[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20080195080A1 - Valved delivery device and method of delivering a substance to a patient - Google Patents

Valved delivery device and method of delivering a substance to a patient Download PDF

Info

Publication number
US20080195080A1
US20080195080A1 US12/107,154 US10715408A US2008195080A1 US 20080195080 A1 US20080195080 A1 US 20080195080A1 US 10715408 A US10715408 A US 10715408A US 2008195080 A1 US2008195080 A1 US 2008195080A1
Authority
US
United States
Prior art keywords
skin
substance
patient
fluid chamber
skin penetrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/107,154
Inventor
Bradley M. Wilkinson
Charles G. Hwang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/107,154 priority Critical patent/US20080195080A1/en
Publication of US20080195080A1 publication Critical patent/US20080195080A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/20Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
    • A61B17/205Vaccinating by means of needles or other puncturing devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/148Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16877Adjusting flow; Devices for setting a flow rate
    • A61M5/16881Regulating valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/42Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for desensitising skin, for protruding skin to facilitate piercing, or for locating point where body is to be pierced
    • A61M5/425Protruding skin to facilitate piercing, e.g. vacuum cylinders, vein immobilising means

Definitions

  • the present invention relates to an intradermal delivery device having a fluid chamber to contain a substance to be delivered intradermally to a patient in a target area of the skin.
  • the present invention also relates to a method of delivering a substance into the skin of a patient.
  • Drugs and pharmaceutical agents are delivered to patients by a variety of methods.
  • a typical method delivers the drug or pharmaceutical agent subcutaneously by a stainless steel cannula.
  • the subcutaneous sampling and delivery methods using a cannula are effective for many applications, the pain normally induced by the cannula has prompted the development of less painful delivery methods.
  • the skin is made up of several layers, with the upper composite layer being the epithelial layer.
  • the outermost layer of the skin, the stratum corneum is a waterproof membrane with well known barrier properties that prevent the influx of undesirable molecules and various foreign substances while preventing the outflux of various analytes.
  • the stratum corneum is a complex structure of compacted keratinized cell remnants having a thickness of about 10-30 microns.
  • the natural impermeability of the stratum corneum prevents the administration of most pharmaceutical agents and other substances through the skin.
  • Numerous methods and devices have been proposed to enhance the permeability of the skin and to increase the diffusion of various drugs through the skin for utilization by the body.
  • the delivery of drugs through the skin is enhanced by increasing either the permeability of the skin or the force or energy used to direct the drug through the skin.
  • Another method of sampling and delivering various substances through the skin is by forming micropores or cuts through the stratum corneum.
  • the devices for piercing the stratum corneum generally include a plurality of micron size needles or blades having a length to pierce the stratum corneum without passing completely through the epidermis. Examples of these devices are disclosed in U.S. Pat. No. 5,879,326 to Godshall et al.; U.S. Pat. No. 5,250,023 to Lee et al., and WO 97/48440.
  • micron-sized needles or blades can be effective in delivering substances to the body.
  • these needles and blades having a length of a few microns to a few hundred microns typically do not penetrate skin to a uniform depth.
  • the natural elasticity and resilience of the skin will often result in the skin being deformed by the needles rather than pierced.
  • a microneedle array when pressed against the skin often results in the outermost needles penetrating the skin while the innermost needles do not penetrate or only penetrate to depth less than the outermost needles.
  • the present invention is directed to a method and device for the intradermal sampling or delivery of a substance into the skin of a patient. More particularly, the invention is directed to a method and device for controlling the flow of a pharmaceutical agent, such as a drug or vaccine, through the device for delivery into or below the stratum corneum of the skin to a depth sufficient for the pharmaceutical agent to be absorbed and utilized by the body.
  • a pharmaceutical agent such as a drug or vaccine
  • a sampling or delivery device having at least one skin penetrating member having a length that provides an increased comfort level to the patient.
  • a further object of the invention is to provide a method of penetrating the skin for sampling or delivering a substance through the skin substantially without pain to the patient.
  • Another object of the invention is to provide a delivery device having a plurality of micro skin penetrators, such as microtubes, needles, microneedles, blades or lancets, selected for piercing the stratum corneum of the skin to a depth that is short of the nerve endings.
  • micro skin penetrators such as microtubes, needles, microneedles, blades or lancets, selected for piercing the stratum corneum of the skin to a depth that is short of the nerve endings.
  • Still another object of the invention is to provide a delivery device having a manually operated valve to control the delivery of a substance to the at least one micro skin penetrating member of the delivery device.
  • a further object of the invention is to provide a pre-filled delivery device having a reservoir containing a substance, at least one micro skin penetrating member, and a reservoir outlet for supplying a substance to the micro skin penetrating member for delivery to the patient.
  • Another object of the invention is to provide a delivery device having a reservoir containing a substance to be delivered to a patient, wherein the reservoir is defined, at least in part, by a movable wall that is depressed to dispense the substance to the patient.
  • Still another object of the invention is to provide a delivery device having at least one micro skin penetrating member for delivering a substance to a target area on the skin of a patient and a ridge encircling the micro skin penetrating members to form a containment area around the target area.
  • the device for delivering a substance into the skin of a patient.
  • the device comprises a housing having a fluid chamber having an outlet.
  • a valve member is coupled to the housing for controlling the flow of the substance through the outlet of the chamber.
  • a skin penetrating device is coupled to the housing and is in fluid communication with the fluid chamber for delivering the substance to the patient.
  • the objects and advantages of the invention are further attained by providing a device for intradermally delivering a substance to a patient.
  • the device comprises a housing having a bottom face dimensioned to contact the skin of the patient.
  • the housing has a fluid chamber with an outlet, and a manually operated valve coupled to the housing for controlling the flow of the substance through the outlet of the chamber.
  • a micro skin penetrating member is coupled to the housing and is in fluid communication with the chamber.
  • An arrangement is provided for applying to the substance a pressure sufficient to deliver the substance into the skin of a patient.
  • a yet further object of the invention is to provide a method for delivering a substance into or through the skin of a patient.
  • the method comprises positioning on the skin of a patient a delivery device including a housing; a fluid chamber on the housing for containing the substance, said chamber having an outlet for the substance; a valve member connected to said housing to control the flow of the substance through the outlet; and a skin penetrating device on the housing and in fluid communication with the chamber for delivering the substance into the skin of the patient.
  • a sufficient pressure is applied for the micro skin penetrating members to penetrate the skin to a depth sufficient to deliver the substance to the patient.
  • the valve is opened, the substance is introduced from the fluid chamber to the micro skin penetrating members under pressure, and the substance is delivered to the patient.
  • the fluid chamber is removably coupled to the housing before the delivery device is positioned on the skin.
  • FIG. 1 is a top plan view of the device in accordance with a first embodiment of the invention for delivering a substance into the skin of a patient;
  • FIG. 2 is a perspective view of the device of FIG. 1 showing the device on the skin of a patient;
  • FIG. 3 is a side elevational view of the device of FIG. 1 showing the micro skin penetrating members extending from the bottom face of the device;
  • FIG. 4 is a bottom plan view of the device of FIG. 1 showing the micro skin penetrating members
  • FIG. 5 is a cross-sectional side view of the device of FIG. 1 taken along line 5 - 5 of FIG. 1 showing the fluid chamber, the cavity and the control valve;
  • FIG. 6 is an enlarged cross-sectional view of the control valve
  • FIG. 7 is a cross-sectional side view similar to FIG. 5 but showing the device in contact with the skin of a patient and dispensing the substance to the patient;
  • FIG. 8 is a top plan view of a delivery device in a second embodiment of the invention.
  • FIG. 9 is a side elevational view of the device of FIG. 8 ;
  • FIG. 10 is a bottom plan view of the device of FIG. 8 ;
  • FIG. 11 is a cross-sectional side view of the skin penetrating device taken along line 11 - 11 of FIG. 8 showing the reservoir filled with a substance;
  • FIG. 12 is a cross-sectional view of the device of FIG. 8 showing the device penetrating the skin and the top wall depressed to dispense the substance;
  • FIG. 13 is a perspective view of the device in another embodiment of the invention.
  • FIG. 14 is a top plan view of the device of FIG. 13 ;
  • FIG. 15 is a side view of the device of FIG. 13 showing a protective strip partially removed from the device;
  • FIG. 16 is a side view of the device of FIG. 13 showing the rib around the micro skin penetrating members
  • FIG. 17 is a plan bottom view of the device of FIG. 13 ;
  • FIG. 18 is a cross-sectional view taken axially to the line of 18 - 18 of FIG. 14 ;
  • FIG. 19 is a cross-sectional view similar to FIG. 13 , but showing the device in contact with the skin of a patient and the device delivering the substance through the micro skin penetrating members.
  • the present invention is directed to a device for sampling, monitoring or delivering a substance into the skin of a patient. More particularly, the invention is directed to a delivery device and to a method for administering a substance to below the stratum corneum of the skin of a patient.
  • penetrate refers to entering a layer of the skin without passing completely through.
  • pierce refers to passing completely through a layer of the skin.
  • a pharmaceutical agent includes a substance having biological activity that can be delivered through the body membranes and surfaces, and particularly into the skin. Examples include antibiotics, antiviral agents, analgesics, anesthetics, anorexics, antiarthritics, antidepressants, antihistamines, anti-inflammatory agents, antineoplastic agents, vaccines, including DNA vaccines, and the like.
  • Other substances that can be delivered intradermally to a patient include proteins, peptides and fragments thereof. The proteins and peptides can be naturally occurring, synthesized or recombinantly produced.
  • the device of the invention is primarily for delivering a substance into selected layers of the skin.
  • the device is suitable for withdrawing a substance or monitoring the level of a substance in the body.
  • substances that can be monitored or withdrawn include blood, interstitial fluid or plasma that can then be analyzed for analytes, glucose, drugs and the like.
  • the invention in a first embodiment is directed to a device 10 having a supporting body 12 with a skin penetrating device 14 and a valve assembly 16 .
  • Device 10 is constructed for penetrating one or more selected layers of the dermis of a patient to attain the desired depth of penetration.
  • the desired depth of penetration is determined by the substance being delivered, the delivery rate and the absorption rate. Penetration to a depth of 1 mm results in a high uptake by the body. Penetration to a depth on the order of 5 mm would slow delivery.
  • the device is provided with one or more penetrating members each having a length to pierce the stratum corneum substantially without penetrating the dermis, which is below the stratum corneum and below the other layers of the epidermis.
  • penetrating members each having a length to pierce the stratum corneum substantially without penetrating the dermis, which is below the stratum corneum and below the other layers of the epidermis.
  • body 12 forms a housing that has a generally flat profile when attached to the skin of a patient.
  • the flat profile provides an ease of attachment to the skin and less obstruction to the patient.
  • body 12 has an elongated shape, although in alternative embodiments, body 12 can have a circular, square, rectangular or other shape.
  • body 12 includes a base 18 having a generally elongated configuration.
  • base 18 has a generally planar shape with a rounded front end 20 and a straight rear end 22 .
  • Base 18 has a substantially flat bottom face 24 and a top face 26 .
  • a reservoir 28 is defined on the top face 26 of base 18 for containing a substance to be delivered to the patient as discussed hereinafter in greater detail.
  • Base 18 is dimensioned and configured to be placed against the skin of a patient for delivering a substance such as a drug or pharmaceutical. As shown in FIGS. 4 and 5 , base 18 has a recess 30 dimensioned to receive skin penetrating device 14 .
  • Recess 30 includes a ledge 32 and a side wall 34 for supporting skin penetrating device 14 .
  • Side wall 34 preferably has a height sufficient to receive skin penetrating device 14 such that the outer face of skin penetrating device 14 lies in the plane of bottom face 24 of base 18 .
  • Ledge 32 has a width sufficient to support skin penetrating device 14 . As shown in FIG.
  • recess 30 has a dimension complementing the outer dimension of skin penetrating device 14 so that skin penetrating device 14 can be coupled to base 18 .
  • skin penetrating device 14 is coupled to base 18 by a suitable adhesive.
  • skin penetrating device 14 can be integrally formed with base 18 .
  • Other coupling arrangements can also be used.
  • base 18 includes a top wall 36 overlying recess 30 .
  • Recess 30 has a depth extending between top wall 36 and bottom face 24 of base 18 that is greater than the thickness of skin penetrating device 14 .
  • Recess 30 forms a cavity 38 between top wall 36 and skin penetrating device 14 .
  • Cavity 38 is dimensioned to allow the flow of a liquid while providing a volume to minimize the dead space in base 18 .
  • Reservoir 28 has an outer wall 40 integrated with the body 12 and spaced from top wall 36 of base 18 to define an internal chamber 42 .
  • Chamber 42 is dimensioned to contain a sufficient volume, for example, a predetermined unit dose, of a substance to be delivered to a patient.
  • the chamber 42 is prefilled with the substance.
  • outer wall 40 of reservoir 28 has a generally dome shape with a convex outer surface 44 and a concave inner surface 46 .
  • Outer wall 40 is coupled to top face 26 of base 18 by a suitable adhesive or a weld to form a fluidtight seal for enclosing reservoir 28 .
  • Reservoir 28 includes an end wall 48 having a channel 50 extending between cavity 38 and chamber 42 , the channel 50 defining an outlet of the chamber 42 .
  • Outer wall 40 includes a movable dispensing member 52 for applying sufficient pressure to the chamber 42 to dispense a substance from chamber 42 through channel 50 to cavity 38 .
  • dispensing member 52 is a flexible member that can be depressed inwardly toward chamber 42 to dispense the substance.
  • Dispensing member 52 initially has a concave inner surface 54 to form a generally bubble shape.
  • dispensing member 52 is made of a resilient, flexible plastic material that can be depressed and deflected inward by manual pressure by the user.
  • outer wall 40 is substantially rigid.
  • Valve assembly 16 is positioned in channel 50 to control the flow of the substance from chamber 42 through channel 50 .
  • valve assembly 16 is a rotatable valve having a valve element, or valve body 56 , having a portion exposed to the exterior of the delivery device 10 for manipulation between a closed position and an open position.
  • the exposed portion has an actuator handle 58 .
  • valve body 56 has a substantially cylindrical shape for rotating within aperture 60 in base 12 .
  • Aperture 60 has a shape and dimension complementing valve body 56 and extends from top face 26 of base 18 to cavity 38 .
  • handle 58 is coupled to a top end 62 of valve body 56 .
  • Valve body 56 has a lower end 64 positioned at the opening to cavity 38 .
  • the exposed portion of the valve body 56 serves as an indicator indicating whether the valve body is in a closed position or an open position.
  • pointing of the handle 58 in the longitudinal direction of the delivery device 10 indicates that the valve body 56 is open.
  • pointing of the handle 58 in the transverse direction of the delivery device 10 indicates that the valve body 56 is closed.
  • Valve body 56 includes an axial passage 66 extending from lower end 64 .
  • a radial passage 68 extends through valve body 56 and intersects axial passage 66 .
  • Radial passage 68 is aligned with channel 50 in end wall 48 of reservoir 28 to provide fluid communication between reservoir 28 and cavity 38 .
  • Valve body 56 is rotatable within aperture 60 as depicted in FIG. 1 to open and close valve assembly 16 .
  • a recess 70 is provided in top face 26 of base 18 to receive handle 58 of valve assembly 16 . Recess 70 allows handle 58 to rotate about 90.degree. from the closed position shown in FIG. 1 to the open position shown in FIG. 6 .
  • skin penetrating device 14 includes a base 72 having at least one micro skin penetrating member 74 extending outwardly from base 72 .
  • micro skin penetrating members 74 are hollow needles each having a beveled tip 76 for penetrating the skin of a patient and an axial passage 78 extending between tip 76 and a top face 80 of base 72 .
  • Base 72 has a bottom face 82 supporting micro skin penetrating members 74 .
  • bottom face 82 of base 72 has a substantially planar configuration and is oriented in the plane of bottom face 24 of base 18 .
  • Skin penetrating device 14 having at least one micro skin penetrating member 74 , can be made from various materials.
  • a plurality of micro skin penetrating members 74 are spaced apart from each other a uniform distance and have a uniform length.
  • the skin penetrating device 14 is made from silicon by, for example, suitable silicon etching or micromachining steps.
  • device 14 is made from stainless steel, tungsten steel, or alloys of nickel, molybdenum, chromium, cobalt and titanium.
  • the micro skin penetrating members can be made of ceramic materials, polymers and other non-reactive materials.
  • the micro skin penetrating members 74 have a length suitable to achieve the desired depth of penetration in the skin.
  • the length and thickness of the micro skin penetrating members 74 are selected based on the substance being administered or withdrawn and the thickness of the skin in the location where the device is to be applied.
  • the micro skin penetrating members can be microneedles, microtubes, solid or hollow needles, lancets and the like.
  • the micro skin penetrating members have a length, measured from the base to the tip of the member, of about 50 microns to about 4,000 microns and preferably, about 250 microns to 1,000 microns.
  • the needles are typically mounted in a suitable base and have a substantially uniform length.
  • the micro skin penetrating members are about 30-gauge to about 50-gauge needles having a length of about 500 microns to about 1,000 microns.
  • the micro skin penetrating members have a substantially square cross-sectional shape.
  • the micro skin penetrating members can be triangular, cylindrical, or pyramid-shaped, or they can be flat blades.
  • the skin penetrating members 74 can be in an array covering an area of from about one cm.sup.2 to about 10 cm.sup.2.
  • the array can have a width and length of about one centimeter to about five centimeters.
  • the base 40 has a thickness of about 200 to 400 microns, and typically about 250 microns.
  • a pharmaceutical agent or drug solution is provided in the reservoir 28 .
  • a dried or lyophilized drug or pharmaceutical agent can be provided in the cavity 38 or in the axial passages 78 of the skin penetrating member 74 .
  • a diluent such as distilled water or saline solution can be provided in the reservoir 28 and selectively allowed to flow by manipulation of the valve handle 58 into the cavity 38 and the axial passages 78 of the micro skin penetrating members 74 to dissolve and reconstitute the drug or pharmaceutical agent and then deliver the drug to the patient.
  • Bottom face 24 of base 18 in the embodiment of FIGS. 1-7 includes a pressure sensitive adhesive 84 surrounding skin penetrating device 14 .
  • adhesive 84 forms a continuous circle around skin penetrating device 14 and has an area sufficient to releasably attach device 10 to the surface of a patient's skin.
  • a protective cover can be coupled to bottom face 24 of base 18 to cover adhesive 84 and skin penetrating device 14 until ready for use.
  • the cover can be a rigid member or a flexible sheet material that can be peeled from the adhesive 84 .
  • Device 10 is primarily intended to be a prefilled delivery device containing a pharmaceutical agent or drug to be delivered to a patient.
  • device 10 is removed from its protective packaging and positioned on the surface of skin 86 as shown in FIG. 7 .
  • a downward pressure is applied against body 12 with a force sufficient to cause micro skin penetrating members 74 to penetrate skin 86 to a desired depth, as determined by the length of skin penetrating members 74 .
  • Adhesive 84 attaches device 10 to the surface of skin 86 to prevent lateral movement of device 10 during delivery of the substance contained within reservoir 28 .
  • Adhesive 84 also forms a seal to prevent leakage of the substance from a target area of skin 86 penetrated by micro skin penetrating members 74 .
  • valve assembly 16 is rotated to the open position shown in FIGS. 6 and 7 to provide fluid communication between chamber 42 of reservoir 28 and cavity 38 of base 18 .
  • the position of the valve handle 58 indicates whether the valve is open or closed.
  • a manual pressure is applied against dispensing member 52 as indicated by arrow 88 in FIG. 7 to deflect dispensing member 52 inwardly into chamber 42 , thereby imposing a dispensing pressure on the substance in the chamber.
  • the dispensing pressure forces the substance from chamber 42 through channel 50 and valve body 66 to cavity 38 where the substance can flow through the axial passages 78 of skin penetrating members 74 .
  • the dispensing pressure and the substance is accordingly dispensed so long as so long as the dispensing member 52 is depressed; and the dispensing pressure is gradually released upon release of the dispensing member 52 .
  • the manual pressure is maintained for a time sufficient to enable a sufficient amount of the substance to be delivered to a desired depth in the skin 86 where the substance can be absorbed and utilized by the body. Manual pressure is maintained throughout the delivery operation.
  • Device 10 including body 12 and valve assembly 16 , is preferably made of a polymeric material that is non-reactive with the substance being delivered to the patient and non-irritating to the patient.
  • base 12 is made of a suitable plastic material that allows some flexibility to conform to the contour of the skin of the patient while being sufficiently rigid to maintain the structural integrity of device 10 .
  • suitable polymers include polyethylene, polypropylene, polystyrene, polyesters, polyamides, polycarbonates, and copolymers thereof.
  • Device 90 includes a body 92 , a skin penetrating device 94 and a valve assembly 96 .
  • body 92 has a generally circular configuration with a substantially flat planar top surface 98 and a planar bottom surface 100 .
  • Top surface 98 of body 92 includes a recess 102 defined by a bottom surface 104 and a side wall 106 .
  • a flexible closure member 108 is coupled to top face 98 to close recess 102 .
  • Closure member 108 defines a reservoir having a chamber 110 between bottom surface 104 and closure member 108 .
  • closure member 108 has a generally hemispherical shape having a convex top surface 112 and a concave bottom surface 114 .
  • a movable dispensing member is in the form of a closure member 108 , which is preferably made of a material having the same characteristics as the material of the movable dispensing member 52 of the embodiment of FIGS. 1-7 .
  • closure member 108 forms a top wall of chamber 110 and covers an area at least equal to the area of recess 102 .
  • Side wall 106 of recess 102 includes a channel 116 extending radially outward from side wall 106 .
  • An aperture 118 defining a cylindrical channel extends between top surface 98 of body 92 and bottom surface 100 . As shown in FIG. 11 , channel 116 intersects with aperture 118 .
  • Bottom surface 100 of body 92 includes a recess 120 dimensioned to receive skin penetrating device 94 .
  • Recess 120 includes a ledge 122 having a side wall 124 for receiving skin penetrating device 94 .
  • side wall 124 has a height corresponding substantially to the thickness of skin penetrating device 94 , so that the outer face of skin penetrating device 94 lies in the plane of bottom surface 100 of body 92 .
  • Recess 120 has a bottom surface 106 that is spaced from bottom surface 100 by a distance greater than the thickness of skin penetrating device 94 to define a cavity 128 .
  • Aperture 118 communicates with cavity 128 to provide fluid communication between chamber 110 and cavity 128 .
  • Skin penetrating device 94 includes a base 130 having at least one micro skin penetrating member 132 extending outwardly therefrom. As shown in FIG. 11 , base 130 is dimensioned to fit on ledge 122 of recess 120 . Micro skin penetrating members 132 are preferably microneedles in an array, the members each having a length sufficient to penetrate the surface of the skin to a selected depth for delivering a substance into the skin to a depth at which the substance can be utilized by the body.
  • Valve assembly 96 includes a cylindrical element body 134 dimensioned to fit in aperture 118 .
  • An actuating handle 136 is coupled to a top end 138 of valve body 134 .
  • Valve body 134 has a bottom end 140 with an axial passage 142 .
  • a radial passage 144 extends through a side face 146 of valve body 134 and intersects with axial passage 142 . As shown in FIG. 11 , radial passage 144 is aligned with channel 116 .
  • Valve body 134 can be rotated within aperture 118 between the closed position of FIG. 11 and the open position of FIG. 12 , the handle 136 indicating the position fo the valve.
  • Valve body 134 effectively closes chamber 110 to contain the substance within chamber 110 during storage and shipping of device 90 .
  • Valve body 134 can be rotated to the open position of FIG. 12 to provide fluid communication between chamber 110 and cavity 128 .
  • Device 90 is used in a manner similar to the embodiment of FIGS. 1-7 .
  • Bottom surface 110 in the embodiment illustrated has an adhesive 148 such as a pressure-sensitive adhesive around the peripheral edge of body 92 .
  • adhesive 148 surrounds skin penetrating device 94 .
  • Device 90 is positioned on the skin 150 of a patient and pressed downwardly to enable micro skin penetrating members 132 to penetrate the skin 150 and to allow adhesive 148 to attach device 190 to skin 150 .
  • Valve body 134 is rotated to the open position to provide fluid communication between chamber 110 and cavity 128 .
  • a downward pressure indicated by arrow 152 is applied to closure member 108 to produce a dispensing pressure sufficient to deliver a substance intradermally to the patient.
  • FIGS. 13-19 show another embodiment of a device 160 for delivering a substance intradermally to a patient.
  • Device 160 includes a housing 162 , a skin penetrating device 164 and a valve element or body 166 .
  • Housing 162 has a substantially oval shape, a planar top surface 168 and a bottom surface 170 .
  • Bottom surface 170 includes a recess 172 having a ledge 174 and a side wall 176 .
  • ledge 174 and side wall 176 are dimensioned to support skin penetrating device 164 .
  • Recess 172 is dimensioned to form an internal cavity 178 communicating with skin penetrating device 164 .
  • Valve body 166 is mounted on housing 162 for controlling the flow of liquids into cavity 178 .
  • valve body 166 includes a collar 180 coupled to top surface 168 of housing 162 .
  • Collar 180 has a substantially annular shape with an axial passage 182 .
  • Axial passage 182 extends from a top end 184 of collar 180 to cavity 178 .
  • a cylindrical valve body 186 fits in axial passage 182 and is rotatable within collar 180 .
  • An actuating handle 188 is coupled to a top end 190 of valve body 186 .
  • Handle 188 is positioned for rotating valve body 186 about the longitudinal axis of collar 180 .
  • a supply tube 192 is coupled to collar 180 and extends radially outward from collar 180 in a direction generally parallel to top surface 168 of housing 162 .
  • Supply tube 192 includes an axial passage 194 extending radially through collar 180 and intersecting axial passage 182 of collar 180 .
  • Supply tube 192 has an outer end with a coupling member 196 for removably coupling a supply device or container 198 to the delivery device 160 .
  • Coupling member 196 can be a luer-type fitting, friction fit or other suitable coupling member capable of forming a fluid coupling with supply device 198 .
  • Supply device 198 is preferably a single use disposable device containing a unit dose of the substance to be delivered to the patient.
  • supply device 198 includes a collar 200 and a compressible hollow body 202 containing the substance to be delivered to the patient. Collar 200 complements coupling member 196 for coupling supply device 198 to device 160 .
  • body 202 is a bladder formed from a flexible material that can be compressed to dispense the contents of supply device 198 .
  • supply device 198 can be a commercially available device containing a predetermined unit dose of a substance to be delivered and being squeezable to deliver the substance.
  • One such device is sold under the trademark UNIJECT by Becton Dickinson and Company. Other unit dose delivery devices can be used instead.
  • skin penetrating device 164 includes a base 202 having a top face 206 and a planar bottom face 208 . At least one micro skin penetrating member 210 in the form of a microneedle extends outwardly from bottom face 208 . Micro skin penetrating members 210 have an axial passage extending between top face 206 in communication with cavity 178 and the tip of skin penetrating member 210 . Bottom surface 170 of body 162 includes a rib 212 extending outwardly from body 162 . Rib 212 surrounds skin penetrating device 164 and has a substantially annular shape as shown in FIG. 17 .
  • rib 212 has an inner face 214 extending generally perpendicular to bottom face 170 of body 162 . Rib 212 also includes an outer face 216 converging toward inner face 214 to form a crest 218 . Outer face 216 is formed at an incline with respect to bottom face 170 .
  • rib 212 is spaced outwardly from micro skin penetrating members 210 and is impressed on the skin to define a target area on the skin for the micro skin penetrating members 210 .
  • micro skin penetrating members 210 have an axial length slightly greater than the height of rib 212 as shown in FIG. 19 .
  • Device 160 is placed on the skin 220 of a patient and pressed downwardly.
  • the downward pressure on device 160 causes rib 212 to contact skin 220 and stretch the skin in a target area 222 surrounded by rib 212 .
  • Stretching the skin in target area 222 enables micro skin penetrating members 210 to pierce the surface of the skin.
  • the normal elasticity of the skin provides a penetrating resistance to micro skin penetrating members 210 .
  • rib 212 forms a seal against the surface of skin 220 to contain the substance that can leak from target area 222 .
  • valve body 166 is rotated to the open position shown in FIG. 19 , the position fo the handle 188 indicating the position of the valve body 166 .
  • a dispensing pressure indicated by arrow 224 is provided on supply device 198 to dispense the contents of supply device 198 through axial passage 194 and into cavity 178 where the substance can be delivered to micro skin penetrating members 210 .
  • supply device 198 is able to provide a pressure sufficient to dispense the contents and deliver the contents through micro skin penetrating members 210 into the skin of the patient. After the contents of supply device 198 is delivered to the patient, device 160 is separated from skin 220 and discarded.
  • Device 160 is preferably designed and constructed to be a disposable, single use device. The device is prepackaged in a sterile condition for immediate use.
  • bottom face 170 of body 162 includes a protective cover sheet 226 .
  • Cover sheet 226 is attached to bottom surface 170 in a manner that can be peeled easily from device 160 at the time of use.
  • Cover sheet 226 is preferably a flexible sheet material such as Tyvek.RTM.
  • Cover sheet 226 has a dimension to cover skin penetrating device 164 to maintain skin penetrating device 164 in sterile conditions until ready for use. Cover sheets similar to cover sheet 226 can be used in connection with other embodiments according to the present invention.
  • the illustrated embodiments of the device can be used safely and effectively for the intradermal delivery of a pharmaceutical agent or other substance to a patient.
  • the device is particularly suitable for introducing a vaccine intradermally for efficiently delivering a small amount of a vaccine antigen.
  • the length, width and spacing of the microneedles can vary depending on the pharmaceutical agent being administered and the desired depth of penetration for delivery.
  • the microneedles are dimensioned to target the optimum intradermal delivery site to promote the desired immune response.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Dermatology (AREA)
  • Anesthesiology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

A delivery device for delivery a substance into the skin of a patient has a fluid chamber for containing the substance, at least one micro skin penetrating member, and a valve controlling the flow of the substance from the fluid chamber to the micro skin penetrating member. An adhesive releasably attaches the device to the skin of the patient, the fluid chamber can be sized to hold a unit dose of the substance, and, in some embodiments, the fluid chamber can be releasably coupled to a housing of the device.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This Application is a continuation of U.S. patent application Ser. No. 11/328,035, filed on Jan. 9, 2006, which is a divisional of U.S. patent application Ser. No. 10/112,756, filed on Apr. 2, 2002, now U.S. Pat. No. 7,047,070.
  • FIELD OF THE INVENTION
  • The present invention relates to an intradermal delivery device having a fluid chamber to contain a substance to be delivered intradermally to a patient in a target area of the skin. The present invention also relates to a method of delivering a substance into the skin of a patient.
  • BACKGROUND OF THE INVENTION
  • Drugs and pharmaceutical agents are delivered to patients by a variety of methods. A typical method delivers the drug or pharmaceutical agent subcutaneously by a stainless steel cannula. Although the subcutaneous sampling and delivery methods using a cannula are effective for many applications, the pain normally induced by the cannula has prompted the development of less painful delivery methods.
  • The skin is made up of several layers, with the upper composite layer being the epithelial layer. The outermost layer of the skin, the stratum corneum, is a waterproof membrane with well known barrier properties that prevent the influx of undesirable molecules and various foreign substances while preventing the outflux of various analytes. The stratum corneum is a complex structure of compacted keratinized cell remnants having a thickness of about 10-30 microns.
  • The natural impermeability of the stratum corneum prevents the administration of most pharmaceutical agents and other substances through the skin. Numerous methods and devices have been proposed to enhance the permeability of the skin and to increase the diffusion of various drugs through the skin for utilization by the body. Typically, the delivery of drugs through the skin is enhanced by increasing either the permeability of the skin or the force or energy used to direct the drug through the skin.
  • Another method of sampling and delivering various substances through the skin is by forming micropores or cuts through the stratum corneum. By piercing the stratum corneum and delivering a drug to the skin in or below the stratum corneum, many drugs can be administered effectively. In a similar manner, some substances can be extracted from the body through cuts or pores formed in the stratum corneum. The devices for piercing the stratum corneum generally include a plurality of micron size needles or blades having a length to pierce the stratum corneum without passing completely through the epidermis. Examples of these devices are disclosed in U.S. Pat. No. 5,879,326 to Godshall et al.; U.S. Pat. No. 5,250,023 to Lee et al., and WO 97/48440.
  • The above-noted devices that include micron-sized needles or blades can be effective in delivering substances to the body. However, these needles and blades having a length of a few microns to a few hundred microns typically do not penetrate skin to a uniform depth. The natural elasticity and resilience of the skin will often result in the skin being deformed by the needles rather than pierced. A microneedle array when pressed against the skin often results in the outermost needles penetrating the skin while the innermost needles do not penetrate or only penetrate to depth less than the outermost needles.
  • The prior methods and devices for the intradermal administration of substances have exhibited limited success. Accordingly, an unmet need exists in the industry for an improved device for the sampling and administration of various drugs and other substances to the body.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a method and device for the intradermal sampling or delivery of a substance into the skin of a patient. More particularly, the invention is directed to a method and device for controlling the flow of a pharmaceutical agent, such as a drug or vaccine, through the device for delivery into or below the stratum corneum of the skin to a depth sufficient for the pharmaceutical agent to be absorbed and utilized by the body.
  • Accordingly, it is an object of the invention to provide a sampling or delivery device having at least one skin penetrating member having a length that provides an increased comfort level to the patient.
  • A further object of the invention is to provide a method of penetrating the skin for sampling or delivering a substance through the skin substantially without pain to the patient.
  • Another object of the invention is to provide a delivery device having a plurality of micro skin penetrators, such as microtubes, needles, microneedles, blades or lancets, selected for piercing the stratum corneum of the skin to a depth that is short of the nerve endings.
  • Still another object of the invention is to provide a delivery device having a manually operated valve to control the delivery of a substance to the at least one micro skin penetrating member of the delivery device.
  • A further object of the invention is to provide a pre-filled delivery device having a reservoir containing a substance, at least one micro skin penetrating member, and a reservoir outlet for supplying a substance to the micro skin penetrating member for delivery to the patient.
  • Another object of the invention is to provide a delivery device having a reservoir containing a substance to be delivered to a patient, wherein the reservoir is defined, at least in part, by a movable wall that is depressed to dispense the substance to the patient.
  • Still another object of the invention is to provide a delivery device having at least one micro skin penetrating member for delivering a substance to a target area on the skin of a patient and a ridge encircling the micro skin penetrating members to form a containment area around the target area.
  • These and other aspects of the invention are substantially achieved by providing a device for delivering a substance into the skin of a patient. The device comprises a housing having a fluid chamber having an outlet. A valve member is coupled to the housing for controlling the flow of the substance through the outlet of the chamber. A skin penetrating device is coupled to the housing and is in fluid communication with the fluid chamber for delivering the substance to the patient.
  • The objects and advantages of the invention are further attained by providing a device for intradermally delivering a substance to a patient. The device comprises a housing having a bottom face dimensioned to contact the skin of the patient. The housing has a fluid chamber with an outlet, and a manually operated valve coupled to the housing for controlling the flow of the substance through the outlet of the chamber. A micro skin penetrating member is coupled to the housing and is in fluid communication with the chamber. An arrangement is provided for applying to the substance a pressure sufficient to deliver the substance into the skin of a patient.
  • A yet further object of the invention is to provide a method for delivering a substance into or through the skin of a patient. The method comprises positioning on the skin of a patient a delivery device including a housing; a fluid chamber on the housing for containing the substance, said chamber having an outlet for the substance; a valve member connected to said housing to control the flow of the substance through the outlet; and a skin penetrating device on the housing and in fluid communication with the chamber for delivering the substance into the skin of the patient. A sufficient pressure is applied for the micro skin penetrating members to penetrate the skin to a depth sufficient to deliver the substance to the patient. The valve is opened, the substance is introduced from the fluid chamber to the micro skin penetrating members under pressure, and the substance is delivered to the patient. In some embodiments, the fluid chamber is removably coupled to the housing before the delivery device is positioned on the skin.
  • The aspects, advantages and other salient features of the invention will become apparent from the following detailed description which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following is a brief description of the drawings in which:
  • FIG. 1 is a top plan view of the device in accordance with a first embodiment of the invention for delivering a substance into the skin of a patient;
  • FIG. 2 is a perspective view of the device of FIG. 1 showing the device on the skin of a patient;
  • FIG. 3 is a side elevational view of the device of FIG. 1 showing the micro skin penetrating members extending from the bottom face of the device;
  • FIG. 4 is a bottom plan view of the device of FIG. 1 showing the micro skin penetrating members;
  • FIG. 5 is a cross-sectional side view of the device of FIG. 1 taken along line 5-5 of FIG. 1 showing the fluid chamber, the cavity and the control valve;
  • FIG. 6 is an enlarged cross-sectional view of the control valve;
  • FIG. 7 is a cross-sectional side view similar to FIG. 5 but showing the device in contact with the skin of a patient and dispensing the substance to the patient;
  • FIG. 8 is a top plan view of a delivery device in a second embodiment of the invention;
  • FIG. 9 is a side elevational view of the device of FIG. 8;
  • FIG. 10 is a bottom plan view of the device of FIG. 8;
  • FIG. 11 is a cross-sectional side view of the skin penetrating device taken along line 11-11 of FIG. 8 showing the reservoir filled with a substance;
  • FIG. 12 is a cross-sectional view of the device of FIG. 8 showing the device penetrating the skin and the top wall depressed to dispense the substance;
  • FIG. 13 is a perspective view of the device in another embodiment of the invention;
  • FIG. 14 is a top plan view of the device of FIG. 13;
  • FIG. 15 is a side view of the device of FIG. 13 showing a protective strip partially removed from the device;
  • FIG. 16 is a side view of the device of FIG. 13 showing the rib around the micro skin penetrating members;
  • FIG. 17 is a plan bottom view of the device of FIG. 13;
  • FIG. 18 is a cross-sectional view taken axially to the line of 18-18 of FIG. 14; and
  • FIG. 19 is a cross-sectional view similar to FIG. 13, but showing the device in contact with the skin of a patient and the device delivering the substance through the micro skin penetrating members.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention is directed to a device for sampling, monitoring or delivering a substance into the skin of a patient. More particularly, the invention is directed to a delivery device and to a method for administering a substance to below the stratum corneum of the skin of a patient.
  • As used herein, the term “penetrate” refers to entering a layer of the skin without passing completely through. The term “pierce” refers to passing completely through a layer of the skin.
  • The device and method of the present invention are suitable for use in administering various substances, including pharmaceutical agents, to a patient, and especially to a human patient. As used herein, a pharmaceutical agent includes a substance having biological activity that can be delivered through the body membranes and surfaces, and particularly into the skin. Examples include antibiotics, antiviral agents, analgesics, anesthetics, anorexics, antiarthritics, antidepressants, antihistamines, anti-inflammatory agents, antineoplastic agents, vaccines, including DNA vaccines, and the like. Other substances that can be delivered intradermally to a patient include proteins, peptides and fragments thereof. The proteins and peptides can be naturally occurring, synthesized or recombinantly produced.
  • The device of the invention is primarily for delivering a substance into selected layers of the skin. In alternative embodiments of the invention, the device is suitable for withdrawing a substance or monitoring the level of a substance in the body. Examples of substances that can be monitored or withdrawn include blood, interstitial fluid or plasma that can then be analyzed for analytes, glucose, drugs and the like.
  • Referring to FIGS. 1-7, the invention in a first embodiment is directed to a device 10 having a supporting body 12 with a skin penetrating device 14 and a valve assembly 16. Device 10 is constructed for penetrating one or more selected layers of the dermis of a patient to attain the desired depth of penetration. The desired depth of penetration is determined by the substance being delivered, the delivery rate and the absorption rate. Penetration to a depth of 1 mm results in a high uptake by the body. Penetration to a depth on the order of 5 mm would slow delivery. The device is provided with one or more penetrating members each having a length to pierce the stratum corneum substantially without penetrating the dermis, which is below the stratum corneum and below the other layers of the epidermis. By delivering a substance to just below the stratum corneum, the substance can be absorbed and utilized by the body substantially without pain or discomfort to the patient. The device penetrates the dermis to a depth without contacting pain inducing nerves in the skin. Each penetrating member has a length sufficient to pierce the stratum corneum to a depth at which pain is reduced or minimized and the substance is absorbed by the body.
  • Referring to the drawings, body 12 forms a housing that has a generally flat profile when attached to the skin of a patient. The flat profile provides an ease of attachment to the skin and less obstruction to the patient. As shown in the embodiment of FIG. 1, body 12 has an elongated shape, although in alternative embodiments, body 12 can have a circular, square, rectangular or other shape.
  • As shown in FIG. 1, body 12 includes a base 18 having a generally elongated configuration. In this embodiment, base 18 has a generally planar shape with a rounded front end 20 and a straight rear end 22. Base 18 has a substantially flat bottom face 24 and a top face 26. A reservoir 28 is defined on the top face 26 of base 18 for containing a substance to be delivered to the patient as discussed hereinafter in greater detail.
  • Base 18 is dimensioned and configured to be placed against the skin of a patient for delivering a substance such as a drug or pharmaceutical. As shown in FIGS. 4 and 5, base 18 has a recess 30 dimensioned to receive skin penetrating device 14. Recess 30 includes a ledge 32 and a side wall 34 for supporting skin penetrating device 14. Side wall 34 preferably has a height sufficient to receive skin penetrating device 14 such that the outer face of skin penetrating device 14 lies in the plane of bottom face 24 of base 18. Ledge 32 has a width sufficient to support skin penetrating device 14. As shown in FIG. 4, recess 30 has a dimension complementing the outer dimension of skin penetrating device 14 so that skin penetrating device 14 can be coupled to base 18. In preferred embodiments, skin penetrating device 14 is coupled to base 18 by a suitable adhesive. In other embodiments, skin penetrating device 14 can be integrally formed with base 18. Other coupling arrangements can also be used.
  • Referring to FIG. 5, base 18 includes a top wall 36 overlying recess 30. Recess 30 has a depth extending between top wall 36 and bottom face 24 of base 18 that is greater than the thickness of skin penetrating device 14. Recess 30 forms a cavity 38 between top wall 36 and skin penetrating device 14. Cavity 38 is dimensioned to allow the flow of a liquid while providing a volume to minimize the dead space in base 18.
  • Reservoir 28 has an outer wall 40 integrated with the body 12 and spaced from top wall 36 of base 18 to define an internal chamber 42. Chamber 42 is dimensioned to contain a sufficient volume, for example, a predetermined unit dose, of a substance to be delivered to a patient. The chamber 42 is prefilled with the substance. In the embodiment illustrated, outer wall 40 of reservoir 28 has a generally dome shape with a convex outer surface 44 and a concave inner surface 46. Outer wall 40 is coupled to top face 26 of base 18 by a suitable adhesive or a weld to form a fluidtight seal for enclosing reservoir 28.
  • Reservoir 28 includes an end wall 48 having a channel 50 extending between cavity 38 and chamber 42, the channel 50 defining an outlet of the chamber 42. Outer wall 40 includes a movable dispensing member 52 for applying sufficient pressure to the chamber 42 to dispense a substance from chamber 42 through channel 50 to cavity 38. In the embodiment illustrated, dispensing member 52 is a flexible member that can be depressed inwardly toward chamber 42 to dispense the substance. Dispensing member 52 initially has a concave inner surface 54 to form a generally bubble shape. Preferably, dispensing member 52 is made of a resilient, flexible plastic material that can be depressed and deflected inward by manual pressure by the user. In this embodiment, outer wall 40 is substantially rigid.
  • Valve assembly 16 is positioned in channel 50 to control the flow of the substance from chamber 42 through channel 50. In this embodiment, valve assembly 16 is a rotatable valve having a valve element, or valve body 56, having a portion exposed to the exterior of the delivery device 10 for manipulation between a closed position and an open position. In the illustrated embodiment, the exposed portion has an actuator handle 58. Referring to FIG. 6, valve body 56 has a substantially cylindrical shape for rotating within aperture 60 in base 12. Aperture 60 has a shape and dimension complementing valve body 56 and extends from top face 26 of base 18 to cavity 38. As shown in FIG. 6, handle 58 is coupled to a top end 62 of valve body 56. Valve body 56 has a lower end 64 positioned at the opening to cavity 38. The exposed portion of the valve body 56 serves as an indicator indicating whether the valve body is in a closed position or an open position. For example, as can be appreciated from FIGS. 2 and 6, pointing of the handle 58 in the longitudinal direction of the delivery device 10 indicates that the valve body 56 is open. On the other hand, as can be seen from FIGS. 1 and 6, pointing of the handle 58 in the transverse direction of the delivery device 10 indicates that the valve body 56 is closed.
  • Valve body 56 includes an axial passage 66 extending from lower end 64. A radial passage 68 extends through valve body 56 and intersects axial passage 66. Radial passage 68 is aligned with channel 50 in end wall 48 of reservoir 28 to provide fluid communication between reservoir 28 and cavity 38. Valve body 56 is rotatable within aperture 60 as depicted in FIG. 1 to open and close valve assembly 16. In the embodiment illustrated, a recess 70 is provided in top face 26 of base 18 to receive handle 58 of valve assembly 16. Recess 70 allows handle 58 to rotate about 90.degree. from the closed position shown in FIG. 1 to the open position shown in FIG. 6.
  • Referring to FIG. 6, skin penetrating device 14 includes a base 72 having at least one micro skin penetrating member 74 extending outwardly from base 72. In the illustrated embodiment, there are a plurality of micro skin penetrating members 74 arranged in an array of spaced apart rows and columns, as can best be appreciated from FIG. 4.
  • In the illustrated embodiment, micro skin penetrating members 74 are hollow needles each having a beveled tip 76 for penetrating the skin of a patient and an axial passage 78 extending between tip 76 and a top face 80 of base 72. Base 72 has a bottom face 82 supporting micro skin penetrating members 74. Preferably, bottom face 82 of base 72 has a substantially planar configuration and is oriented in the plane of bottom face 24 of base 18.
  • Skin penetrating device 14, having at least one micro skin penetrating member 74, can be made from various materials. In one embodiment, a plurality of micro skin penetrating members 74 are spaced apart from each other a uniform distance and have a uniform length. The skin penetrating device 14 is made from silicon by, for example, suitable silicon etching or micromachining steps. In other embodiments, device 14 is made from stainless steel, tungsten steel, or alloys of nickel, molybdenum, chromium, cobalt and titanium. Alternatively, the micro skin penetrating members can be made of ceramic materials, polymers and other non-reactive materials.
  • The micro skin penetrating members 74 have a length suitable to achieve the desired depth of penetration in the skin. The length and thickness of the micro skin penetrating members 74 are selected based on the substance being administered or withdrawn and the thickness of the skin in the location where the device is to be applied. The micro skin penetrating members can be microneedles, microtubes, solid or hollow needles, lancets and the like. Generally, the micro skin penetrating members have a length, measured from the base to the tip of the member, of about 50 microns to about 4,000 microns and preferably, about 250 microns to 1,000 microns. The needles are typically mounted in a suitable base and have a substantially uniform length. In some embodiments, the micro skin penetrating members are about 30-gauge to about 50-gauge needles having a length of about 500 microns to about 1,000 microns. The micro skin penetrating members have a substantially square cross-sectional shape. Alternatively, the micro skin penetrating members can be triangular, cylindrical, or pyramid-shaped, or they can be flat blades.
  • The skin penetrating members 74 can be in an array covering an area of from about one cm.sup.2 to about 10 cm.sup.2. The array can have a width and length of about one centimeter to about five centimeters. The base 40 has a thickness of about 200 to 400 microns, and typically about 250 microns.
  • Generally, when the device is used as a delivery device, a pharmaceutical agent or drug solution is provided in the reservoir 28. In alternative arrangements, a dried or lyophilized drug or pharmaceutical agent can be provided in the cavity 38 or in the axial passages 78 of the skin penetrating member 74. A diluent such as distilled water or saline solution can be provided in the reservoir 28 and selectively allowed to flow by manipulation of the valve handle 58 into the cavity 38 and the axial passages 78 of the micro skin penetrating members 74 to dissolve and reconstitute the drug or pharmaceutical agent and then deliver the drug to the patient.
  • Bottom face 24 of base 18 in the embodiment of FIGS. 1-7 includes a pressure sensitive adhesive 84 surrounding skin penetrating device 14. Preferably, adhesive 84 forms a continuous circle around skin penetrating device 14 and has an area sufficient to releasably attach device 10 to the surface of a patient's skin. In all embodiments of the invention, a protective cover can be coupled to bottom face 24 of base 18 to cover adhesive 84 and skin penetrating device 14 until ready for use. The cover can be a rigid member or a flexible sheet material that can be peeled from the adhesive 84.
  • Device 10 is primarily intended to be a prefilled delivery device containing a pharmaceutical agent or drug to be delivered to a patient. In use, device 10 is removed from its protective packaging and positioned on the surface of skin 86 as shown in FIG. 7. A downward pressure is applied against body 12 with a force sufficient to cause micro skin penetrating members 74 to penetrate skin 86 to a desired depth, as determined by the length of skin penetrating members 74. Adhesive 84 attaches device 10 to the surface of skin 86 to prevent lateral movement of device 10 during delivery of the substance contained within reservoir 28. Adhesive 84 also forms a seal to prevent leakage of the substance from a target area of skin 86 penetrated by micro skin penetrating members 74.
  • After device 10 is positioned on skin 86, valve assembly 16 is rotated to the open position shown in FIGS. 6 and 7 to provide fluid communication between chamber 42 of reservoir 28 and cavity 38 of base 18. The position of the valve handle 58 indicates whether the valve is open or closed. A manual pressure is applied against dispensing member 52 as indicated by arrow 88 in FIG. 7 to deflect dispensing member 52 inwardly into chamber 42, thereby imposing a dispensing pressure on the substance in the chamber. The dispensing pressure forces the substance from chamber 42 through channel 50 and valve body 66 to cavity 38 where the substance can flow through the axial passages 78 of skin penetrating members 74. The dispensing pressure and the substance is accordingly dispensed so long as so long as the dispensing member 52 is depressed; and the dispensing pressure is gradually released upon release of the dispensing member 52. The manual pressure is maintained for a time sufficient to enable a sufficient amount of the substance to be delivered to a desired depth in the skin 86 where the substance can be absorbed and utilized by the body. Manual pressure is maintained throughout the delivery operation.
  • Device 10, including body 12 and valve assembly 16, is preferably made of a polymeric material that is non-reactive with the substance being delivered to the patient and non-irritating to the patient. Typically, base 12 is made of a suitable plastic material that allows some flexibility to conform to the contour of the skin of the patient while being sufficiently rigid to maintain the structural integrity of device 10. Examples of suitable polymers include polyethylene, polypropylene, polystyrene, polyesters, polyamides, polycarbonates, and copolymers thereof.
  • Embodiment of FIGS. 8-12
  • Referring to FIGS. 8-12, a second embodiment of the invention is illustrated for delivering a substance intradermally to a patient. Device 90 includes a body 92, a skin penetrating device 94 and a valve assembly 96. As shown in FIG. 8, body 92 has a generally circular configuration with a substantially flat planar top surface 98 and a planar bottom surface 100.
  • Top surface 98 of body 92 includes a recess 102 defined by a bottom surface 104 and a side wall 106. A flexible closure member 108 is coupled to top face 98 to close recess 102. Closure member 108 defines a reservoir having a chamber 110 between bottom surface 104 and closure member 108. As shown in FIG. 9, closure member 108 has a generally hemispherical shape having a convex top surface 112 and a concave bottom surface 114. A movable dispensing member is in the form of a closure member 108, which is preferably made of a material having the same characteristics as the material of the movable dispensing member 52 of the embodiment of FIGS. 1-7. In this embodiment, closure member 108 forms a top wall of chamber 110 and covers an area at least equal to the area of recess 102.
  • Side wall 106 of recess 102 includes a channel 116 extending radially outward from side wall 106. An aperture 118 defining a cylindrical channel extends between top surface 98 of body 92 and bottom surface 100. As shown in FIG. 11, channel 116 intersects with aperture 118.
  • Bottom surface 100 of body 92 includes a recess 120 dimensioned to receive skin penetrating device 94. Recess 120 includes a ledge 122 having a side wall 124 for receiving skin penetrating device 94. As shown in FIG. 11, side wall 124 has a height corresponding substantially to the thickness of skin penetrating device 94, so that the outer face of skin penetrating device 94 lies in the plane of bottom surface 100 of body 92.
  • Recess 120 has a bottom surface 106 that is spaced from bottom surface 100 by a distance greater than the thickness of skin penetrating device 94 to define a cavity 128. Aperture 118 communicates with cavity 128 to provide fluid communication between chamber 110 and cavity 128.
  • Skin penetrating device 94 includes a base 130 having at least one micro skin penetrating member 132 extending outwardly therefrom. As shown in FIG. 11, base 130 is dimensioned to fit on ledge 122 of recess 120. Micro skin penetrating members 132 are preferably microneedles in an array, the members each having a length sufficient to penetrate the surface of the skin to a selected depth for delivering a substance into the skin to a depth at which the substance can be utilized by the body.
  • Valve assembly 96 includes a cylindrical element body 134 dimensioned to fit in aperture 118. An actuating handle 136 is coupled to a top end 138 of valve body 134. Valve body 134 has a bottom end 140 with an axial passage 142. A radial passage 144 extends through a side face 146 of valve body 134 and intersects with axial passage 142. As shown in FIG. 11, radial passage 144 is aligned with channel 116. Valve body 134 can be rotated within aperture 118 between the closed position of FIG. 11 and the open position of FIG. 12, the handle 136 indicating the position fo the valve. Valve body 134 effectively closes chamber 110 to contain the substance within chamber 110 during storage and shipping of device 90. Valve body 134 can be rotated to the open position of FIG. 12 to provide fluid communication between chamber 110 and cavity 128.
  • Device 90 is used in a manner similar to the embodiment of FIGS. 1-7. Bottom surface 110 in the embodiment illustrated has an adhesive 148 such as a pressure-sensitive adhesive around the peripheral edge of body 92. As shown in FIG. 10, adhesive 148 surrounds skin penetrating device 94. Device 90 is positioned on the skin 150 of a patient and pressed downwardly to enable micro skin penetrating members 132 to penetrate the skin 150 and to allow adhesive 148 to attach device 190 to skin 150. Valve body 134 is rotated to the open position to provide fluid communication between chamber 110 and cavity 128. A downward pressure indicated by arrow 152 is applied to closure member 108 to produce a dispensing pressure sufficient to deliver a substance intradermally to the patient.
  • Embodiment of FIGS. 13-19
  • FIGS. 13-19 show another embodiment of a device 160 for delivering a substance intradermally to a patient. Device 160 includes a housing 162, a skin penetrating device 164 and a valve element or body 166.
  • Housing 162, as shown in the embodiment of FIGS. 13 and 14, has a substantially oval shape, a planar top surface 168 and a bottom surface 170. Bottom surface 170 includes a recess 172 having a ledge 174 and a side wall 176. As in the previous embodiments, ledge 174 and side wall 176 are dimensioned to support skin penetrating device 164. Recess 172 is dimensioned to form an internal cavity 178 communicating with skin penetrating device 164. Valve body 166 is mounted on housing 162 for controlling the flow of liquids into cavity 178. In this embodiment, valve body 166 includes a collar 180 coupled to top surface 168 of housing 162. Collar 180 has a substantially annular shape with an axial passage 182. Axial passage 182 extends from a top end 184 of collar 180 to cavity 178. A cylindrical valve body 186 fits in axial passage 182 and is rotatable within collar 180. An actuating handle 188 is coupled to a top end 190 of valve body 186. Handle 188 is positioned for rotating valve body 186 about the longitudinal axis of collar 180.
  • A supply tube 192 is coupled to collar 180 and extends radially outward from collar 180 in a direction generally parallel to top surface 168 of housing 162. Supply tube 192 includes an axial passage 194 extending radially through collar 180 and intersecting axial passage 182 of collar 180. Supply tube 192 has an outer end with a coupling member 196 for removably coupling a supply device or container 198 to the delivery device 160.
  • Supply device 198 is removably coupled to coupling member 196. Coupling member 196 can be a luer-type fitting, friction fit or other suitable coupling member capable of forming a fluid coupling with supply device 198.
  • Supply device 198 is preferably a single use disposable device containing a unit dose of the substance to be delivered to the patient. In the embodiment illustrated, supply device 198 includes a collar 200 and a compressible hollow body 202 containing the substance to be delivered to the patient. Collar 200 complements coupling member 196 for coupling supply device 198 to device 160. In the embodiment illustrated, body 202 is a bladder formed from a flexible material that can be compressed to dispense the contents of supply device 198. In other embodiments, supply device 198 can be a commercially available device containing a predetermined unit dose of a substance to be delivered and being squeezable to deliver the substance. One such device is sold under the trademark UNIJECT by Becton Dickinson and Company. Other unit dose delivery devices can be used instead.
  • As in the previous embodiments, skin penetrating device 164 includes a base 202 having a top face 206 and a planar bottom face 208. At least one micro skin penetrating member 210 in the form of a microneedle extends outwardly from bottom face 208. Micro skin penetrating members 210 have an axial passage extending between top face 206 in communication with cavity 178 and the tip of skin penetrating member 210. Bottom surface 170 of body 162 includes a rib 212 extending outwardly from body 162. Rib 212 surrounds skin penetrating device 164 and has a substantially annular shape as shown in FIG. 17. In the embodiment illustrated, rib 212 has an inner face 214 extending generally perpendicular to bottom face 170 of body 162. Rib 212 also includes an outer face 216 converging toward inner face 214 to form a crest 218. Outer face 216 is formed at an incline with respect to bottom face 170.
  • In the embodiment illustrated, rib 212 is spaced outwardly from micro skin penetrating members 210 and is impressed on the skin to define a target area on the skin for the micro skin penetrating members 210. Preferably, micro skin penetrating members 210 have an axial length slightly greater than the height of rib 212 as shown in FIG. 19.
  • Device 160 is placed on the skin 220 of a patient and pressed downwardly. The downward pressure on device 160 causes rib 212 to contact skin 220 and stretch the skin in a target area 222 surrounded by rib 212. Stretching the skin in target area 222 enables micro skin penetrating members 210 to pierce the surface of the skin. The normal elasticity of the skin provides a penetrating resistance to micro skin penetrating members 210. By stretching the skin in the target area 222, micro skin penetrating members 210 are better able to pierce the surface of the skin. In addition, rib 212 forms a seal against the surface of skin 220 to contain the substance that can leak from target area 222.
  • After device 160 is positioned on skin 220, valve body 166 is rotated to the open position shown in FIG. 19, the position fo the handle 188 indicating the position of the valve body 166. A dispensing pressure indicated by arrow 224 is provided on supply device 198 to dispense the contents of supply device 198 through axial passage 194 and into cavity 178 where the substance can be delivered to micro skin penetrating members 210. Preferably, supply device 198 is able to provide a pressure sufficient to dispense the contents and deliver the contents through micro skin penetrating members 210 into the skin of the patient. After the contents of supply device 198 is delivered to the patient, device 160 is separated from skin 220 and discarded.
  • Device 160 is preferably designed and constructed to be a disposable, single use device. The device is prepackaged in a sterile condition for immediate use. In the illustrated embodiment, bottom face 170 of body 162 includes a protective cover sheet 226. Cover sheet 226 is attached to bottom surface 170 in a manner that can be peeled easily from device 160 at the time of use. Cover sheet 226 is preferably a flexible sheet material such as Tyvek.R™. Cover sheet 226 has a dimension to cover skin penetrating device 164 to maintain skin penetrating device 164 in sterile conditions until ready for use. Cover sheets similar to cover sheet 226 can be used in connection with other embodiments according to the present invention.
  • The illustrated embodiments of the device can be used safely and effectively for the intradermal delivery of a pharmaceutical agent or other substance to a patient. The device is particularly suitable for introducing a vaccine intradermally for efficiently delivering a small amount of a vaccine antigen. The length, width and spacing of the microneedles can vary depending on the pharmaceutical agent being administered and the desired depth of penetration for delivery. When delivering a vaccine, the microneedles are dimensioned to target the optimum intradermal delivery site to promote the desired immune response.
  • While several exemplary embodiments have been chosen to illustrate the invention, it will be appreciated by those skilled in the art that various additions and modifications can be made to the invention without departing from the scope of the invention as defined in the appended claims.

Claims (8)

1. A method for delivering a substance into the skin of a patient, comprising:
positioning on the skin of a patient a delivery device including a housing, a fluid chamber having an outlet, a substance in the fluid chamber, a manually operated valve for controlling movement of the substance through the outlet of said fluid chamber wherein said valve is operable by the patient, and at least one skin penetrating member in fluid communication with said channel;
applying a pressure sufficient for said skin penetrating members to penetrate said skin to a depth from about 50 microns to about 4,000 microns, sufficient to deliver said substance to the patient; and
opening said valve to enable the substance to move from said fluid chamber, through said skin penetrating members, and into the skin of the patient.
2. The method of claim 1, further comprising applying pressure to the substance in the fluid chamber to help move the substance into the skin of the patient.
3. The method of claim 2, wherein the fluid chamber is defined at least in part by a movable wall, and the step of applying pressure to the substance in the fluid chamber comprises applying pressure to the movable wall.
4. The method of claim 3, further comprising, prior to the step of positioning, coupling the fluid chamber to the housing.
5. A method for delivering a substance into the skin of a patient, comprising:
positioning on the skin of a patient a delivery device including a housing, a fluid chamber having an outlet, a substance in the fluid chamber, a manually operated valve for controlling movement of the substance through the outlet of said fluid chamber wherein said valve is operably connected to a button, wherein said valve is operable in turn by the patient manually moving the button, and at least one skin penetrating member in fluid communication with said channel;
applying a pressure sufficient for said skin penetrating members to penetrate said skin to a depth from about 50 microns to about 4,000 microns, sufficient to deliver said substance to the patient; and
opening said valve to enable the substance to move from said fluid chamber, through said skin penetrating members, and into the skin of the patient.
6. The method of claim 5, further comprising applying pressure to the substance in the fluid chamber to help move the substance into the skin of the patient.
7. The method of claim 6, wherein the fluid chamber is defined at least in part by a movable wall, and the step of applying pressure to the substance in the fluid chamber comprises applying pressure to the movable wall.
8. The method of claim 7, further comprising, prior to the step of positioning, coupling the fluid chamber to the housing.
US12/107,154 2002-04-02 2008-04-22 Valved delivery device and method of delivering a substance to a patient Abandoned US20080195080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/107,154 US20080195080A1 (en) 2002-04-02 2008-04-22 Valved delivery device and method of delivering a substance to a patient

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/112,756 US7047070B2 (en) 2002-04-02 2002-04-02 Valved intradermal delivery device and method of intradermally delivering a substance to a patient
US11/328,035 US20070149945A1 (en) 2002-04-02 2006-01-09 Valved intradermal delivery device and method of intradermally delivering a substance to a patient
US12/107,154 US20080195080A1 (en) 2002-04-02 2008-04-22 Valved delivery device and method of delivering a substance to a patient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/328,035 Continuation US20070149945A1 (en) 2002-04-02 2006-01-09 Valved intradermal delivery device and method of intradermally delivering a substance to a patient

Publications (1)

Publication Number Publication Date
US20080195080A1 true US20080195080A1 (en) 2008-08-14

Family

ID=28453418

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/112,756 Expired - Lifetime US7047070B2 (en) 2002-04-02 2002-04-02 Valved intradermal delivery device and method of intradermally delivering a substance to a patient
US11/328,035 Abandoned US20070149945A1 (en) 2002-04-02 2006-01-09 Valved intradermal delivery device and method of intradermally delivering a substance to a patient
US12/107,154 Abandoned US20080195080A1 (en) 2002-04-02 2008-04-22 Valved delivery device and method of delivering a substance to a patient

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/112,756 Expired - Lifetime US7047070B2 (en) 2002-04-02 2002-04-02 Valved intradermal delivery device and method of intradermally delivering a substance to a patient
US11/328,035 Abandoned US20070149945A1 (en) 2002-04-02 2006-01-09 Valved intradermal delivery device and method of intradermally delivering a substance to a patient

Country Status (9)

Country Link
US (3) US7047070B2 (en)
EP (2) EP1757240B1 (en)
JP (1) JP5030368B2 (en)
AT (2) ATE344084T1 (en)
AU (1) AU2003218458A1 (en)
CA (1) CA2480476A1 (en)
DE (2) DE60324210D1 (en)
ES (2) ES2313566T3 (en)
WO (1) WO2003084595A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718462A (en) * 2017-10-27 2019-05-07 研能科技股份有限公司 The liquid feed device of human insulin injection

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US9717451B2 (en) * 2000-06-08 2017-08-01 Becton, Dickinson And Company Device for withdrawing or administering a substance and method of manufacturing a device
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
DE60234598D1 (en) 2001-06-12 2010-01-14 Pelikan Technologies Inc SELF-OPTIMIZING LANZET DEVICE WITH ADAPTANT FOR TEMPORAL FLUCTUATIONS OF SKIN PROPERTIES
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
ATE497731T1 (en) 2001-06-12 2011-02-15 Pelikan Technologies Inc DEVICE FOR INCREASING THE SUCCESS RATE OF BLOOD YIELD OBTAINED BY A FINGER PICK
JP4272051B2 (en) 2001-06-12 2009-06-03 ペリカン テクノロジーズ インコーポレイテッド Blood sampling apparatus and method
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
ATE485766T1 (en) 2001-06-12 2010-11-15 Pelikan Technologies Inc ELECTRICAL ACTUATING ELEMENT FOR A LANCET
BRPI0307434B8 (en) * 2002-02-04 2021-06-22 Becton Dickinson Co device for applying or removing a substance through the skin.
EP2578253B1 (en) * 2002-03-26 2018-03-14 Becton, Dickinson and Company Multi-stage fluid delivery device and method
US7115108B2 (en) * 2002-04-02 2006-10-03 Becton, Dickinson And Company Method and device for intradermally delivering a substance
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
TW566423U (en) * 2003-04-23 2003-12-11 Ind Tech Res Inst Structure for miniature gripping clip
DK1633235T3 (en) 2003-06-06 2014-08-18 Sanofi Aventis Deutschland Apparatus for sampling body fluid and detecting analyte
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7766902B2 (en) * 2003-08-13 2010-08-03 Wisconsin Alumni Research Foundation Microfluidic device for drug delivery
EP1671096A4 (en) 2003-09-29 2009-09-16 Pelikan Technologies Inc Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
CN100586414C (en) * 2003-10-21 2010-02-03 诺沃挪第克公司 Reservoir device with inclined needle
DE602004022075D1 (en) * 2003-10-21 2009-08-27 Novo Nordisk As RESERVOIR DEVICE WITH INTEGRATED FASTENER
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
EP1727577A1 (en) 2004-03-26 2006-12-06 Unomedical A/S Injector device for infusion set
US20050240154A1 (en) * 2004-04-21 2005-10-27 Unomedical A/S: Infusion set with patch
WO2006011062A2 (en) 2004-05-20 2006-02-02 Albatros Technologies Gmbh & Co. Kg Printable hydrogel for biosensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
WO2005120433A1 (en) * 2004-06-07 2005-12-22 Novo Nordisk A/S Reservoir with liquidly applied seal
US8062250B2 (en) 2004-08-10 2011-11-22 Unomedical A/S Cannula device
CA2578817C (en) 2004-09-10 2014-04-15 Becton, Dickinson And Company Reconstituting infusion device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7985199B2 (en) * 2005-03-17 2011-07-26 Unomedical A/S Gateway system
EP1762259B1 (en) 2005-09-12 2010-09-08 Unomedical A/S Inserter for an infusion set with a first and second spring units
US7842008B2 (en) 2005-11-21 2010-11-30 Becton, Dickinson And Company Intradermal delivery device
WO2007071258A1 (en) 2005-12-23 2007-06-28 Unomedical A/S Injection device
US9339641B2 (en) 2006-01-17 2016-05-17 Emkinetics, Inc. Method and apparatus for transdermal stimulation over the palmar and plantar surfaces
US9610459B2 (en) 2009-07-24 2017-04-04 Emkinetics, Inc. Cooling systems and methods for conductive coils
US20100168501A1 (en) * 2006-10-02 2010-07-01 Daniel Rogers Burnett Method and apparatus for magnetic induction therapy
WO2007092618A2 (en) * 2006-02-09 2007-08-16 Deka Products Limited Partnership Fluid delivery systems and methods
JPWO2007091608A1 (en) * 2006-02-10 2009-07-02 久光製薬株式会社 Transdermal drug administration device with microneedle
JP5038334B2 (en) 2006-02-28 2012-10-03 ウノメディカル アクティーゼルスカブ Injection parts with inserts and needle protectors for injection parts
EP2005990B1 (en) 2006-04-07 2013-08-28 Hisamitsu Pharmaceutical Co., Inc. Microneedle device and transdermal administration device provided with microneedles
WO2007140783A2 (en) 2006-06-07 2007-12-13 Unomedical A/S Inserter for transcutaneous sensor
KR20090028701A (en) 2006-06-09 2009-03-19 우노메디컬 에이/에스 Mounting pad
KR101421312B1 (en) 2006-07-21 2014-07-31 캘리포니아 인스티튜트 오브 테크놀로지 Targeted gene delivery for dendritic cell vaccination
PL2046419T3 (en) 2006-08-02 2011-10-31 Unomedical As Cannula and delivery device
EP1884223A1 (en) * 2006-08-04 2008-02-06 IP Randwyck B.V. Wound-stimulating unit
US8119772B2 (en) * 2006-09-29 2012-02-21 California Institute Of Technology MART-1 T cell receptors
US9005102B2 (en) 2006-10-02 2015-04-14 Emkinetics, Inc. Method and apparatus for electrical stimulation therapy
US10786669B2 (en) 2006-10-02 2020-09-29 Emkinetics, Inc. Method and apparatus for transdermal stimulation over the palmar and plantar surfaces
AU2007303223C1 (en) 2006-10-02 2013-01-10 Emkinetics, Inc. Method and apparatus for magnetic induction therapy
US11224742B2 (en) 2006-10-02 2022-01-18 Emkinetics, Inc. Methods and devices for performing electrical stimulation to treat various conditions
EP1917990A1 (en) 2006-10-31 2008-05-07 Unomedical A/S Infusion set
US7776022B2 (en) * 2007-03-19 2010-08-17 Hemcon Medical Technologies Apparatus and methods for making, storing, and administering freeze-dried materials such as freeze-dried plasma
US20090107001A1 (en) * 2007-03-19 2009-04-30 Hemcon Medical Technologies, Inc. Apparatus and methods for making, storing, and administering freeze-dried materials such as freeze-dried plasma
US8449520B2 (en) * 2007-03-19 2013-05-28 HemCon Medical Technologies Inc. Apparatus and methods for making, storing, and administering freeze-dried materials such as freeze-dried plasma
US20090223080A1 (en) * 2007-03-19 2009-09-10 Hemcon Medical Technologies, Inc. Apparatus and methods for making, storing, and administering freeze-dried materials such as freeze-dried plasma
GB2448493B (en) * 2007-04-16 2009-10-14 Dewan Fazlul Hoque Chowdhury Microneedle transdermal delivery device
WO2008155145A1 (en) 2007-06-20 2008-12-24 Unomedical A/S A catheter and a method and an apparatus for making such catheter
CA2691341A1 (en) 2007-07-03 2009-01-08 Unomedical A/S Inserter having bistable equilibrium states
WO2009007287A1 (en) 2007-07-10 2009-01-15 Unomedical A/S Inserter having two springs
WO2009010396A1 (en) 2007-07-18 2009-01-22 Unomedical A/S Insertion device with pivoting action
US20100121307A1 (en) * 2007-08-24 2010-05-13 Microfabrica Inc. Microneedles, Microneedle Arrays, Methods for Making, and Transdermal and/or Intradermal Applications
US7771391B2 (en) * 2007-09-28 2010-08-10 Calibra Medical, Inc. Disposable infusion device with snap action actuation
US20090105673A1 (en) * 2007-10-17 2009-04-23 Cascio Gregory R Medicament applicator
US7806878B2 (en) * 2007-10-17 2010-10-05 Cascio Gregory R Medicament applicator
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
DK2252349T3 (en) 2008-02-13 2011-10-10 Unomedical As Sealing between a cannula portion and a fluid path
AU2009216703A1 (en) 2008-02-20 2009-08-27 Unomedical A/S Insertion device with horizontally moving part
JP5285943B2 (en) * 2008-03-28 2013-09-11 凸版印刷株式会社 Needle-shaped body array and method for manufacturing needle-shaped body array
EP2265324B1 (en) 2008-04-11 2015-01-28 Sanofi-Aventis Deutschland GmbH Integrated analyte measurement system
WO2009149308A2 (en) * 2008-06-04 2009-12-10 Seventh Sense Biosystems, Inc. Compositions and methods for rapid one-step diagnosis
US8986250B2 (en) * 2008-08-01 2015-03-24 Wisconsin Alumni Research Foundation Drug delivery platform utilizing hydrogel pumping mechanism
US8795259B2 (en) * 2008-08-01 2014-08-05 Wisconsin Alumni Research Foundation Drug delivery platform incorporating hydrogel pumping mechanism with guided fluid flow
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
WO2010033878A2 (en) 2008-09-19 2010-03-25 David Brown Solute concentration measurement device and related methods
EP3187219B1 (en) 2008-12-02 2020-04-22 Allergan, Inc. Injection device
KR101039078B1 (en) * 2009-08-04 2011-06-07 (주)마이티시스템 Effective component delivery system having micro-needle and movable storage capsule
BRPI0923489A2 (en) 2008-12-22 2016-01-26 Unomedical As medical device comprising adhesive pad
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US20100256524A1 (en) 2009-03-02 2010-10-07 Seventh Sense Biosystems, Inc. Techniques and devices associated with blood sampling
US9295417B2 (en) 2011-04-29 2016-03-29 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
SI2770061T1 (en) 2009-07-24 2019-02-28 Immune Design Corp. Non-integrating lentiviral vectors
CA2769030C (en) 2009-07-30 2016-05-10 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
KR20120054598A (en) 2009-07-30 2012-05-30 우노메디컬 에이/에스 Inserter device with horizontal moving part
US9533092B2 (en) 2009-08-07 2017-01-03 Unomedical A/S Base part for a medication delivery device
US8088108B2 (en) * 2009-08-22 2012-01-03 Joseph Wayne Kraft Rapid local anesthesia injection cone
US8409147B2 (en) * 2009-08-22 2013-04-02 Joseph Wayne Kraft Rapid local anesthesia linear injection device
JP5610418B2 (en) * 2009-09-07 2014-10-22 学校法人立命館 Substance supply device
EP2493551A4 (en) 2009-10-26 2013-04-17 Emkinetics Inc Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues
US8328757B2 (en) * 2010-01-08 2012-12-11 Wisconsin Alumni Research Foundation Bladder arrangement for microneedle-based drug delivery device
WO2011094573A1 (en) 2010-01-28 2011-08-04 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
WO2011121023A1 (en) 2010-03-30 2011-10-06 Unomedical A/S Medical device
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8588884B2 (en) 2010-05-28 2013-11-19 Emkinetics, Inc. Microneedle electrode
WO2011163347A2 (en) 2010-06-23 2011-12-29 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
JP5424998B2 (en) * 2010-06-30 2014-02-26 株式会社吉野工業所 Dosing device
US20120016308A1 (en) 2010-07-16 2012-01-19 Seventh Sense Biosystems, Inc. Low-pressure packaging for fluid devices
US20130158482A1 (en) 2010-07-26 2013-06-20 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
WO2012021801A2 (en) * 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
US20120041338A1 (en) * 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Clinical and/or consumer techniques and devices
EP2433663A1 (en) 2010-09-27 2012-03-28 Unomedical A/S Insertion system
EP2436412A1 (en) 2010-10-04 2012-04-04 Unomedical A/S A sprinkler cannula
US9017289B2 (en) 2010-11-03 2015-04-28 Covidien Lp Transdermal fluid delivery device
US8668675B2 (en) * 2010-11-03 2014-03-11 Flugen, Inc. Wearable drug delivery device having spring drive and sliding actuation mechanism
WO2012064802A1 (en) 2010-11-09 2012-05-18 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
EP3235429B1 (en) 2011-04-29 2023-06-07 YourBio Health, Inc. Devices and methods for collection of blood from a subject
KR102013466B1 (en) 2011-04-29 2019-08-22 세븐쓰 센스 바이오시스템즈, 인크. Delivering and/or receiving fluids
WO2012166965A2 (en) * 2011-05-31 2012-12-06 Microlin, Llc An apparatus and method for dermal delivery
US8636696B2 (en) 2011-06-10 2014-01-28 Kimberly-Clark Worldwide, Inc. Transdermal device containing microneedles
WO2013050277A1 (en) 2011-10-05 2013-04-11 Unomedical A/S Inserter for simultaneous insertion of multiple transcutaneous parts
EP2583715A1 (en) 2011-10-19 2013-04-24 Unomedical A/S Infusion tube system and method for manufacture
US9440051B2 (en) 2011-10-27 2016-09-13 Unomedical A/S Inserter for a multiplicity of subcutaneous parts
EA038702B1 (en) 2012-03-30 2021-10-07 Иммьюн Дизайн Корп. Lentiviral vector particles having improved transduction efficiency for cells expressing dc sign
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9555186B2 (en) 2012-06-05 2017-01-31 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
AU2014222308B2 (en) 2013-02-28 2018-11-08 Vivasor, Inc. Transdermal drug delivery device
WO2014132239A1 (en) 2013-02-28 2014-09-04 Kimberly-Clark Worldwide, Inc. Drug delivery device
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US20140350518A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Syringe extrusion accessory
US20140350516A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Mechanical syringe accessory
AU2014274061C1 (en) * 2013-05-31 2019-06-13 Mannkind Corporation A fluid delivery device having an insertable prefilled cartridge
WO2015027055A1 (en) * 2013-08-23 2015-02-26 Elwha Llc Systems, methods, and devices for delivering treatment to a skin surface
KR20160144980A (en) * 2014-04-14 2016-12-19 도판 인사츠 가부시키가이샤 Injection device
US10029048B2 (en) 2014-05-13 2018-07-24 Allergan, Inc. High force injection devices
US10226585B2 (en) 2014-10-01 2019-03-12 Allergan, Inc. Devices for injection and dosing
US11478583B2 (en) * 2014-10-03 2022-10-25 Enable Injections, Inc. Medical fluid transfer and injection apparatus and method
EP4303552A3 (en) * 2014-12-04 2024-03-20 Becton, Dickinson and Company Fluid delivery device with sensor and pump control
RU2715685C2 (en) 2015-03-10 2020-03-02 Аллерган Фармасьютикалз Холдингз (Айрленд) Анлимитед Кампани Multiple-needle injection device
WO2017044887A1 (en) 2015-09-09 2017-03-16 Drawbridge Health, Inc. Systems, methods, and devices for sample collection, stabilization and preservation
US10705486B2 (en) * 2015-10-11 2020-07-07 Zahra Aboutalebi Magic gluco-wrist watch (MGW)
CA3003890A1 (en) 2015-11-09 2017-05-18 Immune Design Corp. Compositions comprising lentiviral vectors expressing il-12 and methods of use thereof
US11135283B2 (en) 2015-11-09 2021-10-05 Immune Design Corp. Retroviral vector for the administration and expression of replicon RNA expressing heterologous nucleic acids
JP2019509275A (en) 2016-02-23 2019-04-04 イミューン デザイン コーポレイション Multigenome retroviral vector preparations and methods and systems for producing and using them
US9827369B2 (en) 2016-03-16 2017-11-28 Baxter International Inc. Percutaneous administration device and method for injecting medicinal substances
US10596321B2 (en) 2016-04-08 2020-03-24 Allergan, Inc. Aspiration and injection device
KR101695603B1 (en) * 2016-11-08 2017-01-12 이창우 needle disc roller apparatus comprising viscoelastic connection cap with structures being tightly joined to lower end of a bottle neck
CA3049458A1 (en) 2017-01-10 2018-07-19 Drawbridge Health, Inc. Devices, systems, and methods for sample collection
WO2018148180A2 (en) 2017-02-07 2018-08-16 Immune Design Corp. Materials and methods for identifying and treating cancer patients
USD867582S1 (en) 2017-03-24 2019-11-19 Allergan, Inc. Syringe device
WO2019036609A1 (en) * 2017-08-17 2019-02-21 New York University Bone growth stimulator and methods of use
TWI653968B (en) 2017-11-20 2019-03-21 研能科技股份有限公司 Blood glucose detecting device
TWI667016B (en) * 2017-11-20 2019-08-01 研能科技股份有限公司 Blood sugar detecting and controlling system
JP7491551B2 (en) * 2019-04-25 2024-05-28 コスメディ製薬株式会社 Applicator 2 for water-soluble sheet preparation

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250023A (en) * 1989-10-27 1993-10-05 Korean Research Institute on Chemical Technology Transdermal administration method of protein or peptide drug and its administration device thereof
US5279544A (en) * 1990-12-13 1994-01-18 Sil Medics Ltd. Transdermal or interdermal drug delivery devices
US5820622A (en) * 1994-11-04 1998-10-13 Elan Medical Technologies Limited Analyte-controlled liquid delivery device and analyte monitor
US5997501A (en) * 1993-11-18 1999-12-07 Elan Corporation, Plc Intradermal drug delivery device
US6050988A (en) * 1997-12-11 2000-04-18 Alza Corporation Device for enhancing transdermal agent flux
US6083196A (en) * 1997-12-11 2000-07-04 Alza Corporation Device for enhancing transdermal agent flux
US6132755A (en) * 1995-07-14 2000-10-17 Boehringer Ingelheim Kg Transcorneal drug-release system
US6219574B1 (en) * 1996-06-18 2001-04-17 Alza Corporation Device and method for enchancing transdermal sampling
US6440096B1 (en) * 2000-07-14 2002-08-27 Becton, Dickinson And Co. Microdevice and method of manufacturing a microdevice
US6565532B1 (en) * 2000-07-12 2003-05-20 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
US6623457B1 (en) * 1999-09-22 2003-09-23 Becton, Dickinson And Company Method and apparatus for the transdermal administration of a substance
US6656147B1 (en) * 2000-07-17 2003-12-02 Becton, Dickinson And Company Method and delivery device for the transdermal administration of a substance

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1584474A (en) * 1968-02-20 1969-12-26
GB1216813A (en) * 1969-02-21 1970-12-23 Shozo Narusawa Transcutaneous injection device
US3964482A (en) * 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
GB2221394B (en) 1988-08-05 1992-03-04 Eilert Eilertsen An injection device
US5656032A (en) * 1989-06-16 1997-08-12 Science Incorporated Fluid delivery apparatus and method of making same
US5527288A (en) * 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
SE9101022D0 (en) * 1991-01-09 1991-04-08 Paal Svedman MEDICAL SUSPENSION DEVICE
US6048337A (en) * 1992-01-07 2000-04-11 Principal Ab Transdermal perfusion of fluids
US5389070A (en) * 1993-03-16 1995-02-14 Wake Forest University Syringe apparatus with a fluid reservoir for injection and aspiration of fluids
FI941336A (en) * 1993-03-23 1994-09-24 Diomedes Oy A patch that acts as a dispenser
US5320600A (en) * 1993-06-14 1994-06-14 Lambert Wm S Plural content container for simultaneous ejection
AU5869796A (en) 1995-05-22 1996-12-11 Ned A. Godshall Micromechanical patch for enhancing the delivery of compound s through the skin
AU5740496A (en) * 1995-05-22 1996-12-11 General Hospital Corporation, The Micromechanical device and method for enhancing delivery of compounds through the skin
US5735818A (en) * 1995-10-11 1998-04-07 Science Incorporated Fluid delivery device with conformable ullage
IE80772B1 (en) 1996-06-10 1999-02-10 Elan Corp Plc Delivery needle
US6186982B1 (en) 1998-05-05 2001-02-13 Elan Corporation, Plc Subcutaneous drug delivery device with improved filling system
PT1037687E (en) * 1997-12-11 2008-12-17 Alza Corp Device for enhancing transdermal agent flux
CN1315877A (en) 1998-08-31 2001-10-03 强生消费者公司 Electrotransport device comprising blades
US6256533B1 (en) * 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
US6379324B1 (en) 1999-06-09 2002-04-30 The Procter & Gamble Company Intracutaneous microneedle array apparatus
US6558361B1 (en) * 2000-03-09 2003-05-06 Nanopass Ltd. Systems and methods for the transport of fluids through a biological barrier and production techniques for such systems
US6537242B1 (en) * 2000-06-06 2003-03-25 Becton, Dickinson And Company Method and apparatus for enhancing penetration of a member for the intradermal sampling or administration of a substance
US6603987B2 (en) 2000-07-11 2003-08-05 Bayer Corporation Hollow microneedle patch

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250023A (en) * 1989-10-27 1993-10-05 Korean Research Institute on Chemical Technology Transdermal administration method of protein or peptide drug and its administration device thereof
US5279544A (en) * 1990-12-13 1994-01-18 Sil Medics Ltd. Transdermal or interdermal drug delivery devices
US5997501A (en) * 1993-11-18 1999-12-07 Elan Corporation, Plc Intradermal drug delivery device
US5820622A (en) * 1994-11-04 1998-10-13 Elan Medical Technologies Limited Analyte-controlled liquid delivery device and analyte monitor
US6132755A (en) * 1995-07-14 2000-10-17 Boehringer Ingelheim Kg Transcorneal drug-release system
US6219574B1 (en) * 1996-06-18 2001-04-17 Alza Corporation Device and method for enchancing transdermal sampling
US6050988A (en) * 1997-12-11 2000-04-18 Alza Corporation Device for enhancing transdermal agent flux
US6083196A (en) * 1997-12-11 2000-07-04 Alza Corporation Device for enhancing transdermal agent flux
US6623457B1 (en) * 1999-09-22 2003-09-23 Becton, Dickinson And Company Method and apparatus for the transdermal administration of a substance
US6565532B1 (en) * 2000-07-12 2003-05-20 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
US6440096B1 (en) * 2000-07-14 2002-08-27 Becton, Dickinson And Co. Microdevice and method of manufacturing a microdevice
US6656147B1 (en) * 2000-07-17 2003-12-02 Becton, Dickinson And Company Method and delivery device for the transdermal administration of a substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718462A (en) * 2017-10-27 2019-05-07 研能科技股份有限公司 The liquid feed device of human insulin injection

Also Published As

Publication number Publication date
US20030187423A1 (en) 2003-10-02
DE60309454T2 (en) 2007-10-04
DE60324210D1 (en) 2008-11-27
CA2480476A1 (en) 2003-10-16
JP5030368B2 (en) 2012-09-19
EP1490143B1 (en) 2006-11-02
DE60309454D1 (en) 2006-12-14
ATE410963T1 (en) 2008-10-15
EP1490143A1 (en) 2004-12-29
WO2003084595A1 (en) 2003-10-16
ES2313566T3 (en) 2009-03-01
ES2276054T3 (en) 2007-06-16
US7047070B2 (en) 2006-05-16
EP1757240A1 (en) 2007-02-28
EP1757240B1 (en) 2008-10-15
ATE344084T1 (en) 2006-11-15
US20070149945A1 (en) 2007-06-28
JP2005521524A (en) 2005-07-21
AU2003218458A1 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
US7047070B2 (en) Valved intradermal delivery device and method of intradermally delivering a substance to a patient
EP1438098B1 (en) Microdevice of delivering or withdrawing a substance through the skin of an animal
EP1700615B1 (en) Device for intradermal medicament delivery
US6440096B1 (en) Microdevice and method of manufacturing a microdevice
EP1490145B1 (en) Device for intradermally delivering a substance
AU2002330234A1 (en) Microdevice and method of delivering or withdrawing a substance through the skin of an animal

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION