forceps also includes a monopolar element housed within at least the first jaw member which is selectively movable from a first position within the first jaw member to a second position distal to the first jaw member. The monopolar element is connected to the source of electrosurgical energy and is selectively activateable independent of the jaw members.
- In one embodiment according to the present disclosure, the forceps includes a knife which is selectively moveable within a knife channel defined within at least one of the first and second jaw members to cut tissue disposed between the first and second jaw members. Advantageously, a knife actuator allows a user to selectively move the knife to cut tissue disposed between the jaw members. The source of electrosurgical energy carries electrical potentials to each respective jaw member such that the jaw members are capable of conducting bipolar energy through tissue held therebetween to effect a tissue seal.
- Advantageously, the knife is designed to initially cut tissue disposed between the first and second jaw members and subsequently extend distally from the jaw members to treat tissue in a monopolar fashion. Preferably, the forceps includes a safety (e.g. a safety circuit or mechanical safety element) which only allows electrical activation of the knife (or monopolar element) when the knife (or monopolar element) is extended from the distal ends of the jaw members. The safety may also deactivate the jaw members through circuitry or utilizing a mechanical safety element.
- In one embodiment, the first jaw member and the second jaw member each include an elongated slot which runs in opposition substantially along the respective lengths thereof such that the two opposing elongated slots form the knife channel for reciprocating the knife to divide tissue disposed between the two jaw members.
- In another embodiment, the forceps is a vessel sealing forceps and at least one of the jaw members includes at least one non-conductive stop member disposed thereon which controls the distance between the first and second jaw members when tissue is held therebetween. Advantageously, the stop member(s) maintains a gap distance of about 0.001 inches to about 0.006 inches between the jaw members when tissue is compressed between the jaw members.
- In yet another embodiment according to the present disclosure, the forceps includes an actuator which operates to both move the knife to cut tissue disposed between jaw members and to extend the knife or a separate monopolar element from the first position within the first jaw member to the second position distal to the first jaw member. In still yet another embodiment according to the present disclosure, the forceps includes an actuator which operates to both move the jaw members relative to one another from the first to second positions to grasp tissue therebetween and to extend the monopolar element from the first position within the first jaw member to the second position distal to the first jaw member.
- In another embodiment according to the present disclosure, a first actuator may be designed to operate the jaw members for grasping tissue and a second actuator may be included which operates to extend the monopolar element from the first position within the first jaw member to the second position distal to the first jaw member.
- The present disclosure also relates to an endoscopic forceps which includes a housing having a shaft affixed thereto and first and second jaw members attached to a distal end of the shaft. The first jaw member is configured to extend distally relative to the second jaw member. A actuator is includes for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. The jaw members are connected to a source of electrosurgical energy such that the jaw members are selectively capable of operating in a bipolar mode which enables the jaw members to conduct bipolar energy through tissue held therebetween.
- The forceps also includes a control switch which, upon selective activation, deactivates the second jaw member and activates the first jaw member with a first electrical potential. At relatively the same time, the control switch also activates a return electrode or return pad with a different electrical potential which is placed adjacent to the patient to enable the first jaw member to selectively treat tissue in a monopolar fashion. Preferably, a safety is included which limits electrical activation of the control switch to when the jaw members are disposed in the second position.
- The present disclosure also relates to an endoscopic forceps which includes a housing having a shaft affixed thereto. The shaft includes first and second jaw members attached to a distal end thereof. Preferably, the first and second jaw members each include a tapered or elongated distal end. The forceps also includes an actuator for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. A source of electrosurgical energy is connected to each jaw member such that the jaw members are selectively capable of operating in a bipolar mode which enables the jaw members to conduct bipolar energy through tissue held therebetween.
- A control switch is also included which, upon selective activation thereof, activates the first jaw member and the second jaw member with a first electrical potential and activates a return electrode with a different electrical potential. The return electrode is preferably placed adjacent to the patient which enables the first and second jaw members to selectively treat tissue in a monopolar fashion. Preferably, the forceps includes a safety which only allows electrical activation of the control switch when the jaw members are disposed in the second position.
- In another embodiment of the present disclosure, the actuator is selectively lockable to maintain a closure pressure in the range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, about 7 kg/cm2 to about 13 kg/cm2 between the jaw members which is advantageous in producing effective and reliable tissue seals. In yet another embodiment, the forceps may also include a rotating assembly for rotating the jaw members about a longitudinal axis defined through the shaft. Advantageously, the forceps includes a unilateral jaw assembly, i.e., the first jaw member is movable relative to the second jaw member and the second jaw member is substantially fixed. Alternatively, the forceps may include a bilateral jaw assembly, i.e., both jaw members move relative to one another.
- Preferably, a spring is included with the actuator or drive assembly to facilitate actuation of the movable handle and to assure the closure force is maintained within a working range of about 3 kg/cm2 to about 16 kg/cm2.
- The present disclosure also relates to a method for treating tissue with electrosurgical energy from an electrosurgical generator which includes the steps of: providing an endoscopic forceps including a housing having a shaft affixed thereto. The shaft includes first and second jaw members attached to a distal end thereof. An actuator is included for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. A monopolar element is also included which is housed within at least the first jaw member and selectively movable from a first position within the first jaw member to a second position distal to the first jaw member. A return electrode is provided and placed in contact with patient tissue.
- The method also includes the steps of: connecting to each jaw member, the monopolar element and the return electrode to the electrosurgical generator; grasping tissue between the jaw members; selectively activating the jaw members to treat tissue disposed between the jaw members in a bipolar fashion; and selectively activating the monopolar element and the return electrode independent of the jaw members to treat tissue in a monopolar fashion.
- Preferably, after the step of selectively activating the jaw members to treat tissue, the method includes the step of: extending the monopolar element from the distal end of the jaw members. Advantageously, the step of selectively activating the monopolar element includes deactivating the jaw members.
- After the step of selectively activating the jaw members to treat tissue, the method may include the step of: releasing the tissue from the jaw members.
- Various embodiments of the subject instrument are described herein with reference to the drawings wherein:
-
FIG. 1A is a side view of an endoscopic forceps showing a housing, a shaft, an end effector assembly and a trigger assembly in a first position according to the present disclosure; -
FIG. 1B is an enlarged, cross section taken alongline 1B-1B ofFIG. 1A ; -
FIG. 1C is an enlarged, side view of the trigger assembly ofFIG. 1A ; -
FIG. 1D is an enlarged, side view of the embodiment of an end effector assembly ofFIG. 1A showing relative extension of a monopolar element from a distal end of the end effector assembly; -
FIG. 2 is a side view of the trigger assembly is a second position for advancing a knife within the end effector assembly; -
FIG. 3 is a side view of the trigger assembly in a third position for extending a monopolar element from a distal end of the end effector assembly; -
FIG. 4 is a side view of an alternate embodiment of the present invention showing a second actuator advancing the monopolar element relative to the distal end of the end effector assembly; -
FIG. 5A is an enlarged, side schematic view of one embodiment of an end effector assembly showing relative movement of a first jaw member relative to a second jaw member prior to advancement of the knife through the end effector assembly; -
FIG. 5B is an enlarged, side schematic view of the end effector assembly showing relative movement of the knife through the end effector assembly to divide tissue; -
FIG. 5C is an enlarged, side schematic view of the end effector assembly showing relative movement of the knife extending from the distal end of the end effector assembly; -
FIG. 6A is an enlarged, side schematic view of another embodiment of an end effector assembly showing a first jaw member extending beyond a second jaw member; -
FIG. 6B is schematic view of another embodiment of an end effector assembly showing a series of electrical connections to a control switch and a generator to enable both bipolar activation and monopolar activation; and -
FIG. 6C is a table showing the various modes of operation of the forceps utilizing the end effector configuration ofFIG. 6B . - Turning now to
FIGS. 1A-1D , one embodiment of anendoscopic forceps 10 is shown for use with various surgical procedures. For the purposes herein, a vessel sealing forceps is shown and described, however, it is envisioned that other types of forceps or scissors may be utilized which both treat tissue for cauterization, coagulation or other purposes and which may be configured for monopolar applications as described herein. Moreover, although the figure drawings depict aforceps 10 for use in connection with endoscopic surgical procedures, the present disclosure may be used for more traditional open surgical procedures. For the purposes herein, theforceps 10 is described in terms of an endoscopic instrument, however, it is contemplated that an open version of theforceps 10 may also include the same or similar operating components and features as described below. -
Forceps 10 generally includes ahousing 20, ahandle assembly 30, a rotatingassembly 80, atrigger assembly 70 and anend effector assembly 100 which mutually cooperate to grasp, treat and divide tissue. For the purposes herein, thehandle assembly 30, rotating assembly,trigger assembly 70 andend effector assembly 100 are only generally described. A more detailed explanation of all of these cooperating elements are described in commonly owned, co-pending U.S. patent application Ser. No. 10/460,926 the entire contents of which is hereby incorporated by reference herein. -
Forceps 10 includes ashaft 12 which has adistal end 16 dimensioned to mechanically engage theend effector assembly 100 and aproximal end 14 which mechanically engages thehousing 20. In the drawings and in the descriptions which follow, the term “proximal”, as is traditional, will refer to the end of theforceps 10 which is closer to the user, while the term “distal” will refer to the end which is further from the user. Details of how theshaft 12 connects to theend effector assembly 100 and how the proximal end connects to thehousing 20 are explained in the above-mentioned commonly owned, co-pending U.S. patent application Ser. No. 10/460,926. - As best seen in
FIG. 1A ,forceps 10 also includes anelectrosurgical cable 310 which connects theforceps 10 to a source of electrosurgical energy, e.g., agenerator 300.Cable 310 is internally divided into cable leads 310 a, 310 b and 310 c which each transmit electrosurgical energy through their respective feed paths through theforceps 10 to theend effector assembly 100 as explained in more detail with respect to U.S. patent application Ser. No. 10/460,926. Preferably, generators such as those sold by Valleylab—a division of Tyco Healthcare LP, located in Boulder Colo. are used as a source of electrosurgical energy, e.g., FORCE EZ™ Electrosurgical Generator, FORCE FXM Electrosurgical Generator, FORCE 1C™ Electrosurgical Generator, FORCE 2™ Electrosurgical Generator, SurgiStat™ II Electrosurgical Generator. One such system is described in commonly-owned U.S. Pat. No. 6,033,399 the entire contents of which are hereby incorporated by reference herein. Other systems have been described in commonly-owned U.S. Pat. No. 6,187,003 the entire contents of which is also incorporated by reference herein. - Preferably, the
generator 300 includes various safety and performance features including isolated output, independent activation of accessories. Preferably, theelectrosurgical generator 300 includes Valleylab's Instant Response technology which provides an advanced feedback system to sense changes intissue 200 times per second and adjust voltage and current to maintain appropriate power. - Handle
assembly 30 includes a fixedhandle 50 and amovable handle 40. Fixedhandle 50 is integrally associated withhousing 20 and handle 40 is movable relative to fixedhandle 50. Rotatingassembly 80 is preferably integrally associated with thehousing 20 and is rotatable approximately 180 degrees in either direction about a longitudinal axis “A”. Details of thehandle assembly 30 and the rotatingassembly 80 are described in more detail with respect to U.S. patent application Ser. No. 10/460,926. - As mentioned above,
end effector assembly 100 is attached at thedistal end 16 ofshaft 12 and includes a pair of opposingjaw members Movable handle 40 ofhandle assembly 30 is ultimately connected to an internally disposed drive assembly (not shown) which, together, mechanically cooperate to impart movement of thejaw members jaw members jaw members - Turning now to the more detailed features of one embodiment of the present disclosure as described with respect to
FIGS. 1A-3 ,movable handle 40 includes anaperture 42 defined therethrough which enables a user to grasp and move thehandle 40 relative to the fixedhandle 50. More particularly, handle 40 is selectively moveable about a pivot (not shown) from a first position relative to fixedhandle 50 to a second position in closer proximity to the fixedhandle 50 which imparts movement of thejaw members - The lower end of the
movable handle 40 includes aflange 90 which, upon movement of thehandle 40 proximally, is reciprocated within fixedhandle 50.Flange 90 rides within a predefined channel (not shown) disposed within fixedhandle 50 to lock themovable handle 40 relative to the fixedhandle 50. - As best shown in
FIG. 1C , a locking flange 44 is disposed on the outer periphery of thehandle 40 above the upper portion of thehandle 40. Locking flange 44 prevents thetrigger assembly 70 from firing when thehandle 40 is oriented in a non-actuated position, i.e., thejaw members - As explained in detail in co-pending U.S. patent application Ser. No. 10/460,926,
movable handle 40 is designed to provide a distinct mechanical advantage over conventional handle assemblies due to the unique position of the pivot point relative to the longitudinal axis “A” of theshaft 12. In other words, by positioning the pivot point above the driving element, the user gains lever-like mechanical advantage to actuate thejaw members jaw members end effector assembly 100 will also increase mechanical advantage. - As best seen in
FIGS. 1A and 1D , theend effector assembly 100 includes opposingjaw members end effector assembly 100 is designed as a unilateral assembly, i.e.,jaw member 120 is fixed relative to theshaft 12 andjaw member 110 pivots about apivot pin 103 to grasp tissue. - More particularly, the unilateral
end effector assembly 100 includes one stationary or fixedjaw member 120 mounted in fixed relation to theshaft 12 and pivotingjaw member 110 mounted about apivot pin 103 attached to thestationary jaw member 120. Areciprocating sleeve 60 is slidingly disposed within theshaft 12 and is remotely operable by the drive assembly (not shown) which cooperates withhandle 40 as explained above to open and close thejaw members jaw member 110 includes a detent orprotrusion 117 which extends fromjaw member 110 through anaperture 62 disposed within the reciprocating sleeve 60 (FIG. 1D ). The pivotingjaw member 110 is actuated by sliding thesleeve 60 axially within theshaft 12 such thataperture 62 abuts against thedetent 117 on the pivotingjaw member 110. Pulling thesleeve 60 proximally closes thejaw members sleeve 60 distally opens thejaw members - Once actuated, handle 40 moves in a generally arcuate fashion towards fixed
handle 50 about the pivot point which forces the driving flange (not shown) proximally against the drive assembly (not shown) which, in turn, pulls reciprocatingsleeve 60 in a generally proximal direction to closejaw member 110 relative tojaw member 120. Moreover, proximal rotation of thehandle 40 causes the locking flange 44 to release, i.e., “unlock” thetrigger assembly 70 for selective actuation. These features are shown and explained in detail with reference to commonly-owned, co-pending U.S. application Ser. No. 10/460,926. - As best illustrated in
FIGS. 5A-5C , aknife channel 115 a and 115 b runs through the center of thejaw members blade 185 can cut tissue grasped between thejaw members jaw members blade 185 can only be advanced through the tissue when thejaw members blade 185 through tissue. Put simply, the knife channel 115 (made up ofhalf channels 115 a and 115 b) is blocked when thejaws members jaw members - As best shown in
FIG. 1D ,jaw member 110 includes ajaw housing 116 which has an insulative substrate orinsulator 114 and an electricallyconducive surface 112.Insulator 114 is preferably dimensioned to securely engage the electricallyconductive sealing surface 112. This may be accomplished by stamping, by overmolding, by overmolding a stamped electrically conductive sealing plate, by overmolding a metal injection molded seal plate and/or other ways known in the art. It is envisioned atrigger lead 311 fromswitch 200 electrically connects to theseal plate 112. - All of these manufacturing techniques produce
jaw member 110 having an electricallyconductive surface 112 which is substantially surrounded by an insulatingsubstrate 114. Theinsulator 114, electricallyconductive sealing surface 112 and the outer,non-conductive jaw housing 116 are preferably dimensioned to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread and stray current dissipation. - As best seen in
FIG. 1D ,jaw member 110 also includes apivot flange 118 which includesprotrusion 117.Protrusion 117 extends frompivot flange 118 and includes an arcuately-shaped inner surface dimensioned to matingly engage theaperture 62 ofsleeve 60 upon retraction thereof.Pivot flange 118 is also dimensioned to engagepivot pin 103 to allowjaw member 110 to rotate relative tojaw member 120 upon retraction of thereciprocating sleeve 60.Pivot pin 103 also mounts to thestationary jaw member 120 within a proximal portion ofjaw member 120. - Preferably, the electrically
conductive surface 112 and theinsulator 114, when assembled, form the longitudinally-orientedknife slot 115 a defined therethrough for reciprocation of theknife blade 185. As mentioned above,knife channel 115 a cooperates with corresponding knife channel 115 b defined instationary jaw member 120 to facilitate longitudinal translation of theknife blade 185 along a preferred cutting plane to effectively and accurately separate tissue along the formed tissue seal. -
Jaw member 120 includes similar elements tojaw member 110 such asjaw housing 126 having aninsulator 124 and an electricallyconductive sealing surface 122 which is dimensioned to securely engage theinsulator 124. Likewise, the electricallyconductive surface 122 and theinsulator 124, when assembled, include longitudinally-oriented channel 115 b defined therethrough for reciprocation of theknife blade 185. As mentioned above, when thejaw members knife channels 115 a and 115 b form acomplete knife channel 115 to allow longitudinal translation of theknife 185 in a distal fashion to sever tissue along the tissue seal. - As mentioned above,
jaw member 120 may include a series of stop members 150 a-150 c preferably disposed on the inner facing surfaces of the electricallyconductive sealing surface 122 to facilitate gripping and manipulation of tissue and to define a gap “G” (FIG. 5A ) between opposingjaw members jaw members -
Jaw member 120 is designed to be fixed to the end of a rotating tube (not shown) which is part of the rotatingassembly 80 such that rotation of the tube will impart rotation to theend effector assembly 100.Jaw member 120 is connected to a second electrical potential through the rotating tube (not shown) which is connected at its proximal end to a lead 310 c fromcable 310. Details relating to the mechanical and electromechanical engagement of thejaw member 120 to the rotatingassembly 80 are described in above-mentioned, commonly-owned, co-pending U.S. patent application Ser. No. 10/460,926. - As mentioned above, the
jaw members forceps 10 prior to activation and sealing. As illustrated inFIG. 1A , theend effector assembly 100 is rotatable about longitudinal axis “A” through rotation of the rotatingassembly 80. It is envisioned that the unique feed path of thetrigger lead 311 from theswitch 200 through the rotatingassembly 80, alongshaft 12 and, ultimately, to thejaw member 110 enables the user to rotate theend effector assembly 100 about 180 degrees in both the clockwise and counterclockwise direction without tangling or causing undue strain on the cable lead. Theother cable lead 310 c fromcable 310 is fused or clipped to the proximal end of the rotating tube (not shown) and is generally unaffected by rotation of thejaw members - Again as best shown in
FIGS. 1A and 1C ,trigger assembly 70 mounts atopmovable handle 40 and cooperates with the knife assembly 180 (FIGS. 2 , 3, 4, and 5A-5C) to selectively translateknife 185 through a tissue seal. More particularly, thetrigger assembly 70 includes afinger actuator 71 and apivot pin 73 which mounts thetrigger assembly 70 to thehousing 20.Finger actuator 71 is dimensioned to abut the locking flange 44 onhandle 40 when thehandle 40 is disposed in a non-actuated position, i.e., thejaw members - The
trigger assembly 70 is designed to cooperate with adrive bar 64 which connects to theknife assembly 180. Proximal activation of thefinger actuator 71 rotates thetrigger assembly 70 aboutpivot pin 73 which, in turn, forces thedrive bar 64 distally, which ultimately extends theknife 185 through tissue. A spring (not shown) may be employed to bias theknife assembly 180 in a retracted position such that after severing tissue theknife 185 and theknife assembly 180 are automatically returned to a pre-firing position. In addition, when thehandle 40 is actuated andflange 90 is fully reciprocated within fixedhandle 50, the locking flange 44 moves proximally allowing activation of thetrigger assembly 70. - As best shown in
FIG. 1A , thecable 310 is fed through the bottom of thehousing 20 through fixedhandle 50. Afirst lead 310 c extends directly fromcable 310 into the rotatingassembly 80 and connects (via a fused clip or spring clip or the like) totube 60 to conduct the second electrical potential to fixedjaw member 120. Second andthird leads cable 310 and connect to the hand switch or joy-stick-like toggle switch 200. Switch 200 permits the user to selectively activate theforceps 10 in a variety of different orientations, i.e., multi-oriented activation which simplifies activation. When theswitch 200 is depressed, atrigger lead 311 carries the first electrical potential tojaw member 110. More particularly, thetrigger lead 311 extends fromswitch 200 through the rotatingassembly 80 and along the upper portion of the rotating tube (not shown) and eventually connects to themovable jaw member 110. As can be appreciated, locating theswitch 200 on theforceps 10 has many advantages. For example, theswitch 200 reduces the amount of electrical cable in the operating room and eliminates the possibility of activating the wrong instrument during a surgical procedure due to “line-of-sight” activation. - As explained in detail above, the second electrical potential (i.e., lead 310 c) is conducted to
jaw member 120 through the rotating tube. The two potentials are preferably isolated from one another by insulative sheathing (or the like) which surrounds the trigger lead. Preferably, thejaw members - Once the desired position for the sealing site is determined and the
jaw members flange 90 is reciprocated and locked within fixedhandle 50.Handle 40 is now secured in position relative to fixedhandle 50 which, in turn, locks thejaw members forceps 10 is now ready for selective application of electrosurgical energy and subsequent separation of tissue, i.e., whenmovable handle 10 reciprocates within fixedhandle 50, locking flange 44 moves into a position to permit activation of thetrigger assembly 70 as explained above. - As can be appreciated, the combination of the mechanical advantage of the over-the-center pivot along with the assisting compressive forces associated with a compression spring (not shown) facilitate and assure consistent, uniform and accurate closure pressure about tissue within the desired working pressure range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably about 7 kg/cm2 to about 13 kg/cm2. As mentioned above, at least one jaw member, e.g., 120, may include a stop member e.g., 150 a, which limits the movement of the two opposing
jaw members FIG. 5A ) which ranges from about 0.001 inches to about 0.006 inches and, more preferably, between about 0.002 and about 0.003 inches. By controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue, the user can effectively seal the tissue along a predetermined tissue site. - As energy is being selectively transferred to the
end effector assembly 100, across thejaw members forceps 10 with a cutting instrument (not shown) to divide the tissue halves along the tissue seal which is both time consuming and tedious and may result in inaccurate tissue division across the tissue seal due to misalignment or misplacement of the cutting instrument along the ideal tissue cutting plane. - The present disclosure incorporates
knife assembly 180 which, when activated via thetrigger assembly 70, progressively and selectively divides the tissue along an ideal tissue plane in precise manner to effectively and reliably divide the tissue. Theknife assembly 180 allows the user to quickly separate the tissue immediately after sealing without substituting a cutting instrument through a cannula or trocar port. As can be appreciated, accurate sealing and dividing of tissue is accomplished with thesame forceps 10. - Once the tissue is divided into tissue halves, the
jaw members handle 40 which release theflange 90 from fixedhandle 50. Details relating to the releasing of the flange from handle are described in commonly-owned, co-pending U.S. application Ser. No. 10/460,926. - Turning now to the operating characteristics of the present disclosure and as seen in the majority of the figures,
forceps 10 is designed for both bipolar electrosurgical treatment of tissue (either by vessel sealing as described above or coagulation or cauterization with other similar instruments) and monopolar treatment of tissue. For example,FIGS. 1A-D and 2-4 show one embodiment of aforceps 10 which includes amonopolar element 154 which may be selectively extended and selectively activated to treat tissue.FIGS. 5A-5C show an alternate embodiment of the present disclosure which shows that theknife 185 maybe extended from the distal end of theend effector assembly 100 and selectively energized to treat tissue in a monopolar fashion.FIG. 6A shows another embodiment wherein thebottom jaw member 120′ extends distally from thetop jaw member 110′ to allow the surgeon to selectively energize thebottom jaw member 120′ and treat tissue in a monopolar fashion.FIG. 6B shows yet another embodiment wherein thejaw members 110″ and 120″ include tapered distal ends which are selectively energized with a single electrical potential to treat tissue in a monopolar fashion. -
FIGS. 1A-1D and 2-4 show one embodiment wherein amonopolar element 154 is housed for selective extension within one jaw member, e.g.,jaw member 120, of theend effector assembly 100. More particularly,monopolar element 154 is designed to move independently fromknife assembly 180 and may be extended by further proximal movement of the trigger assembly 70 (FIGS. 1A , 2 and 3) or by a separate actuator 450 (FIG. 4 ). - Preferably, the
monopolar element 154 is connected to areciprocating rod 65 which extends through anelongated notch 13 in the outer periphery of theshaft 12 as best seen inFIG. 1B . Driverod 60 which actuates theknife 185 extends through the inner periphery ofshaft 12. In order to extend themonopolar element 154, thejaw members knife 185 is advanced distally utilizing the trigger assembly 70 (SeeFIG. 2 ). As best shown inFIG. 1C , thetrigger 71 is initially advanced to translate theknife 185 distally to cut through tissue, i.e., the “cut” stage (shown in phantom). Thereafter and as shown inFIG. 3 , thetrigger 71 may be further actuated in a proximal direction to extend themonopolar element 154, i.e., the “extend” stage (shown in phantom). - It is envisioned that the
trigger assembly 70 may be designed such that themonopolar element 154 may be extended when thejaw members trigger 71 may be moved distally (or upwardly) from its original, rested, neutral or pre-actuated position to advance themonopolar element 154. Alternatively, themonopolar element 154 may be advanced irrespective of the orientation of thejaw members trigger assembly 70 could be designed such that the it can be moved laterally (i.e., perpendicular to the longitudinal axis “A”) to advance themonopolar element 154 or thetrigger assembly 70 could be designed such that themonopolar element 154 is extendible when thetrigger 71 is moved to a proximal-most position (i.e., past the “cut” position as described above) and/or when thetrigger 71 is advanced distally from the neutral or pre-actuated orientation. A return spring (not shown) may be included to return themonopolar element 154 to a non-extended position upon release of thetrigger 71. - Upon extension of the
monopolar element 154, thegenerator 300 is preferably configured to automatically switch theforceps 10 from a bipolar activation mode (i.e., deactivating energy delivery tojaw members 110 and 120) to a monopolar activation mode (i.e., activating the monopolar element 154). As can be appreciated, theforceps 10 may also (or alternatively) be configured for manual switching between the bipolar activation mode and the monopolar activation mode. - As described above, when the
forceps 10 is configured for bipolar operation, the activation ofswitch 200 transfers energy fromjaw member 110 through the tissue and tojaw member 120 to treat tissue. In the monopolar mode, activation of switch 200 (or a separate switch, e.g., a footswitch), transfers energy to themonopolar element 154, through the tissue and to areturn electrode 550, e.g., a return pad, placed adjacent to or in contact with the patient. The monopolar activation mode allows themonopolar element 154 to quickly treat avascular tissue structures and/or quickly dissect narrow tissue planes. - As can be appreciated, it is also envisioned that the
trigger assembly 70 may be electrically configured to transmit electrical energy to themonopolar element 154 when extended. For example, thetrigger assembly 70 may be configured such that proximal-most actuation of the trigger 71 (FIG. 1C ) both extends and activates themonopolar element 154. An automatic safety circuit 460 (or mechanical safety lock (not shown)) may be employed which prevents theswitch 200 from energizing thejaw members monopolar element 154 is extended. -
FIG. 4 shows another embodiment of the present disclosure wherein themonopolar element 154 is selectively extendible utilizing asecond actuator 450. As described above, theknife 185 is advanced by actuating thetrigger 71 in a generally proximal direction. Themonopolar element 154 is selectively advanceable independently of theknife 185 and may be extended when thejaw members actuator 450 may be electrically configured to activate themonopolar element 154 automatically once extended or manually byactivation switch 200 or perhaps another switch (not shown). As mentioned above, asafety circuit 460 may be employed to deactivatejaw members monopolar element 154 is extended such that activation of theswitch 200 energizes themonopolar element 154. In the case of a separate activation switch for the monopolar element, the safety circuit would deactivate theswitch 200. -
FIG. 5A-5C show an alternate embodiment of the present disclosure wherein theknife 185 can be extended distally beyond thejaw members jaw members knife 185 becomes the monopolar element. - For example and as depicted in the activation sequence shown in
FIGS. 5A-5C , theknife 185 is initially seated in a neutral position during tissue approximation and grasping and during the sealing process. Once thejaw members lower knife channels 115 a and 115 b, respectively) is formed to allow selective translation of theknife 185 through tissue disposed between thejaw members trigger 71, theknife bar 64 forces theknife 185 distally through the tissue to the distal end of theknife channel 115. Astop 119 is included to temporarily limit the movement of theknife 185 and provide the user with positive tactile feedback as to the end of the cutting stroke. Upon further actuation of thetrigger 71, theknife 185 overcomes the limiting forces associated with thestop 119 and is forced by the knife bar to further extend out of theknife channel 115 and beyond the distal ends of thejaw members - It is envisioned that once the
knife 185 extends beyond thejaw members jaw members knife 185 such that activation of theswitch 200 energizes theknife 185 and the jaw members remain neutral. For example, thestop 119 may act as a safety switch such that upon being forced by theknife 185 out of or away from theknife channel 115, thestop 119 deactivates circuitry to thejaw members monopolar knife 185 and thereturn electrode 550. Aseparate lead 69 may be used to electrically communicate with thegenerator 300. As can be appreciated, theknife 185 may now be used in a monopolar fashion to treat tissue. - Upon release of the
trigger 71, theknife 185 automatically retracts into theknife channel 115 and back to the pre-actuated position as shown inFIG. 5A . At the same time thestop 119 reverts to its original position to temporarily block theknife channel 115 for subsequent actuation. -
FIG. 6A shows another embodiment of aforceps 10′ according to the present disclosure wherein thelower jaw member 120′ is designed to extend beyond the distal end ofjaw member 110′. In order to switch from a bipolar mode of the operation to a monopolar mode, the surgeon activates a switch or control which energizesjaw member 120′ to a first potential and activates areturn pad 550 to a second potential. Energy is transferred fromjaw member 120, through tissue, and to thereturn pad 550 to treat tissue. The distal end ofjaw member 120′ acts as the monopolar element for treating the tissue and may be shaped accordingly to enhance electrosurgical effect. -
FIG. 6B shows yet another schematic embodiment of aforceps 10″ according to the present disclosure wherein the distal ends of bothjaw members distal tips 112 a″ and 122 a″ are preferably elongated or tapered to enhance energy delivery when theforceps 10″ is disposed in the monopolar mode. When disposed in the bipolar mode, the tapered ends 112 a″ and 122 a″ do not effect treating tissue between electricallyconductive plates 112″ and 122″. - A
control switch 500 is preferably included which regulates the transition between bipolar mode and monopolar mode.Control switch 500 is connected togenerator 300 viacables leads jaw members return electrode 550, respectively. As best shown in the table depicted inFIG. 6C , each lead 510, 520, and 530 is provided with an electrical potential or remains neutral depending upon the particular “mode” of theforceps 10″. For example, in the bipolar mode, lead 510 (and, in turn,jaw member 110″) is energized with a first electrical potential and lead 520 (and, in turn,jaw member 120″) is energized with second electrical potential. As a result thereof, electrosurgical energy is transferred fromjaw member 110″ through the tissue and tojaw member 120″. Thereturn electrode 550 remains off or neutral. - In a monopolar mode,
jaw member 110″ and 120″ are both energized with the same electrical potential and thereturn pad 550 is energized with a second electrical potential forcing the electrical current to travel from thejaw members 110″ and 120″, through the tissue and to thereturn electrode 550. This enables thejaw members 110″ and 120″ to treat tissue in a monopolar fashion which, as mentioned above, advantageously treats avascular tissue structures and/or allows quick dissection of narrow tissue planes. As can be appreciated, all of theleads forceps 10″ is turned off or idle. - Although the general operating components and inter-cooperating relationships among these components have been generally described with respect to a
vessel sealing forceps 10, other instruments may also be utilized which can be configured to allow a surgeon to selectively treat tissue in both a bipolar and monopolar fashion. For example, bipolar grasping and coagulating instruments, cauterizing instruments, bipolar scissors, etc. - The present disclosure also relates to a method for treating tissue with electrosurgical energy from the
electrosurgical generator 300 which includes the steps of: providing anendoscopic forceps 10 including ahousing 20 having ashaft 12 affixed thereto. Theshaft 12 includes first and second jaw members, 110 and 120, respectively, attached to a distal end of theshaft 12. An actuator or handleassembly 30 is included for movingjaw members jaw members jaw members monopolar element 154 is also included which is housed within at least thefirst jaw member 120 and selectively movable from a first position within thefirst jaw member 120 to a second position distal to thefirst jaw member 120. Areturn electrode 550 is provided and placed in contact with patient tissue. - The method also includes the steps of: connecting to each
jaw member monopolar element 154 and thereturn electrode 550 to theelectrosurgical generator 300; grasping tissue between thejaw members jaw members jaw members monopolar element 154 and thereturn electrode 550 independent of thejaw members - Preferably, after the step of selectively activating the
jaw members monopolar element 154 from the distal end of thejaw members monopolar element 154 includes deactivating thejaw members - After the step of selectively activating the
jaw members jaw members - From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, it may be preferable to add other features to the
forceps 10, e.g., an articulating assembly to axially displace theend effector assembly 100 relative to theelongated shaft 12. - It is envisioned that the
forceps 10 may be designed such that it is fully or partially disposable depending upon a particular purpose or to achieve a particular result. For example,end effector assembly 100 may be selectively and releasably engageable with thedistal end 16 of theshaft 12 and/or theproximal end 14 ofshaft 12 may be selectively and releasably engageable with thehousing 20 and thehandle assembly 30. In either of these two instances, theforceps 10 would be considered “partially disposable” or “reposable”, i.e., a new or different end effector assembly 100 (or endeffector assembly 100 and shaft 12) selectively replaces the oldend effector assembly 100 as needed. As can be appreciated, the presently disclosed electrical connections would have to be altered to modify the instrument to a reposable forceps. - Moreover, it is envisioned that the
switch 200 may be decommissioned during the cutting process. Decommissioning theswitch 200 when thetrigger 71 is actuated eliminates unintentionally activating the forceps during the cutting process. It is also envisioned that theswitch 200 may be disposed on another part of theforceps 10, e.g., the fixedhandle 40, rotatingassembly 80,housing 20, etc. - While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Claims (11)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/904,123 US20080243120A1 (en) | 2003-11-17 | 2007-09-26 | Bipolar forceps having monopolar extension |
US12/876,662 US8257352B2 (en) | 2003-11-17 | 2010-09-07 | Bipolar forceps having monopolar extension |
US13/600,447 US8597296B2 (en) | 2003-11-17 | 2012-08-31 | Bipolar forceps having monopolar extension |
US14/080,564 US10441350B2 (en) | 2003-11-17 | 2013-11-14 | Bipolar forceps having monopolar extension |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US52057903P | 2003-11-17 | 2003-11-17 | |
US10/988,950 US7367976B2 (en) | 2003-11-17 | 2004-11-15 | Bipolar forceps having monopolar extension |
US11/904,123 US20080243120A1 (en) | 2003-11-17 | 2007-09-26 | Bipolar forceps having monopolar extension |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/988,950 Division US7367976B2 (en) | 2003-11-17 | 2004-11-15 | Bipolar forceps having monopolar extension |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/876,662 Division US8257352B2 (en) | 2003-11-17 | 2010-09-07 | Bipolar forceps having monopolar extension |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080243120A1 true US20080243120A1 (en) | 2008-10-02 |
Family
ID=34435209
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/988,950 Active 2025-11-27 US7367976B2 (en) | 2003-11-17 | 2004-11-15 | Bipolar forceps having monopolar extension |
US11/904,123 Abandoned US20080243120A1 (en) | 2003-11-17 | 2007-09-26 | Bipolar forceps having monopolar extension |
US12/876,662 Expired - Fee Related US8257352B2 (en) | 2003-11-17 | 2010-09-07 | Bipolar forceps having monopolar extension |
US13/600,447 Expired - Lifetime US8597296B2 (en) | 2003-11-17 | 2012-08-31 | Bipolar forceps having monopolar extension |
US14/080,564 Expired - Fee Related US10441350B2 (en) | 2003-11-17 | 2013-11-14 | Bipolar forceps having monopolar extension |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/988,950 Active 2025-11-27 US7367976B2 (en) | 2003-11-17 | 2004-11-15 | Bipolar forceps having monopolar extension |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/876,662 Expired - Fee Related US8257352B2 (en) | 2003-11-17 | 2010-09-07 | Bipolar forceps having monopolar extension |
US13/600,447 Expired - Lifetime US8597296B2 (en) | 2003-11-17 | 2012-08-31 | Bipolar forceps having monopolar extension |
US14/080,564 Expired - Fee Related US10441350B2 (en) | 2003-11-17 | 2013-11-14 | Bipolar forceps having monopolar extension |
Country Status (7)
Country | Link |
---|---|
US (5) | US7367976B2 (en) |
EP (1) | EP1530952B2 (en) |
JP (3) | JP5202788B2 (en) |
AU (2) | AU2004231188B2 (en) |
CA (1) | CA2487579C (en) |
DE (1) | DE602004024947D1 (en) |
ES (1) | ES2335759T5 (en) |
Cited By (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7708735B2 (en) | 2003-05-01 | 2010-05-04 | Covidien Ag | Incorporating rapid cooling in tissue fusion heating processes |
US7722607B2 (en) | 2005-09-30 | 2010-05-25 | Covidien Ag | In-line vessel sealer and divider |
US7771425B2 (en) | 2003-06-13 | 2010-08-10 | Covidien Ag | Vessel sealer and divider having a variable jaw clamping mechanism |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US7776036B2 (en) | 2003-03-13 | 2010-08-17 | Covidien Ag | Bipolar concentric electrode assembly for soft tissue fusion |
US7789878B2 (en) | 2005-09-30 | 2010-09-07 | Covidien Ag | In-line vessel sealer and divider |
US7799028B2 (en) | 2004-09-21 | 2010-09-21 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US7799026B2 (en) | 2002-11-14 | 2010-09-21 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US7811283B2 (en) | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
US7828798B2 (en) | 1997-11-14 | 2010-11-09 | Covidien Ag | Laparoscopic bipolar electrosurgical instrument |
US7846161B2 (en) | 2005-09-30 | 2010-12-07 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7857812B2 (en) | 2003-06-13 | 2010-12-28 | Covidien Ag | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
US7879035B2 (en) | 2005-09-30 | 2011-02-01 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7877853B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing end effector assembly for sealing tissue |
US7877852B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing an end effector assembly for sealing tissue |
US7887536B2 (en) | 1998-10-23 | 2011-02-15 | Covidien Ag | Vessel sealing instrument |
US7909823B2 (en) | 2005-01-14 | 2011-03-22 | Covidien Ag | Open vessel sealing instrument |
US7922718B2 (en) | 2003-11-19 | 2011-04-12 | Covidien Ag | Open vessel sealing instrument with cutting mechanism |
US7922953B2 (en) | 2005-09-30 | 2011-04-12 | Covidien Ag | Method for manufacturing an end effector assembly |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
US7935052B2 (en) | 2004-09-09 | 2011-05-03 | Covidien Ag | Forceps with spring loaded end effector assembly |
US7947041B2 (en) | 1998-10-23 | 2011-05-24 | Covidien Ag | Vessel sealing instrument |
US7951150B2 (en) | 2005-01-14 | 2011-05-31 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US7955332B2 (en) | 2004-10-08 | 2011-06-07 | Covidien Ag | Mechanism for dividing tissue in a hemostat-style instrument |
US7963965B2 (en) | 1997-11-12 | 2011-06-21 | Covidien Ag | Bipolar electrosurgical instrument for sealing vessels |
US8016827B2 (en) | 2008-10-09 | 2011-09-13 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
USD649249S1 (en) | 2007-02-15 | 2011-11-22 | Tyco Healthcare Group Lp | End effectors of an elongated dissecting and dividing instrument |
US8070746B2 (en) | 2006-10-03 | 2011-12-06 | Tyco Healthcare Group Lp | Radiofrequency fusion of cardiac tissue |
US8142473B2 (en) | 2008-10-03 | 2012-03-27 | Tyco Healthcare Group Lp | Method of transferring rotational motion in an articulating surgical instrument |
US8162940B2 (en) | 2002-10-04 | 2012-04-24 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US8162973B2 (en) | 2008-08-15 | 2012-04-24 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US8192433B2 (en) | 2002-10-04 | 2012-06-05 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US8197479B2 (en) | 2008-12-10 | 2012-06-12 | Tyco Healthcare Group Lp | Vessel sealer and divider |
US8211105B2 (en) | 1997-11-12 | 2012-07-03 | Covidien Ag | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US8221416B2 (en) | 2007-09-28 | 2012-07-17 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with thermoplastic clevis |
US8235993B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with exohinged structure |
US8236025B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Silicone insulated electrosurgical forceps |
US8235992B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot with mechanical reinforcement for electrosurgical forceps |
US8241284B2 (en) | 2001-04-06 | 2012-08-14 | Covidien Ag | Vessel sealer and divider with non-conductive stop members |
US8241283B2 (en) | 2007-09-28 | 2012-08-14 | Tyco Healthcare Group Lp | Dual durometer insulating boot for electrosurgical forceps |
US8241282B2 (en) | 2006-01-24 | 2012-08-14 | Tyco Healthcare Group Lp | Vessel sealing cutting assemblies |
US8251996B2 (en) | 2007-09-28 | 2012-08-28 | Tyco Healthcare Group Lp | Insulating sheath for electrosurgical forceps |
US8257352B2 (en) | 2003-11-17 | 2012-09-04 | Covidien Ag | Bipolar forceps having monopolar extension |
US8257387B2 (en) | 2008-08-15 | 2012-09-04 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US8267936B2 (en) | 2007-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Insulating mechanically-interfaced adhesive for electrosurgical forceps |
US8267935B2 (en) | 2007-04-04 | 2012-09-18 | Tyco Healthcare Group Lp | Electrosurgical instrument reducing current densities at an insulator conductor junction |
US20120253344A1 (en) * | 2011-03-28 | 2012-10-04 | Tyco Healthcare Group Lp | Surgical Forceps with External Cutter |
US20120259331A1 (en) * | 2011-04-05 | 2012-10-11 | Tyco Healthcare Group Lp. | Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge |
US8298228B2 (en) | 1997-11-12 | 2012-10-30 | Coviden Ag | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US8303586B2 (en) | 2003-11-19 | 2012-11-06 | Covidien Ag | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US8303582B2 (en) | 2008-09-15 | 2012-11-06 | Tyco Healthcare Group Lp | Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique |
US8317787B2 (en) | 2008-08-28 | 2012-11-27 | Covidien Lp | Tissue fusion jaw angle improvement |
US8348948B2 (en) | 2004-03-02 | 2013-01-08 | Covidien Ag | Vessel sealing system using capacitive RF dielectric heating |
US8361071B2 (en) | 1999-10-22 | 2013-01-29 | Covidien Ag | Vessel sealing forceps with disposable electrodes |
US8382754B2 (en) | 2005-03-31 | 2013-02-26 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
USD680220S1 (en) | 2012-01-12 | 2013-04-16 | Coviden IP | Slider handle for laparoscopic device |
US8454602B2 (en) | 2009-05-07 | 2013-06-04 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8469957B2 (en) | 2008-10-07 | 2013-06-25 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8469956B2 (en) | 2008-07-21 | 2013-06-25 | Covidien Lp | Variable resistor jaw |
US8486107B2 (en) | 2008-10-20 | 2013-07-16 | Covidien Lp | Method of sealing tissue using radiofrequency energy |
US8496656B2 (en) | 2003-05-15 | 2013-07-30 | Covidien Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
US8523898B2 (en) | 2009-07-08 | 2013-09-03 | Covidien Lp | Endoscopic electrosurgical jaws with offset knife |
US8535312B2 (en) | 2008-09-25 | 2013-09-17 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8591506B2 (en) | 1998-10-23 | 2013-11-26 | Covidien Ag | Vessel sealing system |
US8597297B2 (en) | 2006-08-29 | 2013-12-03 | Covidien Ag | Vessel sealing instrument with multiple electrode configurations |
US8623276B2 (en) | 2008-02-15 | 2014-01-07 | Covidien Lp | Method and system for sterilizing an electrosurgical instrument |
US8636761B2 (en) | 2008-10-09 | 2014-01-28 | Covidien Lp | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
US8641713B2 (en) | 2005-09-30 | 2014-02-04 | Covidien Ag | Flexible endoscopic catheter with ligasure |
US8647341B2 (en) | 2003-06-13 | 2014-02-11 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US8734443B2 (en) | 2006-01-24 | 2014-05-27 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US8764748B2 (en) | 2008-02-06 | 2014-07-01 | Covidien Lp | End effector assembly for electrosurgical device and method for making the same |
US8784417B2 (en) | 2008-08-28 | 2014-07-22 | Covidien Lp | Tissue fusion jaw angle improvement |
US8795274B2 (en) | 2008-08-28 | 2014-08-05 | Covidien Lp | Tissue fusion jaw angle improvement |
US8852228B2 (en) | 2009-01-13 | 2014-10-07 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
US8898888B2 (en) | 2009-09-28 | 2014-12-02 | Covidien Lp | System for manufacturing electrosurgical seal plates |
US8968314B2 (en) | 2008-09-25 | 2015-03-03 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US9023043B2 (en) | 2007-09-28 | 2015-05-05 | Covidien Lp | Insulating mechanically-interfaced boot and jaws for electrosurgical forceps |
US9028493B2 (en) | 2009-09-18 | 2015-05-12 | Covidien Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US9039691B2 (en) | 2012-06-29 | 2015-05-26 | Covidien Lp | Surgical forceps |
US9072524B2 (en) | 2012-06-29 | 2015-07-07 | Covidien Lp | Surgical forceps |
US9095347B2 (en) | 2003-11-20 | 2015-08-04 | Covidien Ag | Electrically conductive/insulative over shoe for tissue fusion |
US9107672B2 (en) | 1998-10-23 | 2015-08-18 | Covidien Ag | Vessel sealing forceps with disposable electrodes |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US9149323B2 (en) | 2003-05-01 | 2015-10-06 | Covidien Ag | Method of fusing biomaterials with radiofrequency energy |
US9198717B2 (en) | 2005-08-19 | 2015-12-01 | Covidien Ag | Single action tissue sealer |
US9375254B2 (en) | 2008-09-25 | 2016-06-28 | Covidien Lp | Seal and separate algorithm |
US9498278B2 (en) | 2010-09-08 | 2016-11-22 | Covidien Lp | Asymmetrical electrodes for bipolar vessel sealing |
US9603652B2 (en) | 2008-08-21 | 2017-03-28 | Covidien Lp | Electrosurgical instrument including a sensor |
US9848938B2 (en) | 2003-11-13 | 2017-12-26 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US9877777B2 (en) | 2014-09-17 | 2018-01-30 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US9918785B2 (en) | 2014-09-17 | 2018-03-20 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9931158B2 (en) | 2014-09-17 | 2018-04-03 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9987076B2 (en) | 2014-09-17 | 2018-06-05 | Covidien Lp | Multi-function surgical instruments |
US10080605B2 (en) | 2014-09-17 | 2018-09-25 | Covidien Lp | Deployment mechanisms for surgical instruments |
US10213250B2 (en) | 2015-11-05 | 2019-02-26 | Covidien Lp | Deployment and safety mechanisms for surgical instruments |
US10231777B2 (en) | 2014-08-26 | 2019-03-19 | Covidien Lp | Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument |
USD844138S1 (en) | 2015-07-17 | 2019-03-26 | Covidien Lp | Handle assembly of a multi-function surgical instrument |
USD844139S1 (en) | 2015-07-17 | 2019-03-26 | Covidien Lp | Monopolar assembly of a multi-function surgical instrument |
US10537381B2 (en) | 2016-02-26 | 2020-01-21 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US10646267B2 (en) | 2013-08-07 | 2020-05-12 | Covidien LLP | Surgical forceps |
US10828756B2 (en) | 2018-04-24 | 2020-11-10 | Covidien Lp | Disassembly methods facilitating reprocessing of multi-function surgical instruments |
US10987159B2 (en) | 2015-08-26 | 2021-04-27 | Covidien Lp | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
US11123132B2 (en) | 2018-04-09 | 2021-09-21 | Covidien Lp | Multi-function surgical instruments and assemblies therefor |
US11154348B2 (en) | 2017-08-29 | 2021-10-26 | Covidien Lp | Surgical instruments and methods of assembling surgical instruments |
US11166759B2 (en) | 2017-05-16 | 2021-11-09 | Covidien Lp | Surgical forceps |
USD956973S1 (en) | 2003-06-13 | 2022-07-05 | Covidien Ag | Movable handle for endoscopic vessel sealer and divider |
Families Citing this family (312)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6447511B1 (en) | 1994-12-13 | 2002-09-10 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
US6267761B1 (en) * | 1997-09-09 | 2001-07-31 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
US7887535B2 (en) | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
US7811282B2 (en) | 2000-03-06 | 2010-10-12 | Salient Surgical Technologies, Inc. | Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof |
US8048070B2 (en) | 2000-03-06 | 2011-11-01 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices, systems and methods |
ATE397900T1 (en) | 2000-03-06 | 2008-07-15 | Salient Surgical Technologies | FLUID DELIVERY SYSTEM AND CONTROL FOR ELECTROSURGICAL EQUIPMENT |
US6558385B1 (en) | 2000-09-22 | 2003-05-06 | Tissuelink Medical, Inc. | Fluid-assisted medical device |
US6689131B2 (en) | 2001-03-08 | 2004-02-10 | Tissuelink Medical, Inc. | Electrosurgical device having a tissue reduction sensor |
US20090292282A9 (en) * | 2001-04-06 | 2009-11-26 | Dycus Sean T | Movable handle for vessel sealer |
ES2240723T3 (en) * | 2001-04-06 | 2005-10-16 | Sherwood Services Ag | MOLDED INSULATING HINGE FOR BIPOLAR INSTRUMENTS. |
US10849681B2 (en) | 2001-04-06 | 2020-12-01 | Covidien Ag | Vessel sealer and divider |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US8734441B2 (en) * | 2001-08-15 | 2014-05-27 | Nuortho Surgical, Inc. | Interfacing media manipulation with non-ablation radiofrequency energy system and method |
US20100324550A1 (en) * | 2009-06-17 | 2010-12-23 | Nuortho Surgical Inc. | Active conversion of a monopolar circuit to a bipolar circuit using impedance feedback balancing |
EP1572020A4 (en) | 2002-10-29 | 2006-05-03 | Tissuelink Medical Inc | Fluid-assisted electrosurgical scissors and methods |
US7033354B2 (en) * | 2002-12-10 | 2006-04-25 | Sherwood Services Ag | Electrosurgical electrode having a non-conductive porous ceramic coating |
US8128624B2 (en) | 2003-05-01 | 2012-03-06 | Covidien Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
US7232440B2 (en) * | 2003-11-17 | 2007-06-19 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7727232B1 (en) | 2004-02-04 | 2010-06-01 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices and methods |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US20060041252A1 (en) * | 2004-08-17 | 2006-02-23 | Odell Roger C | System and method for monitoring electrosurgical instruments |
PL1802245T3 (en) | 2004-10-08 | 2017-01-31 | Ethicon Endosurgery Llc | Ultrasonic surgical instrument |
US7686827B2 (en) | 2004-10-21 | 2010-03-30 | Covidien Ag | Magnetic closure mechanism for hemostat |
US7918848B2 (en) | 2005-03-25 | 2011-04-05 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US8197472B2 (en) | 2005-03-25 | 2012-06-12 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
EP1885259B1 (en) * | 2005-05-11 | 2016-08-17 | Mayo Foundation For Medical Education And Research | Apparatus for internal surgical procedures |
US7837685B2 (en) | 2005-07-13 | 2010-11-23 | Covidien Ag | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
CA2561622C (en) * | 2005-09-30 | 2015-01-20 | Sherwood Services Ag | In-line vessel sealer and divider |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US20070118115A1 (en) * | 2005-11-22 | 2007-05-24 | Sherwood Services Ag | Bipolar electrosurgical sealing instrument having an improved tissue gripping device |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US7766910B2 (en) | 2006-01-24 | 2010-08-03 | Tyco Healthcare Group Lp | Vessel sealer and divider for large tissue structures |
US8007494B1 (en) | 2006-04-27 | 2011-08-30 | Encision, Inc. | Device and method to prevent surgical burns |
US7846158B2 (en) | 2006-05-05 | 2010-12-07 | Covidien Ag | Apparatus and method for electrode thermosurgery |
US20070260238A1 (en) * | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Combined energy level button |
US20070265616A1 (en) * | 2006-05-10 | 2007-11-15 | Sherwood Services Ag | Vessel sealing instrument with optimized power density |
US8251989B1 (en) | 2006-06-13 | 2012-08-28 | Encision, Inc. | Combined bipolar and monopolar electrosurgical instrument and method |
US7744615B2 (en) | 2006-07-18 | 2010-06-29 | Covidien Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
US7731717B2 (en) | 2006-08-08 | 2010-06-08 | Covidien Ag | System and method for controlling RF output during tissue sealing |
US20080065060A1 (en) * | 2006-09-07 | 2008-03-13 | Moshe Ein-Gal | Controlled monopolar and bipolar application of RF energy |
US7951149B2 (en) | 2006-10-17 | 2011-05-31 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
US7785060B2 (en) * | 2006-10-27 | 2010-08-31 | Applied Materials, Inc. | Multi-directional mechanical scanning in an ion implanter |
WO2008097655A1 (en) * | 2007-02-08 | 2008-08-14 | Bovie Medical | Modular electrosurgical adaptors and multi function active shafts for use in electrosurgigal instruments |
US8057498B2 (en) * | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
AU2008308606B2 (en) | 2007-10-05 | 2014-12-18 | Ethicon Endo-Surgery, Inc. | Ergonomic surgical instruments |
WO2009064808A1 (en) * | 2007-11-13 | 2009-05-22 | Boston Scientific Scimed, Inc. | Apparatus system and method for coagulating and cutting tissue |
US8221417B2 (en) * | 2007-11-13 | 2012-07-17 | Boston Scientific Scimed, Inc. | Disposable electro-surgical cover elements and electro-surgical instrument |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
JP5711656B2 (en) | 2008-03-31 | 2015-05-07 | アプライド メディカル リソーシーズ コーポレイション | Electrosurgical system |
KR100879617B1 (en) * | 2008-05-19 | 2009-01-21 | 박영세 | An electrosurgical instrument |
US9402679B2 (en) | 2008-05-27 | 2016-08-02 | Maquet Cardiovascular Llc | Surgical instrument and method |
US9402680B2 (en) | 2008-05-27 | 2016-08-02 | Maquet Cardiovasular, Llc | Surgical instrument and method |
US9968396B2 (en) | 2008-05-27 | 2018-05-15 | Maquet Cardiovascular Llc | Surgical instrument and method |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9833281B2 (en) | 2008-08-18 | 2017-12-05 | Encision Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
EP2323578B1 (en) | 2008-08-18 | 2018-10-03 | Encision, Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
US20100069953A1 (en) | 2008-09-16 | 2010-03-18 | Tyco Healthcare Group Lp | Method of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9532827B2 (en) | 2009-06-17 | 2017-01-03 | Nuortho Surgical Inc. | Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator |
GB2471517B (en) * | 2009-07-02 | 2011-09-21 | Cook William Europ | Implant deployment catheter |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9955858B2 (en) | 2009-08-21 | 2018-05-01 | Maquet Cardiovascular Llc | Surgical instrument and method for use |
US8292886B2 (en) | 2009-10-06 | 2012-10-23 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9039695B2 (en) | 2009-10-09 | 2015-05-26 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8696665B2 (en) | 2010-03-26 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical cutting and sealing instrument with reduced firing force |
DE102010016291A1 (en) * | 2010-04-01 | 2011-10-06 | Erbe Elektromedizin Gmbh | Surgical instrument, in particular electrosurgical instrument |
US8834518B2 (en) | 2010-04-12 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with cam-actuated jaws |
US8709035B2 (en) | 2010-04-12 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion |
US8439913B2 (en) | 2010-04-29 | 2013-05-14 | Covidien Lp | Pressure sensing sealing plate |
US8685020B2 (en) | 2010-05-17 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instruments and end effectors therefor |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
US8672939B2 (en) | 2010-06-01 | 2014-03-18 | Covidien Lp | Surgical device for performing an electrosurgical procedure |
US9005199B2 (en) | 2010-06-10 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Heat management configurations for controlling heat dissipation from electrosurgical instruments |
US9028495B2 (en) | 2010-06-23 | 2015-05-12 | Covidien Lp | Surgical instrument with a separable coaxial joint |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8795269B2 (en) | 2010-07-26 | 2014-08-05 | Covidien Lp | Rotary tissue sealer and divider |
US8814864B2 (en) | 2010-08-23 | 2014-08-26 | Covidien Lp | Method of manufacturing tissue sealing electrodes |
US8663222B2 (en) | 2010-09-07 | 2014-03-04 | Covidien Lp | Dynamic and static bipolar electrical sealing and cutting device |
US9005200B2 (en) | 2010-09-30 | 2015-04-14 | Covidien Lp | Vessel sealing instrument |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US9017372B2 (en) | 2010-10-01 | 2015-04-28 | Covidien Lp | Blade deployment mechanisms for surgical forceps |
JP6143362B2 (en) | 2010-10-01 | 2017-06-07 | アプライド メディカル リソーシーズ コーポレイション | Electrosurgical instrument with jaws and / or electrodes and electrosurgical amplifier |
US8945175B2 (en) | 2011-01-14 | 2015-02-03 | Covidien Lp | Latch mechanism for surgical instruments |
US9408658B2 (en) | 2011-02-24 | 2016-08-09 | Nuortho Surgical, Inc. | System and method for a physiochemical scalpel to eliminate biologic tissue over-resection and induce tissue healing |
US8900232B2 (en) * | 2011-05-06 | 2014-12-02 | Covidien Lp | Bifurcated shaft for surgical instrument |
ITTO20110411A1 (en) * | 2011-05-11 | 2012-11-12 | Consiglio Nazionale Ricerche | DEVICE FOR ELECTROPORATION |
US9844384B2 (en) | 2011-07-11 | 2017-12-19 | Covidien Lp | Stand alone energy-based tissue clips |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
US9044243B2 (en) | 2011-08-30 | 2015-06-02 | Ethcon Endo-Surgery, Inc. | Surgical cutting and fastening device with descendible second trigger arrangement |
US9161805B2 (en) * | 2011-09-28 | 2015-10-20 | Medtronic, Inc. | Surgical devices and mechanisms |
US9283027B2 (en) | 2011-10-24 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Battery drain kill feature in a battery powered device |
US9023035B2 (en) * | 2012-01-06 | 2015-05-05 | Covidien Lp | Monopolar pencil with integrated bipolar/ligasure tweezers |
US8968360B2 (en) | 2012-01-25 | 2015-03-03 | Covidien Lp | Surgical instrument with resilient driving member and related methods of use |
WO2013119545A1 (en) | 2012-02-10 | 2013-08-15 | Ethicon-Endo Surgery, Inc. | Robotically controlled surgical instrument |
US9375282B2 (en) | 2012-03-26 | 2016-06-28 | Covidien Lp | Light energy sealing, cutting and sensing surgical device |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9084606B2 (en) | 2012-06-01 | 2015-07-21 | Megadyne Medical Products, Inc. | Electrosurgical scissors |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US20140005640A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical end effector jaw and electrode configurations |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9192421B2 (en) | 2012-07-24 | 2015-11-24 | Covidien Lp | Blade lockout mechanism for surgical forceps |
IN2015DN02432A (en) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US9375205B2 (en) | 2012-11-15 | 2016-06-28 | Covidien Lp | Deployment mechanisms for surgical instruments |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US10772674B2 (en) | 2012-11-15 | 2020-09-15 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9579142B1 (en) | 2012-12-13 | 2017-02-28 | Nuortho Surgical Inc. | Multi-function RF-probe with dual electrode positioning |
US9439665B2 (en) * | 2012-12-20 | 2016-09-13 | Covidien Lp | Pediatric combination surgical device |
KR102104910B1 (en) * | 2013-02-28 | 2020-04-27 | 삼성전자주식회사 | Portable apparatus for providing haptic feedback with an input unit and method therefor |
US10070916B2 (en) | 2013-03-11 | 2018-09-11 | Covidien Lp | Surgical instrument with system and method for springing open jaw members |
US9655673B2 (en) | 2013-03-11 | 2017-05-23 | Covidien Lp | Surgical instrument |
US9456863B2 (en) | 2013-03-11 | 2016-10-04 | Covidien Lp | Surgical instrument with switch activation control |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
CN105246424B (en) * | 2013-03-15 | 2018-02-13 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | Combined electrosurgical device |
WO2014143472A1 (en) * | 2013-03-15 | 2014-09-18 | GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) | Electrosurgical instrument |
EP2974684B1 (en) | 2013-03-15 | 2017-08-30 | Gyrus ACMI, Inc. | Combination electrosurgical device |
US9668805B2 (en) | 2013-03-15 | 2017-06-06 | Gyrus Acmi Inc | Combination electrosurgical device |
EP2967720B1 (en) | 2013-03-15 | 2017-05-31 | Gyrus Acmi Inc. | Offset forceps |
US9579118B2 (en) * | 2013-05-01 | 2017-02-28 | Ethicon Endo-Surgery, Llc | Electrosurgical instrument with dual blade end effector |
US9295514B2 (en) | 2013-08-30 | 2016-03-29 | Ethicon Endo-Surgery, Llc | Surgical devices with close quarter articulation features |
US9597141B2 (en) | 2013-09-03 | 2017-03-21 | Covidien Lp | Switch assemblies for multi-function surgical instruments and surgical instruments incorporating the same |
US9713492B2 (en) | 2013-09-03 | 2017-07-25 | Covidien Lp | Switch assemblies for multi-function surgical instruments and surgical instruments incorporating the same |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US9861428B2 (en) | 2013-09-16 | 2018-01-09 | Ethicon Llc | Integrated systems for electrosurgical steam or smoke control |
US9579117B2 (en) | 2013-09-25 | 2017-02-28 | Covidien Lp | Multi-function surgical instruments |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
US9526565B2 (en) | 2013-11-08 | 2016-12-27 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9408660B2 (en) | 2014-01-17 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Device trigger dampening mechanism |
US10231776B2 (en) | 2014-01-29 | 2019-03-19 | Covidien Lp | Tissue sealing instrument with tissue-dissecting electrode |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US10524852B1 (en) | 2014-03-28 | 2020-01-07 | Ethicon Llc | Distal sealing end effector with spacers |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US9757186B2 (en) | 2014-04-17 | 2017-09-12 | Ethicon Llc | Device status feedback for bipolar tissue spacer |
US10258404B2 (en) | 2014-04-24 | 2019-04-16 | Gyrus, ACMI, Inc. | Partially covered jaw electrodes |
US20150324317A1 (en) | 2014-05-07 | 2015-11-12 | Covidien Lp | Authentication and information system for reusable surgical instruments |
ES2945708T3 (en) | 2014-05-16 | 2023-07-06 | Applied Med Resources | electrosurgical system |
KR102420273B1 (en) | 2014-05-30 | 2022-07-13 | 어플라이드 메디컬 리소시스 코포레이션 | Electrosurgical instrument for fusing and cutting tissue and an electrosurgical generator |
US9700333B2 (en) | 2014-06-30 | 2017-07-11 | Ethicon Llc | Surgical instrument with variable tissue compression |
WO2016018457A1 (en) * | 2014-07-31 | 2016-02-04 | Smith & Nephew, Inc. | Surgical endoscopic cutting system |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
CN105682592B (en) | 2014-08-20 | 2018-03-27 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | The compound electro-surgical device of multi-mode |
US10194976B2 (en) | 2014-08-25 | 2019-02-05 | Ethicon Llc | Lockout disabling mechanism |
US9877776B2 (en) | 2014-08-25 | 2018-01-30 | Ethicon Llc | Simultaneous I-beam and spring driven cam jaw closure mechanism |
US10194972B2 (en) | 2014-08-26 | 2019-02-05 | Ethicon Llc | Managing tissue treatment |
US10660694B2 (en) | 2014-08-27 | 2020-05-26 | Covidien Lp | Vessel sealing instrument and switch assemblies thereof |
FR3025088B1 (en) * | 2014-09-01 | 2019-12-06 | Franck Sarrazin | VERSATILE ELECTRO-SURGICAL DEVICE. |
US9867656B2 (en) | 2014-11-17 | 2018-01-16 | Covidien Lp | Multi-function surgical instruments |
US9687293B2 (en) | 2014-11-17 | 2017-06-27 | Covidien Lp | Deployment mechanism for surgical instruments |
US9687294B2 (en) | 2014-11-17 | 2017-06-27 | Covidien Lp | Deployment mechanism for surgical instruments |
US9814517B2 (en) | 2014-11-17 | 2017-11-14 | Covidien Lp | Deployment mechanisms for multi-function surgical instruments |
US9814516B2 (en) | 2014-11-17 | 2017-11-14 | Covidien Lp | Deployment mechanisms for multi-function surgical instruments |
US9724153B2 (en) | 2014-11-17 | 2017-08-08 | Covidien Lp | Deployment mechanisms for surgical instruments |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10478245B2 (en) | 2014-12-10 | 2019-11-19 | Covidien Lp | Energizable attachment for surgical devices |
US10092348B2 (en) | 2014-12-22 | 2018-10-09 | Ethicon Llc | RF tissue sealer, shear grip, trigger lock mechanism and energy activation |
US9848937B2 (en) | 2014-12-22 | 2017-12-26 | Ethicon Llc | End effector with detectable configurations |
US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US10111699B2 (en) | 2014-12-22 | 2018-10-30 | Ethicon Llc | RF tissue sealer, shear grip, trigger lock mechanism and energy activation |
EP3236870B1 (en) | 2014-12-23 | 2019-11-06 | Applied Medical Resources Corporation | Bipolar electrosurgical sealer and divider |
USD748259S1 (en) | 2014-12-29 | 2016-01-26 | Applied Medical Resources Corporation | Electrosurgical instrument |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
CN104703036B (en) * | 2015-02-13 | 2018-12-11 | 广东欧珀移动通信有限公司 | A kind of method, apparatus and system of synchronized multimedia file playback progress |
US10206736B2 (en) | 2015-03-13 | 2019-02-19 | Covidien Lp | Surgical forceps with scalpel functionality |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US9782216B2 (en) | 2015-03-23 | 2017-10-10 | Gyrus Acmi, Inc. | Medical forceps with vessel transection capability |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10398459B2 (en) | 2015-04-02 | 2019-09-03 | Aod Holdings Llc | Combination device for endoscopic and arthroscopic surgical procedures |
US10039915B2 (en) * | 2015-04-03 | 2018-08-07 | Medtronic Xomed, Inc. | System and method for omni-directional bipolar stimulation of nerve tissue of a patient via a surgical tool |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
US10117702B2 (en) | 2015-04-10 | 2018-11-06 | Ethicon Llc | Surgical generator systems and related methods |
US10130410B2 (en) | 2015-04-17 | 2018-11-20 | Ethicon Llc | Electrosurgical instrument including a cutting member decouplable from a cutting member trigger |
US9872725B2 (en) | 2015-04-29 | 2018-01-23 | Ethicon Llc | RF tissue sealer with mode selection |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
EP3323367A4 (en) * | 2015-07-16 | 2019-04-03 | Olympus Corporation | Therapeutic instrument |
WO2017010168A1 (en) * | 2015-07-16 | 2017-01-19 | オリンパス株式会社 | Treatment too |
US9987078B2 (en) | 2015-07-22 | 2018-06-05 | Covidien Lp | Surgical forceps |
US20170086909A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Frequency agile generator for a surgical instrument |
US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11523860B2 (en) | 2016-01-11 | 2022-12-13 | Gyrus Acmi, Inc. | Electrosurgical device for vessel sealing and cutting |
WO2017123189A1 (en) | 2016-01-11 | 2017-07-20 | GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) | Advanced energy device with bipolar dissection capability |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10426543B2 (en) | 2016-01-23 | 2019-10-01 | Covidien Lp | Knife trigger for vessel sealer |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
USD813388S1 (en) | 2016-03-17 | 2018-03-20 | Michael Anderson | Electro-cauterizing bi-polar surgical forceps |
US10987161B2 (en) * | 2016-03-21 | 2021-04-27 | Spiration, Inc.—Olympus Respiratory America | User interface and lock features for positioning multiple components within a body |
US11759249B2 (en) | 2016-03-31 | 2023-09-19 | Gyrus Acmi, Inc. | Disengagement mechanism for electrosurgical forceps |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10682154B2 (en) | 2016-08-02 | 2020-06-16 | Covidien Lp | Cutting mechanisms for surgical end effector assemblies, instruments, and systems |
US10856933B2 (en) | 2016-08-02 | 2020-12-08 | Covidien Lp | Surgical instrument housing incorporating a channel and methods of manufacturing the same |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10828056B2 (en) | 2016-08-25 | 2020-11-10 | Ethicon Llc | Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
EP3525685A4 (en) * | 2016-10-17 | 2020-06-10 | LSI Solutions, Inc. | Prosthetic suturing device and methods thereof |
US10918407B2 (en) | 2016-11-08 | 2021-02-16 | Covidien Lp | Surgical instrument for grasping, treating, and/or dividing tissue |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US10813695B2 (en) | 2017-01-27 | 2020-10-27 | Covidien Lp | Reflectors for optical-based vessel sealing |
US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
WO2018165363A1 (en) * | 2017-03-10 | 2018-09-13 | Intuitive Surgical Operations | Electrosurgical instrument with otomy feature for a teleoperated medical system |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
GB201705171D0 (en) | 2017-03-30 | 2017-05-17 | Creo Medical Ltd | Elecrosurgical instrument |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
US20210153927A1 (en) * | 2017-06-30 | 2021-05-27 | Intuitive Surgical Operations, Inc. | Electrosurgical instrument with compliant elastomeric electrode |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
WO2019089297A1 (en) * | 2017-10-30 | 2019-05-09 | Ethicon Llc | Surgical instrument systems comprising lockout mechanisms |
US11298801B2 (en) | 2017-11-02 | 2022-04-12 | Gyrus Acmi, Inc. | Bias device for biasing a gripping device including a central body and shuttles on the working arms |
US11383373B2 (en) | 2017-11-02 | 2022-07-12 | Gyms Acmi, Inc. | Bias device for biasing a gripping device by biasing working arms apart |
US10667834B2 (en) | 2017-11-02 | 2020-06-02 | Gyrus Acmi, Inc. | Bias device for biasing a gripping device with a shuttle on a central body |
US10780544B2 (en) * | 2018-04-24 | 2020-09-22 | Covidien Lp | Systems and methods facilitating reprocessing of surgical instruments |
US11896291B2 (en) | 2018-07-02 | 2024-02-13 | Covidien Lp | Electrically-insulative shafts, methods of manufacturing electrically-insulative shafts, and energy-based surgical instruments incorporating electrically-insulative shafts |
JP2021536299A (en) | 2018-09-05 | 2021-12-27 | アプライド メディカル リソーシーズ コーポレイション | Electrosurgery generator control system |
USD904611S1 (en) | 2018-10-10 | 2020-12-08 | Bolder Surgical, Llc | Jaw design for a surgical instrument |
WO2020101954A1 (en) | 2018-11-16 | 2020-05-22 | Applied Medical Resources Corporation | Electrosurgical system |
US11547468B2 (en) | 2019-06-27 | 2023-01-10 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
US11376082B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Robotic surgical system with local sensing of functional parameters based on measurements of multiple physical inputs |
US11607278B2 (en) | 2019-06-27 | 2023-03-21 | Cilag Gmbh International | Cooperative robotic surgical systems |
US11723729B2 (en) | 2019-06-27 | 2023-08-15 | Cilag Gmbh International | Robotic surgical assembly coupling safety mechanisms |
US11413102B2 (en) | 2019-06-27 | 2022-08-16 | Cilag Gmbh International | Multi-access port for surgical robotic systems |
US11612445B2 (en) | 2019-06-27 | 2023-03-28 | Cilag Gmbh International | Cooperative operation of robotic arms |
US11191586B2 (en) | 2019-07-02 | 2021-12-07 | Jamison Alexander | Removable tip for use with electrosurgical devices |
US11172979B2 (en) | 2019-07-02 | 2021-11-16 | Jamison Alexander | Removable tip for use with electrosurgical devices |
WO2021033322A1 (en) * | 2019-08-22 | 2021-02-25 | オリンパス株式会社 | Treatment tool and treatment system |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US20210196363A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US20210196357A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with asynchronous energizing electrodes |
US11844562B2 (en) | 2020-03-23 | 2023-12-19 | Covidien Lp | Electrosurgical forceps for grasping, treating, and/or dividing tissue |
USD934423S1 (en) | 2020-09-11 | 2021-10-26 | Bolder Surgical, Llc | End effector for a surgical device |
US11806068B2 (en) | 2020-12-15 | 2023-11-07 | Covidien Lp | Energy-based surgical instrument for grasping, treating, and/or dividing tissue |
US12059196B2 (en) | 2020-12-15 | 2024-08-13 | Covidien Lp | Energy-based surgical instrument for grasping, treating, and/or dividing tissue |
CN112674862A (en) * | 2020-12-22 | 2021-04-20 | 杭州桐庐医达器械设备有限公司 | Ball head structure of bipolar scissors |
USD1046129S1 (en) | 2021-04-14 | 2024-10-08 | Bolder Surgical, Llc | End effector for a surgical instrument |
US11931026B2 (en) | 2021-06-30 | 2024-03-19 | Cilag Gmbh International | Staple cartridge replacement |
US11974829B2 (en) | 2021-06-30 | 2024-05-07 | Cilag Gmbh International | Link-driven articulation device for a surgical device |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
Citations (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1813902A (en) * | 1928-01-18 | 1931-07-14 | Liebel Flarsheim Co | Electrosurgical apparatus |
US2279753A (en) * | 1940-03-25 | 1942-04-14 | Knapp Monarch Co | Switch |
US3720896A (en) * | 1970-06-23 | 1973-03-13 | Siemens Ag | Handle for high frequency electrodes |
US3863339A (en) * | 1972-05-26 | 1975-02-04 | Stanley Tools Ltd | Retractable blade knife |
US4233734A (en) * | 1979-01-22 | 1980-11-18 | The Stanley Works | Retractable blade knife |
US4375218A (en) * | 1981-05-26 | 1983-03-01 | Digeronimo Ernest M | Forceps, scalpel and blood coagulating surgical instrument |
US4418692A (en) * | 1978-11-17 | 1983-12-06 | Guay Jean Louis | Device for treating living tissue with an electric current |
US4655215A (en) * | 1985-03-15 | 1987-04-07 | Harold Pike | Hand control for electrosurgical electrodes |
US4754892A (en) * | 1986-01-22 | 1988-07-05 | Retief Charles T | Closure for a container |
US4846171A (en) * | 1986-10-06 | 1989-07-11 | Gv Medical, Inc. | Laser catheter adjustable control apparatus |
US5035695A (en) * | 1987-11-30 | 1991-07-30 | Jaroy Weber, Jr. | Extendable electrocautery surgery apparatus and method |
US5250063A (en) * | 1992-01-24 | 1993-10-05 | Leonard Bloom | Surgical scalpel with retractable guard |
US5258001A (en) * | 1991-09-05 | 1993-11-02 | Baylor College Of Medicine | Retractable scalpel with blade-activated lock |
US5314445A (en) * | 1991-02-15 | 1994-05-24 | Heidmueller Elke | Surgical instrument |
US5326806A (en) * | 1991-12-26 | 1994-07-05 | General Electric Company | Reinforced flame-retardant polyester resin compositions |
US5336220A (en) * | 1992-10-09 | 1994-08-09 | Symbiosis Corporation | Tubing for endoscopic electrosurgical suction-irrigation instrument |
US5344424A (en) * | 1993-03-12 | 1994-09-06 | Roberts Philip L | Selectively retractable, disposable surgical knife |
US5376089A (en) * | 1993-08-02 | 1994-12-27 | Conmed Corporation | Electrosurgical instrument |
US5425690A (en) * | 1994-04-20 | 1995-06-20 | Chang; Sreter | Wrist exerciser |
US5431672A (en) * | 1994-05-09 | 1995-07-11 | Becton, Dickinson And Company | Surgical scalpel with retractable blade |
US5472442A (en) * | 1994-03-23 | 1995-12-05 | Valleylab Inc. | Moveable switchable electrosurgical handpiece |
US5496312A (en) * | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US5558671A (en) * | 1993-07-22 | 1996-09-24 | Yates; David C. | Impedance feedback monitor for electrosurgical instrument |
US5575805A (en) * | 1994-10-07 | 1996-11-19 | Li Medical Technologies, Inc. | Variable tip-pressure surgical grasper |
US5620453A (en) * | 1993-11-05 | 1997-04-15 | Nallakrishnan; Ravi | Surgical knife with retractable blade and depth of cut control |
US5624452A (en) * | 1995-04-07 | 1997-04-29 | Ethicon Endo-Surgery, Inc. | Hemostatic surgical cutting or stapling instrument |
US5638003A (en) * | 1995-05-23 | 1997-06-10 | Underwriters Laboratories, Inc. | Method and apparatus for testing surface breakdown of dielectric materials caused by electrical tracking |
US5851214A (en) * | 1994-10-07 | 1998-12-22 | United States Surgical Corporation | Surgical instrument useful for endoscopic procedures |
US5860976A (en) * | 1996-01-30 | 1999-01-19 | Utah Medical Products, Inc. | Electrosurgical cutting device |
US5876401A (en) * | 1993-07-22 | 1999-03-02 | Ethicon Endo Surgery, Inc. | Electrosurgical hemostatic device with adaptive electrodes |
US5891141A (en) * | 1997-09-02 | 1999-04-06 | Everest Medical Corporation | Bipolar electrosurgical instrument for cutting and sealing tubular tissue structures |
US5891142A (en) * | 1996-12-06 | 1999-04-06 | Eggers & Associates, Inc. | Electrosurgical forceps |
US5893863A (en) * | 1989-12-05 | 1999-04-13 | Yoon; Inbae | Surgical instrument with jaws and movable internal hook member for use thereof |
US5893875A (en) * | 1994-10-07 | 1999-04-13 | Tnco, Inc. | Surgical instrument with replaceable jaw assembly |
US5893877A (en) * | 1996-04-10 | 1999-04-13 | Synergetics, Inc. | Surgical instrument with offset handle |
US5902301A (en) * | 1998-02-23 | 1999-05-11 | Everest Medical Corporation | Cutting/coagulating forceps with interleaved electrodes |
US5906630A (en) * | 1998-06-30 | 1999-05-25 | Boston Scientific Limited | Eccentric surgical forceps |
US5908420A (en) * | 1997-10-03 | 1999-06-01 | Everest Medical Corporation | Surgical scissors with bipolar distal electrodes |
US5911719A (en) * | 1997-06-05 | 1999-06-15 | Eggers; Philip E. | Resistively heating cutting and coagulating surgical instrument |
US5913874A (en) * | 1997-09-25 | 1999-06-22 | Cabot Technology Corporation | Cartridge for a surgical instrument |
US5921984A (en) * | 1994-11-30 | 1999-07-13 | Conmed Corporation | Bipolar electrosurgical instrument with coagulation feature |
US5925043A (en) * | 1997-04-30 | 1999-07-20 | Medquest Products, Inc. | Electrosurgical electrode with a conductive, non-stick coating |
US5935126A (en) * | 1994-05-10 | 1999-08-10 | Riza; Erol D. | Surgical instrument with jaws having electrical contacts |
US5944718A (en) * | 1996-03-12 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument end effector |
US5951549A (en) * | 1996-12-20 | 1999-09-14 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US5954720A (en) * | 1996-10-28 | 1999-09-21 | Endoscopic Concepts, Inc. | Bipolar electrosurgical end effectors |
US5957923A (en) * | 1995-04-20 | 1999-09-28 | Symbiosis Corporation | Loop electrodes for electrocautery probes for use with a resectoscope |
US5961514A (en) * | 1997-05-14 | 1999-10-05 | Ethicon Endo-Surger, Inc. | Cordless electrosurgical instrument |
US5976132A (en) * | 1997-10-10 | 1999-11-02 | Morris; James R. | Bipolar surgical shears |
US5984939A (en) * | 1989-12-05 | 1999-11-16 | Yoon; Inbae | Multifunctional grasping instrument with cutting member and operating channel for use in endoscopic and non-endoscopic procedures |
US5989277A (en) * | 1998-01-30 | 1999-11-23 | Lemaire, Iii; Norman J. | Surgical instrument with offset jaw actuator |
US6004335A (en) * | 1994-08-02 | 1999-12-21 | Ethicon Endo-Surgery, Inc. | Ultrasonic hemostatic and cutting instrument |
US6010516A (en) * | 1998-03-20 | 2000-01-04 | Hulka; Jaroslav F. | Bipolar coaptation clamps |
US6024744A (en) * | 1997-08-27 | 2000-02-15 | Ethicon, Inc. | Combined bipolar scissor and grasper |
US6024741A (en) * | 1993-07-22 | 2000-02-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
US6030384A (en) * | 1998-05-01 | 2000-02-29 | Nezhat; Camran | Bipolar surgical instruments having focused electrical fields |
US6033399A (en) * | 1997-04-09 | 2000-03-07 | Valleylab, Inc. | Electrosurgical generator with adaptive power control |
US6039733A (en) * | 1995-09-19 | 2000-03-21 | Valleylab, Inc. | Method of vascular tissue sealing pressure control |
US6041679A (en) * | 1991-04-04 | 2000-03-28 | Symbiosis Corporation | Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery |
US6050996A (en) * | 1997-11-12 | 2000-04-18 | Sherwood Services Ag | Bipolar electrosurgical instrument with replaceable electrodes |
US6053914A (en) * | 1998-06-29 | 2000-04-25 | Ethicon, Inc. | Pivot screw for bipolar surgical instruments |
US6053933A (en) * | 1996-08-10 | 2000-04-25 | Deutsches Zentrum Fur Luft- Und Raumfahrt E.V. | Gripping unit for application in minimally invasive surgery |
US6059782A (en) * | 1995-11-20 | 2000-05-09 | Storz Endoskop Gmbh | Bipolar high-frequency surgical instrument |
US6083223A (en) * | 1997-08-28 | 2000-07-04 | Baker; James A. | Methods and apparatus for welding blood vessels |
US6086586A (en) * | 1998-09-14 | 2000-07-11 | Enable Medical Corporation | Bipolar tissue grasping apparatus and tissue welding method |
US6090107A (en) * | 1998-10-20 | 2000-07-18 | Megadyne Medical Products, Inc. | Resposable electrosurgical instrument |
US6096037A (en) * | 1997-07-29 | 2000-08-01 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
US6113596A (en) * | 1996-12-30 | 2000-09-05 | Enable Medical Corporation | Combination monopolar-bipolar electrosurgical instrument system, instrument and cable |
US6309404B1 (en) * | 1999-10-19 | 2001-10-30 | Jacek Krzyzanowski | Flexible biopsy jaw assembly |
US20020120259A1 (en) * | 1995-06-07 | 2002-08-29 | Lettice John J. | Methods for targeted electrosurgery on contained herniated discs |
US20040024399A1 (en) * | 1995-04-13 | 2004-02-05 | Arthrocare Corporation | Method for repairing damaged intervertebral discs |
Family Cites Families (1293)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US371664A (en) | 1887-10-18 | stone | ||
US702472A (en) | 1898-08-08 | 1902-06-17 | Louis M Pignolet | Surgical forceps. |
US728883A (en) | 1902-07-29 | 1903-05-26 | Andrew J Downes | Electrothermic instrument. |
US1586645A (en) | 1925-07-06 | 1926-06-01 | Bierman William | Method of and means for treating animal tissue to coagulate the same |
US1852542A (en) | 1929-12-26 | 1932-04-05 | Sklar Mfg Co Inc J | Cutlery |
US1822330A (en) | 1930-01-13 | 1931-09-08 | Ainslie George | Suturing instrument |
US1908201A (en) | 1931-03-09 | 1933-05-09 | Morton G Welch | Bipolar tonsil forceps |
US2011169A (en) | 1932-04-13 | 1935-08-13 | Wappler Frederick Charles | Forcipated surgical electrode |
US1918889A (en) | 1932-05-18 | 1933-07-18 | Joseph B Bacon | Artery forceps |
US2031682A (en) | 1932-11-18 | 1936-02-25 | Wappler Frederick Charles | Method and means for electrosurgical severance of adhesions |
US2002594A (en) | 1933-03-24 | 1935-05-28 | Wappler Frederick Charles | Instrument for electro-surgical treatment of tissue |
US2054149A (en) | 1935-03-25 | 1936-09-15 | Wappler Frederick Charles | Surgical snare |
US2176479A (en) | 1937-03-20 | 1939-10-17 | David A Willis | Apparatus for finding and removing metal particles from human and animal bodies |
US2113246A (en) | 1937-05-17 | 1938-04-05 | Wappler Frederick Charles | Endoscopic forceps |
US2141936A (en) | 1937-09-23 | 1938-12-27 | Gen Electric | Switch handle guard |
US2245030A (en) | 1940-07-19 | 1941-06-10 | Gottesfeld Benjamin Harvey | Tubing clamp for intravenous operations |
US2327353A (en) | 1940-12-12 | 1943-08-24 | Singer Mfg Co | Instrument for suturing |
US2305156A (en) | 1941-04-17 | 1942-12-15 | Weck & Co Edward | Box lock pivot and method of assembling same |
GB623316A (en) | 1947-04-29 | 1949-05-16 | Thomas Wallace Parker | Improvements in and relating to building units |
US2632661A (en) | 1948-08-14 | 1953-03-24 | Cristofv Cristjo | Joint for surgical instruments |
US2668538A (en) | 1952-01-30 | 1954-02-09 | George P Pilling & Son Company | Surgical clamping means |
US2796065A (en) | 1955-05-12 | 1957-06-18 | Karl A Kapp | Surgical clamping means |
US2824915A (en) | 1956-11-29 | 1958-02-25 | Buturuga John | Electric switch guard |
US3100489A (en) | 1957-09-30 | 1963-08-13 | Medtronic Inc | Cautery device |
US3073311A (en) * | 1958-11-07 | 1963-01-15 | Nat Res Dev | Sewing device |
US3204807A (en) | 1963-12-23 | 1965-09-07 | Sierra Electric Corp | Hinged electrical cover plate closure |
US3372288A (en) | 1964-08-24 | 1968-03-05 | Singer Co | Sequential switching with delay for controlled rectifier circuits |
US3459187A (en) | 1967-03-09 | 1969-08-05 | Weck & Co Inc Edward | Surgical instrument and method of manufacture |
US3866610A (en) | 1967-08-28 | 1975-02-18 | Harold D Kletschka | Cardiovascular clamps |
US3636943A (en) | 1967-10-27 | 1972-01-25 | Ultrasonic Systems | Ultrasonic cauterization |
DE1922756B2 (en) | 1968-05-04 | 1973-09-27 | Sumitomo Electric Industries, Ltd., Osaka (Japan) | Improving the abrasion resistance and sliding properties of plastic moldings by adding lubricating oil |
US3561448A (en) * | 1968-08-30 | 1971-02-09 | Jacob Peternel | Blood vessel suturing apparatus |
US3643663A (en) | 1968-10-16 | 1972-02-22 | F L Fischer | Coagulating instrument |
US3651811A (en) | 1969-10-10 | 1972-03-28 | Aesculap Werke Ag | Surgical cutting instrument |
US3648001A (en) | 1969-12-11 | 1972-03-07 | Robert K Anderson | Compact hand held switching device with insertable switching means |
DE2061539C3 (en) | 1970-12-15 | 1973-09-20 | Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen | Forceps for medical purposes and methods for their manufacture |
US3897786A (en) | 1971-02-05 | 1975-08-05 | Richards Mfg Co | Disposable myringotomy apparatus |
SU401367A1 (en) | 1971-10-05 | 1973-10-12 | Тернопольский государственный медицинский институт | BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT |
US3678229A (en) | 1971-10-13 | 1972-07-18 | Mc Gill Mfg Co | Spring mounted key for electrical switch |
US3798688A (en) | 1971-12-09 | 1974-03-26 | W Wasson | Double edge blade scalpel |
US3801766A (en) | 1973-01-22 | 1974-04-02 | Valleylab Inc | Switching means for an electro-surgical device including particular contact means and particular printed-circuit mounting means |
US3839614A (en) | 1973-03-16 | 1974-10-01 | Schick Inc | Appliance control system |
DE2324658B2 (en) | 1973-05-16 | 1977-06-30 | Richard Wolf Gmbh, 7134 Knittlingen | PROBE FOR COAGULATING BODY TISSUE |
CA1018419A (en) | 1973-07-04 | 1977-10-04 | Gerald Turp | Instrument for laparoscopic tubal cauterization |
US4016881A (en) | 1973-07-04 | 1977-04-12 | Centre De Recherche Industrielle Du Quebec | Instrument for use in laparoscopic tubal cauterization |
US3875945A (en) | 1973-11-02 | 1975-04-08 | Demetron Corp | Electrosurgery instrument |
US3921641A (en) | 1973-12-14 | 1975-11-25 | Research Corp | Controlling forceps |
DE2415263A1 (en) | 1974-03-29 | 1975-10-02 | Aesculap Werke Ag | Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws |
US3911766A (en) | 1974-05-15 | 1975-10-14 | Pilling Co | Box lock surgical instrument and method of its manufacture |
US3952749A (en) | 1974-05-15 | 1976-04-27 | Pilling Co. | Box lock surgical instrument |
DE7418576U (en) | 1974-05-30 | 1974-09-12 | Richard Wolf Gmbh | Catheter with a loop that can be put under tension |
US4043342A (en) | 1974-08-28 | 1977-08-23 | Valleylab, Inc. | Electrosurgical devices having sesquipolar electrode structures incorporated therein |
US3987795A (en) | 1974-08-28 | 1976-10-26 | Valleylab, Inc. | Electrosurgical devices having sesquipolar electrode structures incorporated therein |
US4031898A (en) | 1974-12-03 | 1977-06-28 | Siegfried Hiltebrandt | Surgical instrument for coagulation purposes |
DE2514501A1 (en) | 1975-04-03 | 1976-10-21 | Karl Storz | Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece |
US4005714A (en) | 1975-05-03 | 1977-02-01 | Richard Wolf Gmbh | Bipolar coagulation forceps |
FR2315286A2 (en) | 1975-06-26 | 1977-01-21 | Lamidey Marcel | H.F. blood coagulating dissecting forceps - with adjustable stops to vary clamping space and circuit making contacts |
US4041952A (en) | 1976-03-04 | 1977-08-16 | Valleylab, Inc. | Electrosurgical forceps |
US4074718A (en) | 1976-03-17 | 1978-02-21 | Valleylab, Inc. | Electrosurgical instrument |
US4088134A (en) | 1976-08-05 | 1978-05-09 | Joseph A. Caprini | Forceps |
US4080820A (en) | 1976-09-02 | 1978-03-28 | Walter Kidde & Company, Inc. | In-line crimping tool |
DE2642489C3 (en) | 1976-09-22 | 1979-04-19 | Richard Wolf Gmbh, 7134 Knittlingen | Unipolar coagulation forceps |
US4076028A (en) * | 1976-10-07 | 1978-02-28 | Concept Inc. | Forceps spacing device |
USD249549S (en) | 1976-10-22 | 1978-09-19 | Aspen Laboratories, Inc. | Electrosurgical handle |
US4112950A (en) | 1976-10-22 | 1978-09-12 | Aspen Laboratories | Medical electronic apparatus and components |
US4127222A (en) | 1976-11-26 | 1978-11-28 | Adams Roberta V | Sewing thimble |
US4165746A (en) | 1977-06-30 | 1979-08-28 | Burgin Kermit H | Plastic forceps |
US4102471A (en) | 1977-09-08 | 1978-07-25 | Nicola Lore | Switch guard assembly |
US4200104A (en) | 1977-11-17 | 1980-04-29 | Valleylab, Inc. | Contact area measurement apparatus for use in electrosurgery |
US4187420A (en) * | 1978-05-17 | 1980-02-05 | Eaton Corporation | Rocker switch with selective lockout means shiftable transversely of the pivotal axis |
US4200105A (en) | 1978-05-26 | 1980-04-29 | Dentsply Research & Development Corp. | Electrosurgical safety circuit |
CA1144990A (en) | 1978-10-06 | 1983-04-19 | Robert H. Hahn | Depilatory tweezer |
JPS5563638A (en) | 1978-11-09 | 1980-05-13 | Olympus Optical Co | Renal pelvis forceps |
US4236470A (en) | 1979-01-17 | 1980-12-02 | Stenson Thomas K | Portable stitching device |
US4315510A (en) | 1979-05-16 | 1982-02-16 | Cooper Medical Devices Corporation | Method of performing male sterilization |
US4311145A (en) * | 1979-07-16 | 1982-01-19 | Neomed, Inc. | Disposable electrosurgical instrument |
US4306561A (en) | 1979-11-05 | 1981-12-22 | Ocean Trading Co., Ltd. | Holding apparatus for repairing severed nerves and method of using the same |
USD263020S (en) * | 1980-01-22 | 1982-02-16 | Rau Iii David M | Retractable knife |
US4363944A (en) | 1980-08-25 | 1982-12-14 | Poirier Earl J | Method of preventing unintentional actuation of a light switch |
US4674499A (en) | 1980-12-08 | 1987-06-23 | Pao David S C | Coaxial bipolar probe |
US4805616A (en) | 1980-12-08 | 1989-02-21 | Pao David S C | Bipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy |
CA1192465A (en) | 1981-03-11 | 1985-08-27 | Edward A. Lottick | Removable switch electrocautery instruments |
US4370980A (en) | 1981-03-11 | 1983-02-01 | Lottick Edward A | Electrocautery hemostat |
US5116332A (en) | 1981-03-11 | 1992-05-26 | Lottick Edward A | Electrocautery hemostat |
US5026370A (en) | 1981-03-11 | 1991-06-25 | Lottick Edward A | Electrocautery instrument |
US4470786A (en) | 1981-07-28 | 1984-09-11 | Omron Tateisi Electronics Co. | Molding apparatus with retractable preform support pins |
US4452246A (en) | 1981-09-21 | 1984-06-05 | Bader Robert F | Surgical instrument |
US4416276A (en) | 1981-10-26 | 1983-11-22 | Valleylab, Inc. | Adaptive, return electrode monitoring system |
US4394552A (en) | 1981-11-27 | 1983-07-19 | Korry Manufacturing Co. | Flip-action guard and position indicator for push-to-actuate and push-to-release switch |
DE3247793C2 (en) | 1981-12-31 | 1986-01-09 | Harald 7200 Tuttlingen Maslanka | High frequency surgical loop electrode |
US4509518A (en) | 1982-02-17 | 1985-04-09 | United States Surgical Corporation | Apparatus for applying surgical clips |
US4443935A (en) | 1982-03-01 | 1984-04-24 | Trident Surgical Corporation | Process for making electrosurgical scalpel pencil |
US4535773A (en) | 1982-03-26 | 1985-08-20 | Inbae Yoon | Safety puncturing instrument and method |
US4493320A (en) * | 1982-04-02 | 1985-01-15 | Treat Michael R | Bipolar electrocautery surgical snare |
US4513271A (en) | 1982-07-16 | 1985-04-23 | Minnesota Mining And Manufacturing Company | Momentary contact magnetic switch |
US4492231A (en) | 1982-09-17 | 1985-01-08 | Auth David C | Non-sticking electrocautery system and forceps |
US4506669A (en) | 1982-09-22 | 1985-03-26 | Blake Joseph W Iii | Skin approximator |
US4827929A (en) | 1983-08-29 | 1989-05-09 | Joseph Hodge | Angulated surgical instrument |
CH662263A5 (en) | 1983-09-13 | 1987-09-30 | Gegauf Fritz Ag | HYSTERECTOMIUM. |
GB2161082B (en) | 1984-01-30 | 1986-12-03 | Kh Nii Obschei Neot Khirurg | Bipolar electric surgical instrument |
US4574804A (en) | 1984-02-27 | 1986-03-11 | Board Of Regents, The University Of Texas System | Optic nerve clamp |
US4619258A (en) | 1984-03-02 | 1986-10-28 | Dart Industries Inc. | Electrosurgical pencil providing blade isolation |
DE3409944A1 (en) * | 1984-03-17 | 1985-09-26 | Olympus Winter & Ibe GmbH, 2000 Hamburg | HF RESECTION ENDOSCOPE |
DE3423356C2 (en) | 1984-06-25 | 1986-06-26 | Berchtold Medizin-Elektronik GmbH & Co, 7200 Tuttlingen | Electrosurgical high frequency cutting instrument |
JPS6137260A (en) | 1984-07-31 | 1986-02-22 | 菊地 真 | Heating apparatus for hyperthermia |
US4657016A (en) | 1984-08-20 | 1987-04-14 | Garito Jon C | Electrosurgical handpiece for blades, needles and forceps |
US4829313A (en) | 1984-11-15 | 1989-05-09 | Chaparral Communications | Drive system and filament for a twistable septum in a feedhorn |
US4827927A (en) | 1984-12-26 | 1989-05-09 | Valleylab, Inc. | Apparatus for changing the output power level of an electrosurgical generator while remaining in the sterile field of a surgical procedure |
US4625723A (en) | 1985-02-26 | 1986-12-02 | Medical Research Associates, Ltd. #1 | Pencil for electrosurgical generator |
DE3511107A1 (en) | 1985-03-27 | 1986-10-02 | Fischer MET GmbH, 7800 Freiburg | DEVICE FOR BIPOLAR HIGH-FREQUENCY COAGULATION OF BIOLOGICAL TISSUE |
USD299413S (en) * | 1985-07-17 | 1989-01-17 | The Stanley Works | Folding pocket saw handle |
US4655216A (en) | 1985-07-23 | 1987-04-07 | Alfred Tischer | Combination instrument for laparoscopical tube sterilization |
US4662372A (en) | 1985-08-12 | 1987-05-05 | Acme United Corporation | Disposable surgical instrument and method of forming |
US4750488A (en) | 1986-05-19 | 1988-06-14 | Sonomed Technology, Inc. | Vibration apparatus preferably for endoscopic ultrasonic aspirator |
USD295893S (en) | 1985-09-25 | 1988-05-24 | Acme United Corporation | Disposable surgical clamp |
USD295894S (en) | 1985-09-26 | 1988-05-24 | Acme United Corporation | Disposable surgical scissors |
US4763669A (en) | 1986-01-09 | 1988-08-16 | Jaeger John C | Surgical instrument with adjustable angle of operation |
DE3627221A1 (en) | 1986-01-15 | 1988-02-18 | Siemens Ag | HF surgical instrument with performance control from the surgical handle |
US4781175A (en) | 1986-04-08 | 1988-11-01 | C. R. Bard, Inc. | Electrosurgical conductive gas stream technique of achieving improved eschar for coagulation |
USD298353S (en) | 1986-05-06 | 1988-11-01 | Vitalmetrics, Inc. | Handle for surgical instrument |
US4753235A (en) | 1986-09-24 | 1988-06-28 | Hasson Harrith M | Forceps-type surgical instrument |
US4733662A (en) | 1987-01-20 | 1988-03-29 | Minnesota Mining And Manufacturing Company | Tissue gripping and cutting assembly for surgical instrument |
DE3722142A1 (en) | 1987-06-17 | 1989-01-05 | S & T Spingler Tritt Chirurgis | SPRING PLIERS OR TWEEZERS, IN PARTICULAR COAGULATION TWEEZERS |
GB8716305D0 (en) | 1987-07-10 | 1987-08-19 | Raychem Ltd | Electrical wire |
DE8712328U1 (en) | 1987-09-11 | 1988-02-18 | Jakoubek, Franz, 7201 Emmingen-Liptingen | Endoscopy forceps |
US4947009A (en) | 1987-10-28 | 1990-08-07 | Mcgill Manufacturing Company, Inc. | Conscious effort safety switch |
GB2213416B (en) | 1987-12-11 | 1991-12-18 | Stanley Works Ltd | Blade-carriers for retractable-blade knives |
US5084057A (en) | 1989-07-18 | 1992-01-28 | United States Surgical Corporation | Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures |
DE68925215D1 (en) | 1988-01-20 | 1996-02-08 | G2 Design Ltd | Diathermy unit |
GB8801177D0 (en) | 1988-01-20 | 1988-02-17 | Goble N M | Diathermy unit |
US4887612A (en) | 1988-04-27 | 1989-12-19 | Esco Precision, Inc. | Endoscopic biopsy forceps |
US4890610A (en) * | 1988-05-15 | 1990-01-02 | Kirwan Sr Lawrence T | Bipolar forceps |
US5047046A (en) | 1988-07-13 | 1991-09-10 | Bodoia Rodger D | Surgical forceps |
GB2224124B (en) | 1988-09-09 | 1992-11-11 | Gentech Int Ltd | Flow switches |
CA1308782C (en) | 1988-10-13 | 1992-10-13 | Gyrus Medical Limited | Screening and monitoring instrument |
WO1990007303A1 (en) | 1989-01-06 | 1990-07-12 | Angioplasty Systems, Inc. | Electrosurgical catheter for resolving atherosclerotic plaque |
US5052402A (en) | 1989-01-31 | 1991-10-01 | C.R. Bard, Inc. | Disposable biopsy forceps |
US4938761A (en) | 1989-03-06 | 1990-07-03 | Mdt Corporation | Bipolar electrosurgical forceps |
US5425739A (en) | 1989-03-09 | 1995-06-20 | Avatar Design And Development, Inc. | Anastomosis stent and stent selection system |
DE3917328A1 (en) | 1989-05-27 | 1990-11-29 | Wolf Gmbh Richard | BIPOLAR COAGULATION INSTRUMENT |
US6190400B1 (en) | 1991-10-22 | 2001-02-20 | Kensey Nash Corporation | Blood vessel sealing device and method of sealing an opening in a blood vessel |
US5151102A (en) | 1989-05-31 | 1992-09-29 | Kyocera Corporation | Blood vessel coagulation/stanching device |
IN177831B (en) | 1989-07-13 | 1997-02-22 | Nat Res Dev | |
US5007908A (en) | 1989-09-29 | 1991-04-16 | Everest Medical Corporation | Electrosurgical instrument having needle cutting electrode and spot-coag electrode |
DE3937700C2 (en) | 1989-11-13 | 1998-02-19 | Sutter Hermann Select Med Tech | Bipolar coagulation forceps with switch |
US5665100A (en) * | 1989-12-05 | 1997-09-09 | Yoon; Inbae | Multifunctional instrument with interchangeable operating units for performing endoscopic procedures |
US5797958A (en) | 1989-12-05 | 1998-08-25 | Yoon; Inbae | Endoscopic grasping instrument with scissors |
US6099550A (en) | 1989-12-05 | 2000-08-08 | Yoon; Inbae | Surgical instrument having jaws and an operating channel and method for use thereof |
US5984938A (en) | 1989-12-05 | 1999-11-16 | Yoon; Inbae | Surgical instrument with jaws and movable internal scissors and method for use thereof |
US4973801A (en) | 1990-01-10 | 1990-11-27 | Burle Technologies, Inc. | Interlocked motion detector wall switch |
US5217457A (en) | 1990-03-15 | 1993-06-08 | Valleylab Inc. | Enhanced electrosurgical apparatus |
US5244462A (en) | 1990-03-15 | 1993-09-14 | Valleylab Inc. | Electrosurgical apparatus |
US5151978A (en) | 1990-03-22 | 1992-09-29 | Square D Company | Lan interface which permits a host computer to obtain data without interrupting a ladder program executing in the interface |
US5439478A (en) | 1990-05-10 | 1995-08-08 | Symbiosis Corporation | Steerable flexible microsurgical instrument with rotatable clevis |
US5215101A (en) | 1990-05-10 | 1993-06-01 | Symbiosis Corporation | Sharply angled kelly (Jacobs's) clamp |
US5482054A (en) * | 1990-05-10 | 1996-01-09 | Symbiosis Corporation | Edoscopic biopsy forceps devices with selective bipolar cautery |
US5078716A (en) * | 1990-05-11 | 1992-01-07 | Doll Larry F | Electrosurgical apparatus for resecting abnormal protruding growth |
US5037433A (en) | 1990-05-17 | 1991-08-06 | Wilk Peter J | Endoscopic suturing device and related method and suture |
US5169396A (en) | 1990-06-08 | 1992-12-08 | Kambiz Dowlatshahi | Method for interstitial laser therapy |
CA2039088A1 (en) | 1990-07-20 | 1992-01-21 | Mark A. Rydell | Polypectome snare with bipolar electrodes |
JP2806511B2 (en) | 1990-07-31 | 1998-09-30 | 松下電工株式会社 | Manufacturing method of sintered alloy |
US5282799A (en) | 1990-08-24 | 1994-02-01 | Everest Medical Corporation | Bipolar electrosurgical scalpel with paired loop electrodes |
US5100430A (en) | 1990-08-31 | 1992-03-31 | Cordis Corporation | Biopsy forceps device having a ball and socket flexible coupling |
US5246440A (en) | 1990-09-13 | 1993-09-21 | Noord Andrew J Van | Electrosurgical knife |
US5389102A (en) | 1990-09-13 | 1995-02-14 | United States Surgical Corporation | Apparatus and method for subcuticular stapling of body tissue |
US5391183A (en) | 1990-09-21 | 1995-02-21 | Datascope Investment Corp | Device and method sealing puncture wounds |
US5026371A (en) | 1990-10-01 | 1991-06-25 | Everest Medical Corporation | Handle for polypectome snare with bipolar electrodes |
US5509922A (en) | 1990-10-05 | 1996-04-23 | United States Surgical Corporation | Endoscopic surgical instrument |
US5626609A (en) | 1990-10-05 | 1997-05-06 | United States Surgical Corporation | Endoscopic surgical instrument |
DE4032471C2 (en) | 1990-10-12 | 1997-02-06 | Delma Elektro Med App | Electrosurgical device |
US5042707A (en) | 1990-10-16 | 1991-08-27 | Taheri Syde A | Intravascular stapler, and method of operating same |
US5190541A (en) | 1990-10-17 | 1993-03-02 | Boston Scientific Corporation | Surgical instrument and method |
US5085659A (en) | 1990-11-21 | 1992-02-04 | Everest Medical Corporation | Biopsy device with bipolar coagulation capability |
US5209747A (en) | 1990-12-13 | 1993-05-11 | Knoepfler Dennis J | Adjustable angle medical forceps |
EP0570520A1 (en) | 1991-02-06 | 1993-11-24 | Laparomed Corporation | Electrosurgical device |
JP2951418B2 (en) | 1991-02-08 | 1999-09-20 | トキコ株式会社 | Sample liquid component analyzer |
MX9702434A (en) | 1991-03-07 | 1998-05-31 | Masimo Corp | Signal processing apparatus. |
US5147357A (en) | 1991-03-18 | 1992-09-15 | Rose Anthony T | Medical instrument |
US5217460A (en) | 1991-03-22 | 1993-06-08 | Knoepfler Dennis J | Multiple purpose forceps |
US5269804A (en) | 1991-04-04 | 1993-12-14 | Symbiosis Corporation | Endoscopic colo-rectal bowel clamp |
US5359993A (en) | 1992-12-31 | 1994-11-01 | Symbiosis Corporation | Apparatus for counting the number of times a medical instrument has been used |
US5112343A (en) | 1991-04-05 | 1992-05-12 | Edward Weck Incorporated | Endoscopic clip appliers |
US5144323A (en) | 1991-05-22 | 1992-09-01 | Tendler Technologies, Inc. | Protected switch for emergency location system |
US5330471A (en) | 1991-06-07 | 1994-07-19 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments and methods of use |
US5391166A (en) | 1991-06-07 | 1995-02-21 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments having a detachable working end |
US5484436A (en) * | 1991-06-07 | 1996-01-16 | Hemostatic Surgery Corporation | Bi-polar electrosurgical instruments and methods of making |
US5472443A (en) | 1991-06-07 | 1995-12-05 | Hemostatic Surgery Corporation | Electrosurgical apparatus employing constant voltage and methods of use |
US5176695A (en) | 1991-07-08 | 1993-01-05 | Davinci Medical, Inc. | Surgical cutting means |
EP0595892B1 (en) | 1991-07-23 | 1995-12-20 | Forschungszentrum Karlsruhe GmbH | Surgical stitching instrument |
DE4130064A1 (en) | 1991-09-11 | 1993-03-18 | Wolf Gmbh Richard | ENDOSCOPIC COAGULATION GRIPPER |
US5196009A (en) | 1991-09-11 | 1993-03-23 | Kirwan Jr Lawrence T | Non-sticking electrosurgical device having nickel tips |
DE4131176C2 (en) | 1991-09-19 | 1994-12-08 | Wolf Gmbh Richard | Medical forceps |
US5476479A (en) | 1991-09-26 | 1995-12-19 | United States Surgical Corporation | Handle for endoscopic surgical instruments and jaw structure |
GB2287196B (en) | 1991-09-30 | 1995-11-15 | Philip Richardson | A surgical incision member for use in suturing |
US5242428A (en) | 1991-10-04 | 1993-09-07 | Aubrey Palestrant | Apparatus for wetting hydrophilic-coated guide wires and catheters |
USD348930S (en) | 1991-10-11 | 1994-07-19 | Ethicon, Inc. | Endoscopic stapler |
US5366477A (en) | 1991-10-17 | 1994-11-22 | American Cyanamid Company | Actuating forces transmission link and assembly for use in surgical instruments |
US5662680A (en) * | 1991-10-18 | 1997-09-02 | Desai; Ashvin H. | Endoscopic surgical instrument |
US5250047A (en) | 1991-10-21 | 1993-10-05 | Everest Medical Corporation | Bipolar laparoscopic instrument with replaceable electrode tip assembly |
US5531744A (en) | 1991-11-01 | 1996-07-02 | Medical Scientific, Inc. | Alternative current pathways for bipolar surgical cutting tool |
US5411520A (en) | 1991-11-08 | 1995-05-02 | Kensey Nash Corporation | Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use |
US5282827A (en) | 1991-11-08 | 1994-02-01 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
US5197964A (en) | 1991-11-12 | 1993-03-30 | Everest Medical Corporation | Bipolar instrument utilizing one stationary electrode and one movable electrode |
US5437277A (en) | 1991-11-18 | 1995-08-01 | General Electric Company | Inductively coupled RF tracking system for use in invasive imaging of a living body |
US5241957A (en) | 1991-11-18 | 1993-09-07 | Medtronic, Inc. | Bipolar temporary pacing lead and connector and permanent bipolar nerve wire |
DE4138116A1 (en) | 1991-11-19 | 1993-06-03 | Delma Elektro Med App | MEDICAL HIGH-FREQUENCY COAGULATION CUTTER |
US5254129A (en) | 1991-11-22 | 1993-10-19 | Alexander Chris B | Arthroscopic resector |
US5433725A (en) * | 1991-12-13 | 1995-07-18 | Unisurge, Inc. | Hand-held surgical device and tools for use therewith, assembly and method |
US5681282A (en) * | 1992-01-07 | 1997-10-28 | Arthrocare Corporation | Methods and apparatus for ablation of luminal tissues |
US6277112B1 (en) | 1996-07-16 | 2001-08-21 | Arthrocare Corporation | Methods for electrosurgical spine surgery |
US5683366A (en) | 1992-01-07 | 1997-11-04 | Arthrocare Corporation | System and method for electrosurgical tissue canalization |
US5300082A (en) | 1992-01-08 | 1994-04-05 | Sharpe Endosurgical Corporation | Endoneedle holder surgical instrument |
US5281220A (en) * | 1992-01-13 | 1994-01-25 | Blake Joseph W Iii | Endoscopic instrument |
JPH05184589A (en) * | 1992-01-14 | 1993-07-27 | Aloka Co Ltd | Electric operating device |
US5383880A (en) | 1992-01-17 | 1995-01-24 | Ethicon, Inc. | Endoscopic surgical system with sensing means |
DE69312053T2 (en) | 1992-01-21 | 1997-10-30 | Stanford Res Inst Int | TELEOPERATEURSYSTEM AND METHOD WITH TELE PRESENCE |
US6963792B1 (en) | 1992-01-21 | 2005-11-08 | Sri International | Surgical method |
US5250056A (en) | 1992-02-04 | 1993-10-05 | Hasson Harrith M | Forceps-type surgical instrument |
GB9204218D0 (en) | 1992-02-27 | 1992-04-08 | Goble Nigel M | A surgical cutting tool |
GB9204217D0 (en) | 1992-02-27 | 1992-04-08 | Goble Nigel M | Cauterising apparatus |
US5282826A (en) | 1992-03-05 | 1994-02-01 | Quadtello Corporation | Dissector for endoscopic and laparoscopic use |
JPH05258641A (en) | 1992-03-16 | 1993-10-08 | Matsushita Electric Ind Co Ltd | Panel switch |
US5158561A (en) | 1992-03-23 | 1992-10-27 | Everest Medical Corporation | Monopolar polypectomy snare with coagulation electrode |
US5281216A (en) | 1992-03-31 | 1994-01-25 | Valleylab, Inc. | Electrosurgical bipolar treating apparatus |
US5217458A (en) | 1992-04-09 | 1993-06-08 | Everest Medical Corporation | Bipolar biopsy device utilizing a rotatable, single-hinged moving element |
US5499997A (en) | 1992-04-10 | 1996-03-19 | Sharpe Endosurgical Corporation | Endoscopic tenaculum surgical instrument |
DE69325936T2 (en) | 1992-04-14 | 2000-03-30 | Hitachi Chemical Co., Ltd. | Process for the production of printed circuit boards |
US5318589A (en) | 1992-04-15 | 1994-06-07 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
US5620459A (en) | 1992-04-15 | 1997-04-15 | Microsurge, Inc. | Surgical instrument |
US5417203A (en) | 1992-04-23 | 1995-05-23 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5261918A (en) | 1992-04-27 | 1993-11-16 | Edward Weck Incorporated | Sheathed surgical instrument and applicator kit |
US5277201A (en) | 1992-05-01 | 1994-01-11 | Vesta Medical, Inc. | Endometrial ablation apparatus and method |
US5318564A (en) | 1992-05-01 | 1994-06-07 | Hemostatic Surgery Corporation | Bipolar surgical snare and methods of use |
US5443463A (en) | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Coagulating forceps |
US5562720A (en) | 1992-05-01 | 1996-10-08 | Vesta Medical, Inc. | Bipolar/monopolar endometrial ablation device and method |
US5211655A (en) | 1992-05-08 | 1993-05-18 | Hasson Harrith M | Multiple use forceps for endoscopy |
JPH0630945A (en) | 1992-05-19 | 1994-02-08 | Olympus Optical Co Ltd | Suturing apparatus |
US5389098A (en) | 1992-05-19 | 1995-02-14 | Olympus Optical Co., Ltd. | Surgical device for stapling and/or fastening body tissues |
CA2094220A1 (en) | 1992-05-21 | 1993-11-22 | Mark A. Rydell | Surgical scissors with bipolar coagulation feature |
US5367250A (en) | 1992-06-11 | 1994-11-22 | Whisenand Jeffery E | Electrical tester with electrical energizable test probe |
WO1994000059A1 (en) | 1992-06-24 | 1994-01-06 | Microsurge, Inc. | Reusable endoscopic surgical instrument |
US5478351A (en) | 1992-06-24 | 1995-12-26 | Microsurge, Inc. | Endoscopic surgical tool with handle and detachable tool assembly |
US5413571A (en) | 1992-07-16 | 1995-05-09 | Sherwood Medical Company | Device for sealing hemostatic incisions |
US5601641A (en) | 1992-07-21 | 1997-02-11 | Tse Industries, Inc. | Mold release composition with polybutadiene and method of coating a mold core |
US5258006A (en) | 1992-08-21 | 1993-11-02 | Everest Medical Corporation | Bipolar electrosurgical forceps |
US5308357A (en) | 1992-08-21 | 1994-05-03 | Microsurge, Inc. | Handle mechanism for manual instruments |
CA2104423A1 (en) | 1992-08-24 | 1994-02-25 | Boris Zvenyatsky | Handle for endoscopic instruments and jaw structure |
US5342393A (en) | 1992-08-27 | 1994-08-30 | Duke University | Method and device for vascular repair |
US5308353A (en) | 1992-08-31 | 1994-05-03 | Merrimac Industries, Inc. | Surgical suturing device |
US6010515A (en) | 1993-09-03 | 2000-01-04 | University College London | Device for use in tying knots |
US5275615A (en) | 1992-09-11 | 1994-01-04 | Anthony Rose | Medical instrument having gripping jaws |
US5762609A (en) | 1992-09-14 | 1998-06-09 | Sextant Medical Corporation | Device and method for analysis of surgical tissue interventions |
US5282800A (en) | 1992-09-18 | 1994-02-01 | Edward Weck, Inc. | Surgical instrument |
US5411519A (en) | 1992-09-23 | 1995-05-02 | United States Surgical Corporation | Surgical apparatus having hinged jaw structure |
CA2106126A1 (en) | 1992-09-23 | 1994-03-24 | Ian M. Scott | Bipolar surgical instruments |
US5330502A (en) | 1992-10-09 | 1994-07-19 | Ethicon, Inc. | Rotational endoscopic mechanism with jointed drive mechanism |
US5601224A (en) | 1992-10-09 | 1997-02-11 | Ethicon, Inc. | Surgical instrument |
US5374277A (en) | 1992-10-09 | 1994-12-20 | Ethicon, Inc. | Surgical instrument |
US5415657A (en) | 1992-10-13 | 1995-05-16 | Taymor-Luria; Howard | Percutaneous vascular sealing method |
US5336221A (en) | 1992-10-14 | 1994-08-09 | Premier Laser Systems, Inc. | Method and apparatus for applying thermal energy to tissue using a clamp |
US5383897A (en) | 1992-10-19 | 1995-01-24 | Shadyside Hospital | Method and apparatus for closing blood vessel punctures |
US5350391A (en) | 1992-10-19 | 1994-09-27 | Benedetto Iacovelli | Laparoscopic instruments |
US5304203A (en) | 1992-10-20 | 1994-04-19 | Numed Technologies, Inc. | Tissue extracting forceps for laparoscopic surgery |
US5578052A (en) * | 1992-10-27 | 1996-11-26 | Koros; Tibor | Insulated laparoscopic grasper with removable shaft |
USD349341S (en) | 1992-10-28 | 1994-08-02 | Microsurge, Inc. | Endoscopic grasper |
US5389104A (en) | 1992-11-18 | 1995-02-14 | Symbiosis Corporation | Arthroscopic surgical instruments |
US5325592A (en) | 1992-11-30 | 1994-07-05 | Fiskars Oy Ab | Pivoted tool having integral pivot member and method of producing same |
JPH06205706A (en) * | 1992-12-09 | 1994-07-26 | Ciba Geigy Ag | Contact lens case |
US5454739A (en) | 1992-12-15 | 1995-10-03 | Minnesota Mining And Manufacturing Company | Electrode connector |
US5403312A (en) | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
JP3343381B2 (en) | 1992-12-25 | 2002-11-11 | 住友化学工業株式会社 | Molded product made of long fiber reinforced polyolefin resin structure |
US5540706A (en) | 1993-01-25 | 1996-07-30 | Aust; Gilbert M. | Surgical instrument |
CA2114330A1 (en) | 1993-01-29 | 1994-07-30 | Smith & Nephew Endoscopy, Inc. | Rotatable curved instrument |
US5462546A (en) | 1993-02-05 | 1995-10-31 | Everest Medical Corporation | Bipolar electrosurgical forceps |
US5514134A (en) | 1993-02-05 | 1996-05-07 | Everest Medical Corporation | Bipolar electrosurgical scissors |
US5342359A (en) | 1993-02-05 | 1994-08-30 | Everest Medical Corporation | Bipolar coagulation device |
DE4303882C2 (en) | 1993-02-10 | 1995-02-09 | Kernforschungsz Karlsruhe | Combination instrument for separation and coagulation for minimally invasive surgery |
US5342381A (en) | 1993-02-11 | 1994-08-30 | Everest Medical Corporation | Combination bipolar scissors and forceps instrument |
US5443464A (en) | 1993-02-16 | 1995-08-22 | Memphis Orthopaedic Design, Inc. | External fixator apparatus |
US5425705A (en) | 1993-02-22 | 1995-06-20 | Stanford Surgical Technologies, Inc. | Thoracoscopic devices and methods for arresting the heart |
US5643294A (en) | 1993-03-01 | 1997-07-01 | United States Surgical Corporation | Surgical apparatus having an increased range of operability |
WO1994020025A1 (en) | 1993-03-04 | 1994-09-15 | Microsurge, Inc. | Surgical instrument |
US5445638B1 (en) | 1993-03-08 | 1998-05-05 | Everest Medical Corp | Bipolar coagulation and cutting forceps |
EP0616023B1 (en) | 1993-03-16 | 1996-01-17 | Krupp Koppers GmbH | Gasification apparatus for gasification under pressure of fine particulate fuels |
JP3390041B2 (en) | 1993-04-05 | 2003-03-24 | オリンパス光学工業株式会社 | Forceps |
US5496347A (en) * | 1993-03-30 | 1996-03-05 | Olympus Optical Co., Ltd. | Surgical instrument |
GB9309142D0 (en) | 1993-05-04 | 1993-06-16 | Gyrus Medical Ltd | Laparoscopic instrument |
USD343453S (en) * | 1993-05-05 | 1994-01-18 | Laparomed Corporation | Handle for laparoscopic surgical instrument |
CA2121194A1 (en) * | 1993-05-06 | 1994-11-07 | Corbett Stone | Bipolar electrosurgical instruments |
US5791231A (en) | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
US5817083A (en) | 1993-05-31 | 1998-10-06 | Migda Inc. | Mixing device and clamps useful therein |
USD354564S (en) * | 1993-06-25 | 1995-01-17 | Richard-Allan Medical Industries, Inc. | Surgical clip applier |
GB9314391D0 (en) | 1993-07-12 | 1993-08-25 | Gyrus Medical Ltd | A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator |
US5569243A (en) | 1993-07-13 | 1996-10-29 | Symbiosis Corporation | Double acting endoscopic scissors with bipolar cautery capability |
US5501654A (en) | 1993-07-15 | 1996-03-26 | Ethicon, Inc. | Endoscopic instrument having articulating element |
US5356408A (en) | 1993-07-16 | 1994-10-18 | Everest Medical Corporation | Bipolar electrosurgical scissors having nonlinear blades |
US5792165A (en) | 1993-07-21 | 1998-08-11 | Charles H. Klieman | Endoscopic instrument with detachable end effector |
CA2167367A1 (en) | 1993-07-21 | 1995-02-02 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
US5582617A (en) | 1993-07-21 | 1996-12-10 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
US5827323A (en) | 1993-07-21 | 1998-10-27 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
US5817093A (en) | 1993-07-22 | 1998-10-06 | Ethicon Endo-Surgery, Inc. | Impedance feedback monitor with query electrode for electrosurgical instrument |
US5810811A (en) | 1993-07-22 | 1998-09-22 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
US5709680A (en) * | 1993-07-22 | 1998-01-20 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
US5688270A (en) | 1993-07-22 | 1997-11-18 | Ethicon Endo-Surgery,Inc. | Electrosurgical hemostatic device with recessed and/or offset electrodes |
GR940100335A (en) | 1993-07-22 | 1996-05-22 | Ethicon Inc. | Electrosurgical device for placing staples. |
US5368600A (en) | 1993-07-23 | 1994-11-29 | Ethicon, Inc. | Steerable bulldog clamp applier |
US5354271A (en) | 1993-08-05 | 1994-10-11 | Voda Jan K | Vascular sheath |
JPH0757586A (en) | 1993-08-09 | 1995-03-03 | Sumitomo Wiring Syst Ltd | Rubber contact for push button switch |
US5376094A (en) | 1993-08-19 | 1994-12-27 | Boston Scientific Corporation | Improved actuating handle with pulley system for providing mechanical advantage to a surgical working element |
US5562619A (en) | 1993-08-19 | 1996-10-08 | Boston Scientific Corporation | Deflectable catheter |
US5431674A (en) | 1993-09-07 | 1995-07-11 | Pa Consulting Group | Compound motion cutting device |
US5334215A (en) | 1993-09-13 | 1994-08-02 | Chen Shih Chieh | Pincers having disposable end members |
WO1995007662A1 (en) | 1993-09-14 | 1995-03-23 | Microsurge, Inc. | Endoscopic surgical instrument with guided jaws and ratchet control |
US5415656A (en) | 1993-09-28 | 1995-05-16 | American Medical Systems, Inc. | Electrosurgical apparatus |
US5512721A (en) | 1993-09-28 | 1996-04-30 | Unisurge, Inc. | Autoclavable electrical switch assembly for use with a medical device and medical device using the same |
US5405344A (en) | 1993-09-30 | 1995-04-11 | Ethicon, Inc. | Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor |
DE4333983A1 (en) * | 1993-10-05 | 1995-04-06 | Delma Elektro Med App | High frequency electrosurgical instrument |
CA2132503C (en) | 1993-10-07 | 2005-05-10 | Donald F. Wilson | Curved knife for linear staplers |
US5607436A (en) | 1993-10-08 | 1997-03-04 | United States Surgical Corporation | Apparatus for applying surgical clips |
US5478344A (en) * | 1993-10-08 | 1995-12-26 | United States Surgical Corporation | Surgical suturing apparatus with loading mechanism |
CA2133377C (en) | 1993-10-08 | 2004-09-14 | H. Jonathan Tovey | Surgical suturing apparatus with loading mechanism |
US5571100B1 (en) | 1993-11-01 | 1998-01-06 | Gyrus Medical Ltd | Electrosurgical apparatus |
GB9322464D0 (en) | 1993-11-01 | 1993-12-22 | Gyrus Medical Ltd | Electrosurgical apparatus |
US5527322A (en) | 1993-11-08 | 1996-06-18 | Perclose, Inc. | Device and method for suturing of internal puncture sites |
DE69408268T2 (en) | 1993-11-09 | 1998-05-14 | Ricoh Kk | Image forming apparatus with a contact part in contact with an image carrier |
US5397325A (en) | 1993-11-09 | 1995-03-14 | Badiaco, Inc. | Laparoscopic suturing device |
US5396194A (en) | 1993-11-19 | 1995-03-07 | Carver Corporation | Audio frequency power amplifiers |
US5437292A (en) | 1993-11-19 | 1995-08-01 | Bioseal, Llc | Method for sealing blood vessel puncture sites |
US5458598A (en) | 1993-12-02 | 1995-10-17 | Cabot Technology Corporation | Cutting and coagulating forceps |
USD358887S (en) | 1993-12-02 | 1995-05-30 | Cobot Medical Corporation | Combined cutting and coagulating forceps |
US5422567A (en) | 1993-12-27 | 1995-06-06 | Valleylab Inc. | High frequency power measurement |
US5658282A (en) | 1994-01-18 | 1997-08-19 | Endovascular, Inc. | Apparatus for in situ saphenous vein bypass and less-invasive varicose vein treatment |
DE9490471U1 (en) | 1994-01-31 | 1996-09-26 | Valleylab, Inc., Boulder, Col. | Telescopic bipolar electrode for non-invasive medical procedures |
US5638827A (en) | 1994-02-01 | 1997-06-17 | Symbiosis Corporation | Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome |
DE4403252A1 (en) | 1994-02-03 | 1995-08-10 | Michael Hauser | Instrument shaft for min. invasive surgery |
US5597107A (en) * | 1994-02-03 | 1997-01-28 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
US5443479A (en) | 1994-02-07 | 1995-08-22 | Bressi, Jr.; Thomas E. | Surgical forceps |
IT1268016B1 (en) | 1994-02-07 | 1997-02-20 | Andrea Budic | DEVICE FOR SUPPORTING AND MANUALLY CONTROLLING THE ELECTRICAL POWER SUPPLY OF SURGICAL INSTRUMENTS. |
US5501698A (en) * | 1994-02-14 | 1996-03-26 | Heartport, Inc. | Endoscopic microsurgical instruments and methods |
JPH08227637A (en) | 1994-02-23 | 1996-09-03 | Matsushita Electric Works Ltd | Control switch and manufactur thereof |
US5395360A (en) | 1994-02-23 | 1995-03-07 | Coherent, Inc. | Damage resistant sterilizable fiber optic probe assembly |
US5520702A (en) | 1994-02-24 | 1996-05-28 | United States Surgical Corporation | Method and apparatus for applying a cinch member to the ends of a suture |
US5352222A (en) | 1994-03-15 | 1994-10-04 | Everest Medical Corporation | Surgical scissors with bipolar coagulation feature |
DE4411099C2 (en) * | 1994-03-30 | 1998-07-30 | Wolf Gmbh Richard | Surgical instrument |
US5417709A (en) | 1994-04-12 | 1995-05-23 | Symbiosis Corporation | Endoscopic instrument with end effectors forming suction and/or irrigation lumens |
US5528833A (en) | 1994-04-19 | 1996-06-25 | Kabushiki Kaisha Sangi | Scissors with ceramic coated replaceable cutting blades |
US5480409A (en) * | 1994-05-10 | 1996-01-02 | Riza; Erol D. | Laparoscopic surgical instrument |
US5493899A (en) | 1994-05-23 | 1996-02-27 | Donald Guthrie Foundation For Education And Research | Method for testing integrity of elastomeric protective barriers |
US5454827A (en) | 1994-05-24 | 1995-10-03 | Aust; Gilbert M. | Surgical instrument |
US5383875A (en) * | 1994-05-31 | 1995-01-24 | Zimmer, Inc. | Safety device for a powered surgical instrument |
US5429616A (en) | 1994-05-31 | 1995-07-04 | Schaffer; David I. | Occludable catheter |
US5766196A (en) | 1994-06-06 | 1998-06-16 | Tnco, Inc. | Surgical instrument with steerable distal end |
US6024743A (en) | 1994-06-24 | 2000-02-15 | Edwards; Stuart D. | Method and apparatus for selective treatment of the uterus |
US5505730A (en) | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
GB9413070D0 (en) | 1994-06-29 | 1994-08-17 | Gyrus Medical Ltd | Electrosurgical apparatus |
DE4423881C1 (en) | 1994-07-07 | 1995-10-26 | Karlsruhe Forschzent | Surgical sewing device |
DE19523959A1 (en) | 1994-07-07 | 1996-01-11 | Ueth & Haug Gmbh | Endoscope esp. for urological applications |
US5833695A (en) | 1994-07-13 | 1998-11-10 | Yoon; Inbae | Surgical stapling system and method of applying staples from multiple staple cartridges |
US5540684A (en) | 1994-07-28 | 1996-07-30 | Hassler, Jr.; William L. | Method and apparatus for electrosurgically treating tissue |
ATE288706T1 (en) | 1994-07-29 | 2005-02-15 | Olympus Optical Co | MEDICAL INSTRUMENT FOR USE IN COMBINATION WITH ENDOSCOPES |
US5766130A (en) | 1994-08-16 | 1998-06-16 | Selmonosky; Carlos A. | Vascular testing method |
US5529067A (en) | 1994-08-19 | 1996-06-25 | Novoste Corporation | Methods for procedures related to the electrophysiology of the heart |
US5456684A (en) | 1994-09-08 | 1995-10-10 | Hutchinson Technology Incorporated | Multifunctional minimally invasive surgical instrument |
US5573535A (en) * | 1994-09-23 | 1996-11-12 | United States Surgical Corporation | Bipolar surgical instrument for coagulation and cutting |
US5480406A (en) * | 1994-10-07 | 1996-01-02 | United States Surgical Corporation | Method of employing surgical suturing apparatus to tie knots |
USD384413S (en) | 1994-10-07 | 1997-09-30 | United States Surgical Corporation | Endoscopic suturing instrument |
US6142994A (en) | 1994-10-07 | 2000-11-07 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body |
JP3128443B2 (en) | 1994-10-07 | 2001-01-29 | アルプス電気株式会社 | Two-stage operation seesaw switch device |
US5720742A (en) | 1994-10-11 | 1998-02-24 | Zacharias; Jaime | Controller and actuating system for surgical instrument |
US5579781A (en) | 1994-10-13 | 1996-12-03 | Cooke; Thomas H. | Wireless transmitter for needle electrodes as used in electromyography |
US5591182A (en) | 1994-10-17 | 1997-01-07 | Applied Medical Resources Corporation | Atraumatic surgical clamping instrument |
US5752973A (en) | 1994-10-18 | 1998-05-19 | Archimedes Surgical, Inc. | Endoscopic surgical gripping instrument with universal joint jaw coupler |
US5549604A (en) | 1994-12-06 | 1996-08-27 | Conmed Corporation | Non-Stick electroconductive amorphous silica coating |
EP0797408A2 (en) | 1994-12-13 | 1997-10-01 | Torben Lorentzen | An electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal |
US5624281A (en) | 1994-12-14 | 1997-04-29 | Christensson; Eddy K. G. | Clasp structure for biomedical electrodes |
US5632432A (en) | 1994-12-19 | 1997-05-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US5445622A (en) | 1994-12-20 | 1995-08-29 | Brown; Eric W. | Flow switch device for medical applications |
GB9425781D0 (en) | 1994-12-21 | 1995-02-22 | Gyrus Medical Ltd | Electrosurgical instrument |
US5713895A (en) | 1994-12-30 | 1998-02-03 | Valleylab Inc | Partially coated electrodes |
US5540685A (en) | 1995-01-06 | 1996-07-30 | Everest Medical Corporation | Bipolar electrical scissors with metal cutting edges and shearing surfaces |
US5603723A (en) | 1995-01-11 | 1997-02-18 | United States Surgical Corporation | Surgical instrument configured to be disassembled for cleaning |
US6051751A (en) | 1995-01-20 | 2000-04-18 | Spire Corporation | Arthroplasty process for securely anchoring prostheses to bone, and arthroplasty products therefor |
US5603711A (en) | 1995-01-20 | 1997-02-18 | Everest Medical Corp. | Endoscopic bipolar biopsy forceps |
US5637110A (en) | 1995-01-31 | 1997-06-10 | Stryker Corporation | Electrocautery surgical tool with relatively pivoted tissue engaging jaws |
CA2168404C (en) | 1995-02-01 | 2007-07-10 | Dale Schulze | Surgical instrument with expandable cutting element |
US5573424A (en) * | 1995-02-09 | 1996-11-12 | Everest Medical Corporation | Apparatus for interfacing a bipolar electrosurgical instrument to a monopolar generator |
US5649959A (en) | 1995-02-10 | 1997-07-22 | Sherwood Medical Company | Assembly for sealing a puncture in a vessel |
US6409722B1 (en) | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
DE19506363A1 (en) | 1995-02-24 | 1996-08-29 | Frost Lore Geb Haupt | Non-invasive thermometry in organs under hyperthermia and coagulation conditions |
US5715832A (en) | 1995-02-28 | 1998-02-10 | Boston Scientific Corporation | Deflectable biopsy catheter |
US5611798A (en) * | 1995-03-02 | 1997-03-18 | Eggers; Philip E. | Resistively heated cutting and coagulating surgical instrument |
US6464701B1 (en) * | 1995-03-07 | 2002-10-15 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US6179837B1 (en) * | 1995-03-07 | 2001-01-30 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US5766166A (en) | 1995-03-07 | 1998-06-16 | Enable Medical Corporation | Bipolar Electrosurgical scissors |
US5647871A (en) | 1995-03-10 | 1997-07-15 | Microsurge, Inc. | Electrosurgery with cooled electrodes |
US6503248B1 (en) | 2000-10-30 | 2003-01-07 | Seedling Enterprises, Llc | Cooled, non-sticking electrosurgical devices |
US5575799A (en) | 1995-03-30 | 1996-11-19 | United States Surgical Corporation | Articulating surgical apparatus |
US5599350A (en) | 1995-04-03 | 1997-02-04 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with coagulation feedback |
US5626607A (en) | 1995-04-03 | 1997-05-06 | Heartport, Inc. | Clamp assembly and method of use |
US5618307A (en) | 1995-04-03 | 1997-04-08 | Heartport, Inc. | Clamp assembly and method of use |
US6056735A (en) | 1996-04-04 | 2000-05-02 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
US5569300A (en) * | 1995-04-12 | 1996-10-29 | Redmon; Henry A. | Dilating surgical forceps having illumination means on blade inner surface |
JPH08289895A (en) | 1995-04-21 | 1996-11-05 | Olympus Optical Co Ltd | Suture device |
US5707369A (en) * | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5779701A (en) | 1995-04-27 | 1998-07-14 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
DE19515914C1 (en) | 1995-05-02 | 1996-07-25 | Aesculap Ag | Tong or scissor-shaped surgical instrument |
US5626578A (en) | 1995-05-08 | 1997-05-06 | Tihon; Claude | RF valvulotome |
US5554172A (en) | 1995-05-09 | 1996-09-10 | The Larren Corporation | Directed energy surgical method and assembly |
DE19518388C2 (en) * | 1995-05-19 | 1997-07-03 | Wolf Gmbh Richard | Medical instrument with an angled distal end piece |
US5637111A (en) | 1995-06-06 | 1997-06-10 | Conmed Corporation | Bipolar electrosurgical instrument with desiccation feature |
US5720744A (en) | 1995-06-06 | 1998-02-24 | Valleylab Inc | Control system for neurosurgery |
CA2224975A1 (en) | 1995-06-23 | 1997-01-09 | Gyrus Medical Limited | An electrosurgical instrument |
AU710619B2 (en) | 1995-06-23 | 1999-09-23 | Gyrus Medical Limited | An electrosurgical instrument |
GB9526627D0 (en) | 1995-12-29 | 1996-02-28 | Gyrus Medical Ltd | An electrosurgical instrument and an electrosurgical electrode assembly |
US6293942B1 (en) | 1995-06-23 | 2001-09-25 | Gyrus Medical Limited | Electrosurgical generator method |
GB9604770D0 (en) | 1995-06-23 | 1996-05-08 | Gyrus Medical Ltd | An electrosurgical generator and system |
US6458125B1 (en) | 1995-07-10 | 2002-10-01 | I. C. Medical, Inc. | Electro-surgical unit pencil apparatus and method therefor |
US5827274A (en) | 1995-07-18 | 1998-10-27 | Richard Wolf Gmbh | Electrode for vaporizing tissue |
US5836072A (en) | 1995-07-27 | 1998-11-17 | Sullivan; Jonathan Lee | Method of assembling an antenna and over-molding the same with a thermoplastic material |
US5568859A (en) | 1995-08-08 | 1996-10-29 | Laser Industries, Limited | Foldable foot switch |
JPH0964727A (en) | 1995-08-23 | 1997-03-07 | Toshiba Corp | Synchronization circuit |
US5776156A (en) | 1995-09-05 | 1998-07-07 | United States Surgical Corporation | Endoscopic cutting instrument |
US5667526A (en) | 1995-09-07 | 1997-09-16 | Levin; John M. | Tissue retaining clamp |
US5611808A (en) | 1995-09-12 | 1997-03-18 | Cabot Technology Corporation | Blade assembly receptacle and method |
US5722421A (en) | 1995-09-15 | 1998-03-03 | Symbiosis Corporation | Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument |
US5662667A (en) | 1995-09-19 | 1997-09-02 | Ethicon Endo-Surgery, Inc. | Surgical clamping mechanism |
US5827271A (en) | 1995-09-19 | 1998-10-27 | Valleylab | Energy delivery system for vessel sealing |
US6887240B1 (en) | 1995-09-19 | 2005-05-03 | Sherwood Services Ag | Vessel sealing wave jaw |
JPH1024051A (en) * | 1995-09-20 | 1998-01-27 | Olympus Optical Co Ltd | Coagulation forceps with separating function |
US5797959A (en) | 1995-09-21 | 1998-08-25 | United States Surgical Corporation | Surgical apparatus with articulating jaw structure |
US5797927A (en) | 1995-09-22 | 1998-08-25 | Yoon; Inbae | Combined tissue clamping and suturing instrument |
US5674220A (en) | 1995-09-29 | 1997-10-07 | Ethicon Endo-Surgery, Inc. | Bipolar electrosurgical clamping device |
USH1745H (en) | 1995-09-29 | 1998-08-04 | Paraschac; Joseph F. | Electrosurgical clamping device with insulation limited bipolar electrode |
ES2098198B1 (en) * | 1995-10-18 | 1998-01-01 | Bofill Brosa Ramon | FORCEPS FOR THE SURGICAL INTRODUCTION OF CATHETERS AND THE LIKE. |
US5700270A (en) | 1995-10-20 | 1997-12-23 | United States Surgical Corporation | Surgical clip applier |
AU703455B2 (en) | 1995-10-20 | 1999-03-25 | Ethicon Endo-Surgery, Inc. | Self protecting knife for curved jaw surgical instruments |
US6122549A (en) | 1996-08-13 | 2000-09-19 | Oratec Interventions, Inc. | Apparatus for treating intervertebral discs with resistive energy |
US5792137A (en) | 1995-10-27 | 1998-08-11 | Lacar Microsystems, Inc. | Coagulating microsystem |
US5803083A (en) | 1995-11-09 | 1998-09-08 | Cordis Corporation | Guiding catheter with ultrasound imaging capability |
US5658281A (en) | 1995-12-04 | 1997-08-19 | Valleylab Inc | Bipolar electrosurgical scissors and method of manufacture |
BR9612395A (en) | 1995-12-29 | 1999-07-13 | Gyrus Medical Ltd | Electrosurgical instrument and an electrosurgical electrode set |
US7115123B2 (en) | 1996-01-05 | 2006-10-03 | Thermage, Inc. | Handpiece with electrode and non-volatile memory |
US5827281A (en) | 1996-01-05 | 1998-10-27 | Levin; John M. | Insulated surgical scissors |
US6013076A (en) | 1996-01-09 | 2000-01-11 | Gyrus Medical Limited | Electrosurgical instrument |
US5755717A (en) | 1996-01-16 | 1998-05-26 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with improved coagulation feedback |
IL125415A (en) | 1996-02-02 | 2004-02-19 | Transvascular Inc | Device and system for interstitial transvascular intervention |
US5810805A (en) | 1996-02-09 | 1998-09-22 | Conmed Corporation | Bipolar surgical devices and surgical methods |
US5882567A (en) | 1996-02-16 | 1999-03-16 | Acushnet Company | Method of making a golf ball having multiple layers |
US5797537A (en) | 1996-02-20 | 1998-08-25 | Richard-Allan Medical Industries, Inc. | Articulated surgical instrument with improved firing mechanism |
US5762255A (en) | 1996-02-20 | 1998-06-09 | Richard-Allan Medical Industries, Inc. | Surgical instrument with improvement safety lockout mechanisms |
US5725536A (en) | 1996-02-20 | 1998-03-10 | Richard-Allen Medical Industries, Inc. | Articulated surgical instrument with improved articulation control mechanism |
US6270495B1 (en) | 1996-02-22 | 2001-08-07 | Radiotherapeutics Corporation | Method and device for enhancing vessel occlusion |
US6099537A (en) | 1996-02-26 | 2000-08-08 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US5673842A (en) | 1996-03-05 | 1997-10-07 | Ethicon Endo-Surgery | Surgical stapler with locking mechanism |
DE19608716C1 (en) | 1996-03-06 | 1997-04-17 | Aesculap Ag | Bipolar surgical holding instrument |
US6325795B1 (en) | 1996-03-12 | 2001-12-04 | Sherwood Services Ag | Replaceable accessory cord and handswitch |
USD408018S (en) | 1996-03-12 | 1999-04-13 | Mcnaughton Patrick J | Switch guard |
EP0836514A2 (en) | 1996-03-18 | 1998-04-22 | 688726 Alberta, Ltd. | Electrotherapy device |
US5700261A (en) | 1996-03-29 | 1997-12-23 | Ethicon Endo-Surgery, Inc. | Bipolar Scissors |
JP2873366B2 (en) | 1996-04-01 | 1999-03-24 | ▼しずか▲ 加▼せ▲田 | Forceps |
US5960544A (en) | 1996-04-03 | 1999-10-05 | Beyers; Greg L. | Double-ended dual mechanism retractable blade utility knife |
USD416089S (en) | 1996-04-08 | 1999-11-02 | Richard-Allan Medical Industries, Inc. | Endoscopic linear stapling and dividing surgical instrument |
US5788710A (en) | 1996-04-30 | 1998-08-04 | Boston Scientific Corporation | Calculus removal |
US6066139A (en) | 1996-05-14 | 2000-05-23 | Sherwood Services Ag | Apparatus and method for sterilization and embolization |
US5993474A (en) | 1996-06-11 | 1999-11-30 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treatment accessory for endoscope |
AUPO044596A0 (en) * | 1996-06-14 | 1996-07-11 | Skop Gmbh Ltd | Improved electrical signal supply |
DE19628482A1 (en) | 1996-07-15 | 1998-01-22 | Berchtold Gmbh & Co Geb | Method for operating a high-frequency surgical device and high-frequency surgical device |
US5777519A (en) | 1996-07-18 | 1998-07-07 | Simopoulos; Anastasios V. | High efficiency power amplifier |
US5876410A (en) | 1996-07-22 | 1999-03-02 | Phillip J. Petillo | Hydraulic powered surgical device |
US5800448A (en) | 1996-07-24 | 1998-09-01 | Surgical Design Corporation | Ultrasonic surgical instrument |
US6017354A (en) | 1996-08-15 | 2000-01-25 | Stryker Corporation | Integrated system for powered surgical tools |
US5814043A (en) | 1996-09-06 | 1998-09-29 | Mentor Ophthalmics, Inc. | Bipolar electrosurgical device |
DE29616210U1 (en) | 1996-09-18 | 1996-11-14 | Olympus Winter & Ibe Gmbh, 22045 Hamburg | Handle for surgical instruments |
US7112199B2 (en) | 1996-09-20 | 2006-09-26 | Ioan Cosmescu | Multifunctional telescopic monopolar/bipolar surgical device and method therefore |
US5814054A (en) | 1996-09-23 | 1998-09-29 | Symbiosis Corporation | Automatic needle-passer suturing instrument |
US5772677A (en) | 1996-09-24 | 1998-06-30 | International Technidyne Corporation | Incision device capable of automatic assembly and a method of assembly |
US5843080A (en) | 1996-10-16 | 1998-12-01 | Megadyne Medical Products, Inc. | Bipolar instrument with multi-coated electrodes |
US5830212A (en) | 1996-10-21 | 1998-11-03 | Ndm, Inc. | Electrosurgical generator and electrode |
US5820630A (en) | 1996-10-22 | 1998-10-13 | Annex Medical, Inc. | Medical forceps jaw assembly |
US5893848A (en) | 1996-10-24 | 1999-04-13 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
US5735849A (en) | 1996-11-07 | 1998-04-07 | Everest Medical Corporation | Endoscopic forceps with thumb-slide lock release mechanism |
US5993466A (en) | 1997-06-17 | 1999-11-30 | Yoon; Inbae | Suturing instrument with multiple rotatably mounted spreadable needle holders |
US5984932A (en) | 1996-11-27 | 1999-11-16 | Yoon; Inbae | Suturing instrument with one or more spreadable needle holders mounted for arcuate movement |
US5993467A (en) | 1996-11-27 | 1999-11-30 | Yoon; Inbae | Suturing instrument with rotatably mounted spreadable needle holder |
US5759188A (en) | 1996-11-27 | 1998-06-02 | Yoon; Inbae | Suturing instrument with rotatably mounted needle driver and catcher |
US5923475A (en) | 1996-11-27 | 1999-07-13 | Eastman Kodak Company | Laser printer using a fly's eye integrator |
US5957937A (en) | 1996-11-27 | 1999-09-28 | Yoon; Inbae | Suturing instrument with spreadable needle holder mounted for arcuate movement |
US7204832B2 (en) | 1996-12-02 | 2007-04-17 | Pálomar Medical Technologies, Inc. | Cooling system for a photo cosmetic device |
JP3836551B2 (en) | 1996-12-04 | 2006-10-25 | ペンタックス株式会社 | Endoscopic hot biopsy forceps |
US5827279A (en) | 1996-12-06 | 1998-10-27 | Ethicon Endo-Surgery, Inc. | Knife coupler mechanism for an endoscopic instrument |
GB9626512D0 (en) | 1996-12-20 | 1997-02-05 | Gyrus Medical Ltd | An improved electrosurgical generator and system |
US5827548A (en) | 1997-01-14 | 1998-10-27 | Lisco, Inc. | Golf ball injection mold |
WO1998031290A1 (en) | 1997-01-15 | 1998-07-23 | Electroscope, Inc. | Bipolar vaporization apparatus and method for arthroscopy |
JP3311287B2 (en) | 1997-01-16 | 2002-08-05 | 旭光学工業株式会社 | Surgical forceps under endoscopic observation |
FR2759165A1 (en) * | 1997-01-31 | 1998-08-07 | Canon Kk | METHOD AND DEVICE FOR DETERMINING THE QUANTITY OF PRODUCT PRESENT IN A TANK, PRODUCT TANK AND ELECTRIC SIGNAL PROCESSING DEVICE FOR SUCH A DETERMINATION DEVICE |
US5882329A (en) | 1997-02-12 | 1999-03-16 | Prolifix Medical, Inc. | Apparatus and method for removing stenotic material from stents |
US5928136A (en) | 1997-02-13 | 1999-07-27 | Karl Storz Gmbh & Co. | Articulated vertebra for endoscopes and method to make it |
US5779727A (en) | 1997-02-18 | 1998-07-14 | Orejola; Wilmo C. | Hydraulically operated surgical scissors |
US6626901B1 (en) | 1997-03-05 | 2003-09-30 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
US5800449A (en) | 1997-03-11 | 1998-09-01 | Ethicon Endo-Surgery, Inc. | Knife shield for surgical instruments |
US5854455A (en) | 1997-03-25 | 1998-12-29 | Ut Automotive Dearborn, Inc. | Switching device with secondary switching function |
US6080180A (en) | 1997-05-01 | 2000-06-27 | Yoon; Inbae | Surgical instrument with rotatably mounted offset end effector and method of using the same |
US6143005A (en) | 1997-05-01 | 2000-11-07 | Yoon; Inbae | Suturing instrument with rotatably mounted offset needle holder and method of using the same |
US6126665A (en) | 1997-05-01 | 2000-10-03 | Yoon; Inbae | Surgical instrument with arcuately movable offset end effectors and method of using the same |
US6017358A (en) | 1997-05-01 | 2000-01-25 | Inbae Yoon | Surgical instrument with multiple rotatably mounted offset end effectors |
US6004332A (en) | 1997-05-01 | 1999-12-21 | Yoon; Inbae | Suturing instrument with multiple rotatably mounted offset needle holders and method of using the same |
USH2037H1 (en) | 1997-05-14 | 2002-07-02 | David C. Yates | Electrosurgical hemostatic device including an anvil |
USH1904H (en) | 1997-05-14 | 2000-10-03 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic method and device |
WO1998055037A1 (en) | 1997-06-06 | 1998-12-10 | Medical Scientific, Inc. | Selectively coated electrosurgical instrument |
US5876412A (en) | 1997-06-06 | 1999-03-02 | Piraka; Hadi A. | Surgical suturing device |
US5899914A (en) | 1997-06-11 | 1999-05-04 | Endius Incorporated | Surgical instrument |
US5824978A (en) | 1997-06-26 | 1998-10-20 | Ut Automotive, Inc. | Multiple detent membrane switch |
US6059783A (en) | 1997-06-26 | 2000-05-09 | Kirwan Surgical Products, Inc. | Electro-surgical forceps which minimize or prevent sticking of tissue |
US5849020A (en) | 1997-06-30 | 1998-12-15 | Ethicon Endo-Surgery, Inc. | Inductively coupled electrosurgical instrument |
US6106519A (en) | 1997-06-30 | 2000-08-22 | Ethicon Endo-Surgery, Inc. | Capacitively coupled electrosurgical trocar |
US6591049B2 (en) | 1997-07-02 | 2003-07-08 | Lumitex, Inc. | Light delivery systems and applications thereof |
DE19729461C1 (en) | 1997-07-10 | 1999-03-25 | Winter & Ibe Olympus | Bipolar endoscope with high frequency power supply |
US5938589A (en) | 1997-07-15 | 1999-08-17 | Fuji Photo Optical Co., Ltd. | Control switch device for an endoscope duct |
CA2297075A1 (en) | 1997-07-18 | 1999-01-28 | Colin Charles Owen Goble | An electrosurgical instrument |
GB9900964D0 (en) | 1999-01-15 | 1999-03-10 | Gyrus Medical Ltd | An electrosurgical system |
WO1999003407A1 (en) | 1997-07-18 | 1999-01-28 | Gyrus Medical Limited | An electrosurgical instrument |
EP0996380B1 (en) | 1997-07-18 | 2005-01-05 | Medtronic, Inc. | Electrosurgery device |
WO1999003408A1 (en) | 1997-07-18 | 1999-01-28 | Gyrus Medical Limited | An electrosurgical instrument |
US6402747B1 (en) * | 1997-07-21 | 2002-06-11 | Sherwood Services Ag | Handswitch cord and circuit |
US6280458B1 (en) | 1997-07-22 | 2001-08-28 | Karl Storz Gmbh & Co. Kg | Surgical grasping and holding forceps |
US5954731A (en) | 1997-07-29 | 1999-09-21 | Yoon; Inbae | Surgical instrument with multiple rotatably mounted spreadable end effectors |
JP3986126B2 (en) | 1997-08-04 | 2007-10-03 | オリンパス株式会社 | Endoscopic surgical instrument |
JP3986127B2 (en) | 1997-08-06 | 2007-10-03 | オリンパス株式会社 | Endoscopic surgical instrument |
DE69834644T2 (en) | 1997-08-13 | 2007-05-10 | Solarant Medical, Inc., Livermore | NON-INVASIVE EQUIPMENT AND SYSTEMS FOR SHRINKING WOVEN FABRICS |
US6102909A (en) | 1997-08-26 | 2000-08-15 | Ethicon, Inc. | Scissorlike electrosurgical cutting instrument |
DE19738457B4 (en) | 1997-09-03 | 2009-01-02 | Celon Ag Medical Instruments | Method and device for in vivo deep coagulation of biological tissue volumes while sparing the tissue surface with high frequency alternating current |
DE19739699A1 (en) | 1997-09-04 | 1999-03-11 | Laser & Med Tech Gmbh | Electrode arrangement for the electro-thermal treatment of the human or animal body |
US6267761B1 (en) | 1997-09-09 | 2001-07-31 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
EP1510179B1 (en) | 1997-09-10 | 2009-11-11 | Covidien AG | Bipolar electrode instrument |
US5964758A (en) | 1997-09-18 | 1999-10-12 | Dresden; Scott | Laparoscopic electrosurgical instrument |
US5865361A (en) | 1997-09-23 | 1999-02-02 | United States Surgical Corporation | Surgical stapling apparatus |
US6139563A (en) | 1997-09-25 | 2000-10-31 | Allegiance Corporation | Surgical device with malleable shaft |
US5907140A (en) | 1997-09-29 | 1999-05-25 | Eaton Corporation | Circuit breaker having a snap-in attachable collar |
US20030130653A1 (en) | 1997-09-30 | 2003-07-10 | Scimed Life Systems, Inc. | Electrosurgical tissue removal with a selectively insulated electrode |
US6039735A (en) | 1997-10-03 | 2000-03-21 | Megadyne Medical Products, Inc. | Electric field concentrated electrosurgical electrode |
US5897563A (en) | 1997-10-08 | 1999-04-27 | Ethicon Endo-Surgery, Inc. | Method for using a needle holder to assist in suturing |
AU1187899A (en) * | 1997-10-09 | 1999-05-03 | Camran Nezhat | Methods and systems for organ resection |
US6171316B1 (en) * | 1997-10-10 | 2001-01-09 | Origin Medsystems, Inc. | Endoscopic surgical instrument for rotational manipulation |
USD402028S (en) | 1997-10-10 | 1998-12-01 | Invasatec, Inc. | Hand controller for medical system |
US5980510A (en) | 1997-10-10 | 1999-11-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount |
US6178628B1 (en) * | 1997-10-22 | 2001-01-30 | Aavid Thermalloy, Llc | Apparatus and method for direct attachment of heat sink to surface mount |
US6352536B1 (en) | 2000-02-11 | 2002-03-05 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US7435249B2 (en) | 1997-11-12 | 2008-10-14 | Covidien Ag | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US6726686B2 (en) | 1997-11-12 | 2004-04-27 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US6187003B1 (en) | 1997-11-12 | 2001-02-13 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US6228083B1 (en) | 1997-11-14 | 2001-05-08 | Sherwood Services Ag | Laparoscopic bipolar electrosurgical instrument |
US20030014052A1 (en) * | 1997-11-14 | 2003-01-16 | Buysse Steven P. | Laparoscopic bipolar electrosurgical instrument |
DE19751108A1 (en) * | 1997-11-18 | 1999-05-20 | Beger Frank Michael Dipl Desig | Electrosurgical operation tool, especially for diathermy |
JPH11169381A (en) * | 1997-12-15 | 1999-06-29 | Olympus Optical Co Ltd | High frequency treating device |
US6007552A (en) | 1997-12-18 | 1999-12-28 | Minumys | Vascular clamps and surgical retractors with directional filaments for tissue engagement |
EP0923907A1 (en) | 1997-12-19 | 1999-06-23 | Gyrus Medical Limited | An electrosurgical instrument |
US6273887B1 (en) | 1998-01-23 | 2001-08-14 | Olympus Optical Co., Ltd. | High-frequency treatment tool |
US6736813B2 (en) | 1998-01-23 | 2004-05-18 | Olympus Optical Co., Ltd. | High-frequency treatment tool |
US6106542A (en) | 1998-01-23 | 2000-08-22 | Microsurgical Laboratories, Inc. | Surgical forceps |
US6562037B2 (en) | 1998-02-12 | 2003-05-13 | Boris E. Paton | Bonding of soft biological tissues by passing high frequency electric current therethrough |
AU2769399A (en) | 1998-02-17 | 1999-08-30 | James A. Baker Jr. | Radiofrequency medical instrument for vessel welding |
US6126658A (en) | 1998-02-19 | 2000-10-03 | Baker; James A. | Radiofrequency medical instrument and methods for vessel welding |
US6692485B1 (en) | 1998-02-24 | 2004-02-17 | Endovia Medical, Inc. | Articulated apparatus for telemanipulator system |
US6554844B2 (en) | 1998-02-24 | 2003-04-29 | Endovia Medical, Inc. | Surgical instrument |
GB9807303D0 (en) | 1998-04-03 | 1998-06-03 | Gyrus Medical Ltd | An electrode assembly for an electrosurgical instrument |
US5908432A (en) | 1998-03-27 | 1999-06-01 | Pan; Huai C. | Scalpel with retractable blade |
CA2231383A1 (en) | 1998-04-16 | 1999-10-16 | Silhouet Tone Appareils De Beaute Ltee | Combined handle, needle head assembly and protective cover for use in a hair removal electrolysis apparatus |
US6657173B2 (en) | 1998-04-21 | 2003-12-02 | State Board Of Higher Education On Behalf Of Oregon State University | Variable frequency automated capacitive radio frequency (RF) dielectric heating system |
US6303166B1 (en) | 1998-04-21 | 2001-10-16 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Capacative dielectric heating system |
AU3869599A (en) | 1998-04-29 | 1999-11-16 | Inbae Yoon | Instrument and method of suturing anatomical tissue and tying suture material |
US5967997A (en) | 1998-04-30 | 1999-10-19 | Symbiosis Corporation | Endoscopic surgical instrument with deflectable and rotatable distal end |
US6003517A (en) * | 1998-04-30 | 1999-12-21 | Ethicon Endo-Surgery, Inc. | Method for using an electrosurgical device on lung tissue |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6514252B2 (en) * | 1998-05-01 | 2003-02-04 | Perfect Surgical Techniques, Inc. | Bipolar surgical instruments having focused electrical fields |
US6508815B1 (en) * | 1998-05-08 | 2003-01-21 | Novacept | Radio-frequency generator for powering an ablation device |
US6193709B1 (en) | 1998-05-13 | 2001-02-27 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US6027522A (en) | 1998-06-02 | 2000-02-22 | Boston Scientific Corporation | Surgical instrument with a rotatable distal end |
US6193718B1 (en) | 1998-06-10 | 2001-02-27 | Scimed Life Systems, Inc. | Endoscopic electrocautery instrument |
WO1999065398A1 (en) | 1998-06-17 | 1999-12-23 | Inbae Yoon | Suturing instrument with angled needle holder and method for use thereof |
US6287306B1 (en) | 1998-06-22 | 2001-09-11 | Daig Corporation | Even temperature linear lesion ablation catheter |
DK1089664T3 (en) * | 1998-06-22 | 2006-02-13 | Lina Medical Aps | Electrosurgical device for coagulation and for incision |
US6679882B1 (en) * | 1998-06-22 | 2004-01-20 | Lina Medical Aps | Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue |
US6537272B2 (en) | 1998-07-07 | 2003-03-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
JP3693821B2 (en) | 1998-07-24 | 2005-09-14 | オリンパス株式会社 | Endoscopy forceps |
DE19833600A1 (en) * | 1998-07-25 | 2000-03-02 | Storz Karl Gmbh & Co Kg | Medical forceps with two independently movable jaw parts |
US6099539A (en) | 1998-07-27 | 2000-08-08 | Thomas J. Fogarty | Surgical clamp pad with interdigitating teeth |
US6385265B1 (en) | 1998-08-04 | 2002-05-07 | Cypress Semiconductor Corp. | Differential charge pump |
JP4225624B2 (en) | 1998-08-27 | 2009-02-18 | オリンパス株式会社 | High frequency treatment device |
US6021693A (en) | 1998-09-21 | 2000-02-08 | Chang Feng-Sing | Method of manufacturing blades for scissors |
US6050995A (en) | 1998-09-24 | 2000-04-18 | Scimed Lifesystems, Inc. | Polypectomy snare with multiple bipolar electrodes |
JP3351352B2 (en) | 1998-09-24 | 2002-11-25 | ヤマハ株式会社 | Video switching device |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
US7137980B2 (en) | 1998-10-23 | 2006-11-21 | Sherwood Services Ag | Method and system for controlling output of RF medical generator |
US6585735B1 (en) | 1998-10-23 | 2003-07-01 | Sherwood Services Ag | Endoscopic bipolar electrosurgical forceps |
US6398779B1 (en) | 1998-10-23 | 2002-06-04 | Sherwood Services Ag | Vessel sealing system |
WO2000024322A1 (en) | 1998-10-23 | 2000-05-04 | Applied Medical Resources Corporation | Surgical grasper with inserts and method of using same |
US7118570B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealing forceps with disposable electrodes |
US20040249374A1 (en) | 1998-10-23 | 2004-12-09 | Tetzlaff Philip M. | Vessel sealing instrument |
USD425201S (en) | 1998-10-23 | 2000-05-16 | Sherwood Services Ag | Disposable electrode assembly |
US6245062B1 (en) | 1998-10-23 | 2001-06-12 | Afx, Inc. | Directional reflector shield assembly for a microwave ablation instrument |
US7582087B2 (en) | 1998-10-23 | 2009-09-01 | Covidien Ag | Vessel sealing instrument |
AU756626B2 (en) | 1998-10-23 | 2003-01-16 | Covidien Ag | Open vessel sealing forceps with disposable electrodes |
US20040167508A1 (en) * | 2002-02-11 | 2004-08-26 | Robert Wham | Vessel sealing system |
AU757278B2 (en) | 1998-10-23 | 2003-02-13 | Covidien Ag | Endoscopic bipolar electrosurgical forceps |
US6277117B1 (en) | 1998-10-23 | 2001-08-21 | Sherwood Services Ag | Open vessel sealing forceps with disposable electrodes |
US6511480B1 (en) * | 1998-10-23 | 2003-01-28 | Sherwood Services Ag | Open vessel sealing forceps with disposable electrodes |
USD449886S1 (en) | 1998-10-23 | 2001-10-30 | Sherwood Services Ag | Forceps with disposable electrode |
US6796981B2 (en) | 1999-09-30 | 2004-09-28 | Sherwood Services Ag | Vessel sealing system |
US7901400B2 (en) | 1998-10-23 | 2011-03-08 | Covidien Ag | Method and system for controlling output of RF medical generator |
USD424694S (en) | 1998-10-23 | 2000-05-09 | Sherwood Services Ag | Forceps |
US6221039B1 (en) * | 1998-10-26 | 2001-04-24 | Scimed Life Systems, Inc. | Multi-function surgical instrument |
US6270508B1 (en) | 1998-10-26 | 2001-08-07 | Charles H. Klieman | End effector and instrument for endoscopic and general surgery needle control |
DE19850068C1 (en) * | 1998-10-30 | 2000-06-08 | Storz Karl Gmbh & Co Kg | Medical instrument for tissue preparation |
DE59912404D1 (en) | 1998-11-05 | 2005-09-15 | Scarfi Andrea | Medical instrument for cutting tissue in the human or animal body |
US7125403B2 (en) | 1998-12-08 | 2006-10-24 | Intuitive Surgical | In vivo accessories for minimally invasive robotic surgery |
US6190385B1 (en) | 1998-12-11 | 2001-02-20 | Ethicon, Inc. | Cable for bipolar electro-surgical instrument |
US6319451B1 (en) | 1998-12-17 | 2001-11-20 | Acushnet Company | Method of molding a layer around a body |
DE19858512C1 (en) * | 1998-12-18 | 2000-05-25 | Storz Karl Gmbh & Co Kg | Bipolar medical instrument for minimally invasive surgery for endoscopic operations; has mutually insulated leads passing through tubular shaft to conductor elements on linked jaw parts |
US6224593B1 (en) | 1999-01-13 | 2001-05-01 | Sherwood Services Ag | Tissue sealing using microwaves |
US20030171747A1 (en) | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US6159217A (en) | 1999-02-02 | 2000-12-12 | Robie; Bruce H. | Trochlear clamp |
US6174309B1 (en) | 1999-02-11 | 2001-01-16 | Medical Scientific, Inc. | Seal & cut electrosurgical instrument |
US6248124B1 (en) | 1999-02-22 | 2001-06-19 | Tyco Healthcare Group | Arterial hole closure apparatus |
GB9905209D0 (en) | 1999-03-05 | 1999-04-28 | Gyrus Medical Ltd | Electrosurgery system |
GB9905211D0 (en) | 1999-03-05 | 1999-04-28 | Gyrus Medical Ltd | Electrosurgery system and instrument |
GB9905210D0 (en) | 1999-03-05 | 1999-04-28 | Gyrus Medical Ltd | Electrosurgical system |
EP1253854A4 (en) | 1999-03-07 | 2010-01-06 | Discure Ltd | Method and apparatus for computerized surgery |
US6110171A (en) | 1999-03-09 | 2000-08-29 | Everest Medical Corporation | Electrosurgical cutting and coagulating instrument for open surgery |
US6190386B1 (en) * | 1999-03-09 | 2001-02-20 | Everest Medical Corporation | Electrosurgical forceps with needle electrodes |
US6083150A (en) | 1999-03-12 | 2000-07-04 | C. R. Bard, Inc. | Endoscopic multiple sample biopsy forceps |
DE19915061A1 (en) | 1999-04-01 | 2000-10-26 | Erbe Elektromedizin | Surgical instrument |
CA2620783C (en) | 1999-04-09 | 2011-04-05 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
US6726694B2 (en) | 1999-04-16 | 2004-04-27 | Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) | Intraluminally directed anvil apparatus and related methods and systems |
US6152923A (en) | 1999-04-28 | 2000-11-28 | Sherwood Services Ag | Multi-contact forceps and method of sealing, coagulating, cauterizing and/or cutting vessels and tissue |
US7226446B1 (en) | 1999-05-04 | 2007-06-05 | Dinesh Mody | Surgical microwave ablation assembly |
US6461352B2 (en) | 1999-05-11 | 2002-10-08 | Stryker Corporation | Surgical handpiece with self-sealing switch assembly |
GB9911956D0 (en) | 1999-05-21 | 1999-07-21 | Gyrus Medical Ltd | Electrosurgery system and method |
GB9911954D0 (en) | 1999-05-21 | 1999-07-21 | Gyrus Medical Ltd | Electrosurgery system and instrument |
US6174310B1 (en) * | 1999-05-24 | 2001-01-16 | Kirwan Surgical Products, Inc. | Bipolar coaxial coagulator having offset connector pin |
GB9912625D0 (en) | 1999-05-28 | 1999-07-28 | Gyrus Medical Ltd | An electrosurgical generator and system |
GB9912627D0 (en) | 1999-05-28 | 1999-07-28 | Gyrus Medical Ltd | An electrosurgical instrument |
US20030181898A1 (en) | 1999-05-28 | 2003-09-25 | Bowers William J. | RF filter for an electrosurgical generator |
GB9913652D0 (en) | 1999-06-11 | 1999-08-11 | Gyrus Medical Ltd | An electrosurgical generator |
JP2001003400A (en) | 1999-06-21 | 2001-01-09 | Sumitomo Constr Mach Co Ltd | Monitor device for hydraulic shovel |
US6506196B1 (en) * | 1999-06-22 | 2003-01-14 | Ndo Surgical, Inc. | Device and method for correction of a painful body defect |
US6663639B1 (en) | 1999-06-22 | 2003-12-16 | Ndo Surgical, Inc. | Methods and devices for tissue reconfiguration |
US6494888B1 (en) | 1999-06-22 | 2002-12-17 | Ndo Surgical, Inc. | Tissue reconfiguration |
US6835200B2 (en) | 1999-06-22 | 2004-12-28 | Ndo Surgical. Inc. | Method and devices for tissue reconfiguration |
US6821285B2 (en) | 1999-06-22 | 2004-11-23 | Ndo Surgical, Inc. | Tissue reconfiguration |
JP4576521B2 (en) | 1999-06-25 | 2010-11-10 | ハンセン メディカル, インコーポレイテッド | Apparatus and method for treating tissue |
FR2795301B1 (en) | 1999-06-25 | 2001-08-31 | Prec | ENDOSCOPIC SURGERY INSTRUMENT |
WO2001001847A1 (en) | 1999-07-06 | 2001-01-11 | Inbae Yoon | Penetrating endoscope and endoscopic surgical instrument with cmos image sensor and display |
US6117158A (en) * | 1999-07-07 | 2000-09-12 | Ethicon Endo-Surgery, Inc. | Ratchet release mechanism for hand held instruments |
JP2001029355A (en) | 1999-07-21 | 2001-02-06 | Olympus Optical Co Ltd | Electric cautery device |
US6692445B2 (en) | 1999-07-27 | 2004-02-17 | Scimed Life Systems, Inc. | Biopsy sampler |
DE19935478C1 (en) | 1999-07-28 | 2001-04-19 | Karlsruhe Forschzent | Endoscopic surgical instrument for tissue coagulation and separation has coagulation clamps and scissor blades each pivoted about common pivot axis via respective lever mechanisms |
US6235026B1 (en) | 1999-08-06 | 2001-05-22 | Scimed Life Systems, Inc. | Polypectomy snare instrument |
US6517539B1 (en) | 1999-08-06 | 2003-02-11 | Scimed Life Systems, Inc. | Polypectomy snare having ability to actuate through tortuous path |
GB9919722D0 (en) | 1999-08-20 | 1999-10-20 | Surgical Innovations Ltd | Laparoscopic forceps handle |
US6685724B1 (en) * | 1999-08-24 | 2004-02-03 | The Penn State Research Foundation | Laparoscopic surgical instrument and method |
US6409728B1 (en) | 1999-08-25 | 2002-06-25 | Sherwood Services Ag | Rotatable bipolar forceps |
DE19940689A1 (en) | 1999-08-27 | 2001-04-05 | Storz Karl Gmbh & Co Kg | Bipolar medical instrument |
ES2261392T3 (en) | 1999-09-01 | 2006-11-16 | Sherwood Services Ag | ELECTROCHIRURGICAL INSTRUMENT THAT REDUCES THERMAL DISPERSION. |
US6419675B1 (en) | 1999-09-03 | 2002-07-16 | Conmed Corporation | Electrosurgical coagulating and cutting instrument |
GB2354170A (en) | 1999-09-16 | 2001-03-21 | Minop Ltd | A tool and an effector, e.g. surgical forceps, scissors or spreader |
USD465281S1 (en) | 1999-09-21 | 2002-11-05 | Karl Storz Gmbh & Co. Kg | Endoscopic medical instrument |
US6152924A (en) | 1999-09-24 | 2000-11-28 | Parins; David J. | Bipolar biopsy forceps |
DE19946020A1 (en) | 1999-09-25 | 2001-03-29 | Eaton Corp | Rocker switches for one two-stage actuation stroke each |
DE19946527C1 (en) | 1999-09-28 | 2001-07-12 | Storz Karl Gmbh & Co Kg | Bipolar, e.g. laparoscopic surgery instrument, cuts electrically, cauterizes and grips using simple design with high frequency current-concentrating projections |
US20030069570A1 (en) | 1999-10-02 | 2003-04-10 | Witzel Thomas H. | Methods for repairing mitral valve annulus percutaneously |
US6485489B2 (en) | 1999-10-02 | 2002-11-26 | Quantum Cor, Inc. | Catheter system for repairing a mitral valve annulus |
JP4233742B2 (en) | 1999-10-05 | 2009-03-04 | エシコン・エンド−サージェリィ・インコーポレイテッド | Connecting curved clamp arms and tissue pads used with ultrasonic surgical instruments |
US6514215B1 (en) | 1999-10-13 | 2003-02-04 | Pentax Corporation | Endoscopic tissue collecting instrument |
US6773432B1 (en) | 1999-10-14 | 2004-08-10 | Applied Medical Resources Corporation | Electrosurgical snare |
US7887535B2 (en) * | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
US20030109875A1 (en) | 1999-10-22 | 2003-06-12 | Tetzlaff Philip M. | Open vessel sealing forceps with disposable electrodes |
US6592572B1 (en) | 1999-11-22 | 2003-07-15 | Olympus Optical Co., Ltd. | Surgical operation apparatus |
US6635057B2 (en) | 1999-12-02 | 2003-10-21 | Olympus Optical Co. Ltd. | Electric operation apparatus |
JP2001157661A (en) | 1999-12-02 | 2001-06-12 | Asahi Optical Co Ltd | Connection structure of operating wire for endoscope |
US6302424B1 (en) | 1999-12-09 | 2001-10-16 | Holland Hitch Company | Force-sensing fifth wheel |
US6974452B1 (en) | 2000-01-12 | 2005-12-13 | Clinicon Corporation | Cutting and cauterizing surgical tools |
JP4315557B2 (en) * | 2000-01-12 | 2009-08-19 | オリンパス株式会社 | Medical treatment tool |
DE10003020C2 (en) | 2000-01-25 | 2001-12-06 | Aesculap Ag & Co Kg | Bipolar barrel instrument |
US6758846B2 (en) | 2000-02-08 | 2004-07-06 | Gyrus Medical Limited | Electrosurgical instrument and an electrosurgery system including such an instrument |
US20040068307A1 (en) | 2000-02-08 | 2004-04-08 | Gyrus Medical Limited | Surgical instrument |
US6620184B2 (en) | 2001-02-28 | 2003-09-16 | Microline Inc. | Release mechanism for grasping device |
DE10007919C2 (en) | 2000-02-21 | 2003-07-17 | Wolf Gmbh Richard | Forceps for free preparation of tissue in a body cavity |
US6953461B2 (en) | 2002-05-16 | 2005-10-11 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
ATE397900T1 (en) | 2000-03-06 | 2008-07-15 | Salient Surgical Technologies | FLUID DELIVERY SYSTEM AND CONTROL FOR ELECTROSURGICAL EQUIPMENT |
US6689131B2 (en) | 2001-03-08 | 2004-02-10 | Tissuelink Medical, Inc. | Electrosurgical device having a tissue reduction sensor |
US6558385B1 (en) * | 2000-09-22 | 2003-05-06 | Tissuelink Medical, Inc. | Fluid-assisted medical device |
US6358268B1 (en) | 2000-03-06 | 2002-03-19 | Robert B. Hunt | Surgical instrument |
US6391035B1 (en) | 2000-03-24 | 2002-05-21 | Timothy Appleby | Hemostatic clip removal instrument |
US6471696B1 (en) | 2000-04-12 | 2002-10-29 | Afx, Inc. | Microwave ablation instrument with a directional radiation pattern |
DE20007177U1 (en) | 2000-04-19 | 2000-08-03 | Karl Storz GmbH & Co. KG, 78532 Tuttlingen | Medical instrument with lockable power transmission element |
JP3791893B2 (en) | 2000-04-27 | 2006-06-28 | オリンパス株式会社 | Surgical instrument |
US6488680B1 (en) | 2000-04-27 | 2002-12-03 | Medtronic, Inc. | Variable length electrodes for delivery of irrigated ablation |
US6546935B2 (en) | 2000-04-27 | 2003-04-15 | Atricure, Inc. | Method for transmural ablation |
US20020107514A1 (en) | 2000-04-27 | 2002-08-08 | Hooven Michael D. | Transmural ablation device with parallel jaws |
DE10031773B4 (en) | 2000-05-04 | 2007-11-29 | Erbe Elektromedizin Gmbh | Surgical gripping instrument, in particular tweezers or forceps |
US6506424B2 (en) * | 2000-05-22 | 2003-01-14 | Dandy Sakiz Ve Sekerleme Sanayi A.S. | Multicolored chewing gum with crunchy transparent coating |
US6743239B1 (en) | 2000-05-25 | 2004-06-01 | St. Jude Medical, Inc. | Devices with a bendable tip for medical procedures |
DE10027727C1 (en) | 2000-06-03 | 2001-12-06 | Aesculap Ag & Co Kg | Scissors-shaped or forceps-shaped surgical instrument |
US6896684B2 (en) | 2000-06-12 | 2005-05-24 | Niti Medical Technologies Ltd. | Surgical clip applicator device |
US6494882B1 (en) | 2000-07-25 | 2002-12-17 | Verimetra, Inc. | Cutting instrument having integrated sensors |
US6830174B2 (en) | 2000-08-30 | 2004-12-14 | Cerebral Vascular Applications, Inc. | Medical instrument |
US6322580B1 (en) | 2000-09-01 | 2001-11-27 | Angiolink Corporation | Wound site management and wound closure device |
US6569105B1 (en) | 2000-09-14 | 2003-05-27 | Syntheon, Llc | Rotatable and deflectable biopsy forceps |
DE10045375C2 (en) | 2000-09-14 | 2002-10-24 | Aesculap Ag & Co Kg | Medical instrument |
JP4014792B2 (en) | 2000-09-29 | 2007-11-28 | 株式会社東芝 | manipulator |
US6755843B2 (en) | 2000-09-29 | 2004-06-29 | Olympus Optical Co., Ltd. | Endoscopic suturing device |
US6809508B2 (en) | 2000-10-20 | 2004-10-26 | Ethicon Endo-Surgery, Inc. | Detection circuitry for surgical handpiece system |
CA2426552C (en) | 2000-10-20 | 2009-07-14 | Onux Medical, Inc. | Surgical suturing instrument and method of use |
US6656177B2 (en) | 2000-10-23 | 2003-12-02 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
US6500176B1 (en) * | 2000-10-23 | 2002-12-31 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
JP3523839B2 (en) | 2000-10-30 | 2004-04-26 | オリンパス株式会社 | Surgical instruments |
US6843789B2 (en) | 2000-10-31 | 2005-01-18 | Gyrus Medical Limited | Electrosurgical system |
US20030139741A1 (en) * | 2000-10-31 | 2003-07-24 | Gyrus Medical Limited | Surgical instrument |
USD453923S1 (en) | 2000-11-16 | 2002-02-26 | Carling Technologies, Inc. | Electrical rocker switch guard |
US6716226B2 (en) | 2001-06-25 | 2004-04-06 | Inscope Development, Llc | Surgical clip |
DE10061278B4 (en) | 2000-12-08 | 2004-09-16 | GFD-Gesellschaft für Diamantprodukte mbH | Instrument for surgical purposes |
EP1349510A4 (en) | 2000-12-15 | 2005-07-13 | Tony R Brown | Atrial fibrillation rf treatment device and method |
US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
US6554829B2 (en) | 2001-01-24 | 2003-04-29 | Ethicon, Inc. | Electrosurgical instrument with minimally invasive jaws |
US6652521B2 (en) | 2001-01-24 | 2003-11-25 | Ethicon, Inc. | Surgical instrument with a bi-directional cutting element |
US6443970B1 (en) * | 2001-01-24 | 2002-09-03 | Ethicon, Inc. | Surgical instrument with a dissecting tip |
US6620161B2 (en) * | 2001-01-24 | 2003-09-16 | Ethicon, Inc. | Electrosurgical instrument with an operational sequencing element |
US6464702B2 (en) | 2001-01-24 | 2002-10-15 | Ethicon, Inc. | Electrosurgical instrument with closing tube for conducting RF energy and moving jaws |
US6458128B1 (en) | 2001-01-24 | 2002-10-01 | Ethicon, Inc. | Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element |
US20020107517A1 (en) * | 2001-01-26 | 2002-08-08 | Witt David A. | Electrosurgical instrument for coagulation and cutting |
US20020111624A1 (en) * | 2001-01-26 | 2002-08-15 | Witt David A. | Coagulating electrosurgical instrument with tissue dam |
DE20121161U1 (en) | 2001-01-31 | 2002-04-04 | Olympus Winter & Ibe Gmbh, 22045 Hamburg | Endoscopic instrument |
US6997931B2 (en) | 2001-02-02 | 2006-02-14 | Lsi Solutions, Inc. | System for endoscopic suturing |
JP4460787B2 (en) | 2001-02-13 | 2010-05-12 | オリンパス株式会社 | Ultrasonic treatment device |
US6533784B2 (en) | 2001-02-24 | 2003-03-18 | Csaba Truckai | Electrosurgical working end for transecting and sealing tissue |
US6775575B2 (en) | 2001-02-26 | 2004-08-10 | D. Bommi Bommannan | System and method for reducing post-surgical complications |
USD466209S1 (en) | 2001-02-27 | 2002-11-26 | Visionary Biomedical, Inc. | Steerable catheter |
USD454951S1 (en) | 2001-02-27 | 2002-03-26 | Visionary Biomedical, Inc. | Steerable catheter |
US6666862B2 (en) | 2001-03-01 | 2003-12-23 | Cardiac Pacemakers, Inc. | Radio frequency ablation system and method linking energy delivery with fluid flow |
US6682527B2 (en) * | 2001-03-13 | 2004-01-27 | Perfect Surgical Techniques, Inc. | Method and system for heating tissue with a bipolar instrument |
EP1685806B1 (en) | 2001-04-06 | 2011-06-08 | Covidien AG | Vessel sealer and divider with non-conductive stop members |
ES2236216T3 (en) | 2001-04-06 | 2005-07-16 | Sherwood Services Ag | DEVICE OF SUTURE AND DIVISION OF BLOOD VESSELS. |
CA2442960C (en) * | 2001-04-06 | 2011-03-22 | Sherwood Services Ag | Vessel sealing instrument |
AU2001251390B2 (en) * | 2001-04-06 | 2006-02-02 | Covidien Ag | Vessel sealing forceps with disposable electrodes |
USD457959S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer |
USD457958S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer and divider |
US7101372B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Sevices Ag | Vessel sealer and divider |
ES2305288T3 (en) | 2001-04-06 | 2008-11-01 | Covidien Ag | RETRACTILE OVERHOLDED INSERT RETAINING DEVICE. |
CA2442706A1 (en) | 2001-04-06 | 2002-10-17 | Sherwood Services Ag | Electrosurgical instrument reducing flashover |
EP1527747B1 (en) | 2001-04-06 | 2015-09-30 | Covidien AG | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
US7083618B2 (en) | 2001-04-06 | 2006-08-01 | Sherwood Services Ag | Vessel sealer and divider |
US20090292282A9 (en) | 2001-04-06 | 2009-11-26 | Dycus Sean T | Movable handle for vessel sealer |
US7118587B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealer and divider |
JP4504621B2 (en) * | 2001-04-06 | 2010-07-14 | コヴィディエン アクチェンゲゼルシャフト | Blood vessel sealing machine and dividing machine |
US7101373B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Services Ag | Vessel sealer and divider |
DE60134787D1 (en) | 2001-04-06 | 2008-08-21 | Covidien Ag | DEVICE FOR SEALING AND SHARING A VESSEL |
US20030229344A1 (en) * | 2002-01-22 | 2003-12-11 | Dycus Sean T. | Vessel sealer and divider and method of manufacturing same |
US7090673B2 (en) | 2001-04-06 | 2006-08-15 | Sherwood Services Ag | Vessel sealer and divider |
ES2240723T3 (en) | 2001-04-06 | 2005-10-16 | Sherwood Services Ag | MOLDED INSULATING HINGE FOR BIPOLAR INSTRUMENTS. |
US6726068B2 (en) * | 2001-04-09 | 2004-04-27 | Dennis J. Miller | Elastomeric thimble |
DE60218240T2 (en) | 2001-04-18 | 2007-11-22 | Olympus Corporation | Surgical instrument |
US6994708B2 (en) | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
AU2002254712A1 (en) | 2001-04-20 | 2002-11-05 | Power Medical Interventions, Inc. | Bipolar or ultrasonic surgical device |
US6989010B2 (en) | 2001-04-26 | 2006-01-24 | Medtronic, Inc. | Ablation system and method of use |
US6540745B1 (en) | 2001-05-01 | 2003-04-01 | Aeromet Technologies, Inc. | Coated medical devices |
US6676676B2 (en) * | 2001-05-02 | 2004-01-13 | Novare Surgical Systems | Clamp having bendable shaft |
US6544274B2 (en) | 2001-05-02 | 2003-04-08 | Novare Surgical Systems, Inc. | Clamp having bendable shaft |
RU2282608C2 (en) | 2001-05-25 | 2006-08-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Method for production of linear olefins useful in linear alcohol manufacturing |
US7473224B2 (en) | 2001-05-29 | 2009-01-06 | Ethicon Endo-Surgery, Inc. | Deployable ultrasound medical transducers |
WO2002098313A1 (en) * | 2001-06-05 | 2002-12-12 | Erbe Elektromedizin Gmbh | Bipolar clamp |
US20030018332A1 (en) * | 2001-06-20 | 2003-01-23 | Schmaltz Dale Francis | Bipolar electrosurgical instrument with replaceable electrodes |
US6824547B2 (en) | 2001-07-13 | 2004-11-30 | Pilling Weck Incorporated | Endoscopic clip applier and method |
US6616654B2 (en) | 2001-07-27 | 2003-09-09 | Starion Instruments Corporation | Polypectomy device and method |
FR2828248B1 (en) | 2001-08-02 | 2003-11-14 | Peugeot Citroen Automobiles Sa | PIVOT LINK BETWEEN TWO PARTS |
WO2003013374A1 (en) | 2001-08-06 | 2003-02-20 | Penn State Research Foundation | Multifunctional tool and method for minimally invasive surgery |
US6545239B2 (en) | 2001-08-09 | 2003-04-08 | Illinois Tool Works Inc. | Rocker switch with snap dome contacts |
US6966907B2 (en) | 2001-08-27 | 2005-11-22 | Gyrus Medical Limited | Electrosurgical generator and system |
US6808525B2 (en) | 2001-08-27 | 2004-10-26 | Gyrus Medical, Inc. | Bipolar electrosurgical hook probe for cutting and coagulating tissue |
US6755338B2 (en) | 2001-08-29 | 2004-06-29 | Cerebral Vascular Applications, Inc. | Medical instrument |
US6994709B2 (en) | 2001-08-30 | 2006-02-07 | Olympus Corporation | Treatment device for tissue from living tissues |
AU2002339884A1 (en) * | 2001-09-05 | 2003-03-18 | Tissuelink Medical, Inc. | Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods |
US6652514B2 (en) | 2001-09-13 | 2003-11-25 | Alan G. Ellman | Intelligent selection system for electrosurgical instrument |
US6802843B2 (en) * | 2001-09-13 | 2004-10-12 | Csaba Truckai | Electrosurgical working end with resistive gradient electrodes |
US6773434B2 (en) * | 2001-09-18 | 2004-08-10 | Ethicon, Inc. | Combination bipolar forceps and scissors instrument |
US6773409B2 (en) | 2001-09-19 | 2004-08-10 | Surgrx Llc | Surgical system for applying ultrasonic energy to tissue |
US6652518B2 (en) | 2001-09-28 | 2003-11-25 | Ethicon, Inc. | Transmural ablation tool and method |
US6616661B2 (en) * | 2001-09-28 | 2003-09-09 | Ethicon, Inc. | Surgical device for clamping, ligating, and severing tissue |
US6527771B1 (en) * | 2001-09-28 | 2003-03-04 | Ethicon, Inc. | Surgical device for endoscopic vein harvesting |
JP2003116871A (en) | 2001-10-16 | 2003-04-22 | Olympus Optical Co Ltd | Surgical tool |
US6929644B2 (en) * | 2001-10-22 | 2005-08-16 | Surgrx Inc. | Electrosurgical jaw structure for controlled energy delivery |
US7070597B2 (en) | 2001-10-18 | 2006-07-04 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US20030216732A1 (en) | 2002-05-20 | 2003-11-20 | Csaba Truckai | Medical instrument with thermochromic or piezochromic surface indicators |
US7041102B2 (en) * | 2001-10-22 | 2006-05-09 | Surgrx, Inc. | Electrosurgical working end with replaceable cartridges |
US6770072B1 (en) * | 2001-10-22 | 2004-08-03 | Surgrx, Inc. | Electrosurgical jaw structure for controlled energy delivery |
US6905497B2 (en) | 2001-10-22 | 2005-06-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument |
US6926716B2 (en) * | 2001-11-09 | 2005-08-09 | Surgrx Inc. | Electrosurgical instrument |
US7189233B2 (en) | 2001-10-22 | 2007-03-13 | Surgrx, Inc. | Electrosurgical instrument |
US7311709B2 (en) | 2001-10-22 | 2007-12-25 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7354440B2 (en) | 2001-10-22 | 2008-04-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7011657B2 (en) | 2001-10-22 | 2006-03-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument and method of use |
US7083619B2 (en) * | 2001-10-22 | 2006-08-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6878147B2 (en) | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
JP3971159B2 (en) | 2001-11-07 | 2007-09-05 | 株式会社東海理化電機製作所 | Switch device |
US6616658B2 (en) | 2001-11-08 | 2003-09-09 | Leonard Ineson | Electrosurgical pencil |
US6757977B2 (en) | 2001-11-20 | 2004-07-06 | Jai Surgicals Limited | Disposable surgical safety scalpel |
US7753908B2 (en) * | 2002-02-19 | 2010-07-13 | Endoscopic Technologies, Inc. (Estech) | Apparatus for securing an electrophysiology probe to a clamp |
US7052496B2 (en) | 2001-12-11 | 2006-05-30 | Olympus Optical Co., Ltd. | Instrument for high-frequency treatment and method of high-frequency treatment |
US6656175B2 (en) | 2001-12-11 | 2003-12-02 | Medtronic, Inc. | Method and system for treatment of atrial tachyarrhythmias |
US20030114851A1 (en) | 2001-12-13 | 2003-06-19 | Csaba Truckai | Electrosurgical jaws for controlled application of clamping pressure |
US6660072B2 (en) | 2001-12-21 | 2003-12-09 | Hewlett-Packard Development Company, L.P. | Reduced-corrosion inkjet inks and methods for making same |
US6942662B2 (en) * | 2001-12-27 | 2005-09-13 | Gyrus Group Plc | Surgical Instrument |
US6602252B2 (en) | 2002-01-03 | 2003-08-05 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
ATE540606T1 (en) | 2002-01-22 | 2012-01-15 | Surgrx Inc | ELECTROSURGICAL INSTRUMENT AND METHOD OF USE |
US6676660B2 (en) * | 2002-01-23 | 2004-01-13 | Ethicon Endo-Surgery, Inc. | Feedback light apparatus and method for use with an electrosurgical instrument |
WO2003061500A2 (en) | 2002-01-23 | 2003-07-31 | Spitzer Daniel E | Double irrigating bipolar surgery forceps |
US7169107B2 (en) | 2002-01-25 | 2007-01-30 | Karen Jersey-Willuhn | Conductivity reconstruction based on inverse finite element measurements in a tissue monitoring system |
WO2003068046A2 (en) | 2002-02-13 | 2003-08-21 | Applied Medical Resources Corporation | Tissue fusion/welder apparatus corporation |
US6932816B2 (en) | 2002-02-19 | 2005-08-23 | Boston Scientific Scimed, Inc. | Apparatus for converting a clamp into an electrophysiology device |
US20030158548A1 (en) | 2002-02-19 | 2003-08-21 | Phan Huy D. | Surgical system including clamp and apparatus for securing an energy transmission device to the clamp and method of converting a clamp into an electrophysiology device |
US6733498B2 (en) * | 2002-02-19 | 2004-05-11 | Live Tissue Connect, Inc. | System and method for control of tissue welding |
US6905504B1 (en) | 2002-02-26 | 2005-06-14 | Cardica, Inc. | Tool for performing end-to-end anastomosis |
US6685704B2 (en) | 2002-02-26 | 2004-02-03 | Megadyne Medical Products, Inc. | Utilization of an active catalyst in a surface coating of an electrosurgical instrument |
JP4089252B2 (en) | 2002-03-11 | 2008-05-28 | オムロン株式会社 | DC load contact structure and switch having the structure |
US7025763B2 (en) | 2002-03-26 | 2006-04-11 | Olympus Corporation | Medical apparatus |
US20040115296A1 (en) | 2002-04-05 | 2004-06-17 | Duffin Terry M. | Retractable overmolded insert retention apparatus |
JP4131011B2 (en) | 2002-04-09 | 2008-08-13 | Hoya株式会社 | Endoscopic sputum treatment device |
US6755824B2 (en) | 2002-04-15 | 2004-06-29 | Uab Research Foundation | Platelet inhibitor eluting ablation catheter |
US7258688B1 (en) | 2002-04-16 | 2007-08-21 | Baylis Medical Company Inc. | Computerized electrical signal generator |
US20040030330A1 (en) | 2002-04-18 | 2004-02-12 | Brassell James L. | Electrosurgery systems |
WO2003090630A2 (en) | 2002-04-25 | 2003-11-06 | Tyco Healthcare Group, Lp | Surgical instruments including micro-electromechanical systems (mems) |
ATE371413T1 (en) | 2002-05-06 | 2007-09-15 | Covidien Ag | BLOOD DETECTOR FOR CHECKING AN ELECTROSURGICAL UNIT |
AU2003237884A1 (en) | 2002-05-15 | 2003-12-02 | Stephen T. Flock | Method and device for anastomoses |
US7967839B2 (en) | 2002-05-20 | 2011-06-28 | Rocky Mountain Biosystems, Inc. | Electromagnetic treatment of tissues and cells |
US20030236325A1 (en) | 2002-05-30 | 2003-12-25 | Michela Bonora | Agricultural articles |
ES2373946T3 (en) | 2002-06-04 | 2012-02-10 | Sound Surgical Technologies, Llc | ULTRASONIC DEVICE FOR COAGULATION OF FABRICS. |
US20060173452A1 (en) | 2002-06-06 | 2006-08-03 | Buysse Steven P | Laparoscopic bipolar electrosurgical instrument |
US6986775B2 (en) | 2002-06-13 | 2006-01-17 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US6951559B1 (en) | 2002-06-21 | 2005-10-04 | Megadyne Medical Products, Inc. | Utilization of a hybrid material in a surface coating of an electrosurgical instrument |
US7033356B2 (en) * | 2002-07-02 | 2006-04-25 | Gyrus Medical, Inc. | Bipolar electrosurgical instrument for cutting desiccating and sealing tissue |
JP4373146B2 (en) | 2002-07-11 | 2009-11-25 | オリンパス株式会社 | Endoscopic suturing device |
US6976992B2 (en) | 2002-07-16 | 2005-12-20 | Suturecut, Llc | Dual-function medical instrument |
JP3964754B2 (en) | 2002-07-30 | 2007-08-22 | アルプス電気株式会社 | Switch device |
US6987244B2 (en) * | 2002-07-31 | 2006-01-17 | Illinois Tool Works Inc. | Self-contained locking trigger assembly and systems which incorporate the assembly |
US20040073256A1 (en) | 2002-08-09 | 2004-04-15 | Kevin Marchitto | Activated surgical fasteners, devices therefor and uses thereof |
US7223264B2 (en) | 2002-08-21 | 2007-05-29 | Resect Medical, Inc. | Thermal coagulation of tissue during tissue resection |
US20040260281A1 (en) | 2002-09-19 | 2004-12-23 | Baxter Chester O. | Finger tip electrosurgical medical device |
US20040059362A1 (en) | 2002-09-20 | 2004-03-25 | Knodel Bryan D. | Method of performing surgery using surgical device with expandable member |
US20040064151A1 (en) | 2002-09-27 | 2004-04-01 | Starion Instruments Corporation | Ultrasonic forceps |
AU2002951739A0 (en) | 2002-09-30 | 2002-10-17 | Cochlear Limited | Feedthrough with multiple conductive pathways extending therethrough |
EP1549200A4 (en) | 2002-09-30 | 2008-05-07 | Sightline Techn Ltd | Piston-actuated endoscopic tool |
US7087054B2 (en) * | 2002-10-01 | 2006-08-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7291161B2 (en) | 2002-10-02 | 2007-11-06 | Atricure, Inc. | Articulated clamping member |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
US7270664B2 (en) | 2002-10-04 | 2007-09-18 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US7276068B2 (en) | 2002-10-04 | 2007-10-02 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
JP4459814B2 (en) | 2002-10-04 | 2010-04-28 | コヴィディエン アクチェンゲゼルシャフト | Electrode assembly for sealing and cutting tissue and method for performing sealing and cutting tissue |
JP4429913B2 (en) | 2002-10-04 | 2010-03-10 | コヴィディエン アクチェンゲゼルシャフト | Electrosurgical instrument for sealing a tube |
US7083620B2 (en) | 2002-10-30 | 2006-08-01 | Medtronic, Inc. | Electrosurgical hemostat |
JP2003175052A (en) | 2002-11-01 | 2003-06-24 | Olympus Optical Co Ltd | Coagulation treatment tool |
US7244257B2 (en) | 2002-11-05 | 2007-07-17 | Sherwood Services Ag | Electrosurgical pencil having a single button variable control |
US7108694B2 (en) | 2002-11-08 | 2006-09-19 | Olympus Corporation | Heat-emitting treatment device |
US7799026B2 (en) | 2002-11-14 | 2010-09-21 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US7314471B2 (en) * | 2002-11-18 | 2008-01-01 | Trevor John Milton | Disposable scalpel with retractable blade |
ATE444722T1 (en) | 2002-11-27 | 2009-10-15 | Pulmonx Corp | INTRODUCTION SET FOR IMPLANTABLE BRONCHIAL ISOLATION DEVICES |
US7044948B2 (en) | 2002-12-10 | 2006-05-16 | Sherwood Services Ag | Circuit for controlling arc energy from an electrosurgical generator |
US7033354B2 (en) | 2002-12-10 | 2006-04-25 | Sherwood Services Ag | Electrosurgical electrode having a non-conductive porous ceramic coating |
US7553686B2 (en) | 2002-12-17 | 2009-06-30 | The Regents Of The University Of Colorado, A Body Corporate | Al2O3 atomic layer deposition to enhance the deposition of hydrophobic or hydrophilic coatings on micro-electromechanical devices |
AU2003286349A1 (en) | 2002-12-20 | 2004-07-14 | Koninklijke Philips Electronics N.V. | Double connector for medical sensor |
US7087051B2 (en) | 2003-01-15 | 2006-08-08 | Boston Scientific Scimed, Inc. | Articulating radio frequency probe handle |
EP1442714A1 (en) | 2003-02-03 | 2004-08-04 | Centerpulse Orthopedics Ltd. | Aiming aid for vertebrae |
USD493888S1 (en) | 2003-02-04 | 2004-08-03 | Sherwood Services Ag | Electrosurgical pencil with pistol grip |
US7169146B2 (en) * | 2003-02-14 | 2007-01-30 | Surgrx, Inc. | Electrosurgical probe and method of use |
WO2004073488A2 (en) | 2003-02-20 | 2004-09-02 | Sherwood Services Ag | System and method for connecting an electrosurgical instrument to a generator |
CA2516451A1 (en) | 2003-02-20 | 2004-09-02 | Sherwood Services Ag | Motion detector for controlling electrosurgical output |
WO2004080278A2 (en) * | 2003-03-06 | 2004-09-23 | Tissuelink Medical, Inc. | Fluid -assisted medical devices, systems and methods |
US7326202B2 (en) | 2003-03-07 | 2008-02-05 | Starion Instruments Corporation | Tubular resistance heater with electrically insulating high thermal conductivity core for use in a tissue welding device |
US20030191396A1 (en) | 2003-03-10 | 2003-10-09 | Sanghvi Narendra T | Tissue treatment method and apparatus |
AU2003223284C1 (en) | 2003-03-13 | 2010-09-16 | Covidien Ag | Bipolar concentric electrode assembly for soft tissue fusion |
US20060052779A1 (en) | 2003-03-13 | 2006-03-09 | Hammill Curt D | Electrode assembly for tissue fusion |
US20060064086A1 (en) | 2003-03-13 | 2006-03-23 | Darren Odom | Bipolar forceps with multiple electrode array end effector assembly |
US20050015125A1 (en) | 2003-03-14 | 2005-01-20 | Mioduski Paul C. | Hyperthermia treatment systems and methods |
JP4131014B2 (en) | 2003-03-18 | 2008-08-13 | Hoya株式会社 | Endoscopic sputum treatment device |
WO2004087394A2 (en) | 2003-03-31 | 2004-10-14 | Greene, Tweed Of Delaware, Inc. | Thermoplastic/fiber material composites, composite/metallic articles and methods for making composite/metallic articles |
DE10330604A1 (en) | 2003-04-01 | 2004-10-28 | Tuebingen Scientific Surgical Products Gmbh | Surgical instrument |
US20040199181A1 (en) | 2003-04-02 | 2004-10-07 | Knodel Bryan D. | Surgical device for anastomosis |
US7128741B1 (en) | 2003-04-04 | 2006-10-31 | Megadyne Medical Products, Inc. | Methods, systems, and devices for performing electrosurgical procedures |
EP1615673B1 (en) | 2003-04-25 | 2012-10-31 | Tyco Healthcare Group LP | Surgical access apparatus |
US7160299B2 (en) | 2003-05-01 | 2007-01-09 | Sherwood Services Ag | Method of fusing biomaterials with radiofrequency energy |
JP2006525096A (en) * | 2003-05-01 | 2006-11-09 | シャーウッド・サービシーズ・アクチェンゲゼルシャフト | Method and system for programming and controlling an electrosurgical generator system |
US7147638B2 (en) | 2003-05-01 | 2006-12-12 | Sherwood Services Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
US8128624B2 (en) | 2003-05-01 | 2012-03-06 | Covidien Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
USD496997S1 (en) | 2003-05-15 | 2004-10-05 | Sherwood Services Ag | Vessel sealer and divider |
USD499181S1 (en) | 2003-05-15 | 2004-11-30 | Sherwood Services Ag | Handle for a vessel sealer and divider |
CA2525785C (en) | 2003-05-15 | 2013-03-12 | Sherwood Services Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
USD502994S1 (en) | 2003-05-21 | 2005-03-15 | Blake, Iii Joseph W | Repeating multi-clip applier |
US7569626B2 (en) | 2003-06-05 | 2009-08-04 | Dfine, Inc. | Polymer composites for biomedical applications and methods of making |
JP4354216B2 (en) | 2003-06-09 | 2009-10-28 | オリンパス株式会社 | LINKING DEVICE FOR TREATMENT TOOL AND TREATMENT TOOL |
US7499315B2 (en) | 2003-06-11 | 2009-03-03 | Ovonyx, Inc. | Programmable matrix array with chalcogenide material |
JP4217546B2 (en) | 2003-06-12 | 2009-02-04 | 株式会社東海理化電機製作所 | switch |
US7150749B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Vessel sealer and divider having elongated knife stroke and safety cutting mechanism |
US7156846B2 (en) * | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
EP1633265B1 (en) | 2003-06-13 | 2011-08-10 | Covidien AG | Vessel sealer and divider for use with small trocars and cannulas |
US7597693B2 (en) | 2003-06-13 | 2009-10-06 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
DE60333799D1 (en) | 2003-06-13 | 2010-09-23 | Covidien Ag | VESSEL HANDLING AND DISCONNECTING DEVICE FOR USE WITH SMALL TROCAR AND CANNULA |
US7150097B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Method of manufacturing jaw assembly for vessel sealer and divider |
US7857812B2 (en) | 2003-06-13 | 2010-12-28 | Covidien Ag | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
JP3850818B2 (en) | 2003-06-30 | 2006-11-29 | 小島プレス工業株式会社 | Switch device |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
US7344268B2 (en) | 2003-07-07 | 2008-03-18 | Xenonics, Inc. | Long-range, handheld illumination system |
DE20310433U1 (en) | 2003-07-08 | 2003-09-04 | Aesculap AG & Co. KG, 78532 Tuttlingen | Surgical device for inserting dual component implant into appropriate space at spine, comprising particularly shaped holding area |
US6981628B2 (en) * | 2003-07-09 | 2006-01-03 | Ethicon Endo-Surgery, Inc. | Surgical instrument with a lateral-moving articulation control |
JP2005032491A (en) | 2003-07-09 | 2005-02-03 | Matsushita Electric Ind Co Ltd | Switch |
US7311703B2 (en) | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
CN100562295C (en) | 2003-07-24 | 2009-11-25 | 奥林巴斯株式会社 | Forceps cover sheath and operating forceps |
USD545432S1 (en) | 2003-08-08 | 2007-06-26 | Olympus Corporation | Distal portion of hemostatic forceps for endoscope |
US7438714B2 (en) | 2003-09-12 | 2008-10-21 | Boston Scientific Scimed, Inc. | Vacuum-based catheter stabilizer |
US20050059858A1 (en) | 2003-09-16 | 2005-03-17 | Frith Martin A. | Endoscope magnetic rocker switch |
GB0322766D0 (en) | 2003-09-29 | 2003-10-29 | Emcision Ltd | Surgical resection device |
US7135018B2 (en) | 2003-09-30 | 2006-11-14 | Ethicon, Inc. | Electrosurgical instrument and method for transecting an organ |
USD509297S1 (en) | 2003-10-17 | 2005-09-06 | Tyco Healthcare Group, Lp | Surgical instrument |
US20050090817A1 (en) | 2003-10-22 | 2005-04-28 | Scimed Life Systems, Inc. | Bendable endoscopic bipolar device |
CA2542798C (en) | 2003-10-23 | 2015-06-23 | Sherwood Services Ag | Thermocouple measurement circuit |
CA2542849C (en) | 2003-10-23 | 2013-08-20 | Sherwood Services Ag | Redundant temperature monitoring in electrosurgical systems for safety mitigation |
US7276066B2 (en) | 2003-10-29 | 2007-10-02 | Pentax Corporation | Medical instrument for endoscope |
US7396336B2 (en) * | 2003-10-30 | 2008-07-08 | Sherwood Services Ag | Switched resonant ultrasonic power amplifier system |
US20050096645A1 (en) * | 2003-10-31 | 2005-05-05 | Parris Wellman | Multitool surgical device |
US7232440B2 (en) | 2003-11-17 | 2007-06-19 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7367976B2 (en) * | 2003-11-17 | 2008-05-06 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7811283B2 (en) | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
US7252667B2 (en) | 2003-11-19 | 2007-08-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism and distal lockout |
US7500975B2 (en) | 2003-11-19 | 2009-03-10 | Covidien Ag | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US7131970B2 (en) * | 2003-11-19 | 2006-11-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism |
US7131860B2 (en) * | 2003-11-20 | 2006-11-07 | Sherwood Services Ag | Connector systems for electrosurgical generator |
US7156842B2 (en) * | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US7442193B2 (en) | 2003-11-20 | 2008-10-28 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
US7300435B2 (en) * | 2003-11-21 | 2007-11-27 | Sherwood Services Ag | Automatic control system for an electrosurgical generator |
US7169145B2 (en) * | 2003-11-21 | 2007-01-30 | Megadyne Medical Products, Inc. | Tuned return electrode with matching inductor |
US6914201B2 (en) | 2003-11-26 | 2005-07-05 | Methode Electronics, Inc. | Multiple detent switch |
US7052489B2 (en) | 2003-12-05 | 2006-05-30 | Scimed Life Systems, Inc. | Medical device with deflecting shaft and related methods of manufacture and use |
US7145757B2 (en) | 2004-01-13 | 2006-12-05 | Eaton Corporation | System for eliminating arcing faults and power distribution system employing the same |
US7204835B2 (en) | 2004-02-02 | 2007-04-17 | Gyrus Medical, Inc. | Surgical instrument |
JP4436698B2 (en) * | 2004-02-25 | 2010-03-24 | オリンパス株式会社 | High frequency treatment tool |
US7342754B2 (en) | 2004-03-02 | 2008-03-11 | Eaton Corporation | Bypass circuit to prevent arcing in a switching device |
US7780662B2 (en) | 2004-03-02 | 2010-08-24 | Covidien Ag | Vessel sealing system using capacitive RF dielectric heating |
US7955331B2 (en) | 2004-03-12 | 2011-06-07 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument and method of use |
JP4624697B2 (en) | 2004-03-12 | 2011-02-02 | オリンパス株式会社 | Surgical instrument |
US7238184B2 (en) | 2004-03-15 | 2007-07-03 | Boston Scientific Scimed, Inc. | Ablation probe with peltier effect thermal control |
US6979786B2 (en) | 2004-03-18 | 2005-12-27 | Delphi Technologies, Inc. | Contact structures for sliding switches |
USD541938S1 (en) | 2004-04-09 | 2007-05-01 | Sherwood Services Ag | Open vessel sealer with mechanical cutter |
JP2005312807A (en) | 2004-04-30 | 2005-11-10 | Olympus Corp | Energy therapy device |
ATE442186T1 (en) | 2004-05-03 | 2009-09-15 | Woodwelding Ag | LIGHT DIFFUSER AND METHOD FOR PRODUCING SAME |
US8568395B2 (en) | 2004-05-03 | 2013-10-29 | Woodwelding Ag | Light diffuser and process for producing the same |
US7736374B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Tissue manipulation and securement system |
EP1754136A4 (en) | 2004-05-12 | 2007-12-05 | Samsung Electronics Co Ltd | Direct printing method and apparatus |
DE102004026179B4 (en) | 2004-05-14 | 2009-01-22 | Erbe Elektromedizin Gmbh | Electrosurgical instrument |
US20050261588A1 (en) | 2004-05-21 | 2005-11-24 | Makin Inder Raj S | Ultrasound medical system |
DE102004025613B4 (en) | 2004-05-25 | 2008-08-07 | Erbe Elektromedizin Gmbh | Method and measuring device for determining the transition impedance between two partial electrodes of a divided neutral electrode |
JP4727575B2 (en) | 2004-06-15 | 2011-07-20 | オリンパス株式会社 | Energy treatment tool |
US20050283148A1 (en) | 2004-06-17 | 2005-12-22 | Janssen William M | Ablation apparatus and system to limit nerve conduction |
USD533942S1 (en) | 2004-06-30 | 2006-12-19 | Sherwood Services Ag | Open vessel sealer with mechanical cutter |
JP2006015078A (en) | 2004-07-05 | 2006-01-19 | Olympus Corp | Medical apparatus |
DE102004055670A1 (en) * | 2004-08-11 | 2006-02-23 | Erbe Elektromedizin Gmbh | Electrosurgical instrument |
DE102004040959B4 (en) | 2004-08-24 | 2008-12-24 | Erbe Elektromedizin Gmbh | Surgical instrument |
US7195631B2 (en) | 2004-09-09 | 2007-03-27 | Sherwood Services Ag | Forceps with spring loaded end effector assembly |
US7540872B2 (en) | 2004-09-21 | 2009-06-02 | Covidien Ag | Articulating bipolar electrosurgical instrument |
USD535027S1 (en) * | 2004-10-06 | 2007-01-09 | Sherwood Services Ag | Low profile vessel sealing and cutting mechanism |
US7384421B2 (en) | 2004-10-06 | 2008-06-10 | Sherwood Services Ag | Slide-activated cutting assembly |
USD541418S1 (en) | 2004-10-06 | 2007-04-24 | Sherwood Services Ag | Lung sealing device |
USD525361S1 (en) | 2004-10-06 | 2006-07-18 | Sherwood Services Ag | Hemostat style elongated dissecting and dividing instrument |
USD531311S1 (en) | 2004-10-06 | 2006-10-31 | Sherwood Services Ag | Pistol grip style elongated dissecting and dividing instrument |
USD567943S1 (en) | 2004-10-08 | 2008-04-29 | Sherwood Services Ag | Over-ratchet safety for a vessel sealing instrument |
US20060190035A1 (en) | 2004-10-08 | 2006-08-24 | Sherwood Services Ag | Latching mechanism for forceps |
US20060079933A1 (en) | 2004-10-08 | 2006-04-13 | Dylan Hushka | Latching mechanism for forceps |
US7955332B2 (en) | 2004-10-08 | 2011-06-07 | Covidien Ag | Mechanism for dividing tissue in a hemostat-style instrument |
US7628792B2 (en) | 2004-10-08 | 2009-12-08 | Covidien Ag | Bilateral foot jaws |
USD533274S1 (en) | 2004-10-12 | 2006-12-05 | Allegiance Corporation | Handle for surgical suction-irrigation device |
USD582038S1 (en) | 2004-10-13 | 2008-12-02 | Medtronic, Inc. | Transurethral needle ablation device |
USD564662S1 (en) | 2004-10-13 | 2008-03-18 | Sherwood Services Ag | Hourglass-shaped knife for electrosurgical forceps |
US20060084973A1 (en) | 2004-10-14 | 2006-04-20 | Dylan Hushka | Momentary rocker switch for use with vessel sealing instruments |
US7686827B2 (en) | 2004-10-21 | 2010-03-30 | Covidien Ag | Magnetic closure mechanism for hemostat |
EP1809188A4 (en) | 2004-10-22 | 2010-12-01 | Canica Design Inc | Safety scalpel |
US7949407B2 (en) | 2004-11-05 | 2011-05-24 | Asthmatx, Inc. | Energy delivery devices and methods |
US7727231B2 (en) | 2005-01-08 | 2010-06-01 | Boston Scientific Scimed, Inc. | Apparatus and methods for forming lesions in tissue and applying stimulation energy to tissue in which lesions are formed |
US7686804B2 (en) | 2005-01-14 | 2010-03-30 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US7909823B2 (en) | 2005-01-14 | 2011-03-22 | Covidien Ag | Open vessel sealing instrument |
US7918848B2 (en) | 2005-03-25 | 2011-04-05 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US20060224053A1 (en) | 2005-03-30 | 2006-10-05 | Skyline Biomedical, Inc. | Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels |
US7491202B2 (en) | 2005-03-31 | 2009-02-17 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US20090204114A1 (en) | 2005-03-31 | 2009-08-13 | Covidien Ag | Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue |
JP4534004B2 (en) | 2005-04-07 | 2010-09-01 | 学校法人慶應義塾 | manipulator |
JP5033787B2 (en) | 2005-04-11 | 2012-09-26 | テルモ株式会社 | Method and apparatus for effecting closure of a lamellar tissue defect |
US20060253126A1 (en) | 2005-05-04 | 2006-11-09 | Bernard Medical, Llc | Endoluminal suturing device and method |
JP4398406B2 (en) | 2005-06-01 | 2010-01-13 | オリンパスメディカルシステムズ株式会社 | Surgical instruments |
US20060283093A1 (en) | 2005-06-15 | 2006-12-21 | Ivan Petrovic | Planarization composition |
US20060287641A1 (en) | 2005-06-16 | 2006-12-21 | Alfred Perlin | Laparoscopic surgical instrument for in situ tool exchange |
USD538932S1 (en) | 2005-06-30 | 2007-03-20 | Medical Action Industries Inc. | Surgical needle holder |
US7837685B2 (en) | 2005-07-13 | 2010-11-23 | Covidien Ag | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
US20070027447A1 (en) | 2005-07-27 | 2007-02-01 | Microline Pentax Inc. | Seal for medical instrument |
JP4402629B2 (en) | 2005-08-19 | 2010-01-20 | オリンパスメディカルシステムズ株式会社 | Ultrasonic coagulation and incision device |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
US7998095B2 (en) | 2005-08-19 | 2011-08-16 | Boston Scientific Scimed, Inc. | Occlusion device |
JP4045458B2 (en) | 2005-08-31 | 2008-02-13 | コニカミノルタビジネステクノロジーズ株式会社 | Information processing system and information sharing method |
CA2520413C (en) | 2005-09-21 | 2016-10-11 | Sherwood Services Ag | Bipolar forceps with multiple electrode array end effector assembly |
EP1767164B1 (en) | 2005-09-22 | 2013-01-09 | Covidien AG | Electrode assembly for tissue fusion |
EP1767163A1 (en) | 2005-09-22 | 2007-03-28 | Sherwood Services AG | Bipolar forceps with multiple electrode array end effector assembly |
US20070072466A1 (en) | 2005-09-27 | 2007-03-29 | Manabu Miyamoto | Instrument for endoscope |
US7722607B2 (en) | 2005-09-30 | 2010-05-25 | Covidien Ag | In-line vessel sealer and divider |
US7879035B2 (en) | 2005-09-30 | 2011-02-01 | Covidien Ag | Insulating boot for electrosurgical forceps |
CA2561638C (en) | 2005-09-30 | 2015-06-30 | Sherwood Services Ag | Insulating boot for electrosurgical forceps |
US7922953B2 (en) | 2005-09-30 | 2011-04-12 | Covidien Ag | Method for manufacturing an end effector assembly |
CA2561034C (en) * | 2005-09-30 | 2014-12-09 | Sherwood Services Ag | Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue |
US7789878B2 (en) | 2005-09-30 | 2010-09-07 | Covidien Ag | In-line vessel sealer and divider |
US20070078453A1 (en) | 2005-10-04 | 2007-04-05 | Johnson Kristin D | System and method for performing cardiac ablation |
US7799039B2 (en) | 2005-11-09 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a hydraulically actuated end effector |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7673780B2 (en) | 2005-11-09 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument |
US20070118115A1 (en) | 2005-11-22 | 2007-05-24 | Sherwood Services Ag | Bipolar electrosurgical sealing instrument having an improved tissue gripping device |
US7594916B2 (en) | 2005-11-22 | 2009-09-29 | Covidien Ag | Electrosurgical forceps with energy based tissue division |
US7246734B2 (en) | 2005-12-05 | 2007-07-24 | Ethicon Endo-Surgery, Inc. | Rotary hydraulic pump actuated multi-stroke surgical instrument |
JP2009519058A (en) | 2005-12-16 | 2009-05-14 | ハミルトン・メディカル・アーゲー | Ventilator tube system |
CN100463660C (en) | 2006-01-18 | 2009-02-25 | 重庆海扶(Hifu)技术有限公司 | Ultrasonic therapeutic pincers |
US8734443B2 (en) * | 2006-01-24 | 2014-05-27 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US8147485B2 (en) | 2006-01-24 | 2012-04-03 | Covidien Ag | System and method for tissue sealing |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
US7766910B2 (en) | 2006-01-24 | 2010-08-03 | Tyco Healthcare Group Lp | Vessel sealer and divider for large tissue structures |
US7972328B2 (en) | 2006-01-24 | 2011-07-05 | Covidien Ag | System and method for tissue sealing |
US8685016B2 (en) | 2006-01-24 | 2014-04-01 | Covidien Ag | System and method for tissue sealing |
US8216223B2 (en) | 2006-01-24 | 2012-07-10 | Covidien Ag | System and method for tissue sealing |
US20070173813A1 (en) | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | System and method for tissue sealing |
US8241282B2 (en) | 2006-01-24 | 2012-08-14 | Tyco Healthcare Group Lp | Vessel sealing cutting assemblies |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
USD541611S1 (en) | 2006-01-26 | 2007-05-01 | Robert Bosch Gmbh | Cordless screwdriver |
US8161977B2 (en) | 2006-01-31 | 2012-04-24 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
JP4441496B2 (en) | 2006-02-20 | 2010-03-31 | Hoya株式会社 | Bipolar high-frequency treatment instrument for endoscope |
US7651493B2 (en) * | 2006-03-03 | 2010-01-26 | Covidien Ag | System and method for controlling electrosurgical snares |
US7668597B2 (en) | 2006-03-31 | 2010-02-23 | Medtronic, Inc. | Feedthrough array for use in implantable medical devices |
US7641653B2 (en) * | 2006-05-04 | 2010-01-05 | Covidien Ag | Open vessel sealing forceps disposable handswitch |
US7846158B2 (en) | 2006-05-05 | 2010-12-07 | Covidien Ag | Apparatus and method for electrode thermosurgery |
US20070260238A1 (en) | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Combined energy level button |
US20070265616A1 (en) | 2006-05-10 | 2007-11-15 | Sherwood Services Ag | Vessel sealing instrument with optimized power density |
DE202006020056U1 (en) | 2006-05-15 | 2007-09-20 | Olympus Winter & Ibe Gmbh | Forceps for vessel coagulation |
CN101356326A (en) | 2006-05-31 | 2009-01-28 | 三协立山铝股份有限公司 | Truss material and method of manufacturing space truss diagonal member |
JP4157574B2 (en) | 2006-07-04 | 2008-10-01 | オリンパスメディカルシステムズ株式会社 | Surgical instrument |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US7717914B2 (en) | 2006-07-11 | 2010-05-18 | Olympus Medical Systems Corporation | Treatment device |
CN101528146B (en) | 2006-07-13 | 2011-06-29 | 博维医药公司 | Surgical sealing and cutting apparatus |
US20080015575A1 (en) * | 2006-07-14 | 2008-01-17 | Sherwood Services Ag | Vessel sealing instrument with pre-heated electrodes |
US7744615B2 (en) | 2006-07-18 | 2010-06-29 | Covidien Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
US20080033428A1 (en) | 2006-08-04 | 2008-02-07 | Sherwood Services Ag | System and method for disabling handswitching on an electrosurgical instrument |
US8034049B2 (en) | 2006-08-08 | 2011-10-11 | Covidien Ag | System and method for measuring initial tissue impedance |
US7731717B2 (en) | 2006-08-08 | 2010-06-08 | Covidien Ag | System and method for controlling RF output during tissue sealing |
US8597297B2 (en) | 2006-08-29 | 2013-12-03 | Covidien Ag | Vessel sealing instrument with multiple electrode configurations |
USD547154S1 (en) | 2006-09-08 | 2007-07-24 | Winsource Industries Limited | Rotary driving tool |
US7780663B2 (en) | 2006-09-22 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | End effector coatings for electrosurgical instruments |
US8070746B2 (en) | 2006-10-03 | 2011-12-06 | Tyco Healthcare Group Lp | Radiofrequency fusion of cardiac tissue |
US8133224B2 (en) | 2006-10-05 | 2012-03-13 | Erbe Elektromedizin Gmbh | Medical instrument |
WO2008045353A2 (en) | 2006-10-05 | 2008-04-17 | Tyco Healthcare Group Lp | Flexible endoscopic stitching devices |
JP5225996B2 (en) | 2006-10-06 | 2013-07-03 | タイコ ヘルスケア グループ リミテッド パートナーシップ | Endoscopic vessel sealer and divider with flexible articulation shaft |
US7951149B2 (en) | 2006-10-17 | 2011-05-31 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
WO2008067250A2 (en) | 2006-11-27 | 2008-06-05 | Brian Kelleher | Methods and devices for organ partitioning |
US20080271360A1 (en) | 2006-11-28 | 2008-11-06 | Troy Barfield | Device for holding fish |
US7898288B2 (en) | 2006-12-07 | 2011-03-01 | Integrated Device Technology, Inc. | Input termination for delay locked loop feedback with impedance matching |
US7955326B2 (en) | 2006-12-29 | 2011-06-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Pressure-sensitive conductive composite electrode and method for ablation |
US7900805B2 (en) | 2007-01-10 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Surgical instrument with enhanced battery performance |
US8529565B2 (en) | 2007-01-15 | 2013-09-10 | Olympus Medical Systems Corp. | Ultrasonic operating apparatus |
US20080171938A1 (en) | 2007-01-15 | 2008-07-17 | Shinya Masuda | Ultrasonic operating apparatus |
US7655004B2 (en) | 2007-02-15 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
USD649249S1 (en) | 2007-02-15 | 2011-11-22 | Tyco Healthcare Group Lp | End effectors of an elongated dissecting and dividing instrument |
USD575395S1 (en) | 2007-02-15 | 2008-08-19 | Tyco Healthcare Group Lp | Hemostat style elongated dissecting and dividing instrument |
US20080215050A1 (en) | 2007-03-02 | 2008-09-04 | Ethicon Endo-Surgery, Inc. | Tissue engaging hemostasis device |
US8690864B2 (en) | 2007-03-09 | 2014-04-08 | Covidien Lp | System and method for controlling tissue treatment |
US7422136B1 (en) | 2007-03-15 | 2008-09-09 | Tyco Healthcare Group Lp | Powered surgical stapling device |
US20080234672A1 (en) | 2007-03-20 | 2008-09-25 | Tyco Healthcare Goup Lp | Non-stick surface coated electrodes and method for manufacturing same |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US8377044B2 (en) | 2007-03-30 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Detachable end effectors |
US9421031B2 (en) | 2007-03-30 | 2016-08-23 | Lee Morgan | Scalpel blade holder |
US20080249523A1 (en) | 2007-04-03 | 2008-10-09 | Tyco Healthcare Group Lp | Controller for flexible tissue ablation procedures |
US8267935B2 (en) | 2007-04-04 | 2012-09-18 | Tyco Healthcare Group Lp | Electrosurgical instrument reducing current densities at an insulator conductor junction |
US8215182B2 (en) | 2007-04-26 | 2012-07-10 | Tyco Healthcare Group Lp | Apparatus and method for measuring pressure between jaw members |
US8777941B2 (en) | 2007-05-10 | 2014-07-15 | Covidien Lp | Adjustable impedance electrosurgical electrodes |
US8388612B2 (en) | 2007-05-11 | 2013-03-05 | Covidien Lp | Temperature monitoring return electrode |
JP2010527704A (en) | 2007-05-22 | 2010-08-19 | デイビッド エー. シェクター | Apparatus for tissue attachment / strengthening, apparatus for tissue strengthening, method for attaching and strengthening tissue, and method for strengthening tissue |
JP2009006128A (en) | 2007-05-25 | 2009-01-15 | Kazuya Akaboshi | High-frequency treatment instrument |
US8157145B2 (en) | 2007-05-31 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with electrical feedback |
US20080296346A1 (en) | 2007-05-31 | 2008-12-04 | Shelton Iv Frederick E | Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms |
US8089417B2 (en) * | 2007-06-01 | 2012-01-03 | The Royal Institution For The Advancement Of Learning/Mcgill University | Microwave scanning system and miniaturized microwave antenna |
US7905380B2 (en) | 2007-06-04 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a multiple rate directional switching mechanism |
US7832408B2 (en) | 2007-06-04 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a directional switching mechanism |
USD575401S1 (en) | 2007-06-12 | 2008-08-19 | Tyco Healthcare Group Lp | Vessel sealer |
DE202007009317U1 (en) | 2007-06-26 | 2007-08-30 | Aesculap Ag & Co. Kg | Surgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit |
DE202007009318U1 (en) | 2007-06-26 | 2007-08-30 | Aesculap Ag & Co. Kg | Surgical instrument |
AU2008271014B2 (en) | 2007-06-29 | 2014-03-20 | Covidien Lp | Method and system for monitoring tissue during an electrosurgical procedure |
DE202007009165U1 (en) | 2007-06-29 | 2007-08-30 | Kls Martin Gmbh + Co. Kg | Surgical instrument e.g. tube shaft, for use in e.g. high frequency coagulation instrument, has separator inserted through opening such that largest extension of opening transverse to moving direction corresponds to dimension of separator |
US20090024126A1 (en) * | 2007-07-19 | 2009-01-22 | Ryan Artale | Tissue fusion device |
US8298243B2 (en) | 2007-07-30 | 2012-10-30 | Tyco Healthcare Group Lp | Combination wire electrode and tube electrode polypectomy device |
US20090036881A1 (en) | 2007-07-30 | 2009-02-05 | Ryan Artale | Polyp removal jaws and method of use |
US20090054894A1 (en) | 2007-08-24 | 2009-02-26 | Chie Yachi | Surgical operating apparatus |
WO2009032623A2 (en) | 2007-08-31 | 2009-03-12 | Ethicon Endo-Surgery, Inc | Electrical albation surgical instruments |
US20090065565A1 (en) | 2007-09-12 | 2009-03-12 | Vascular Technologies, Inc. | System, method and apparatus for preventing reuse of medical instruments |
US20090076506A1 (en) | 2007-09-18 | 2009-03-19 | Surgrx, Inc. | Electrosurgical instrument and method |
US20090082766A1 (en) | 2007-09-20 | 2009-03-26 | Tyco Healthcare Group Lp | Tissue Sealer and End Effector Assembly and Method of Manufacturing Same |
US7877852B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing an end effector assembly for sealing tissue |
US7877853B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing end effector assembly for sealing tissue |
US7918230B2 (en) | 2007-09-21 | 2011-04-05 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US8267936B2 (en) | 2007-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Insulating mechanically-interfaced adhesive for electrosurgical forceps |
US8236025B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Silicone insulated electrosurgical forceps |
US8235993B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with exohinged structure |
US8241283B2 (en) | 2007-09-28 | 2012-08-14 | Tyco Healthcare Group Lp | Dual durometer insulating boot for electrosurgical forceps |
US8221416B2 (en) | 2007-09-28 | 2012-07-17 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with thermoplastic clevis |
US8251996B2 (en) | 2007-09-28 | 2012-08-28 | Tyco Healthcare Group Lp | Insulating sheath for electrosurgical forceps |
US20090088750A1 (en) | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Boot with Silicone Overmold for Electrosurgical Forceps |
US8235992B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot with mechanical reinforcement for electrosurgical forceps |
US20090088748A1 (en) | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Mesh-like Boot for Electrosurgical Forceps |
US20090088745A1 (en) | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Tapered Insulating Boot for Electrosurgical Forceps |
US9023043B2 (en) | 2007-09-28 | 2015-05-05 | Covidien Lp | Insulating mechanically-interfaced boot and jaws for electrosurgical forceps |
AU2008308606B2 (en) | 2007-10-05 | 2014-12-18 | Ethicon Endo-Surgery, Inc. | Ergonomic surgical instruments |
US8142425B2 (en) | 2007-10-30 | 2012-03-27 | Hemostatix Medical Techs, LLC | Hemostatic surgical blade, system and method of blade manufacture |
JP5364255B2 (en) | 2007-10-31 | 2013-12-11 | テルモ株式会社 | Medical manipulator |
DE202007016233U1 (en) | 2007-11-20 | 2008-01-31 | Aesculap Ag & Co. Kg | Surgical forceps |
US9050098B2 (en) | 2007-11-28 | 2015-06-09 | Covidien Ag | Cordless medical cauterization and cutting device |
US8377059B2 (en) | 2007-11-28 | 2013-02-19 | Covidien Ag | Cordless medical cauterization and cutting device |
US8758342B2 (en) | 2007-11-28 | 2014-06-24 | Covidien Ag | Cordless power-assisted medical cauterization and cutting device |
WO2009089344A1 (en) | 2008-01-08 | 2009-07-16 | Oncoscope, Inc. | Systems and methods for tissue examination, diagnostic, treatment, and/or monitoring |
US8192444B2 (en) | 2008-01-16 | 2012-06-05 | Tyco Healthcare Group Lp | Uterine sealer |
EP2676626B1 (en) | 2008-01-31 | 2019-11-20 | Covidien LP | Polyp removal device |
US8764748B2 (en) | 2008-02-06 | 2014-07-01 | Covidien Lp | End effector assembly for electrosurgical device and method for making the same |
US8382792B2 (en) | 2008-02-14 | 2013-02-26 | Covidien Lp | End effector assembly for electrosurgical device |
US20090206126A1 (en) | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | Buttress material with alignment and retention features for use with surgical end effectors |
US8623276B2 (en) | 2008-02-15 | 2014-01-07 | Covidien Lp | Method and system for sterilizing an electrosurgical instrument |
US9192427B2 (en) | 2008-03-11 | 2015-11-24 | Covidien Lp | Bipolar cutting end effector |
US20090248050A1 (en) | 2008-03-27 | 2009-10-01 | Yuji Hirai | Ultrasonic operating apparatus |
US8048074B2 (en) | 2008-03-28 | 2011-11-01 | Olympus Medical Systems Corp. | Surgical operating apparatus |
US20090248021A1 (en) | 2008-03-31 | 2009-10-01 | Tyco Healthcare Group Lp | End Effector Assembly for Electrosurgical Devices and System for Using the Same |
JP5711656B2 (en) | 2008-03-31 | 2015-05-07 | アプライド メディカル リソーシーズ コーポレイション | Electrosurgical system |
US20090254080A1 (en) | 2008-04-07 | 2009-10-08 | Satoshi Honda | Surgical operation apparatus |
US20090254081A1 (en) | 2008-04-08 | 2009-10-08 | Tyco Electronics Corporation | System and method for surgical jaw assembly |
DE102008018406B3 (en) | 2008-04-10 | 2009-07-23 | Bowa-Electronic Gmbh & Co. Kg | Electrosurgical device |
US20090299364A1 (en) | 2008-04-21 | 2009-12-03 | Medtronic, Inc. | Suction Force Ablation Device |
US8357158B2 (en) | 2008-04-22 | 2013-01-22 | Covidien Lp | Jaw closure detection system |
US8628545B2 (en) | 2008-06-13 | 2014-01-14 | Covidien Lp | Endoscopic stitching devices |
US8469956B2 (en) * | 2008-07-21 | 2013-06-25 | Covidien Lp | Variable resistor jaw |
US8454599B2 (en) | 2008-08-13 | 2013-06-04 | Olympus Medical Systems Corp. | Treatment apparatus and electro-surgical device |
US8162973B2 (en) | 2008-08-15 | 2012-04-24 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US20100042143A1 (en) | 2008-08-15 | 2010-02-18 | Cunningham James S | Method of Transferring Pressure in an Articulating Surgical Instrument |
US8257387B2 (en) | 2008-08-15 | 2012-09-04 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US9603652B2 (en) | 2008-08-21 | 2017-03-28 | Covidien Lp | Electrosurgical instrument including a sensor |
US8317787B2 (en) | 2008-08-28 | 2012-11-27 | Covidien Lp | Tissue fusion jaw angle improvement |
US8784417B2 (en) | 2008-08-28 | 2014-07-22 | Covidien Lp | Tissue fusion jaw angle improvement |
US20100057081A1 (en) | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Tissue Fusion Jaw Angle Improvement |
US8795274B2 (en) | 2008-08-28 | 2014-08-05 | Covidien Lp | Tissue fusion jaw angle improvement |
US8303581B2 (en) | 2008-09-02 | 2012-11-06 | Covidien Lp | Catheter with remotely extendible instruments |
US20100063500A1 (en) | 2008-09-05 | 2010-03-11 | Tyco Healthcare Group Lp | Apparatus, System and Method for Performing an Electrosurgical Procedure |
US8303582B2 (en) | 2008-09-15 | 2012-11-06 | Tyco Healthcare Group Lp | Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique |
US20100069953A1 (en) | 2008-09-16 | 2010-03-18 | Tyco Healthcare Group Lp | Method of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument |
US20100069903A1 (en) | 2008-09-18 | 2010-03-18 | Tyco Healthcare Group Lp | Vessel Sealing Instrument With Cutting Mechanism |
US20100076430A1 (en) | 2008-09-24 | 2010-03-25 | Tyco Healthcare Group Lp | Electrosurgical Instrument Having a Thumb Lever and Related System and Method of Use |
US9375254B2 (en) | 2008-09-25 | 2016-06-28 | Covidien Lp | Seal and separate algorithm |
US8968314B2 (en) | 2008-09-25 | 2015-03-03 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8535312B2 (en) | 2008-09-25 | 2013-09-17 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8142473B2 (en) | 2008-10-03 | 2012-03-27 | Tyco Healthcare Group Lp | Method of transferring rotational motion in an articulating surgical instrument |
US8469957B2 (en) | 2008-10-07 | 2013-06-25 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8016827B2 (en) | 2008-10-09 | 2011-09-13 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8636761B2 (en) | 2008-10-09 | 2014-01-28 | Covidien Lp | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
US8852179B2 (en) | 2008-10-10 | 2014-10-07 | Covidien Lp | Apparatus, system and method for monitoring tissue during an electrosurgical procedure |
US8486107B2 (en) | 2008-10-20 | 2013-07-16 | Covidien Lp | Method of sealing tissue using radiofrequency energy |
CN201299462Y (en) | 2008-10-28 | 2009-09-02 | 宋洪海 | Multi-layer metal composite pot |
US8197479B2 (en) | 2008-12-10 | 2012-06-12 | Tyco Healthcare Group Lp | Vessel sealer and divider |
US20100168741A1 (en) | 2008-12-29 | 2010-07-01 | Hideo Sanai | Surgical operation apparatus |
US8114122B2 (en) | 2009-01-13 | 2012-02-14 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8632539B2 (en) | 2009-01-14 | 2014-01-21 | Covidien Lp | Vessel sealer and divider |
US8282634B2 (en) | 2009-01-14 | 2012-10-09 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8632564B2 (en) | 2009-01-14 | 2014-01-21 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US20100198248A1 (en) * | 2009-02-02 | 2010-08-05 | Ethicon Endo-Surgery, Inc. | Surgical dissector |
US8858547B2 (en) | 2009-03-05 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
US20100228250A1 (en) | 2009-03-05 | 2010-09-09 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US20100249769A1 (en) | 2009-03-24 | 2010-09-30 | Tyco Healthcare Group Lp | Apparatus for Tissue Sealing |
US8226650B2 (en) | 2009-03-26 | 2012-07-24 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
US8251994B2 (en) | 2009-04-07 | 2012-08-28 | Tyco Healthcare Group Lp | Vessel sealer and divider with blade deployment alarm |
US20100274160A1 (en) | 2009-04-22 | 2010-10-28 | Chie Yachi | Switching structure and surgical equipment |
US8277446B2 (en) | 2009-04-24 | 2012-10-02 | Tyco Healthcare Group Lp | Electrosurgical tissue sealer and cutter |
USD621503S1 (en) | 2009-04-28 | 2010-08-10 | Tyco Healthcare Group Ip | Pistol grip laparoscopic sealing and dissection device |
US9192430B2 (en) | 2009-05-01 | 2015-11-24 | Covidien Lp | Electrosurgical instrument with time limit circuit |
US8187273B2 (en) | 2009-05-07 | 2012-05-29 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
USD617902S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector tip with undercut top jaw |
USD618798S1 (en) | 2009-05-13 | 2010-06-29 | Tyco Healthcare Group Lp | Vessel sealing jaw seal plate |
USD617900S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector tip with undercut bottom jaw |
USD617901S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector chamfered tip |
USD649643S1 (en) | 2009-05-13 | 2011-11-29 | Tyco Healthcare Group Lp | End effector with a rounded tip |
USD617903S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector pointed tip |
US8292067B2 (en) | 2009-06-09 | 2012-10-23 | Tyco Healthcare Group Lp | Knotless endostitch package |
US20100331742A1 (en) | 2009-06-26 | 2010-12-30 | Shinya Masuda | Surgical operating apparatus |
US8246618B2 (en) * | 2009-07-08 | 2012-08-21 | Tyco Healthcare Group Lp | Electrosurgical jaws with offset knife |
US8343150B2 (en) * | 2009-07-15 | 2013-01-01 | Covidien Lp | Mechanical cycling of seal pressure coupled with energy for tissue fusion |
USD630324S1 (en) * | 2009-08-05 | 2011-01-04 | Tyco Healthcare Group Lp | Dissecting surgical jaw |
US8968358B2 (en) | 2009-08-05 | 2015-03-03 | Covidien Lp | Blunt tissue dissection surgical instrument jaw designs |
DE102009037614A1 (en) | 2009-08-14 | 2011-02-24 | Erbe Elektromedizin Gmbh | Electrosurgical instrument |
US8679115B2 (en) | 2009-08-19 | 2014-03-25 | Covidien Lp | Electrical cutting and vessel sealing jaw members |
US8287536B2 (en) | 2009-08-26 | 2012-10-16 | Tyco Healthcare Group Lp | Cutting assembly for surgical instruments |
US8430876B2 (en) | 2009-08-27 | 2013-04-30 | Tyco Healthcare Group Lp | Vessel sealer and divider with knife lockout |
US20110054471A1 (en) | 2009-08-27 | 2011-03-03 | Tyco Healthcare Group Lp | Apparatus for Performing an Electrosurgical Procedure |
US20110054468A1 (en) | 2009-09-01 | 2011-03-03 | Tyco Healthcare Group Lp | Apparatus for Performing an Electrosurgical Procedure |
US8357159B2 (en) | 2009-09-03 | 2013-01-22 | Covidien Lp | Open vessel sealing instrument with pivot assembly |
US8439911B2 (en) | 2009-09-09 | 2013-05-14 | Coviden Lp | Compact jaw including through bore pivot pin |
USD627462S1 (en) | 2009-09-09 | 2010-11-16 | Tyco Healthcare Group Lp | Knife channel of a jaw device |
US8568412B2 (en) | 2009-09-09 | 2013-10-29 | Covidien Lp | Apparatus and method of controlling cutting blade travel through the use of etched features |
US8162965B2 (en) | 2009-09-09 | 2012-04-24 | Tyco Healthcare Group Lp | Low profile cutting assembly with a return spring |
US20110060335A1 (en) | 2009-09-10 | 2011-03-10 | Tyco Healthcare Group Lp | Apparatus for Tissue Fusion and Method of Use |
US8207651B2 (en) | 2009-09-16 | 2012-06-26 | Tyco Healthcare Group Lp | Low energy or minimum disturbance method for measuring frequency response functions of ultrasonic surgical devices in determining optimum operating point |
US8133254B2 (en) | 2009-09-18 | 2012-03-13 | Tyco Healthcare Group Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US20110071523A1 (en) | 2009-09-23 | 2011-03-24 | Tyco Healthcare Group Lp | Vessel Sealer with Self-Aligning Jaws |
US8266783B2 (en) | 2009-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Method and system for manufacturing electrosurgical seal plates |
US8112871B2 (en) | 2009-09-28 | 2012-02-14 | Tyco Healthcare Group Lp | Method for manufacturing electrosurgical seal plates |
US8568398B2 (en) | 2009-09-29 | 2013-10-29 | Covidien Lp | Flow rate monitor for fluid cooled microwave ablation probe |
US9024237B2 (en) | 2009-09-29 | 2015-05-05 | Covidien Lp | Material fusing apparatus, system and method of use |
US9820806B2 (en) | 2009-09-29 | 2017-11-21 | Covidien Lp | Switch assembly for electrosurgical instrument |
US8323310B2 (en) | 2009-09-29 | 2012-12-04 | Covidien Lp | Vessel sealing jaw with offset sealing surface |
US8292886B2 (en) | 2009-10-06 | 2012-10-23 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8512371B2 (en) | 2009-10-06 | 2013-08-20 | Covidien Lp | Jaw, blade and gap manufacturing for surgical instruments with small jaws |
US8343151B2 (en) | 2009-10-09 | 2013-01-01 | Covidien Lp | Vessel sealer and divider with captured cutting element |
US8388647B2 (en) | 2009-10-28 | 2013-03-05 | Covidien Lp | Apparatus for tissue sealing |
US9060798B2 (en) | 2009-11-16 | 2015-06-23 | Covidien Lp | Surgical forceps capable of adjusting sealing pressure based on vessel size |
USD628290S1 (en) | 2009-11-30 | 2010-11-30 | Tyco Healthcare Group Lp | Surgical instrument handle |
USD628289S1 (en) | 2009-11-30 | 2010-11-30 | Tyco Healthcare Group Lp | Surgical instrument handle |
JP5579427B2 (en) | 2009-12-14 | 2014-08-27 | 中国電力株式会社 | Indirect hot wire work tool support device |
US8480671B2 (en) | 2010-01-22 | 2013-07-09 | Covidien Lp | Compact jaw including split pivot pin |
US8858553B2 (en) | 2010-01-29 | 2014-10-14 | Covidien Lp | Dielectric jaw insert for electrosurgical end effector |
US8556929B2 (en) | 2010-01-29 | 2013-10-15 | Covidien Lp | Surgical forceps capable of adjusting seal plate width based on vessel size |
US9585709B2 (en) | 2010-02-05 | 2017-03-07 | Covidien Lp | Square wave for vessel sealing |
US8808288B2 (en) | 2010-03-08 | 2014-08-19 | Covidien Lp | Surgical forceps including belt blade reverser mechanism |
US8740898B2 (en) | 2010-03-22 | 2014-06-03 | Covidien Lp | Surgical forceps |
US8425511B2 (en) | 2010-03-26 | 2013-04-23 | Covidien Lp | Clamp and scissor forceps |
US8961504B2 (en) | 2010-04-09 | 2015-02-24 | Covidien Lp | Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue |
US8597295B2 (en) | 2010-04-12 | 2013-12-03 | Covidien Lp | Surgical instrument with non-contact electrical coupling |
US8623018B2 (en) | 2010-04-13 | 2014-01-07 | Covidien Lp | Sealing plate temperature control |
US8469716B2 (en) | 2010-04-19 | 2013-06-25 | Covidien Lp | Laparoscopic surgery simulator |
US20110257681A1 (en) | 2010-04-20 | 2011-10-20 | Tyco Healthcare Group Lp | Surgical Forceps Including Geared Blade Reverser Mechanism |
US20110257680A1 (en) | 2010-04-20 | 2011-10-20 | Tyco Healthcare Group Lp | Surgical Forceps Including Pulley Blade Reverser Mechanism |
US8568397B2 (en) | 2010-04-28 | 2013-10-29 | Covidien Lp | Induction sealing |
US8439913B2 (en) | 2010-04-29 | 2013-05-14 | Covidien Lp | Pressure sensing sealing plate |
US20110270251A1 (en) | 2010-04-29 | 2011-11-03 | Tyco Healthcare Group Lp | Insulated Sealing Plate |
US20110270245A1 (en) | 2010-04-29 | 2011-11-03 | Tyco Healthcare Group Lp | Sealing Plate Having Depressions with Ceramic Insulation |
US10265118B2 (en) | 2010-05-04 | 2019-04-23 | Covidien Lp | Pinion blade drive mechanism for a laparoscopic vessel dissector |
US8968359B2 (en) | 2010-05-04 | 2015-03-03 | Covidien Lp | Surgical forceps |
US11278345B2 (en) | 2010-05-25 | 2022-03-22 | Covidien Lp | Accurate jaw closure force in a catheter based instrument |
US8672939B2 (en) | 2010-06-01 | 2014-03-18 | Covidien Lp | Surgical device for performing an electrosurgical procedure |
US8409246B2 (en) | 2010-06-02 | 2013-04-02 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8430877B2 (en) | 2010-06-02 | 2013-04-30 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8409247B2 (en) | 2010-06-02 | 2013-04-02 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8491625B2 (en) | 2010-06-02 | 2013-07-23 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8469992B2 (en) | 2010-06-02 | 2013-06-25 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8540749B2 (en) | 2010-06-02 | 2013-09-24 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8491624B2 (en) | 2010-06-02 | 2013-07-23 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8469991B2 (en) | 2010-06-02 | 2013-06-25 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8585736B2 (en) | 2010-06-02 | 2013-11-19 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8491626B2 (en) | 2010-06-02 | 2013-07-23 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8647343B2 (en) | 2010-06-23 | 2014-02-11 | Covidien Lp | Surgical forceps for sealing and dividing tissue |
US9028495B2 (en) | 2010-06-23 | 2015-05-12 | Covidien Lp | Surgical instrument with a separable coaxial joint |
US8512336B2 (en) | 2010-07-08 | 2013-08-20 | Covidien Lp | Optimal geometries for creating current densities in a bipolar electrode configuration |
US8795269B2 (en) | 2010-07-26 | 2014-08-05 | Covidien Lp | Rotary tissue sealer and divider |
US8641712B2 (en) | 2010-07-28 | 2014-02-04 | Covidien Lp | Local optimization of electrode current densities |
US8888775B2 (en) | 2010-08-10 | 2014-11-18 | Covidien Lp | Surgical forceps including shape memory cutter |
US8298233B2 (en) | 2010-08-20 | 2012-10-30 | Tyco Healthcare Group Lp | Surgical instrument configured for use with interchangeable hand grips |
US8652135B2 (en) | 2010-08-23 | 2014-02-18 | Covidien Lp | Surgical forceps |
US8814864B2 (en) | 2010-08-23 | 2014-08-26 | Covidien Lp | Method of manufacturing tissue sealing electrodes |
US8734445B2 (en) | 2010-09-07 | 2014-05-27 | Covidien Lp | Electrosurgical instrument with sealing and dissection modes and related methods of use |
US8968357B2 (en) | 2010-09-07 | 2015-03-03 | Covidien Lp | Collet based locking mechanism |
US8663222B2 (en) | 2010-09-07 | 2014-03-04 | Covidien Lp | Dynamic and static bipolar electrical sealing and cutting device |
US20120059372A1 (en) | 2010-09-07 | 2012-03-08 | Johnson Kristin D | Electrosurgical Instrument |
US20120059409A1 (en) | 2010-09-08 | 2012-03-08 | Tyco Healthcare Group Lp | Retractable Ratchet Mechanism for Surgical Instruments |
US9498278B2 (en) | 2010-09-08 | 2016-11-22 | Covidien Lp | Asymmetrical electrodes for bipolar vessel sealing |
US9005200B2 (en) | 2010-09-30 | 2015-04-14 | Covidien Lp | Vessel sealing instrument |
US9017372B2 (en) | 2010-10-01 | 2015-04-28 | Covidien Lp | Blade deployment mechanisms for surgical forceps |
US9345534B2 (en) | 2010-10-04 | 2016-05-24 | Covidien Lp | Vessel sealing instrument |
US9655672B2 (en) | 2010-10-04 | 2017-05-23 | Covidien Lp | Vessel sealing instrument |
US8906018B2 (en) | 2010-10-18 | 2014-12-09 | Covidien Lp | Surgical forceps |
US8840639B2 (en) | 2010-10-29 | 2014-09-23 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US20120123404A1 (en) | 2010-11-16 | 2012-05-17 | Tyco Healthcare Group Lp | Fingertip Electrosurgical Instruments for Use in Hand-Assisted Surgery and Systems Including Same |
US9028484B2 (en) | 2010-11-16 | 2015-05-12 | Covidien Lp | Fingertip electrosurgical instruments for use in hand-assisted surgery and systems including same |
US8932293B2 (en) | 2010-11-17 | 2015-01-13 | Covidien Lp | Method and apparatus for vascular tissue sealing with reduced energy consumption |
US8685021B2 (en) | 2010-11-17 | 2014-04-01 | Covidien Lp | Method and apparatus for vascular tissue sealing with active cooling of jaws at the end of the sealing cycle |
US9333002B2 (en) | 2010-11-19 | 2016-05-10 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8920421B2 (en) | 2010-11-29 | 2014-12-30 | Covidien Lp | System and method for tissue sealing |
US8784418B2 (en) | 2010-11-29 | 2014-07-22 | Covidien Lp | Endoscopic surgical forceps |
US20120172868A1 (en) | 2010-12-30 | 2012-07-05 | Tyco Healthcare Group Lp | Apparatus for Performing an Electrosurgical Procedure |
US8936614B2 (en) | 2010-12-30 | 2015-01-20 | Covidien Lp | Combined unilateral/bilateral jaws on a surgical instrument |
US8945175B2 (en) | 2011-01-14 | 2015-02-03 | Covidien Lp | Latch mechanism for surgical instruments |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US10045811B2 (en) | 2011-02-16 | 2018-08-14 | Covidien Lp | Surgical instrument with dispensable components |
US8968316B2 (en) | 2011-02-18 | 2015-03-03 | Covidien Lp | Apparatus with multiple channel selective cutting |
USD661394S1 (en) | 2011-02-24 | 2012-06-05 | Tyco Healthcare Group Lp | Device jaw |
-
2004
- 2004-11-15 US US10/988,950 patent/US7367976B2/en active Active
- 2004-11-16 CA CA2487579A patent/CA2487579C/en not_active Expired - Fee Related
- 2004-11-17 DE DE602004024947T patent/DE602004024947D1/en not_active Expired - Lifetime
- 2004-11-17 JP JP2004363667A patent/JP5202788B2/en not_active Expired - Fee Related
- 2004-11-17 EP EP04027314.6A patent/EP1530952B2/en not_active Expired - Lifetime
- 2004-11-17 ES ES04027314.6T patent/ES2335759T5/en not_active Expired - Lifetime
- 2004-11-17 AU AU2004231188A patent/AU2004231188B2/en not_active Ceased
-
2007
- 2007-09-26 US US11/904,123 patent/US20080243120A1/en not_active Abandoned
-
2010
- 2010-08-23 AU AU2010212496A patent/AU2010212496B2/en not_active Ceased
- 2010-09-06 JP JP2010198950A patent/JP4988909B2/en not_active Expired - Fee Related
- 2010-09-07 US US12/876,662 patent/US8257352B2/en not_active Expired - Fee Related
-
2011
- 2011-06-07 JP JP2011127560A patent/JP5336551B2/en not_active Expired - Fee Related
-
2012
- 2012-08-31 US US13/600,447 patent/US8597296B2/en not_active Expired - Lifetime
-
2013
- 2013-11-14 US US14/080,564 patent/US10441350B2/en not_active Expired - Fee Related
Patent Citations (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1813902A (en) * | 1928-01-18 | 1931-07-14 | Liebel Flarsheim Co | Electrosurgical apparatus |
US2279753A (en) * | 1940-03-25 | 1942-04-14 | Knapp Monarch Co | Switch |
US3720896A (en) * | 1970-06-23 | 1973-03-13 | Siemens Ag | Handle for high frequency electrodes |
US3863339A (en) * | 1972-05-26 | 1975-02-04 | Stanley Tools Ltd | Retractable blade knife |
US4418692A (en) * | 1978-11-17 | 1983-12-06 | Guay Jean Louis | Device for treating living tissue with an electric current |
US4233734A (en) * | 1979-01-22 | 1980-11-18 | The Stanley Works | Retractable blade knife |
US4375218A (en) * | 1981-05-26 | 1983-03-01 | Digeronimo Ernest M | Forceps, scalpel and blood coagulating surgical instrument |
US4655215A (en) * | 1985-03-15 | 1987-04-07 | Harold Pike | Hand control for electrosurgical electrodes |
US4754892A (en) * | 1986-01-22 | 1988-07-05 | Retief Charles T | Closure for a container |
US4846171A (en) * | 1986-10-06 | 1989-07-11 | Gv Medical, Inc. | Laser catheter adjustable control apparatus |
US5035695A (en) * | 1987-11-30 | 1991-07-30 | Jaroy Weber, Jr. | Extendable electrocautery surgery apparatus and method |
US5984939A (en) * | 1989-12-05 | 1999-11-16 | Yoon; Inbae | Multifunctional grasping instrument with cutting member and operating channel for use in endoscopic and non-endoscopic procedures |
US5893863A (en) * | 1989-12-05 | 1999-04-13 | Yoon; Inbae | Surgical instrument with jaws and movable internal hook member for use thereof |
US5314445A (en) * | 1991-02-15 | 1994-05-24 | Heidmueller Elke | Surgical instrument |
US6041679A (en) * | 1991-04-04 | 2000-03-28 | Symbiosis Corporation | Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery |
US5258001A (en) * | 1991-09-05 | 1993-11-02 | Baylor College Of Medicine | Retractable scalpel with blade-activated lock |
US5326806A (en) * | 1991-12-26 | 1994-07-05 | General Electric Company | Reinforced flame-retardant polyester resin compositions |
US5250063A (en) * | 1992-01-24 | 1993-10-05 | Leonard Bloom | Surgical scalpel with retractable guard |
US5336220A (en) * | 1992-10-09 | 1994-08-09 | Symbiosis Corporation | Tubing for endoscopic electrosurgical suction-irrigation instrument |
US5344424A (en) * | 1993-03-12 | 1994-09-06 | Roberts Philip L | Selectively retractable, disposable surgical knife |
US5558671A (en) * | 1993-07-22 | 1996-09-24 | Yates; David C. | Impedance feedback monitor for electrosurgical instrument |
US6024741A (en) * | 1993-07-22 | 2000-02-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
US5876401A (en) * | 1993-07-22 | 1999-03-02 | Ethicon Endo Surgery, Inc. | Electrosurgical hemostatic device with adaptive electrodes |
US5376089A (en) * | 1993-08-02 | 1994-12-27 | Conmed Corporation | Electrosurgical instrument |
US5496312A (en) * | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US5620453A (en) * | 1993-11-05 | 1997-04-15 | Nallakrishnan; Ravi | Surgical knife with retractable blade and depth of cut control |
US5472442A (en) * | 1994-03-23 | 1995-12-05 | Valleylab Inc. | Moveable switchable electrosurgical handpiece |
US5425690A (en) * | 1994-04-20 | 1995-06-20 | Chang; Sreter | Wrist exerciser |
US5431672A (en) * | 1994-05-09 | 1995-07-11 | Becton, Dickinson And Company | Surgical scalpel with retractable blade |
US5935126A (en) * | 1994-05-10 | 1999-08-10 | Riza; Erol D. | Surgical instrument with jaws having electrical contacts |
US6004335A (en) * | 1994-08-02 | 1999-12-21 | Ethicon Endo-Surgery, Inc. | Ultrasonic hemostatic and cutting instrument |
US5893875A (en) * | 1994-10-07 | 1999-04-13 | Tnco, Inc. | Surgical instrument with replaceable jaw assembly |
US5851214A (en) * | 1994-10-07 | 1998-12-22 | United States Surgical Corporation | Surgical instrument useful for endoscopic procedures |
US5575805A (en) * | 1994-10-07 | 1996-11-19 | Li Medical Technologies, Inc. | Variable tip-pressure surgical grasper |
US5921984A (en) * | 1994-11-30 | 1999-07-13 | Conmed Corporation | Bipolar electrosurgical instrument with coagulation feature |
US5624452A (en) * | 1995-04-07 | 1997-04-29 | Ethicon Endo-Surgery, Inc. | Hemostatic surgical cutting or stapling instrument |
US20040024399A1 (en) * | 1995-04-13 | 2004-02-05 | Arthrocare Corporation | Method for repairing damaged intervertebral discs |
US5957923A (en) * | 1995-04-20 | 1999-09-28 | Symbiosis Corporation | Loop electrodes for electrocautery probes for use with a resectoscope |
US5638003A (en) * | 1995-05-23 | 1997-06-10 | Underwriters Laboratories, Inc. | Method and apparatus for testing surface breakdown of dielectric materials caused by electrical tracking |
US20020120259A1 (en) * | 1995-06-07 | 2002-08-29 | Lettice John J. | Methods for targeted electrosurgery on contained herniated discs |
US6039733A (en) * | 1995-09-19 | 2000-03-21 | Valleylab, Inc. | Method of vascular tissue sealing pressure control |
US6059782A (en) * | 1995-11-20 | 2000-05-09 | Storz Endoskop Gmbh | Bipolar high-frequency surgical instrument |
US5860976A (en) * | 1996-01-30 | 1999-01-19 | Utah Medical Products, Inc. | Electrosurgical cutting device |
US5944718A (en) * | 1996-03-12 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument end effector |
US5893877A (en) * | 1996-04-10 | 1999-04-13 | Synergetics, Inc. | Surgical instrument with offset handle |
US6053933A (en) * | 1996-08-10 | 2000-04-25 | Deutsches Zentrum Fur Luft- Und Raumfahrt E.V. | Gripping unit for application in minimally invasive surgery |
US5954720A (en) * | 1996-10-28 | 1999-09-21 | Endoscopic Concepts, Inc. | Bipolar electrosurgical end effectors |
US5891142A (en) * | 1996-12-06 | 1999-04-06 | Eggers & Associates, Inc. | Electrosurgical forceps |
US5951549A (en) * | 1996-12-20 | 1999-09-14 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US6113596A (en) * | 1996-12-30 | 2000-09-05 | Enable Medical Corporation | Combination monopolar-bipolar electrosurgical instrument system, instrument and cable |
US6033399A (en) * | 1997-04-09 | 2000-03-07 | Valleylab, Inc. | Electrosurgical generator with adaptive power control |
US5925043A (en) * | 1997-04-30 | 1999-07-20 | Medquest Products, Inc. | Electrosurgical electrode with a conductive, non-stick coating |
US5961514A (en) * | 1997-05-14 | 1999-10-05 | Ethicon Endo-Surger, Inc. | Cordless electrosurgical instrument |
US5911719A (en) * | 1997-06-05 | 1999-06-15 | Eggers; Philip E. | Resistively heating cutting and coagulating surgical instrument |
US6096037A (en) * | 1997-07-29 | 2000-08-01 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
US6024744A (en) * | 1997-08-27 | 2000-02-15 | Ethicon, Inc. | Combined bipolar scissor and grasper |
US6083223A (en) * | 1997-08-28 | 2000-07-04 | Baker; James A. | Methods and apparatus for welding blood vessels |
US5891141A (en) * | 1997-09-02 | 1999-04-06 | Everest Medical Corporation | Bipolar electrosurgical instrument for cutting and sealing tubular tissue structures |
US5913874A (en) * | 1997-09-25 | 1999-06-22 | Cabot Technology Corporation | Cartridge for a surgical instrument |
US5908420A (en) * | 1997-10-03 | 1999-06-01 | Everest Medical Corporation | Surgical scissors with bipolar distal electrodes |
US5976132A (en) * | 1997-10-10 | 1999-11-02 | Morris; James R. | Bipolar surgical shears |
US6050996A (en) * | 1997-11-12 | 2000-04-18 | Sherwood Services Ag | Bipolar electrosurgical instrument with replaceable electrodes |
US5989277A (en) * | 1998-01-30 | 1999-11-23 | Lemaire, Iii; Norman J. | Surgical instrument with offset jaw actuator |
US5902301A (en) * | 1998-02-23 | 1999-05-11 | Everest Medical Corporation | Cutting/coagulating forceps with interleaved electrodes |
US6010516A (en) * | 1998-03-20 | 2000-01-04 | Hulka; Jaroslav F. | Bipolar coaptation clamps |
US6030384A (en) * | 1998-05-01 | 2000-02-29 | Nezhat; Camran | Bipolar surgical instruments having focused electrical fields |
US6053914A (en) * | 1998-06-29 | 2000-04-25 | Ethicon, Inc. | Pivot screw for bipolar surgical instruments |
US5906630A (en) * | 1998-06-30 | 1999-05-25 | Boston Scientific Limited | Eccentric surgical forceps |
US6086586A (en) * | 1998-09-14 | 2000-07-11 | Enable Medical Corporation | Bipolar tissue grasping apparatus and tissue welding method |
US6090107A (en) * | 1998-10-20 | 2000-07-18 | Megadyne Medical Products, Inc. | Resposable electrosurgical instrument |
US6309404B1 (en) * | 1999-10-19 | 2001-10-30 | Jacek Krzyzanowski | Flexible biopsy jaw assembly |
Cited By (181)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8211105B2 (en) | 1997-11-12 | 2012-07-03 | Covidien Ag | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US7963965B2 (en) | 1997-11-12 | 2011-06-21 | Covidien Ag | Bipolar electrosurgical instrument for sealing vessels |
US8298228B2 (en) | 1997-11-12 | 2012-10-30 | Coviden Ag | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US7828798B2 (en) | 1997-11-14 | 2010-11-09 | Covidien Ag | Laparoscopic bipolar electrosurgical instrument |
US9375271B2 (en) | 1998-10-23 | 2016-06-28 | Covidien Ag | Vessel sealing system |
US7947041B2 (en) | 1998-10-23 | 2011-05-24 | Covidien Ag | Vessel sealing instrument |
US9463067B2 (en) | 1998-10-23 | 2016-10-11 | Covidien Ag | Vessel sealing system |
US9375270B2 (en) | 1998-10-23 | 2016-06-28 | Covidien Ag | Vessel sealing system |
US8591506B2 (en) | 1998-10-23 | 2013-11-26 | Covidien Ag | Vessel sealing system |
US7896878B2 (en) | 1998-10-23 | 2011-03-01 | Coviden Ag | Vessel sealing instrument |
US7887536B2 (en) | 1998-10-23 | 2011-02-15 | Covidien Ag | Vessel sealing instrument |
US9107672B2 (en) | 1998-10-23 | 2015-08-18 | Covidien Ag | Vessel sealing forceps with disposable electrodes |
US8361071B2 (en) | 1999-10-22 | 2013-01-29 | Covidien Ag | Vessel sealing forceps with disposable electrodes |
US10265121B2 (en) | 2001-04-06 | 2019-04-23 | Covidien Ag | Vessel sealer and divider |
US10251696B2 (en) | 2001-04-06 | 2019-04-09 | Covidien Ag | Vessel sealer and divider with stop members |
US10687887B2 (en) | 2001-04-06 | 2020-06-23 | Covidien Ag | Vessel sealer and divider |
US8241284B2 (en) | 2001-04-06 | 2012-08-14 | Covidien Ag | Vessel sealer and divider with non-conductive stop members |
US8162940B2 (en) | 2002-10-04 | 2012-04-24 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US10537384B2 (en) | 2002-10-04 | 2020-01-21 | Covidien Lp | Vessel sealing instrument with electrical cutting mechanism |
US10987160B2 (en) | 2002-10-04 | 2021-04-27 | Covidien Ag | Vessel sealing instrument with cutting mechanism |
US8192433B2 (en) | 2002-10-04 | 2012-06-05 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US8740901B2 (en) | 2002-10-04 | 2014-06-03 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US8333765B2 (en) | 2002-10-04 | 2012-12-18 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
US8551091B2 (en) | 2002-10-04 | 2013-10-08 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US9585716B2 (en) | 2002-10-04 | 2017-03-07 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US8945125B2 (en) | 2002-11-14 | 2015-02-03 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US7799026B2 (en) | 2002-11-14 | 2010-09-21 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US7776036B2 (en) | 2003-03-13 | 2010-08-17 | Covidien Ag | Bipolar concentric electrode assembly for soft tissue fusion |
US9149323B2 (en) | 2003-05-01 | 2015-10-06 | Covidien Ag | Method of fusing biomaterials with radiofrequency energy |
US8679114B2 (en) | 2003-05-01 | 2014-03-25 | Covidien Ag | Incorporating rapid cooling in tissue fusion heating processes |
US7708735B2 (en) | 2003-05-01 | 2010-05-04 | Covidien Ag | Incorporating rapid cooling in tissue fusion heating processes |
US8496656B2 (en) | 2003-05-15 | 2013-07-30 | Covidien Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
USRE47375E1 (en) | 2003-05-15 | 2019-05-07 | Coviden Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
US9492225B2 (en) | 2003-06-13 | 2016-11-15 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US7857812B2 (en) | 2003-06-13 | 2010-12-28 | Covidien Ag | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
US10918435B2 (en) | 2003-06-13 | 2021-02-16 | Covidien Ag | Vessel sealer and divider |
US8647341B2 (en) | 2003-06-13 | 2014-02-11 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US10278772B2 (en) | 2003-06-13 | 2019-05-07 | Covidien Ag | Vessel sealer and divider |
US10842553B2 (en) | 2003-06-13 | 2020-11-24 | Covidien Ag | Vessel sealer and divider |
USD956973S1 (en) | 2003-06-13 | 2022-07-05 | Covidien Ag | Movable handle for endoscopic vessel sealer and divider |
US7771425B2 (en) | 2003-06-13 | 2010-08-10 | Covidien Ag | Vessel sealer and divider having a variable jaw clamping mechanism |
US9848938B2 (en) | 2003-11-13 | 2017-12-26 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US10441350B2 (en) | 2003-11-17 | 2019-10-15 | Covidien Ag | Bipolar forceps having monopolar extension |
US8597296B2 (en) | 2003-11-17 | 2013-12-03 | Covidien Ag | Bipolar forceps having monopolar extension |
US8257352B2 (en) | 2003-11-17 | 2012-09-04 | Covidien Ag | Bipolar forceps having monopolar extension |
US8303586B2 (en) | 2003-11-19 | 2012-11-06 | Covidien Ag | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US8623017B2 (en) | 2003-11-19 | 2014-01-07 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and overratchet safety |
US7922718B2 (en) | 2003-11-19 | 2011-04-12 | Covidien Ag | Open vessel sealing instrument with cutting mechanism |
US8394096B2 (en) | 2003-11-19 | 2013-03-12 | Covidien Ag | Open vessel sealing instrument with cutting mechanism |
US7811283B2 (en) | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
US9095347B2 (en) | 2003-11-20 | 2015-08-04 | Covidien Ag | Electrically conductive/insulative over shoe for tissue fusion |
US9980770B2 (en) | 2003-11-20 | 2018-05-29 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
US8348948B2 (en) | 2004-03-02 | 2013-01-08 | Covidien Ag | Vessel sealing system using capacitive RF dielectric heating |
US7935052B2 (en) | 2004-09-09 | 2011-05-03 | Covidien Ag | Forceps with spring loaded end effector assembly |
US7799028B2 (en) | 2004-09-21 | 2010-09-21 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US8366709B2 (en) | 2004-09-21 | 2013-02-05 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US7955332B2 (en) | 2004-10-08 | 2011-06-07 | Covidien Ag | Mechanism for dividing tissue in a hemostat-style instrument |
US8123743B2 (en) | 2004-10-08 | 2012-02-28 | Covidien Ag | Mechanism for dividing tissue in a hemostat-style instrument |
US7951150B2 (en) | 2005-01-14 | 2011-05-31 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US8147489B2 (en) | 2005-01-14 | 2012-04-03 | Covidien Ag | Open vessel sealing instrument |
US7909823B2 (en) | 2005-01-14 | 2011-03-22 | Covidien Ag | Open vessel sealing instrument |
US8382754B2 (en) | 2005-03-31 | 2013-02-26 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US9198717B2 (en) | 2005-08-19 | 2015-12-01 | Covidien Ag | Single action tissue sealer |
US10188452B2 (en) | 2005-08-19 | 2019-01-29 | Covidien Ag | Single action tissue sealer |
US8361072B2 (en) | 2005-09-30 | 2013-01-29 | Covidien Ag | Insulating boot for electrosurgical forceps |
US8394095B2 (en) | 2005-09-30 | 2013-03-12 | Covidien Ag | Insulating boot for electrosurgical forceps |
US9549775B2 (en) | 2005-09-30 | 2017-01-24 | Covidien Ag | In-line vessel sealer and divider |
US7879035B2 (en) | 2005-09-30 | 2011-02-01 | Covidien Ag | Insulating boot for electrosurgical forceps |
USRE44834E1 (en) | 2005-09-30 | 2014-04-08 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7846161B2 (en) | 2005-09-30 | 2010-12-07 | Covidien Ag | Insulating boot for electrosurgical forceps |
US8668689B2 (en) | 2005-09-30 | 2014-03-11 | Covidien Ag | In-line vessel sealer and divider |
US7922953B2 (en) | 2005-09-30 | 2011-04-12 | Covidien Ag | Method for manufacturing an end effector assembly |
US8197633B2 (en) | 2005-09-30 | 2012-06-12 | Covidien Ag | Method for manufacturing an end effector assembly |
US8641713B2 (en) | 2005-09-30 | 2014-02-04 | Covidien Ag | Flexible endoscopic catheter with ligasure |
US9579145B2 (en) | 2005-09-30 | 2017-02-28 | Covidien Ag | Flexible endoscopic catheter with ligasure |
US7789878B2 (en) | 2005-09-30 | 2010-09-07 | Covidien Ag | In-line vessel sealer and divider |
US7722607B2 (en) | 2005-09-30 | 2010-05-25 | Covidien Ag | In-line vessel sealer and divider |
US8734443B2 (en) | 2006-01-24 | 2014-05-27 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US9113903B2 (en) | 2006-01-24 | 2015-08-25 | Covidien Lp | Endoscopic vessel sealer and divider for large tissue structures |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US9539053B2 (en) | 2006-01-24 | 2017-01-10 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US8241282B2 (en) | 2006-01-24 | 2012-08-14 | Tyco Healthcare Group Lp | Vessel sealing cutting assemblies |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
US9918782B2 (en) | 2006-01-24 | 2018-03-20 | Covidien Lp | Endoscopic vessel sealer and divider for large tissue structures |
US20100312242A1 (en) * | 2006-07-07 | 2010-12-09 | Darren Odom | System and Method for Controlling Electrode Gap During Tissue Sealing |
US8128625B2 (en) | 2006-07-07 | 2012-03-06 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US8597297B2 (en) | 2006-08-29 | 2013-12-03 | Covidien Ag | Vessel sealing instrument with multiple electrode configurations |
US8070746B2 (en) | 2006-10-03 | 2011-12-06 | Tyco Healthcare Group Lp | Radiofrequency fusion of cardiac tissue |
US8425504B2 (en) | 2006-10-03 | 2013-04-23 | Covidien Lp | Radiofrequency fusion of cardiac tissue |
USD649249S1 (en) | 2007-02-15 | 2011-11-22 | Tyco Healthcare Group Lp | End effectors of an elongated dissecting and dividing instrument |
US8267935B2 (en) | 2007-04-04 | 2012-09-18 | Tyco Healthcare Group Lp | Electrosurgical instrument reducing current densities at an insulator conductor junction |
US7877852B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing an end effector assembly for sealing tissue |
US7877853B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing end effector assembly for sealing tissue |
US8236025B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Silicone insulated electrosurgical forceps |
US8696667B2 (en) | 2007-09-28 | 2014-04-15 | Covidien Lp | Dual durometer insulating boot for electrosurgical forceps |
US8235993B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with exohinged structure |
US8251996B2 (en) | 2007-09-28 | 2012-08-28 | Tyco Healthcare Group Lp | Insulating sheath for electrosurgical forceps |
US8267936B2 (en) | 2007-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Insulating mechanically-interfaced adhesive for electrosurgical forceps |
US8235992B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot with mechanical reinforcement for electrosurgical forceps |
US8241283B2 (en) | 2007-09-28 | 2012-08-14 | Tyco Healthcare Group Lp | Dual durometer insulating boot for electrosurgical forceps |
US9023043B2 (en) | 2007-09-28 | 2015-05-05 | Covidien Lp | Insulating mechanically-interfaced boot and jaws for electrosurgical forceps |
US9554841B2 (en) | 2007-09-28 | 2017-01-31 | Covidien Lp | Dual durometer insulating boot for electrosurgical forceps |
US8221416B2 (en) | 2007-09-28 | 2012-07-17 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with thermoplastic clevis |
US8764748B2 (en) | 2008-02-06 | 2014-07-01 | Covidien Lp | End effector assembly for electrosurgical device and method for making the same |
US8623276B2 (en) | 2008-02-15 | 2014-01-07 | Covidien Lp | Method and system for sterilizing an electrosurgical instrument |
US8469956B2 (en) | 2008-07-21 | 2013-06-25 | Covidien Lp | Variable resistor jaw |
US9113905B2 (en) | 2008-07-21 | 2015-08-25 | Covidien Lp | Variable resistor jaw |
US9247988B2 (en) | 2008-07-21 | 2016-02-02 | Covidien Lp | Variable resistor jaw |
US8162973B2 (en) | 2008-08-15 | 2012-04-24 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US8257387B2 (en) | 2008-08-15 | 2012-09-04 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US9603652B2 (en) | 2008-08-21 | 2017-03-28 | Covidien Lp | Electrosurgical instrument including a sensor |
US8317787B2 (en) | 2008-08-28 | 2012-11-27 | Covidien Lp | Tissue fusion jaw angle improvement |
US8784417B2 (en) | 2008-08-28 | 2014-07-22 | Covidien Lp | Tissue fusion jaw angle improvement |
US8795274B2 (en) | 2008-08-28 | 2014-08-05 | Covidien Lp | Tissue fusion jaw angle improvement |
US8303582B2 (en) | 2008-09-15 | 2012-11-06 | Tyco Healthcare Group Lp | Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique |
US8968314B2 (en) | 2008-09-25 | 2015-03-03 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8535312B2 (en) | 2008-09-25 | 2013-09-17 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US9375254B2 (en) | 2008-09-25 | 2016-06-28 | Covidien Lp | Seal and separate algorithm |
US8568444B2 (en) | 2008-10-03 | 2013-10-29 | Covidien Lp | Method of transferring rotational motion in an articulating surgical instrument |
US8142473B2 (en) | 2008-10-03 | 2012-03-27 | Tyco Healthcare Group Lp | Method of transferring rotational motion in an articulating surgical instrument |
US8469957B2 (en) | 2008-10-07 | 2013-06-25 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8636761B2 (en) | 2008-10-09 | 2014-01-28 | Covidien Lp | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
US9113898B2 (en) | 2008-10-09 | 2015-08-25 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8016827B2 (en) | 2008-10-09 | 2011-09-13 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8486107B2 (en) | 2008-10-20 | 2013-07-16 | Covidien Lp | Method of sealing tissue using radiofrequency energy |
US8197479B2 (en) | 2008-12-10 | 2012-06-12 | Tyco Healthcare Group Lp | Vessel sealer and divider |
US9655674B2 (en) | 2009-01-13 | 2017-05-23 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8852228B2 (en) | 2009-01-13 | 2014-10-07 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US10085794B2 (en) | 2009-05-07 | 2018-10-02 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8454602B2 (en) | 2009-05-07 | 2013-06-04 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8858554B2 (en) | 2009-05-07 | 2014-10-14 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US9345535B2 (en) | 2009-05-07 | 2016-05-24 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8523898B2 (en) | 2009-07-08 | 2013-09-03 | Covidien Lp | Endoscopic electrosurgical jaws with offset knife |
US9028493B2 (en) | 2009-09-18 | 2015-05-12 | Covidien Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US9931131B2 (en) | 2009-09-18 | 2018-04-03 | Covidien Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US8898888B2 (en) | 2009-09-28 | 2014-12-02 | Covidien Lp | System for manufacturing electrosurgical seal plates |
US9750561B2 (en) | 2009-09-28 | 2017-09-05 | Covidien Lp | System for manufacturing electrosurgical seal plates |
US11026741B2 (en) | 2009-09-28 | 2021-06-08 | Covidien Lp | Electrosurgical seal plates |
US10188454B2 (en) | 2009-09-28 | 2019-01-29 | Covidien Lp | System for manufacturing electrosurgical seal plates |
US11490955B2 (en) | 2009-09-28 | 2022-11-08 | Covidien Lp | Electrosurgical seal plates |
US9265552B2 (en) | 2009-09-28 | 2016-02-23 | Covidien Lp | Method of manufacturing electrosurgical seal plates |
US9498278B2 (en) | 2010-09-08 | 2016-11-22 | Covidien Lp | Asymmetrical electrodes for bipolar vessel sealing |
US9814518B2 (en) | 2010-09-08 | 2017-11-14 | Covidien Lp | Asymmetrical electrodes for bipolar vessel sealing |
US11660108B2 (en) | 2011-01-14 | 2023-05-30 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US10383649B2 (en) | 2011-01-14 | 2019-08-20 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US8968305B2 (en) * | 2011-03-28 | 2015-03-03 | Covidien Lp | Surgical forceps with external cutter |
US20120253344A1 (en) * | 2011-03-28 | 2012-10-04 | Tyco Healthcare Group Lp | Surgical Forceps with External Cutter |
US10441351B2 (en) | 2011-04-05 | 2019-10-15 | Covidien Lp | Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge |
US11478295B2 (en) | 2011-04-05 | 2022-10-25 | Covidien Lp | Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge |
US9381059B2 (en) * | 2011-04-05 | 2016-07-05 | Covidien Lp | Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge |
US20120259331A1 (en) * | 2011-04-05 | 2012-10-11 | Tyco Healthcare Group Lp. | Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge |
USD680220S1 (en) | 2012-01-12 | 2013-04-16 | Coviden IP | Slider handle for laparoscopic device |
US9039691B2 (en) | 2012-06-29 | 2015-05-26 | Covidien Lp | Surgical forceps |
CN106236251A (en) * | 2012-06-29 | 2016-12-21 | 科维蒂恩有限合伙公司 | Operating theater instruments |
US9358028B2 (en) | 2012-06-29 | 2016-06-07 | Covidien Lp | Surgical forceps |
US9072524B2 (en) | 2012-06-29 | 2015-07-07 | Covidien Lp | Surgical forceps |
US10646267B2 (en) | 2013-08-07 | 2020-05-12 | Covidien LLP | Surgical forceps |
US10231777B2 (en) | 2014-08-26 | 2019-03-19 | Covidien Lp | Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument |
US11707315B2 (en) | 2014-09-17 | 2023-07-25 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9974603B2 (en) | 2014-09-17 | 2018-05-22 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US10039593B2 (en) | 2014-09-17 | 2018-08-07 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US10039592B2 (en) | 2014-09-17 | 2018-08-07 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9987076B2 (en) | 2014-09-17 | 2018-06-05 | Covidien Lp | Multi-function surgical instruments |
US9877777B2 (en) | 2014-09-17 | 2018-01-30 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US9987077B2 (en) | 2014-09-17 | 2018-06-05 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US11298180B2 (en) | 2014-09-17 | 2022-04-12 | Covidien Lp | Gear assembly for surgical instruments |
US9931158B2 (en) | 2014-09-17 | 2018-04-03 | Covidien Lp | Deployment mechanisms for surgical instruments |
US10080605B2 (en) | 2014-09-17 | 2018-09-25 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9918785B2 (en) | 2014-09-17 | 2018-03-20 | Covidien Lp | Deployment mechanisms for surgical instruments |
USD844138S1 (en) | 2015-07-17 | 2019-03-26 | Covidien Lp | Handle assembly of a multi-function surgical instrument |
USD844139S1 (en) | 2015-07-17 | 2019-03-26 | Covidien Lp | Monopolar assembly of a multi-function surgical instrument |
US10987159B2 (en) | 2015-08-26 | 2021-04-27 | Covidien Lp | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
US10213250B2 (en) | 2015-11-05 | 2019-02-26 | Covidien Lp | Deployment and safety mechanisms for surgical instruments |
US10537381B2 (en) | 2016-02-26 | 2020-01-21 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US11166759B2 (en) | 2017-05-16 | 2021-11-09 | Covidien Lp | Surgical forceps |
US11154348B2 (en) | 2017-08-29 | 2021-10-26 | Covidien Lp | Surgical instruments and methods of assembling surgical instruments |
US11123132B2 (en) | 2018-04-09 | 2021-09-21 | Covidien Lp | Multi-function surgical instruments and assemblies therefor |
US10828756B2 (en) | 2018-04-24 | 2020-11-10 | Covidien Lp | Disassembly methods facilitating reprocessing of multi-function surgical instruments |
Also Published As
Publication number | Publication date |
---|---|
JP2011212449A (en) | 2011-10-27 |
AU2010212496B2 (en) | 2013-08-22 |
ES2335759T5 (en) | 2014-02-04 |
US20110004209A1 (en) | 2011-01-06 |
EP1530952B2 (en) | 2013-10-16 |
US20130023874A1 (en) | 2013-01-24 |
AU2004231188A1 (en) | 2005-06-02 |
JP5202788B2 (en) | 2013-06-05 |
JP2011005282A (en) | 2011-01-13 |
ES2335759T3 (en) | 2010-04-05 |
CA2487579A1 (en) | 2005-05-17 |
US8597296B2 (en) | 2013-12-03 |
JP2005144192A (en) | 2005-06-09 |
JP5336551B2 (en) | 2013-11-06 |
JP4988909B2 (en) | 2012-08-01 |
US20140100569A1 (en) | 2014-04-10 |
EP1530952A1 (en) | 2005-05-18 |
CA2487579C (en) | 2013-01-29 |
US7367976B2 (en) | 2008-05-06 |
DE602004024947D1 (en) | 2010-02-25 |
US20050137590A1 (en) | 2005-06-23 |
AU2004231188B2 (en) | 2010-11-11 |
EP1530952B1 (en) | 2010-01-06 |
US8257352B2 (en) | 2012-09-04 |
AU2010212496A1 (en) | 2010-09-16 |
US10441350B2 (en) | 2019-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10441350B2 (en) | Bipolar forceps having monopolar extension | |
US7445621B2 (en) | Bipolar forceps having monopolar extension | |
AU2013254884B2 (en) | Bipolar forceps having monopolar extension | |
AU2013257528B2 (en) | Bipolar forceps having monopolar extension |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHERWOOD SERIVCES AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAWES, KATE;DYCUS, SEAN T.;CISGRIFF, NED;REEL/FRAME:020241/0775;SIGNING DATES FROM 20071116 TO 20071129 |
|
AS | Assignment |
Owner name: COVIDIEN AG, SWITZERLAND Free format text: CHANGE OF NAME;ASSIGNOR:SHERWOOD SERVICES AG;REEL/FRAME:021423/0806 Effective date: 20070514 |
|
AS | Assignment |
Owner name: SHERWOOD SERVICES AG, SWITZERLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THIRD LISTED INVENTOR'S NAME PREVIOUSLY RECORDED ON REEL 020241 FRAME 0775;ASSIGNORS:LAWES, KATE;DYCUS, SEAN T.;COSGRIFF, NED;REEL/FRAME:021821/0695;SIGNING DATES FROM 20071116 TO 20071129 |
|
AS | Assignment |
Owner name: COVIDIEN AG, SWITZERLAND Free format text: CHANGE OF NAME;ASSIGNOR:SHERWOOD SERVICES AG;REEL/FRAME:021902/0851 Effective date: 20070514 |
|
AS | Assignment |
Owner name: SHERWOOD SERVICES AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAWES, KATE;DYCUS, SEAN T.;COSGRIFF, NED;REEL/FRAME:024778/0541 Effective date: 20050105 Owner name: TYCO HEALTHCARE GROUP AG, SWITZERLAND Free format text: MERGER;ASSIGNOR:COVIDIEN AG;REEL/FRAME:024776/0296 Effective date: 20081215 Owner name: COVIDIEN AG, SWITZERLAND Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP AG;REEL/FRAME:024776/0302 Effective date: 20081215 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |