US20080195080A1 - Valved delivery device and method of delivering a substance to a patient - Google Patents
Valved delivery device and method of delivering a substance to a patient Download PDFInfo
- Publication number
- US20080195080A1 US20080195080A1 US12/107,154 US10715408A US2008195080A1 US 20080195080 A1 US20080195080 A1 US 20080195080A1 US 10715408 A US10715408 A US 10715408A US 2008195080 A1 US2008195080 A1 US 2008195080A1
- Authority
- US
- United States
- Prior art keywords
- skin
- substance
- patient
- fluid chamber
- skin penetrating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14248—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/20—Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
- A61B17/205—Vaccinating by means of needles or other puncturing devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0023—Drug applicators using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/003—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M5/148—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16877—Adjusting flow; Devices for setting a flow rate
- A61M5/16881—Regulating valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/42—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for desensitising skin, for protruding skin to facilitate piercing, or for locating point where body is to be pierced
- A61M5/425—Protruding skin to facilitate piercing, e.g. vacuum cylinders, vein immobilising means
Definitions
- the present invention relates to an intradermal delivery device having a fluid chamber to contain a substance to be delivered intradermally to a patient in a target area of the skin.
- the present invention also relates to a method of delivering a substance into the skin of a patient.
- Drugs and pharmaceutical agents are delivered to patients by a variety of methods.
- a typical method delivers the drug or pharmaceutical agent subcutaneously by a stainless steel cannula.
- the subcutaneous sampling and delivery methods using a cannula are effective for many applications, the pain normally induced by the cannula has prompted the development of less painful delivery methods.
- the skin is made up of several layers, with the upper composite layer being the epithelial layer.
- the outermost layer of the skin, the stratum corneum is a waterproof membrane with well known barrier properties that prevent the influx of undesirable molecules and various foreign substances while preventing the outflux of various analytes.
- the stratum corneum is a complex structure of compacted keratinized cell remnants having a thickness of about 10-30 microns.
- the natural impermeability of the stratum corneum prevents the administration of most pharmaceutical agents and other substances through the skin.
- Numerous methods and devices have been proposed to enhance the permeability of the skin and to increase the diffusion of various drugs through the skin for utilization by the body.
- the delivery of drugs through the skin is enhanced by increasing either the permeability of the skin or the force or energy used to direct the drug through the skin.
- Another method of sampling and delivering various substances through the skin is by forming micropores or cuts through the stratum corneum.
- the devices for piercing the stratum corneum generally include a plurality of micron size needles or blades having a length to pierce the stratum corneum without passing completely through the epidermis. Examples of these devices are disclosed in U.S. Pat. No. 5,879,326 to Godshall et al.; U.S. Pat. No. 5,250,023 to Lee et al., and WO 97/48440.
- micron-sized needles or blades can be effective in delivering substances to the body.
- these needles and blades having a length of a few microns to a few hundred microns typically do not penetrate skin to a uniform depth.
- the natural elasticity and resilience of the skin will often result in the skin being deformed by the needles rather than pierced.
- a microneedle array when pressed against the skin often results in the outermost needles penetrating the skin while the innermost needles do not penetrate or only penetrate to depth less than the outermost needles.
- the present invention is directed to a method and device for the intradermal sampling or delivery of a substance into the skin of a patient. More particularly, the invention is directed to a method and device for controlling the flow of a pharmaceutical agent, such as a drug or vaccine, through the device for delivery into or below the stratum corneum of the skin to a depth sufficient for the pharmaceutical agent to be absorbed and utilized by the body.
- a pharmaceutical agent such as a drug or vaccine
- a sampling or delivery device having at least one skin penetrating member having a length that provides an increased comfort level to the patient.
- a further object of the invention is to provide a method of penetrating the skin for sampling or delivering a substance through the skin substantially without pain to the patient.
- Another object of the invention is to provide a delivery device having a plurality of micro skin penetrators, such as microtubes, needles, microneedles, blades or lancets, selected for piercing the stratum corneum of the skin to a depth that is short of the nerve endings.
- micro skin penetrators such as microtubes, needles, microneedles, blades or lancets, selected for piercing the stratum corneum of the skin to a depth that is short of the nerve endings.
- Still another object of the invention is to provide a delivery device having a manually operated valve to control the delivery of a substance to the at least one micro skin penetrating member of the delivery device.
- a further object of the invention is to provide a pre-filled delivery device having a reservoir containing a substance, at least one micro skin penetrating member, and a reservoir outlet for supplying a substance to the micro skin penetrating member for delivery to the patient.
- Another object of the invention is to provide a delivery device having a reservoir containing a substance to be delivered to a patient, wherein the reservoir is defined, at least in part, by a movable wall that is depressed to dispense the substance to the patient.
- Still another object of the invention is to provide a delivery device having at least one micro skin penetrating member for delivering a substance to a target area on the skin of a patient and a ridge encircling the micro skin penetrating members to form a containment area around the target area.
- the device for delivering a substance into the skin of a patient.
- the device comprises a housing having a fluid chamber having an outlet.
- a valve member is coupled to the housing for controlling the flow of the substance through the outlet of the chamber.
- a skin penetrating device is coupled to the housing and is in fluid communication with the fluid chamber for delivering the substance to the patient.
- the objects and advantages of the invention are further attained by providing a device for intradermally delivering a substance to a patient.
- the device comprises a housing having a bottom face dimensioned to contact the skin of the patient.
- the housing has a fluid chamber with an outlet, and a manually operated valve coupled to the housing for controlling the flow of the substance through the outlet of the chamber.
- a micro skin penetrating member is coupled to the housing and is in fluid communication with the chamber.
- An arrangement is provided for applying to the substance a pressure sufficient to deliver the substance into the skin of a patient.
- a yet further object of the invention is to provide a method for delivering a substance into or through the skin of a patient.
- the method comprises positioning on the skin of a patient a delivery device including a housing; a fluid chamber on the housing for containing the substance, said chamber having an outlet for the substance; a valve member connected to said housing to control the flow of the substance through the outlet; and a skin penetrating device on the housing and in fluid communication with the chamber for delivering the substance into the skin of the patient.
- a sufficient pressure is applied for the micro skin penetrating members to penetrate the skin to a depth sufficient to deliver the substance to the patient.
- the valve is opened, the substance is introduced from the fluid chamber to the micro skin penetrating members under pressure, and the substance is delivered to the patient.
- the fluid chamber is removably coupled to the housing before the delivery device is positioned on the skin.
- FIG. 1 is a top plan view of the device in accordance with a first embodiment of the invention for delivering a substance into the skin of a patient;
- FIG. 2 is a perspective view of the device of FIG. 1 showing the device on the skin of a patient;
- FIG. 3 is a side elevational view of the device of FIG. 1 showing the micro skin penetrating members extending from the bottom face of the device;
- FIG. 4 is a bottom plan view of the device of FIG. 1 showing the micro skin penetrating members
- FIG. 5 is a cross-sectional side view of the device of FIG. 1 taken along line 5 - 5 of FIG. 1 showing the fluid chamber, the cavity and the control valve;
- FIG. 6 is an enlarged cross-sectional view of the control valve
- FIG. 7 is a cross-sectional side view similar to FIG. 5 but showing the device in contact with the skin of a patient and dispensing the substance to the patient;
- FIG. 8 is a top plan view of a delivery device in a second embodiment of the invention.
- FIG. 9 is a side elevational view of the device of FIG. 8 ;
- FIG. 10 is a bottom plan view of the device of FIG. 8 ;
- FIG. 11 is a cross-sectional side view of the skin penetrating device taken along line 11 - 11 of FIG. 8 showing the reservoir filled with a substance;
- FIG. 12 is a cross-sectional view of the device of FIG. 8 showing the device penetrating the skin and the top wall depressed to dispense the substance;
- FIG. 13 is a perspective view of the device in another embodiment of the invention.
- FIG. 14 is a top plan view of the device of FIG. 13 ;
- FIG. 15 is a side view of the device of FIG. 13 showing a protective strip partially removed from the device;
- FIG. 16 is a side view of the device of FIG. 13 showing the rib around the micro skin penetrating members
- FIG. 17 is a plan bottom view of the device of FIG. 13 ;
- FIG. 18 is a cross-sectional view taken axially to the line of 18 - 18 of FIG. 14 ;
- FIG. 19 is a cross-sectional view similar to FIG. 13 , but showing the device in contact with the skin of a patient and the device delivering the substance through the micro skin penetrating members.
- the present invention is directed to a device for sampling, monitoring or delivering a substance into the skin of a patient. More particularly, the invention is directed to a delivery device and to a method for administering a substance to below the stratum corneum of the skin of a patient.
- penetrate refers to entering a layer of the skin without passing completely through.
- pierce refers to passing completely through a layer of the skin.
- a pharmaceutical agent includes a substance having biological activity that can be delivered through the body membranes and surfaces, and particularly into the skin. Examples include antibiotics, antiviral agents, analgesics, anesthetics, anorexics, antiarthritics, antidepressants, antihistamines, anti-inflammatory agents, antineoplastic agents, vaccines, including DNA vaccines, and the like.
- Other substances that can be delivered intradermally to a patient include proteins, peptides and fragments thereof. The proteins and peptides can be naturally occurring, synthesized or recombinantly produced.
- the device of the invention is primarily for delivering a substance into selected layers of the skin.
- the device is suitable for withdrawing a substance or monitoring the level of a substance in the body.
- substances that can be monitored or withdrawn include blood, interstitial fluid or plasma that can then be analyzed for analytes, glucose, drugs and the like.
- the invention in a first embodiment is directed to a device 10 having a supporting body 12 with a skin penetrating device 14 and a valve assembly 16 .
- Device 10 is constructed for penetrating one or more selected layers of the dermis of a patient to attain the desired depth of penetration.
- the desired depth of penetration is determined by the substance being delivered, the delivery rate and the absorption rate. Penetration to a depth of 1 mm results in a high uptake by the body. Penetration to a depth on the order of 5 mm would slow delivery.
- the device is provided with one or more penetrating members each having a length to pierce the stratum corneum substantially without penetrating the dermis, which is below the stratum corneum and below the other layers of the epidermis.
- penetrating members each having a length to pierce the stratum corneum substantially without penetrating the dermis, which is below the stratum corneum and below the other layers of the epidermis.
- body 12 forms a housing that has a generally flat profile when attached to the skin of a patient.
- the flat profile provides an ease of attachment to the skin and less obstruction to the patient.
- body 12 has an elongated shape, although in alternative embodiments, body 12 can have a circular, square, rectangular or other shape.
- body 12 includes a base 18 having a generally elongated configuration.
- base 18 has a generally planar shape with a rounded front end 20 and a straight rear end 22 .
- Base 18 has a substantially flat bottom face 24 and a top face 26 .
- a reservoir 28 is defined on the top face 26 of base 18 for containing a substance to be delivered to the patient as discussed hereinafter in greater detail.
- Base 18 is dimensioned and configured to be placed against the skin of a patient for delivering a substance such as a drug or pharmaceutical. As shown in FIGS. 4 and 5 , base 18 has a recess 30 dimensioned to receive skin penetrating device 14 .
- Recess 30 includes a ledge 32 and a side wall 34 for supporting skin penetrating device 14 .
- Side wall 34 preferably has a height sufficient to receive skin penetrating device 14 such that the outer face of skin penetrating device 14 lies in the plane of bottom face 24 of base 18 .
- Ledge 32 has a width sufficient to support skin penetrating device 14 . As shown in FIG.
- recess 30 has a dimension complementing the outer dimension of skin penetrating device 14 so that skin penetrating device 14 can be coupled to base 18 .
- skin penetrating device 14 is coupled to base 18 by a suitable adhesive.
- skin penetrating device 14 can be integrally formed with base 18 .
- Other coupling arrangements can also be used.
- base 18 includes a top wall 36 overlying recess 30 .
- Recess 30 has a depth extending between top wall 36 and bottom face 24 of base 18 that is greater than the thickness of skin penetrating device 14 .
- Recess 30 forms a cavity 38 between top wall 36 and skin penetrating device 14 .
- Cavity 38 is dimensioned to allow the flow of a liquid while providing a volume to minimize the dead space in base 18 .
- Reservoir 28 has an outer wall 40 integrated with the body 12 and spaced from top wall 36 of base 18 to define an internal chamber 42 .
- Chamber 42 is dimensioned to contain a sufficient volume, for example, a predetermined unit dose, of a substance to be delivered to a patient.
- the chamber 42 is prefilled with the substance.
- outer wall 40 of reservoir 28 has a generally dome shape with a convex outer surface 44 and a concave inner surface 46 .
- Outer wall 40 is coupled to top face 26 of base 18 by a suitable adhesive or a weld to form a fluidtight seal for enclosing reservoir 28 .
- Reservoir 28 includes an end wall 48 having a channel 50 extending between cavity 38 and chamber 42 , the channel 50 defining an outlet of the chamber 42 .
- Outer wall 40 includes a movable dispensing member 52 for applying sufficient pressure to the chamber 42 to dispense a substance from chamber 42 through channel 50 to cavity 38 .
- dispensing member 52 is a flexible member that can be depressed inwardly toward chamber 42 to dispense the substance.
- Dispensing member 52 initially has a concave inner surface 54 to form a generally bubble shape.
- dispensing member 52 is made of a resilient, flexible plastic material that can be depressed and deflected inward by manual pressure by the user.
- outer wall 40 is substantially rigid.
- Valve assembly 16 is positioned in channel 50 to control the flow of the substance from chamber 42 through channel 50 .
- valve assembly 16 is a rotatable valve having a valve element, or valve body 56 , having a portion exposed to the exterior of the delivery device 10 for manipulation between a closed position and an open position.
- the exposed portion has an actuator handle 58 .
- valve body 56 has a substantially cylindrical shape for rotating within aperture 60 in base 12 .
- Aperture 60 has a shape and dimension complementing valve body 56 and extends from top face 26 of base 18 to cavity 38 .
- handle 58 is coupled to a top end 62 of valve body 56 .
- Valve body 56 has a lower end 64 positioned at the opening to cavity 38 .
- the exposed portion of the valve body 56 serves as an indicator indicating whether the valve body is in a closed position or an open position.
- pointing of the handle 58 in the longitudinal direction of the delivery device 10 indicates that the valve body 56 is open.
- pointing of the handle 58 in the transverse direction of the delivery device 10 indicates that the valve body 56 is closed.
- Valve body 56 includes an axial passage 66 extending from lower end 64 .
- a radial passage 68 extends through valve body 56 and intersects axial passage 66 .
- Radial passage 68 is aligned with channel 50 in end wall 48 of reservoir 28 to provide fluid communication between reservoir 28 and cavity 38 .
- Valve body 56 is rotatable within aperture 60 as depicted in FIG. 1 to open and close valve assembly 16 .
- a recess 70 is provided in top face 26 of base 18 to receive handle 58 of valve assembly 16 . Recess 70 allows handle 58 to rotate about 90.degree. from the closed position shown in FIG. 1 to the open position shown in FIG. 6 .
- skin penetrating device 14 includes a base 72 having at least one micro skin penetrating member 74 extending outwardly from base 72 .
- micro skin penetrating members 74 are hollow needles each having a beveled tip 76 for penetrating the skin of a patient and an axial passage 78 extending between tip 76 and a top face 80 of base 72 .
- Base 72 has a bottom face 82 supporting micro skin penetrating members 74 .
- bottom face 82 of base 72 has a substantially planar configuration and is oriented in the plane of bottom face 24 of base 18 .
- Skin penetrating device 14 having at least one micro skin penetrating member 74 , can be made from various materials.
- a plurality of micro skin penetrating members 74 are spaced apart from each other a uniform distance and have a uniform length.
- the skin penetrating device 14 is made from silicon by, for example, suitable silicon etching or micromachining steps.
- device 14 is made from stainless steel, tungsten steel, or alloys of nickel, molybdenum, chromium, cobalt and titanium.
- the micro skin penetrating members can be made of ceramic materials, polymers and other non-reactive materials.
- the micro skin penetrating members 74 have a length suitable to achieve the desired depth of penetration in the skin.
- the length and thickness of the micro skin penetrating members 74 are selected based on the substance being administered or withdrawn and the thickness of the skin in the location where the device is to be applied.
- the micro skin penetrating members can be microneedles, microtubes, solid or hollow needles, lancets and the like.
- the micro skin penetrating members have a length, measured from the base to the tip of the member, of about 50 microns to about 4,000 microns and preferably, about 250 microns to 1,000 microns.
- the needles are typically mounted in a suitable base and have a substantially uniform length.
- the micro skin penetrating members are about 30-gauge to about 50-gauge needles having a length of about 500 microns to about 1,000 microns.
- the micro skin penetrating members have a substantially square cross-sectional shape.
- the micro skin penetrating members can be triangular, cylindrical, or pyramid-shaped, or they can be flat blades.
- the skin penetrating members 74 can be in an array covering an area of from about one cm.sup.2 to about 10 cm.sup.2.
- the array can have a width and length of about one centimeter to about five centimeters.
- the base 40 has a thickness of about 200 to 400 microns, and typically about 250 microns.
- a pharmaceutical agent or drug solution is provided in the reservoir 28 .
- a dried or lyophilized drug or pharmaceutical agent can be provided in the cavity 38 or in the axial passages 78 of the skin penetrating member 74 .
- a diluent such as distilled water or saline solution can be provided in the reservoir 28 and selectively allowed to flow by manipulation of the valve handle 58 into the cavity 38 and the axial passages 78 of the micro skin penetrating members 74 to dissolve and reconstitute the drug or pharmaceutical agent and then deliver the drug to the patient.
- Bottom face 24 of base 18 in the embodiment of FIGS. 1-7 includes a pressure sensitive adhesive 84 surrounding skin penetrating device 14 .
- adhesive 84 forms a continuous circle around skin penetrating device 14 and has an area sufficient to releasably attach device 10 to the surface of a patient's skin.
- a protective cover can be coupled to bottom face 24 of base 18 to cover adhesive 84 and skin penetrating device 14 until ready for use.
- the cover can be a rigid member or a flexible sheet material that can be peeled from the adhesive 84 .
- Device 10 is primarily intended to be a prefilled delivery device containing a pharmaceutical agent or drug to be delivered to a patient.
- device 10 is removed from its protective packaging and positioned on the surface of skin 86 as shown in FIG. 7 .
- a downward pressure is applied against body 12 with a force sufficient to cause micro skin penetrating members 74 to penetrate skin 86 to a desired depth, as determined by the length of skin penetrating members 74 .
- Adhesive 84 attaches device 10 to the surface of skin 86 to prevent lateral movement of device 10 during delivery of the substance contained within reservoir 28 .
- Adhesive 84 also forms a seal to prevent leakage of the substance from a target area of skin 86 penetrated by micro skin penetrating members 74 .
- valve assembly 16 is rotated to the open position shown in FIGS. 6 and 7 to provide fluid communication between chamber 42 of reservoir 28 and cavity 38 of base 18 .
- the position of the valve handle 58 indicates whether the valve is open or closed.
- a manual pressure is applied against dispensing member 52 as indicated by arrow 88 in FIG. 7 to deflect dispensing member 52 inwardly into chamber 42 , thereby imposing a dispensing pressure on the substance in the chamber.
- the dispensing pressure forces the substance from chamber 42 through channel 50 and valve body 66 to cavity 38 where the substance can flow through the axial passages 78 of skin penetrating members 74 .
- the dispensing pressure and the substance is accordingly dispensed so long as so long as the dispensing member 52 is depressed; and the dispensing pressure is gradually released upon release of the dispensing member 52 .
- the manual pressure is maintained for a time sufficient to enable a sufficient amount of the substance to be delivered to a desired depth in the skin 86 where the substance can be absorbed and utilized by the body. Manual pressure is maintained throughout the delivery operation.
- Device 10 including body 12 and valve assembly 16 , is preferably made of a polymeric material that is non-reactive with the substance being delivered to the patient and non-irritating to the patient.
- base 12 is made of a suitable plastic material that allows some flexibility to conform to the contour of the skin of the patient while being sufficiently rigid to maintain the structural integrity of device 10 .
- suitable polymers include polyethylene, polypropylene, polystyrene, polyesters, polyamides, polycarbonates, and copolymers thereof.
- Device 90 includes a body 92 , a skin penetrating device 94 and a valve assembly 96 .
- body 92 has a generally circular configuration with a substantially flat planar top surface 98 and a planar bottom surface 100 .
- Top surface 98 of body 92 includes a recess 102 defined by a bottom surface 104 and a side wall 106 .
- a flexible closure member 108 is coupled to top face 98 to close recess 102 .
- Closure member 108 defines a reservoir having a chamber 110 between bottom surface 104 and closure member 108 .
- closure member 108 has a generally hemispherical shape having a convex top surface 112 and a concave bottom surface 114 .
- a movable dispensing member is in the form of a closure member 108 , which is preferably made of a material having the same characteristics as the material of the movable dispensing member 52 of the embodiment of FIGS. 1-7 .
- closure member 108 forms a top wall of chamber 110 and covers an area at least equal to the area of recess 102 .
- Side wall 106 of recess 102 includes a channel 116 extending radially outward from side wall 106 .
- An aperture 118 defining a cylindrical channel extends between top surface 98 of body 92 and bottom surface 100 . As shown in FIG. 11 , channel 116 intersects with aperture 118 .
- Bottom surface 100 of body 92 includes a recess 120 dimensioned to receive skin penetrating device 94 .
- Recess 120 includes a ledge 122 having a side wall 124 for receiving skin penetrating device 94 .
- side wall 124 has a height corresponding substantially to the thickness of skin penetrating device 94 , so that the outer face of skin penetrating device 94 lies in the plane of bottom surface 100 of body 92 .
- Recess 120 has a bottom surface 106 that is spaced from bottom surface 100 by a distance greater than the thickness of skin penetrating device 94 to define a cavity 128 .
- Aperture 118 communicates with cavity 128 to provide fluid communication between chamber 110 and cavity 128 .
- Skin penetrating device 94 includes a base 130 having at least one micro skin penetrating member 132 extending outwardly therefrom. As shown in FIG. 11 , base 130 is dimensioned to fit on ledge 122 of recess 120 . Micro skin penetrating members 132 are preferably microneedles in an array, the members each having a length sufficient to penetrate the surface of the skin to a selected depth for delivering a substance into the skin to a depth at which the substance can be utilized by the body.
- Valve assembly 96 includes a cylindrical element body 134 dimensioned to fit in aperture 118 .
- An actuating handle 136 is coupled to a top end 138 of valve body 134 .
- Valve body 134 has a bottom end 140 with an axial passage 142 .
- a radial passage 144 extends through a side face 146 of valve body 134 and intersects with axial passage 142 . As shown in FIG. 11 , radial passage 144 is aligned with channel 116 .
- Valve body 134 can be rotated within aperture 118 between the closed position of FIG. 11 and the open position of FIG. 12 , the handle 136 indicating the position fo the valve.
- Valve body 134 effectively closes chamber 110 to contain the substance within chamber 110 during storage and shipping of device 90 .
- Valve body 134 can be rotated to the open position of FIG. 12 to provide fluid communication between chamber 110 and cavity 128 .
- Device 90 is used in a manner similar to the embodiment of FIGS. 1-7 .
- Bottom surface 110 in the embodiment illustrated has an adhesive 148 such as a pressure-sensitive adhesive around the peripheral edge of body 92 .
- adhesive 148 surrounds skin penetrating device 94 .
- Device 90 is positioned on the skin 150 of a patient and pressed downwardly to enable micro skin penetrating members 132 to penetrate the skin 150 and to allow adhesive 148 to attach device 190 to skin 150 .
- Valve body 134 is rotated to the open position to provide fluid communication between chamber 110 and cavity 128 .
