US20080084600A1 - System and method for reducing visual artifacts in displays - Google Patents
System and method for reducing visual artifacts in displays Download PDFInfo
- Publication number
- US20080084600A1 US20080084600A1 US11/545,104 US54510406A US2008084600A1 US 20080084600 A1 US20080084600 A1 US 20080084600A1 US 54510406 A US54510406 A US 54510406A US 2008084600 A1 US2008084600 A1 US 2008084600A1
- Authority
- US
- United States
- Prior art keywords
- light
- illumination elements
- light modulators
- modulators
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/001—Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0058—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
Definitions
- the field of the invention relates to display systems.
- Display systems may include light modulators to produce a displayed image by modulating light directed to the light modulators. Such display systems may include a source of illumination to at least partly provide light to the light modulators.
- a light modulator comprises microelectromechanical systems (MEMS). Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices.
- MEMS device is called an interferometric modulator.
- interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference.
- an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal.
- one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap.
- the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator.
- Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed. For example, a need exists for improved illumination sources for light modulator based displays.
- One embodiment comprises a display device.
- the display device comprises a plurality of light modulators.
- the display device further comprises a plurality of illumination elements configured to direct a nonuniformly varying pattern of light to the light modulators.
- One embodiment comprises a display device.
- the display device comprises a plurality of light modulators.
- the display device further comprises a plurality of illumination elements arranged in a nonuniform pattern and configured to direct light to the light modulators.
- One embodiment comprises a display device.
- the display device comprises a plurality of light modulators.
- the display device further comprises a plurality of illumination elements configured to direct light to the light modulators.
- the plurality of illumination elements is adapted to illuminate the light modulators without producing a visible moiré pattern.
- One embodiment comprises a display device.
- the display device comprises means for modulating light.
- the display device further comprises means for illuminating the light modulating means with a nonuniformly varying pattern of light.
- Another embodiment comprises a method of making an illuminator.
- the method comprises forming a plurality of illumination elements configured to direct a nonuniformly varying pattern of light to an array of light modulators.
- Another embodiment comprises a method comprising illuminating a plurality of illumination elements with light.
- the method further comprises directing a nonuniformly varying pattern of the light from the illumination elements to a plurality of light modulators.
- FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a relaxed position and a movable reflective layer of a second interferometric modulator is in an actuated position.
- FIG. 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3 ⁇ 3 interferometric modulator display.
- FIG. 3 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of FIG. 1 .
- FIG. 4 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
- FIGS. 5A and 5B illustrate one exemplary timing diagram for row and column signals that may be used to write a frame of display data to the 3 ⁇ 3 interferometric modulator display of FIG. 2 .
- FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.
- FIG. 7A is a cross section of the device of FIG. 1 .
- FIG. 7B is a cross section of an alternative embodiment of an interferometric modulator.
- FIG. 7C is a cross section of another alternative embodiment of an interferometric modulator.
- FIG. 7D is a cross section of yet another alternative embodiment of an interferometric modulator.
- FIG. 7E is a cross section of an additional alternative embodiment of an interferometric modulator.
- FIG. 8 is a cross section of an example of a display system comprising an array of light modulators, such as devices illustrated in FIG. 1 , illuminated by an illuminator.
- FIG. 9 is a cross section of an example of display system such as illustrated in FIG. 8 that comprises an array of light modulators illuminated by an illuminator comprising an array of reflective light turning elements.
- FIG. 10A is a cross section of an example of an illuminator comprising periodically spaced light turning elements such as illustrated in FIG. 8
- FIG. 10B is a perspective view of an example of an illuminator comprising periodically spaced reflective light turning elements such as illustrated in FIG. 10A .
- FIG. 10C is a top view of an example of an illuminator comprising periodically spaced reflective light turning elements such as illustrated in FIG. 10B .
- FIG. 11A illustrates a cross section view of an illuminator comprising a periodically arranged reflective light turning elements such as illustrated in FIG. 10B .
- FIG. 11B illustrates a schematic cross section view of an illuminator comprising a periodically arranged reflective light turning elements and a light modulator array such as illustrated in FIG. 9 .
- FIG. 12 is a top view exemplifying moiré patterns formed by three sets of two superimposed periodic arrangements of lines.
- FIG. 13A illustrates a cross section view of an illuminator comprising nonuniformly arranged reflective light turning elements.
- FIG. 13B illustrates a schematic cross section view of an illuminator comprising a nonuniformly arranged reflective light turning elements and a light modulator array such as illustrated in FIG. 13A .
- FIG. 14 illustrates a top view of the nonuniformly arranged light turning elements illustrated in FIG. 13A .
- FIG. 15A illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that of FIG. 13A .
- FIG. 15B illustrates a top view of a portion of the array of light turning elements of FIG. 15A in more detail.
- FIG. 16A is a graphical illustration of a uniform distribution illustrative of the distribution of elements in one embodiment of a light turning array such as illustrated in FIG. 15A .
- FIG. 16B is a graphical illustration of a normal distribution illustrative of the nonuniform distribution of elements in one embodiment of a light turning array such as illustrated in FIG. 15A
- FIG. 17A illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that of FIG. 15A .
- FIG. 17B illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that of FIG. 17A .
- FIG. 18A illustrates a cross section view of yet another embodiment of a nonuniformly arranged light turning array that is conceptually similar to that of FIG. 13A .
- FIG. 18B illustrates a schematic cross section view of the nonuniformly arranged light turning array of FIG. 18A in relation to a display.
- the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry).
- MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
- Light modulator based displays including reflective and interferometric displays, generally comprise periodically arranged light modulators in order to correspond to pixel layouts of video signals. Such light modulators may be illuminated using an illuminator or light guide that directs a pattern of light to the light modulators.
- the illuminator may comprise a periodically arranged light turning (and/or light emissive) elements that directs a periodic pattern of light onto the array of light modulators. When the periodically arranged array of light modulators is illuminated with the periodic pattern of light from the illuminator, the superposition of the two periodic arrays may result in visible Moiré patterns.
- nonuniform arrangement of the illumination elements that directs a nonuniformly varying pattern of light onto the light modulators reduces or even substantially eliminates visible Moiré patterns resulting from this superposition in such display systems. Accordingly, several inventive examples of such nonuniformly arranged (e.g., irregularly or aperiodically arranged so as to be uncorrelated with the arrangement of the light modulators) illumination arrays are disclosed herein.
- FIG. 1 One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in FIG. 1 .
- the pixels are in either a bright or dark state.
- the display element In the bright (“on” or “open”) state, the display element reflects a large portion of incident visible light to a user.
- the dark (“off” or “closed”) state When in the dark (“off” or “closed”) state, the display element reflects little incident visible light to the user.
- the light reflectance properties of the “on” and “off” states may be reversed.
- MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.
- FIG. 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator.
- an interferometric modulator display comprises a row/column array of these interferometric modulators.
- Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension.
- one of the reflective layers may be moved between two positions. In the first position, referred to herein as the relaxed position, the movable reflective layer is positioned at a relatively large distance from a fixed partially reflective layer.
- the movable reflective layer In the second position, referred to herein as the actuated position, the movable reflective layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.
- the depicted portion of the pixel array in FIG. 1 includes two adjacent interferometric modulators 12 a and 12 b.
- a movable reflective layer 14 a is illustrated in a relaxed position at a predetermined distance from an optical stack 16 a, which includes a partially reflective layer.
- the movable reflective layer 14 b is illustrated in an actuated position adjacent to the optical stack 16 b.
- optical stack 16 typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric.
- ITO indium tin oxide
- the optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20 .
- the layers are patterned into parallel strips, and may form row electrodes in a display device as described further below.
- the movable reflective layers 14 a, 14 b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16 a, 16 b ) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18 . When the sacrificial material is etched away, the movable reflective layers 14 a, 14 b are separated from the optical stacks 16 a, 16 b by a defined gap 19 .
- a highly conductive and reflective material such as aluminum may be used for the reflective layers 14 , and these strips may form column electrodes in a display device.
- the cavity 19 remains between the movable reflective layer 14 a and optical stack 16 a, with the movable reflective layer 14 a in a mechanically relaxed state, as illustrated by the pixel 12 a in FIG. 1 .
- a potential difference is applied to a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together.
- the movable reflective layer 14 is deformed and is forced against the optical stack 16 .
- a dielectric layer within the optical stack 16 may prevent shorting and control the separation distance between layers 14 and 16 , as illustrated by pixel 12 b on the right in FIG. 1 .
- the behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.
- FIGS. 2 through 5 illustrate one exemplary process and system for using an array of interferometric modulators in a display application.
- FIG. 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention.
- the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051, a MIPS®, a Power PC®, an ALPHA®, or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array.
- the processor 21 may be configured to execute one or more software modules.
- the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.
- the processor 21 is also configured to communicate with an array driver 22 .
- the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a panel or display array (display) 30 .
- the cross section of the array illustrated in FIG. 1 is shown by the lines 1 - 1 in FIG. 2 .
- the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in FIG. 3 . It may require, for example, a 10 volt potential difference to cause a movable layer to deform from the relaxed state to the actuated state.
- the movable layer maintains its state as the voltage drops back below 10 volts.
- the movable layer does not relax completely until the voltage drops below 2 volts.
- There is thus a range of voltage, about 3 to 7 V in the example illustrated in FIG. 3 where there exists a window of applied voltage within which the device is stable in either the relaxed or actuated state. This is referred to herein as the “hysteresis window” or “stability window.”
- the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be relaxed are exposed to a voltage difference of close to zero volts. After the strobe, the pixels are exposed to a steady state voltage difference of about 5 volts such that they remain in whatever state the row strobe put them in. After being written, each pixel sees a potential difference within the “stability window” of 3-7 volts in this example. This feature makes the pixel design illustrated in FIG. 1 stable under the same applied voltage conditions in either an actuated or relaxed pre-existing state.
- each pixel of the interferometric modulator is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.
- a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row.
- a row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines.
- the asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row.
- a pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes.
- the row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame.
- the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second.
- protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
- FIGS. 4 and 5 illustrate one possible actuation protocol for creating a display frame on the 3 ⁇ 3 array of FIG. 2 .
- FIG. 4 illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves of FIG. 3 .
- actuating a pixel involves setting the appropriate column to ⁇ V bias , and the appropriate row to + ⁇ V, which may correspond to ⁇ 5 volts and +5 volts respectively Relaxing the pixel is accomplished by setting the appropriate column to +V bias , and the appropriate row to the same + ⁇ V, producing a zero volt potential difference across the pixel.
- the pixels are stable in whatever state they were originally in, regardless of whether the column is at +V bias , or ⁇ V bias .
- voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +V bias , and the appropriate row to ⁇ V.
- releasing the pixel is accomplished by setting the appropriate column to ⁇ V bias , and the appropriate row to the same ⁇ V, producing a zero volt potential difference across the pixel.
- FIG. 5B is a timing diagram showing a series of row and column signals applied to the 3 ⁇ 3 array of FIG. 2 which will result in the display arrangement illustrated in FIG. 5A , where actuated pixels are non-reflective.
- the pixels Prior to writing the frame illustrated in FIG. 5A , the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or relaxed states.
- pixels ( 1 , 1 ), ( 1 , 2 ), ( 2 , 2 ), ( 3 , 2 ) and ( 3 , 3 ) are actuated.
- columns 1 and 2 are set to ⁇ 5 volts
- column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window.
- Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero. This actuates the ( 1 , 1 ) and ( 1 , 2 ) pixels and relaxes the ( 1 , 3 ) pixel. No other pixels in the array are affected.
- row 2 is set to ⁇ 5 volts, and columns 1 and 3 are set to +5 volts.
- the same strobe applied to row 2 will then actuate pixel ( 2 , 2 ) and relax pixels ( 2 , 1 ) and ( 2 , 3 ). Again, no other pixels of the array are affected.
- Row 3 is similarly set by setting columns 2 and 3 to ⁇ 5 volts, and column 1 to +5 volts.
- the row 3 strobe sets the row 3 pixels as shown in FIG. 5A . After writing the frame, the row potentials are zero, and the column potentials can remain at either +5 or ⁇ 5 volts, and the display is then stable in the arrangement of FIG. 5A .
- FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a display device 40 .
- the display device 40 can be, for example, a cellular or mobile telephone.
- the same components of display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.
- the display device 40 includes a housing 41 , a display 30 , an antenna 43 , a speaker 45 , an input device 48 , and a microphone 46 .
- the housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming.
- the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof.
- the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
- the display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein.
- the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art.
- the display 30 includes an interferometric modulator display, as described herein.
- the components of one embodiment of exemplary display device 40 are schematically illustrated in FIG. 6B .
- the illustrated exemplary display device 40 includes a housing 41 and can include additional components at least partially enclosed therein.
- the exemplary display device 40 includes a network interface 27 that includes an antenna 43 which is coupled to a transceiver 47 .
- the transceiver 47 is connected to the processor 21 , which is connected to conditioning hardware 52 .
- the conditioning hardware 52 may be configured to condition a signal (e.g. filter a signal).
- the conditioning hardware 52 is connected to a speaker 45 and a microphone 46 .
- the processor 21 is also connected to an input device 48 and a driver controller 29 .
- the driver controller 29 is coupled to a frame buffer 28 and to the array driver 22 , which in turn is coupled to a display array 30 .
- a power supply 50 provides power to all components as required by the particular exemplary display device 40 design.
- the network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21 .
- the antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.12 standard, including IEEE 802.12(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network.
- the transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21 .
- the transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43 .
- the transceiver 47 can be replaced by a receiver.
- network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21 .
- the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
- Processor 21 generally controls the overall operation of the exemplary display device 40 .
- the processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data.
- the processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage.
- Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
- the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40 .
- Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45 , and for receiving signals from the microphone 46 .
- Conditioning hardware 52 may be discrete components within the exemplary display device 40 , or may be incorporated within the processor 21 or other components.
- the driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22 . Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30 . Then the driver controller 29 sends the formatted information to the array driver 22 .
- a driver controller 29 such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22 .
- the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
- driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller).
- array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display).
- a driver controller 29 is integrated with the array driver 22 .
- display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
- the input device 48 allows a user to control the operation of the exemplary display device 40 .
- input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane.
- the microphone 46 is an input device for the exemplary display device 40 . When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40 .
- Power supply 50 can include a variety of energy storage devices as are well known in the art.
- power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery.
- power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint.
- power supply 50 is configured to receive power from a wall outlet.
- control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22 . Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
- FIGS. 7A-7E illustrate five different embodiments of the movable reflective layer 14 and its supporting structures.
- FIG. 7A is a cross section of the embodiment of FIG. 1 , where a strip of metal material 14 is deposited on orthogonally extending supports 18 .
- FIG. 7B the moveable reflective layer 14 is attached to supports at the corners only, on tethers 32 .
- FIG. 7C the moveable reflective layer 14 is suspended from a deformable layer 34 , which may comprise a flexible metal.
- the deformable layer 34 connects, directly or indirectly, to the substrate 20 around the perimeter of the deformable layer 34 .
- connection posts are herein referred to as support posts.
- the embodiment illustrated in FIG. 7D has support post plugs 42 upon which the deformable layer 34 rests.
- the movable reflective layer 14 remains suspended over the cavity, as in FIGS. 7A-7C , but the deformable layer 34 does not form the support posts by filling holes between the deformable layer 34 and the optical stack 16 . Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42 .
- the embodiment illustrated in FIG. 7E is based on the embodiment shown in FIG. 7D , but may also be adapted to work with any of the embodiments illustrated in FIGS. 7A-7C as well as additional embodiments not shown. In the embodiment shown in FIG. 7E , an extra layer of metal or other conductive material has been used to form a bus structure 44 . This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on the substrate 20 .
- the interferometric modulators function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20 , the side opposite to that upon which the modulator is arranged.
- the reflective layer 14 optically shields some portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20 , including the deformable layer 34 and the bus structure 44 . This allows the shielded areas to be configured and operated upon without negatively affecting the image quality.
- This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other.
- FIG. 8 is a cross section of an example of display system that comprises an example of the array of light modulators 30 illuminated by an illuminator 110 comprising an array of illuminating or light turning elements 112 .
- the light turning elements 112 direct light 124 such as from a light source 122 to the light modulators 126 and then to a viewing position 128 .
- the light modulators 126 comprise reflective light modulators such as the interferometric modulators such as illustrated in FIGS. 1 , 7 A, 7 B, 7 C, 7 D, and 7 E. Other embodiments may comprise other types of light modulators.
- the light turning elements 112 comprise at least partially reflective surfaces configured to direct the light 124 to the light modulators 126 .
- the illuminator 110 may comprise various structures configured to illuminate the light modulators 126 .
- the light turning elements 112 may comprise any other suitable structure for directing a pattern of light onto the light modulators 126 .
- the light turning elements 112 may comprise materials, e.g., photoluminescent or electroluminescent materials, configured to direct a pattern of illumination onto the light modulators 126 .
- FIG. 9 is a cross section of an example of display system such as illustrated in FIG. 8 that comprises an array 30 of light modulators 126 illuminated by an array of reflective light turning elements 112 .
- the example light turning elements 112 in FIG. 9 each comprise surfaces 130 and 132 that are configured to direct light to the light modulators 126 .
- the light 124 enters through a side surface of the illuminator 110 .
- the illuminator 110 internally reflects the light 124 until the light 124 strikes the surfaces 130 and 132 so as to be directed onto one or more of the light modulators 126 , which in turn modulate the light 124 and direct a portion of the modulated light to the viewing position 128 .
- the illuminator 110 is configured with respect to the light source (e.g., light source 122 of FIG. 8 ) so that total internal reflectance of the light 124 within the illuminator 110 reduces loss of the light 124 except when reflected by the light turning elements 112 towards the light modulators 126 .
- the light source e.g., light source 122 of FIG. 8
- FIG. 10A is a cross section of an example of an array of periodically spaced light turning elements 112 in the illuminator 110 such as illustrated in FIG. 9 .
- each light turning element 112 is represented schematically and separated from adjacent light turning elements 112 by a substantially fixed distance P FL that is indicative of the periodicity of the light turning elements 112 in the illuminator 110 .
- the distance P FL is gradually decreased as the distance within the illuminator 110 increases from a light source.
- the distance P FL between each adjacent line of light turning elements 112 in such an embodiment is substantially the same. Thus, a Moiré pattern may still be visible.
- FIG. 10B is a perspective view of an example of the illuminator 110 comprising the array of periodically spaced reflective light turning elements 112 such as illustrated in FIG. 10A .
- the surfaces 130 and 132 form lines, e.g., rows or columns, approximately along one axis of the illuminator 110 .
- each light turning element 112 may illuminate a plurality of light modulators 126 , for example, one or more rows or columns of light modulators 126 .
- the periodicity, P FL of the array of light turning elements 112 is illustrated with reference to the reflective surfaces 130 and 132 of each of the light turning elements 112 .
- FIG. 10C is a top view further illustrating the example of the illuminator 110 comprising the periodic array of periodically spaced reflective light turning elements 112 such as illustrated in FIG. 10B .
- FIG. 11A illustrates a schematic cross section view of a periodically arranged light turning elements 112 and a light modulator array such as illustrated in FIG. 10A .
- Each of the light turning elements 112 is separated by a distance P FL indicative of the periodicity of the array of light turning elements 112 .
- FIG. 11A illustrates light 124 periodically directed by the light turning elements 112 onto the modulator array 30 .
- FIG. 11B illustrates a cross section view of the example of the periodically arranged reflective light turning array 110 such as illustrated in FIG. 11A .
- the light reflecting surfaces 130 and 132 of each of the illustrated light turning elements 112 are positioned at an angle of ⁇ FL .
- FIG. 12 is a top view exemplifying Moiré patterns formed by three sets of two superimposed periodic arrangements of lines.
- FIG. 12 illustrates Moiré patterns formed in region 212 , 214 , and 216 where a pattern 202 of lines and a pattern 208 of lines overlap at angles of 10°, 20°, and 30°, respectively.
- an interference pattern of somewhat horizontal lines angled slightly toward the lower right corner of FIG. 12 . It is to be recognized that while the Moiré patterns of FIG. 12 are formed by patterns of lines that overlap at different angles, it is the resulting difference in superimposed periodicity that generates the artifacts of the Moiré pattern.
- such artifacts can be generated by two overlapping periodic patterns such as the illuminator 110 and the light modulator array 30 regardless of the alignment of the two arrays. It has been found that by arranging the light turning elements 112 of the illuminator 110 to direct a nonuniformly varying pattern of light to the light modulators 126 , the Moiré patterns are substantially reduced. Note that a periodic arrangement of light turning elements 112 such as in FIG. 11A generally produces a nonuniform pattern of light. However, such a pattern of light on the light modulators 126 varies substantially uniformly in accordance with the pattern of light turning elements 112 .
- a nonuniform arrangement of light turning elements 112 directs a nonuniformly varying pattern of light on the light modulators 126 that varies nonuniformly according to the nonuniform arrangement of the light turning elements 112 .
- FIG. 13A illustrates a schematic cross section view of an example of an light turning array 110 in which the light turning elements 112 are aperiodically or nonuniformly spaced.
- Each of light turning elements 112 is positioned from adjacent light turning elements 112 by different distances, e.g., P i , P i+1 , P i+2 , etc.
- light rays 124 reflected by the light turning elements 112 collectively define a non-periodically, or nonuniformly varying, pattern of light illuminating the light modulators 126 .
- FIG. 13B illustrates a cross section view of the nonuniformly arranged reflective light turning array 110 such as illustrated schematically in FIG. 13A .
- the surface 130 each light turning element 112 is positioned at substantially the same angle ⁇ FL relative to the surface 132 of the same light turning element 112 .
- the position of each adjacent line of light turning elements 112 varies, e.g., the distances P i , P i+1 , P i+2 , vary.
- each value P i within the array is different.
- the distances repeat at a sufficiently low frequency within the light turning array 110 that the interaction with the light modulator array 30 produces no substantial visible artifacts.
- FIG. 14 illustrates a top view of the nonuniformly arranged light turning array 110 illustrated in FIG. 13B .
- FIG. 14 illustrates the positions X′ i , X′ i+1 , X′ i+2 , etc. of each of the light turning elements 112 (e.g., the position of the intersection of the surface 130 and the surface 132 ).
- Each of these positions X′ i , X′ i+1 , X′ i+2 is offset from a corresponding periodically spaced position X i , X i+1 , X i+2 by an offset distance 140 a, 140 b, 140 c, 140 d, 140 e (collectively offset distances 140 ).
- each of the offset distances 140 may be different in a particular array 110 .
- each of the offset distances 140 in a particular array 110 may be selected randomly, e.g., from within a range of available offsets. Note that as used herein random refers to random and pseudo random selections.
- each offset distance 140 a, 140 b, 140 c, 140 d, 140 e may be selected to have a pattern that repeats throughout the array 110 with a frequency that is too low to result in any substantial visible artifacts.
- the offset distances 140 may be selected, randomly or otherwise, to be distributed according to a particular distribution within a range of distances, for example, the distances may be distributed with uniform or Gaussian distribution.
- each offset distance (X′ i -X i ) is determined by multiplying a random number between ⁇ 1 and +1 with the separation from the first neighboring unit, such as (X i+1 -X i ) or (X i -X i ⁇ 1 ).
- the random number multiplier is between ⁇ 0.5 and 0.5.
- at least two offset distances are selected and applied in a random order to each light turning element X i (this order can be completely random, or a prescribed random sequence such as the Fibonacci, Thue-Morse, or other similar random numerical sequences.
- the at least two offset distances are selected randomly so that at least one of them is larger than 10% of the average separation between light turning elements. It is to be recognized that randomness selection in the arrangement of light turning elements 112 is generally incorporated at the design or manufacturing stage. During manufacturing, a particular arrangement of light turning elements 112 may be substantially reproduced once or many times.
- FIG. 15A illustrates a top view of another embodiment of another example of an illuminator comprising an array of a nonuniformly arranged light turning elements 112 that is conceptually similar to that of FIG. 13A .
- the light turning elements 112 comprise regions of the illuminator 110 that include the reflecting surfaces 130 and 132 .
- the light turning elements 112 of FIG. 15A may be varied in both size and position so that the illuminator 110 directs a nonuniformly varying pattern of light to the modulator array 30 (not shown) in one or both of vertical and horizontal dimensions.
- FIG. 15A illustrates a top view of another embodiment of another example of an illuminator comprising an array of a nonuniformly arranged light turning elements 112 that is conceptually similar to that of FIG. 13A .
- the light turning elements 112 comprise regions of the illuminator 110 that include the reflecting surfaces 130 and 132 .
- the light turning elements 112 of FIG. 15A may be varied in both
- a line of the light turning elements 112 is distributed generally along lines X j , X j+1 , . . . X k. .
- each of the light turning elements 112 is offset by a random distance in both the vertical (Y) and horizontal (X) from a position along one of the lines X j , . . . X k. .
- the vertical and horizontal offsets may be determined in any suitable way, including those discussed with reference to FIG. 14 . In one embodiment, the vertical offsets may be zero.
- FIG. 15B illustrates a top view of a portion 150 of the illuminator 110 of FIG. 15A in more detail.
- the example of the portion 150 comprises light turning elements 112 a, 112 b, and 112 c that are each offset in the horizontal direction along an axis X k , where k is a value between 1 and N, the number of lines in a particular illuminator, and where k represents a particular vertical line of light turning elements in the illuminator 110 .
- offset of the reflective surfaces 130 and 132 of each light turning element 112 a, 112 b, or 112 c varies by horizontal offsets that change at positions Y k,j , where j is a value between 1 and M, the number of light turning elements 112 in a particular line in a particular illuminator, and where j represents a particular vertical position of a particular light turning element 112 in the line k of light turning elements 112 .
- the vertical length of the light turning element elements 112 e.g., element 112 b is determined by a corresponding vertical position, Y k,j and the vertical position Y k,j+1 of the adjacent element 112 c.
- Each vertical position Y k,j may be selected so that each light turning element 112 has a vertical size or extent within a particular range, e.g., ⁇ Y min and ⁇ Y max .
- the vertical size of each light turning element 112 is randomly distributed within the range e.g., ⁇ Y min and ⁇ Y max .
- the light turning element 112 b at vertical position Y k,j is also offset by an amount ⁇ X k,j from the line X k .
- the vertical positions Y k,j are distributed within a particular or predetermined range of distances, e.g., between ⁇ X min and ⁇ X max .
- each light turning element 112 is desirably offset in both vertical and horizontal directions, in other embodiments, the light turning element 112 may be offset only in one of the vertical or horizontal directions.
- the illuminator 110 of FIG. 15A and 15B thus is configured to direct a nonuniformly varying pattern of light to light modulators such as the array 30 of light modulators 126 of FIG. 11A .
- FIG. 16A is a graphical illustration of a uniform distribution illustrative of the nonuniform distribution of light turning elements 112 in one embodiment of the illuminator 110 .
- the horizontal offset positions X k,j of the light turning elements 112 along a line of light turning elements are randomly distributed within a range of distances, e.g., ⁇ X min and ⁇ X max .
- the offset for each light turning element 112 may be selected according to a uniform distribution such as illustrated in FIG. 16A .
- the distribution of offsets is a uniform distribution that results in a nonuniform arrangement of the light turning elements.
- FIG. 16B is a graphical illustration of a normal distribution illustrative of the nonuniform distribution of light turning elements 112 in one embodiment of the illuminator 110 .
- the offset for each light turning element 112 may be selected according to a normal (Gaussian) distribution such as illustrated in FIG. 16A . It is to be recognized that in various embodiments the light turning elements 112 may be distributed based on any suitable mathematical distribution that generates a substantially nonuniform array.
- FIG. 17A illustrates a top view of another example of the illuminator 110 comprising an array of a nonuniformly arranged light turning elements 112 that is conceptually similar to that of FIG. 13A .
- a nonuniformly varying pattern of reflected light is achieved by rotating each of the light reflecting elements 112 about a point 170 by an angle a k .
- Each light turning element 112 may have a different angle a k of rotation (e.g., from vertical line X k ) that is distributed within a range a min to a max .
- the angles a k are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution.
- the angles may be selected in any suitable way, including according to methods similar to those discussed with reference to FIG. 14 .
- FIG. 17B illustrates a top view of another example of the illuminator 110 comprising an array of a nonuniformly arranged light turning elements 112 that is conceptually similar to that of FIG. 17A .
- each of the light turning elements 112 is rotated about the positions 170 along each line X k , which are with substantially equal distances P FL horizontally between each line X k on the illuminator 110 .
- each light turning element 112 is rotated about a point that is randomly selected at a distance X′ k along the line X k .
- the distance X′ k of each line X k may be selected from a range of distances, e.g., ⁇ X′ min and ⁇ X′ max .
- the distances X′ k are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution.
- the periodicity of the pattern of light directed from the light turning elements 112 of FIG. 17B to the light modulators 30 (not shown) is further reduced with respect to the embodiment illustrated in FIG. 17A .
- the offset distances X′ k may be selected from a set in which each distance in the set is used one or more times.
- any repetition of particular offset distances X′ k is minimized and preferably offset distances X′ k of adjacent light turning elements 112 are different.
- the distances X′ k may be determined in any suitable way, including those discussed with reference to FIG. 14 .
- FIG. 18A illustrates a top view of another example of the illuminator 110 comprising an array of a nonuniformly arranged light turning elements 112 that is conceptually similar to that of FIG. 13A .
- each of the light turning elements 112 is positioned along each line X k .
- the reflecting surface 130 of each light turning element 112 e.g., element 112 a, intersects the reflecting surface 132 at an angle, e.g., ⁇ k .
- the angle ⁇ k , ⁇ k+1 , ⁇ k+2 corresponding to each of, at least, adjacent light turning elements 112 is different.
- each light turning element 112 may have a different angle ⁇ k that is distributed within a range ⁇ min to ⁇ max .
- the angle ⁇ k are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution.
- the angles ⁇ k may be selected from a set in which each angle in the set is used one or more times. In one such an embodiment, any repetition of particular angles ⁇ k is minimized and preferably angles of adjacent light turning elements 112 are different.
- the angles ⁇ k may be selected in any suitable way, including according to methods similar to those discussed with reference to FIG. 14 .
- the range ⁇ min to ⁇ max is selected to exceed the larger of the vertical angular divergence of the light emitted by the illuminator in the plane of the ⁇ k rotation and of ⁇ 1°, which is the angular cone typically collected by the human eye.
- FIG. 18B illustrates a schematic cross section view of the nonuniformly arranged illuminator 110 of FIG. 18A in relation to the array 30 of light modulators 130 .
- each of light turning elements 112 direct light from the illuminator 110 at different angles to generate a nonuniformly varying pattern of light 124 that is modulated, and in the illustrated example reflected, by the array 30 of light modulators 126 .
- the distances P i , P i+1 between the light rays 124 directed onto the array 30 vary nonuniformly within the illuminator 110 .
- the illuminator 110 is formed separately from the light modulator array 30 and then applied to the array 30 . In another embodiment, the illuminator 110 is formed on or above the substrate 20 .
- embodiments are disclosed with reference to horizontal or vertical axis, in other embodiments, the arrangement of components of the illuminator 110 or light modulator array 30 with respect to horizontal and vertical axis may be reversed. Furthermore, it is to be recognized that embodiments may include combinations of features described with respect to the disclosed examples of light turning elements 112 that direct nonuniformly varying patterns of light to the light modulator array 130 , regardless of whether such combinations are expressly disclosed herein.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Optical Elements Other Than Lenses (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
- 1. Field
- The field of the invention relates to display systems.
- 2. Description of the Related Technology
- Display systems may include light modulators to produce a displayed image by modulating light directed to the light modulators. Such display systems may include a source of illumination to at least partly provide light to the light modulators. One embodiment of a light modulator comprises microelectromechanical systems (MEMS). Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed. For example, a need exists for improved illumination sources for light modulator based displays.
- The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention as expressed by the claims which follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this invention provide advantages that include reduced visual artifacts or noise in illuminated display systems.
- One embodiment comprises a display device. The display device comprises a plurality of light modulators. The display device further comprises a plurality of illumination elements configured to direct a nonuniformly varying pattern of light to the light modulators.
- One embodiment comprises a display device. The display device comprises a plurality of light modulators. The display device further comprises a plurality of illumination elements arranged in a nonuniform pattern and configured to direct light to the light modulators.
- One embodiment comprises a display device. The display device comprises a plurality of light modulators. The display device further comprises a plurality of illumination elements configured to direct light to the light modulators. The plurality of illumination elements is adapted to illuminate the light modulators without producing a visible moiré pattern.
- One embodiment comprises a display device. The display device comprises means for modulating light. The display device further comprises means for illuminating the light modulating means with a nonuniformly varying pattern of light.
- Another embodiment comprises a method of making an illuminator. The method comprises forming a plurality of illumination elements configured to direct a nonuniformly varying pattern of light to an array of light modulators.
- Another embodiment comprises a method comprising illuminating a plurality of illumination elements with light. The method further comprises directing a nonuniformly varying pattern of the light from the illumination elements to a plurality of light modulators.
-
FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a relaxed position and a movable reflective layer of a second interferometric modulator is in an actuated position. -
FIG. 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3×3 interferometric modulator display. -
FIG. 3 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator ofFIG. 1 . -
FIG. 4 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display. -
FIGS. 5A and 5B illustrate one exemplary timing diagram for row and column signals that may be used to write a frame of display data to the 3×3 interferometric modulator display ofFIG. 2 . -
FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators. -
FIG. 7A is a cross section of the device ofFIG. 1 . -
FIG. 7B is a cross section of an alternative embodiment of an interferometric modulator. -
FIG. 7C is a cross section of another alternative embodiment of an interferometric modulator. -
FIG. 7D is a cross section of yet another alternative embodiment of an interferometric modulator. -
FIG. 7E is a cross section of an additional alternative embodiment of an interferometric modulator. -
FIG. 8 is a cross section of an example of a display system comprising an array of light modulators, such as devices illustrated inFIG. 1 , illuminated by an illuminator. -
FIG. 9 is a cross section of an example of display system such as illustrated inFIG. 8 that comprises an array of light modulators illuminated by an illuminator comprising an array of reflective light turning elements. -
FIG. 10A is a cross section of an example of an illuminator comprising periodically spaced light turning elements such as illustrated inFIG. 8 -
FIG. 10B is a perspective view of an example of an illuminator comprising periodically spaced reflective light turning elements such as illustrated inFIG. 10A . -
FIG. 10C is a top view of an example of an illuminator comprising periodically spaced reflective light turning elements such as illustrated inFIG. 10B . -
FIG. 11A illustrates a cross section view of an illuminator comprising a periodically arranged reflective light turning elements such as illustrated inFIG. 10B . -
FIG. 11B illustrates a schematic cross section view of an illuminator comprising a periodically arranged reflective light turning elements and a light modulator array such as illustrated inFIG. 9 . -
FIG. 12 is a top view exemplifying moiré patterns formed by three sets of two superimposed periodic arrangements of lines. -
FIG. 13A illustrates a cross section view of an illuminator comprising nonuniformly arranged reflective light turning elements. -
FIG. 13B illustrates a schematic cross section view of an illuminator comprising a nonuniformly arranged reflective light turning elements and a light modulator array such as illustrated inFIG. 13A . -
FIG. 14 illustrates a top view of the nonuniformly arranged light turning elements illustrated inFIG. 13A . -
FIG. 15A illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that ofFIG. 13A . -
FIG. 15B illustrates a top view of a portion of the array of light turning elements ofFIG. 15A in more detail. -
FIG. 16A is a graphical illustration of a uniform distribution illustrative of the distribution of elements in one embodiment of a light turning array such as illustrated inFIG. 15A . -
FIG. 16B is a graphical illustration of a normal distribution illustrative of the nonuniform distribution of elements in one embodiment of a light turning array such as illustrated inFIG. 15A -
FIG. 17A illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that ofFIG. 15A . -
FIG. 17B illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that ofFIG. 17A . -
FIG. 18A illustrates a cross section view of yet another embodiment of a nonuniformly arranged light turning array that is conceptually similar to that ofFIG. 13A . -
FIG. 18B illustrates a schematic cross section view of the nonuniformly arranged light turning array ofFIG. 18A in relation to a display. - The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
- Light modulator based displays, including reflective and interferometric displays, generally comprise periodically arranged light modulators in order to correspond to pixel layouts of video signals. Such light modulators may be illuminated using an illuminator or light guide that directs a pattern of light to the light modulators. The illuminator may comprise a periodically arranged light turning (and/or light emissive) elements that directs a periodic pattern of light onto the array of light modulators. When the periodically arranged array of light modulators is illuminated with the periodic pattern of light from the illuminator, the superposition of the two periodic arrays may result in visible Moiré patterns. It has been found that nonuniform arrangement of the illumination elements that directs a nonuniformly varying pattern of light onto the light modulators reduces or even substantially eliminates visible Moiré patterns resulting from this superposition in such display systems. Accordingly, several inventive examples of such nonuniformly arranged (e.g., irregularly or aperiodically arranged so as to be uncorrelated with the arrangement of the light modulators) illumination arrays are disclosed herein.
- One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
FIG. 1 . In these devices, the pixels are in either a bright or dark state. In the bright (“on” or “open”) state, the display element reflects a large portion of incident visible light to a user. When in the dark (“off” or “closed”) state, the display element reflects little incident visible light to the user. Depending on the embodiment, the light reflectance properties of the “on” and “off” states may be reversed. MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white. -
FIG. 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator. In some embodiments, an interferometric modulator display comprises a row/column array of these interferometric modulators. Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension. In one embodiment, one of the reflective layers may be moved between two positions. In the first position, referred to herein as the relaxed position, the movable reflective layer is positioned at a relatively large distance from a fixed partially reflective layer. In the second position, referred to herein as the actuated position, the movable reflective layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel. - The depicted portion of the pixel array in
FIG. 1 includes two adjacentinterferometric modulators interferometric modulator 12 a on the left, a movablereflective layer 14 a is illustrated in a relaxed position at a predetermined distance from anoptical stack 16 a, which includes a partially reflective layer. In theinterferometric modulator 12 b on the right, the movablereflective layer 14 b is illustrated in an actuated position adjacent to theoptical stack 16 b. - The optical stacks 16 a and 16 b (collectively referred to as optical stack 16), as referenced herein, typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The
optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto atransparent substrate 20. In some embodiments, the layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movablereflective layers posts 18 and an intervening sacrificial material deposited between theposts 18. When the sacrificial material is etched away, the movablereflective layers optical stacks gap 19. A highly conductive and reflective material such as aluminum may be used for thereflective layers 14, and these strips may form column electrodes in a display device. - With no applied voltage, the
cavity 19 remains between the movablereflective layer 14 a andoptical stack 16 a, with the movablereflective layer 14 a in a mechanically relaxed state, as illustrated by thepixel 12 a inFIG. 1 . However, when a potential difference is applied to a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the voltage is high enough, the movablereflective layer 14 is deformed and is forced against theoptical stack 16. A dielectric layer (not illustrated in this FIG.) within theoptical stack 16 may prevent shorting and control the separation distance betweenlayers pixel 12 b on the right inFIG. 1 . The behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies. -
FIGS. 2 through 5 illustrate one exemplary process and system for using an array of interferometric modulators in a display application. -
FIG. 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention. In the exemplary embodiment, the electronic device includes aprocessor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051, a MIPS®, a Power PC®, an ALPHA®, or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array. As is conventional in the art, theprocessor 21 may be configured to execute one or more software modules. In addition to executing an operating system, the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application. - In one embodiment, the
processor 21 is also configured to communicate with anarray driver 22. In one embodiment, thearray driver 22 includes arow driver circuit 24 and acolumn driver circuit 26 that provide signals to a panel or display array (display) 30. The cross section of the array illustrated inFIG. 1 is shown by the lines 1-1 inFIG. 2 . For MEMS interferometric modulators, the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated inFIG. 3 . It may require, for example, a 10 volt potential difference to cause a movable layer to deform from the relaxed state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 10 volts. In the exemplary embodiment ofFIG. 3 , the movable layer does not relax completely until the voltage drops below 2 volts. There is thus a range of voltage, about 3 to 7 V in the example illustrated inFIG. 3 , where there exists a window of applied voltage within which the device is stable in either the relaxed or actuated state. This is referred to herein as the “hysteresis window” or “stability window.” For a display array having the hysteresis characteristics ofFIG. 3 , the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be relaxed are exposed to a voltage difference of close to zero volts. After the strobe, the pixels are exposed to a steady state voltage difference of about 5 volts such that they remain in whatever state the row strobe put them in. After being written, each pixel sees a potential difference within the “stability window” of 3-7 volts in this example. This feature makes the pixel design illustrated inFIG. 1 stable under the same applied voltage conditions in either an actuated or relaxed pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed. - In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the
row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to therow 2 electrode, actuating the appropriate pixels inrow 2 in accordance with the asserted column electrodes. Therow 1 pixels are unaffected by therow 2 pulse, and remain in the state they were set to during therow 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention. -
FIGS. 4 and 5 illustrate one possible actuation protocol for creating a display frame on the 3×3 array ofFIG. 2 .FIG. 4 illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves ofFIG. 3 . In theFIG. 4 embodiment, actuating a pixel involves setting the appropriate column to −Vbias, and the appropriate row to +ΔV, which may correspond to −5 volts and +5 volts respectively Relaxing the pixel is accomplished by setting the appropriate column to +Vbias, and the appropriate row to the same +ΔV, producing a zero volt potential difference across the pixel. In those rows where the row voltage is held at zero volts, the pixels are stable in whatever state they were originally in, regardless of whether the column is at +Vbias, or −Vbias. As is also illustrated inFIG. 4 , it will be appreciated that voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +Vbias, and the appropriate row to −ΔV. In this embodiment, releasing the pixel is accomplished by setting the appropriate column to −Vbias, and the appropriate row to the same −ΔV, producing a zero volt potential difference across the pixel. -
FIG. 5B is a timing diagram showing a series of row and column signals applied to the 3×3 array ofFIG. 2 which will result in the display arrangement illustrated inFIG. 5A , where actuated pixels are non-reflective. Prior to writing the frame illustrated inFIG. 5A , the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or relaxed states. - In the
FIG. 5A frame, pixels (1,1), (1,2), (2,2), (3,2) and (3,3) are actuated. To accomplish this, during a “line time” forrow 1,columns column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window.Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero. This actuates the (1,1) and (1,2) pixels and relaxes the (1,3) pixel. No other pixels in the array are affected. To setrow 2 as desired,column 2 is set to −5 volts, andcolumns Row 3 is similarly set by settingcolumns column 1 to +5 volts. Therow 3 strobe sets therow 3 pixels as shown inFIG. 5A . After writing the frame, the row potentials are zero, and the column potentials can remain at either +5 or −5 volts, and the display is then stable in the arrangement ofFIG. 5A . It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns. It will also be appreciated that the timing, sequence, and levels of voltages used to perform row and column actuation can be varied widely within the general principles outlined above, and the above example is exemplary only, and any actuation voltage method can be used with the systems and methods described herein. -
FIGS. 6A and 6B are system block diagrams illustrating an embodiment of adisplay device 40. Thedisplay device 40 can be, for example, a cellular or mobile telephone. However, the same components ofdisplay device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players. - The
display device 40 includes ahousing 41, adisplay 30, anantenna 43, aspeaker 45, aninput device 48, and amicrophone 46. Thehousing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, thehousing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment thehousing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols. - The
display 30 ofexemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, thedisplay 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, thedisplay 30 includes an interferometric modulator display, as described herein. - The components of one embodiment of
exemplary display device 40 are schematically illustrated inFIG. 6B . The illustratedexemplary display device 40 includes ahousing 41 and can include additional components at least partially enclosed therein. For example, in one embodiment, theexemplary display device 40 includes anetwork interface 27 that includes anantenna 43 which is coupled to atransceiver 47. Thetransceiver 47 is connected to theprocessor 21, which is connected toconditioning hardware 52. Theconditioning hardware 52 may be configured to condition a signal (e.g. filter a signal). Theconditioning hardware 52 is connected to aspeaker 45 and amicrophone 46. Theprocessor 21 is also connected to aninput device 48 and adriver controller 29. Thedriver controller 29 is coupled to aframe buffer 28 and to thearray driver 22, which in turn is coupled to adisplay array 30. Apower supply 50 provides power to all components as required by the particularexemplary display device 40 design. - The
network interface 27 includes theantenna 43 and thetransceiver 47 so that theexemplary display device 40 can communicate with one ore more devices over a network. In one embodiment thenetwork interface 27 may also have some processing capabilities to relieve requirements of theprocessor 21. Theantenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.12 standard, including IEEE 802.12(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. Thetransceiver 47 pre-processes the signals received from theantenna 43 so that they may be received by and further manipulated by theprocessor 21. Thetransceiver 47 also processes signals received from theprocessor 21 so that they may be transmitted from theexemplary display device 40 via theantenna 43. - In an alternative embodiment, the
transceiver 47 can be replaced by a receiver. In yet another alternative embodiment,network interface 27 can be replaced by an image source, which can store or generate image data to be sent to theprocessor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data. -
Processor 21 generally controls the overall operation of theexemplary display device 40. Theprocessor 21 receives data, such as compressed image data from thenetwork interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. Theprocessor 21 then sends the processed data to thedriver controller 29 or to framebuffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level. - In one embodiment, the
processor 21 includes a microcontroller, CPU, or logic unit to control operation of theexemplary display device 40.Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to thespeaker 45, and for receiving signals from themicrophone 46.Conditioning hardware 52 may be discrete components within theexemplary display device 40, or may be incorporated within theprocessor 21 or other components. - The
driver controller 29 takes the raw image data generated by theprocessor 21 either directly from theprocessor 21 or from theframe buffer 28 and reformats the raw image data appropriately for high speed transmission to thearray driver 22. Specifically, thedriver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across thedisplay array 30. Then thedriver controller 29 sends the formatted information to thearray driver 22. Although adriver controller 29, such as a LCD controller, is often associated with thesystem processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in theprocessor 21 as hardware, embedded in theprocessor 21 as software, or fully integrated in hardware with thearray driver 22. - Typically, the
array driver 22 receives the formatted information from thedriver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels. - In one embodiment, the
driver controller 29,array driver 22, anddisplay array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment,driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment,array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, adriver controller 29 is integrated with thearray driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment,display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators). - The
input device 48 allows a user to control the operation of theexemplary display device 40. In one embodiment,input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane. In one embodiment, themicrophone 46 is an input device for theexemplary display device 40. When themicrophone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of theexemplary display device 40. -
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment,power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment,power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment,power supply 50 is configured to receive power from a wall outlet. - In some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the
array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations. - The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
FIGS. 7A-7E illustrate five different embodiments of the movablereflective layer 14 and its supporting structures.FIG. 7A is a cross section of the embodiment ofFIG. 1 , where a strip ofmetal material 14 is deposited on orthogonally extending supports 18. InFIG. 7B , the moveablereflective layer 14 is attached to supports at the corners only, ontethers 32. InFIG. 7C , the moveablereflective layer 14 is suspended from adeformable layer 34, which may comprise a flexible metal. Thedeformable layer 34 connects, directly or indirectly, to thesubstrate 20 around the perimeter of thedeformable layer 34. These connections are herein referred to as support posts. The embodiment illustrated inFIG. 7D has support post plugs 42 upon which thedeformable layer 34 rests. The movablereflective layer 14 remains suspended over the cavity, as inFIGS. 7A-7C , but thedeformable layer 34 does not form the support posts by filling holes between thedeformable layer 34 and theoptical stack 16. Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42. The embodiment illustrated inFIG. 7E is based on the embodiment shown inFIG. 7D , but may also be adapted to work with any of the embodiments illustrated inFIGS. 7A-7C as well as additional embodiments not shown. In the embodiment shown inFIG. 7E , an extra layer of metal or other conductive material has been used to form abus structure 44. This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on thesubstrate 20. - In embodiments such as those shown in
FIG. 7 , the interferometric modulators function as direct-view devices, in which images are viewed from the front side of thetransparent substrate 20, the side opposite to that upon which the modulator is arranged. In these embodiments, thereflective layer 14 optically shields some portions of the interferometric modulator on the side of the reflective layer opposite thesubstrate 20, including thedeformable layer 34 and thebus structure 44. This allows the shielded areas to be configured and operated upon without negatively affecting the image quality. This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other. Moreover, the embodiments shown inFIGS. 7C-7E have additional benefits deriving from the decoupling of the optical properties of thereflective layer 14 from its mechanical properties, which are carried out by thedeformable layer 34. This allows the structural design and materials used for thereflective layer 14 to be optimized with respect to the optical properties, and the structural design and materials used for thedeformable layer 34 to be optimized with respect to desired mechanical properties. -
FIG. 8 is a cross section of an example of display system that comprises an example of the array oflight modulators 30 illuminated by anilluminator 110 comprising an array of illuminating orlight turning elements 112. As illustrated in the example system ofFIG. 8 , thelight turning elements 112direct light 124 such as from alight source 122 to thelight modulators 126 and then to aviewing position 128. In one embodiment, thelight modulators 126 comprise reflective light modulators such as the interferometric modulators such as illustrated inFIGS. 1 , 7A, 7B, 7C, 7D, and 7E. Other embodiments may comprise other types of light modulators. In one embodiment, thelight turning elements 112 comprise at least partially reflective surfaces configured to direct the light 124 to thelight modulators 126. In other embodiments, theilluminator 110 may comprise various structures configured to illuminate thelight modulators 126. For example, thelight turning elements 112 may comprise any other suitable structure for directing a pattern of light onto thelight modulators 126. Moreover, thelight turning elements 112 may comprise materials, e.g., photoluminescent or electroluminescent materials, configured to direct a pattern of illumination onto thelight modulators 126. -
FIG. 9 is a cross section of an example of display system such as illustrated inFIG. 8 that comprises anarray 30 oflight modulators 126 illuminated by an array of reflectivelight turning elements 112. The examplelight turning elements 112 inFIG. 9 each comprise surfaces 130 and 132 that are configured to direct light to thelight modulators 126. In the illustrated embodiment, the light 124 enters through a side surface of theilluminator 110. Theilluminator 110 internally reflects the light 124 until the light 124 strikes thesurfaces light modulators 126, which in turn modulate the light 124 and direct a portion of the modulated light to theviewing position 128. In one embodiment, theilluminator 110 is configured with respect to the light source (e.g.,light source 122 ofFIG. 8 ) so that total internal reflectance of the light 124 within theilluminator 110 reduces loss of the light 124 except when reflected by thelight turning elements 112 towards thelight modulators 126. -
FIG. 10A is a cross section of an example of an array of periodically spacedlight turning elements 112 in theilluminator 110 such as illustrated inFIG. 9 . InFIG. 10 , eachlight turning element 112 is represented schematically and separated from adjacentlight turning elements 112 by a substantially fixed distance PFL that is indicative of the periodicity of thelight turning elements 112 in theilluminator 110. Note that in some embodiments, the distance PFL is gradually decreased as the distance within theilluminator 110 increases from a light source. However, for a particular line of light turning elements PFL, the distance PFL between each adjacent line oflight turning elements 112 in such an embodiment is substantially the same. Thus, a Moiré pattern may still be visible. -
FIG. 10B is a perspective view of an example of theilluminator 110 comprising the array of periodically spaced reflectivelight turning elements 112 such as illustrated inFIG. 10A . In the embodiment illustrated inFIG. 10B , thesurfaces illuminator 110. Thus, eachlight turning element 112 may illuminate a plurality oflight modulators 126, for example, one or more rows or columns oflight modulators 126. The periodicity, PFL, of the array oflight turning elements 112 is illustrated with reference to thereflective surfaces light turning elements 112.FIG. 10C is a top view further illustrating the example of theilluminator 110 comprising the periodic array of periodically spaced reflectivelight turning elements 112 such as illustrated inFIG. 10B . -
FIG. 11A illustrates a schematic cross section view of a periodically arrangedlight turning elements 112 and a light modulator array such as illustrated inFIG. 10A . Each of thelight turning elements 112 is separated by a distance PFL indicative of the periodicity of the array oflight turning elements 112.FIG. 11A illustrates light 124 periodically directed by thelight turning elements 112 onto themodulator array 30. -
FIG. 11B illustrates a cross section view of the example of the periodically arranged reflectivelight turning array 110 such as illustrated inFIG. 11A . Thelight reflecting surfaces light turning elements 112 are positioned at an angle of θFL. - It has been found that when a periodic array of
light turning elements 112 is positioned between a periodic array oflight modulators 126 andviewing positions 128 of thelight modulators 126, the superposition of the two periodic structures tends to create visual artifacts. These visual artifacts typically comprise lines or two dimensional patterns of lights formed as an interference or Moiré pattern. -
FIG. 12 is a top view exemplifying Moiré patterns formed by three sets of two superimposed periodic arrangements of lines. In particular,FIG. 12 illustrates Moiré patterns formed inregion pattern 202 of lines and apattern 208 of lines overlap at angles of 10°, 20°, and 30°, respectively. As illustrated in each of theoverlap regions FIG. 12 ). It is to be recognized that while the Moiré patterns ofFIG. 12 are formed by patterns of lines that overlap at different angles, it is the resulting difference in superimposed periodicity that generates the artifacts of the Moiré pattern. Thus, such artifacts can be generated by two overlapping periodic patterns such as theilluminator 110 and thelight modulator array 30 regardless of the alignment of the two arrays. It has been found that by arranging thelight turning elements 112 of theilluminator 110 to direct a nonuniformly varying pattern of light to thelight modulators 126, the Moiré patterns are substantially reduced. Note that a periodic arrangement oflight turning elements 112 such as inFIG. 11A generally produces a nonuniform pattern of light. However, such a pattern of light on thelight modulators 126 varies substantially uniformly in accordance with the pattern oflight turning elements 112. As discussed in further detail below with respect to various embodiments, a nonuniform arrangement oflight turning elements 112 directs a nonuniformly varying pattern of light on thelight modulators 126 that varies nonuniformly according to the nonuniform arrangement of thelight turning elements 112. -
FIG. 13A illustrates a schematic cross section view of an example of anlight turning array 110 in which thelight turning elements 112 are aperiodically or nonuniformly spaced. Each oflight turning elements 112 is positioned from adjacentlight turning elements 112 by different distances, e.g., Pi, Pi+1, Pi+2, etc. Thus,light rays 124 reflected by thelight turning elements 112 collectively define a non-periodically, or nonuniformly varying, pattern of light illuminating thelight modulators 126. -
FIG. 13B illustrates a cross section view of the nonuniformly arranged reflectivelight turning array 110 such as illustrated schematically inFIG. 13A . In the embodiment illustrated inFIG. 13B , thesurface 130 eachlight turning element 112 is positioned at substantially the same angle θFL relative to thesurface 132 of the samelight turning element 112. In contrast, the position of each adjacent line oflight turning elements 112 varies, e.g., the distances Pi, Pi+1, Pi+2, vary. For example, in one embodiment, each value Pi within the array is different. In another embodiment, the distances repeat at a sufficiently low frequency within thelight turning array 110 that the interaction with thelight modulator array 30 produces no substantial visible artifacts. -
FIG. 14 illustrates a top view of the nonuniformly arrangedlight turning array 110 illustrated inFIG. 13B .FIG. 14 illustrates the positions X′i, X′i+1, X′i+2, etc. of each of the light turning elements 112 (e.g., the position of the intersection of thesurface 130 and the surface 132). Each of these positions X′i, X′i+1, X′i+2 is offset from a corresponding periodically spaced position Xi, Xi+1, Xi+2 by an offsetdistance particular array 110. Alternatively, each of the offset distances 140 in aparticular array 110 may be selected randomly, e.g., from within a range of available offsets. Note that as used herein random refers to random and pseudo random selections. In yet another embodiment, each offsetdistance array 110 with a frequency that is too low to result in any substantial visible artifacts. The offset distances 140 may be selected, randomly or otherwise, to be distributed according to a particular distribution within a range of distances, for example, the distances may be distributed with uniform or Gaussian distribution. In one embodiment, each offset distance (X′i-Xi) is determined by multiplying a random number between −1 and +1 with the separation from the first neighboring unit, such as (Xi+1-Xi) or (Xi-Xi−1). In another embodiment, the random number multiplier is between −0.5 and 0.5. In yet another embodiment, at least two offset distances are selected and applied in a random order to each light turning element Xi (this order can be completely random, or a prescribed random sequence such as the Fibonacci, Thue-Morse, or other similar random numerical sequences. In one embodiment, the at least two offset distances are selected randomly so that at least one of them is larger than 10% of the average separation between light turning elements. It is to be recognized that randomness selection in the arrangement oflight turning elements 112 is generally incorporated at the design or manufacturing stage. During manufacturing, a particular arrangement oflight turning elements 112 may be substantially reproduced once or many times. -
FIG. 15A illustrates a top view of another embodiment of another example of an illuminator comprising an array of a nonuniformly arrangedlight turning elements 112 that is conceptually similar to that ofFIG. 13A . In the example illustrated inFIG. 15A , thelight turning elements 112 comprise regions of theilluminator 110 that include the reflectingsurfaces light turning elements 112 ofFIG. 15A may be varied in both size and position so that theilluminator 110 directs a nonuniformly varying pattern of light to the modulator array 30 (not shown) in one or both of vertical and horizontal dimensions. In the embodiment illustrated inFIG. 15A , a line of thelight turning elements 112 is distributed generally along lines Xj, Xj+1, . . . Xk.. In the illustrated embodiment, each of thelight turning elements 112 is offset by a random distance in both the vertical (Y) and horizontal (X) from a position along one of the lines Xj, . . . Xk.. The vertical and horizontal offsets may be determined in any suitable way, including those discussed with reference toFIG. 14 . In one embodiment, the vertical offsets may be zero. -
FIG. 15B illustrates a top view of aportion 150 of theilluminator 110 ofFIG. 15A in more detail. The example of theportion 150 compriseslight turning elements illuminator 110. In one embodiment, offset of thereflective surfaces light turning element light turning elements 112 in a particular line in a particular illuminator, and where j represents a particular vertical position of a particularlight turning element 112 in the line k oflight turning elements 112. The vertical length of the lightturning element elements 112, e.g.,element 112 b is determined by a corresponding vertical position, Yk,j and the vertical position Yk,j+1 of theadjacent element 112 c. Each vertical position Yk,j may be selected so that eachlight turning element 112 has a vertical size or extent within a particular range, e.g., ΔYmin and ΔYmax. In one embodiment, the vertical size of eachlight turning element 112 is randomly distributed within the range e.g., ΔYmin and ΔYmax. Thelight turning element 112 b at vertical position Yk,j is also offset by an amount ΔXk,j from the line Xk. In one embodiment, the vertical positions Yk,j are distributed within a particular or predetermined range of distances, e.g., between ΔXmin and ΔXmax. In one embodiment, the positions Yk,j are randomly distributed within the range of distances. It is to be recognized that while in one embodiment, eachlight turning element 112 is desirably offset in both vertical and horizontal directions, in other embodiments, thelight turning element 112 may be offset only in one of the vertical or horizontal directions. Theilluminator 110 ofFIG. 15A and 15B thus is configured to direct a nonuniformly varying pattern of light to light modulators such as thearray 30 oflight modulators 126 ofFIG. 11A . -
FIG. 16A is a graphical illustration of a uniform distribution illustrative of the nonuniform distribution oflight turning elements 112 in one embodiment of theilluminator 110. As noted above, in one embodiment, the horizontal offset positions Xk,j of thelight turning elements 112 along a line of light turning elements are randomly distributed within a range of distances, e.g., ΔXmin and ΔXmax. In one embodiment, the offset for eachlight turning element 112 may be selected according to a uniform distribution such as illustrated inFIG. 16A . Hence, the distribution of offsets is a uniform distribution that results in a nonuniform arrangement of the light turning elements. -
FIG. 16B is a graphical illustration of a normal distribution illustrative of the nonuniform distribution oflight turning elements 112 in one embodiment of theilluminator 110. In one embodiment, the offset for eachlight turning element 112 may be selected according to a normal (Gaussian) distribution such as illustrated inFIG. 16A . It is to be recognized that in various embodiments thelight turning elements 112 may be distributed based on any suitable mathematical distribution that generates a substantially nonuniform array. -
FIG. 17A illustrates a top view of another example of theilluminator 110 comprising an array of a nonuniformly arrangedlight turning elements 112 that is conceptually similar to that ofFIG. 13A . In the embodiment illustrated inFIG. 17A , a nonuniformly varying pattern of reflected light is achieved by rotating each of thelight reflecting elements 112 about apoint 170 by an angle ak. Eachlight turning element 112 may have a different angle ak of rotation (e.g., from vertical line Xk) that is distributed within a range amin to amax. In one embodiment, the angles ak are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution. The angles may be selected in any suitable way, including according to methods similar to those discussed with reference toFIG. 14 . -
FIG. 17B illustrates a top view of another example of theilluminator 110 comprising an array of a nonuniformly arrangedlight turning elements 112 that is conceptually similar to that ofFIG. 17A . In the example ofFIG. 17A , each of thelight turning elements 112 is rotated about thepositions 170 along each line Xk, which are with substantially equal distances PFL horizontally between each line Xk on theilluminator 110. In the example ofFIG. 17B , eachlight turning element 112 is rotated about a point that is randomly selected at a distance X′k along the line Xk. The distance X′k of each line Xk may be selected from a range of distances, e.g., ΔX′min and ΔX′max. In one embodiment, the distances X′k are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution. Thus, the periodicity of the pattern of light directed from thelight turning elements 112 ofFIG. 17B to the light modulators 30 (not shown) is further reduced with respect to the embodiment illustrated inFIG. 17A . In other embodiments, the offset distances X′k may be selected from a set in which each distance in the set is used one or more times. In one such an embodiment, any repetition of particular offset distances X′k is minimized and preferably offset distances X′k of adjacentlight turning elements 112 are different. The distances X′k may be determined in any suitable way, including those discussed with reference toFIG. 14 . -
FIG. 18A illustrates a top view of another example of theilluminator 110 comprising an array of a nonuniformly arrangedlight turning elements 112 that is conceptually similar to that ofFIG. 13A . In the example ofFIG. 18A , each of thelight turning elements 112 is positioned along each line Xk. To direct a nonuniformly varying pattern of light, the reflectingsurface 130 of eachlight turning element 112, e.g.,element 112 a, intersects the reflectingsurface 132 at an angle, e.g., θk. In one embodiment, the angle θk, θk+1, θk+2, corresponding to each of, at least, adjacentlight turning elements 112 is different. For example, eachlight turning element 112 may have a different angle θk that is distributed within a range θmin to θmax. In one embodiment, the angle θk are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution. In other embodiments, the angles θk may be selected from a set in which each angle in the set is used one or more times. In one such an embodiment, any repetition of particular angles θk is minimized and preferably angles of adjacentlight turning elements 112 are different. The angles θk may be selected in any suitable way, including according to methods similar to those discussed with reference toFIG. 14 . In one embodiment, the range θmin to θmax is selected to exceed the larger of the vertical angular divergence of the light emitted by the illuminator in the plane of the θk rotation and of ±1°, which is the angular cone typically collected by the human eye. -
FIG. 18B illustrates a schematic cross section view of the nonuniformly arrangedilluminator 110 ofFIG. 18A in relation to thearray 30 oflight modulators 130. As illustrated schematically, each oflight turning elements 112 direct light from theilluminator 110 at different angles to generate a nonuniformly varying pattern of light 124 that is modulated, and in the illustrated example reflected, by thearray 30 oflight modulators 126. In particular, the distances Pi, Pi+1 between thelight rays 124 directed onto thearray 30 vary nonuniformly within theilluminator 110. - In one embodiment, the
illuminator 110 is formed separately from thelight modulator array 30 and then applied to thearray 30. In another embodiment, theilluminator 110 is formed on or above thesubstrate 20. - It is to be recognized that while certain embodiments are disclosed with reference to horizontal or vertical axis, in other embodiments, the arrangement of components of the
illuminator 110 orlight modulator array 30 with respect to horizontal and vertical axis may be reversed. Furthermore, it is to be recognized that embodiments may include combinations of features described with respect to the disclosed examples oflight turning elements 112 that direct nonuniformly varying patterns of light to thelight modulator array 130, regardless of whether such combinations are expressly disclosed herein. - While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others. The scope of the invention is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Claims (40)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/545,104 US8107155B2 (en) | 2006-10-06 | 2006-10-06 | System and method for reducing visual artifacts in displays |
KR1020097009268A KR20090089302A (en) | 2006-10-06 | 2007-09-28 | System and method for reducing visual artifacts in displays |
PCT/US2007/020911 WO2008045218A1 (en) | 2006-10-06 | 2007-09-28 | System and method for reducing visual artifacts in displays |
JP2009531404A JP2010507103A (en) | 2006-10-06 | 2007-09-28 | System and method for reducing visual artifacts in a display |
EP07852454A EP2069684A1 (en) | 2006-10-06 | 2007-09-28 | System and method for reducing visual artifacts in displays |
CN2007800415900A CN101535713B (en) | 2006-10-06 | 2007-09-28 | System and method for reducing visual artifacts in displays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/545,104 US8107155B2 (en) | 2006-10-06 | 2006-10-06 | System and method for reducing visual artifacts in displays |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080084600A1 true US20080084600A1 (en) | 2008-04-10 |
US8107155B2 US8107155B2 (en) | 2012-01-31 |
Family
ID=39135200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/545,104 Expired - Fee Related US8107155B2 (en) | 2006-10-06 | 2006-10-06 | System and method for reducing visual artifacts in displays |
Country Status (6)
Country | Link |
---|---|
US (1) | US8107155B2 (en) |
EP (1) | EP2069684A1 (en) |
JP (1) | JP2010507103A (en) |
KR (1) | KR20090089302A (en) |
CN (1) | CN101535713B (en) |
WO (1) | WO2008045218A1 (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060066783A1 (en) * | 2004-09-27 | 2006-03-30 | Sampsell Jeffrey B | Methods and devices for lighting displays |
US20060274400A1 (en) * | 1995-11-06 | 2006-12-07 | Miles Mark W | Method and device for modulating light with optical compensation |
US20070196040A1 (en) * | 2006-02-17 | 2007-08-23 | Chun-Ming Wang | Method and apparatus for providing back-lighting in an interferometric modulator display device |
US20080084602A1 (en) * | 2006-10-06 | 2008-04-10 | Gang Xu | Internal optical isolation structure for integrated front or back lighting |
US20080100900A1 (en) * | 2006-10-27 | 2008-05-01 | Clarence Chui | Light guide including optical scattering elements and a method of manufacture |
US20080180956A1 (en) * | 2007-01-30 | 2008-07-31 | Qualcomm Mems Technologies, Inc. | Systems and methods of providing a light guiding layer |
US20080179173A1 (en) * | 2007-01-31 | 2008-07-31 | Samsung Electronics Co., Ltd. | Keypad and keypad assembly |
US20080267572A1 (en) * | 2007-04-30 | 2008-10-30 | Qualcomm Mems Technologies, Inc. | Dual film light guide for illuminating displays |
US20080309612A1 (en) * | 2007-06-15 | 2008-12-18 | Ricoh Co., Ltd. | Spatially Masked Update for Electronic Paper Displays |
US20080309674A1 (en) * | 2007-06-15 | 2008-12-18 | Ricoh Co., Ltd. | Full Framebuffer for Electronic Paper Displays |
US20080309657A1 (en) * | 2007-06-15 | 2008-12-18 | Ricoh Co., Ltd. | Independent Pixel Waveforms for Updating electronic Paper Displays |
US20080309636A1 (en) * | 2007-06-15 | 2008-12-18 | Ricoh Co., Ltd. | Pen Tracking and Low Latency Display Updates on Electronic Paper Displays |
US20090147332A1 (en) * | 2007-12-07 | 2009-06-11 | Quanlcomm Incorporated | Decoupled holographic film and diffuser |
US20090190373A1 (en) * | 2006-10-06 | 2009-07-30 | Qualcomm Mems Technologies, Inc. | Illumination device with built-in light coupler |
US20090201571A1 (en) * | 2008-02-12 | 2009-08-13 | Qualcomm Mems Technologies, Inc. | Integrated front light diffuser for reflective displays |
US20090231877A1 (en) * | 2006-10-06 | 2009-09-17 | Qualcomm Mems Technologies, Inc. | Thin light bar and method of manufacturing |
US20090255569A1 (en) * | 2008-04-11 | 2009-10-15 | Qualcomm Mems Technologies, Inc. | Method to improve pv aesthetics and efficiency |
US20090284985A1 (en) * | 2008-05-16 | 2009-11-19 | Qualcomm Mems Technologies, Inc. | Illumination apparatus and methods |
US20090303746A1 (en) * | 2008-06-04 | 2009-12-10 | Qualcomm Mems Technologies, Inc. | Edge shadow reducing methods for prismatic front light |
US20090323144A1 (en) * | 2008-06-30 | 2009-12-31 | Qualcomm Mems Technologies, Inc. | Illumination device with holographic light guide |
US20100026727A1 (en) * | 2006-10-06 | 2010-02-04 | Qualcomm Mems Technologies, Inc. | Optical loss structure integrated in an illumination apparatus |
US7706050B2 (en) | 2004-03-05 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | Integrated modulator illumination |
US20100141557A1 (en) * | 2006-10-06 | 2010-06-10 | Qualcomm Mems Technologies, Inc. | Light guide |
US20100149624A1 (en) * | 2004-09-27 | 2010-06-17 | Qualcomm Mems Technologies, Inc. | Method and device for compensating for color shift as a function of angle of view |
US7766498B2 (en) | 2006-06-21 | 2010-08-03 | Qualcomm Mems Technologies, Inc. | Linear solid state illuminator |
US20100302218A1 (en) * | 2009-05-29 | 2010-12-02 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
US7845841B2 (en) | 2006-08-28 | 2010-12-07 | Qualcomm Mems Technologies, Inc. | Angle sweeping holographic illuminator |
US20110157093A1 (en) * | 2009-12-29 | 2011-06-30 | Qualcomm Mems Technologies, Inc. | Illumination device with metalized light-turning features |
US8040589B2 (en) | 2008-02-12 | 2011-10-18 | Qualcomm Mems Technologies, Inc. | Devices and methods for enhancing brightness of displays using angle conversion layers |
US8045252B2 (en) | 2004-02-03 | 2011-10-25 | Qualcomm Mems Technologies, Inc. | Spatial light modulator with integrated optical compensation structure |
US8049951B2 (en) | 2008-04-15 | 2011-11-01 | Qualcomm Mems Technologies, Inc. | Light with bi-directional propagation |
US8107155B2 (en) | 2006-10-06 | 2012-01-31 | Qualcomm Mems Technologies, Inc. | System and method for reducing visual artifacts in displays |
US8203547B2 (en) | 2007-06-15 | 2012-06-19 | Ricoh Co. Ltd | Video playback on electronic paper displays |
US20120218778A1 (en) * | 2011-02-28 | 2012-08-30 | Kabushiki Kaisha Toshiba | Display element and display device |
US8368981B2 (en) | 2006-10-10 | 2013-02-05 | Qualcomm Mems Technologies, Inc. | Display device with diffractive optics |
US20130050043A1 (en) * | 2011-08-31 | 2013-02-28 | The Boeing Company | Artificial magnetic conductor using complementary tilings |
WO2013078048A1 (en) * | 2011-11-22 | 2013-05-30 | Qualcomm Mems Technologies, Inc. | Methods and apparatuses for hiding optical contrast features |
US8573784B2 (en) | 2009-06-22 | 2013-11-05 | Industrial Technology Research Institute | Imaging apparatus having an optical sensor |
TWI424251B (en) * | 2009-12-31 | 2014-01-21 | Ind Tech Res Inst | Light-emitting unit array, mothod for fabricating the same and imaging apparatus |
US20140307466A1 (en) * | 2011-11-08 | 2014-10-16 | KONINKLIJKE PHILIPS N.V. a corporation | Lighting unit comprising a waveguide |
US8902484B2 (en) | 2010-12-15 | 2014-12-02 | Qualcomm Mems Technologies, Inc. | Holographic brightness enhancement film |
US8913000B2 (en) | 2007-06-15 | 2014-12-16 | Ricoh Co., Ltd. | Video playback on electronic paper displays |
US8928967B2 (en) | 1998-04-08 | 2015-01-06 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light |
US8971675B2 (en) | 2006-01-13 | 2015-03-03 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
US9025235B2 (en) | 2002-12-25 | 2015-05-05 | Qualcomm Mems Technologies, Inc. | Optical interference type of color display having optical diffusion layer between substrate and electrode |
US9110289B2 (en) | 1998-04-08 | 2015-08-18 | Qualcomm Mems Technologies, Inc. | Device for modulating light with multiple electrodes |
US10310166B2 (en) * | 2015-04-10 | 2019-06-04 | Japan Display Inc. | Display device, lightguide plate, and manufacturing method thereof |
WO2020115735A1 (en) * | 2018-12-05 | 2020-06-11 | Elbit Systems Ltd | Display illumination optics |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7949213B2 (en) * | 2007-12-07 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | Light illumination of displays with front light guide and coupling elements |
US8654061B2 (en) * | 2008-02-12 | 2014-02-18 | Qualcomm Mems Technologies, Inc. | Integrated front light solution |
JP2012528361A (en) * | 2009-05-29 | 2012-11-12 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | Lighting device for reflective display |
US8733951B2 (en) * | 2010-04-26 | 2014-05-27 | Microsoft Corporation | Projected image enhancement |
US20120069232A1 (en) * | 2010-09-16 | 2012-03-22 | Qualcomm Mems Technologies, Inc. | Curvilinear camera lens as monitor cover plate |
US8876325B2 (en) | 2011-07-01 | 2014-11-04 | Cree, Inc. | Reverse total internal reflection features in linear profile for lighting applications |
US8905134B2 (en) | 2012-03-05 | 2014-12-09 | Halliburton Energy Services, Inc. | Wellbore servicing compositions and methods of making and using same |
WO2013132386A1 (en) * | 2012-03-08 | 2013-09-12 | Koninklijke Philips N.V. | Controllable high luminance illumination with moving light-sources |
TWI475309B (en) * | 2012-11-06 | 2015-03-01 | Wistron Corp | Electronic paper display |
Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4375312A (en) * | 1980-08-07 | 1983-03-01 | Hughes Aircraft Company | Graded index waveguide structure and process for forming same |
US4378567A (en) * | 1981-01-29 | 1983-03-29 | Eastman Kodak Company | Electronic imaging apparatus having means for reducing inter-pixel transmission nonuniformity |
US4918577A (en) * | 1988-01-16 | 1990-04-17 | Alps Electric Co., Ltd. | Illumination light transmitting device |
US5481385A (en) * | 1993-07-01 | 1996-01-02 | Alliedsignal Inc. | Direct view display device with array of tapered waveguide on viewer side |
US5592332A (en) * | 1992-12-25 | 1997-01-07 | Dai Nippon Printing Co., Ltd. | Renticular lens, surface light source, and liquid crystal display apparatus |
US5594830A (en) * | 1992-03-23 | 1997-01-14 | Minnesota Mining And Manufacturing Co. | Luminaire device |
US5712694A (en) * | 1994-09-16 | 1998-01-27 | Kabushiki Kaisha Toshiba | LCD comprising a light separating element including a cholesteric liquid crystal sheet |
US5735590A (en) * | 1994-03-02 | 1998-04-07 | Tosoh Corporation | Backlighting device with a transparent sheet having straight ridges |
US5883684A (en) * | 1997-06-19 | 1999-03-16 | Three-Five Systems, Inc. | Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield |
US5892598A (en) * | 1994-07-15 | 1999-04-06 | Matsushita Electric Industrial Co., Ltd. | Head up display unit, liquid crystal display panel, and method of fabricating the liquid crystal display panel |
US6014192A (en) * | 1996-07-16 | 2000-01-11 | Thomson-Csf | Illumination device and application thereof to the illumination of a transmissive screen |
US6040937A (en) * | 1994-05-05 | 2000-03-21 | Etalon, Inc. | Interferometric modulation |
US6048071A (en) * | 1997-03-28 | 2000-04-11 | Sharp Kabushiki Kaisha | Front illumination device and reflection-type liquid crystal display device incorporating same |
US6195196B1 (en) * | 1998-03-13 | 2001-02-27 | Fuji Photo Film Co., Ltd. | Array-type exposing device and flat type display incorporating light modulator and driving method thereof |
US6196691B1 (en) * | 1998-04-01 | 2001-03-06 | Shimada Precision, Co., Ltd. | Light guide plate for point source |
US6199989B1 (en) * | 1998-10-29 | 2001-03-13 | Sumitomo Chemical Company, Limited | Optical plate having reflecting function and transmitting function |
US20020006036A1 (en) * | 2000-07-11 | 2002-01-17 | Minebea Co., Ltd. | Spread illuminating apparatus |
US20020034071A1 (en) * | 2000-09-20 | 2002-03-21 | Sanyo Electric Co., Ltd. | Beam light source and lighting device using same |
US6371623B1 (en) * | 1999-08-16 | 2002-04-16 | Minebea Co., Ltd. | Spread illuminating apparatus with a means for controlling light directivity |
US20020044445A1 (en) * | 1999-12-03 | 2002-04-18 | Bohler Christopher L. | Sold state light source augmentation for slm display systems |
US6504589B1 (en) * | 1997-02-18 | 2003-01-07 | Dai Nippon Printing Co., Ltd. | Backlight device and liquid crystal display device |
US20030012009A1 (en) * | 2001-07-13 | 2003-01-16 | Minebea Co., Ltd | Spread illuminating apparatus with light reflection member |
US20030016930A1 (en) * | 2001-07-23 | 2003-01-23 | Ben-Zion Inditsky | Ultra thin radiation management and distribution systems with hybrid optical waveguide |
US6512626B1 (en) * | 1999-06-16 | 2003-01-28 | Creavis Gesellschaft Fuer Technologie Und Innovation Mbh | Composite sheets with electrically switchable optical properties made of light-scattering base material |
US20030030764A1 (en) * | 2001-07-13 | 2003-02-13 | Hea-Chun Lee | Light guiding plate, method of manufacturing the same and liquid crystal display having the light guiding plate |
US6522794B1 (en) * | 1994-09-09 | 2003-02-18 | Gemfire Corporation | Display panel with electrically-controlled waveguide-routing |
US6522373B1 (en) * | 1999-04-30 | 2003-02-18 | Hitachi, Ltd. | Liquid crystal display device, light guide plate, and method for producing light guide plate |
US20030034445A1 (en) * | 2001-08-15 | 2003-02-20 | Boyd Gary T. | Light guide for use with backlit display |
US20030067760A1 (en) * | 2001-09-26 | 2003-04-10 | Jagt Hendrik Johannes Boudewijn | Waveguide, edge-lit illumination arrangement and display comprising such |
US20030071947A1 (en) * | 2001-07-05 | 2003-04-17 | Miki Shiraogawa | Optical film and a liquid crystal display using the same |
US20040001169A1 (en) * | 2002-02-12 | 2004-01-01 | Yuuji Saiki | Polarizer, polarizing plate, liquid crystal display, and image display, and a method for producing the polarizer |
US6674562B1 (en) * | 1994-05-05 | 2004-01-06 | Iridigm Display Corporation | Interferometric modulation of radiation |
US6680792B2 (en) * | 1994-05-05 | 2004-01-20 | Iridigm Display Corporation | Interferometric modulation of radiation |
US20040017599A1 (en) * | 2002-07-29 | 2004-01-29 | Xiaofeng Yang | Micro-mirror with rotor structure |
US20040027315A1 (en) * | 2002-08-09 | 2004-02-12 | Sanyo Electric Co., Ltd. | Display including a plurality of display panels |
US6693690B2 (en) * | 2001-05-07 | 2004-02-17 | Nitto Denko Corporation | Reflective liquid-crystal display device |
US20040032659A1 (en) * | 2000-07-18 | 2004-02-19 | Drinkwater John K | Difractive device |
US20040032401A1 (en) * | 2002-08-19 | 2004-02-19 | Fujitsu Limited | Touch panel device |
US6697403B2 (en) * | 2001-04-17 | 2004-02-24 | Samsung Electronics Co., Ltd. | Light-emitting device and light-emitting apparatus using the same |
US20040042233A1 (en) * | 2002-08-30 | 2004-03-04 | Fujitsu Display Technologies Corporation | Lighting unit and display device |
US6709123B2 (en) * | 2000-02-04 | 2004-03-23 | Robert Bosch Gmbh | Display device |
US20040070711A1 (en) * | 2002-10-11 | 2004-04-15 | Chi-Jain Wen | Double-sided LCD panel |
US20040080938A1 (en) * | 2001-12-14 | 2004-04-29 | Digital Optics International Corporation | Uniform illumination system |
US20050002175A1 (en) * | 2003-05-15 | 2005-01-06 | Yuki Matsui | Front light, reflective type of display, and light controlling method |
US20050024890A1 (en) * | 2003-06-19 | 2005-02-03 | Alps Electric Co., Ltd. | Light guide plate, surface light-emitting unit, and liquid crystal display device and method for manufacturing the same |
US20050024849A1 (en) * | 1999-02-23 | 2005-02-03 | Parker Jeffery R. | Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides |
US6853418B2 (en) * | 2002-02-28 | 2005-02-08 | Mitsubishi Denki Kabushiki Kaisha | Liquid crystal display device |
US6852396B1 (en) * | 1998-09-17 | 2005-02-08 | Keiwa, Inc. | Photodiffusion sheet and backlight unit using this |
US20050030732A1 (en) * | 2000-04-12 | 2005-02-10 | Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation | Illumination apparatus |
US20050041175A1 (en) * | 2003-06-18 | 2005-02-24 | Citizen Watch Co., Ltd. | Display device employing light control member and display device manufacturing method |
US6862141B2 (en) * | 2002-05-20 | 2005-03-01 | General Electric Company | Optical substrate and method of making |
US20050046011A1 (en) * | 2003-07-07 | 2005-03-03 | Board Of Regents, The University Of Texas System | System, method and apparatus for improved electrical-to-optical transmitters disposed within printed circuit boards |
US6865312B2 (en) * | 2000-12-14 | 2005-03-08 | Planop-Planar Optics Ltd. | Compact dynamic crossbar switch by means of planar optics |
US6864882B2 (en) * | 2000-05-24 | 2005-03-08 | Next Holdings Limited | Protected touch panel display system |
US20050069254A1 (en) * | 2003-08-08 | 2005-03-31 | Bernd Schultheis | Method for producing light-scattering structures on flat optical waveguides |
US6879354B1 (en) * | 1997-03-28 | 2005-04-12 | Sharp Kabushiki Kaisha | Front-illuminating device and a reflection-type liquid crystal display using such a device |
US6883934B2 (en) * | 2000-07-13 | 2005-04-26 | Seiko Epson Corporation | Light source device, illumination device liquid crystal device and electronic apparatus |
US6883924B2 (en) * | 2001-08-31 | 2005-04-26 | Fujitsu Limited | Lighting apparatus and liquid crystal display |
US20060001942A1 (en) * | 2004-07-02 | 2006-01-05 | Clarence Chui | Interferometric modulators with thin film transistors |
US20060002675A1 (en) * | 2004-07-01 | 2006-01-05 | Lg Electronics Inc. | Light guide plate for surface light-emitting device and method of manufacturing the same |
US20060002141A1 (en) * | 2004-06-30 | 2006-01-05 | Ouderkirk Andrew J | Phosphor based illumination system having a short pass reflector and method of making same |
US20060024017A1 (en) * | 2004-07-27 | 2006-02-02 | Page David J | Flat optical fiber light emitters |
US20060044523A1 (en) * | 2002-11-07 | 2006-03-02 | Teijido Juan M | Illumination arrangement for a projection system |
US7010212B2 (en) * | 2002-05-28 | 2006-03-07 | 3M Innovative Properties Company | Multifunctional optical assembly |
US20060051048A1 (en) * | 1999-10-08 | 2006-03-09 | Gardiner Mark E | Backlight with structured surfaces |
US20060050032A1 (en) * | 2002-05-01 | 2006-03-09 | Gunner Alec G | Electroluminiscent display and driver circuit to reduce photoluminesence |
US20060062016A1 (en) * | 2004-08-24 | 2006-03-23 | Norihiro Dejima | Illumination device and display device using the same |
US20060061705A1 (en) * | 2004-09-21 | 2006-03-23 | Yasunori Onishi | Optical waveguide, illumination device, electro-optical device, and electronic apparatus |
US7018088B2 (en) * | 2002-11-08 | 2006-03-28 | Hon Hai Precision Ind. Co., Ltd. | Light guide plate for liquid crystal display |
US20060066783A1 (en) * | 2004-09-27 | 2006-03-30 | Sampsell Jeffrey B | Methods and devices for lighting displays |
US20060066935A1 (en) * | 2004-09-27 | 2006-03-30 | Cummings William J | Process for modifying offset voltage characteristics of an interferometric modulator |
US20060066541A1 (en) * | 2004-09-27 | 2006-03-30 | Gally Brian J | Method and device for manipulating color in a display |
US20060066586A1 (en) * | 2004-09-27 | 2006-03-30 | Gally Brian J | Touchscreens for displays |
US20060072315A1 (en) * | 2004-10-05 | 2006-04-06 | Byung-Woong Han | White light generating unit, backlight assembly having the same and liquid crystal display device having the same |
US20060072339A1 (en) * | 2004-10-01 | 2006-04-06 | Hsiao-I Li | Backlight module |
US7156546B2 (en) * | 2002-06-17 | 2007-01-02 | Casio Computer Co., Ltd. | Surface light source for emitting light from two surfaces and double-sided display device using the same |
US7161136B1 (en) * | 2005-07-06 | 2007-01-09 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Light modulating input device for capturing user control inputs |
US7163315B2 (en) * | 2004-02-03 | 2007-01-16 | Hannstar Display Corporation | Backlight module |
US7180672B2 (en) * | 2002-05-20 | 2007-02-20 | General Electric Company | Optical substrate and method of making |
US20070064294A1 (en) * | 2003-05-22 | 2007-03-22 | Tetsuya Hoshino | Optical film and surface light source using it |
US20080030650A1 (en) * | 2006-06-30 | 2008-02-07 | Kabushiki Kaisha Toshiba | Illumination apparatus and liquid crystal display apparatus |
US20080031011A1 (en) * | 2004-09-28 | 2008-02-07 | Kentaro Hayashi | Light Guide For Surface Light Source Device And Surface Light Source Device |
US20080049445A1 (en) * | 2006-08-25 | 2008-02-28 | Philips Lumileds Lighting Company, Llc | Backlight Using High-Powered Corner LED |
US20080049450A1 (en) * | 2006-08-28 | 2008-02-28 | Sampsell Jeffrey B | Angle sweeping holographic illuminator |
US7346281B2 (en) * | 2004-07-06 | 2008-03-18 | The Boeing Company | Hybrid RF/optical communication system with deployable optics and atmosphere compensation system and method |
US20080074402A1 (en) * | 2006-09-22 | 2008-03-27 | Rpo Pty Limited | Waveguide configurations for optical touch systems |
US7477809B1 (en) * | 2007-07-31 | 2009-01-13 | Hewlett-Packard Development Company, L.P. | Photonic guiding device |
US20090015753A1 (en) * | 2007-07-12 | 2009-01-15 | Wintek Corporation | Light guide place and light-diffusing structure thereof |
US20090050454A1 (en) * | 2006-01-20 | 2009-02-26 | Nissha Printing Co., Ltd. | Capacitance type light-emitting switch and light-emitting switch element used for such capacitance type light-emitting switch |
US7508571B2 (en) * | 2004-09-27 | 2009-03-24 | Idc, Llc | Optical films for controlling angular characteristics of displays |
US20100026727A1 (en) * | 2006-10-06 | 2010-02-04 | Qualcomm Mems Technologies, Inc. | Optical loss structure integrated in an illumination apparatus |
US20100033988A1 (en) * | 2008-08-11 | 2010-02-11 | Kuan-Her Chiu | Edge lighting back light unit |
US7663714B2 (en) * | 2004-08-18 | 2010-02-16 | Sony Corporation | Backlight device and color liquid crystal display apparatus |
US20100051089A1 (en) * | 2008-09-02 | 2010-03-04 | Qualcomm Mems Technologies, Inc. | Light collection device with prismatic light turning features |
US20100053148A1 (en) * | 2008-09-02 | 2010-03-04 | Qualcomm Mems Technologies, Inc. | Light turning device with prismatic light turning features |
US7674028B2 (en) * | 2006-01-13 | 2010-03-09 | Avery Dennison Corporation | Light enhancing structures with multiple arrays of elongate features of varying characteristics |
US7876489B2 (en) * | 2006-06-05 | 2011-01-25 | Pixtronix, Inc. | Display apparatus with optical cavities |
Family Cites Families (354)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3924929A (en) | 1966-11-14 | 1975-12-09 | Minnesota Mining & Mfg | Retro-reflective sheet material |
US4154219A (en) | 1977-03-11 | 1979-05-15 | E-Systems, Inc. | Prismatic solar reflector apparatus and method of solar tracking |
US4863224A (en) | 1981-10-06 | 1989-09-05 | Afian Viktor V | Solar concentrator and manufacturing method therefor |
US4850682A (en) | 1986-07-14 | 1989-07-25 | Advanced Environmental Research Group | Diffraction grating structures |
EP0278038A1 (en) | 1987-02-13 | 1988-08-17 | Battelle-Institut e.V. | Active flat type display panel |
US20050259302A9 (en) | 1987-09-11 | 2005-11-24 | Metz Michael H | Holographic light panels and flat panel display systems and method and apparatus for making same |
US5123247A (en) | 1990-02-14 | 1992-06-23 | 116736 (Canada) Inc. | Solar roof collector |
US5050946A (en) | 1990-09-27 | 1991-09-24 | Compaq Computer Corporation | Faceted light pipe |
US5226099A (en) | 1991-04-26 | 1993-07-06 | Texas Instruments Incorporated | Digital micromirror shutter device |
US5555160A (en) | 1991-06-27 | 1996-09-10 | Nissen Chemitec Co., Ltd. | Light-guiding panel for surface lighting and a surface lighting body |
JPH0593908A (en) | 1991-09-30 | 1993-04-16 | Sony Corp | Liquid crystal display device |
GB9121159D0 (en) | 1991-10-04 | 1991-11-13 | Marconi Gec Ltd | Colour display system |
EP0539099A3 (en) | 1991-10-25 | 1993-05-19 | Optical Coating Laboratory, Inc. | Repositionable optical cover for monitors |
US5515184A (en) | 1991-11-12 | 1996-05-07 | The University Of Alabama In Huntsville | Waveguide hologram illuminators |
US5349503A (en) | 1991-12-31 | 1994-09-20 | At&T Bell Laboratories | Illuminated transparent display with microtextured back reflector |
US5764315A (en) | 1992-01-27 | 1998-06-09 | Sekisui Chemical Co., Ltd. | Light adjusting sheet for a planar lighting device and a planar lighting device and a liquid crystal display using the sheet |
JPH0695112A (en) | 1992-09-16 | 1994-04-08 | Hitachi Ltd | Prism plate and information display device formed by using this plate |
GB9219671D0 (en) | 1992-09-17 | 1992-10-28 | Canterbury Park Limited | Ink |
US5339179A (en) | 1992-10-01 | 1994-08-16 | International Business Machines Corp. | Edge-lit transflective non-emissive display with angled interface means on both sides of light conducting panel |
JP2823470B2 (en) | 1993-03-09 | 1998-11-11 | シャープ株式会社 | Optical scanning device, display device using the same, and image information input / output device |
JPH08512003A (en) | 1993-07-27 | 1996-12-17 | フィジィカル オプティクス コーポレーション | Light source disassembly molding device |
US5659410A (en) | 1993-12-28 | 1997-08-19 | Enplas Corporation | Surface light source device and liquid crystal display |
US5982540A (en) | 1994-03-16 | 1999-11-09 | Enplas Corporation | Surface light source device with polarization function |
US7123216B1 (en) | 1994-05-05 | 2006-10-17 | Idc, Llc | Photonic MEMS and structures |
US5671994A (en) | 1994-06-08 | 1997-09-30 | Clio Technologies, Inc. | Flat and transparent front-lighting system using microprisms |
US5647036A (en) | 1994-09-09 | 1997-07-08 | Deacon Research | Projection display with electrically-controlled waveguide routing |
WO1996017207A1 (en) | 1994-11-29 | 1996-06-06 | Precision Lamp, Inc. | Edge light for panel display |
TW373116B (en) | 1994-12-15 | 1999-11-01 | Sharp Kk | Lighting apparatus |
JP3251452B2 (en) | 1995-01-31 | 2002-01-28 | シャープ株式会社 | Backlight device for liquid crystal display device |
JP3429384B2 (en) | 1995-02-03 | 2003-07-22 | 株式会社エンプラス | Sidelight type surface light source device |
US5650865A (en) | 1995-03-21 | 1997-07-22 | Hughes Electronics | Holographic backlight for flat panel displays |
US6712481B2 (en) | 1995-06-27 | 2004-03-30 | Solid State Opto Limited | Light emitting panel assemblies |
US5932309A (en) | 1995-09-28 | 1999-08-03 | Alliedsignal Inc. | Colored articles and compositions and methods for their fabrication |
US7907319B2 (en) | 1995-11-06 | 2011-03-15 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light with optical compensation |
US6104454A (en) | 1995-11-22 | 2000-08-15 | Hitachi, Ltd | Liquid crystal display |
US5771321A (en) | 1996-01-04 | 1998-06-23 | Massachusetts Institute Of Technology | Micromechanical optical switch and flat panel display |
KR19990082166A (en) | 1996-02-01 | 1999-11-25 | 다구치 에이치 | Surface light source element and liquid crystal display device, display device and traffic sign device using same |
KR100262798B1 (en) | 1996-02-02 | 2000-08-01 | 가나이 쓰도무 | Lcd apparatus and method of manufactuaring backlight transparent polymer plate |
US5980054A (en) | 1996-05-09 | 1999-11-09 | Matsushita Electric Industrial Co., Ltd. | Panel-form illuminating system |
JP2865618B2 (en) | 1996-05-31 | 1999-03-08 | 嶋田プレシジョン株式会社 | Light guide plate and light guide plate assembly |
US5782993A (en) | 1996-06-28 | 1998-07-21 | Ponewash; Jackie | Photovoltaic cells having micro-embossed optical enhancing structures |
KR100213968B1 (en) | 1996-07-15 | 1999-08-02 | 구자홍 | Liquid crystal display device |
KR100441548B1 (en) | 1996-09-23 | 2004-12-29 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Irradiation Apparatus for Flat Panel Display |
EP1341009B1 (en) | 1996-09-24 | 2006-04-19 | Seiko Epson Corporation | Illumination device and display device using it |
JP3402138B2 (en) | 1996-09-27 | 2003-04-28 | 株式会社日立製作所 | Liquid crystal display |
US5854872A (en) | 1996-10-08 | 1998-12-29 | Clio Technologies, Inc. | Divergent angle rotator system and method for collimating light beams |
US6486862B1 (en) | 1996-10-31 | 2002-11-26 | Kopin Corporation | Card reader display system |
GB2321532A (en) | 1997-01-22 | 1998-07-29 | Sharp Kk | Multi-colour reflector device and display |
US5783614A (en) | 1997-02-21 | 1998-07-21 | Copytele, Inc. | Polymeric-coated dielectric particles and formulation and method for preparing same |
US5913594A (en) | 1997-02-25 | 1999-06-22 | Iimura; Keiji | Flat panel light source device and passive display device utilizing the light source device |
JPH10260405A (en) | 1997-03-18 | 1998-09-29 | Seiko Epson Corp | Lighting device, liquid-crystal display device, and electronic equipment |
US6123431A (en) | 1997-03-19 | 2000-09-26 | Sanyo Electric Co., Ltd | Backlight apparatus and light guide plate |
EP0867747A3 (en) | 1997-03-25 | 1999-03-03 | Sony Corporation | Reflective display device |
US5995288A (en) * | 1997-04-22 | 1999-11-30 | Dai Nippon Printing Co., Ltd. | Optical sheet optical sheet lamination light source device, and light-transmissive type display apparatus |
EP0879991A3 (en) | 1997-05-13 | 1999-04-21 | Matsushita Electric Industrial Co., Ltd. | Illuminating system |
GB9710062D0 (en) | 1997-05-16 | 1997-07-09 | British Tech Group | Optical devices and methods of fabrication thereof |
US6259854B1 (en) | 1997-05-29 | 2001-07-10 | Kuraray Co., Ltd. | Lightguide |
US6259082B1 (en) | 1997-07-31 | 2001-07-10 | Rohm Co., Ltd. | Image reading apparatus |
FR2769382B1 (en) | 1997-10-03 | 2000-12-01 | Thomson Multimedia Sa | REAR LIGHTING SYSTEM FOR A TRANSMISSIBLE ELECTRO-OPTICAL MODULATOR USING THE LIGHT POLARIZATION EFFECT |
US6273577B1 (en) | 1997-10-31 | 2001-08-14 | Sanyo Electric Co., Ltd. | Light guide plate, surface light source using the light guide plate, and liquid crystal display using the surface light source |
US6322901B1 (en) | 1997-11-13 | 2001-11-27 | Massachusetts Institute Of Technology | Highly luminescent color-selective nano-crystalline materials |
DE69730030T2 (en) * | 1997-11-17 | 2005-07-21 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Confocal spectroscopy system and method |
JP3808992B2 (en) | 1997-11-21 | 2006-08-16 | 三菱電機株式会社 | LCD panel module |
US6151089A (en) | 1998-01-20 | 2000-11-21 | Sony Corporation | Reflection type display with light waveguide with inclined and planar surface sections |
US6897855B1 (en) | 1998-02-17 | 2005-05-24 | Sarnoff Corporation | Tiled electronic display structure |
JP3824290B2 (en) | 1998-05-07 | 2006-09-20 | 富士写真フイルム株式会社 | Array type light modulation element, array type exposure element, flat display, and method for driving array type light modulation element |
JP3644476B2 (en) | 1998-04-30 | 2005-04-27 | 松下電器産業株式会社 | Portable electronic devices |
JP3520494B2 (en) | 1998-05-11 | 2004-04-19 | 日東電工株式会社 | Reflective liquid crystal display |
TW386175B (en) | 1998-05-19 | 2000-04-01 | Dainippon Printing Co Ltd | Light reflective panel for reflective liquid crystal panel |
AU4703999A (en) | 1998-06-22 | 2000-01-10 | E-Ink Corporation | Means of addressing microencapsulated display media |
US6741788B2 (en) * | 1999-07-01 | 2004-05-25 | Honeywell International Inc | Efficient light distribution system |
TW523627B (en) | 1998-07-14 | 2003-03-11 | Hitachi Ltd | Liquid crystal display device |
JP2000056226A (en) | 1998-08-04 | 2000-02-25 | Olympus Optical Co Ltd | Display/image pickup device |
GB2340281A (en) | 1998-08-04 | 2000-02-16 | Sharp Kk | A reflective liquid crystal display device |
JP2000075293A (en) | 1998-09-02 | 2000-03-14 | Matsushita Electric Ind Co Ltd | Illuminator, touch panel with illumination and reflective liquid crystal display device |
JP2000081848A (en) | 1998-09-03 | 2000-03-21 | Semiconductor Energy Lab Co Ltd | Electronic equipment mounting liquid crystal display device |
DE69942499D1 (en) | 1998-10-05 | 2010-07-29 | Semiconductor Energy Lab | Reflecting semiconductor device |
JP2000181367A (en) | 1998-10-05 | 2000-06-30 | Semiconductor Energy Lab Co Ltd | Reflection type semiconductor display device |
TW422346U (en) | 1998-11-17 | 2001-02-11 | Ind Tech Res Inst | A reflector device with arc diffusion uint |
CN1134607C (en) | 1998-11-27 | 2004-01-14 | 夏普株式会社 | Illuminator, illuminating device, front light and liquid crystal display |
JP3871176B2 (en) | 1998-12-14 | 2007-01-24 | シャープ株式会社 | Backlight device and liquid crystal display device |
JP2000193933A (en) | 1998-12-25 | 2000-07-14 | Matsushita Electric Works Ltd | Display device |
JP2000214804A (en) | 1999-01-20 | 2000-08-04 | Fuji Photo Film Co Ltd | Light modulation element, aligner, and planar display |
US6827456B2 (en) | 1999-02-23 | 2004-12-07 | Solid State Opto Limited | Transreflectors, transreflector systems and displays and methods of making transreflectors |
WO2000052667A1 (en) | 1999-03-02 | 2000-09-08 | Matsushita Electric Industrial Co., Ltd. | Illuminating device and display device provided with the device |
JP3434465B2 (en) | 1999-04-22 | 2003-08-11 | 三菱電機株式会社 | Backlight for liquid crystal display |
JP3594868B2 (en) | 1999-04-26 | 2004-12-02 | 日東電工株式会社 | Laminated polarizing plate and liquid crystal display |
FI107085B (en) | 1999-05-28 | 2001-05-31 | Ics Intelligent Control System | light Panel |
JP2001021883A (en) | 1999-07-06 | 2001-01-26 | Nec Corp | Reflective liquid crystal display device and electronic equipment |
JP2001035222A (en) | 1999-07-23 | 2001-02-09 | Minebea Co Ltd | Surface lighting system |
JP2001035225A (en) | 1999-07-26 | 2001-02-09 | Minebea Co Ltd | Surface lighting system |
JP2001051272A (en) | 1999-08-11 | 2001-02-23 | Semiconductor Energy Lab Co Ltd | Front light and electronic appliance |
JP2001060409A (en) | 1999-08-23 | 2001-03-06 | Minebea Co Ltd | Sheet-like lighting system |
EP1127984A4 (en) | 1999-08-30 | 2004-12-15 | Matsushita Shokai Co Ltd | Planar light emitting device and light-emitting guide |
DE19942513A1 (en) | 1999-09-07 | 2001-03-08 | Gerhard Karl | Luminous body for images capable of screening |
WO2003007049A1 (en) | 1999-10-05 | 2003-01-23 | Iridigm Display Corporation | Photonic mems and structures |
JP3457591B2 (en) | 1999-10-08 | 2003-10-20 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Liquid crystal display |
US6421104B1 (en) | 1999-10-22 | 2002-07-16 | Motorola, Inc. | Front illuminator for a liquid crystal display and method of making same |
JP3987257B2 (en) | 1999-12-10 | 2007-10-03 | ローム株式会社 | Liquid crystal display |
ATE353447T1 (en) | 1999-12-28 | 2007-02-15 | Fujitsu Kasei Kk | LIGHTING APPARATUS FOR DISPLAY |
JP4548628B2 (en) * | 2000-01-13 | 2010-09-22 | 日東電工株式会社 | Optical film |
EP1420272A3 (en) | 2000-01-13 | 2004-06-23 | Nitto Denko Corporation | Optical film and liquid-crystal display device |
JP2001194534A (en) | 2000-01-13 | 2001-07-19 | Nitto Denko Corp | Light transmission plate and its manufacturing method |
JP4614400B2 (en) | 2000-01-17 | 2011-01-19 | 日東電工株式会社 | ORGANIC EL LIGHT EMITTING DEVICE, POLARIZING PLANE LIGHT SOURCE DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE |
JP4609962B2 (en) | 2000-02-02 | 2011-01-12 | 日東電工株式会社 | Optical film |
JP4442836B2 (en) | 2000-02-02 | 2010-03-31 | 日東電工株式会社 | Optical film |
JP4006918B2 (en) | 2000-02-28 | 2007-11-14 | オムロン株式会社 | Surface light source device and manufacturing method thereof |
JP4015342B2 (en) | 2000-03-03 | 2007-11-28 | ローム株式会社 | LIGHTING DEVICE AND LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SAME |
JP2001283622A (en) | 2000-03-29 | 2001-10-12 | Matsushita Electric Ind Co Ltd | Illumination apparatus and reflector liquid crystal display |
JP3301752B2 (en) | 2000-03-31 | 2002-07-15 | 三菱電機株式会社 | Front light, reflective liquid crystal display device and portable information terminal |
JP2002014344A (en) | 2000-04-28 | 2002-01-18 | Minolta Co Ltd | Liquid crystal display device |
JP2001356701A (en) | 2000-06-15 | 2001-12-26 | Fuji Photo Film Co Ltd | Optical element, light source unit and display device |
US6598987B1 (en) | 2000-06-15 | 2003-07-29 | Nokia Mobile Phones Limited | Method and apparatus for distributing light to the user interface of an electronic device |
KR20020001594A (en) | 2000-06-26 | 2002-01-09 | 가마이 고로 | Light pipe, plane light source unit and reflection type liquid-crystal display device |
FR2811139B1 (en) | 2000-06-29 | 2003-10-17 | Centre Nat Rech Scient | OPTOELECTRONIC DEVICE WITH INTEGRATED WAVELENGTH FILTERING |
JP3774616B2 (en) | 2000-06-29 | 2006-05-17 | 株式会社日立製作所 | Lighting device and light guide plate manufacturing method |
JP3773818B2 (en) | 2000-07-19 | 2006-05-10 | 三洋電機株式会社 | Bar-shaped light guide, linear illumination device using the same, and planar illumination device using the linear illumination device |
US6565225B2 (en) | 2000-07-19 | 2003-05-20 | Sanyo Electric Co., Ltd. | Bar-shaped light guide, beam lighting device using the bar-shaped light guide, and surface lighting device using the beam lighting device |
JP2002108227A (en) | 2000-07-26 | 2002-04-10 | Bridgestone Corp | Front light and liquid crystal display device |
WO2002014740A1 (en) | 2000-07-31 | 2002-02-21 | Matsushita Electric Industrial Co., Ltd. | Illuminator, image display, liquid crystal monitor, liquid crystal television, liquid crystal information terminal, and method for producing light guide plate |
US6795605B1 (en) | 2000-08-01 | 2004-09-21 | Cheetah Omni, Llc | Micromechanical optical switch |
JP2002075037A (en) | 2000-09-05 | 2002-03-15 | Minebea Co Ltd | Surface lighting equipment |
US6792293B1 (en) | 2000-09-13 | 2004-09-14 | Motorola, Inc. | Apparatus and method for orienting an image on a display of a wireless communication device |
JP3394025B2 (en) | 2000-09-13 | 2003-04-07 | 嶋田プレシジョン株式会社 | Front light light guide plate |
TWI297093B (en) | 2000-09-25 | 2008-05-21 | Mitsubishi Rayon Co | Light source device |
JP4570228B2 (en) | 2000-10-11 | 2010-10-27 | 日東電工株式会社 | Glass substrate and liquid crystal display device |
JP4374482B2 (en) | 2000-11-02 | 2009-12-02 | ミネベア株式会社 | Surface lighting device |
JP2002148615A (en) | 2000-11-08 | 2002-05-22 | Nitto Denko Corp | Optical film and reflection type liquid crystal display device |
US6643067B2 (en) | 2000-11-22 | 2003-11-04 | Seiko Epson Corporation | Electro-optical device and electronic apparatus |
JP2002174732A (en) | 2000-12-07 | 2002-06-21 | Mark:Kk | Light guide plate, display device using the same and method for manufacturing electronic device and light guide plate |
JP2002174780A (en) | 2000-12-08 | 2002-06-21 | Stanley Electric Co Ltd | Reflection type color display device |
JP4266551B2 (en) | 2000-12-14 | 2009-05-20 | 三菱レイヨン株式会社 | Surface light source system and light deflection element used therefor |
JP2002184223A (en) | 2000-12-14 | 2002-06-28 | Alps Electric Co Ltd | Flat light emitting device and manufacturing method thereof, and liquid crystal display device |
US20020080597A1 (en) | 2000-12-21 | 2002-06-27 | Durel Corporation | EL lamp for a front lit display |
JP4361206B2 (en) | 2000-12-21 | 2009-11-11 | 日東電工株式会社 | Optical film and liquid crystal display device |
JP2002196151A (en) | 2000-12-25 | 2002-07-10 | Citizen Electronics Co Ltd | Light guide plate |
WO2002054119A1 (en) | 2000-12-28 | 2002-07-11 | Fuji Electric Co., Ltd. | Light guiding plate and liquid crystal display device with the light guiding plate |
JP4074977B2 (en) | 2001-02-02 | 2008-04-16 | ミネベア株式会社 | Surface lighting device |
JP4476505B2 (en) | 2001-02-09 | 2010-06-09 | シャープ株式会社 | Liquid crystal display |
JP2002245835A (en) | 2001-02-15 | 2002-08-30 | Minolta Co Ltd | Illumination device, display device, and electronic equipment |
JP3713596B2 (en) | 2001-03-26 | 2005-11-09 | ミネベア株式会社 | Surface lighting device |
US6592234B2 (en) | 2001-04-06 | 2003-07-15 | 3M Innovative Properties Company | Frontlit display |
US6678026B2 (en) | 2001-04-10 | 2004-01-13 | Seiko Epson Corporation | Liquid crystal device and electronic apparatus |
US6552842B2 (en) | 2001-04-13 | 2003-04-22 | Ut-Battelle, Llc | Reflective coherent spatial light modulator |
JP2002313121A (en) | 2001-04-16 | 2002-10-25 | Nitto Denko Corp | Luminaire with touch panel and reflective liquid crystal display device |
US6660997B2 (en) * | 2001-04-26 | 2003-12-09 | Creo Srl | Absolute position Moiré type encoder for use in a control system |
US7001058B2 (en) | 2001-05-16 | 2006-02-21 | Ben-Zion Inditsky | Ultra-thin backlight |
EP1397610B1 (en) | 2001-06-01 | 2007-12-12 | Philips Lumileds Lighting Company LLC | Compact illumination system and display device |
JP2002365438A (en) | 2001-06-05 | 2002-12-18 | Mark:Kk | Linear light guiding body, display device and electronic apparatus using the same, production method for linear light guiding body |
US6961045B2 (en) | 2001-06-16 | 2005-11-01 | Che-Chih Tsao | Pattern projection techniques for volumetric 3D displays and 2D displays |
JP2003007114A (en) | 2001-06-26 | 2003-01-10 | Sharp Corp | Front light and reflection type display device using the same |
US20030001985A1 (en) | 2001-06-28 | 2003-01-02 | Steve Doe | Electronic display |
US7253799B2 (en) | 2001-06-30 | 2007-08-07 | Samsung Electronics Co., Ltd. | Backlight using planar hologram for flat display device |
US6478432B1 (en) | 2001-07-13 | 2002-11-12 | Chad D. Dyner | Dynamically generated interactive real imaging device |
JP3959678B2 (en) | 2001-07-13 | 2007-08-15 | ミネベア株式会社 | Touch panel for display device |
JP2003057652A (en) | 2001-08-20 | 2003-02-26 | Japan Science & Technology Corp | Picture display device, illuminator |
JP2003057653A (en) | 2001-08-21 | 2003-02-26 | Citizen Watch Co Ltd | Liquid crystal display device |
JP3928395B2 (en) * | 2001-09-21 | 2007-06-13 | オムロン株式会社 | Surface light source device |
NZ514500A (en) | 2001-10-11 | 2004-06-25 | Deep Video Imaging Ltd | A multiplane visual display unit with a transparent emissive layer disposed between two display planes |
JP4001736B2 (en) | 2001-10-23 | 2007-10-31 | アルプス電気株式会社 | Surface light emitting device and liquid crystal display device |
US6636285B2 (en) | 2001-11-01 | 2003-10-21 | Motorola, Inc. | Reflective liquid crystal display with improved contrast |
EP1454179A2 (en) | 2001-11-06 | 2004-09-08 | Keyotee | Apparatus for image projection |
JP3828402B2 (en) | 2001-11-08 | 2006-10-04 | 株式会社日立製作所 | BACKLIGHTING DEVICE, LIQUID CRYSTAL DISPLAY DEVICE USING SAME, AND LIGHTING METHOD FOR LIQUID CRYSTAL DISPLAY DEVICE |
US7128459B2 (en) | 2001-11-12 | 2006-10-31 | Nidec Copal Corporation | Light-guide plate and method for manufacturing the same |
JP2003149642A (en) | 2001-11-13 | 2003-05-21 | Matsushita Electric Works Ltd | Front light for liquid crystal |
JP2003151331A (en) | 2001-11-15 | 2003-05-23 | Minebea Co Ltd | Sheet lighting system |
JP2003149643A (en) | 2001-11-16 | 2003-05-21 | Goyo Paper Working Co Ltd | Front light for liquid crystal display |
US20030095401A1 (en) | 2001-11-20 | 2003-05-22 | Palm, Inc. | Non-visible light display illumination system and method |
US6802614B2 (en) | 2001-11-28 | 2004-10-12 | Robert C. Haldiman | System, method and apparatus for ambient video projection |
JP3801032B2 (en) | 2001-11-29 | 2006-07-26 | 日本電気株式会社 | Light source and liquid crystal display device using the light source |
JP2003167132A (en) | 2001-11-30 | 2003-06-13 | Toyota Industries Corp | Wedge-shaped light guide plate for front light |
JP2003173713A (en) | 2001-12-04 | 2003-06-20 | Rohm Co Ltd | Illumination device and liquid crystal display device |
US7253853B2 (en) | 2001-12-04 | 2007-08-07 | Rohm Co., Ltd. | Liquid crystal display and lighting unit having parabolic surface |
JP3683212B2 (en) | 2001-12-14 | 2005-08-17 | Necアクセステクニカ株式会社 | Mobile phone |
US7515336B2 (en) | 2001-12-21 | 2009-04-07 | Bose Corporation | Selective reflecting |
JP4162900B2 (en) | 2002-02-05 | 2008-10-08 | アルプス電気株式会社 | Illumination device and liquid crystal display device |
US6794119B2 (en) | 2002-02-12 | 2004-09-21 | Iridigm Display Corporation | Method for fabricating a structure for a microelectromechanical systems (MEMS) device |
US7369735B2 (en) | 2002-02-15 | 2008-05-06 | Biosynergetics, Inc. | Apparatus for the collection and transmission of electromagnetic radiation |
JP2003255344A (en) | 2002-03-05 | 2003-09-10 | Citizen Electronics Co Ltd | Front light for color liquid crystal display |
CN1639595A (en) | 2002-03-05 | 2005-07-13 | 皇家飞利浦电子股份有限公司 | Illumination system combining diffuse homogeneous lighting with direct spot illumination |
EP1485735A1 (en) | 2002-03-08 | 2004-12-15 | Koninklijke Philips Electronics N.V. | Display device comprising a light guide |
WO2003077019A1 (en) | 2002-03-14 | 2003-09-18 | Nec Corporation | Optical modulating/displaying device and production method therefor and display apparatus mounting the optical modulating/displaying device thereon |
JP2003295183A (en) | 2002-03-29 | 2003-10-15 | Citizen Watch Co Ltd | Plane illuminator of liquid crystal display device |
TW554211B (en) | 2002-04-10 | 2003-09-21 | Au Optronics Corp | Light guiding plate of controlling light emission angle and its liquid crystal display apparatus |
JP2003315694A (en) | 2002-04-25 | 2003-11-06 | Fuji Photo Film Co Ltd | Image display element and image display device using the same |
JP2003322852A (en) | 2002-05-07 | 2003-11-14 | Nitto Denko Corp | Reflective liquid crystal display and optical film |
WO2003098100A1 (en) | 2002-05-20 | 2003-11-27 | Mitsubishi Rayon Co., Ltd. | Planar light source and light guide for use therein |
JP2003344881A (en) | 2002-05-22 | 2003-12-03 | Alps Electric Co Ltd | Electrophoretic display device |
JP3977169B2 (en) | 2002-07-01 | 2007-09-19 | 松下電器産業株式会社 | Mobile terminal device |
JP4126210B2 (en) | 2002-08-09 | 2008-07-30 | 株式会社日立製作所 | Liquid crystal display |
JP4141766B2 (en) | 2002-08-23 | 2008-08-27 | 富士通株式会社 | Illumination device and liquid crystal display device |
JP4165509B2 (en) | 2002-08-30 | 2008-10-15 | 日立化成工業株式会社 | Light guide plate and backlight device |
JP2004126196A (en) | 2002-10-02 | 2004-04-22 | Toshiba Corp | Liquid crystal display device |
KR100883096B1 (en) | 2002-10-05 | 2009-02-11 | 삼성전자주식회사 | Optical member and method for fabricating the same and liquid crystal display device using the same |
JP4130115B2 (en) | 2002-10-16 | 2008-08-06 | アルプス電気株式会社 | Illumination device and liquid crystal display device |
US6747785B2 (en) | 2002-10-24 | 2004-06-08 | Hewlett-Packard Development Company, L.P. | MEMS-actuated color light modulator and methods |
US7063449B2 (en) | 2002-11-21 | 2006-06-20 | Element Labs, Inc. | Light emitting diode (LED) picture element |
TWI252938B (en) | 2002-11-22 | 2006-04-11 | Hon Hai Prec Ind Co Ltd | Light guide plate and backlight system using the same |
US6811274B2 (en) | 2002-12-04 | 2004-11-02 | General Electric Company | Polarization sensitive optical substrate |
US7639916B2 (en) | 2002-12-09 | 2009-12-29 | Orec, Advanced Illumination Solutions Inc. | Flexible optical device |
JP3983166B2 (en) | 2002-12-26 | 2007-09-26 | 日東電工株式会社 | Optical element, polarization plane light source using the same, and display device using the same |
KR100624408B1 (en) | 2003-01-07 | 2006-09-18 | 삼성전자주식회사 | Backlight unit |
KR100506088B1 (en) | 2003-01-14 | 2005-08-03 | 삼성전자주식회사 | Liquid crystal displaying apparatus |
JP2006516724A (en) * | 2003-01-15 | 2006-07-06 | マイクロニック レーザー システムズ アクチボラゲット | How to detect defective pixels |
US7042444B2 (en) | 2003-01-17 | 2006-05-09 | Eastman Kodak Company | OLED display and touch screen |
US6930816B2 (en) | 2003-01-17 | 2005-08-16 | Fuji Photo Film Co., Ltd. | Spatial light modulator, spatial light modulator array, image forming device and flat panel display |
JP4397394B2 (en) | 2003-01-24 | 2010-01-13 | ディジタル・オプティクス・インターナショナル・コーポレイション | High density lighting system |
TW577549U (en) | 2003-01-30 | 2004-02-21 | Toppoly Optoelectronics Corp | Back light module for flat display device |
KR100519238B1 (en) | 2003-02-04 | 2005-10-07 | 화우테크놀러지 주식회사 | A Light Guide Panel With Guided-light Parts |
KR100720426B1 (en) | 2003-02-18 | 2007-05-22 | 엘지.필립스 엘시디 주식회사 | back light unit |
US7537369B2 (en) | 2003-02-28 | 2009-05-26 | Sharp Kabushiki Kaisha | Surface radiation conversion element, liquid crystal display device, and method of producing a surface radiation conversion element |
JP4294992B2 (en) | 2003-03-31 | 2009-07-15 | シャープ株式会社 | Reflective liquid crystal display |
US20050120553A1 (en) | 2003-12-08 | 2005-06-09 | Brown Dirk D. | Method for forming MEMS grid array connector |
KR100506092B1 (en) | 2003-04-16 | 2005-08-04 | 삼성전자주식회사 | Light guide panel of edge light type backlight apparatus and edge light type backlight apparatus using the same |
KR20040090667A (en) | 2003-04-18 | 2004-10-26 | 삼성전기주식회사 | light unit for displaying |
US7206133B2 (en) * | 2003-05-22 | 2007-04-17 | Optical Research Associates | Light distribution apparatus and methods for illuminating optical systems |
WO2004106983A2 (en) * | 2003-05-22 | 2004-12-09 | Optical Research Associates | Illumination in optical systems |
JP2007027150A (en) | 2003-06-23 | 2007-02-01 | Hitachi Chem Co Ltd | Concentrating photovoltaic power generation system |
EP1696173A4 (en) | 2003-06-30 | 2008-03-19 | Worldvision Co Ltd | Light guide plate, method and apparatus for producing same, and light source device and liquid crystal display utilizing same |
JP4741488B2 (en) | 2003-07-03 | 2011-08-03 | ホロタッチ, インコーポレイテッド | Holographic human machine interface |
US6980347B2 (en) | 2003-07-03 | 2005-12-27 | Reflectivity, Inc | Micromirror having reduced space between hinge and mirror plate of the micromirror |
US20070201234A1 (en) | 2003-07-21 | 2007-08-30 | Clemens Ottermann | Luminous element |
CN1820165A (en) | 2003-08-13 | 2006-08-16 | 富士通株式会社 | Illuminating device and LCD unit |
US7025461B2 (en) | 2003-08-28 | 2006-04-11 | Brookhaven Science Associates | Interactive display system having a digital micromirror imaging device |
US7218812B2 (en) | 2003-10-27 | 2007-05-15 | Rpo Pty Limited | Planar waveguide with patterned cladding and method for producing the same |
ES2311666T3 (en) | 2003-12-01 | 2009-02-16 | Asulab S.A. | TRANSPARENT SUBSTRATE, WITH INVISIBLE ELECTRODES AND DEVICES THAT INCLUDE IT. |
EP1544657B1 (en) | 2003-12-19 | 2012-04-04 | Barco N.V. | Broadband full white reflective display structure |
JP4079143B2 (en) | 2003-12-22 | 2008-04-23 | セイコーエプソン株式会社 | LIGHTING DEVICE, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC DEVICE |
US20050271325A1 (en) | 2004-01-22 | 2005-12-08 | Anderson Michael H | Liquid crystal waveguide having refractive shapes for dynamically controlling light |
US6964484B2 (en) * | 2004-02-02 | 2005-11-15 | Hewlett-Packard Development Company, L.P. | Overfill reduction for an optical modulator |
US20060110090A1 (en) | 2004-02-12 | 2006-05-25 | Panorama Flat Ltd. | Apparatus, method, and computer program product for substrated/componentized waveguided goggle system |
CN100434988C (en) | 2004-02-16 | 2008-11-19 | 西铁城电子股份有限公司 | Light guide plate |
US20050185416A1 (en) | 2004-02-24 | 2005-08-25 | Eastman Kodak Company | Brightness enhancement film using light concentrator array |
US7439965B2 (en) | 2004-03-05 | 2008-10-21 | Anderson Daryl E | Method for driving display device |
US7706050B2 (en) | 2004-03-05 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | Integrated modulator illumination |
JP4452528B2 (en) | 2004-03-09 | 2010-04-21 | 日本Cmo株式会社 | Planar light generator, image display device |
JP4195936B2 (en) | 2004-03-17 | 2008-12-17 | 独立行政法人産業技術総合研究所 | Reflective dimmer with a diffusive reflective surface |
JP2005300673A (en) | 2004-04-07 | 2005-10-27 | Hitachi Displays Ltd | Liquid crystal display |
JP4539160B2 (en) | 2004-04-28 | 2010-09-08 | 日立化成工業株式会社 | Optical element, optical element manufacturing method, and surface light source device |
CA2579217C (en) | 2004-04-30 | 2014-04-29 | Oy Modilis Ltd. | Ultrathin lighting element |
US7602369B2 (en) | 2004-05-04 | 2009-10-13 | Sharp Laboratories Of America, Inc. | Liquid crystal display with colored backlight |
WO2005111669A1 (en) | 2004-05-17 | 2005-11-24 | Nikon Corporation | Optical element, combiner optical system, and image display unit |
JP4449036B2 (en) | 2004-06-03 | 2010-04-14 | ミネベア株式会社 | Surface lighting device |
US7160017B2 (en) | 2004-06-03 | 2007-01-09 | Eastman Kodak Company | Brightness enhancement film using a linear arrangement of light concentrators |
JP4020397B2 (en) | 2004-06-14 | 2007-12-12 | 惠次 飯村 | Surface light source using point light source |
US7212345B2 (en) * | 2004-09-13 | 2007-05-01 | Eastman Kodak Company | Randomized patterns of individual optical elements |
US20060132383A1 (en) | 2004-09-27 | 2006-06-22 | Idc, Llc | System and method for illuminating interferometric modulator display |
US7355780B2 (en) | 2004-09-27 | 2008-04-08 | Idc, Llc | System and method of illuminating interferometric modulators using backlighting |
US7564612B2 (en) | 2004-09-27 | 2009-07-21 | Idc, Llc | Photonic MEMS and structures |
US7719500B2 (en) | 2004-09-27 | 2010-05-18 | Qualcomm Mems Technologies, Inc. | Reflective display pixels arranged in non-rectangular arrays |
JP4445827B2 (en) | 2004-10-07 | 2010-04-07 | 大日本印刷株式会社 | Condensing sheet, surface light source device, and manufacturing method of condensing sheet |
TWI259313B (en) | 2004-10-19 | 2006-08-01 | Ind Tech Res Inst | Light-guide plate and method for manufacturing thereof |
JP2006120571A (en) | 2004-10-25 | 2006-05-11 | Fujikura Ltd | Lighting system |
WO2006055873A2 (en) | 2004-11-17 | 2006-05-26 | Fusion Optix, Inc. | Enhanced electroluminescent sign |
WO2006055872A2 (en) | 2004-11-17 | 2006-05-26 | Fusion Optix, Inc. | Enhanced light fixture |
TWI264601B (en) | 2004-11-19 | 2006-10-21 | Innolux Display Corp | Light guide plate and backlight module using the same |
US8130210B2 (en) | 2004-11-30 | 2012-03-06 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Touch input system using light guides |
KR100682907B1 (en) | 2004-12-14 | 2007-02-15 | 삼성전자주식회사 | Illumination apparatus for a display device using light guide plate |
CN102360540B (en) * | 2004-12-23 | 2015-01-21 | 杜比实验室特许公司 | Wide color gamut displays |
CN1942703B (en) | 2004-12-27 | 2012-10-10 | 日亚化学工业株式会社 | Light guide body and surface light-emitting device using the same |
JP4420813B2 (en) | 2004-12-28 | 2010-02-24 | 株式会社エンプラス | Surface light source device and display device |
US7339635B2 (en) | 2005-01-14 | 2008-03-04 | 3M Innovative Properties Company | Pre-stacked optical films with adhesive layer |
JP4547276B2 (en) | 2005-01-24 | 2010-09-22 | シチズン電子株式会社 | Planar light source |
WO2006081633A1 (en) | 2005-02-07 | 2006-08-10 | Rpo Pty Limited | Waveguide design incorporating reflective optics |
KR100619069B1 (en) | 2005-02-16 | 2006-08-31 | 삼성전자주식회사 | Multi-chip light emitting diode unit, backlight unit and liquid crystal display employing the same |
TWI263098B (en) | 2005-02-16 | 2006-10-01 | Au Optronics Corp | Backlight module |
US20060187676A1 (en) | 2005-02-18 | 2006-08-24 | Sharp Kabushiki Kaisha | Light guide plate, light guide device, lighting device, light guide system, and drive circuit |
US20060209012A1 (en) | 2005-02-23 | 2006-09-21 | Pixtronix, Incorporated | Devices having MEMS displays |
US7224512B2 (en) | 2005-03-15 | 2007-05-29 | Motorola, Inc. | Microelectromechanical system optical apparatus and method |
TWI255924B (en) | 2005-03-16 | 2006-06-01 | Au Optronics Corp | Backlight module and brightness enhancement film thereof |
US7352501B2 (en) | 2005-03-31 | 2008-04-01 | Xerox Corporation | Electrophoretic caps prepared from encapsulated electrophoretic particles |
US7346251B2 (en) | 2005-04-18 | 2008-03-18 | The Trustees Of Columbia University In The City Of New York | Light emission using quantum dot emitters in a photonic crystal |
JP4743846B2 (en) | 2005-05-10 | 2011-08-10 | シチズン電子株式会社 | Optical communication apparatus and information equipment using the same |
TW200641422A (en) | 2005-05-30 | 2006-12-01 | Polarlite Corp | Transparent type light guiding module |
KR101176531B1 (en) | 2005-05-31 | 2012-08-24 | 삼성전자주식회사 | Backligh system and liquid crystal display apparatus employing the same |
US8039731B2 (en) | 2005-06-06 | 2011-10-18 | General Electric Company | Photovoltaic concentrator for solar energy system |
KR100647327B1 (en) | 2005-06-18 | 2006-11-23 | 삼성전기주식회사 | Back light unit for flat display device, and flat display apparatus having the same |
US20060285356A1 (en) | 2005-06-21 | 2006-12-21 | K-Bridge Electronics Co., Ltd. | Side-edge backlight module dimming pack |
US8079743B2 (en) | 2005-06-28 | 2011-12-20 | Lighting Science Group Corporation | Display backlight with improved light coupling and mixing |
FR2889597B1 (en) | 2005-08-02 | 2008-02-08 | Saint Gobain | TEXTURE PLATE WITH ASYMMETRIC PATTERNS |
US7278774B2 (en) | 2005-10-03 | 2007-10-09 | Radiant Opto-Electronics Corporation | Light-conductive panel of side-light type backlight module |
CN103017088A (en) | 2005-10-17 | 2013-04-03 | I2Ic公司 | Apparatus and method for providing a light source in the form of a surface |
KR100784551B1 (en) | 2005-10-19 | 2007-12-11 | 엘지전자 주식회사 | A prism sheet employed in backlight unit |
WO2007048180A1 (en) | 2005-10-24 | 2007-05-03 | Rpo Pty Limited | Improved optical elements for waveguide-based optical touch screens |
US7760197B2 (en) | 2005-10-31 | 2010-07-20 | Hewlett-Packard Development Company, L.P. | Fabry-perot interferometric MEMS electromagnetic wave modulator with zero-electric field |
TWI312895B (en) | 2005-11-11 | 2009-08-01 | Chunghwa Picture Tubes Ltd | Backlight module structure for led chip holder |
JP2006065360A (en) | 2005-11-16 | 2006-03-09 | Omron Corp | Light guide and display apparatus |
US20070133226A1 (en) | 2005-12-13 | 2007-06-14 | Eastman Kodak Company | Polarizing turning film with multiple operating orientations |
US7561133B2 (en) | 2005-12-29 | 2009-07-14 | Xerox Corporation | System and methods of device independent display using tunable individually-addressable fabry-perot membranes |
US7545569B2 (en) * | 2006-01-13 | 2009-06-09 | Avery Dennison Corporation | Optical apparatus with flipped compound prism structures |
US7366393B2 (en) * | 2006-01-13 | 2008-04-29 | Optical Research Associates | Light enhancing structures with three or more arrays of elongate features |
TWI345105B (en) | 2006-01-26 | 2011-07-11 | Chimei Innolux Corp | Backlight module and application thereof |
US20070177405A1 (en) | 2006-01-27 | 2007-08-02 | Toppoly Optoelectronics Corp. | Backlight unit, liquid crystal display module and electronic device |
TW200730951A (en) | 2006-02-10 | 2007-08-16 | Wintek Corp | Guide light module |
JP4639337B2 (en) | 2006-02-17 | 2011-02-23 | 国立大学法人長岡技術科学大学 | Solar cell and solar collector |
US7603001B2 (en) | 2006-02-17 | 2009-10-13 | Qualcomm Mems Technologies, Inc. | Method and apparatus for providing back-lighting in an interferometric modulator display device |
KR100678067B1 (en) | 2006-02-28 | 2007-02-02 | 삼성전자주식회사 | Touch sensor apparatus |
US7450295B2 (en) | 2006-03-02 | 2008-11-11 | Qualcomm Mems Technologies, Inc. | Methods for producing MEMS with protective coatings using multi-component sacrificial layers |
JP2007271865A (en) | 2006-03-31 | 2007-10-18 | Hitachi Displays Ltd | Liquid crystal display device |
US20070241340A1 (en) | 2006-04-17 | 2007-10-18 | Pan Shaoher X | Micro-mirror based display device having an improved light source |
US7417784B2 (en) | 2006-04-19 | 2008-08-26 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device and method utilizing a porous surface |
KR20090007776A (en) | 2006-05-01 | 2009-01-20 | 알피오 피티와이 리미티드 | Waveguide materials for optical touch screens |
TW200742610A (en) | 2006-05-10 | 2007-11-16 | Tpk Touch Solutions Inc | Method of hiding transparent electrodes on a transparent substrate |
US20080232135A1 (en) | 2006-05-31 | 2008-09-25 | 3M Innovative Properties Company | Light guide |
US20070279935A1 (en) | 2006-05-31 | 2007-12-06 | 3M Innovative Properties Company | Flexible light guide |
US7561773B2 (en) | 2006-06-19 | 2009-07-14 | Fuji Xerox Co., Ltd. | Optical waveguide, method of manufacturing the same and optical communication module |
US7766498B2 (en) | 2006-06-21 | 2010-08-03 | Qualcomm Mems Technologies, Inc. | Linear solid state illuminator |
US7679610B2 (en) | 2006-09-28 | 2010-03-16 | Honeywell International Inc. | LCD touchscreen panel with external optical path |
US8107155B2 (en) | 2006-10-06 | 2012-01-31 | Qualcomm Mems Technologies, Inc. | System and method for reducing visual artifacts in displays |
US7855827B2 (en) | 2006-10-06 | 2010-12-21 | Qualcomm Mems Technologies, Inc. | Internal optical isolation structure for integrated front or back lighting |
US8872085B2 (en) | 2006-10-06 | 2014-10-28 | Qualcomm Mems Technologies, Inc. | Display device having front illuminator with turning features |
EP2069840A1 (en) | 2006-10-06 | 2009-06-17 | Qualcomm Mems Technologies, Inc. | Apparatus and method for reducing back reflection from an illumination device |
EP1977275A2 (en) | 2006-10-06 | 2008-10-08 | Qualcomm Mems Technologies, Inc. | Increasing collimation of light from light bar to light panel using tapering |
WO2008045311A2 (en) | 2006-10-06 | 2008-04-17 | Qualcomm Mems Technologies, Inc. | Illumination device with built-in light coupler |
US20090231877A1 (en) | 2006-10-06 | 2009-09-17 | Qualcomm Mems Technologies, Inc. | Thin light bar and method of manufacturing |
US20100103488A1 (en) | 2006-10-10 | 2010-04-29 | Qualcomm Mems Technologies, Inc. | Display device with diffractive optics |
KR100818278B1 (en) | 2006-10-16 | 2008-04-01 | 삼성전자주식회사 | Illuminating device for liquid crystal display |
JP4511504B2 (en) | 2006-10-17 | 2010-07-28 | 日本ライツ株式会社 | Light guide plate and flat illumination device |
EP2080045A1 (en) | 2006-10-20 | 2009-07-22 | Pixtronix Inc. | Light guides and backlight systems incorporating light redirectors at varying densities |
US7864395B2 (en) | 2006-10-27 | 2011-01-04 | Qualcomm Mems Technologies, Inc. | Light guide including optical scattering elements and a method of manufacture |
KR100951723B1 (en) | 2006-12-28 | 2010-04-07 | 제일모직주식회사 | Optical sheet for back light unit |
TW200830000A (en) | 2007-01-15 | 2008-07-16 | Dynascan Technology Corp | LED backlight module |
CN101226259A (en) | 2007-01-16 | 2008-07-23 | 财团法人工业技术研究院 | Coupling light element |
US7777954B2 (en) | 2007-01-30 | 2010-08-17 | Qualcomm Mems Technologies, Inc. | Systems and methods of providing a light guiding layer |
EP1975651A1 (en) | 2007-03-31 | 2008-10-01 | Sony Deutschland Gmbh | Spatial light modulator display |
US7733439B2 (en) | 2007-04-30 | 2010-06-08 | Qualcomm Mems Technologies, Inc. | Dual film light guide for illuminating displays |
US8842366B2 (en) | 2007-05-11 | 2014-09-23 | Zetta Research and Development LLC—RPO Series | Transmissive body |
US7507012B2 (en) | 2007-05-16 | 2009-03-24 | Rohm And Haas Denmark Finance A/S | LCD displays with light redirection |
WO2008144636A2 (en) | 2007-05-20 | 2008-11-27 | 3M Innovative Properties Company | Design parameters for thin hollow cavity backlights of the light-recycling type |
JP5336475B2 (en) | 2007-05-20 | 2013-11-06 | スリーエム イノベイティブ プロパティズ カンパニー | Optical recycling hollow cavity type display backlight |
DE102007025092A1 (en) | 2007-05-30 | 2008-12-04 | Osram Opto Semiconductors Gmbh | LED chip |
KR101820777B1 (en) | 2007-07-18 | 2018-01-22 | 삼성전자주식회사 | Quantum dot-based light sheets useful for solid-state lighting |
JP4384214B2 (en) | 2007-09-27 | 2009-12-16 | 株式会社 日立ディスプレイズ | Surface light emitting device, image display device, and image display device using the same |
PL2048779T3 (en) | 2007-10-08 | 2012-05-31 | Whirlpool Co | Capacitive touch switch and domestic appliance provided with such switch |
US8941631B2 (en) | 2007-11-16 | 2015-01-27 | Qualcomm Mems Technologies, Inc. | Simultaneous light collection and illumination on an active display |
US20090126792A1 (en) | 2007-11-16 | 2009-05-21 | Qualcomm Incorporated | Thin film solar concentrator/collector |
US7791683B2 (en) | 2007-11-19 | 2010-09-07 | Honeywell International Inc. | Backlight systems for liquid crystal displays |
KR101454171B1 (en) | 2007-11-28 | 2014-10-27 | 삼성전자주식회사 | Reflection type display apparatus and manufacturing method of light guide plate |
US7949213B2 (en) | 2007-12-07 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | Light illumination of displays with front light guide and coupling elements |
US8068710B2 (en) | 2007-12-07 | 2011-11-29 | Qualcomm Mems Technologies, Inc. | Decoupled holographic film and diffuser |
US20090168459A1 (en) | 2007-12-27 | 2009-07-02 | Qualcomm Incorporated | Light guide including conjugate film |
TWI368788B (en) | 2008-02-01 | 2012-07-21 | Au Optronics Corp | Backlight module and display apparatus having the same |
WO2009102731A2 (en) | 2008-02-12 | 2009-08-20 | Qualcomm Mems Technologies, Inc. | Devices and methods for enhancing brightness of displays using angle conversion layers |
US8654061B2 (en) | 2008-02-12 | 2014-02-18 | Qualcomm Mems Technologies, Inc. | Integrated front light solution |
WO2009102733A2 (en) | 2008-02-12 | 2009-08-20 | Qualcomm Mems Technologies, Inc. | Integrated front light diffuser for reflective displays |
JP2011515018A (en) | 2008-02-12 | 2011-05-12 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | Two-layer thin film holographic solar collector and solar concentrator |
US8116005B2 (en) | 2008-04-04 | 2012-02-14 | Texas Instruments Incorporated | Light combiner |
JP5451754B2 (en) | 2008-05-28 | 2014-03-26 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | Optical waveguide panel having turning microstructure, method for manufacturing the same, and display device |
CN102047035A (en) | 2008-06-04 | 2011-05-04 | 高通Mems科技公司 | Edge shadow reducing methods for prismatic front light |
US8023167B2 (en) | 2008-06-25 | 2011-09-20 | Qualcomm Mems Technologies, Inc. | Backlight displays |
US20090323144A1 (en) | 2008-06-30 | 2009-12-31 | Qualcomm Mems Technologies, Inc. | Illumination device with holographic light guide |
US20100157406A1 (en) | 2008-12-19 | 2010-06-24 | Qualcomm Mems Technologies, Inc. | System and method for matching light source emission to display element reflectivity |
JP5342016B2 (en) | 2009-01-13 | 2013-11-13 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | Large area light panel and screen |
KR101821429B1 (en) | 2009-12-29 | 2018-01-23 | 퀄컴 엠이엠에스 테크놀로지스, 인크. | Illumination device with metalized light-turning features |
-
2006
- 2006-10-06 US US11/545,104 patent/US8107155B2/en not_active Expired - Fee Related
-
2007
- 2007-09-28 EP EP07852454A patent/EP2069684A1/en not_active Withdrawn
- 2007-09-28 WO PCT/US2007/020911 patent/WO2008045218A1/en active Application Filing
- 2007-09-28 JP JP2009531404A patent/JP2010507103A/en not_active Ceased
- 2007-09-28 KR KR1020097009268A patent/KR20090089302A/en active IP Right Grant
- 2007-09-28 CN CN2007800415900A patent/CN101535713B/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4375312A (en) * | 1980-08-07 | 1983-03-01 | Hughes Aircraft Company | Graded index waveguide structure and process for forming same |
US4378567A (en) * | 1981-01-29 | 1983-03-29 | Eastman Kodak Company | Electronic imaging apparatus having means for reducing inter-pixel transmission nonuniformity |
US4918577A (en) * | 1988-01-16 | 1990-04-17 | Alps Electric Co., Ltd. | Illumination light transmitting device |
US5594830A (en) * | 1992-03-23 | 1997-01-14 | Minnesota Mining And Manufacturing Co. | Luminaire device |
US5592332A (en) * | 1992-12-25 | 1997-01-07 | Dai Nippon Printing Co., Ltd. | Renticular lens, surface light source, and liquid crystal display apparatus |
US5481385A (en) * | 1993-07-01 | 1996-01-02 | Alliedsignal Inc. | Direct view display device with array of tapered waveguide on viewer side |
US5735590A (en) * | 1994-03-02 | 1998-04-07 | Tosoh Corporation | Backlighting device with a transparent sheet having straight ridges |
US6040937A (en) * | 1994-05-05 | 2000-03-21 | Etalon, Inc. | Interferometric modulation |
US6674562B1 (en) * | 1994-05-05 | 2004-01-06 | Iridigm Display Corporation | Interferometric modulation of radiation |
US6055090A (en) * | 1994-05-05 | 2000-04-25 | Etalon, Inc. | Interferometric modulation |
US6680792B2 (en) * | 1994-05-05 | 2004-01-20 | Iridigm Display Corporation | Interferometric modulation of radiation |
US5892598A (en) * | 1994-07-15 | 1999-04-06 | Matsushita Electric Industrial Co., Ltd. | Head up display unit, liquid crystal display panel, and method of fabricating the liquid crystal display panel |
US6522794B1 (en) * | 1994-09-09 | 2003-02-18 | Gemfire Corporation | Display panel with electrically-controlled waveguide-routing |
US5712694A (en) * | 1994-09-16 | 1998-01-27 | Kabushiki Kaisha Toshiba | LCD comprising a light separating element including a cholesteric liquid crystal sheet |
US6014192A (en) * | 1996-07-16 | 2000-01-11 | Thomson-Csf | Illumination device and application thereof to the illumination of a transmissive screen |
US6504589B1 (en) * | 1997-02-18 | 2003-01-07 | Dai Nippon Printing Co., Ltd. | Backlight device and liquid crystal display device |
US6879354B1 (en) * | 1997-03-28 | 2005-04-12 | Sharp Kabushiki Kaisha | Front-illuminating device and a reflection-type liquid crystal display using such a device |
US6048071A (en) * | 1997-03-28 | 2000-04-11 | Sharp Kabushiki Kaisha | Front illumination device and reflection-type liquid crystal display device incorporating same |
US5883684A (en) * | 1997-06-19 | 1999-03-16 | Three-Five Systems, Inc. | Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield |
US6195196B1 (en) * | 1998-03-13 | 2001-02-27 | Fuji Photo Film Co., Ltd. | Array-type exposing device and flat type display incorporating light modulator and driving method thereof |
US6196691B1 (en) * | 1998-04-01 | 2001-03-06 | Shimada Precision, Co., Ltd. | Light guide plate for point source |
US6852396B1 (en) * | 1998-09-17 | 2005-02-08 | Keiwa, Inc. | Photodiffusion sheet and backlight unit using this |
US6199989B1 (en) * | 1998-10-29 | 2001-03-13 | Sumitomo Chemical Company, Limited | Optical plate having reflecting function and transmitting function |
US20050024849A1 (en) * | 1999-02-23 | 2005-02-03 | Parker Jeffery R. | Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides |
US6522373B1 (en) * | 1999-04-30 | 2003-02-18 | Hitachi, Ltd. | Liquid crystal display device, light guide plate, and method for producing light guide plate |
US6512626B1 (en) * | 1999-06-16 | 2003-01-28 | Creavis Gesellschaft Fuer Technologie Und Innovation Mbh | Composite sheets with electrically switchable optical properties made of light-scattering base material |
US6371623B1 (en) * | 1999-08-16 | 2002-04-16 | Minebea Co., Ltd. | Spread illuminating apparatus with a means for controlling light directivity |
US20060051048A1 (en) * | 1999-10-08 | 2006-03-09 | Gardiner Mark E | Backlight with structured surfaces |
US20020044445A1 (en) * | 1999-12-03 | 2002-04-18 | Bohler Christopher L. | Sold state light source augmentation for slm display systems |
US6709123B2 (en) * | 2000-02-04 | 2004-03-23 | Robert Bosch Gmbh | Display device |
US20050030732A1 (en) * | 2000-04-12 | 2005-02-10 | Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation | Illumination apparatus |
US6864882B2 (en) * | 2000-05-24 | 2005-03-08 | Next Holdings Limited | Protected touch panel display system |
US20020006036A1 (en) * | 2000-07-11 | 2002-01-17 | Minebea Co., Ltd. | Spread illuminating apparatus |
US6883934B2 (en) * | 2000-07-13 | 2005-04-26 | Seiko Epson Corporation | Light source device, illumination device liquid crystal device and electronic apparatus |
US20040032659A1 (en) * | 2000-07-18 | 2004-02-19 | Drinkwater John K | Difractive device |
US20020034071A1 (en) * | 2000-09-20 | 2002-03-21 | Sanyo Electric Co., Ltd. | Beam light source and lighting device using same |
US6865312B2 (en) * | 2000-12-14 | 2005-03-08 | Planop-Planar Optics Ltd. | Compact dynamic crossbar switch by means of planar optics |
US6697403B2 (en) * | 2001-04-17 | 2004-02-24 | Samsung Electronics Co., Ltd. | Light-emitting device and light-emitting apparatus using the same |
US6693690B2 (en) * | 2001-05-07 | 2004-02-17 | Nitto Denko Corporation | Reflective liquid-crystal display device |
US20030071947A1 (en) * | 2001-07-05 | 2003-04-17 | Miki Shiraogawa | Optical film and a liquid crystal display using the same |
US20030030764A1 (en) * | 2001-07-13 | 2003-02-13 | Hea-Chun Lee | Light guiding plate, method of manufacturing the same and liquid crystal display having the light guiding plate |
US20030012009A1 (en) * | 2001-07-13 | 2003-01-16 | Minebea Co., Ltd | Spread illuminating apparatus with light reflection member |
US20030016930A1 (en) * | 2001-07-23 | 2003-01-23 | Ben-Zion Inditsky | Ultra thin radiation management and distribution systems with hybrid optical waveguide |
US20030034445A1 (en) * | 2001-08-15 | 2003-02-20 | Boyd Gary T. | Light guide for use with backlit display |
US6883924B2 (en) * | 2001-08-31 | 2005-04-26 | Fujitsu Limited | Lighting apparatus and liquid crystal display |
US20030067760A1 (en) * | 2001-09-26 | 2003-04-10 | Jagt Hendrik Johannes Boudewijn | Waveguide, edge-lit illumination arrangement and display comprising such |
US20040080938A1 (en) * | 2001-12-14 | 2004-04-29 | Digital Optics International Corporation | Uniform illumination system |
US20040001169A1 (en) * | 2002-02-12 | 2004-01-01 | Yuuji Saiki | Polarizer, polarizing plate, liquid crystal display, and image display, and a method for producing the polarizer |
US6853418B2 (en) * | 2002-02-28 | 2005-02-08 | Mitsubishi Denki Kabushiki Kaisha | Liquid crystal display device |
US20060050032A1 (en) * | 2002-05-01 | 2006-03-09 | Gunner Alec G | Electroluminiscent display and driver circuit to reduce photoluminesence |
US7324284B2 (en) * | 2002-05-20 | 2008-01-29 | General Electric Company | Optical substrate and method of making |
US7180672B2 (en) * | 2002-05-20 | 2007-02-20 | General Electric Company | Optical substrate and method of making |
US6862141B2 (en) * | 2002-05-20 | 2005-03-01 | General Electric Company | Optical substrate and method of making |
US7010212B2 (en) * | 2002-05-28 | 2006-03-07 | 3M Innovative Properties Company | Multifunctional optical assembly |
US7156546B2 (en) * | 2002-06-17 | 2007-01-02 | Casio Computer Co., Ltd. | Surface light source for emitting light from two surfaces and double-sided display device using the same |
US20040017599A1 (en) * | 2002-07-29 | 2004-01-29 | Xiaofeng Yang | Micro-mirror with rotor structure |
US20040027315A1 (en) * | 2002-08-09 | 2004-02-12 | Sanyo Electric Co., Ltd. | Display including a plurality of display panels |
US20040032401A1 (en) * | 2002-08-19 | 2004-02-19 | Fujitsu Limited | Touch panel device |
US20040042233A1 (en) * | 2002-08-30 | 2004-03-04 | Fujitsu Display Technologies Corporation | Lighting unit and display device |
US20040070711A1 (en) * | 2002-10-11 | 2004-04-15 | Chi-Jain Wen | Double-sided LCD panel |
US20060044523A1 (en) * | 2002-11-07 | 2006-03-02 | Teijido Juan M | Illumination arrangement for a projection system |
US7018088B2 (en) * | 2002-11-08 | 2006-03-28 | Hon Hai Precision Ind. Co., Ltd. | Light guide plate for liquid crystal display |
US20050002175A1 (en) * | 2003-05-15 | 2005-01-06 | Yuki Matsui | Front light, reflective type of display, and light controlling method |
US20070064294A1 (en) * | 2003-05-22 | 2007-03-22 | Tetsuya Hoshino | Optical film and surface light source using it |
US20050041175A1 (en) * | 2003-06-18 | 2005-02-24 | Citizen Watch Co., Ltd. | Display device employing light control member and display device manufacturing method |
US20050024890A1 (en) * | 2003-06-19 | 2005-02-03 | Alps Electric Co., Ltd. | Light guide plate, surface light-emitting unit, and liquid crystal display device and method for manufacturing the same |
US20050046011A1 (en) * | 2003-07-07 | 2005-03-03 | Board Of Regents, The University Of Texas System | System, method and apparatus for improved electrical-to-optical transmitters disposed within printed circuit boards |
US20050069254A1 (en) * | 2003-08-08 | 2005-03-31 | Bernd Schultheis | Method for producing light-scattering structures on flat optical waveguides |
US7163315B2 (en) * | 2004-02-03 | 2007-01-16 | Hannstar Display Corporation | Backlight module |
US20060002141A1 (en) * | 2004-06-30 | 2006-01-05 | Ouderkirk Andrew J | Phosphor based illumination system having a short pass reflector and method of making same |
US20060002675A1 (en) * | 2004-07-01 | 2006-01-05 | Lg Electronics Inc. | Light guide plate for surface light-emitting device and method of manufacturing the same |
US20060001942A1 (en) * | 2004-07-02 | 2006-01-05 | Clarence Chui | Interferometric modulators with thin film transistors |
US7346281B2 (en) * | 2004-07-06 | 2008-03-18 | The Boeing Company | Hybrid RF/optical communication system with deployable optics and atmosphere compensation system and method |
US20060024017A1 (en) * | 2004-07-27 | 2006-02-02 | Page David J | Flat optical fiber light emitters |
US7663714B2 (en) * | 2004-08-18 | 2010-02-16 | Sony Corporation | Backlight device and color liquid crystal display apparatus |
US20060062016A1 (en) * | 2004-08-24 | 2006-03-23 | Norihiro Dejima | Illumination device and display device using the same |
US20060061705A1 (en) * | 2004-09-21 | 2006-03-23 | Yasunori Onishi | Optical waveguide, illumination device, electro-optical device, and electronic apparatus |
US20060066935A1 (en) * | 2004-09-27 | 2006-03-30 | Cummings William J | Process for modifying offset voltage characteristics of an interferometric modulator |
US20060066586A1 (en) * | 2004-09-27 | 2006-03-30 | Gally Brian J | Touchscreens for displays |
US20060066541A1 (en) * | 2004-09-27 | 2006-03-30 | Gally Brian J | Method and device for manipulating color in a display |
US7508571B2 (en) * | 2004-09-27 | 2009-03-24 | Idc, Llc | Optical films for controlling angular characteristics of displays |
US20060066783A1 (en) * | 2004-09-27 | 2006-03-30 | Sampsell Jeffrey B | Methods and devices for lighting displays |
US20080031011A1 (en) * | 2004-09-28 | 2008-02-07 | Kentaro Hayashi | Light Guide For Surface Light Source Device And Surface Light Source Device |
US20060072339A1 (en) * | 2004-10-01 | 2006-04-06 | Hsiao-I Li | Backlight module |
US20060072315A1 (en) * | 2004-10-05 | 2006-04-06 | Byung-Woong Han | White light generating unit, backlight assembly having the same and liquid crystal display device having the same |
US7161136B1 (en) * | 2005-07-06 | 2007-01-09 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Light modulating input device for capturing user control inputs |
US7674028B2 (en) * | 2006-01-13 | 2010-03-09 | Avery Dennison Corporation | Light enhancing structures with multiple arrays of elongate features of varying characteristics |
US20090050454A1 (en) * | 2006-01-20 | 2009-02-26 | Nissha Printing Co., Ltd. | Capacitance type light-emitting switch and light-emitting switch element used for such capacitance type light-emitting switch |
US7876489B2 (en) * | 2006-06-05 | 2011-01-25 | Pixtronix, Inc. | Display apparatus with optical cavities |
US20080030650A1 (en) * | 2006-06-30 | 2008-02-07 | Kabushiki Kaisha Toshiba | Illumination apparatus and liquid crystal display apparatus |
US20080049445A1 (en) * | 2006-08-25 | 2008-02-28 | Philips Lumileds Lighting Company, Llc | Backlight Using High-Powered Corner LED |
US20080049450A1 (en) * | 2006-08-28 | 2008-02-28 | Sampsell Jeffrey B | Angle sweeping holographic illuminator |
US20080074402A1 (en) * | 2006-09-22 | 2008-03-27 | Rpo Pty Limited | Waveguide configurations for optical touch systems |
US20100026727A1 (en) * | 2006-10-06 | 2010-02-04 | Qualcomm Mems Technologies, Inc. | Optical loss structure integrated in an illumination apparatus |
US20090015753A1 (en) * | 2007-07-12 | 2009-01-15 | Wintek Corporation | Light guide place and light-diffusing structure thereof |
US7477809B1 (en) * | 2007-07-31 | 2009-01-13 | Hewlett-Packard Development Company, L.P. | Photonic guiding device |
US20100033988A1 (en) * | 2008-08-11 | 2010-02-11 | Kuan-Her Chiu | Edge lighting back light unit |
US20100051089A1 (en) * | 2008-09-02 | 2010-03-04 | Qualcomm Mems Technologies, Inc. | Light collection device with prismatic light turning features |
US20100053148A1 (en) * | 2008-09-02 | 2010-03-04 | Qualcomm Mems Technologies, Inc. | Light turning device with prismatic light turning features |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060274400A1 (en) * | 1995-11-06 | 2006-12-07 | Miles Mark W | Method and device for modulating light with optical compensation |
US7907319B2 (en) | 1995-11-06 | 2011-03-15 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light with optical compensation |
US9110289B2 (en) | 1998-04-08 | 2015-08-18 | Qualcomm Mems Technologies, Inc. | Device for modulating light with multiple electrodes |
US8928967B2 (en) | 1998-04-08 | 2015-01-06 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light |
US9025235B2 (en) | 2002-12-25 | 2015-05-05 | Qualcomm Mems Technologies, Inc. | Optical interference type of color display having optical diffusion layer between substrate and electrode |
US8111445B2 (en) | 2004-02-03 | 2012-02-07 | Qualcomm Mems Technologies, Inc. | Spatial light modulator with integrated optical compensation structure |
US9019590B2 (en) | 2004-02-03 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Spatial light modulator with integrated optical compensation structure |
US8045252B2 (en) | 2004-02-03 | 2011-10-25 | Qualcomm Mems Technologies, Inc. | Spatial light modulator with integrated optical compensation structure |
US7706050B2 (en) | 2004-03-05 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | Integrated modulator illumination |
US8861071B2 (en) | 2004-09-27 | 2014-10-14 | Qualcomm Mems Technologies, Inc. | Method and device for compensating for color shift as a function of angle of view |
US20060066783A1 (en) * | 2004-09-27 | 2006-03-30 | Sampsell Jeffrey B | Methods and devices for lighting displays |
US8045256B2 (en) * | 2004-09-27 | 2011-10-25 | Qualcomm Mems Technologies, Inc. | Method and device for compensating for color shift as a function of angle of view |
US7750886B2 (en) | 2004-09-27 | 2010-07-06 | Qualcomm Mems Technologies, Inc. | Methods and devices for lighting displays |
US20100149624A1 (en) * | 2004-09-27 | 2010-06-17 | Qualcomm Mems Technologies, Inc. | Method and device for compensating for color shift as a function of angle of view |
US8971675B2 (en) | 2006-01-13 | 2015-03-03 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
US20070196040A1 (en) * | 2006-02-17 | 2007-08-23 | Chun-Ming Wang | Method and apparatus for providing back-lighting in an interferometric modulator display device |
US7766498B2 (en) | 2006-06-21 | 2010-08-03 | Qualcomm Mems Technologies, Inc. | Linear solid state illuminator |
US7845841B2 (en) | 2006-08-28 | 2010-12-07 | Qualcomm Mems Technologies, Inc. | Angle sweeping holographic illuminator |
US8107155B2 (en) | 2006-10-06 | 2012-01-31 | Qualcomm Mems Technologies, Inc. | System and method for reducing visual artifacts in displays |
US7855827B2 (en) | 2006-10-06 | 2010-12-21 | Qualcomm Mems Technologies, Inc. | Internal optical isolation structure for integrated front or back lighting |
US20100026727A1 (en) * | 2006-10-06 | 2010-02-04 | Qualcomm Mems Technologies, Inc. | Optical loss structure integrated in an illumination apparatus |
US20080084602A1 (en) * | 2006-10-06 | 2008-04-10 | Gang Xu | Internal optical isolation structure for integrated front or back lighting |
US20100141557A1 (en) * | 2006-10-06 | 2010-06-10 | Qualcomm Mems Technologies, Inc. | Light guide |
US8872085B2 (en) | 2006-10-06 | 2014-10-28 | Qualcomm Mems Technologies, Inc. | Display device having front illuminator with turning features |
US20090190373A1 (en) * | 2006-10-06 | 2009-07-30 | Qualcomm Mems Technologies, Inc. | Illumination device with built-in light coupler |
US20090231877A1 (en) * | 2006-10-06 | 2009-09-17 | Qualcomm Mems Technologies, Inc. | Thin light bar and method of manufacturing |
US8061882B2 (en) | 2006-10-06 | 2011-11-22 | Qualcomm Mems Technologies, Inc. | Illumination device with built-in light coupler |
US9019183B2 (en) | 2006-10-06 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Optical loss structure integrated in an illumination apparatus |
US8368981B2 (en) | 2006-10-10 | 2013-02-05 | Qualcomm Mems Technologies, Inc. | Display device with diffractive optics |
US7864395B2 (en) | 2006-10-27 | 2011-01-04 | Qualcomm Mems Technologies, Inc. | Light guide including optical scattering elements and a method of manufacture |
US20080100900A1 (en) * | 2006-10-27 | 2008-05-01 | Clarence Chui | Light guide including optical scattering elements and a method of manufacture |
US7777954B2 (en) | 2007-01-30 | 2010-08-17 | Qualcomm Mems Technologies, Inc. | Systems and methods of providing a light guiding layer |
US20080180956A1 (en) * | 2007-01-30 | 2008-07-31 | Qualcomm Mems Technologies, Inc. | Systems and methods of providing a light guiding layer |
US20080179173A1 (en) * | 2007-01-31 | 2008-07-31 | Samsung Electronics Co., Ltd. | Keypad and keypad assembly |
US20080267572A1 (en) * | 2007-04-30 | 2008-10-30 | Qualcomm Mems Technologies, Inc. | Dual film light guide for illuminating displays |
US7733439B2 (en) | 2007-04-30 | 2010-06-08 | Qualcomm Mems Technologies, Inc. | Dual film light guide for illuminating displays |
US8416197B2 (en) | 2007-06-15 | 2013-04-09 | Ricoh Co., Ltd | Pen tracking and low latency display updates on electronic paper displays |
US20080309612A1 (en) * | 2007-06-15 | 2008-12-18 | Ricoh Co., Ltd. | Spatially Masked Update for Electronic Paper Displays |
US8913000B2 (en) | 2007-06-15 | 2014-12-16 | Ricoh Co., Ltd. | Video playback on electronic paper displays |
US20080309636A1 (en) * | 2007-06-15 | 2008-12-18 | Ricoh Co., Ltd. | Pen Tracking and Low Latency Display Updates on Electronic Paper Displays |
US8466927B2 (en) | 2007-06-15 | 2013-06-18 | Ricoh Co., Ltd. | Full framebuffer for electronic paper displays |
US20080309657A1 (en) * | 2007-06-15 | 2008-12-18 | Ricoh Co., Ltd. | Independent Pixel Waveforms for Updating electronic Paper Displays |
US20080309674A1 (en) * | 2007-06-15 | 2008-12-18 | Ricoh Co., Ltd. | Full Framebuffer for Electronic Paper Displays |
US8355018B2 (en) * | 2007-06-15 | 2013-01-15 | Ricoh Co., Ltd. | Independent pixel waveforms for updating electronic paper displays |
US8203547B2 (en) | 2007-06-15 | 2012-06-19 | Ricoh Co. Ltd | Video playback on electronic paper displays |
US8319766B2 (en) | 2007-06-15 | 2012-11-27 | Ricoh Co., Ltd. | Spatially masked update for electronic paper displays |
US8279232B2 (en) | 2007-06-15 | 2012-10-02 | Ricoh Co., Ltd. | Full framebuffer for electronic paper displays |
US20090147332A1 (en) * | 2007-12-07 | 2009-06-11 | Quanlcomm Incorporated | Decoupled holographic film and diffuser |
US8068710B2 (en) * | 2007-12-07 | 2011-11-29 | Qualcomm Mems Technologies, Inc. | Decoupled holographic film and diffuser |
US8798425B2 (en) | 2007-12-07 | 2014-08-05 | Qualcomm Mems Technologies, Inc. | Decoupled holographic film and diffuser |
US20090201571A1 (en) * | 2008-02-12 | 2009-08-13 | Qualcomm Mems Technologies, Inc. | Integrated front light diffuser for reflective displays |
US8040589B2 (en) | 2008-02-12 | 2011-10-18 | Qualcomm Mems Technologies, Inc. | Devices and methods for enhancing brightness of displays using angle conversion layers |
US8300304B2 (en) | 2008-02-12 | 2012-10-30 | Qualcomm Mems Technologies, Inc. | Integrated front light diffuser for reflective displays |
US20090255569A1 (en) * | 2008-04-11 | 2009-10-15 | Qualcomm Mems Technologies, Inc. | Method to improve pv aesthetics and efficiency |
US8049951B2 (en) | 2008-04-15 | 2011-11-01 | Qualcomm Mems Technologies, Inc. | Light with bi-directional propagation |
US8118468B2 (en) | 2008-05-16 | 2012-02-21 | Qualcomm Mems Technologies, Inc. | Illumination apparatus and methods |
US20090284985A1 (en) * | 2008-05-16 | 2009-11-19 | Qualcomm Mems Technologies, Inc. | Illumination apparatus and methods |
US20090303746A1 (en) * | 2008-06-04 | 2009-12-10 | Qualcomm Mems Technologies, Inc. | Edge shadow reducing methods for prismatic front light |
US20090323144A1 (en) * | 2008-06-30 | 2009-12-31 | Qualcomm Mems Technologies, Inc. | Illumination device with holographic light guide |
US9121979B2 (en) | 2009-05-29 | 2015-09-01 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
US8979349B2 (en) | 2009-05-29 | 2015-03-17 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
US20100302218A1 (en) * | 2009-05-29 | 2010-12-02 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
US8573784B2 (en) | 2009-06-22 | 2013-11-05 | Industrial Technology Research Institute | Imaging apparatus having an optical sensor |
US8810528B2 (en) | 2009-12-29 | 2014-08-19 | Qualcomm Mems Technologies, Inc. | Illumination device with metalized light-turning features |
US8866757B2 (en) | 2009-12-29 | 2014-10-21 | Qualcomm Mems Technologies, Inc. | Coated light-turning feature with auxiliary structure |
US20110157058A1 (en) * | 2009-12-29 | 2011-06-30 | Qualcomm Mems Technologies, Inc. | Coated light-turning feature with auxiliary structure |
US9182851B2 (en) | 2009-12-29 | 2015-11-10 | Qualcomm Mems Technologies, Inc. | Illumination device with metalized light-turning features |
US20110157093A1 (en) * | 2009-12-29 | 2011-06-30 | Qualcomm Mems Technologies, Inc. | Illumination device with metalized light-turning features |
US9817534B2 (en) | 2009-12-29 | 2017-11-14 | Snaptrack, Inc. | Illumination device with metalized light-turning features |
TWI424251B (en) * | 2009-12-31 | 2014-01-21 | Ind Tech Res Inst | Light-emitting unit array, mothod for fabricating the same and imaging apparatus |
US8902484B2 (en) | 2010-12-15 | 2014-12-02 | Qualcomm Mems Technologies, Inc. | Holographic brightness enhancement film |
US20120218778A1 (en) * | 2011-02-28 | 2012-08-30 | Kabushiki Kaisha Toshiba | Display element and display device |
US9329382B2 (en) * | 2011-02-28 | 2016-05-03 | Kabushiki Kaisha Toshiba | Display element and display device including a light guide and light extractor |
US20130050043A1 (en) * | 2011-08-31 | 2013-02-28 | The Boeing Company | Artificial magnetic conductor using complementary tilings |
US9733416B2 (en) * | 2011-11-08 | 2017-08-15 | Philips Lighting Holding B.V. | Lighting unit comprising a waveguide |
US20140307466A1 (en) * | 2011-11-08 | 2014-10-16 | KONINKLIJKE PHILIPS N.V. a corporation | Lighting unit comprising a waveguide |
US10042109B2 (en) | 2011-11-08 | 2018-08-07 | Philips Lighting Holding B.V. | Lighting unit comprising a waveguide |
WO2013078048A1 (en) * | 2011-11-22 | 2013-05-30 | Qualcomm Mems Technologies, Inc. | Methods and apparatuses for hiding optical contrast features |
US10310166B2 (en) * | 2015-04-10 | 2019-06-04 | Japan Display Inc. | Display device, lightguide plate, and manufacturing method thereof |
US10901141B2 (en) | 2015-04-10 | 2021-01-26 | Japan Display Inc. | Display device, lightguide plate, and manufacturing method thereof |
WO2020115735A1 (en) * | 2018-12-05 | 2020-06-11 | Elbit Systems Ltd | Display illumination optics |
IL263519B (en) * | 2018-12-05 | 2022-07-01 | Elbit Systems Ltd | Display illumimation optics |
US11899235B2 (en) | 2018-12-05 | 2024-02-13 | Elbit Systems Ltd. | Display illumination optics |
Also Published As
Publication number | Publication date |
---|---|
CN101535713A (en) | 2009-09-16 |
CN101535713B (en) | 2013-09-11 |
WO2008045218A1 (en) | 2008-04-17 |
US8107155B2 (en) | 2012-01-31 |
KR20090089302A (en) | 2009-08-21 |
JP2010507103A (en) | 2010-03-04 |
EP2069684A1 (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8107155B2 (en) | System and method for reducing visual artifacts in displays | |
US7719500B2 (en) | Reflective display pixels arranged in non-rectangular arrays | |
US8023167B2 (en) | Backlight displays | |
US7768690B2 (en) | Backlight displays | |
US7845841B2 (en) | Angle sweeping holographic illuminator | |
US7948457B2 (en) | Systems and methods of actuating MEMS display elements | |
US7603001B2 (en) | Method and apparatus for providing back-lighting in an interferometric modulator display device | |
US7304784B2 (en) | Reflective display device having viewable display on both sides | |
US7782517B2 (en) | Infrared and dual mode displays | |
US20090303746A1 (en) | Edge shadow reducing methods for prismatic front light | |
US20090161192A1 (en) | Current mode display driver circuit realization feature | |
US8194056B2 (en) | Method and system for writing data to MEMS display elements | |
US8118468B2 (en) | Illumination apparatus and methods | |
US8284476B2 (en) | Backlight utilizing desiccant light turning array | |
US8310421B2 (en) | Display drive switch configuration | |
US7791783B2 (en) | Backlight displays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: QUALCOMM MEMS TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BITA, ION;XU, GANG;MIENKO, MARK;AND OTHERS;REEL/FRAME:018614/0942 Effective date: 20061130 |
|
AS | Assignment |
Owner name: QUALCOMM INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUALCOMM MEMS TECHNOLOGIES, INC.;REEL/FRAME:019493/0860 Effective date: 20070523 Owner name: QUALCOMM INCORPORATED,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUALCOMM MEMS TECHNOLOGIES, INC.;REEL/FRAME:019493/0860 Effective date: 20070523 |
|
AS | Assignment |
Owner name: QUALCOMM MEMS TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUALCOMM INCORPORATED;REEL/FRAME:020571/0253 Effective date: 20080222 Owner name: QUALCOMM MEMS TECHNOLOGIES, INC.,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUALCOMM INCORPORATED;REEL/FRAME:020571/0253 Effective date: 20080222 |
|
AS | Assignment |
Owner name: QUALCOMM MEMS TECHNOLOGIES, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECTIVE ASSIGNMENT TO CORRECT THE SPELLING OF INVENTOR'S NAME FROM MARK MIENKO TO MAREK MIENKO (FIRST NAME IS MAREK) PREVIOUSLY RECORDED ON REEL 018614 FRAME 0942;ASSIGNORS:BITA, ION;XU, GANG;MIENKO, MAREK;AND OTHERS;REEL/FRAME:021675/0813;SIGNING DATES FROM 20080924 TO 20080927 Owner name: QUALCOMM MEMS TECHNOLOGIES, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECTIVE ASSIGNMENT TO CORRECT THE SPELLING OF INVENTOR'S NAME FROM MARK MIENKO TO MAREK MIENKO (FIRST NAME IS MAREK) PREVIOUSLY RECORDED ON REEL 018614 FRAME 0942. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF PATENT APPLICATION;ASSIGNORS:BITA, ION;XU, GANG;MIENKO, MAREK;AND OTHERS;SIGNING DATES FROM 20080924 TO 20080927;REEL/FRAME:021675/0813 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SNAPTRACK, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUALCOMM MEMS TECHNOLOGIES, INC.;REEL/FRAME:039891/0001 Effective date: 20160830 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200131 |