[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20080119353A1 - Method for Producing Heterogeneous Catalysts Containing Metal Nanoparticles - Google Patents

Method for Producing Heterogeneous Catalysts Containing Metal Nanoparticles Download PDF

Info

Publication number
US20080119353A1
US20080119353A1 US11/942,711 US94271107A US2008119353A1 US 20080119353 A1 US20080119353 A1 US 20080119353A1 US 94271107 A US94271107 A US 94271107A US 2008119353 A1 US2008119353 A1 US 2008119353A1
Authority
US
United States
Prior art keywords
solvent
support materials
metal salt
monomer
fixing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/942,711
Inventor
Jifei Jia
Jian Wang
Kyle L. Fujdala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shubin Inc
Original Assignee
Nanostellar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanostellar Inc filed Critical Nanostellar Inc
Priority to US11/942,711 priority Critical patent/US20080119353A1/en
Assigned to NANOSTELLAR, INC. reassignment NANOSTELLAR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JIA, JIFEI, FUJDALA, KYLE L., WANG, JIAN
Publication of US20080119353A1 publication Critical patent/US20080119353A1/en
Assigned to WGC HOLDINGS LIMITED reassignment WGC HOLDINGS LIMITED SECURITY AGREEMENT Assignors: NANOSTELLAR, INC.
Assigned to NANOSTELLAR, INC. reassignment NANOSTELLAR, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WGC HOLDINGS LIMITED
Priority to US13/854,842 priority patent/US9527068B2/en
Assigned to SHUBIN, INC. reassignment SHUBIN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NANOSTELLAR, INC.
Assigned to NANOSTELLAR, INC. reassignment NANOSTELLAR, INC. SECURITY AGREEMENT Assignors: WGC HOLDINGS LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention generally relates to the production of supported catalysts, and more particularly, to a method for making a heterogeneous catalyst containing metal nanoparticles dispersed throughout the support material for the heterogeneous catalyst.
  • Catalysts are also essential for the reduction of pollutants, particularly air pollutants created during the production of energy and by automobiles.
  • Many industrial catalysts are composed of a high surface area support material upon which chemically active metal nanoparticles (i.e., nanometer sized metal particles) are dispersed.
  • the support materials are generally inert, ceramic type materials having surface areas on the order of hundreds of square meters/gram. This high specific surface area usually requires a complex internal pore system.
  • the metal nanoparticles are deposited on the support and dispersed throughout this internal pore system, and are generally between 1 and 100 nanometers in size.
  • One such process for making platinum catalysts involves the contacting of a support material such as alumina with a metal salt solution such as chloroplatinic acid.
  • the salt solution “impregnates” or fills the pores of the support during this process.
  • the support containing the salt solution would be air dried, causing the metal salt to precipitate within the pores.
  • the support containing the crystallized metal salt would then be exposed to a hydrogen or carbon monoxide gas environment, reducing the solid metal salt to metal particles.
  • Another process for making supported catalysts involves the steps of contacting a support material with a metal salt solution and reducing the metal ions to metal particles in situ using suitable reducing agents.
  • suitable reducing agents including glucose, hydroxylamine hydrochloride, and hydrazine.
  • U.S. Pat. No. 4,086,275 teaches methods for preparing copper catalysts using sodium borohydride as the in situ reducing agent.
  • U.S. Pat. No. 4,835,131 teaches methods for preparing molybdenum on silica catalyst, copper on gamma-alumina catalyst, silver on silica catalyst and silver on gamma-alumina catalyst.
  • the reducing agents used to prepare these catalysts include hydrazine, ammonium hydroxide, and formaldehyde.
  • U.S. Pat. Nos. 5,275,998 and 5,275,999 teach methods for preparing metal catalysts on carbon support and on alumina support using different reducing agents, including hydrazine hydrate, ascorbic acid, and sodium borohydride. According to these patents, supported catalysts having very small metal particle size (average size not greater than 2 nanometers) can be produced if the preparation steps are carried out in the presence of ethylene and/or acetylene (U.S. Pat. No. 5,275,998) or in the presence of carbon monoxide (U.S. Pat. No. 5,275,998).
  • 6,686,308 teaches methods for preparing metal catalysts on silica using sodium citrate or potassium citrate as the reducing agent.
  • This patent also teaches the use of colloid stabilizers including sodium sulfanilate, and discloses that it is preferable to use colloid stabilizers that can also act as reducing agents, namely ammonium citrate, potassium citrate, and sodium citrate.
  • the present invention provides additional methods for preparing supported metal catalysts.
  • a monomer is added to a solvent containing metal salt and porous support materials and the solvent is stirred for a period of time to precipitate and/or reduce the metal salt in the pores of the support materials.
  • the solids that are dispersed in the solvent are then separated from the liquid, dried and calcined to form the supported catalyst.
  • the monomer that is added to the solvent is of a type that can be polymerized in the solvent to form oligomers or polymers, or both. Acrylic acid may be used as such a monomer.
  • a supported catalyst is prepared by first forming an interim supported metal catalyst through reduction or precipitation, and then carrying out the further steps of mixing the interim supported metal catalyst and metal salt of the same metal type in a solvent, adding a fixing agent to the solvent and stirring the solvent to precipitate or reduce the metal salt in the pores of the support materials for the catalyst, separating out the solid in the solvent, drying the separated solid, and calcining it.
  • the fixing agent for causing the reduction or precipitation during the process for forming the interim supported metal catalyst is selected based on the particular metal-support combination being used.
  • the fixing agent that is added to the solvent is selected based on the particular metal-support combination being used.
  • a supported catalyst is prepared by first forming an interim supported metal catalyst through reduction or precipitation, and then carrying out the further steps of mixing the interim supported metal catalyst and metal salt of a different metal type in a solvent, adding a fixing agent to the solvent, stirring the solvent, separating out the solid in the solvent, drying the separated solid, and calcining it.
  • At least one of the fixing agents for causing the reduction or precipitation during the process for forming the interim supported metal catalyst and the fixing agent that is added to the solvent is a monomer of a type that can be polymerized in the solvent to form oligomers or polymers, or both. Acrylic acid may be used as such a monomer.
  • FIG. 1 is a process flow block diagram of a method for making catalysts according to a first embodiment of the present invention.
  • FIG. 2 is a process flow block diagram of a method for making catalysts according to a second embodiment of the present invention.
  • FIG. 3 is a process flow block diagram of a method for making catalysts according to a third embodiment of the present invention.
  • FIGS. 4A-4D are schematic representations of different engine exhaust systems in which catalysts made according to embodiments of the present invention may be used.
  • FIG. 5 is an illustration of a catalytic converter with a cut-away section that shows a substrate onto which catalysts made according to embodiments of the present invention are coated.
  • FIG. 6 is a flow diagram illustrating the steps for preparing an engine exhaust catalyst.
  • FIG. 1 shows a process flow block diagram of a method for making catalysts according to a first embodiment of the present invention.
  • a monomer is added to a solvent containing metal salt and support materials.
  • the monomer that is added to the solvent is of a type that has some capability of interacting with the metal in the solvent and can be polymerized in the solvent to form oligomers or polymers, or both. Formation of oligomers and/or polymers in situ (i.e., in the free solvent and/or in the pores of the support material) is desirable because they help stabilize the growth of nanoparticles.
  • Acrylic acid may be used as such a monomer, and is the preferred monomer for preparing platinum catalysts on alumina supports.
  • monomers that could be used, depending on a particular metal-support combination, include vinyl pyrrolidone, vinyl acetate, acrylamide, acrylic anhydride, sodium acrylate, glycidyl methacrylate, methacrylic acid, methacrylic anhydride, methyl methacrylate, 2-aminoethyl methacrylate hydrochloride, 1-vinylimidazole, allylamine, diallylamine, 4-vinyl benzoic acid, 3-aminopropylmethyldiethoxysilane, 2-hydroxyethyl acrylate, 4-acetoxy styrene, and mixtures thereof.
  • a fixing agent which may be a reducing agent, a precipitating agent or a hybrid reducing-precipitating agent, may be added in step 10 to the solvent containing metal salt and support materials.
  • Suitable fixing agents include: ascorbic acid, fumaric acid, acetic acid, maleic acid, H 2 , CO, N 2 H 4 , NH 2 OH, alcohols, citrates such as sodium, potassium and ammonium citrate, alkali metal borohydrides such as sodium and potassium borohydride, glycols, and mixtures thereof.
  • the solvent may be any liquid within which metal salt is suitably soluble, and which is sufficiently pure enough and can be removed from the support materials by evaporation, filtering, pump evacuation, centrifuge, or other similar means.
  • solvents include, but are not limited to, water, alcohol, and other organic solvents. Preferably, water or double de-ionized water is used.
  • Alcohols that are suitable include, but are not limited to, methanol and ethanol and their mixtures, with and without water.
  • Other organic solvents include tetrahydrofuran, acetic acid, ethylene glycol, N-methylpyrrolidone, dimethylformamide, dimethylacetalmide, and their mixtures, with and without water.
  • the metal salt may include one or more of the following metals: Pt, Pd, Ru, Rh, Re, Ir, Os, Fe, Co, Ni, Cu, Ag, Au, Zn, Cd, In, Ga, Sn, Pb, Bi, Sb, Ti, Zr, Cr, Mo, W, V, Nb and Mn.
  • metals Pt, Pd, Ru, Rh, Re, Ir, Os and Ag.
  • Pt salts that are suitable include Pt(NO 3 ) 2 , (NH 3 ) 4 Pt(NO 3 ) 2 , H 2 PtCl 6 , K 2 PtCl 4 , (NH 3 ) 4 Pt(OH) 2 , and Cl 4 Pt(NH 3 ) 2 .
  • Ag and Cu salts that are suitable include AgNO 3 , AgCH 3 COO, Cu(NO 3 ) 2 , Cu(CH 3 COO) 2 , and Cu(ll)acetylacetonate.
  • Pd salts that are suitable include Pd(NH 3 ) 4 (NO 3 ) 2 and Pd(NO 3 ) 2 .
  • the concentration of the metal salt in the resulting solution is preferably between 10 ⁇ 4 M and 0.1 M. The concentration of the metal salt in the resulting solution will depend on the target weight loading of the final catalyst.
  • the support materials may be alumina, silica, oxides of vanadium, oxides of titanium, oxides of zirconium, oxides of iron, cerium oxides, carbon, zeolites, molecular sieves, and various combinations thereof. Any of these support materials may be doped with lanthanum, other rare earth elements, alkali metals, alkaline earth metals, sulfur, selenium, tellurium, phosphorus, arsenic, antimony, or bismuth. The doping of the support materials may be carried out prior to, during, or even after the processes shown in FIGS. 1-3 .
  • the solvent containing the metal salt and the support materials may be prepared by first adding the support materials in powder form into the solvent and mixing the solvent. Sufficient agitation to keep the support materials in suspension within the solution is desirable. If necessary, the temperature may be adjusted during this step. Typically, ambient temperature or room temperature is used, within the range of 15 to 30° C. Metal salt is then added to the solvent in either dissolved form as part of a salt solution or solid form. After the metal salt is added in either dissolved form as part of a salt solution or solid form, the solvent is mixed. Sufficient agitation to keep the support materials in suspension is desirable. Agitation is also required to fully dissolve the metal salt within the solution and reduce any salt concentration gradients within the solution. Typically, ambient temperature or room temperature is used, within the range of 15 to 30° C. The pH and temperature of the solution may, however, be adjusted at this point, if desired. If the temperature or pH of the solution is adjusted, additional mixing is carried out.
  • the solvent containing the metal salt and the support materials may be prepared by first adding the metal salt in either dissolved form as part of a salt solution or solid form into the solvent and mixing the solvent for a time period, and then adding the support materials into the solvent.
  • the metal salt and the support materials may be added to the solvent concurrently and then mixed together in the solvent.
  • step 12 the solvent is stirred (step 12 ). Sufficient agitation to keep the support materials in suspension is desirable. Mixing is carried out for a time period that is long enough to cause the precipitation and/or reduction of the metal salt in the pores of the support materials.
  • the mixture may be heated or subjected to ultraviolet light, or polymerization initiators, such as AlBN or various types of peroxides, may be added to the mixture, so as to initiate or increase the polymerization of the monomer that is added in step 10 .
  • the support materials are separated from the solvent by any convenient method, such as evaporation, filtration, pump evacuation, or centrifuge. Then, in step 16 , the separated support materials are dried at an elevated temperature between 100° C. and 150° C., preferably about 120° C. In step 18 , the separated support materials are ground into fine powder and calcined in air at a temperature of 500° C. or higher. The calcination is typically carried out for 2 to 8 hours at the elevated temperature, and removes any organic residues such as any organic polymer that was formed in situ during step 12 and remaining in the pores of the separated support materials. The separated support materials that have been subjected to grinding and calcination in step 18 represent the finished supported catalyst.
  • FIG. 2 shows a process flow block diagram of a method for making catalysts according to a second embodiment of the present invention.
  • a fixing agent which may be a reducing agent, a precipitating agent or a hybrid reducing-precipitating agent, is added to a solvent containing metal salt and support materials.
  • the solvent, metal salt, and support materials may be of any type described above in connection with the first embodiment.
  • the solvent containing metal salt and support materials is prepared in the manner described above for the first embodiment.
  • Suitable fixing agents include a monomer, such as acrylic acid, vinyl pyrrolidone, vinyl acetate, acrylamide, acrylic anhydride, sodium acrylate, glycidyl methacrylate, methacrylic acid, methacrylic anhydride, methyl methacrylate, 2-aminoethyl methacrylate hydrochloride, 1-vinylimidazole, allylamine, diallylamine, 4-vinyl benzoic acid, 3-aminopropylmethyldiethoxysilane, 2-hydroxyethyl acrylate, 4-acetoxy styrene, and mixtures thereof, and others, such as ascorbic acid, fumaric acid, acetic acid, maleic acid, H 2 , CO, N 2 H 4 , NH 2 OH, alcohols, citrates such as sodium, potassium and ammonium citrate, alkali metal borohydrides such as sodium and potassium borohydride, glycols, and mixtures thereof.
  • a monomer such
  • the solvent is stirred (step 22 ). Sufficient agitation to keep the support materials in suspension is desirable. Mixing is carried out for a time period long enough to complete the precipitation and/or reduction of the metal salt in the pores of the support materials.
  • the support materials are separated from the solvent by any convenient method, such as evaporation, filtration, pump evacuation, or centrifuge. Then, in step 26 , the separated support materials are dried at an elevated temperature between 100° C. and 150° C., preferably about 120° C.
  • the separated support materials are ground into fine powder and calcined in air at a temperature of 500° C. or higher. The calcination is typically carried out for 2 to 8 hours at the elevated temperature.
  • the separated support materials that have been subjected to grinding and calcination in step 28 represent the interim supported catalyst.
  • a portion of the separated support materials is mixed with a metal salt having the same metal type as the metal salt added in step 20 in a solvent (step 30 ).
  • the solvent may be of any type described above in connection with the first embodiment.
  • the support materials may be added first into the solvent, or the metal salt may be added first into the solvent, or the two may be added at about the same time into the solvent.
  • the solvent is mixed sufficiently to keep the support materials in suspension within the solution and to fully dissolve the metal salt within the solution and reduce any salt concentration gradients within the solution.
  • ambient temperature or room temperature is used, within the range of 15 to 30° C.
  • the pH and temperature of the solution may, however, be adjusted at this point, if desired. If the temperature or pH of the solution is adjusted, additional mixing is carried out.
  • a fixing agent which may be a reducing agent, a precipitating agent or a hybrid reducing-precipitating agent, is added to the solvent.
  • Suitable fixing agents include a monomer, such as acrylic acid, vinyl pyrrolidone, vinyl acetate, acrylamide, acrylic anhydride, sodium acrylate, glycidyl methacrylate, methacrylic acid, methacrylic anhydride, methyl methacrylate, 2-aminoethyl methacrylate hydrochloride, 1-vinylimidazole, allylamine, diallylamine, 4-vinyl benzoic acid, 3-aminopropylmethyldiethoxysilane, 2-hydroxyethyl acrylate, 4-acetoxy styrene, and mixtures thereof, and others, such as ascorbic acid, fumaric acid, acetic acid, maleic acid, H 2 , CO, N 2 H 4 , NH 2 OH, alcohols, citrates such as sodium,
  • the solvent is stirred (step 34 ). Sufficient agitation to keep the support materials in suspension is desirable. Mixing is carried out for a time period that is long enough to complete the precipitation and/or reduction of the metal salt in the pores of the support materials.
  • the support materials are separated from the solvent by any convenient method, such as evaporation, filtration, pump evacuation, or centrifuge. Then, in step 38 , the separated support materials are dried at an elevated temperature between 100° C. and 150° C., preferably about 120° 0 C.
  • the separated support materials are ground into fine powder and calcined in air at a temperature of 500° C. or higher. The calcination is typically carried out for 2 to 8 hours at the elevated temperature.
  • the separated support materials that have been subjected to grinding and calcination in step 40 represent the final supported catalyst.
  • steps 26 and 28 may be omitted.
  • the support materials that are separated from the solvent in step 24 represent the interim supported catalyst and a portion thereof is redispersed in a solvent and mixed with metal salt in step 30 .
  • FIG. 3 shows a process flow block diagram of a method for making catalysts according to a third embodiment of the present invention.
  • Steps 50 , 52 , 54 , 56 , 58 , 60 , 62 , 64 , 66 , 68 and 70 correspond respectively to steps 20 , 22 , 24 , 26 , 28 , 30 , 32 , 34 , 36 , 38 and 40 of the second embodiment and are carried out in the same manner, except for step 60 .
  • metal salt having a metal type that is not the same as the metal salt in step 50 is mixed with the interim supported catalyst in a solvent.
  • At least one of the fixing agent added in step 50 and the fixing agent added in step 62 is a monomer of a type that has some capability of interacting with the metal in the solvent and can be polymerized in the solvent to form oligomers or polymers, or both.
  • Acrylic acid may be used as such a monomer, and is the preferred monomer for preparing platinum catalysts on alumina supports.
  • monomers that could be used, depending on a particular metal-support combination, include vinyl pyrrolidone, vinyl acetate, acrylamide, acrylic anhydride, sodium acrylate, glycidyl methacrylate, methacrylic acid, methacrylic anhydride, methyl methacrylate, 2-aminoethyl methacrylate hydrochloride, 1-vinylimidazole, allylamine, diallylamine, 4-vinyl benzoic acid, 3-aminopropylmethyldiethoxysilane, 2-hydroxyethyl acrylate, 4-acetoxy styrene, and mixtures thereof.
  • steps 56 and 58 may be omitted.
  • the support materials that have been separated from the solvent in step 54 represent the interim supported catalyst and a portion thereof is redispersed in a solvent and mixed with metal salt in step 60 .
  • Potential advantages of the method according to the second and third embodiments include: (1) the ability to synthesize catalysts with higher metal concentrations while maintaining high dispersions of metal particles; and (2) allowing use of different (potentially incompatible) metal salts and/or reducing agents to provide enhanced control over particle sizes and structure tuning.
  • FIGS. 4A-4D are schematic representations of different engine exhaust systems in which supported metal catalysts according to embodiments of the present invention may be used.
  • the combustion process that occurs in an engine 102 produces harmful pollutants, such as CO, various hydrocarbons, particulate matter, and nitrogen oxides (NOx), in an exhaust stream that is discharged through a tail pipe 108 of the exhaust system.
  • harmful pollutants such as CO, various hydrocarbons, particulate matter, and nitrogen oxides (NOx)
  • the exhaust stream from an engine 102 passes through a catalytic converter 104 , before it is discharged into the atmosphere (environment) through a tail pipe 108 .
  • the catalytic converter 104 contains supported catalysts coated on a monolithic substrate that treat the exhaust stream from the engine 102 .
  • the exhaust stream is treated by way of various catalytic reactions that occur within the catalytic converter 104 . These reactions include the oxidation of CO to form CO 2 , burning of hydrocarbons, and the conversion of NO to NO 2 .
  • the exhaust stream from the engine 102 passes through a catalytic converter 104 and a particulate filter 106 , before it is discharged into the atmosphere through a tail pipe 108 .
  • the catalytic converter 104 operates in the same manner as in the exhaust system of FIG. 4A .
  • the particulate filter 106 traps particulate matter that is in the exhaust stream, e.g., soot, liquid hydrocarbons, generally particulates in liquid form.
  • the particulate filter 106 includes a supported catalyst coated thereon for the oxidation of NO and/or to aid in combustion of particulate matter.
  • the exhaust stream from the engine 102 passes through a catalytic converter 104 , a pre-filter catalyst 105 and a particulate filter 106 , before it is discharged into the atmosphere through a tail pipe 108 .
  • the catalytic converter 104 operates in the same manner as in the exhaust system of FIG. 4A .
  • the pre-filter catalyst 105 includes a monolithic substrate and supported catalysts coated on the monolithic substrate for the oxidation of NO.
  • the particulate filter 106 traps particulate matter that is in the exhaust stream, e.g., soot, liquid hydrocarbons, generally particulates in liquid form.
  • the exhaust stream passes from the engine 102 through a catalytic converter 104 , a particulate filter 106 , a selective catalytic reduction (SCR) unit 107 and an ammonia slip catalyst 110 , before it is discharged into the atmosphere through a tail pipe 108 .
  • the catalytic converter 104 operates in the same manner as in the exhaust system of FIG. 4A .
  • the particulate filter 106 traps particulate matter that is in the exhaust stream, e.g., soot, liquid hydrocarbons, generally particulates in liquid form.
  • the particulate filter 106 includes a supported catalyst coated thereon for the oxidation of NO and/or to aid in combustion of particulate matter.
  • the SCR unit 107 is provided to reduce the NOx species to N 2 .
  • the SCR unit 107 may be ammonia/urea based or hydrocarbon based.
  • the ammonia slip catalyst 110 is provided to reduce the amount of ammonia emissions through the tail pipe 108 .
  • An alternative configuration places the SCR unit 107 in front of the particulate filter 106 .
  • Alternative configurations of the exhaust system includes the provision of SCR unit 107 and the ammonia slip catalyst 110 in the exhaust system of FIG. 4A or 1 C, and the provision of just the SCR unit 107 , without the ammonia slip catalyst 110 , in the exhaust system of FIGS. 4A , 4 B or 4 C.
  • the regeneration of the particulate filter can be either passive or active. Passive regeneration occurs automatically in the presence of NO 2 . Thus, as the exhaust stream containing NO 2 passes through the particulate filter, passive regeneration occurs. During regeneration, the particulates get oxidized and NO 2 gets converted back to NO. In general, higher amounts of NO 2 improve the regeneration performance, and thus this process is commonly referred to as NO 2 assisted oxidation. However, too much NO 2 is not desirable because excess NO 2 is released into the atmosphere and NO 2 is considered to be a more harmful pollutant than NO.
  • the NO 2 used for regeneration can be formed in the engine during combustion, from NO oxidation in the catalytic converter 104 , from NO oxidation in the pre-filter catalyst 105 , and/or from NO oxidation in a catalyzed version of the particulate filter 106 .
  • Active regeneration is carried out by heating up the particulate filter 106 and oxidizing the particulates. At higher temperatures, NO 2 assistance of the particulate oxidation becomes less important.
  • the heating of the particulate filter 106 may be carried out in various ways known in the art. One way is to employ a fuel burner which heats the particulate filter 106 to particulate combustion temperatures. Another way is to increase the temperature of the exhaust stream by modifying the engine output when the particulate filter load reaches a pre-determined level.
  • the present invention provides embodiments of a supported metal catalyst that is to be used in the catalytic converter 104 shown in FIGS. 4A-4D , or generally as a catalyst in any vehicle emission control system, including as a diesel oxidation catalyst, a diesel filter catalyst, an ammonia-slip catalyst, an SCR catalyst, or as a component of a three-way catalyst.
  • FIG. 5 is an illustration of a catalytic converter with a cut-away section that shows a substrate 210 onto which engine exhaust catalysts according to embodiments of the present invention are coated.
  • the exploded view of the substrate 210 shows that the substrate 210 has a honeycomb structure comprising a plurality of channels into which engine exhaust catalysts are flowed in slurry form so as to form coating 220 on the substrate 210 .
  • FIG. 6 is a flow diagram that illustrates the steps for preparing an engine exhaust catalyst using the substrate 210 of FIG. 5 .
  • the supported metal catalyst e.g., a platinum-palladium catalyst
  • a monolithic substrate such as substrate 210 shown in FIG. 5
  • Exemplary monolithic substrates include those that are ceramic (e.g., cordierite), metallic, or silicon carbide based.
  • the supported metal catalyst in powder form is mixed in a solvent to form a slurry (step 416 ) and the slurry is then coated onto the monolithic substrate (step 418 ).
  • alumina alumina having a BET surface area of 140 m 2 /g
  • Pt(NO 3 ) 2 40 mg/ml Pt
  • acrylic acid having 99% purity
  • alumina alumina having a BET surface area of 140 m 2 /g
  • Pt(NO 3 ) 2 100 mg/ml Pt
  • acrylic acid having 99% purity
  • La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 4 g of La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 0.4 ml of Pt(NO 3 ) 2 100 mg/ml Pt
  • La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 1.2 ml of Pt(NO 3 ) 2 100 mg/ml Pt
  • La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 1.2 ml of Pt(NO 3 ) 2 100 mg/ml Pt
  • La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 4 g of La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 1.2 ml of Pt(NO 3 ) 2 100 mg/ml Pt
  • AlBN 2,2-Azobisisobutyronitrile
  • La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 30 g of La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 1.5 ml of Pt(NO 3 ) 2 100 mg/ml Pt
  • Add 3.75 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C.
  • La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 10 g of La-doped alumina alumina doped with 4% of La 2 O 3 by weight having BET surface area of 200 m 2 /g
  • Add 1.5 ml of Pt(NO 3 ) 2 100 mg/ml Pt
  • alumina alumina having a BET surface area of 140 m 2 /g
  • Pt(NO 3 ) 2 100.0 mg/ml Pt
  • acrylic acid having 99% purity
  • alumina alumina having a BET surface area of 140 m 2 /g
  • Pd(NO 3 ) 2 40 mg/ml Pd
  • a commonly used metric for measuring catalytic efficiency of catalysts is the temperature at which 50% conversion of CO into CO 2 is observed. For simplicity, this temperature will be referred to herein as the T50 temperature.
  • the T20 temperature corresponds to the temperature at which 20% of CO will be oxidized into CO 2
  • the T70 temperature corresponds to the temperature at which 70% of CO will be oxidized into CO 2 .
  • higher conversion is observed at higher temperatures and lower conversion is observed at lower temperatures.
  • the T20, T50, T70 temperatures of catalysts differ depending on the conditions under which the conversion of CO into CO 2 is observed. Therefore, they are determined under conditions that simulate the actual operating conditions of the catalyst as closely as possible.
  • the supported catalysts produced in accordance with the embodiments of the present invention are useful as diesel exhaust catalysts, and thus their T20, T50, T70 temperatures have been determined under simulated diesel exhaust conditions, which were as follows.
  • a gas mixture having the composition: CO (1000 ppm), C 3 H 8 (105 ppm), C 3 H 6 (245 ppm), NO (450 ppm), CO 2 (10%), O 2 (10%), and He (balance) is supplied into a fixed bed flow reactor containing 15 mg of catalyst powder mixed with 85 mg of ⁇ -Al 2 O 3 at a total flow rate of 300 ml/min.
  • the reactor is heated from room temperature to 300° C. at 10° C./minute.
  • CO conversion (oxidation) was measured by use of mass spectrometry as a function of temperature.
  • Hydrocarbon conversion (oxidation) was also measured as a function of temperature by use of mass spectrometry.
  • the tables below provide a comparison of the T20, T50, T70 temperatures of the supported catalysts produced in accordance with the embodiments of the present invention with the supported catalysts produced in accordance with the prior art synthesis techniques, including dilute impregnation with filtration (Prior Art I), in situ reduction using hydrazine as the reducing agent (Prior Art II), and incipient wetness (Prior Art III).
  • the T20, T50, T70 temperatures for each catalyst sample were determined under simulated diesel exhaust conditions.
  • Table 1 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 1% supported on alumina.
  • Table 2 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 3% supported on alumina.
  • Table 3 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 1% supported on a lanthanum-doped alumina.
  • Table 4 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 3% supported on a lanthanum-doped alumina.
  • a monomer of a type that has some capability of interacting with the metal in the solvent and can be polymerized in the solvent to form oligomers or polymers, or both, is added to the solvent containing the metal salt and support materials. Formation of oligomers and/or polymers in situ (i.e., in the solvent) is desirable because they help stabilize the growth of nanoparticles inside the pores of the support material.
  • acrylic acid is used as such a monomer and is added to the solvent containing the metal salt and support materials at room temperature, and the mixture is maintained at room temperature. Even at room temperature, the in situ polymerization of the acrylic acid has been observed.
  • Example 5 the temperature of the mixture was raised to 100° C. to cause further polymerization of the acrylic acid in the mixture.
  • Example 6 the temperature of the mixture was maintained at room temperature, but AlBN was added to the mixture to cause further polymerization of the acrylic acid in the mixture.
  • the T20, T50, T70 temperatures of the supported catalysts produced in accordance with Examples 4-6 are compared with the supported catalysts produced in accordance with the prior art synthesis techniques in which a pre-formed polymer is added to a solvent containing metal salt and support materials as a fixing agent for the metal.
  • Table 5 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 3% supported on a lanthanum-doped alumina.
  • Table 6 is a comparison of the effectiveness for hydrocarbon oxidation of the supported catalysts produced in accordance with Examples 4-6 against the effectiveness for hydrocarbon oxidation of the supported catalysts produced in accordance with the prior art synthesis techniques in which a pre-formed polymer is added to a solvent containing metal salt and support materials as a fixing agent for the metal.
  • the T20_HC temperature corresponds to the temperature at which 20% of C 3 H 6 is oxidized
  • the T50_HC temperature corresponds to the temperature at which 50% of C 3 H 6 is oxidized
  • the T70_HC temperature corresponds to the temperature at which 70% of C 3 H 6 is oxidized.
  • Example 13 Engine Exhaust Catalyst Having Supported Pt/Pd at 120 g/ft 3
  • the supported PtPd catalyst powder (2.0% Pt, 1.0% Pd) prepared above (Example 12) was made into a washcoat slurry via addition to de-ionized water, milling to an appropriate particle size (typically with a d 50 range from 3 to 7 ⁇ m), and pH adjustment to give an appropriate viscosity for washcoating.
  • the washcoat slurry was coated onto a round cordierite monolith (Corning, 400 cpsi, 5.66 inches ⁇ 2.5 inches), dried at 120° C. and calcined at 500° C. to give the final coated monolith with a precious metal (Pt+Pd) loading of 120 g/ft 3 .
  • the coated monolith was canned according to methods known in the art and tested for CO emissions using a certified testing facility on a light-duty diesel vehicle (model year 2005).
  • the CO emissions as measured from the tail pipe of the light-duty diesel vehicle using bag data from the standard European MVEG test, were observed to be 0.222 g/km.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A monomer is added to a solvent containing metal salt and porous support materials and the solvent is stirred for a period of time to distribute and fix the metal in the pores of the support materials. The solids that are dispersed in the solvent are then separated from the liquid, dried and calcined to form heterogeneous catalysts. The monomer that is added is of a type that can be polymerized in the solvent to form oligomers or polymers, or both. When forming heterogeneous catalysts containing platinum, acrylic acid is selected as the preferred monomer.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/866,566, filed Nov. 20, 2006, and U.S. Provisional Patent Application Ser. No. 60/867,335, filed Nov. 27, 2006, both of which are herein incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to the production of supported catalysts, and more particularly, to a method for making a heterogeneous catalyst containing metal nanoparticles dispersed throughout the support material for the heterogeneous catalyst.
  • 2. Description of the Related Art
  • Many industrial products such as fuels, lubricants, polymers, fibers, drugs, and other chemicals would not be manufacturable without the use of catalysts. Catalysts are also essential for the reduction of pollutants, particularly air pollutants created during the production of energy and by automobiles. Many industrial catalysts are composed of a high surface area support material upon which chemically active metal nanoparticles (i.e., nanometer sized metal particles) are dispersed. The support materials are generally inert, ceramic type materials having surface areas on the order of hundreds of square meters/gram. This high specific surface area usually requires a complex internal pore system. The metal nanoparticles are deposited on the support and dispersed throughout this internal pore system, and are generally between 1 and 100 nanometers in size.
  • Processes for making supported catalysts go back many years. One such process for making platinum catalysts, for example, involves the contacting of a support material such as alumina with a metal salt solution such as chloroplatinic acid. The salt solution “impregnates” or fills the pores of the support during this process. Following the impregnation, the support containing the salt solution would be air dried, causing the metal salt to precipitate within the pores. The support containing the crystallized metal salt would then be exposed to a hydrogen or carbon monoxide gas environment, reducing the solid metal salt to metal particles.
  • Another process for making supported catalysts involves the steps of contacting a support material with a metal salt solution and reducing the metal ions to metal particles in situ using suitable reducing agents. The following are examples of this process. U.K. Patent No. 1,282,138 teaches methods for preparing metal catalysts using different reducing agents, including glucose, hydroxylamine hydrochloride, and hydrazine. U.S. Pat. No. 4,086,275 teaches methods for preparing copper catalysts using sodium borohydride as the in situ reducing agent. U.S. Pat. No. 4,835,131 teaches methods for preparing molybdenum on silica catalyst, copper on gamma-alumina catalyst, silver on silica catalyst and silver on gamma-alumina catalyst. The reducing agents used to prepare these catalysts include hydrazine, ammonium hydroxide, and formaldehyde. U.S. Pat. Nos. 5,275,998 and 5,275,999 teach methods for preparing metal catalysts on carbon support and on alumina support using different reducing agents, including hydrazine hydrate, ascorbic acid, and sodium borohydride. According to these patents, supported catalysts having very small metal particle size (average size not greater than 2 nanometers) can be produced if the preparation steps are carried out in the presence of ethylene and/or acetylene (U.S. Pat. No. 5,275,998) or in the presence of carbon monoxide (U.S. Pat. No. 5,275,998). U.S. Pat. No. 6,686,308 teaches methods for preparing metal catalysts on silica using sodium citrate or potassium citrate as the reducing agent. This patent also teaches the use of colloid stabilizers including sodium sulfanilate, and discloses that it is preferable to use colloid stabilizers that can also act as reducing agents, namely ammonium citrate, potassium citrate, and sodium citrate.
  • SUMMARY OF THE INVENTION
  • The present invention provides additional methods for preparing supported metal catalysts. According to an embodiment of the present invention, a monomer is added to a solvent containing metal salt and porous support materials and the solvent is stirred for a period of time to precipitate and/or reduce the metal salt in the pores of the support materials. The solids that are dispersed in the solvent are then separated from the liquid, dried and calcined to form the supported catalyst. The monomer that is added to the solvent is of a type that can be polymerized in the solvent to form oligomers or polymers, or both. Acrylic acid may be used as such a monomer.
  • According to another embodiment of the present invention, a supported catalyst is prepared by first forming an interim supported metal catalyst through reduction or precipitation, and then carrying out the further steps of mixing the interim supported metal catalyst and metal salt of the same metal type in a solvent, adding a fixing agent to the solvent and stirring the solvent to precipitate or reduce the metal salt in the pores of the support materials for the catalyst, separating out the solid in the solvent, drying the separated solid, and calcining it. The fixing agent for causing the reduction or precipitation during the process for forming the interim supported metal catalyst is selected based on the particular metal-support combination being used. Likewise, the fixing agent that is added to the solvent is selected based on the particular metal-support combination being used.
  • According to still another embodiment of the present invention, a supported catalyst is prepared by first forming an interim supported metal catalyst through reduction or precipitation, and then carrying out the further steps of mixing the interim supported metal catalyst and metal salt of a different metal type in a solvent, adding a fixing agent to the solvent, stirring the solvent, separating out the solid in the solvent, drying the separated solid, and calcining it. At least one of the fixing agents for causing the reduction or precipitation during the process for forming the interim supported metal catalyst and the fixing agent that is added to the solvent is a monomer of a type that can be polymerized in the solvent to form oligomers or polymers, or both. Acrylic acid may be used as such a monomer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
  • FIG. 1 is a process flow block diagram of a method for making catalysts according to a first embodiment of the present invention.
  • FIG. 2 is a process flow block diagram of a method for making catalysts according to a second embodiment of the present invention.
  • FIG. 3 is a process flow block diagram of a method for making catalysts according to a third embodiment of the present invention.
  • FIGS. 4A-4D are schematic representations of different engine exhaust systems in which catalysts made according to embodiments of the present invention may be used.
  • FIG. 5 is an illustration of a catalytic converter with a cut-away section that shows a substrate onto which catalysts made according to embodiments of the present invention are coated.
  • FIG. 6 is a flow diagram illustrating the steps for preparing an engine exhaust catalyst.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a process flow block diagram of a method for making catalysts according to a first embodiment of the present invention. In step 10, a monomer is added to a solvent containing metal salt and support materials. The monomer that is added to the solvent is of a type that has some capability of interacting with the metal in the solvent and can be polymerized in the solvent to form oligomers or polymers, or both. Formation of oligomers and/or polymers in situ (i.e., in the free solvent and/or in the pores of the support material) is desirable because they help stabilize the growth of nanoparticles. Acrylic acid may be used as such a monomer, and is the preferred monomer for preparing platinum catalysts on alumina supports. Other types of monomers that could be used, depending on a particular metal-support combination, include vinyl pyrrolidone, vinyl acetate, acrylamide, acrylic anhydride, sodium acrylate, glycidyl methacrylate, methacrylic acid, methacrylic anhydride, methyl methacrylate, 2-aminoethyl methacrylate hydrochloride, 1-vinylimidazole, allylamine, diallylamine, 4-vinyl benzoic acid, 3-aminopropylmethyldiethoxysilane, 2-hydroxyethyl acrylate, 4-acetoxy styrene, and mixtures thereof.
  • In addition to the monomer, a fixing agent, which may be a reducing agent, a precipitating agent or a hybrid reducing-precipitating agent, may be added in step 10 to the solvent containing metal salt and support materials. Suitable fixing agents include: ascorbic acid, fumaric acid, acetic acid, maleic acid, H2, CO, N2H4, NH2OH, alcohols, citrates such as sodium, potassium and ammonium citrate, alkali metal borohydrides such as sodium and potassium borohydride, glycols, and mixtures thereof.
  • The solvent may be any liquid within which metal salt is suitably soluble, and which is sufficiently pure enough and can be removed from the support materials by evaporation, filtering, pump evacuation, centrifuge, or other similar means. Such solvents include, but are not limited to, water, alcohol, and other organic solvents. Preferably, water or double de-ionized water is used. Alcohols that are suitable include, but are not limited to, methanol and ethanol and their mixtures, with and without water. Other organic solvents include tetrahydrofuran, acetic acid, ethylene glycol, N-methylpyrrolidone, dimethylformamide, dimethylacetalmide, and their mixtures, with and without water.
  • The metal salt may include one or more of the following metals: Pt, Pd, Ru, Rh, Re, Ir, Os, Fe, Co, Ni, Cu, Ag, Au, Zn, Cd, In, Ga, Sn, Pb, Bi, Sb, Ti, Zr, Cr, Mo, W, V, Nb and Mn. Of the foregoing, soluble salts of Pt, Pd, Ru. Rh, Re, Cu, Au, Re, Ir, Os and Ag are preferable. Pt salts that are suitable include Pt(NO3)2, (NH3)4Pt(NO3)2, H2PtCl6, K2PtCl4, (NH3)4Pt(OH)2, and Cl4Pt(NH3)2. Ag and Cu salts that are suitable include AgNO3, AgCH3COO, Cu(NO3)2, Cu(CH3COO)2, and Cu(ll)acetylacetonate. Pd salts that are suitable include Pd(NH3)4(NO3)2 and Pd(NO3)2. The concentration of the metal salt in the resulting solution is preferably between 10−4 M and 0.1 M. The concentration of the metal salt in the resulting solution will depend on the target weight loading of the final catalyst.
  • The support materials may be alumina, silica, oxides of vanadium, oxides of titanium, oxides of zirconium, oxides of iron, cerium oxides, carbon, zeolites, molecular sieves, and various combinations thereof. Any of these support materials may be doped with lanthanum, other rare earth elements, alkali metals, alkaline earth metals, sulfur, selenium, tellurium, phosphorus, arsenic, antimony, or bismuth. The doping of the support materials may be carried out prior to, during, or even after the processes shown in FIGS. 1-3.
  • The solvent containing the metal salt and the support materials may be prepared by first adding the support materials in powder form into the solvent and mixing the solvent. Sufficient agitation to keep the support materials in suspension within the solution is desirable. If necessary, the temperature may be adjusted during this step. Typically, ambient temperature or room temperature is used, within the range of 15 to 30° C. Metal salt is then added to the solvent in either dissolved form as part of a salt solution or solid form. After the metal salt is added in either dissolved form as part of a salt solution or solid form, the solvent is mixed. Sufficient agitation to keep the support materials in suspension is desirable. Agitation is also required to fully dissolve the metal salt within the solution and reduce any salt concentration gradients within the solution. Typically, ambient temperature or room temperature is used, within the range of 15 to 30° C. The pH and temperature of the solution may, however, be adjusted at this point, if desired. If the temperature or pH of the solution is adjusted, additional mixing is carried out.
  • Alternatively, the solvent containing the metal salt and the support materials may be prepared by first adding the metal salt in either dissolved form as part of a salt solution or solid form into the solvent and mixing the solvent for a time period, and then adding the support materials into the solvent. As another alternative, the metal salt and the support materials may be added to the solvent concurrently and then mixed together in the solvent.
  • After the monomer is added in step 10, the solvent is stirred (step 12). Sufficient agitation to keep the support materials in suspension is desirable. Mixing is carried out for a time period that is long enough to cause the precipitation and/or reduction of the metal salt in the pores of the support materials. During this step, based on the type of monomer that is added in step 10 and the conditions under which step 12 is carried out, the mixture may be heated or subjected to ultraviolet light, or polymerization initiators, such as AlBN or various types of peroxides, may be added to the mixture, so as to initiate or increase the polymerization of the monomer that is added in step 10.
  • In step 14, the support materials are separated from the solvent by any convenient method, such as evaporation, filtration, pump evacuation, or centrifuge. Then, in step 16, the separated support materials are dried at an elevated temperature between 100° C. and 150° C., preferably about 120° C. In step 18, the separated support materials are ground into fine powder and calcined in air at a temperature of 500° C. or higher. The calcination is typically carried out for 2 to 8 hours at the elevated temperature, and removes any organic residues such as any organic polymer that was formed in situ during step 12 and remaining in the pores of the separated support materials. The separated support materials that have been subjected to grinding and calcination in step 18 represent the finished supported catalyst.
  • FIG. 2 shows a process flow block diagram of a method for making catalysts according to a second embodiment of the present invention. In step 20, a fixing agent, which may be a reducing agent, a precipitating agent or a hybrid reducing-precipitating agent, is added to a solvent containing metal salt and support materials. The solvent, metal salt, and support materials may be of any type described above in connection with the first embodiment. Also, the solvent containing metal salt and support materials is prepared in the manner described above for the first embodiment. Suitable fixing agents include a monomer, such as acrylic acid, vinyl pyrrolidone, vinyl acetate, acrylamide, acrylic anhydride, sodium acrylate, glycidyl methacrylate, methacrylic acid, methacrylic anhydride, methyl methacrylate, 2-aminoethyl methacrylate hydrochloride, 1-vinylimidazole, allylamine, diallylamine, 4-vinyl benzoic acid, 3-aminopropylmethyldiethoxysilane, 2-hydroxyethyl acrylate, 4-acetoxy styrene, and mixtures thereof, and others, such as ascorbic acid, fumaric acid, acetic acid, maleic acid, H2, CO, N2H4, NH2OH, alcohols, citrates such as sodium, potassium and ammonium citrate, alkali metal borohydrides such as sodium and potassium borohydride, glycols, and mixtures thereof.
  • After the fixing agent is added in step 20, the solvent is stirred (step 22). Sufficient agitation to keep the support materials in suspension is desirable. Mixing is carried out for a time period long enough to complete the precipitation and/or reduction of the metal salt in the pores of the support materials. In step 24, the support materials are separated from the solvent by any convenient method, such as evaporation, filtration, pump evacuation, or centrifuge. Then, in step 26, the separated support materials are dried at an elevated temperature between 100° C. and 150° C., preferably about 120° C. In step 28, the separated support materials are ground into fine powder and calcined in air at a temperature of 500° C. or higher. The calcination is typically carried out for 2 to 8 hours at the elevated temperature. The separated support materials that have been subjected to grinding and calcination in step 28 represent the interim supported catalyst.
  • After step 28, a portion of the separated support materials is mixed with a metal salt having the same metal type as the metal salt added in step 20 in a solvent (step 30). The solvent may be of any type described above in connection with the first embodiment. As described in the first embodiment, the support materials may be added first into the solvent, or the metal salt may be added first into the solvent, or the two may be added at about the same time into the solvent. Regardless of the order by which the support materials and the metal salt are added into the solvent, prior to step 32, the solvent is mixed sufficiently to keep the support materials in suspension within the solution and to fully dissolve the metal salt within the solution and reduce any salt concentration gradients within the solution. Typically, ambient temperature or room temperature is used, within the range of 15 to 30° C. The pH and temperature of the solution may, however, be adjusted at this point, if desired. If the temperature or pH of the solution is adjusted, additional mixing is carried out.
  • In step 32, a fixing agent, which may be a reducing agent, a precipitating agent or a hybrid reducing-precipitating agent, is added to the solvent. Suitable fixing agents include a monomer, such as acrylic acid, vinyl pyrrolidone, vinyl acetate, acrylamide, acrylic anhydride, sodium acrylate, glycidyl methacrylate, methacrylic acid, methacrylic anhydride, methyl methacrylate, 2-aminoethyl methacrylate hydrochloride, 1-vinylimidazole, allylamine, diallylamine, 4-vinyl benzoic acid, 3-aminopropylmethyldiethoxysilane, 2-hydroxyethyl acrylate, 4-acetoxy styrene, and mixtures thereof, and others, such as ascorbic acid, fumaric acid, acetic acid, maleic acid, H2, CO, N2H4, NH2OH, alcohols, citrates such as sodium, potassium and ammonium citrate, alkali metal borohydrides such as sodium and potassium borohydride, glycols, and mixtures thereof.
  • After the fixing agent is added in step 32, the solvent is stirred (step 34). Sufficient agitation to keep the support materials in suspension is desirable. Mixing is carried out for a time period that is long enough to complete the precipitation and/or reduction of the metal salt in the pores of the support materials. In step 36, the support materials are separated from the solvent by any convenient method, such as evaporation, filtration, pump evacuation, or centrifuge. Then, in step 38, the separated support materials are dried at an elevated temperature between 100° C. and 150° C., preferably about 120°0 C. In step 40, the separated support materials are ground into fine powder and calcined in air at a temperature of 500° C. or higher. The calcination is typically carried out for 2 to 8 hours at the elevated temperature. The separated support materials that have been subjected to grinding and calcination in step 40 represent the final supported catalyst.
  • In the second embodiment, steps 26 and 28 may be omitted. In such a case, the support materials that are separated from the solvent in step 24 represent the interim supported catalyst and a portion thereof is redispersed in a solvent and mixed with metal salt in step 30.
  • FIG. 3 shows a process flow block diagram of a method for making catalysts according to a third embodiment of the present invention. Steps 50, 52, 54, 56, 58, 60, 62, 64, 66, 68 and 70 correspond respectively to steps 20, 22, 24, 26, 28, 30, 32, 34, 36, 38 and 40 of the second embodiment and are carried out in the same manner, except for step 60. In step 60, metal salt having a metal type that is not the same as the metal salt in step 50 is mixed with the interim supported catalyst in a solvent. Also, in the third embodiment, at least one of the fixing agent added in step 50 and the fixing agent added in step 62 is a monomer of a type that has some capability of interacting with the metal in the solvent and can be polymerized in the solvent to form oligomers or polymers, or both. Acrylic acid may be used as such a monomer, and is the preferred monomer for preparing platinum catalysts on alumina supports. Other types of monomers that could be used, depending on a particular metal-support combination, include vinyl pyrrolidone, vinyl acetate, acrylamide, acrylic anhydride, sodium acrylate, glycidyl methacrylate, methacrylic acid, methacrylic anhydride, methyl methacrylate, 2-aminoethyl methacrylate hydrochloride, 1-vinylimidazole, allylamine, diallylamine, 4-vinyl benzoic acid, 3-aminopropylmethyldiethoxysilane, 2-hydroxyethyl acrylate, 4-acetoxy styrene, and mixtures thereof.
  • As with the second embodiment, in the third embodiment, steps 56 and 58 may be omitted. In such a case, the support materials that have been separated from the solvent in step 54 represent the interim supported catalyst and a portion thereof is redispersed in a solvent and mixed with metal salt in step 60.
  • Potential advantages of the method according to the second and third embodiments include: (1) the ability to synthesize catalysts with higher metal concentrations while maintaining high dispersions of metal particles; and (2) allowing use of different (potentially incompatible) metal salts and/or reducing agents to provide enhanced control over particle sizes and structure tuning.
  • FIGS. 4A-4D are schematic representations of different engine exhaust systems in which supported metal catalysts according to embodiments of the present invention may be used. The combustion process that occurs in an engine 102 produces harmful pollutants, such as CO, various hydrocarbons, particulate matter, and nitrogen oxides (NOx), in an exhaust stream that is discharged through a tail pipe 108 of the exhaust system.
  • In the exhaust system of FIG. 4A, the exhaust stream from an engine 102 passes through a catalytic converter 104, before it is discharged into the atmosphere (environment) through a tail pipe 108. The catalytic converter 104 contains supported catalysts coated on a monolithic substrate that treat the exhaust stream from the engine 102. The exhaust stream is treated by way of various catalytic reactions that occur within the catalytic converter 104. These reactions include the oxidation of CO to form CO2, burning of hydrocarbons, and the conversion of NO to NO2.
  • In the exhaust system of FIG. 4B, the exhaust stream from the engine 102 passes through a catalytic converter 104 and a particulate filter 106, before it is discharged into the atmosphere through a tail pipe 108. The catalytic converter 104 operates in the same manner as in the exhaust system of FIG. 4A. The particulate filter 106 traps particulate matter that is in the exhaust stream, e.g., soot, liquid hydrocarbons, generally particulates in liquid form. In an optional configuration, the particulate filter 106 includes a supported catalyst coated thereon for the oxidation of NO and/or to aid in combustion of particulate matter.
  • In the exhaust system of FIG. 4C, the exhaust stream from the engine 102 passes through a catalytic converter 104, a pre-filter catalyst 105 and a particulate filter 106, before it is discharged into the atmosphere through a tail pipe 108. The catalytic converter 104 operates in the same manner as in the exhaust system of FIG. 4A. The pre-filter catalyst 105 includes a monolithic substrate and supported catalysts coated on the monolithic substrate for the oxidation of NO. The particulate filter 106 traps particulate matter that is in the exhaust stream, e.g., soot, liquid hydrocarbons, generally particulates in liquid form.
  • In the exhaust system of FIG. 4D, the exhaust stream passes from the engine 102 through a catalytic converter 104, a particulate filter 106, a selective catalytic reduction (SCR) unit 107 and an ammonia slip catalyst 110, before it is discharged into the atmosphere through a tail pipe 108. The catalytic converter 104 operates in the same manner as in the exhaust system of FIG. 4A. The particulate filter 106 traps particulate matter that is in the exhaust stream, e.g., soot, liquid hydrocarbons, generally particulates in liquid form. In an optional configuration, the particulate filter 106 includes a supported catalyst coated thereon for the oxidation of NO and/or to aid in combustion of particulate matter. The SCR unit 107 is provided to reduce the NOx species to N2. The SCR unit 107 may be ammonia/urea based or hydrocarbon based. The ammonia slip catalyst 110 is provided to reduce the amount of ammonia emissions through the tail pipe 108. An alternative configuration places the SCR unit 107 in front of the particulate filter 106.
  • Alternative configurations of the exhaust system includes the provision of SCR unit 107 and the ammonia slip catalyst 110 in the exhaust system of FIG. 4A or 1C, and the provision of just the SCR unit 107, without the ammonia slip catalyst 110, in the exhaust system of FIGS. 4A, 4B or 4C.
  • As particulates get trapped in the particulate filter within the exhaust system of FIG. 4B, 4C or 4D, it becomes less effective and regeneration of the particulate filter becomes necessary. The regeneration of the particulate filter can be either passive or active. Passive regeneration occurs automatically in the presence of NO2. Thus, as the exhaust stream containing NO2 passes through the particulate filter, passive regeneration occurs. During regeneration, the particulates get oxidized and NO2 gets converted back to NO. In general, higher amounts of NO2 improve the regeneration performance, and thus this process is commonly referred to as NO2 assisted oxidation. However, too much NO2 is not desirable because excess NO2 is released into the atmosphere and NO2 is considered to be a more harmful pollutant than NO. The NO2 used for regeneration can be formed in the engine during combustion, from NO oxidation in the catalytic converter 104, from NO oxidation in the pre-filter catalyst 105, and/or from NO oxidation in a catalyzed version of the particulate filter 106.
  • Active regeneration is carried out by heating up the particulate filter 106 and oxidizing the particulates. At higher temperatures, NO2 assistance of the particulate oxidation becomes less important. The heating of the particulate filter 106 may be carried out in various ways known in the art. One way is to employ a fuel burner which heats the particulate filter 106 to particulate combustion temperatures. Another way is to increase the temperature of the exhaust stream by modifying the engine output when the particulate filter load reaches a pre-determined level.
  • The present invention provides embodiments of a supported metal catalyst that is to be used in the catalytic converter 104 shown in FIGS. 4A-4D, or generally as a catalyst in any vehicle emission control system, including as a diesel oxidation catalyst, a diesel filter catalyst, an ammonia-slip catalyst, an SCR catalyst, or as a component of a three-way catalyst.
  • FIG. 5 is an illustration of a catalytic converter with a cut-away section that shows a substrate 210 onto which engine exhaust catalysts according to embodiments of the present invention are coated. The exploded view of the substrate 210 shows that the substrate 210 has a honeycomb structure comprising a plurality of channels into which engine exhaust catalysts are flowed in slurry form so as to form coating 220 on the substrate 210.
  • FIG. 6 is a flow diagram that illustrates the steps for preparing an engine exhaust catalyst using the substrate 210 of FIG. 5. In step 410, the supported metal catalyst, e.g., a platinum-palladium catalyst, is prepared. A monolithic substrate, such as substrate 210 shown in FIG. 5, is provided in step 414. Exemplary monolithic substrates include those that are ceramic (e.g., cordierite), metallic, or silicon carbide based. Then, the supported metal catalyst in powder form is mixed in a solvent to form a slurry (step 416) and the slurry is then coated onto the monolithic substrate (step 418).
  • The following examples serve to explain and illustrate the embodiments of the present invention.
  • Example 1: Pt (1%) on Alumina
  • Add 4 g of alumina (alumina having a BET surface area of 140 m2/g) to 17 ml of H2O and stir for 20 minutes at room temperature. Add 1.0 ml of Pt(NO3)2 (40 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 0.5 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C.
  • Example 2: Pt (3%) on Alumina
  • Add 4 g of alumina (alumina having a BET surface area of 140 m2/g) to 17 ml of H2O and stir for 20 minutes at room temperature. Add 1.2 ml of Pt(NO3)2 (100 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 1.5 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C.
  • Example 3: Pt (1%) on La-doped Alumina
  • Add 4 g of La-doped alumina (alumina doped with 4% of La2O3 by weight having BET surface area of 200 m2/g) to 19 ml of H2O and stir for 20 minutes at room temperature. Add 0.4 ml of Pt(NO3)2 (100 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 0.5 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C.
  • Example 4: Pt (3%) on La-doped Alumina
  • Add 4 g of La-doped alumina (alumina doped with 4% of La2O3 by weight having BET surface area of 200 m2/g) to 17.3 ml of H2O and stir for 20 minutes at room temperature. Add 1.2 ml of Pt(NO3)2 (100 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 1.5 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C.
  • Example 5: Pt (3%) on La-doped Alumina
  • Add 4 g of La-doped alumina (alumina doped with 4% of La2O3 by weight having BET surface area of 200 m2/g) to 17.3 ml of H2O and stir for 20 minutes at room temperature. Add 1.2 ml of Pt(NO3)2 (100 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 1.5 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 10 minutes. Increase the temperature to 100° C. and stir for 1 hour, and then, decrease the temperature to room temperature. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C.
  • Example 6: Pt (3%) on La-doped Alumina
  • Add 4 g of La-doped alumina (alumina doped with 4% of La2O3 by weight having BET surface area of 200 m2/g) to 15.3 ml of H2O and stir for 20 minutes at room temperature. Add 1.2 ml of Pt(NO3)2 (100 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 1.5 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 10 minutes. Then, add 18 mg of 2,2-Azobisisobutyronitrile (AlBN) suspended in 2 ml of H2O into the system and continue to stir at room temperature for 60 minutes. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C.
  • Example 7: Pt (1%) on La-doped Alumina (Sequential Method)
  • Add 30 g of La-doped alumina (alumina doped with 4% of La2O3 by weight having BET surface area of 200 m2/g) to 145 ml of H2O and stir for 20 minutes at room temperature. Add 1.5 ml of Pt(NO3)2 (100 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 3.75 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C. After calcining the separated solid, add 4 g of it into 19.3 ml of H2O and stir for 20 minutes at room temperature. Add 0.2 ml of Pt(NO3)2 (100 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 0.5 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C.
  • Example 8: Pt (3%) on La-doped Alumina (Sequential Method)
  • Add 10 g of La-doped alumina (alumina doped with 4% of La2O3 by weight having BET surface area of 200 m2/g) to 45 ml of H2O and stir for 20 minutes at room temperature. Add 1.5 ml of Pt(NO3)2 (100 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 1.875 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C. After calcining the separated solid, add 4 g of it into 19.3 ml of H2O and stir for 20 minutes at room temperature. Add 0.6 ml of Pt(NO3)2 (100 mg/ml Pt) solution into the system and stir at room temperature for 60 minutes. Add 0.75 ml acrylic acid (having 99% purity) into the system and continue to stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 120° C. for 2 hours, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C.
  • Example 9: Pt+Pd (1%) on Alumina
  • Add 30 g of alumina (alumina having a BET surface area of 140 m2/g) into 140 ml of H2O and stir for 20 minutes at room temperature. Add 1.5 ml of Pt(NO3)2 (100.0 mg/ml Pt) into the system and continue to stir at room temperature for 60 min. Add 3.75 ml of acrylic acid (having 99% purity) and stir at room temperature for 2 hours. Filter to separate out the solid from the system. Dry the separated solid at 130° C. for 90 minutes, grind it into fine powder, and calcine it in air for 2 hours at a temperature of 500° C. After calcining the separated solid, add 2 g of it into 9 ml of H2O and stir for 20 minutes at room temperature. Add 0.25 ml of Pd(NO3)2 (40 mg/ml Pd) and continue to stir at room temperature for 30 minutes. Add 0.662 g of ascorbic acid and stir at room temperature for 1 hour. Filter to separate out the solid from the system. Dry the separated solid at 130° C. for 150 minutes, grind it into fine powder, and calcine it in air for 1 hour at a temperature of 500° C.
  • Example 10: Pd+Pt (1%) on Alumina
  • Add 30 g of alumina (alumina having a BET surface area of 140 m2/g) into 140 ml of H2O and stir for 20 minutes at room temperature. Add 3.75 ml of Pd(NO3)2 (40 mg/ml Pd) and continue to stir at room temperature for 60 minutes. Add 9.93 g of ascorbic acid and stir at room temperature for 1 hour. Filter to separate out the solid from the system. Dry the separated solid at 130° C. for 150 minutes, grind it into fine powder, and calcine it in air for 1 hour at a temperature of 500° C. After calcining the separated solid, add 4 g of it into 18 ml of H2O and stir for 20 minutes at room temperature. Add 0.2 ml of Pt(NO3)2 (100.0 mg/ml Pt) into the system and continue to stir at room temperature for 60 min. Add 0.5 ml of acrylic acid (having 99% purity) and stir at room temperature for 1 hour. Filter to separate out the solid from the system. Dry the separated solid at 130° C. for 150 minutes, grind it into fine powder, and calcine it in air for 1 hour at a temperature of 500° C.
  • A commonly used metric for measuring catalytic efficiency of catalysts is the temperature at which 50% conversion of CO into CO2 is observed. For simplicity, this temperature will be referred to herein as the T50 temperature. Likewise, the T20 temperature corresponds to the temperature at which 20% of CO will be oxidized into CO2, and the T70 temperature corresponds to the temperature at which 70% of CO will be oxidized into CO2. Generally, higher conversion is observed at higher temperatures and lower conversion is observed at lower temperatures.
  • The T20, T50, T70 temperatures of catalysts differ depending on the conditions under which the conversion of CO into CO2 is observed. Therefore, they are determined under conditions that simulate the actual operating conditions of the catalyst as closely as possible. The supported catalysts produced in accordance with the embodiments of the present invention are useful as diesel exhaust catalysts, and thus their T20, T50, T70 temperatures have been determined under simulated diesel exhaust conditions, which were as follows. A gas mixture having the composition: CO (1000 ppm), C3H8 (105 ppm), C3H6 (245 ppm), NO (450 ppm), CO2 (10%), O2 (10%), and He (balance) is supplied into a fixed bed flow reactor containing 15 mg of catalyst powder mixed with 85 mg of α-Al2O3 at a total flow rate of 300 ml/min. The reactor is heated from room temperature to 300° C. at 10° C./minute. As the reactor is heated, CO conversion (oxidation) was measured by use of mass spectrometry as a function of temperature. Hydrocarbon conversion (oxidation) was also measured as a function of temperature by use of mass spectrometry.
  • The tables below provide a comparison of the T20, T50, T70 temperatures of the supported catalysts produced in accordance with the embodiments of the present invention with the supported catalysts produced in accordance with the prior art synthesis techniques, including dilute impregnation with filtration (Prior Art I), in situ reduction using hydrazine as the reducing agent (Prior Art II), and incipient wetness (Prior Art III). The T20, T50, T70 temperatures for each catalyst sample were determined under simulated diesel exhaust conditions. Table 1 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 1% supported on alumina. Table 2 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 3% supported on alumina. Table 3 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 1% supported on a lanthanum-doped alumina. Table 4 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 3% supported on a lanthanum-doped alumina.
  • TABLE 1
    Synthesis T20 T50 T70
    Method (° C.) (° C.) (° C.)
    Example 1 139 151 163
    Prior Art I 195 200 204
    Prior Art II 177 202 212
    Prior Art III 188 195 199
  • TABLE 2
    Synthesis T20 T50 T70
    Method (° C.) (° C.) (° C.)
    Example 2 139 151 161
    Prior Art I 176 181 183
    Prior Art II 160 166 170
    Prior Art III 183 188 190
  • TABLE 3
    Synthesis T20 T50 T70
    Method (° C.) (° C.) (° C.)
    Example 3 144 156 173
    Example 7 138 152 166
    Prior Art I 204 210 215
    Prior Art II 162 212 218
    Prior Art III 200 208 212
  • TABLE 4
    Synthesis T20 T50 T70
    Method (° C.) (° C.) (° C.)
    Example 4 123 134 139
    Example 5 116 129 134
    Example 6 127 137 143
    Example 8 122 134 140
    Prior Art I 182 188 191
    Prior Art II 155 200 211
    Prior Art III 180 187 190
  • According to the first embodiment of the present invention, a monomer of a type that has some capability of interacting with the metal in the solvent and can be polymerized in the solvent to form oligomers or polymers, or both, is added to the solvent containing the metal salt and support materials. Formation of oligomers and/or polymers in situ (i.e., in the solvent) is desirable because they help stabilize the growth of nanoparticles inside the pores of the support material. In Examples 1-4 and 7-8, acrylic acid is used as such a monomer and is added to the solvent containing the metal salt and support materials at room temperature, and the mixture is maintained at room temperature. Even at room temperature, the in situ polymerization of the acrylic acid has been observed. In Example 5, the temperature of the mixture was raised to 100° C. to cause further polymerization of the acrylic acid in the mixture. In Example 6, the temperature of the mixture was maintained at room temperature, but AlBN was added to the mixture to cause further polymerization of the acrylic acid in the mixture.
  • As a way to illustrate the advantages of in situ polymerization of a monomer, the T20, T50, T70 temperatures of the supported catalysts produced in accordance with Examples 4-6 are compared with the supported catalysts produced in accordance with the prior art synthesis techniques in which a pre-formed polymer is added to a solvent containing metal salt and support materials as a fixing agent for the metal. Table 5 is a comparison of the T20, T50, T70 temperatures for a platinum catalyst having a Pt weight loading of 3% supported on a lanthanum-doped alumina. In the Prior Art IV example, 2.0349 g of sodium polyacrylate (molecular weight=2100) was added to a solvent containing Pt(NO3)2 salt and lanthanum-doped alumina support materials as the pre-formed polymer and stirred at room temperature. In the Prior Art V example, 8.1394 g of sodium polyacrylate (molecular weight=2100) was added to a solvent containing Pt(NO3)2 salt and lanthanum-doped alumina support materials as the pre-formed polymer and stirred at room temperature.
  • TABLE 5
    Synthesis T20 T50 T70
    Method (° C.) (° C.) (° C.)
    Example 4 123 134 139
    Example 5 116 129 134
    Example 6 127 137 143
    Prior Art IV 124 137 143
    Prior Art V 130 140 150
  • The advantages of in situ polymerization also are evident when the effectiveness of the catalysts for hydrocarbon oxidation is considered. Table 6 is a comparison of the effectiveness for hydrocarbon oxidation of the supported catalysts produced in accordance with Examples 4-6 against the effectiveness for hydrocarbon oxidation of the supported catalysts produced in accordance with the prior art synthesis techniques in which a pre-formed polymer is added to a solvent containing metal salt and support materials as a fixing agent for the metal. In Table 6, the T20_HC temperature corresponds to the temperature at which 20% of C3H6 is oxidized; the T50_HC temperature corresponds to the temperature at which 50% of C3H6 is oxidized; and the T70_HC temperature corresponds to the temperature at which 70% of C3H6 is oxidized.
  • TABLE 6
    Synthesis T20_HC T50_HC T70_HC
    Method (° C.) (° C.) (° C.)
    Example 4 152 164 176
    Example 5 153 163 166
    Example 6 152 162 171
    Prior Art IV 173 193 198
    Prior Art V 201 208 210
  • Example 11—3.0% Pt, 1.5% Pd Supported Catalyst
  • To 10 L of de-ionized H2O was added 1940 g of La-stabilized alumina (having a BET surface area of ˜200 m2 g−1) followed by stirring for 30 minutes at room temperature. To this slurry was added 490.6 g of Pt(NO3)2 solution (12.23% Pt(NO3)2 by weight), followed by stirring at room temperature for 60 minutes. Acrylic acid (750 mL, 99% purity) was then added into the system over 12 minutes and the resulting mixture was allowed to continue stirring at room temperature for 2 hours. The solid La-doped alumina supported Pt catalyst was separated from the liquid via filtration, dried at 120° C. for 2 hours, ground into a fine powder, and calcined in air for 2 hours at a temperature of 500° C. (heated at 8° C. min−1) to give a 3% Pt material.
  • To 9.25 L of de-ionized H2O was added 1822 g of the above 3% Pt material followed by stirring for 20 minutes at room temperature. To this slurry was added 194.4 g of Pd(NO3)2 solution (14.28% Pd(NO3)2 by weight), followed by stirring at room temperature for 60 minutes. An aqueous ascorbic acid solution (930 g in 4.5 L of de-ionized H2O) was then added over 25 minutes followed by stirring for 60 minutes. The solid La-doped alumina supported PtPd catalyst was separated from the liquid via filtration, dried at 120° C. for 2 hours, ground into a fine powder, and calcined in air for 2 hours at a temperature of 500° C. (heated at 8° C. min−1) to give a 3% Pt, 1.5% Pd material.
  • Example 12—2.0% Pt, 1.0% Pd Supported Catalyst
  • To 10 L of de-ionized H2O was added 2000 g of La-stabilized alumina (having a BET surface area of ˜200 m2g−1) followed by stirring for 30 minutes at room temperature. To this slurry was added 327.1 g of Pt(NO3)2 solution (12.23% Pt(NO3)2 by weight), followed by stirring at room temperature for 60 minutes. Acrylic acid (500 mL, 99% purity) was then added into the system over 12 minutes and the resulting mixture was allowed to continue stirring at room temperature for 2 hours. The solid La-doped alumina supported Pt catalyst was separated from the liquid via filtration, dried at 120° C. for 2 hours, ground into a fine powder, and calcined in air for 2 hours at a temperature of 500° C. (heated at 8° C. min−1) to give a 2% Pt material.
  • To 9.5 L of de-ionized H2O was added 1900 g of the above 2% Pt material followed by stirring for 20 minutes at room temperature. To this slurry was added 135.3 g of Pd(NO3)2 solution (14.28% Pd(NO3)2 by weight), followed by stirring at room temperature for 60 minutes. An aqueous ascorbic acid solution (647.2 g in 3.5 L of de-ionized H2O) was then added over 25 minutes followed by stirring for 60 minutes. The solid La-doped alumina supported PtPd catalyst was separated from the liquid via filtration, dried at 120° C. for 2 hours, ground into a fine powder, and calcined in air for 2 hours at a temperature of 500° C. (heated at 8° C. min−1) to give a 2% Pt, 1% Pd material.
  • Example 13—Engine Exhaust Catalyst Having Supported Pt/Pd at 120 g/ft3
  • The supported PtPd catalyst powder (2.0% Pt, 1.0% Pd) prepared above (Example 12) was made into a washcoat slurry via addition to de-ionized water, milling to an appropriate particle size (typically with a d50 range from 3 to 7 μm), and pH adjustment to give an appropriate viscosity for washcoating. According to methods known in the art, the washcoat slurry was coated onto a round cordierite monolith (Corning, 400 cpsi, 5.66 inches×2.5 inches), dried at 120° C. and calcined at 500° C. to give the final coated monolith with a precious metal (Pt+Pd) loading of 120 g/ft3. The coated monolith was canned according to methods known in the art and tested for CO emissions using a certified testing facility on a light-duty diesel vehicle (model year 2005). The CO emissions, as measured from the tail pipe of the light-duty diesel vehicle using bag data from the standard European MVEG test, were observed to be 0.222 g/km.
  • While particular embodiments according to the invention have been illustrated and described above, those skilled in the art understand that the invention can take a variety of forms and embodiments within the scope of the appended claims.

Claims (20)

1. A method for producing a supported catalyst, comprising:
adding a monomer to a solvent containing metal salt and support materials, the monomer being of a type that can be polymerized in the solvent to form oligomers or polymers, or both;
stirring the solvent containing the metal salt, the support materials and the monomer;
separating the liquid from the solid in the solvent; and
calcining the separated solid to produce the supported catalyst.
2. The method according to claim 1, wherein the monomer comprises acrylic acid.
3. The method according to claim 2, wherein the metal salt comprises platinum salt and the support materials are made of lanthanum-doped alumina.
4. The method according to claim 1, further comprising the step of adding a fixing agent that is not a monomer to the solvent containing metal salt and support materials.
5. The method according to claim 1, further comprising the step of heating the solvent containing the metal salt, the support materials and the monomer to increase the amount of polymerization of the monomer in the solvent.
6. The method according to claim 1, further comprising the step of adding a polymerization initiator into the solvent containing the metal salt, the support materials and the monomer to increase the amount of polymerization of the monomer in the solvent.
7. A method for producing a supported catalyst, comprising:
adding a fixing agent to a first solvent containing metal salt of a predetermined metal type and support materials, stirring the first solvent, and then separating out the support materials from the first solvent;
mixing a portion of the support materials separated out from the first solvent and metal salt of the predetermined metal type into a second solvent; and
adding a fixing agent to the second solvent, stirring the second solvent, and then separating out the support materials from the second solvent; and
calcining the support materials separated out from the second solvent to produce the supported catalyst.
8. The method according to claim 7, wherein the fixing agent added to the first solvent and the fixing agent added to the second solvent are monomers of a type that can be polymerized in the solvent to form oligomers or polymers, or both.
9. The method according to claim 8, wherein the monomer added to the first solvent and the monomer added to the second solvent comprise acrylic acid.
10. The method according to claim 9, wherein the metal salt comprises platinum salt.
11. The method according to claim 7, further comprising the step of calcining the support materials separated out from the first solvent prior to the step of mixing.
12. The method according to claim 7, wherein the fixing agent comprises a reducing agent.
13. The method according to claim 7, wherein the fixing agent comprises a precipitating agent.
14. A method for producing a supported catalyst, comprising:
adding a fixing agent to a first solvent containing metal salt of a first metal type and support materials, stirring the first solvent, and then separating out the support materials from the first solvent;
mixing a portion of the support materials separated out from the first solvent and metal salt of a second metal type that is different from the first metal type into a second solvent; and
adding a fixing agent to the second solvent, stirring the second solvent, and then separating out the support materials from the second solvent; and
calcining the support materials separated out from the second solvent to produce the supported catalyst,
wherein at least one of the first and second fixing agents comprise a monomer.
15. The method according to claim 14, wherein the monomer is of a type that can be polymerized in the solvent to form oligomers or polymers, or both.
16. The method according to claim 14, wherein the fixing agent added to the first solvent comprises acrylic acid and the metal salt comprises platinum salt.
17. The method according to claim 16, wherein the fixing agent added to the second solvent comprises ascorbic acid and the metal salt comprises palladium salt.
18. The method according to claim 14, wherein the fixing agent added to the first solvent comprises ascorbic acid and the metal salt comprises palladium salt.
19. The method according to claim 18, wherein the fixing agent added to the second solvent comprises acrylic acid and the metal salt comprises platinum salt.
20. The method according to claim 14, wherein the support materials are made of lanthanum-doped alumina.
US11/942,711 2006-11-20 2007-11-20 Method for Producing Heterogeneous Catalysts Containing Metal Nanoparticles Abandoned US20080119353A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/942,711 US20080119353A1 (en) 2006-11-20 2007-11-20 Method for Producing Heterogeneous Catalysts Containing Metal Nanoparticles
US13/854,842 US9527068B2 (en) 2006-11-20 2013-04-01 Method for producing heterogeneous catalysts containing metal nanoparticles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US86656606P 2006-11-20 2006-11-20
US86733506P 2006-11-27 2006-11-27
US11/942,711 US20080119353A1 (en) 2006-11-20 2007-11-20 Method for Producing Heterogeneous Catalysts Containing Metal Nanoparticles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/854,842 Continuation US9527068B2 (en) 2006-11-20 2013-04-01 Method for producing heterogeneous catalysts containing metal nanoparticles

Publications (1)

Publication Number Publication Date
US20080119353A1 true US20080119353A1 (en) 2008-05-22

Family

ID=39430533

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/942,711 Abandoned US20080119353A1 (en) 2006-11-20 2007-11-20 Method for Producing Heterogeneous Catalysts Containing Metal Nanoparticles
US13/854,842 Active US9527068B2 (en) 2006-11-20 2013-04-01 Method for producing heterogeneous catalysts containing metal nanoparticles

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/854,842 Active US9527068B2 (en) 2006-11-20 2013-04-01 Method for producing heterogeneous catalysts containing metal nanoparticles

Country Status (5)

Country Link
US (2) US20080119353A1 (en)
EP (1) EP2097170A4 (en)
JP (1) JP5258119B2 (en)
KR (1) KR101120699B1 (en)
WO (1) WO2008064152A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123345A1 (en) * 2008-05-23 2009-11-25 Umicore AG & Co. KG Device for cleaning diesel exhaust gases
US20100125036A1 (en) * 2006-09-19 2010-05-20 Sharma Ramesh K Method and apparatus for continuous catalyst synthesis
US20100290964A1 (en) * 2009-05-18 2010-11-18 Southward Barry W L HIGH Pd CONTENT DIESEL OXIDATION CATALYSTS WITH IMPROVED HYDROTHERMAL DURABILITY
US20110099975A1 (en) * 2009-11-03 2011-05-05 Owen Herman Bailey Architectural diesel oxidation catalyst for enhanced no2 generator
US20110120093A1 (en) * 2008-04-24 2011-05-26 Stephan Eckhoff Process and apparatus for purifying exhaust gases from an internal combustion engine
US20110251055A1 (en) * 2010-04-13 2011-10-13 Millennium Inorganic Chemicals, Inc. Supported Precious Metal Catalysts Via Hydrothermal Deposition
WO2014056846A1 (en) * 2012-10-10 2014-04-17 Albemarle Europe Sprl Supported hydrotreating catalysts having enhanced activity
WO2016039747A1 (en) * 2014-09-11 2016-03-17 Clean Diesel Technologies, Inc. Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US10669343B2 (en) 2015-08-05 2020-06-02 Janssen Biotech, Inc. Anti-CD154 antibodies and methods of using them
CN111282579A (en) * 2020-03-20 2020-06-16 北京工业大学 Preparation method and application of neodymium samarium doped NiO/MgO compound supported platinum catalyst
US11633727B2 (en) 2012-10-10 2023-04-25 Albemarle Catalysts Company B.V. Supported hydrotreating catalysts having enhanced activity
US11731118B2 (en) 2012-10-10 2023-08-22 Albemarle Catalysts Company B.V. Supported hydrotreating catalysts having enhanced activity

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI449572B (en) * 2006-11-29 2014-08-21 Umicore Shokubai Japan Co Ltd Oxidation catalyst and the oxidation catalyst using an exhaust gas purification system
US20090173063A1 (en) * 2008-01-07 2009-07-09 Boorse R Samuel Mitigation of Particulates and NOx in Engine Exhaust
GB0808427D0 (en) 2008-05-09 2008-06-18 Johnson Matthey Plc Apparatus
GB201110850D0 (en) * 2011-03-04 2011-08-10 Johnson Matthey Plc Catalyst and mehtod of preparation
KR101446116B1 (en) * 2012-09-18 2014-10-06 한화케미칼 주식회사 Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
BR112018005877A2 (en) * 2015-10-14 2018-10-16 Johnson Matthey Plc oxidation catalyst, exhaust system, vehicle, and method for treating an exhaust gas.
US10448973B2 (en) 2016-10-14 2019-10-22 Pacesetter, Inc. Catheter-based system for delivery and retrieval of a leadless pacemaker
US12000333B2 (en) 2021-05-14 2024-06-04 AMOGY, Inc. Systems and methods for processing ammonia
WO2022261488A1 (en) * 2021-06-11 2022-12-15 Amogy Inc. Systems and methods for processing ammonia
AU2022290866A1 (en) 2021-06-11 2023-12-21 Amogy Inc. Systems and methods for processing ammonia
EP4359125A1 (en) * 2021-06-23 2024-05-01 Arizona Board of Regents on behalf of Arizona State University Systems for catalytically removing per- and polyfluoroalkyl substances from a fluid and related methods
GB2625926A (en) * 2021-08-27 2024-07-03 Finden Ltd Method for preparing a catalyst for reducing NOx
GB2610221B8 (en) * 2021-08-27 2024-02-21 Finden Ltd Apparatus for reducing NOx
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760912A (en) * 1951-09-26 1956-08-28 Kellogg M W Co Platinum and palladium catalysts in catalyzed reactions
US2897137A (en) * 1953-12-16 1959-07-28 Kellogg M W Co Platinum catalyst
US2898289A (en) * 1954-12-01 1959-08-04 Exxon Research Engineering Co Preparation of catalyst particles
US3169993A (en) * 1959-08-17 1965-02-16 Allied Chem Catalytic hydrogenation of nitrosodialkylamines
US3360934A (en) * 1966-05-06 1968-01-02 Int Harvester Co Hydrostatic transmission dual pressure charge-servo system
US3431220A (en) * 1964-07-06 1969-03-04 Exxon Research Engineering Co Particulate metal catalysts obtained by support removal and a base activation treatment
US3536632A (en) * 1967-10-10 1970-10-27 Exxon Research Engineering Co Heterogeneous catalysts
US3725094A (en) * 1971-09-20 1973-04-03 Grace W R & Co Doped alumina powder
US3949343A (en) * 1967-08-15 1976-04-06 Joslyn Mfg. And Supply Co. Grounded surface distribution apparatus
US3950243A (en) * 1975-03-14 1976-04-13 Universal Oil Products Company Hydrocarbon conversion with an acidic sulfur-free multimetallic catalytic composite
US3992324A (en) * 1974-02-18 1976-11-16 Labofina S.A. Process for the preparation of catalysts for the hydrotreatment of petroleum fractions
US4010242A (en) * 1972-04-07 1977-03-01 E. I. Dupont De Nemours And Company Uniform oxide microspheres and a process for their manufacture
US4038175A (en) * 1974-09-23 1977-07-26 Union Carbide Corporation Supported metal catalyst, methods of making same, and processing using same
US4073750A (en) * 1976-05-20 1978-02-14 Exxon Research & Engineering Co. Method for preparing a highly dispersed supported nickel catalyst
US4086275A (en) * 1975-11-28 1978-04-25 American Cyanamid Company Reduced copper catalyst on support
US4396539A (en) * 1981-08-14 1983-08-02 Sapienza Richard S Hydrocarbon synthesis catalyst and method of preparation
US4835131A (en) * 1986-08-29 1989-05-30 Shell Oil Company Catalyst and process for the preparation of the catalyst
US4839327A (en) * 1987-04-08 1989-06-13 Agency Of Industrial Science & Technology Method for the production of ultra-fine gold particles immobilized on a metal oxide
US5213895A (en) * 1990-09-11 1993-05-25 Daiso Co., Ltd. Particle-bearing composite and a method for producing the same
US5242877A (en) * 1992-02-21 1993-09-07 Rohm And Haas Company Polymer-supported catalysts
US5275998A (en) * 1991-12-04 1994-01-04 Tanaka Kikinzoku Kogyo K.K. Process of preparing catalyst supporting highly dispersed metal particles
US5275999A (en) * 1991-12-04 1994-01-04 Tanaka Kikinzoku Kogyo K.K. Process of preparing catalyst supporting highly dispersed metal particles
US5292931A (en) * 1991-06-21 1994-03-08 Hoechst Aktiengesellschaft Carrier catalyst, process for its preparation, and its use for the preparation of vinyl acetate
US5371277A (en) * 1990-07-03 1994-12-06 Kuraray Co., Ltd. Carrier, catalyst and process for producing unsaturated ester
US5422329A (en) * 1992-04-08 1995-06-06 Hoechst Ag Supported catalyst, process for its preparation and its use for the preparation of vinyl acetate
US5507956A (en) * 1992-03-13 1996-04-16 Solvay Unweltchemie Gmbh Abrasion-resistant carrier catalyst
US5518979A (en) * 1992-03-13 1996-05-21 Solvay Umweltchemie Gmbh Abrasion-resistant catalyst carrier formed of transition aluminas
US6168775B1 (en) * 1998-08-26 2001-01-02 Hydrocarbon Technologies, Inc. Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2)
US6347284B1 (en) * 1997-08-01 2002-02-12 Mitsubishi Heavy Industries, Ltd. System for prediction of adhesion energy at interface between dissimilar materials and method thereof
US6569358B1 (en) * 2001-12-07 2003-05-27 National Institute Of Advanced Industrial Science And Technology Method for incorporating metal nanoparticles in porous materials
US20030134744A1 (en) * 2001-12-19 2003-07-17 Sud-Chemie Inc. Process for production and distribution of a prereduced selective hydrogenation catalyst
US6602832B2 (en) * 2001-01-24 2003-08-05 Crompton Corporation Oil-soluble additive compositions for lubricating oils
US6603038B1 (en) * 1997-08-13 2003-08-05 Celanese Chemicals Europe Gmbh Method for producing catalysts containing metal nanoparticles on a porous support, especially for gas phase oxidation of ethylene and acetic acid to form vinyl acetate
US6627571B1 (en) * 2000-03-01 2003-09-30 Symyx Technologies, Inc. Method and system for the situ synthesis of a combinatorial library of supported catalyst materials
US6686308B2 (en) * 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
US6716525B1 (en) * 1998-11-06 2004-04-06 Tapesh Yadav Nano-dispersed catalysts particles
US6716789B1 (en) * 1997-12-22 2004-04-06 Basf Aktiengesellschaft Method for producing oxidic catalysts containing copper with oxidation number>0
US6746597B2 (en) * 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
US6783569B2 (en) * 2001-08-16 2004-08-31 Korea Advanced Institute Of Science And Technology Method for synthesis of core-shell type and solid solution alloy type metallic nanoparticles via transmetalation reactions and applications of same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892679A (en) * 1973-09-24 1975-07-01 Shell Oil Co Catalyst for preparation of ethylene oxide
LU69409A1 (en) * 1974-02-18 1975-12-09
FR2675713B1 (en) * 1991-04-29 1993-07-02 Pechiney Electrometallurgie CATALYTIC SYSTEM, PARTICULARLY FOR THE POSTCOMBUSTION OF EXHAUST GASES AND METHOD FOR MANUFACTURING THE SAME.
IT1254908B (en) * 1992-04-23 1995-10-11 Mini Ricerca Scient Tecnolog PROCEDURE FOR THE PREPARATION OF A SUPPORTED METAL CATALYST AND CATALYST OBTAINED BY SUCH PROCEDURE.
EP1569869A4 (en) * 2002-11-11 2008-11-19 Conocophillips Co Stabilized alumina supports, catalysts made therefrom, and their use in partial oxidation
US7611680B2 (en) * 2004-10-28 2009-11-03 Nanostellar, Inc. Platinum-bismuth catalysts for treating engine exhaust
JP2006212464A (en) * 2005-02-01 2006-08-17 Tanaka Kikinzoku Kogyo Kk Metal catalyst and production method for metal catalyst
JP2006272250A (en) * 2005-03-30 2006-10-12 Nissan Motor Co Ltd Method for arraying fine particle, catalyst for cleaning exhaust gas, electrode catalyst and magnetic material

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760912A (en) * 1951-09-26 1956-08-28 Kellogg M W Co Platinum and palladium catalysts in catalyzed reactions
US2897137A (en) * 1953-12-16 1959-07-28 Kellogg M W Co Platinum catalyst
US2898289A (en) * 1954-12-01 1959-08-04 Exxon Research Engineering Co Preparation of catalyst particles
US3169993A (en) * 1959-08-17 1965-02-16 Allied Chem Catalytic hydrogenation of nitrosodialkylamines
US3431220A (en) * 1964-07-06 1969-03-04 Exxon Research Engineering Co Particulate metal catalysts obtained by support removal and a base activation treatment
US3360934A (en) * 1966-05-06 1968-01-02 Int Harvester Co Hydrostatic transmission dual pressure charge-servo system
US3949343A (en) * 1967-08-15 1976-04-06 Joslyn Mfg. And Supply Co. Grounded surface distribution apparatus
US3536632A (en) * 1967-10-10 1970-10-27 Exxon Research Engineering Co Heterogeneous catalysts
US3725094A (en) * 1971-09-20 1973-04-03 Grace W R & Co Doped alumina powder
US4010242A (en) * 1972-04-07 1977-03-01 E. I. Dupont De Nemours And Company Uniform oxide microspheres and a process for their manufacture
US3992324A (en) * 1974-02-18 1976-11-16 Labofina S.A. Process for the preparation of catalysts for the hydrotreatment of petroleum fractions
US4038175A (en) * 1974-09-23 1977-07-26 Union Carbide Corporation Supported metal catalyst, methods of making same, and processing using same
US3950243A (en) * 1975-03-14 1976-04-13 Universal Oil Products Company Hydrocarbon conversion with an acidic sulfur-free multimetallic catalytic composite
US4086275A (en) * 1975-11-28 1978-04-25 American Cyanamid Company Reduced copper catalyst on support
US4073750A (en) * 1976-05-20 1978-02-14 Exxon Research & Engineering Co. Method for preparing a highly dispersed supported nickel catalyst
US4396539A (en) * 1981-08-14 1983-08-02 Sapienza Richard S Hydrocarbon synthesis catalyst and method of preparation
US4835131A (en) * 1986-08-29 1989-05-30 Shell Oil Company Catalyst and process for the preparation of the catalyst
US4839327A (en) * 1987-04-08 1989-06-13 Agency Of Industrial Science & Technology Method for the production of ultra-fine gold particles immobilized on a metal oxide
US5371277A (en) * 1990-07-03 1994-12-06 Kuraray Co., Ltd. Carrier, catalyst and process for producing unsaturated ester
US5213895A (en) * 1990-09-11 1993-05-25 Daiso Co., Ltd. Particle-bearing composite and a method for producing the same
US5292931A (en) * 1991-06-21 1994-03-08 Hoechst Aktiengesellschaft Carrier catalyst, process for its preparation, and its use for the preparation of vinyl acetate
US5275998A (en) * 1991-12-04 1994-01-04 Tanaka Kikinzoku Kogyo K.K. Process of preparing catalyst supporting highly dispersed metal particles
US5275999A (en) * 1991-12-04 1994-01-04 Tanaka Kikinzoku Kogyo K.K. Process of preparing catalyst supporting highly dispersed metal particles
US5242877A (en) * 1992-02-21 1993-09-07 Rohm And Haas Company Polymer-supported catalysts
US5507956A (en) * 1992-03-13 1996-04-16 Solvay Unweltchemie Gmbh Abrasion-resistant carrier catalyst
US5518979A (en) * 1992-03-13 1996-05-21 Solvay Umweltchemie Gmbh Abrasion-resistant catalyst carrier formed of transition aluminas
US5422329A (en) * 1992-04-08 1995-06-06 Hoechst Ag Supported catalyst, process for its preparation and its use for the preparation of vinyl acetate
US6347284B1 (en) * 1997-08-01 2002-02-12 Mitsubishi Heavy Industries, Ltd. System for prediction of adhesion energy at interface between dissimilar materials and method thereof
US6987200B2 (en) * 1997-08-13 2006-01-17 Celanese Chemicals Europe Gmbh Process for producing catalysts comprising nanosize metal particles on a porous support, in particular for the gas-phase oxidation of ethylene and acetic acid to give vinyl acetate
US6603038B1 (en) * 1997-08-13 2003-08-05 Celanese Chemicals Europe Gmbh Method for producing catalysts containing metal nanoparticles on a porous support, especially for gas phase oxidation of ethylene and acetic acid to form vinyl acetate
US6716789B1 (en) * 1997-12-22 2004-04-06 Basf Aktiengesellschaft Method for producing oxidic catalysts containing copper with oxidation number>0
US6168775B1 (en) * 1998-08-26 2001-01-02 Hydrocarbon Technologies, Inc. Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2)
US6716525B1 (en) * 1998-11-06 2004-04-06 Tapesh Yadav Nano-dispersed catalysts particles
US6627571B1 (en) * 2000-03-01 2003-09-30 Symyx Technologies, Inc. Method and system for the situ synthesis of a combinatorial library of supported catalyst materials
US6602832B2 (en) * 2001-01-24 2003-08-05 Crompton Corporation Oil-soluble additive compositions for lubricating oils
US6783569B2 (en) * 2001-08-16 2004-08-31 Korea Advanced Institute Of Science And Technology Method for synthesis of core-shell type and solid solution alloy type metallic nanoparticles via transmetalation reactions and applications of same
US6686308B2 (en) * 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
US6569358B1 (en) * 2001-12-07 2003-05-27 National Institute Of Advanced Industrial Science And Technology Method for incorporating metal nanoparticles in porous materials
US20030134744A1 (en) * 2001-12-19 2003-07-17 Sud-Chemie Inc. Process for production and distribution of a prereduced selective hydrogenation catalyst
US6746597B2 (en) * 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100125036A1 (en) * 2006-09-19 2010-05-20 Sharma Ramesh K Method and apparatus for continuous catalyst synthesis
US20110120093A1 (en) * 2008-04-24 2011-05-26 Stephan Eckhoff Process and apparatus for purifying exhaust gases from an internal combustion engine
US8057768B2 (en) 2008-05-23 2011-11-15 Umicore Ag & Co. Kg Device for the purification of diesel exhaust gases
WO2009140989A1 (en) * 2008-05-23 2009-11-26 Umicore Ag & Co. Kg Device for the purification of diesel exhaust gases
US20100221161A1 (en) * 2008-05-23 2010-09-02 Wolfgang Schneider Device for the Purification of Diesel Exhaust Gases
KR100993742B1 (en) 2008-05-23 2010-11-12 우미코레 아게 운트 코 카게 Device for the purification of diesel exhaust gases
EP2123345A1 (en) * 2008-05-23 2009-11-25 Umicore AG & Co. KG Device for cleaning diesel exhaust gases
US20100290964A1 (en) * 2009-05-18 2010-11-18 Southward Barry W L HIGH Pd CONTENT DIESEL OXIDATION CATALYSTS WITH IMPROVED HYDROTHERMAL DURABILITY
US8246923B2 (en) 2009-05-18 2012-08-21 Umicore Ag & Co. Kg High Pd content diesel oxidation catalysts with improved hydrothermal durability
US8557203B2 (en) 2009-11-03 2013-10-15 Umicore Ag & Co. Kg Architectural diesel oxidation catalyst for enhanced NO2 generator
US20110099975A1 (en) * 2009-11-03 2011-05-05 Owen Herman Bailey Architectural diesel oxidation catalyst for enhanced no2 generator
US8450236B2 (en) * 2010-04-13 2013-05-28 Cristal Usa Inc. Supported precious metal catalysts via hydrothermal deposition
US20110251055A1 (en) * 2010-04-13 2011-10-13 Millennium Inorganic Chemicals, Inc. Supported Precious Metal Catalysts Via Hydrothermal Deposition
RU2646216C2 (en) * 2012-10-10 2018-03-02 Альбемарл Юроп Спрл Hydraulic cleaning supported catalysts with higher activity
WO2014056846A1 (en) * 2012-10-10 2014-04-17 Albemarle Europe Sprl Supported hydrotreating catalysts having enhanced activity
US11731118B2 (en) 2012-10-10 2023-08-22 Albemarle Catalysts Company B.V. Supported hydrotreating catalysts having enhanced activity
US11633727B2 (en) 2012-10-10 2023-04-25 Albemarle Catalysts Company B.V. Supported hydrotreating catalysts having enhanced activity
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US9555400B2 (en) 2013-11-26 2017-01-31 Clean Diesel Technologies, Inc. Synergized PGM catalyst systems including platinum for TWC application
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
WO2016039747A1 (en) * 2014-09-11 2016-03-17 Clean Diesel Technologies, Inc. Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
US11421037B2 (en) 2015-08-05 2022-08-23 Janssen Biotech, Inc. Nucleic acids encoding anti-CD154 antibodies
US10669343B2 (en) 2015-08-05 2020-06-02 Janssen Biotech, Inc. Anti-CD154 antibodies and methods of using them
CN111282579A (en) * 2020-03-20 2020-06-16 北京工业大学 Preparation method and application of neodymium samarium doped NiO/MgO compound supported platinum catalyst

Also Published As

Publication number Publication date
US20140005041A1 (en) 2014-01-02
US9527068B2 (en) 2016-12-27
KR101120699B1 (en) 2012-03-22
WO2008064152A3 (en) 2008-08-21
EP2097170A2 (en) 2009-09-09
JP2010510064A (en) 2010-04-02
KR20090082928A (en) 2009-07-31
JP5258119B2 (en) 2013-08-07
WO2008064152A2 (en) 2008-05-29
EP2097170A4 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
US9527068B2 (en) Method for producing heterogeneous catalysts containing metal nanoparticles
KR100942080B1 (en) Platinum-bismuth catalysts for treating engine exhaust
US7745367B2 (en) Engine exhaust catalysts containing palladium-gold
US7517826B2 (en) Engine exhaust catalysts containing zeolite and zeolite mixtures
JP5196674B2 (en) Engine exhaust gas catalyst containing palladium-gold
US7709414B2 (en) Engine exhaust catalysts containing palladium-gold
US8258070B2 (en) Engine exhaust catalysts containing palladium-gold
US8415269B2 (en) Palladium-gold catalyst synthesis
RU2742416C2 (en) Diesel oxidation catalyst containing platinum group metal nanoparticles
CN101583423B (en) Engine exhaust catalysts containing palladium-gold
CN102574106A (en) Preparation of diesel oxidation catalyst via deposition of colloidal nanoparticles
US7709407B1 (en) Palladium-gold catalyst synthesis
US7605109B1 (en) Platinum-bismuth catalysts for treating engine exhaust
US20130217566A1 (en) Palladium and gold catalysts

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANOSTELLAR, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JIA, JIFEI;WANG, JIAN;FUJDALA, KYLE L.;REEL/FRAME:020139/0649;SIGNING DATES FROM 20071113 TO 20071115

AS Assignment

Owner name: WGC HOLDINGS LIMITED, UNITED KINGDOM

Free format text: SECURITY AGREEMENT;ASSIGNOR:NANOSTELLAR, INC.;REEL/FRAME:026008/0439

Effective date: 20110311

AS Assignment

Owner name: NANOSTELLAR, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WGC HOLDINGS LIMITED;REEL/FRAME:029687/0029

Effective date: 20121118

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: SHUBIN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NANOSTELLAR, INC.;REEL/FRAME:030953/0816

Effective date: 20130511

AS Assignment

Owner name: NANOSTELLAR, INC., CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:WGC HOLDINGS LIMITED;REEL/FRAME:031122/0323

Effective date: 20121118