- a downward pressure indicated by arrow 152 is applied to closure member 108 to produce a dispensing pressure sufficient to deliver a substance intradermally to the patient.
- FIGS. 13-19 show another embodiment of a device 160 for delivering a substance intradermally to a patient.
- Device 160 includes a housing 162 , a skin penetrating device 164 and a valve element or body 166 .
- Housing 162 has a substantially oval shape, a planar top surface 168 and a bottom surface 170 .
- Bottom surface 170 includes a recess 172 having a ledge 174 and a side wall 176 .
- ledge 174 and side wall 176 are dimensioned to support skin penetrating device 164 .
- Recess 172 is dimensioned to form an internal cavity 178 communicating with skin penetrating device 164 .
- Valve body 166 is mounted on housing 162 for controlling the flow of liquids into cavity 178 .
- valve body 166 includes a collar 180 coupled to top surface 168 of housing 162 .
- Collar 180 has a substantially annular shape with an axial passage 182 .
- Axial passage 182 extends from a top end 184 of collar 180 to cavity 178 .
- a cylindrical valve body 186 fits in axial passage 182 and is rotatable within collar 180 .
- An actuating handle 188 is coupled to a top end 190 of valve body 186 .
- Handle 188 is positioned for rotating valve body 186 about the longitudinal axis of collar 180 .
- a supply tube 192 is coupled to collar 180 and extends radially outward from collar 180 in a direction generally parallel to top surface 168 of housing 162 .
- Supply tube 192 includes an axial passage 194 extending radially through collar 180 and intersecting axial passage 182 of collar 180 .
- Supply tube 192 has an outer end with a coupling member 196 for removably coupling a supply device or container 198 to the delivery device 160 .
- Coupling member 196 can be a luer-type fitting, friction fit or other suitable coupling member capable of forming a fluid coupling with supply device 198 .
- Supply device 198 is preferably a single use disposable device containing a unit dose of the substance to be delivered to the patient.
- supply device 198 includes a collar 200 and a compressible hollow body 202 containing the substance to be delivered to the patient. Collar 200 complements coupling member 196 for coupling supply device 198 to device 160 .
- body 202 is a bladder formed from a flexible material that can be compressed to dispense the contents of supply device 198 .
- supply device 198 can be a commercially available device containing a predetermined unit dose of a substance to be delivered and being squeezable to deliver the substance.
- One such device is sold under the trademark UNIJECT by Becton Dickinson and Company. Other unit dose delivery devices can be used instead.
- skin penetrating device 164 includes a base 202 having a top face 206 and a planar bottom face 208 . At least one micro skin penetrating member 210 in the form of a microneedle extends outwardly from bottom face 208 . Micro skin penetrating members 210 have an axial passage extending between top face 206 in communication with cavity 178 and the tip of skin penetrating member 210 . Bottom surface 170 of body 162 includes a rib 212 extending outwardly from body 162 . Rib 212 surrounds skin penetrating device 164 and has a substantially annular shape as shown in FIG. 17 .
- rib 212 has an inner face 214 extending generally perpendicular to bottom face 170 of body 162 . Rib 212 also includes an outer face 216 converging toward inner face 214 to form a crest 218 . Outer face 216 is formed at an incline with respect to bottom face 170 .
- rib 212 is spaced outwardly from micro skin penetrating members 210 and is impressed on the skin to define a target area on the skin for the micro skin penetrating members 210 .
- micro skin penetrating members 210 have an axial length slightly greater than the height of rib 212 as shown in FIG. 19 .
- Device 160 is placed on the skin 220 of a patient and pressed downwardly.
- the downward pressure on device 160 causes rib 212 to contact skin 220 and stretch the skin in a target area 222 surrounded by rib 212 .
- Stretching the skin in target area 222 enables micro skin penetrating members 210 to pierce the surface of the skin.
- the normal elasticity of the skin provides a penetrating resistance to micro skin penetrating members 210 .
- rib 212 forms a seal against the surface of skin 220 to contain the substance that can leak from target area 222 .
- valve body 166 is rotated to the open position shown in FIG. 19 , the position fo the handle 188 indicating the position of the valve body 166 .
- a dispensing pressure indicated by arrow 224 is provided on supply device 198 to dispense the contents of supply device 198 through axial passage 194 and into cavity 178 where the substance can be delivered to micro skin penetrating members 210 .
- supply device 198 is able to provide a pressure sufficient to dispense the contents and deliver the contents through micro skin penetrating members 210 into the skin of the patient. After the contents of supply device 198 is delivered to the patient, device 160 is separated from skin 220 and discarded.
- Device 160 is preferably designed and constructed to be a disposable, single use device. The device is prepackaged in a sterile condition for immediate use.
- bottom face 170 of body 162 includes a protective cover sheet 226 .
- Cover sheet 226 is attached to bottom surface 170 in a manner that can be peeled easily from device 160 at the time of use.
- Cover sheet 226 is preferably a flexible sheet material such as Tyvek.RTM.
- Cover sheet 226 has a dimension to cover skin penetrating device 164 to maintain skin penetrating device 164 in sterile conditions until ready for use. Cover sheets similar to cover sheet 226 can be used in connection with other embodiments according to the present invention.
- the illustrated embodiments of the device can be used safely and effectively for the intradermal delivery of a pharmaceutical agent or other substance to a patient.
- the device is particularly suitable for introducing a vaccine intradermally for efficiently delivering a small amount of a vaccine antigen.
- the length, width and spacing of the microneedles can vary depending on the pharmaceutical agent being administered and the desired depth of penetration for delivery.
- the microneedles are dimensioned to target the optimum intradermal delivery site to promote the desired immune response.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Medical Informatics (AREA)
- Dermatology (AREA)
- Anesthesiology (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Temperature-Responsive Valves (AREA)
Abstract
A delivery device for delivery a substance into the skin of a patient has a fluid chamber for containing the substance, at least one micro skin penetrating member, and a valve controlling the flow of the substance from the fluid chamber to the micro skin penetrating member. An adhesive releasably attaches the device to the skin of the patient, the fluid chamber can be sized to hold a unit dose of the substance, and, in some embodiments, the fluid chamber can be releasably coupled to a housing of the device.
Description
- This Application is a continuation of U.S. patent application Ser. No. 11/328,035, filed on Jan. 9, 2006, which is a divisional of U.S. patent application Ser. No. 10/112,756, filed on Apr. 2, 2002, now U.S. Pat. No. 7,047,070.
- The present invention relates to an intradermal delivery device having a fluid chamber to contain a substance to be delivered intradermally to a patient in a target area of the skin. The present invention also relates to a method of delivering a substance into the skin of a patient.
- Drugs and pharmaceutical agents are delivered to patients by a variety of methods. A typical method delivers the drug or pharmaceutical agent subcutaneously by a stainless steel cannula. Although the subcutaneous sampling and delivery methods using a cannula are effective for many applications, the pain normally induced by the cannula has prompted the development of less painful delivery methods.
- The skin is made up of several layers, with the upper composite layer being the epithelial layer. The outermost layer of the skin, the stratum corneum, is a waterproof membrane with well known barrier properties that prevent the influx of undesirable molecules and various foreign substances while preventing the outflux of various analytes. The stratum corneum is a complex structure of compacted keratinized cell remnants having a thickness of about 10-30 microns.
- The natural impermeability of the stratum corneum prevents the administration of most pharmaceutical agents and other substances through the skin. Numerous methods and devices have been proposed to enhance the permeability of the skin and to increase the diffusion of various drugs through the skin for utilization by the body. Typically, the delivery of drugs through the skin is enhanced by increasing either the permeability of the skin or the force or energy used to direct the drug through the skin.
- Another method of sampling and delivering various substances through the skin is by forming micropores or cuts through the stratum corneum. By piercing the stratum corneum and delivering a drug to the skin in or below the stratum corneum, many drugs can be administered effectively. In a similar manner, some substances can be extracted from the body through cuts or pores formed in the stratum corneum. The devices for piercing the stratum corneum generally include a plurality of micron size needles or blades having a length to pierce the stratum corneum without passing completely through the epidermis. Examples of these devices are disclosed in U.S. Pat. No. 5,879,326 to Godshall et al.; U.S. Pat. No. 5,250,023 to Lee et al., and WO 97/48440.
- The above-noted devices that include micron-sized needles or blades can be effective in delivering substances to the body. However, these needles and blades having a length of a few microns to a few hundred microns typically do not penetrate skin to a uniform depth. The natural elasticity and resilience of the skin will often result in the skin being deformed by the needles rather than pierced. A microneedle array when pressed against the skin often results in the outermost needles penetrating the skin while the innermost needles do not penetrate or only penetrate to depth less than the outermost needles.
- The prior methods and devices for the intradermal administration of substances have exhibited limited success. Accordingly, an unmet need exists in the industry for an improved device for the sampling and administration of various drugs and other substances to the body.
- The present invention is directed to a method and device for the intradermal sampling or delivery of a substance into the skin of a patient. More particularly, the invention is directed to a method and device for controlling the flow of a pharmaceutical agent, such as a drug or vaccine, through the device for delivery into or below the stratum corneum of the skin to a depth sufficient for the pharmaceutical agent to be absorbed and utilized by the body.
- Accordingly, it is an object of the invention to provide a sampling or delivery device having at least one skin penetrating member having a length that provides an increased comfort level to the patient.
- A further object of the invention is to provide a method of penetrating the skin for sampling or delivering a substance through the skin substantially without pain to the patient.
- Another object of the invention is to provide a delivery device having a plurality of micro skin penetrators, such as microtubes, needles, microneedles, blades or lancets, selected for piercing the stratum corneum of the skin to a depth that is short of the nerve endings.
- Still another object of the invention is to provide a delivery device having a manually operated valve to control the delivery of a substance to the at least one micro skin penetrating member of the delivery device.
- A further object of the invention is to provide a pre-filled delivery device having a reservoir containing a substance, at least one micro skin penetrating member, and a reservoir outlet for supplying a substance to the micro skin penetrating member for delivery to the patient.
- Another object of the invention is to provide a delivery device having a reservoir containing a substance to be delivered to a patient, wherein the reservoir is defined, at least in part, by a movable wall that is depressed to dispense the substance to the patient.
- Still another object of the invention is to provide a delivery device having at least one micro skin penetrating member for delivering a substance to a target area on the skin of a patient and a ridge encircling the micro skin penetrating members to form a containment area around the target area.
- These and other aspects of the invention are substantially achieved by providing a device for delivering a substance into the skin of a patient. The device comprises a housing having a fluid chamber having an outlet. A valve member is coupled to the housing for controlling the flow of the substance through the outlet of the chamber. A skin penetrating device is coupled to the housing and is in fluid communication with the fluid chamber for delivering the substance to the patient.
- The objects and advantages of the invention are further attained by providing a device for intradermally delivering a substance to a patient. The device comprises a housing having a bottom face dimensioned to contact the skin of the patient. The housing has a fluid chamber with an outlet, and a manually operated valve coupled to the housing for controlling the flow of the substance through the outlet of the chamber. A micro skin penetrating member is coupled to the housing and is in fluid communication with the chamber. An arrangement is provided for applying to the substance a pressure sufficient to deliver the substance into the skin of a patient.
- A yet further object of the invention is to provide a method for delivering a substance into or through the skin of a patient. The method comprises positioning on the skin of a patient a delivery device including a housing; a fluid chamber on the housing for containing the substance, said chamber having an outlet for the substance; a valve member connected to said housing to control the flow of the substance through the outlet; and a skin penetrating device on the housing and in fluid communication with the chamber for delivering the substance into the skin of the patient. A sufficient pressure is applied for the micro skin penetrating members to penetrate the skin to a depth sufficient to deliver the substance to the patient. The valve is opened, the substance is introduced from the fluid chamber to the micro skin penetrating members under pressure, and the substance is delivered to the patient. In some embodiments, the fluid chamber is removably coupled to the housing before the delivery device is positioned on the skin.
- The aspects, advantages and other salient features of the invention will become apparent from the following detailed description which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the invention.
- The following is a brief description of the drawings in which:
-
FIG. 1 is a top plan view of the device in accordance with a first embodiment of the invention for delivering a substance into the skin of a patient; -
FIG. 2 is a perspective view of the device ofFIG. 1 showing the device on the skin of a patient; -
FIG. 3 is a side elevational view of the device ofFIG. 1 showing the micro skin penetrating members extending from the bottom face of the device; -
FIG. 4 is a bottom plan view of the device ofFIG. 1 showing the micro skin penetrating members; -
FIG. 5 is a cross-sectional side view of the device ofFIG. 1 taken along line 5-5 ofFIG. 1 showing the fluid chamber, the cavity and the control valve; -
FIG. 6 is an enlarged cross-sectional view of the control valve; -
FIG. 7 is a cross-sectional side view similar toFIG. 5 but showing the device in contact with the skin of a patient and dispensing the substance to the patient; -
FIG. 8 is a top plan view of a delivery device in a second embodiment of the invention; -
FIG. 9 is a side elevational view of the device ofFIG. 8 ; -
FIG. 10 is a bottom plan view of the device ofFIG. 8 ; -
FIG. 11 is a cross-sectional side view of the skin penetrating device taken along line 11-11 ofFIG. 8 showing the reservoir filled with a substance; -
FIG. 12 is a cross-sectional view of the device ofFIG. 8 showing the device penetrating the skin and the top wall depressed to dispense the substance; -
FIG. 13 is a perspective view of the device in another embodiment of the invention; -
FIG. 14 is a top plan view of the device ofFIG. 13 ; -
FIG. 15 is a side view of the device ofFIG. 13 showing a protective strip partially removed from the device; -
FIG. 16 is a side view of the device ofFIG. 13 showing the rib around the micro skin penetrating members; -
FIG. 17 is a plan bottom view of the device ofFIG. 13 ; -
FIG. 18 is a cross-sectional view taken axially to the line of 18-18 ofFIG. 14 ; and -
FIG. 19 is a cross-sectional view similar toFIG. 13 , but showing the device in contact with the skin of a patient and the device delivering the substance through the micro skin penetrating members. - The present invention is directed to a device for sampling, monitoring or delivering a substance into the skin of a patient. More particularly, the invention is directed to a delivery device and to a method for administering a substance to below the stratum corneum of the skin of a patient.
- As used herein, the term “penetrate” refers to entering a layer of the skin without passing completely through. The term “pierce” refers to passing completely through a layer of the skin.
- The device and method of the present invention are suitable for use in administering various substances, including pharmaceutical agents, to a patient, and especially to a human patient. As used herein, a pharmaceutical agent includes a substance having biological activity that can be delivered through the body membranes and surfaces, and particularly into the skin. Examples include antibiotics, antiviral agents, analgesics, anesthetics, anorexics, antiarthritics, antidepressants, antihistamines, anti-inflammatory agents, antineoplastic agents, vaccines, including DNA vaccines, and the like. Other substances that can be delivered intradermally to a patient include proteins, peptides and fragments thereof. The proteins and peptides can be naturally occurring, synthesized or recombinantly produced.
- The device of the invention is primarily for delivering a substance into selected layers of the skin. In alternative embodiments of the invention, the device is suitable for withdrawing a substance or monitoring the level of a substance in the body. Examples of substances that can be monitored or withdrawn include blood, interstitial fluid or plasma that can then be analyzed for analytes, glucose, drugs and the like.
- Referring to
FIGS. 1-7 , the invention in a first embodiment is directed to adevice 10 having a supportingbody 12 with askin penetrating device 14 and avalve assembly 16.Device 10 is constructed for penetrating one or more selected layers of the dermis of a patient to attain the desired depth of penetration. The desired depth of penetration is determined by the substance being delivered, the delivery rate and the absorption rate. Penetration to a depth of 1 mm results in a high uptake by the body. Penetration to a depth on the order of 5 mm would slow delivery. The device is provided with one or more penetrating members each having a length to pierce the stratum corneum substantially without penetrating the dermis, which is below the stratum corneum and below the other layers of the epidermis. By delivering a substance to just below the stratum corneum, the substance can be absorbed and utilized by the body substantially without pain or discomfort to the patient. The device penetrates the dermis to a depth without contacting pain inducing nerves in the skin. Each penetrating member has a length sufficient to pierce the stratum corneum to a depth at which pain is reduced or minimized and the substance is absorbed by the body. - Referring to the drawings,
body 12 forms a housing that has a generally flat profile when attached to the skin of a patient. The flat profile provides an ease of attachment to the skin and less obstruction to the patient. As shown in the embodiment ofFIG. 1 ,body 12 has an elongated shape, although in alternative embodiments,body 12 can have a circular, square, rectangular or other shape. - As shown in
FIG. 1 ,body 12 includes a base 18 having a generally elongated configuration. In this embodiment,base 18 has a generally planar shape with a roundedfront end 20 and a straightrear end 22.Base 18 has a substantially flatbottom face 24 and atop face 26. Areservoir 28 is defined on thetop face 26 ofbase 18 for containing a substance to be delivered to the patient as discussed hereinafter in greater detail. -
Base 18 is dimensioned and configured to be placed against the skin of a patient for delivering a substance such as a drug or pharmaceutical. As shown inFIGS. 4 and 5 ,base 18 has arecess 30 dimensioned to receiveskin penetrating device 14.Recess 30 includes aledge 32 and aside wall 34 for supportingskin penetrating device 14.Side wall 34 preferably has a height sufficient to receiveskin penetrating device 14 such that the outer face ofskin penetrating device 14 lies in the plane ofbottom face 24 ofbase 18.Ledge 32 has a width sufficient to supportskin penetrating device 14. As shown inFIG. 4 ,recess 30 has a dimension complementing the outer dimension ofskin penetrating device 14 so thatskin penetrating device 14 can be coupled tobase 18. In preferred embodiments,skin penetrating device 14 is coupled tobase 18 by a suitable adhesive. In other embodiments,skin penetrating device 14 can be integrally formed withbase 18. Other coupling arrangements can also be used. - Referring to
FIG. 5 ,base 18 includes atop wall 36 overlyingrecess 30.Recess 30 has a depth extending betweentop wall 36 andbottom face 24 ofbase 18 that is greater than the thickness ofskin penetrating device 14.Recess 30 forms acavity 38 betweentop wall 36 andskin penetrating device 14.Cavity 38 is dimensioned to allow the flow of a liquid while providing a volume to minimize the dead space inbase 18. -
Reservoir 28 has anouter wall 40 integrated with thebody 12 and spaced fromtop wall 36 ofbase 18 to define aninternal chamber 42.Chamber 42 is dimensioned to contain a sufficient volume, for example, a predetermined unit dose, of a substance to be delivered to a patient. Thechamber 42 is prefilled with the substance. In the embodiment illustrated,outer wall 40 ofreservoir 28 has a generally dome shape with a convexouter surface 44 and a concaveinner surface 46.Outer wall 40 is coupled totop face 26 ofbase 18 by a suitable adhesive or a weld to form a fluidtight seal for enclosingreservoir 28. -
Reservoir 28 includes anend wall 48 having achannel 50 extending betweencavity 38 andchamber 42, thechannel 50 defining an outlet of thechamber 42.Outer wall 40 includes amovable dispensing member 52 for applying sufficient pressure to thechamber 42 to dispense a substance fromchamber 42 throughchannel 50 tocavity 38. In the embodiment illustrated, dispensingmember 52 is a flexible member that can be depressed inwardly towardchamber 42 to dispense the substance. Dispensingmember 52 initially has a concave inner surface 54 to form a generally bubble shape. Preferably, dispensingmember 52 is made of a resilient, flexible plastic material that can be depressed and deflected inward by manual pressure by the user. In this embodiment,outer wall 40 is substantially rigid. -
Valve assembly 16 is positioned inchannel 50 to control the flow of the substance fromchamber 42 throughchannel 50. In this embodiment,valve assembly 16 is a rotatable valve having a valve element, orvalve body 56, having a portion exposed to the exterior of thedelivery device 10 for manipulation between a closed position and an open position. In the illustrated embodiment, the exposed portion has anactuator handle 58. Referring toFIG. 6 ,valve body 56 has a substantially cylindrical shape for rotating withinaperture 60 inbase 12.Aperture 60 has a shape and dimension complementingvalve body 56 and extends fromtop face 26 ofbase 18 tocavity 38. As shown inFIG. 6 , handle 58 is coupled to atop end 62 ofvalve body 56.Valve body 56 has alower end 64 positioned at the opening tocavity 38. The exposed portion of thevalve body 56 serves as an indicator indicating whether the valve body is in a closed position or an open position. For example, as can be appreciated fromFIGS. 2 and 6 , pointing of thehandle 58 in the longitudinal direction of thedelivery device 10 indicates that thevalve body 56 is open. On the other hand, as can be seen fromFIGS. 1 and 6 , pointing of thehandle 58 in the transverse direction of thedelivery device 10 indicates that thevalve body 56 is closed. -
Valve body 56 includes anaxial passage 66 extending fromlower end 64. Aradial passage 68 extends throughvalve body 56 and intersectsaxial passage 66.Radial passage 68 is aligned withchannel 50 inend wall 48 ofreservoir 28 to provide fluid communication betweenreservoir 28 andcavity 38.Valve body 56 is rotatable withinaperture 60 as depicted inFIG. 1 to open andclose valve assembly 16. In the embodiment illustrated, arecess 70 is provided intop face 26 ofbase 18 to receivehandle 58 ofvalve assembly 16.Recess 70 allows handle 58 to rotate about 90.degree. from the closed position shown inFIG. 1 to the open position shown inFIG. 6 . - Referring to
FIG. 6 ,skin penetrating device 14 includes a base 72 having at least one microskin penetrating member 74 extending outwardly frombase 72. In the illustrated embodiment, there are a plurality of microskin penetrating members 74 arranged in an array of spaced apart rows and columns, as can best be appreciated fromFIG. 4 . - In the illustrated embodiment, micro
skin penetrating members 74 are hollow needles each having abeveled tip 76 for penetrating the skin of a patient and anaxial passage 78 extending betweentip 76 and atop face 80 ofbase 72.Base 72 has abottom face 82 supporting microskin penetrating members 74. Preferably,bottom face 82 ofbase 72 has a substantially planar configuration and is oriented in the plane ofbottom face 24 ofbase 18. -
Skin penetrating device 14, having at least one microskin penetrating member 74, can be made from various materials. In one embodiment, a plurality of microskin penetrating members 74 are spaced apart from each other a uniform distance and have a uniform length. Theskin penetrating device 14 is made from silicon by, for example, suitable silicon etching or micromachining steps. In other embodiments,device 14 is made from stainless steel, tungsten steel, or alloys of nickel, molybdenum, chromium, cobalt and titanium. Alternatively, the micro skin penetrating members can be made of ceramic materials, polymers and other non-reactive materials. - The micro
skin penetrating members 74 have a length suitable to achieve the desired depth of penetration in the skin. The length and thickness of the microskin penetrating members 74 are selected based on the substance being administered or withdrawn and the thickness of the skin in the location where the device is to be applied. The micro skin penetrating members can be microneedles, microtubes, solid or hollow needles, lancets and the like. Generally, the micro skin penetrating members have a length, measured from the base to the tip of the member, of about 50 microns to about 4,000 microns and preferably, about 250 microns to 1,000 microns. The needles are typically mounted in a suitable base and have a substantially uniform length. In some embodiments, the micro skin penetrating members are about 30-gauge to about 50-gauge needles having a length of about 500 microns to about 1,000 microns. The micro skin penetrating members have a substantially square cross-sectional shape. Alternatively, the micro skin penetrating members can be triangular, cylindrical, or pyramid-shaped, or they can be flat blades. - The
skin penetrating members 74 can be in an array covering an area of from about one cm.sup.2 to about 10 cm.sup.2. The array can have a width and length of about one centimeter to about five centimeters. Thebase 40 has a thickness of about 200 to 400 microns, and typically about 250 microns. - Generally, when the device is used as a delivery device, a pharmaceutical agent or drug solution is provided in the
reservoir 28. In alternative arrangements, a dried or lyophilized drug or pharmaceutical agent can be provided in thecavity 38 or in theaxial passages 78 of theskin penetrating member 74. A diluent such as distilled water or saline solution can be provided in thereservoir 28 and selectively allowed to flow by manipulation of the valve handle 58 into thecavity 38 and theaxial passages 78 of the microskin penetrating members 74 to dissolve and reconstitute the drug or pharmaceutical agent and then deliver the drug to the patient. - Bottom face 24 of
base 18 in the embodiment ofFIGS. 1-7 includes a pressuresensitive adhesive 84 surroundingskin penetrating device 14. Preferably, adhesive 84 forms a continuous circle aroundskin penetrating device 14 and has an area sufficient to releasably attachdevice 10 to the surface of a patient's skin. In all embodiments of the invention, a protective cover can be coupled tobottom face 24 ofbase 18 to cover adhesive 84 andskin penetrating device 14 until ready for use. The cover can be a rigid member or a flexible sheet material that can be peeled from the adhesive 84. -
Device 10 is primarily intended to be a prefilled delivery device containing a pharmaceutical agent or drug to be delivered to a patient. In use,device 10 is removed from its protective packaging and positioned on the surface ofskin 86 as shown inFIG. 7 . A downward pressure is applied againstbody 12 with a force sufficient to cause microskin penetrating members 74 to penetrateskin 86 to a desired depth, as determined by the length ofskin penetrating members 74.Adhesive 84 attachesdevice 10 to the surface ofskin 86 to prevent lateral movement ofdevice 10 during delivery of the substance contained withinreservoir 28.Adhesive 84 also forms a seal to prevent leakage of the substance from a target area ofskin 86 penetrated by microskin penetrating members 74. - After
device 10 is positioned onskin 86,valve assembly 16 is rotated to the open position shown inFIGS. 6 and 7 to provide fluid communication betweenchamber 42 ofreservoir 28 andcavity 38 ofbase 18. The position of the valve handle 58 indicates whether the valve is open or closed. A manual pressure is applied against dispensingmember 52 as indicated byarrow 88 inFIG. 7 to deflect dispensingmember 52 inwardly intochamber 42, thereby imposing a dispensing pressure on the substance in the chamber. The dispensing pressure forces the substance fromchamber 42 throughchannel 50 andvalve body 66 tocavity 38 where the substance can flow through theaxial passages 78 ofskin penetrating members 74. The dispensing pressure and the substance is accordingly dispensed so long as so long as the dispensingmember 52 is depressed; and the dispensing pressure is gradually released upon release of the dispensingmember 52. The manual pressure is maintained for a time sufficient to enable a sufficient amount of the substance to be delivered to a desired depth in theskin 86 where the substance can be absorbed and utilized by the body. Manual pressure is maintained throughout the delivery operation. -
Device 10, includingbody 12 andvalve assembly 16, is preferably made of a polymeric material that is non-reactive with the substance being delivered to the patient and non-irritating to the patient. Typically,base 12 is made of a suitable plastic material that allows some flexibility to conform to the contour of the skin of the patient while being sufficiently rigid to maintain the structural integrity ofdevice 10. Examples of suitable polymers include polyethylene, polypropylene, polystyrene, polyesters, polyamides, polycarbonates, and copolymers thereof. - Referring to
FIGS. 8-12 , a second embodiment of the invention is illustrated for delivering a substance intradermally to a patient.Device 90 includes abody 92, askin penetrating device 94 and avalve assembly 96. As shown inFIG. 8 ,body 92 has a generally circular configuration with a substantially flat planartop surface 98 and a planarbottom surface 100. -
Top surface 98 ofbody 92 includes arecess 102 defined by abottom surface 104 and aside wall 106. Aflexible closure member 108 is coupled totop face 98 to closerecess 102.Closure member 108 defines a reservoir having achamber 110 betweenbottom surface 104 andclosure member 108. As shown inFIG. 9 ,closure member 108 has a generally hemispherical shape having a convextop surface 112 and aconcave bottom surface 114. A movable dispensing member is in the form of aclosure member 108, which is preferably made of a material having the same characteristics as the material of the movable dispensingmember 52 of the embodiment ofFIGS. 1-7 . In this embodiment,closure member 108 forms a top wall ofchamber 110 and covers an area at least equal to the area ofrecess 102. -
Side wall 106 ofrecess 102 includes achannel 116 extending radially outward fromside wall 106. Anaperture 118 defining a cylindrical channel extends betweentop surface 98 ofbody 92 andbottom surface 100. As shown inFIG. 11 ,channel 116 intersects withaperture 118. -
Bottom surface 100 ofbody 92 includes arecess 120 dimensioned to receiveskin penetrating device 94.Recess 120 includes aledge 122 having aside wall 124 for receivingskin penetrating device 94. As shown inFIG. 11 ,side wall 124 has a height corresponding substantially to the thickness ofskin penetrating device 94, so that the outer face ofskin penetrating device 94 lies in the plane ofbottom surface 100 ofbody 92. -
Recess 120 has abottom surface 106 that is spaced frombottom surface 100 by a distance greater than the thickness ofskin penetrating device 94 to define acavity 128.Aperture 118 communicates withcavity 128 to provide fluid communication betweenchamber 110 andcavity 128. -
Skin penetrating device 94 includes a base 130 having at least one microskin penetrating member 132 extending outwardly therefrom. As shown inFIG. 11 ,base 130 is dimensioned to fit onledge 122 ofrecess 120. Microskin penetrating members 132 are preferably microneedles in an array, the members each having a length sufficient to penetrate the surface of the skin to a selected depth for delivering a substance into the skin to a depth at which the substance can be utilized by the body. -
Valve assembly 96 includes acylindrical element body 134 dimensioned to fit inaperture 118. An actuating handle 136 is coupled to atop end 138 ofvalve body 134.Valve body 134 has abottom end 140 with anaxial passage 142. Aradial passage 144 extends through aside face 146 ofvalve body 134 and intersects withaxial passage 142. As shown inFIG. 11 ,radial passage 144 is aligned withchannel 116.Valve body 134 can be rotated withinaperture 118 between the closed position ofFIG. 11 and the open position ofFIG. 12 , thehandle 136 indicating the position fo the valve.Valve body 134 effectively closeschamber 110 to contain the substance withinchamber 110 during storage and shipping ofdevice 90.Valve body 134 can be rotated to the open position ofFIG. 12 to provide fluid communication betweenchamber 110 andcavity 128. -
Device 90 is used in a manner similar to the embodiment ofFIGS. 1-7 .Bottom surface 110 in the embodiment illustrated has an adhesive 148 such as a pressure-sensitive adhesive around the peripheral edge ofbody 92. As shown inFIG. 10 , adhesive 148 surroundsskin penetrating device 94.Device 90 is positioned on theskin 150 of a patient and pressed downwardly to enable microskin penetrating members 132 to penetrate theskin 150 and to allow adhesive 148 to attachdevice 190 toskin 150.Valve body 134 is rotated to the open position to provide fluid communication betweenchamber 110 andcavity 128. A downward pressure indicated byarrow 152 is applied toclosure member 108 to produce a dispensing pressure sufficient to deliver a substance intradermally to the patient. -
FIGS. 13-19 show another embodiment of adevice 160 for delivering a substance intradermally to a patient.Device 160 includes ahousing 162, askin penetrating device 164 and a valve element orbody 166. -
Housing 162, as shown in the embodiment ofFIGS. 13 and 14 , has a substantially oval shape, a planartop surface 168 and abottom surface 170.Bottom surface 170 includes arecess 172 having aledge 174 and aside wall 176. As in the previous embodiments,ledge 174 andside wall 176 are dimensioned to supportskin penetrating device 164.Recess 172 is dimensioned to form aninternal cavity 178 communicating withskin penetrating device 164.Valve body 166 is mounted onhousing 162 for controlling the flow of liquids intocavity 178. In this embodiment,valve body 166 includes acollar 180 coupled totop surface 168 ofhousing 162.Collar 180 has a substantially annular shape with anaxial passage 182.Axial passage 182 extends from atop end 184 ofcollar 180 tocavity 178. Acylindrical valve body 186 fits inaxial passage 182 and is rotatable withincollar 180. An actuating handle 188 is coupled to atop end 190 ofvalve body 186. Handle 188 is positioned for rotatingvalve body 186 about the longitudinal axis ofcollar 180. - A
supply tube 192 is coupled tocollar 180 and extends radially outward fromcollar 180 in a direction generally parallel totop surface 168 ofhousing 162.Supply tube 192 includes anaxial passage 194 extending radially throughcollar 180 and intersectingaxial passage 182 ofcollar 180.Supply tube 192 has an outer end with acoupling member 196 for removably coupling a supply device orcontainer 198 to thedelivery device 160. -
Supply device 198 is removably coupled tocoupling member 196. Couplingmember 196 can be a luer-type fitting, friction fit or other suitable coupling member capable of forming a fluid coupling withsupply device 198. -
Supply device 198 is preferably a single use disposable device containing a unit dose of the substance to be delivered to the patient. In the embodiment illustrated,supply device 198 includes acollar 200 and a compressiblehollow body 202 containing the substance to be delivered to the patient.Collar 200complements coupling member 196 forcoupling supply device 198 todevice 160. In the embodiment illustrated,body 202 is a bladder formed from a flexible material that can be compressed to dispense the contents ofsupply device 198. In other embodiments,supply device 198 can be a commercially available device containing a predetermined unit dose of a substance to be delivered and being squeezable to deliver the substance. One such device is sold under the trademark UNIJECT by Becton Dickinson and Company. Other unit dose delivery devices can be used instead. - As in the previous embodiments,
skin penetrating device 164 includes a base 202 having atop face 206 and a planarbottom face 208. At least one microskin penetrating member 210 in the form of a microneedle extends outwardly frombottom face 208. Microskin penetrating members 210 have an axial passage extending betweentop face 206 in communication withcavity 178 and the tip ofskin penetrating member 210.Bottom surface 170 ofbody 162 includes arib 212 extending outwardly frombody 162.Rib 212 surroundsskin penetrating device 164 and has a substantially annular shape as shown inFIG. 17 . In the embodiment illustrated,rib 212 has aninner face 214 extending generally perpendicular tobottom face 170 ofbody 162.Rib 212 also includes anouter face 216 converging towardinner face 214 to form acrest 218.Outer face 216 is formed at an incline with respect tobottom face 170. - In the embodiment illustrated,
rib 212 is spaced outwardly from microskin penetrating members 210 and is impressed on the skin to define a target area on the skin for the microskin penetrating members 210. Preferably, microskin penetrating members 210 have an axial length slightly greater than the height ofrib 212 as shown inFIG. 19 . -
Device 160 is placed on theskin 220 of a patient and pressed downwardly. The downward pressure ondevice 160 causesrib 212 to contactskin 220 and stretch the skin in atarget area 222 surrounded byrib 212. Stretching the skin intarget area 222 enables microskin penetrating members 210 to pierce the surface of the skin. The normal elasticity of the skin provides a penetrating resistance to microskin penetrating members 210. By stretching the skin in thetarget area 222, microskin penetrating members 210 are better able to pierce the surface of the skin. In addition,rib 212 forms a seal against the surface ofskin 220 to contain the substance that can leak fromtarget area 222. - After
device 160 is positioned onskin 220,valve body 166 is rotated to the open position shown inFIG. 19 , the position fo thehandle 188 indicating the position of thevalve body 166. A dispensing pressure indicated by arrow 224 is provided onsupply device 198 to dispense the contents ofsupply device 198 throughaxial passage 194 and intocavity 178 where the substance can be delivered to microskin penetrating members 210. Preferably,supply device 198 is able to provide a pressure sufficient to dispense the contents and deliver the contents through microskin penetrating members 210 into the skin of the patient. After the contents ofsupply device 198 is delivered to the patient,device 160 is separated fromskin 220 and discarded. -
Device 160 is preferably designed and constructed to be a disposable, single use device. The device is prepackaged in a sterile condition for immediate use. In the illustrated embodiment,bottom face 170 ofbody 162 includes aprotective cover sheet 226.Cover sheet 226 is attached tobottom surface 170 in a manner that can be peeled easily fromdevice 160 at the time of use.Cover sheet 226 is preferably a flexible sheet material such as Tyvek.R™.Cover sheet 226 has a dimension to coverskin penetrating device 164 to maintainskin penetrating device 164 in sterile conditions until ready for use. Cover sheets similar to coversheet 226 can be used in connection with other embodiments according to the present invention. - The illustrated embodiments of the device can be used safely and effectively for the intradermal delivery of a pharmaceutical agent or other substance to a patient. The device is particularly suitable for introducing a vaccine intradermally for efficiently delivering a small amount of a vaccine antigen. The length, width and spacing of the microneedles can vary depending on the pharmaceutical agent being administered and the desired depth of penetration for delivery. When delivering a vaccine, the microneedles are dimensioned to target the optimum intradermal delivery site to promote the desired immune response.
- While several exemplary embodiments have been chosen to illustrate the invention, it will be appreciated by those skilled in the art that various additions and modifications can be made to the invention without departing from the scope of the invention as defined in the appended claims.
Claims (8)
1. A method for delivering a substance into the skin of a patient, comprising:
positioning on the skin of a patient a delivery device including a housing, a fluid chamber having an outlet, a substance in the fluid chamber, a manually operated valve for controlling movement of the substance through the outlet of said fluid chamber wherein said valve is operable by the patient, and at least one skin penetrating member in fluid communication with said channel;
applying a pressure sufficient for said skin penetrating members to penetrate said skin to a depth from about 50 microns to about 4,000 microns, sufficient to deliver said substance to the patient; and
opening said valve to enable the substance to move from said fluid chamber, through said skin penetrating members, and into the skin of the patient.
2. The method of claim 1 , further comprising applying pressure to the substance in the fluid chamber to help move the substance into the skin of the patient.
3. The method of claim 2 , wherein the fluid chamber is defined at least in part by a movable wall, and the step of applying pressure to the substance in the fluid chamber comprises applying pressure to the movable wall.
4. The method of claim 3 , further comprising, prior to the step of positioning, coupling the fluid chamber to the housing.
5. A method for delivering a substance into the skin of a patient, comprising:
positioning on the skin of a patient a delivery device including a housing, a fluid chamber having an outlet, a substance in the fluid chamber, a manually operated valve for controlling movement of the substance through the outlet of said fluid chamber wherein said valve is operably connected to a button, wherein said valve is operable in turn by the patient manually moving the button, and at least one skin penetrating member in fluid communication with said channel;
applying a pressure sufficient for said skin penetrating members to penetrate said skin to a depth from about 50 microns to about 4,000 microns, sufficient to deliver said substance to the patient; and
opening said valve to enable the substance to move from said fluid chamber, through said skin penetrating members, and into the skin of the patient.
6. The method of claim 5 , further comprising applying pressure to the substance in the fluid chamber to help move the substance into the skin of the patient.
7. The method of claim 6 , wherein the fluid chamber is defined at least in part by a movable wall, and the step of applying pressure to the substance in the fluid chamber comprises applying pressure to the movable wall.
8. The method of claim 7 , further comprising, prior to the step of positioning, coupling the fluid chamber to the housing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/107,154 US20080195080A1 (en) | 2002-04-02 | 2008-04-22 | Valved delivery device and method of delivering a substance to a patient |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/112,756 US7047070B2 (en) | 2002-04-02 | 2002-04-02 | Valved intradermal delivery device and method of intradermally delivering a substance to a patient |
US11/328,035 US20070149945A1 (en) | 2002-04-02 | 2006-01-09 | Valved intradermal delivery device and method of intradermally delivering a substance to a patient |
US12/107,154 US20080195080A1 (en) | 2002-04-02 | 2008-04-22 | Valved delivery device and method of delivering a substance to a patient |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/328,035 Continuation US20070149945A1 (en) | 2002-04-02 | 2006-01-09 | Valved intradermal delivery device and method of intradermally delivering a substance to a patient |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080195080A1 true US20080195080A1 (en) | 2008-08-14 |
Family
ID=28453418
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/112,756 Expired - Lifetime US7047070B2 (en) | 2002-04-02 | 2002-04-02 | Valved intradermal delivery device and method of intradermally delivering a substance to a patient |
US11/328,035 Abandoned US20070149945A1 (en) | 2002-04-02 | 2006-01-09 | Valved intradermal delivery device and method of intradermally delivering a substance to a patient |
US12/107,154 Abandoned US20080195080A1 (en) | 2002-04-02 | 2008-04-22 | Valved delivery device and method of delivering a substance to a patient |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/112,756 Expired - Lifetime US7047070B2 (en) | 2002-04-02 | 2002-04-02 | Valved intradermal delivery device and method of intradermally delivering a substance to a patient |
US11/328,035 Abandoned US20070149945A1 (en) | 2002-04-02 | 2006-01-09 | Valved intradermal delivery device and method of intradermally delivering a substance to a patient |
Country Status (9)
Country | Link |
---|---|
US (3) | US7047070B2 (en) |
EP (2) | EP1757240B1 (en) |
JP (1) | JP5030368B2 (en) |
AT (2) | ATE344084T1 (en) |
AU (1) | AU2003218458A1 (en) |
CA (1) | CA2480476A1 (en) |
DE (2) | DE60324210D1 (en) |
ES (2) | ES2313566T3 (en) |
WO (1) | WO2003084595A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109718462A (en) * | 2017-10-27 | 2019-05-07 | 研能科技股份有限公司 | The liquid feed device of human insulin injection |
Families Citing this family (176)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036924A (en) | 1997-12-04 | 2000-03-14 | Hewlett-Packard Company | Cassette of lancet cartridges for sampling blood |
US6391005B1 (en) | 1998-03-30 | 2002-05-21 | Agilent Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US9717451B2 (en) * | 2000-06-08 | 2017-08-01 | Becton, Dickinson And Company | Device for withdrawing or administering a substance and method of manufacturing a device |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US7344507B2 (en) | 2002-04-19 | 2008-03-18 | Pelikan Technologies, Inc. | Method and apparatus for lancet actuation |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
DE60234598D1 (en) | 2001-06-12 | 2010-01-14 | Pelikan Technologies Inc | SELF-OPTIMIZING LANZET DEVICE WITH ADAPTANT FOR TEMPORAL FLUCTUATIONS OF SKIN PROPERTIES |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
ATE497731T1 (en) | 2001-06-12 | 2011-02-15 | Pelikan Technologies Inc | DEVICE FOR INCREASING THE SUCCESS RATE OF BLOOD YIELD OBTAINED BY A FINGER PICK |
JP4272051B2 (en) | 2001-06-12 | 2009-06-03 | ペリカン テクノロジーズ インコーポレイテッド | Blood sampling apparatus and method |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
ATE485766T1 (en) | 2001-06-12 | 2010-11-15 | Pelikan Technologies Inc | ELECTRICAL ACTUATING ELEMENT FOR A LANCET |
BRPI0307434B8 (en) * | 2002-02-04 | 2021-06-22 | Becton Dickinson Co | device for applying or removing a substance through the skin. |
EP2578253B1 (en) * | 2002-03-26 | 2018-03-14 | Becton, Dickinson and Company | Multi-stage fluid delivery device and method |
US7115108B2 (en) * | 2002-04-02 | 2006-10-03 | Becton, Dickinson And Company | Method and device for intradermally delivering a substance |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7371247B2 (en) | 2002-04-19 | 2008-05-13 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US7291117B2 (en) | 2002-04-19 | 2007-11-06 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
TW566423U (en) * | 2003-04-23 | 2003-12-11 | Ind Tech Res Inst | Structure for miniature gripping clip |
DK1633235T3 (en) | 2003-06-06 | 2014-08-18 | Sanofi Aventis Deutschland | Apparatus for sampling body fluid and detecting analyte |
WO2006001797A1 (en) | 2004-06-14 | 2006-01-05 | Pelikan Technologies, Inc. | Low pain penetrating |
US7766902B2 (en) * | 2003-08-13 | 2010-08-03 | Wisconsin Alumni Research Foundation | Microfluidic device for drug delivery |
EP1671096A4 (en) | 2003-09-29 | 2009-09-16 | Pelikan Technologies Inc | Method and apparatus for an improved sample capture device |
EP1680014A4 (en) | 2003-10-14 | 2009-01-21 | Pelikan Technologies Inc | Method and apparatus for a variable user interface |
CN100586414C (en) * | 2003-10-21 | 2010-02-03 | 诺沃挪第克公司 | Reservoir device with inclined needle |
DE602004022075D1 (en) * | 2003-10-21 | 2009-08-27 | Novo Nordisk As | RESERVOIR DEVICE WITH INTEGRATED FASTENER |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
EP1727577A1 (en) | 2004-03-26 | 2006-12-06 | Unomedical A/S | Injector device for infusion set |
US20050240154A1 (en) * | 2004-04-21 | 2005-10-27 | Unomedical A/S: | Infusion set with patch |
WO2006011062A2 (en) | 2004-05-20 | 2006-02-02 | Albatros Technologies Gmbh & Co. Kg | Printable hydrogel for biosensors |
EP1765194A4 (en) | 2004-06-03 | 2010-09-29 | Pelikan Technologies Inc | Method and apparatus for a fluid sampling device |
WO2005120433A1 (en) * | 2004-06-07 | 2005-12-22 | Novo Nordisk A/S | Reservoir with liquidly applied seal |
US8062250B2 (en) | 2004-08-10 | 2011-11-22 | Unomedical A/S | Cannula device |
CA2578817C (en) | 2004-09-10 | 2014-04-15 | Becton, Dickinson And Company | Reconstituting infusion device |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US7985199B2 (en) * | 2005-03-17 | 2011-07-26 | Unomedical A/S | Gateway system |
EP1762259B1 (en) | 2005-09-12 | 2010-09-08 | Unomedical A/S | Inserter for an infusion set with a first and second spring units |
US7842008B2 (en) | 2005-11-21 | 2010-11-30 | Becton, Dickinson And Company | Intradermal delivery device |
WO2007071258A1 (en) | 2005-12-23 | 2007-06-28 | Unomedical A/S | Injection device |
US9339641B2 (en) | 2006-01-17 | 2016-05-17 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
US9610459B2 (en) | 2009-07-24 | 2017-04-04 | Emkinetics, Inc. | Cooling systems and methods for conductive coils |
US20100168501A1 (en) * | 2006-10-02 | 2010-07-01 | Daniel Rogers Burnett | Method and apparatus for magnetic induction therapy |
WO2007092618A2 (en) * | 2006-02-09 | 2007-08-16 | Deka Products Limited Partnership | Fluid delivery systems and methods |
JPWO2007091608A1 (en) * | 2006-02-10 | 2009-07-02 | 久光製薬株式会社 | Transdermal drug administration device with microneedle |
JP5038334B2 (en) | 2006-02-28 | 2012-10-03 | ウノメディカル アクティーゼルスカブ | Injection parts with inserts and needle protectors for injection parts |
EP2005990B1 (en) | 2006-04-07 | 2013-08-28 | Hisamitsu Pharmaceutical Co., Inc. | Microneedle device and transdermal administration device provided with microneedles |
WO2007140783A2 (en) | 2006-06-07 | 2007-12-13 | Unomedical A/S | Inserter for transcutaneous sensor |
KR20090028701A (en) | 2006-06-09 | 2009-03-19 | 우노메디컬 에이/에스 | Mounting pad |
KR101421312B1 (en) | 2006-07-21 | 2014-07-31 | 캘리포니아 인스티튜트 오브 테크놀로지 | Targeted gene delivery for dendritic cell vaccination |
PL2046419T3 (en) | 2006-08-02 | 2011-10-31 | Unomedical As | Cannula and delivery device |
EP1884223A1 (en) * | 2006-08-04 | 2008-02-06 | IP Randwyck B.V. | Wound-stimulating unit |
US8119772B2 (en) * | 2006-09-29 | 2012-02-21 | California Institute Of Technology | MART-1 T cell receptors |
US9005102B2 (en) | 2006-10-02 | 2015-04-14 | Emkinetics, Inc. | Method and apparatus for electrical stimulation therapy |
US10786669B2 (en) | 2006-10-02 | 2020-09-29 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
AU2007303223C1 (en) | 2006-10-02 | 2013-01-10 | Emkinetics, Inc. | Method and apparatus for magnetic induction therapy |
US11224742B2 (en) | 2006-10-02 | 2022-01-18 | Emkinetics, Inc. | Methods and devices for performing electrical stimulation to treat various conditions |
EP1917990A1 (en) | 2006-10-31 | 2008-05-07 | Unomedical A/S | Infusion set |
US7776022B2 (en) * | 2007-03-19 | 2010-08-17 | Hemcon Medical Technologies | Apparatus and methods for making, storing, and administering freeze-dried materials such as freeze-dried plasma |
US20090107001A1 (en) * | 2007-03-19 | 2009-04-30 | Hemcon Medical Technologies, Inc. | Apparatus and methods for making, storing, and administering freeze-dried materials such as freeze-dried plasma |
US8449520B2 (en) * | 2007-03-19 | 2013-05-28 | HemCon Medical Technologies Inc. | Apparatus and methods for making, storing, and administering freeze-dried materials such as freeze-dried plasma |
US20090223080A1 (en) * | 2007-03-19 | 2009-09-10 | Hemcon Medical Technologies, Inc. | Apparatus and methods for making, storing, and administering freeze-dried materials such as freeze-dried plasma |
GB2448493B (en) * | 2007-04-16 | 2009-10-14 | Dewan Fazlul Hoque Chowdhury | Microneedle transdermal delivery device |
WO2008155145A1 (en) | 2007-06-20 | 2008-12-24 | Unomedical A/S | A catheter and a method and an apparatus for making such catheter |
CA2691341A1 (en) | 2007-07-03 | 2009-01-08 | Unomedical A/S | Inserter having bistable equilibrium states |
WO2009007287A1 (en) | 2007-07-10 | 2009-01-15 | Unomedical A/S | Inserter having two springs |
WO2009010396A1 (en) | 2007-07-18 | 2009-01-22 | Unomedical A/S | Insertion device with pivoting action |
US20100121307A1 (en) * | 2007-08-24 | 2010-05-13 | Microfabrica Inc. | Microneedles, Microneedle Arrays, Methods for Making, and Transdermal and/or Intradermal Applications |
US7771391B2 (en) * | 2007-09-28 | 2010-08-10 | Calibra Medical, Inc. | Disposable infusion device with snap action actuation |
US20090105673A1 (en) * | 2007-10-17 | 2009-04-23 | Cascio Gregory R | Medicament applicator |
US7806878B2 (en) * | 2007-10-17 | 2010-10-05 | Cascio Gregory R | Medicament applicator |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
DK2252349T3 (en) | 2008-02-13 | 2011-10-10 | Unomedical As | Sealing between a cannula portion and a fluid path |
AU2009216703A1 (en) | 2008-02-20 | 2009-08-27 | Unomedical A/S | Insertion device with horizontally moving part |
JP5285943B2 (en) * | 2008-03-28 | 2013-09-11 | 凸版印刷株式会社 | Needle-shaped body array and method for manufacturing needle-shaped body array |
EP2265324B1 (en) | 2008-04-11 | 2015-01-28 | Sanofi-Aventis Deutschland GmbH | Integrated analyte measurement system |
WO2009149308A2 (en) * | 2008-06-04 | 2009-12-10 | Seventh Sense Biosystems, Inc. | Compositions and methods for rapid one-step diagnosis |
US8986250B2 (en) * | 2008-08-01 | 2015-03-24 | Wisconsin Alumni Research Foundation | Drug delivery platform utilizing hydrogel pumping mechanism |
US8795259B2 (en) * | 2008-08-01 | 2014-08-05 | Wisconsin Alumni Research Foundation | Drug delivery platform incorporating hydrogel pumping mechanism with guided fluid flow |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
WO2010033878A2 (en) | 2008-09-19 | 2010-03-25 | David Brown | Solute concentration measurement device and related methods |
EP3187219B1 (en) | 2008-12-02 | 2020-04-22 | Allergan, Inc. | Injection device |
KR101039078B1 (en) * | 2009-08-04 | 2011-06-07 | (주)마이티시스템 | Effective component delivery system having micro-needle and movable storage capsule |
BRPI0923489A2 (en) | 2008-12-22 | 2016-01-26 | Unomedical As | medical device comprising adhesive pad |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US20100256524A1 (en) | 2009-03-02 | 2010-10-07 | Seventh Sense Biosystems, Inc. | Techniques and devices associated with blood sampling |
US9295417B2 (en) | 2011-04-29 | 2016-03-29 | Seventh Sense Biosystems, Inc. | Systems and methods for collecting fluid from a subject |
SI2770061T1 (en) | 2009-07-24 | 2019-02-28 | Immune Design Corp. | Non-integrating lentiviral vectors |
CA2769030C (en) | 2009-07-30 | 2016-05-10 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
KR20120054598A (en) | 2009-07-30 | 2012-05-30 | 우노메디컬 에이/에스 | Inserter device with horizontal moving part |
US9533092B2 (en) | 2009-08-07 | 2017-01-03 | Unomedical A/S | Base part for a medication delivery device |
US8088108B2 (en) * | 2009-08-22 | 2012-01-03 | Joseph Wayne Kraft | Rapid local anesthesia injection cone |
US8409147B2 (en) * | 2009-08-22 | 2013-04-02 | Joseph Wayne Kraft | Rapid local anesthesia linear injection device |
JP5610418B2 (en) * | 2009-09-07 | 2014-10-22 | 学校法人立命館 | Substance supply device |
EP2493551A4 (en) | 2009-10-26 | 2013-04-17 | Emkinetics Inc | Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues |
US8328757B2 (en) * | 2010-01-08 | 2012-12-11 | Wisconsin Alumni Research Foundation | Bladder arrangement for microneedle-based drug delivery device |
WO2011094573A1 (en) | 2010-01-28 | 2011-08-04 | Seventh Sense Biosystems, Inc. | Monitoring or feedback systems and methods |
WO2011121023A1 (en) | 2010-03-30 | 2011-10-06 | Unomedical A/S | Medical device |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8588884B2 (en) | 2010-05-28 | 2013-11-19 | Emkinetics, Inc. | Microneedle electrode |
WO2011163347A2 (en) | 2010-06-23 | 2011-12-29 | Seventh Sense Biosystems, Inc. | Sampling devices and methods involving relatively little pain |
JP5424998B2 (en) * | 2010-06-30 | 2014-02-26 | 株式会社吉野工業所 | Dosing device |
US20120016308A1 (en) | 2010-07-16 | 2012-01-19 | Seventh Sense Biosystems, Inc. | Low-pressure packaging for fluid devices |
US20130158482A1 (en) | 2010-07-26 | 2013-06-20 | Seventh Sense Biosystems, Inc. | Rapid delivery and/or receiving of fluids |
WO2012021801A2 (en) * | 2010-08-13 | 2012-02-16 | Seventh Sense Biosystems, Inc. | Systems and techniques for monitoring subjects |
US20120041338A1 (en) * | 2010-08-13 | 2012-02-16 | Seventh Sense Biosystems, Inc. | Clinical and/or consumer techniques and devices |
EP2433663A1 (en) | 2010-09-27 | 2012-03-28 | Unomedical A/S | Insertion system |
EP2436412A1 (en) | 2010-10-04 | 2012-04-04 | Unomedical A/S | A sprinkler cannula |
US9017289B2 (en) | 2010-11-03 | 2015-04-28 | Covidien Lp | Transdermal fluid delivery device |
US8668675B2 (en) * | 2010-11-03 | 2014-03-11 | Flugen, Inc. | Wearable drug delivery device having spring drive and sliding actuation mechanism |
WO2012064802A1 (en) | 2010-11-09 | 2012-05-18 | Seventh Sense Biosystems, Inc. | Systems and interfaces for blood sampling |
US20130158468A1 (en) | 2011-12-19 | 2013-06-20 | Seventh Sense Biosystems, Inc. | Delivering and/or receiving material with respect to a subject surface |
EP3235429B1 (en) | 2011-04-29 | 2023-06-07 | YourBio Health, Inc. | Devices and methods for collection of blood from a subject |
KR102013466B1 (en) | 2011-04-29 | 2019-08-22 | 세븐쓰 센스 바이오시스템즈, 인크. | Delivering and/or receiving fluids |
WO2012166965A2 (en) * | 2011-05-31 | 2012-12-06 | Microlin, Llc | An apparatus and method for dermal delivery |
US8636696B2 (en) | 2011-06-10 | 2014-01-28 | Kimberly-Clark Worldwide, Inc. | Transdermal device containing microneedles |
WO2013050277A1 (en) | 2011-10-05 | 2013-04-11 | Unomedical A/S | Inserter for simultaneous insertion of multiple transcutaneous parts |
EP2583715A1 (en) | 2011-10-19 | 2013-04-24 | Unomedical A/S | Infusion tube system and method for manufacture |
US9440051B2 (en) | 2011-10-27 | 2016-09-13 | Unomedical A/S | Inserter for a multiplicity of subcutaneous parts |
EA038702B1 (en) | 2012-03-30 | 2021-10-07 | Иммьюн Дизайн Корп. | Lentiviral vector particles having improved transduction efficiency for cells expressing dc sign |
US9180242B2 (en) | 2012-05-17 | 2015-11-10 | Tandem Diabetes Care, Inc. | Methods and devices for multiple fluid transfer |
US9555186B2 (en) | 2012-06-05 | 2017-01-31 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
AU2014222308B2 (en) | 2013-02-28 | 2018-11-08 | Vivasor, Inc. | Transdermal drug delivery device |
WO2014132239A1 (en) | 2013-02-28 | 2014-09-04 | Kimberly-Clark Worldwide, Inc. | Drug delivery device |
US9173998B2 (en) | 2013-03-14 | 2015-11-03 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US20140350518A1 (en) | 2013-05-23 | 2014-11-27 | Allergan, Inc. | Syringe extrusion accessory |
US20140350516A1 (en) | 2013-05-23 | 2014-11-27 | Allergan, Inc. | Mechanical syringe accessory |
AU2014274061C1 (en) * | 2013-05-31 | 2019-06-13 | Mannkind Corporation | A fluid delivery device having an insertable prefilled cartridge |
WO2015027055A1 (en) * | 2013-08-23 | 2015-02-26 | Elwha Llc | Systems, methods, and devices for delivering treatment to a skin surface |
KR20160144980A (en) * | 2014-04-14 | 2016-12-19 | 도판 인사츠 가부시키가이샤 | Injection device |
US10029048B2 (en) | 2014-05-13 | 2018-07-24 | Allergan, Inc. | High force injection devices |
US10226585B2 (en) | 2014-10-01 | 2019-03-12 | Allergan, Inc. | Devices for injection and dosing |
US11478583B2 (en) * | 2014-10-03 | 2022-10-25 | Enable Injections, Inc. | Medical fluid transfer and injection apparatus and method |
EP4303552A3 (en) * | 2014-12-04 | 2024-03-20 | Becton, Dickinson and Company | Fluid delivery device with sensor and pump control |
RU2715685C2 (en) | 2015-03-10 | 2020-03-02 | Аллерган Фармасьютикалз Холдингз (Айрленд) Анлимитед Кампани | Multiple-needle injection device |
WO2017044887A1 (en) | 2015-09-09 | 2017-03-16 | Drawbridge Health, Inc. | Systems, methods, and devices for sample collection, stabilization and preservation |
US10705486B2 (en) * | 2015-10-11 | 2020-07-07 | Zahra Aboutalebi | Magic gluco-wrist watch (MGW) |
CA3003890A1 (en) | 2015-11-09 | 2017-05-18 | Immune Design Corp. | Compositions comprising lentiviral vectors expressing il-12 and methods of use thereof |
US11135283B2 (en) | 2015-11-09 | 2021-10-05 | Immune Design Corp. | Retroviral vector for the administration and expression of replicon RNA expressing heterologous nucleic acids |
JP2019509275A (en) | 2016-02-23 | 2019-04-04 | イミューン デザイン コーポレイション | Multigenome retroviral vector preparations and methods and systems for producing and using them |
US9827369B2 (en) | 2016-03-16 | 2017-11-28 | Baxter International Inc. | Percutaneous administration device and method for injecting medicinal substances |
US10596321B2 (en) | 2016-04-08 | 2020-03-24 | Allergan, Inc. | Aspiration and injection device |
KR101695603B1 (en) * | 2016-11-08 | 2017-01-12 | 이창우 | needle disc roller apparatus comprising viscoelastic connection cap with structures being tightly joined to lower end of a bottle neck |
CA3049458A1 (en) | 2017-01-10 | 2018-07-19 | Drawbridge Health, Inc. | Devices, systems, and methods for sample collection |
WO2018148180A2 (en) | 2017-02-07 | 2018-08-16 | Immune Design Corp. | Materials and methods for identifying and treating cancer patients |
USD867582S1 (en) | 2017-03-24 | 2019-11-19 | Allergan, Inc. | Syringe device |
WO2019036609A1 (en) * | 2017-08-17 | 2019-02-21 | New York University | Bone growth stimulator and methods of use |
TWI653968B (en) | 2017-11-20 | 2019-03-21 | 研能科技股份有限公司 | Blood glucose detecting device |
TWI667016B (en) * | 2017-11-20 | 2019-08-01 | 研能科技股份有限公司 | Blood sugar detecting and controlling system |
JP7491551B2 (en) * | 2019-04-25 | 2024-05-28 | コスメディ製薬株式会社 | Applicator 2 for water-soluble sheet preparation |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5250023A (en) * | 1989-10-27 | 1993-10-05 | Korean Research Institute on Chemical Technology | Transdermal administration method of protein or peptide drug and its administration device thereof |
US5279544A (en) * | 1990-12-13 | 1994-01-18 | Sil Medics Ltd. | Transdermal or interdermal drug delivery devices |
US5820622A (en) * | 1994-11-04 | 1998-10-13 | Elan Medical Technologies Limited | Analyte-controlled liquid delivery device and analyte monitor |
US5997501A (en) * | 1993-11-18 | 1999-12-07 | Elan Corporation, Plc | Intradermal drug delivery device |
US6050988A (en) * | 1997-12-11 | 2000-04-18 | Alza Corporation | Device for enhancing transdermal agent flux |
US6083196A (en) * | 1997-12-11 | 2000-07-04 | Alza Corporation | Device for enhancing transdermal agent flux |
US6132755A (en) * | 1995-07-14 | 2000-10-17 | Boehringer Ingelheim Kg | Transcorneal drug-release system |
US6219574B1 (en) * | 1996-06-18 | 2001-04-17 | Alza Corporation | Device and method for enchancing transdermal sampling |
US6440096B1 (en) * | 2000-07-14 | 2002-08-27 | Becton, Dickinson And Co. | Microdevice and method of manufacturing a microdevice |
US6565532B1 (en) * | 2000-07-12 | 2003-05-20 | The Procter & Gamble Company | Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup |
US6623457B1 (en) * | 1999-09-22 | 2003-09-23 | Becton, Dickinson And Company | Method and apparatus for the transdermal administration of a substance |
US6656147B1 (en) * | 2000-07-17 | 2003-12-02 | Becton, Dickinson And Company | Method and delivery device for the transdermal administration of a substance |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1584474A (en) * | 1968-02-20 | 1969-12-26 | ||
GB1216813A (en) * | 1969-02-21 | 1970-12-23 | Shozo Narusawa | Transcutaneous injection device |
US3964482A (en) * | 1971-05-17 | 1976-06-22 | Alza Corporation | Drug delivery device |
GB2221394B (en) | 1988-08-05 | 1992-03-04 | Eilert Eilertsen | An injection device |
US5656032A (en) * | 1989-06-16 | 1997-08-12 | Science Incorporated | Fluid delivery apparatus and method of making same |
US5527288A (en) * | 1990-12-13 | 1996-06-18 | Elan Medical Technologies Limited | Intradermal drug delivery device and method for intradermal delivery of drugs |
SE9101022D0 (en) * | 1991-01-09 | 1991-04-08 | Paal Svedman | MEDICAL SUSPENSION DEVICE |
US6048337A (en) * | 1992-01-07 | 2000-04-11 | Principal Ab | Transdermal perfusion of fluids |
US5389070A (en) * | 1993-03-16 | 1995-02-14 | Wake Forest University | Syringe apparatus with a fluid reservoir for injection and aspiration of fluids |
FI941336A (en) * | 1993-03-23 | 1994-09-24 | Diomedes Oy | A patch that acts as a dispenser |
US5320600A (en) * | 1993-06-14 | 1994-06-14 | Lambert Wm S | Plural content container for simultaneous ejection |
AU5869796A (en) | 1995-05-22 | 1996-12-11 | Ned A. Godshall | Micromechanical patch for enhancing the delivery of compound s through the skin |
AU5740496A (en) * | 1995-05-22 | 1996-12-11 | General Hospital Corporation, The | Micromechanical device and method for enhancing delivery of compounds through the skin |
US5735818A (en) * | 1995-10-11 | 1998-04-07 | Science Incorporated | Fluid delivery device with conformable ullage |
IE80772B1 (en) | 1996-06-10 | 1999-02-10 | Elan Corp Plc | Delivery needle |
US6186982B1 (en) | 1998-05-05 | 2001-02-13 | Elan Corporation, Plc | Subcutaneous drug delivery device with improved filling system |
PT1037687E (en) * | 1997-12-11 | 2008-12-17 | Alza Corp | Device for enhancing transdermal agent flux |
CN1315877A (en) | 1998-08-31 | 2001-10-03 | 强生消费者公司 | Electrotransport device comprising blades |
US6256533B1 (en) * | 1999-06-09 | 2001-07-03 | The Procter & Gamble Company | Apparatus and method for using an intracutaneous microneedle array |
US6379324B1 (en) | 1999-06-09 | 2002-04-30 | The Procter & Gamble Company | Intracutaneous microneedle array apparatus |
US6558361B1 (en) * | 2000-03-09 | 2003-05-06 | Nanopass Ltd. | Systems and methods for the transport of fluids through a biological barrier and production techniques for such systems |
US6537242B1 (en) * | 2000-06-06 | 2003-03-25 | Becton, Dickinson And Company | Method and apparatus for enhancing penetration of a member for the intradermal sampling or administration of a substance |
US6603987B2 (en) | 2000-07-11 | 2003-08-05 | Bayer Corporation | Hollow microneedle patch |
-
2002
- 2002-04-02 US US10/112,756 patent/US7047070B2/en not_active Expired - Lifetime
-
2003
- 2003-03-31 DE DE60324210T patent/DE60324210D1/en not_active Expired - Lifetime
- 2003-03-31 WO PCT/US2003/009710 patent/WO2003084595A1/en active IP Right Grant
- 2003-03-31 CA CA002480476A patent/CA2480476A1/en not_active Abandoned
- 2003-03-31 ES ES06119716T patent/ES2313566T3/en not_active Expired - Lifetime
- 2003-03-31 DE DE60309454T patent/DE60309454T2/en not_active Expired - Lifetime
- 2003-03-31 AT AT03714460T patent/ATE344084T1/en not_active IP Right Cessation
- 2003-03-31 ES ES03714460T patent/ES2276054T3/en not_active Expired - Lifetime
- 2003-03-31 JP JP2003581832A patent/JP5030368B2/en not_active Expired - Fee Related
- 2003-03-31 AT AT06119716T patent/ATE410963T1/en not_active IP Right Cessation
- 2003-03-31 AU AU2003218458A patent/AU2003218458A1/en not_active Abandoned
- 2003-03-31 EP EP06119716A patent/EP1757240B1/en not_active Expired - Lifetime
- 2003-03-31 EP EP03714460A patent/EP1490143B1/en not_active Expired - Lifetime
-
2006
- 2006-01-09 US US11/328,035 patent/US20070149945A1/en not_active Abandoned
-
2008
- 2008-04-22 US US12/107,154 patent/US20080195080A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5250023A (en) * | 1989-10-27 | 1993-10-05 | Korean Research Institute on Chemical Technology | Transdermal administration method of protein or peptide drug and its administration device thereof |
US5279544A (en) * | 1990-12-13 | 1994-01-18 | Sil Medics Ltd. | Transdermal or interdermal drug delivery devices |
US5997501A (en) * | 1993-11-18 | 1999-12-07 | Elan Corporation, Plc | Intradermal drug delivery device |
US5820622A (en) * | 1994-11-04 | 1998-10-13 | Elan Medical Technologies Limited | Analyte-controlled liquid delivery device and analyte monitor |
US6132755A (en) * | 1995-07-14 | 2000-10-17 | Boehringer Ingelheim Kg | Transcorneal drug-release system |
US6219574B1 (en) * | 1996-06-18 | 2001-04-17 | Alza Corporation | Device and method for enchancing transdermal sampling |
US6050988A (en) * | 1997-12-11 | 2000-04-18 | Alza Corporation | Device for enhancing transdermal agent flux |
US6083196A (en) * | 1997-12-11 | 2000-07-04 | Alza Corporation | Device for enhancing transdermal agent flux |
US6623457B1 (en) * | 1999-09-22 | 2003-09-23 | Becton, Dickinson And Company | Method and apparatus for the transdermal administration of a substance |
US6565532B1 (en) * | 2000-07-12 | 2003-05-20 | The Procter & Gamble Company | Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup |
US6440096B1 (en) * | 2000-07-14 | 2002-08-27 | Becton, Dickinson And Co. | Microdevice and method of manufacturing a microdevice |
US6656147B1 (en) * | 2000-07-17 | 2003-12-02 | Becton, Dickinson And Company | Method and delivery device for the transdermal administration of a substance |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109718462A (en) * | 2017-10-27 | 2019-05-07 | 研能科技股份有限公司 | The liquid feed device of human insulin injection |
Also Published As
Publication number | Publication date |
---|---|
US20030187423A1 (en) | 2003-10-02 |
DE60309454T2 (en) | 2007-10-04 |
DE60324210D1 (en) | 2008-11-27 |
CA2480476A1 (en) | 2003-10-16 |
JP5030368B2 (en) | 2012-09-19 |
EP1490143B1 (en) | 2006-11-02 |
DE60309454D1 (en) | 2006-12-14 |
ATE410963T1 (en) | 2008-10-15 |
EP1490143A1 (en) | 2004-12-29 |
WO2003084595A1 (en) | 2003-10-16 |
ES2313566T3 (en) | 2009-03-01 |
ES2276054T3 (en) | 2007-06-16 |
US7047070B2 (en) | 2006-05-16 |
EP1757240A1 (en) | 2007-02-28 |
EP1757240B1 (en) | 2008-10-15 |
ATE344084T1 (en) | 2006-11-15 |
US20070149945A1 (en) | 2007-06-28 |
JP2005521524A (en) | 2005-07-21 |
AU2003218458A1 (en) | 2003-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7047070B2 (en) | Valved intradermal delivery device and method of intradermally delivering a substance to a patient | |
EP1438098B1 (en) | Microdevice of delivering or withdrawing a substance through the skin of an animal | |
EP1700615B1 (en) | Device for intradermal medicament delivery | |
US6440096B1 (en) | Microdevice and method of manufacturing a microdevice | |
EP1490145B1 (en) | Device for intradermally delivering a substance | |
AU2002330234A1 (en) | Microdevice and method of delivering or withdrawing a substance through the skin of an animal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |