US20080058376A1 - Piperidines - Google Patents
Piperidines Download PDFInfo
- Publication number
- US20080058376A1 US20080058376A1 US11/764,125 US76412507A US2008058376A1 US 20080058376 A1 US20080058376 A1 US 20080058376A1 US 76412507 A US76412507 A US 76412507A US 2008058376 A1 US2008058376 A1 US 2008058376A1
- Authority
- US
- United States
- Prior art keywords
- substituted
- unsubstituted
- member selected
- benzoimidazol
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 [1*]N1Ccc(C)CC1 Chemical compound [1*]N1Ccc(C)CC1 0.000 description 32
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
Definitions
- This invention relates to the use of certain piperidine compounds as sodium channel inhibitors and to the treatment of neuropathic pain by the inhibition of sodium channels. Additionally, this invention relates to novel piperidine-based compounds that are useful as sodium channel inhibitors.
- Sodium channel-blocking agents have been reported to be effective in the treatment of various disease states, and have found particular use as local anesthetics and in the treatment of cardiac arrhythmias. It has also been reported that sodium channel-blocking agents may also be useful in the treatment of pain, including neuropathic pain; see, for example, Tanelian et al. Pain Forum. 4(2), 75-80 (1995). Preclinical evidence demonstrates that sodium channel-blocking agents selectively suppress abnormal ectopic neural firing in injured peripheral and central neurons, and it is via this mechanism that they are believed to be useful for relieving pain. Consistent with this hypothesis, it has been shown that sodium channels accumulate in the peripheral nerve at sites of axonal injury (Devor et al. J. Neurosci. 132: 1976 (1993)). Alterations in either the level of expression or distribution of sodium channels within an injured nerve, therefore, have a major influence on the pathophysiology of pain associated with this type of trauma.
- TTX voltage-dependent, tetrodotoxin
- PN3 Na v 1.8
- TTX tetrodotoxin
- PN3 Na v 1.8
- Clinical manifestations of neuropathic pain include a sensation of burning or electric shock, feelings of bodily distortion, allodynia and hyperalgesia.
- PN3 is a member of a family of voltage-gated sodium channel alpha subunits. Names for this family include SCN, SCNA, and Na v x.x. There are currently 10 known members falling into two subfamilies Na v 1 (all but SCN6A) and Na v 2 (SCN6A). The human channel was cloned by Rabert et al. ( Pain 78(2): 107-114 (1998)). PN3 of other species has also been cloned.
- PN3-null mutant mice exhibit a pronounced analgesia to mechanical noxious stimuli (Akopian A. N. et al., Nature Neurosci., 2(6): 541-548 (1999)).
- Selective “knock down” of PN3 protein in the rat dorsal root ganglion with specific antisense oligodeoxynucleotides prevents hyperalgesia and allodynia caused by either chronic nerve or tissue injury (Porreca et al., Proc. Nat. Acad. Sci., USA, 96: 7640-7644 (1999)).
- the biophysical properties of PN3 make it ideally suited to sustain repetitive firing of sensory neurons at the depolarized potentials characteristic of injured peripheral nerves.
- neuropathic pain patients with neuropathic pain do not respond to non-steroidal anti-inflammatory drugs (NSAIDS) and resistance or insensitivity to opiates is common. Most other treatments have limited efficacy or undesirable side effects. Mannion et al., Lancet, 353: 1959-1964 (1999) from the Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School wrote: “There is no treatment to prevent the development of neuropathic pain, nor to adequately, predictably and specifically control established neuropathic pain.”
- NSAIDS non-steroidal anti-inflammatory drugs
- PN3 is a promising molecular target for the treatment of neuropathic pain.
- One of the most attractive features of PN3 is the highly restricted and peripheral nature of its expression. Antisense studies have revealed no overt (particularly CNS-related) adverse effects, consistent with the localized, peripheral distribution of the channel (Novakovic et al., J. Neurosci., 18(6): 2174-2187 (1998)). Additionally, the high activation threshold of PN3 suggests that the channel may be relatively uninvolved in normal nociception.
- VGSC voltage-gated sodium channel
- the compounds of the invention are potent inhibitors of PN3 channels.
- Ohkawa et al. have described a class of cyclic ethers that are of use as sodium channel blockers (U.S. Pat. No. 6,172,085).
- gabapentin is the market leading treatment for neuropathic pain.
- epilepsy its mechanism of action for pain is unknown. It is a very safe, easy to use drug, which contributes to its sales.
- Efficacy for neuropathic pain is not impressive, as few as only 30% of patients respond to gabapentin treatment.
- Carbamazepine is also used to treat neuropathic pain.
- the present invention provides such compounds, methods of using them, and compositions that include the compounds.
- piperidines are potent inhibitors of sodium channels.
- the invention is exemplified by reference to the inhibition of sodium channels that are localized in the peripheral nervous system, and in particular those inhibitors that are selective inhibitors of PN3, and are useful for treating neuropathic pain through the inhibition of sodium ion flux through channels that include the PN3 subunit.
- the focus of the discussion is for clarity of illustration only.
- the compounds and methods of the present invention are useful for treating diseases in which blocking or inhibiting one or more PN3 ion channel provides relief from the disease.
- PN3 ion channel provides relief from the disease.
- the present invention is of use for treating both inflammatory and neuropathic pain.
- the present invention provides compounds which are useful in the treatment of diseases through the inhibition of sodium ion flux through voltage-dependent sodium channels. More particularly, the invention provides compounds, compositions and methods that are useful in the treatment of central or peripheral nervous system disorders, particularly pain and chronic pain.
- the present invention provides compounds according to Formula I:
- R 1 represents a moiety is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted heteroaryl,
- R 2 represents substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, alkoxy, or —NR 15 R 16 .
- R 15 and R 16 are each members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl and R 15 and R 16 taken together with the nitrogen atom to which they are attached form a 4- to 8-membered heterocyclic ring.
- R 3 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and NR 15 R 16 .
- R 4 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, and NR 15 R 16 .
- R 5 is a member selected from H, nitro, substituted or unsubstituted alkyl, cyano, acyl, and SO 2 R 11 .
- R 11 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
- Y is a member selected from O, C—NO 2 and S.
- Z is a member selected from: in which A, D, E and M are independently selected from CR 12 , N, and N-oxide.
- R 12 is a member selected from hydrogen, halo, amino, hydroxy, cyano, nitro, acyl, alkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroaryl, and at least two of A, D, E and M is a selected from CR 12 , and at most one of A, D, E, and M is N-oxide.
- X is a member selected from O, C—NO 2 , S and NR 10 .
- R 6 , R 7 and R 8 are members independently selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aminoalkyl, and R 7 and R 8 together with the atom to which they are joined are optionally joined to form a 4- to 8-membered heterocycloalkyl ring.
- R 9 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted and unsubstituted heterocycloalkyl, OR 20 , and SR 20 .
- R 20 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, and substituted and unsubstituted heterocycloalkyl.
- R 10 is a member selected from hydrogen cyano, nitro, acyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted and unsubstituted heteroaryl and SO 2 R 11 .
- the dashed bond marked a is either a single or a double bond; and n is and integer selected from 0, 1, and 2.
- the present invention provides pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound provided above.
- the present invention provides a method for inhibition of ion flux through voltage dependent sodium channels, comprising contacting a cell containing the target ion channels with a compound of the formula provided above.
- the present invention provides a method for the treatment of diseases through inhibition of ion flux through voltage dependent sodium channels, the method comprising treating the host with an effective amount of a sodium channel inhibiting compound of the formula provided above.
- FIG. 1 displays structures of representative compounds of the invention.
- CHO Chinese hamster ovary
- EBSS Earl's Balanced Salt Solution
- SDS sodium dodecyl sulfate
- Et 3 N triethylamine
- MeOH methanol
- DMSO dimethylsulfoxide
- pain refers to all categories of pain, including pain that is described in terms of stimulus or nerve response, e.g., somatic pain (normal nerve response to a noxious stimulus) and neuropathic pain (abnormal response of a injured or altered sensory pathway, often without clear noxious input); pain that is categorized temporally, e.g., chronic pain and acute pain; pain that is categorized in terms of its severity, e.g., mild, moderate, or severe; and pain that is a symptom or a result of a disease state or syndrome, e.g., inflammatory pain, cancer pain, AIDS pain, arthropathy, migraine, trigeminal neuralgia, cardiac ischaemia, and diabetic neuropathy (see, e.g., Harrison's Principles of Internal Medicine , pp.
- Somatic pain refers to a normal nerve response to a noxious stimulus such as injury or illness, e.g., trauma, burn, infection, inflammation, or disease process such as cancer, and includes both cutaneous pain (e.g., skin, muscle or joint derived) and visceral pain (e.g., organ derived).
- a noxious stimulus such as injury or illness, e.g., trauma, burn, infection, inflammation, or disease process such as cancer
- cutaneous pain e.g., skin, muscle or joint derived
- visceral pain e.g., organ derived
- Neurode pain refers to pain resulting from injury to or chronic changes in peripheral and/or central sensory pathways, where the pain often occurs or persists without an obvious noxious input.
- Bio medium refers to both in vitro and in vivo biological milieus.
- exemplary in vitro “biological media” include, but are not limited to, cell culture, tissue culture, homogenates, plasma and blood. In vivo applications are generally performed in mammals, preferably humans.
- Compound of the invention refers to the compounds discussed herein, pharmaceutically acceptable salts and prodrugs of these compounds.
- “Inhibiting” and “blocking,” are used interchangeably herein to refer to the partial or full blockade of a PN3 channel by a compound of the invention, which leads to a decrease in ion flux either into or out of a cell in which a PN3 channel is found.
- substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents which would result from writing the structure from right to left, e.g., —CH 2 O— is intended to also recite —OCH 2 —; —NHS(O) 2 — is also intended to represent. —S(O) 2 HN—, etc.
- alkyl by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. C 1 -C 10 means one to ten carbons).
- saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like.
- An unsaturated alkyl group is one having one or more double bonds or triple bonds.
- alkyl groups examples include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.
- alkyl unless otherwise noted, is also meant to include those derivatives of alkyl defined in more detail below, such as “heteroalkyl.”
- Alkyl groups, which are limited to hydrocarbon groups are termed “homoalkyl”.
- alkylene by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by —CH 2 CH 2 CH 2 CH 2 —, and further includes those groups described below as “heteroalkylene.”
- an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention.
- a “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
- alkoxy alkylamino and “alkylthio” (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively.
- heteroalkyl by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and at least one heteroatom selected from O, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
- the heteroatom(s) O, N and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule.
- Examples include, but are not limited to, —CH 2 —CH 2 —O—CH 3 , —CH 2 —CH 2 —NH—CH 3 , —CH 2 —CH 2 —N(CH 3 )—CH 3 , —CH 2 —S—CH 2 —CH 3 , —CH 2 —CH 2 , —S(O)—CH 3 , —CH 2 —CH 2 —S(O) 2 —CH 3 , —CH ⁇ CH—O—CH 3 , —Si(CH 3 ) 3 , —CH 2 —CH ⁇ N—OCH 3 , and —CH ⁇ CH—N(CH 3 )—CH 3 .
- heteroalkylene by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH 2 —CH 2 —S—CH 2 —CH 2 — and —CH 2 —S—CH 2 —CH 2 —NH—CH 2 —.
- heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula —C(O) 2 R′— represents both —C(O) 2 R′— and —R′C(O) 2 —.
- an “acyl substituent” is also selected from the group set forth above.
- the term “acyl substituent” refers to groups attached to, and fulfilling the valence of a carbonyl carbon that is either directly or indirectly attached to the polycyclic nucleus of the compounds of the present invention.
- cycloalkyl and “heterocycloalkyl”, by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of “alkyl” and “heteroalkyl”, respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
- heterocycloalkyl examples include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
- halo or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as “haloalkyl,” are meant to include monohaloalkyl and polyhaloalkyl.
- halo(C 1 -C 4 )alkyl is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.
- aryl means, unless otherwise stated, a polyunsaturated, aromatic, hydrocarbon substituent which can be a single ring or multiple rings (preferably from 1 to 3 rings) which are fused together or linked covalently.
- heteroaryl refers to aryl groups (or rings) that contain from one to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized.
- a heteroaryl group can be attached to the remainder of the molecule through a heteroatom.
- Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinoly
- aryl when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above.
- arylalkyl is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like).
- alkyl group e.g., benzyl, phenethyl, pyridylmethyl and the like
- an oxygen atom e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naph
- alkyl substituents are generally referred to as “alkyl substituents” and “heteroalkyl substituents,” respectively, and they can be one or more of a variety of groups selected from, but not limited to: -hydrogen, —OR′, ⁇ O, ⁇ NR′′′, ⁇ N—OR′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′C(O)R′′, —NR′′′—C(O)
- R′, R′′, R′′′ each preferably independently refer to hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, (e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups), substituted or unsubstituted heteroaryl and substituted or unsubstituted arylalkyl.
- R′′′′ refers to hydrogen, alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, —CN, —NO 2 and —S(O) 2 R′.
- each of the R groups is independently selected as are each R′, R′′, R′′′ and R′′′′ groups when more than one of these groups is present.
- R′ and R′′ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring.
- —NR′R′′ is meant to include, but not be limited to, 1-pyrrolidinyl, 1-piperidinyl, 1-piperazinyl and 4-morpholinyl.
- alkyl is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., —CF 3 and —CH 2 CF 3 ) and acyl (e.g., —C(O)CH 3 , —C(O)CF 3 , —C(O)CH 2 OCH 3 , and the like).
- aryl substituents and heteroaryl substituents are generally referred to as “aryl substituents” and “heteroaryl substituents,” respectively and are varied and selected from, for example: hydrogen, —OR′, —C ⁇ NR′′′′NR′R′′, —NR′′′SO 2 NR′R′′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′′′—C(O)NR′R′′, —NR′′C(O) 2 R′, —NR′′′—C(NR′R′′) ⁇ NR′′′′, —S(O)R′, —S(O) 2 R′, —S(O) 2 NR′R′′′′
- R′′′′ refers to hydrogen, alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, —CN, —NO 2 and —S(O) 2 R′.
- each of the R groups is independently selected as are each R′, R′′, R′′′ and R′′′′ groups when more than one of these groups is present.
- R′ and R′′ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring.
- —NR′R′′ is meant to include, but not be limited to, 1-pyrrolidinyl, 1-piperidinyl, 1-piperazinyl and 4-morpholinyl.
- Two of the aryl substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)—(CRR′) q -U-, wherein T and U are independently —NR—, —O—, —CRR′— or a single bond, and q is an integer of from 0 to 3.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH 2 ) r —B—, wherein A and B are independently —CRR′—, —O—, —NR—, —S—, —S(O)—, —S(O) 2 —, —S(O) 2 NR′— or a single bond, and r is an integer of from 1 to 4.
- One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula —(CRR′) s —X—(CR′′R′′′) d —, where s and d are independently integers of from 0 to 3, and X is —O—, —NR′—, —S—, —S(O)—, —S(O) 2 —, or —S(O) 2 NR′—.
- the substituents R, R′, R′′ and R′′′ are preferably independently selected from hydrogen or substituted or unsubstituted (C 1 -C 6 )alkyl.
- heteroatom includes oxygen (O), nitrogen (N), sulfur (S) and silicon (Si).
- R is a general abbreviation that represents a substituent group that is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocycloalkyl groups.
- salts includes salts of the active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein.
- base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent.
- pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt.
- acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent.
- Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like.
- inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and
- salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge et al., “Pharmaceutical Salts”, Journal of Pharmaceutical Science, 1977, 66, 1-19).
- Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.
- the neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner.
- the parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the purposes of the present invention.
- the present invention provides compounds, which are in a prodrug form.
- Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention.
- prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.
- Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
- Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the racemates, diastereomers, geometric isomers and individual isomers are encompassed within the scope of the present invention.
- the compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds.
- the compounds may be radiolabeled with radioactive isotopes, such as for example tritium ( 3 H), iodine-125 ( 125 I) or carbon-14 ( 14 C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are intended to be encompassed within the scope of the present invention.
- the present invention provides compounds according to Formula I:
- R 1 represents a moiety is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted heteroaryl,
- R 2 represents substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, alkoxy, or —NR 15 R 16 .
- R 15 and R 16 are each members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl and R 15 and R 16 taken together with the nitrogen atom to which they are attached form a 4- to 8-membered heterocyclic ring.
- R 3 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and NR 15 R 16 .
- R 4 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, and NR 15 R 16 .
- R 5 is a member selected from H, nitro, substituted or unsubstituted alkyl, cyano, acyl, and SO 2 R 11 .
- R 11 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
- Y is a member selected from O, C—NO 2 and S.
- Z is a member selected from: in which A, D, E and M are independently selected from CR 12 , N, and N-oxide.
- R 12 is a member selected from hydrogen, halo, amino, hydroxy, cyano, nitro, acyl, alkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroaryl, and at least two of A, D, E and M is a selected from CR 12 , and at most one of A, D, E, and M is N-oxide.
- X is a member selected from O, C—NO 2 , S and NR 10 .
- R 6 , R 7 and R 8 are members independently selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aminoalkyl, and R 7 and R 8 together with the atom to which they are joined are optionally joined to form a 4- to 8-membered heterocycloalkyl ring.
- R 9 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted and unsubstituted heterocycloalkyl, OR 20 , and SR 20 .
- R 20 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, and substituted and unsubstituted heterocycloalkyl.
- R 10 is a member selected from hydrogen cyano, nitro, acyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted and unsubstituted heteroaryl and SO 2 R 11 .
- the dashed bond marked a is either a single or a double bond; and n is and integer selected from 0, 1, and 2.
- R 1 is selected from substituted or unsubstituted alkyl, and R 3 is preferably substituted aryl. Even more preferred are those species in which Y is O.
- R 7 and R 8 are members independently selected from H, and substituted or unsubstituted alkyl.
- Example 12 and FIG. 1 Activities towards PN3 of selected compounds of the invention are provided in Table 1.
- the compound numbers in Table 1 are cross-referenced to Example 12.
- compounds of the invention that are poly- or multi-valent species, including, for example, species such as dimers, trimers, tetramers and higher homologs of the compounds of the invention or reactive analogues thereof.
- the poly- and multi-valent species can be assembled from a single species or more than one species of the invention.
- a dimeric construct can be “homo-dimeric” or “heterodimeric.”
- poly- and multi-valent constructs in which a compound of the invention or a reactive analogue thereof, is attached to an oligomeric or polymeric framework e.g., polylysine, dextran, hydroxyethyl starch and the like
- the framework is preferably polyfunctional (i.e. having an array of reactive sites for attaching compounds of the invention).
- the framework can be derivatized with a single species of the invention or more than one species of the invention.
- the present invention includes compounds within the motif set forth in Formulae I, which are functionalized to afford compounds having water-solubility that is enhanced relative to analogous compounds that are not similarly functionalized.
- any of the substituents set forth herein can be replaced with analogous radicals that have enhanced water solubility.
- additional water solubility is imparted by substitution at a site not essential for the activity towards the ion channel of the compounds set forth herein with a moiety that enhances the water solubility of the parent compounds.
- Such methods include, but are not limited to, functionalizing an organic nucleus with a permanently charged moiety, e.g., quaternary ammonium, or a group that is charged at a physiologically relevant pH, e.g. carboxylic acid, amine.
- Other methods include, appending to the organic nucleus hydroxyl- or amine-containing groups, e.g. alcohols, polyols, polyethers, and the like.
- Representative examples include, but are not limited to, polylysine, polyethyleneimine, poly(ethyleneglycol) and poly(propyleneglycol). Suitable functionalization chemistries and strategies for these compounds are known in the art.
- Compounds of the present invention can be prepared using readily available starting materials or known intermediates.
- starting materials available from commercial suppliers include, but are not limited to 1-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one, 5-chloro-1-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one, 1-methyl-3-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one, 1-piperidin-4-yl-1H-benzoimidazole hydrochloride, 2-methyl-1-piperidin-4-yl-1H-benzoimidazole hydrochloride, 7-Fluoro-1-piperidin-4-yl-1H-benzoimidazole hydrochloride and 2-phenyl-1-piperidin-4-yl-1H-benzoimidazole hydrochloride.
- Scheme 1 sets forth an exemplary synthetic scheme for the preparation of compounds of the invention.
- acylating agents include, but are not limited to, R 2 CO 2 H (e.g.; benzoic acid) and R 2 COCl (e.g.; benzoyl chloride and benzyl chloroformate).
- R 2 CO 2 H e.g.; benzoic acid
- R 2 COCl e.g.; benzoyl chloride and benzyl chloroformate
- appropriate sulfonylating agents include, but are not limited to, R 3 SO 2 Cl (e.g.; benzenesulfonyl chloride) and R 3 SO 2 F (e.g.; benzenesulfonyl fluororide).
- Still further compounds of the invention are available through the synthetic pathway set forth in Scheme 3.
- Scheme 4 sets forth an exemplary synthetic scheme for producing compounds of the invention in which the nitrogen of the cyclic urea system is not alkylated.
- starting piperidine 1 is treated with an alkylating, sulfonylating or acylating agent (i.e.; R 1 —X) to produce compound 16.
- alkylating, sulfonylating or acylating agent i.e.; R 1 —X
- appropriate acylating agents include, but are not limited to, R 2 CO 2 H (i.e.; benzoic acid) and R 2 COCl (i.e.; benzoyl chloride and benzyl chloroformate).
- sulfonylating agents include, but are not limited to, R 3 SO 2 Cl (i.e; benzenesulfonyl chloride) and R 3 SO 2 F (i.e.; benzenesulfonyl fluororide).
- Scheme 5 sets forth an exemplary synthetic scheme for producing compounds of the invention in which the R 1 is R 4 is —NR 15 R 16 and R 5 is cyano.
- R 1 is R 4 is —NR 15 R 16 and R 5 is cyano.
- starting piperidine 1 is treated with diphenyl N-cyanocarbonimidate to produce compound 17.
- Compound 17 may be made to react with amine HNR 15 R 16 to produce compound 18.
- Scheme 6 sets forth an exemplary synthetic scheme for producing compounds of the invention in which R 1 is and R 3 is —NR 15 R 16 .
- starting piperidine 1 is made to react with oxazolidinone intermediate 19 to produce compound 20.
- Methods used to produce intermediate 19 are known in the literature.
- alkylating, sulfonyating and acylating agents used in the reaction pathway set forth in Schemes 1-4 are of essentially any structure, e.g., substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl or substituted and unsubstituted heteroalkyl.
- leaving groups, X include, but are not limited to, halides, sulfonic esters, oxonium ions, alkyl perchlorates, ammonioalkanesulfonate esters, alkylfluorosulfonates and fluorinated compounds (e.g., triflates, nonaflates, tresylates) and the like.
- an aromatic amine of the invention is converted to the corresponding isothiocyanate by the action of thiophosgene.
- the resulting isothiocyanate is coupled to an amine of the invention, thereby forming either a homo- or heterodimeric species.
- the isothiocyanate is coupled with an amine-containing backbone, such as polylysine, thereby forming a conjugate between a polyvalent framework and a compound of the invention.
- the polylysine is underlabeled with the first isothiocyanate and subsequently labeled with one or more different isothiocyanates.
- a mixture of isothiocyanates is added to the backbone. Purification proceeds by, for example, size exclusion chromatography, dialysis, nanofiltration and the like.
- PN3 monomers as well as PN3 alleles and polymorphic variants are subunits of sodium channels.
- the activity of a sodium channel comprising PN3 subunits can be assessed using a variety of in vitro and in vivo assays, e.g., measuring current, measuring membrane potential, measuring ion flux, e.g., sodium or guanidinium, measuring sodium concentration, measuring second messengers and transcription levels, and using e.g., voltage-sensitive dyes, radioactive tracers, and patch-clamp electrophysiology.
- a number of experimental models in the rat are appropriate for assessing the efficacy of the compounds of the invention.
- the tight ligation of spinal nerves described by Kim et al., Pain 50: 355-363 (1992) can be used to experimentally determine the effect of the compounds of the invention on a PN3 channel.
- a sodium channel blockade in vitro assay can be used to determine the effectiveness of compounds of Formula I as sodium channel blockers in an in vitro model by the inhibition of compound action potential propagation in isolated nerve preparations (Kourtney and Stricharz, L OCAL A NESTHETICS , Springer-Verlag, New York, 1987).
- the mechanical allodynia in vivo assay is also of use in determining the efficacy of compounds of the invention (Kim and Chung Pain 50:355 (1992)). Mechanical sensitivity can be assessed using a procedure described by Chaplan et al., J. Neurosci. Methods 53: 55-63 (1994). Other assays of use are known to those of skill in the art. See, for example, Loughhead et al., U.S. Pat. No. 6,262,078.
- Inhibitors of the PN3 sodium channels can be tested using biologically active recombinant PN3, or naturally occurring TTX-resistant sodium channels, or by using native cells, like cells from the nervous system expressing a PN3 channel.
- PN3 channels can be isolated, co-expressed or expressed in a cell, or expressed in a membrane derived from a cell. In such assays, PN3 is expressed alone to form a homomeric sodium channel or is co-expressed with a second subunit (e.g., another PN3 family member) so as to form a heteromeric sodium channel.
- Exemplary expression vectors include, but are not limited to, PN3-pCDNA3.1, and PN3-pOX.
- the PN3 channel is stably expressed in mammalian expression systems.
- Inhibition can be tested using one of the in vitro or in vivo assays described above. Samples or assays that are treated with a potential sodium channel inhibitor or activator are compared to control samples without the test compound, to examine the extent of inhibition. Control samples (untreated with activators or inhibitors) are assigned a relative sodium channel activity value of 100. Inhibition of channels comprising PN3 is achieved when the sodium channel activity value relative to the control is less than 70%, preferably less than 40% and still more preferably, less than 30%. Compounds that decrease the flux of ions will cause a detectable decrease in the ion current density by decreasing the probability of a channel comprising PN3 being open, by decreasing conductance through the channel, decreasing the number of channels, or decreasing the expression of channels.
- Changes in ion flux may be assessed by determining changes in polarization (i.e., electrical potential) of the cell or membrane expressing the sodium channel.
- a preferred means to determine changes in cellular polarization is by measuring changes in current or voltage with the voltage-clamp and patch-clamp techniques, using the “cell-attached” mode, the “inside-out” mode, the “outside-out” mode, the “perforated cell” mode, the “one or two electrode” mode, or the “whole cell” mode (see, e.g., Ackerman et al., New Engl. J. Med. 336: 1575-1595 (1997)).
- Assays for compounds capable of inhibiting or increasing sodium flux through the channel proteins can be performed by application of the compounds to a bath solution in contact with and comprising cells having a channel of the present invention (see, e.g., Blatz et al., Nature 323: 718-720 (1986); Park, J. Physiol. 481: 555-570 (1994)).
- the compounds to be tested are present in the range from about 1 pM to about 100 mM, preferably from about 1 pM to about 1 ⁇ M.
- the effects of the test compounds upon the function of the channels can be measured by changes in the electrical currents or ionic flux or by the consequences of changes in currents and flux.
- Changes in electrical current or ionic flux are measured by either increases or decreases in flux of ions such as sodium or guanidinium ions (see, e.g., Berger et al., U.S. Pat. No. 5,688,830).
- the cations can be measured in a variety of standard ways. They can be measured directly by concentration changes of the ions or indirectly by membrane potential or by radio-labeling of the ions. Consequences of the test compound on ion flux can be quite varied.
- any suitable physiological change can be used to assess the influence of a test compound on the channels of this invention.
- the effects of a test compound can be measured by a toxin-binding assay.
- the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as transmitter release, hormone release, transcriptional changes to both known and uncharacterized genetic markers, changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as Ca 2+ , or cyclic nucleotides.
- High throughput screening is of use in identifying promising candidates of the invention.
- the HTS assay can be run in the presence of an agent that modifies the gating of the channel, such as deltamethrin. This agent modifies the gating of Na channels and keeps the pore open for extended periods of time.
- an agent that modifies the gating of the channel such as deltamethrin.
- This agent modifies the gating of Na channels and keeps the pore open for extended periods of time.
- Na channels are primarily selective for Na, other monovalent cations can permeate the channel.
- PN3 blocking agents of the invention can also be assayed against non-specific blockers of PN3, such as tetracaine, mexilitine, and flecamide.
- the present invention provides pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound of Formula I provided above.
- the compounds of the present invention can be prepared and administered in a wide variety of oral, parenteral and topical dosage forms.
- the compounds of the present invention can be administered by injection, that is, intravenously, intramuscularly, intracutaneously, subcutaneously, intraduodenally, or intraperitoneally.
- the compounds described herein can be administered by inhalation, for example, intranasally.
- the compounds of the present invention can be administered transdermally.
- the present invention also provides pharmaceutical compositions comprising a pharmaceutically acceptable carrier or excipient and either a compound of Formula I, or a pharmaceutically acceptable salt of a compound of Formula I.
- pharmaceutically acceptable carriers can be either solid or liquid.
- Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules.
- a solid carrier can be one or more substances, which may also act as diluents, flavoring agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.
- the carrier is a finely divided solid, which is in a mixture with the finely divided active component.
- the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
- the powders and tablets preferably contain from 5% or 10% to 70% of the active compound.
- Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like.
- the term “preparation” is intended to include the formulation of the active compound with encapsulating material as a carrier providing a capsule in which the active component with or without other carriers, is surrounded by a carrier, which is thus in association with it.
- cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid dosage forms suitable for oral administration.
- a low melting wax such as a mixture of fatty acid glycerides or cocoa butter
- the active component is dispersed homogeneously therein, as by stirring.
- the molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and thereby to solidify.
- Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water/propylene glycol solutions.
- liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.
- Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizers, and thickening agents as desired.
- Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well-known suspending agents.
- solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for oral administration.
- liquid forms include solutions, suspensions, and emulsions.
- These preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
- the pharmaceutical preparation is preferably in unit dosage form.
- the preparation is subdivided into unit doses containing appropriate quantities of the active component.
- the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
- the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
- the quantity of active component in a unit dose preparation may be varied or adjusted from 0.1 mg to 10000 mg, more typically 1.0 mg to 1000 mg, most typically 10 mg to 500 mg, according to the particular application and the potency of the active component.
- the composition can, if desired, also contain other compatible therapeutic agents.
- the present invention provides methods for decreasing ion flow through voltage dependent sodium channels in a cell, comprising contacting a cell containing the target ion channels with a sodium channel-inhibiting amount of a compound of Formula I provided above.
- the methods provided in this aspect of the invention are useful for the diagnosis of conditions that can be treated by inhibiting ion flux through voltage-dependent sodium channels, or for determining if a patient will be responsive to therapeutic agents, which act by inhibiting sodium channels.
- the present invention provides a method for the treatment of a disorder or condition through inhibition of a voltage-dependent sodium channel.
- a subject in need of such treatment is administered an effective amount of a compound having the formula provided above.
- the compounds provided herein are used to treat a disorder or condition by inhibiting an ion channel of the voltage gated sodium channel family, e.g., PN3.
- the compounds provided herein are useful as sodium channel inhibitors and find therapeutic utility via inhibition of voltage-dependent sodium channels in the treatment of diseases or conditions.
- the sodium channels that are typically inhibited are described herein as voltage-dependent sodium channels such as the PN3 sodium channels.
- the compounds of the invention are particularly preferred for use in the treating, preventing or ameliorating pain or convulsions.
- the method includes administering to a patient in need of such treatment, a therapeutically effective amount of a compound according to Formula I, or a pharmaceutically acceptable salt thereof.
- the compounds, compositions and methods of the present invention are of particular use in treating pain, including both inflammatory and neuropathic pain.
- Exemplary forms of pain treated by a compound of the invention include, postoperative pain, osteoarthritis pain, pain associated with metastatic cancer, neuropathy secondary to metastatic inflammation, trigeminal neuralgia, glossopharangyl neuralgia, adiposis dolorosa, burn pain, acute herpetic and postherpetic neuralgia, diabetic neuropathy, causalgia, brachial plexus avulsion, occipital neuralgia, reflex sympathetic dystrophy, fibromyalgia, gout, phantom limb pain, burn pain, pain following stroke, thalamic lesions, radiculopathy, and other forms of neuralgic, neuropathic, and idiopathic pain syndromes.
- Idiopathic pain is pain of unknown origin, for example, phantom limb pain.
- Neuropathic pain is generally caused by injury or infection of the peripheral sensory nerves. It includes, but is not limited to pain from peripheral nerve trauma, herpes virus infection, diabetes mellitus, causalgia, plexus avulsion, neuroma, limb amputation, and vasculitis.
- Neuropathic pain is also caused by nerve damage from chronic alcoholism, human immunodeficiency virus infection, hypothyroidism, uremia, or vitamin deficiencies.
- any sodium channel inhibitory substance possessed of satisfactory sodium channel inhibiting activity coupled with favorable intracranial transfer kinetics and metabolic stability is expected to show good efficacy in central nervous system (CNS) diseases and disorders such as central nervous system ischemia, central nervous system trauma (e.g. brain trauma, spinal cord injury, whiplash injury, etc.), epilepsy, neurodegenerative diseases (e.g. amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Huntington's chorea, Parkinson's disease, diabetic neuropathy, etc.), vascular dementia (e.g. multi-infarct dementia, Binswanger's disease, etc.), manic-depressive psychosis, depression, schizophrenia, chronic pain, trigeminal neuralgia, migraine and cerebral edema.
- CNS central nervous system
- the compounds utilized in the method of the invention are administered at the initial dosage of about 0.001 mg/kg to about 1000 mg/kg daily.
- a daily dose range of about 0.1 mg/kg to about 100 mg/kg is more typical.
- the dosages may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the compound being employed. Determination of the proper dosage for a particular situation is within the skill of the practitioner. Generally, treatment is initiated with smaller dosages, which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day, if desired.
- temperatures are given in degrees Celsius (° C.); operations were carried out at room or ambient temperature (typically a range of from about 18-25° C.; evaporation of solvent was carried out using a rotary evaporator under reduced pressure (typically, 4.5-30 mmHg) with a bath temperature of up to 60° C.; the course of reactions was typically followed by TLC and reaction times are provided for illustration only; melting points are uncorrected; products exhibited satisfactory 1 H-NMR and/or microanalytical data; yields are provided for illustration only; and the following conventional abbreviations are also used: mp (melting point), L (liter(s)), mL (milliliters), mmol (millimoles), g (grams), mg (milligrams), min (minutes), LC-MS (liquid chromatography-mass spectrometry) and h (hours), PS (polystyrene), DIE (diisopropylethylamine
- PN3 stably expressed in a host cell line were maintained in DMEM with 5% fetal bovine serum and 300 ⁇ g/ml G-418.
- the cells were subcultured and grown to confluence in 96-well plates 24-48 h before each experiment. After the growth medium was removed, the cells were washed with warm buffer (25 mM Hepes-Tris, 135 mM choline chloride, 5.4 mM potassium chloride, 0.98 mM magnesium sulfate, 5.5 mM glucose, and 1 mg/ml BSA, pH 7.4) and incubated in buffer on a 36° C. slide warmer for approximately 10 minutes.
- warm buffer 25 mM Hepes-Tris, 135 mM choline chloride, 5.4 mM potassium chloride, 0.98 mM magnesium sulfate, 5.5 mM glucose, and 1 mg/ml BSA, pH 7.4
- This assay determines the effectiveness of compounds of Formula I in relieving one of the symptoms in an in vivo model of neuropathic pain produced by spinal nerve ligation, namely mechanical allodynia.
- Tactile allodynia was induced in rats using the procedures described by Kim and Chung, Pain 50: 355-363 (1992). Briefly, the rats were anesthetized with 2-5% inhaled isoflurane and maintained by 1% isoflurane. Each animal was then placed in a prone position, a 3 cm lateral incision was made, and the left paraspinal muscles separated from the spinous process at the L 4 -S 2 level. The L 6 transverse process was then removed in order to visually identify the L 4 -L 6 spinal nerves. The L 5 and L 6 spinal nerves were then individually isolated and tightly ligated with silk thread. The wound was then closed in layers by silk sutures. These procedures produced rats which developed a significant increase in sensitivity to mechanical stimuli that did not elicit a response in normal rats.
- This assay determines the effectiveness of compounds in relieving one of the symptoms of neuropathic pain produced by unilateral mononeuropathy, namely thermal hyperalgesia.
- the rats having had surgery as described above were assessed for thermal hyperalgesia sensitivity at least 5-7 days post-surgery. Briefly, the rats were placed beneath inverted plexiglass cages upon an elevated glass platform and a radiant heat source beneath the glass was aimed at the plantar hindpaw. The duration of time before the hindpaw was withdrawn from the floor was measured to the nearest tenth of a second. The cutoff time for the heat stimulus was 40 seconds, and the light was calibrated such that this stimulus duration did not burn or blister the skin. Three latency measurements were taken for each hindpaw ipsilateral to the ligation in each test session, alternating left and right hindpaws, with greater than 1 minute intervals between tests.
- results show that after oral administration the compounds of the invention produce efficacious anti-allodynic effects at doses less then or equal to 100 mg/kg.
- results show that after IV administration the compounds of the invention produce efficacious anti-hyperalgesic effects at doses less than or equal to 30 mg/kg.
- the compounds of the present invention were found to be effective in reversing mechanical allodynia-like and thermal hyperalgesia-like symptoms.
- the organic phase was purified by passing it through a plug of silica gel, using ethyl acetate as the eluent.
- the filtrate was evaporated, in vacuo, to a residue.
- the residue was triturated with hexanes/dichlormethane (95:5) and the solid collected by filtration.
- Vacuum drying yielded 4-(5-fluoro-2-oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboxylic acid ethyl ester (77.8 mg, 71%) as a light tan solid.
- N-cyano-4-(2-oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboximidic acid phenyl ester (0.050 g; 0.14 mmol) was treated with a 2M solution of ethylamine in tetrahydrofuran (2 mL) and subjected to microwave irradiation (temperature approximately 110° C.) for 0.5 h. The reaction mixture was concentrated under reduced pressure.
- 4-(2-Nitro-phenylamino)-piperidine-1-carboxylic acid ethyl ester (from step 1 above) was dissolved in methanol then hydrogenated over 10% Pd/C (balloon pressure). The hydrogenation was run until the yellow color turned colorless. It was filtered through a celite pad, and the filtrated evaporated to a reddish brown residue. The residue was triturated with 1% ethyl acetate in hexanes and the solid collected by filtration to give 4-(2-amino-phenylamino)-piperidine-1-carboxylic acid ethyl ester (2.02 g; 77%, 2 steps).
- the crude product i.e.; 4-(2-thioxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboxylic acid ethyl ester
- 10% sodium hydroxide 10 mL
- the reaction was allowed to cool to room temperature and the aqueous layer was washed with ethyl ether (50 mL), acidified to pH ⁇ 2 with 6N hydrochloric acid, washed with ethyl ether (50 ml) and filtered (to remove a small amount of precipitated solid).
- the aqueous layer was adjusted to pH 10 by slowly adding sodium carbonate and then cooled to 0° C.
- the solid that formed was collected by filtration to give 1-piperidin-4-yl-1,3-dihydro-benzoimidazole-2-thione (0.2 g).
- reaction mixture was stirred for 18 h then purified directly by column chromatography on silica gel using ethyl acetate as the eluent to give (4-butyl-phenyl)-[4-(2-thioxo-2,3-dihydro-benzoimidazol-1-yl)-piperidin-1-yl]-methanone (0.167 g; 86%).
- reaction mixture was washed with a saturated aqueous solution of sodium bicarbonate (3 ⁇ 20 mL), dried over sodium sulfate, and concentrated under reduced pressure to give an oil.
- the residue was purified by column chromatography on silica gel using hexanes/ethyl acetate as the eluent to give (4-butyl-phenyl)-[4-(2-methanesulfonyl-benzoimidazol-1-yl)-piperidin-1-yl]-methanone (0.22 g).
- Example 12 sets forth representative compounds of the invention.
- com- pound # name MZ 1 1- ⁇ 1-[3-(2-Chloro-phenyl)-5-methyl-isoxazole-4- 434 carbonyl]-1,2,3,6-tetrahydro-pyridin-4-yl ⁇ -1,3-dihydro- benzoimidazol-2-one 2 1-[1-(5-Methyl-3-phenyl-isoxazole-4-carbonyl)-1,2,3,6- 400 tetrahydro-pyridin-4-yl]-1,3-dihydro-benzoimidazol-2- one 3 1-[1-(3,5-Dimethyl-isoxazole-4-carbonyl)-1,2,3,6- 338 tetrahydro-pyridin-4-yl]-1,3-dihydro-benzoimidazol-2- one 4 1- ⁇ 1-[3-(2,6-Dichloro-phenyl)-5-methyl-is
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Hydrogenated Pyridines (AREA)
Abstract
Compounds, compositions and methods are provided which are useful in the treatment of diseases through the inhibition of sodium ion flux through voltage-dependent sodium channels. More particularly, the invention provides substituted piperidines, and compositions containing these compounds. Also provided are methods using the compounds of the invention for the treatment of central or peripheral nervous system disorders, particularly pain and chronic pain by blocking sodium channels associated with the onset or recurrance of the indicated conditions. The compounds, compositions and methods of the present invention are of particular use for treating neuropathic or inflammatory pain by the inhibition of ion flux through a channel that includes a PN3 subunit.
Description
- This is a non-provisional filing of U.S. Provisional Patent Application No. 60/335,930, filed on Nov. 1, 2001, the disclosure of which is incorporated herein by reference in its entirety for all purposes.
- This invention relates to the use of certain piperidine compounds as sodium channel inhibitors and to the treatment of neuropathic pain by the inhibition of sodium channels. Additionally, this invention relates to novel piperidine-based compounds that are useful as sodium channel inhibitors.
- Sodium channel-blocking agents have been reported to be effective in the treatment of various disease states, and have found particular use as local anesthetics and in the treatment of cardiac arrhythmias. It has also been reported that sodium channel-blocking agents may also be useful in the treatment of pain, including neuropathic pain; see, for example, Tanelian et al. Pain Forum. 4(2), 75-80 (1995). Preclinical evidence demonstrates that sodium channel-blocking agents selectively suppress abnormal ectopic neural firing in injured peripheral and central neurons, and it is via this mechanism that they are believed to be useful for relieving pain. Consistent with this hypothesis, it has been shown that sodium channels accumulate in the peripheral nerve at sites of axonal injury (Devor et al. J. Neurosci. 132: 1976 (1993)). Alterations in either the level of expression or distribution of sodium channels within an injured nerve, therefore, have a major influence on the pathophysiology of pain associated with this type of trauma.
- An increasing body of evidence suggests that a voltage-dependent, tetrodotoxin (TTX)-resistant Na channel, PN3 (Nav1.8), may play a key role in sensitization in neuropathic pain states. Neuropathic pain can be described as pain associated with damage or permanent alteration of the peripheral or central nervous system. Clinical manifestations of neuropathic pain include a sensation of burning or electric shock, feelings of bodily distortion, allodynia and hyperalgesia.
- PN3 is a member of a family of voltage-gated sodium channel alpha subunits. Names for this family include SCN, SCNA, and Navx.x. There are currently 10 known members falling into two subfamilies Nav1 (all but SCN6A) and Nav2 (SCN6A). The human channel was cloned by Rabert et al. (Pain 78(2): 107-114 (1998)). PN3 of other species has also been cloned. See, for example, Chen et al., Gene 202(1-2), 7-14 (1997); Souslova et al., Genomics 41(2), 201-209 (1997); Akopian et al., Nature 379(6562), 257-262 (1996).
- PN3-null mutant mice exhibit a pronounced analgesia to mechanical noxious stimuli (Akopian A. N. et al., Nature Neurosci., 2(6): 541-548 (1999)). Selective “knock down” of PN3 protein in the rat dorsal root ganglion with specific antisense oligodeoxynucleotides prevents hyperalgesia and allodynia caused by either chronic nerve or tissue injury (Porreca et al., Proc. Nat. Acad. Sci., USA, 96: 7640-7644 (1999)). The biophysical properties of PN3 make it ideally suited to sustain repetitive firing of sensory neurons at the depolarized potentials characteristic of injured peripheral nerves. In both human and animal models of neuropathic pain, there is an increased expression of PN3 at the site of peripheral nerve injury (Clare et al., DDT 5: 506-519 (2000); Coward et al., Pain 85: 41-50 (2000)).
- Patients with neuropathic pain do not respond to non-steroidal anti-inflammatory drugs (NSAIDS) and resistance or insensitivity to opiates is common. Most other treatments have limited efficacy or undesirable side effects. Mannion et al., Lancet, 353: 1959-1964 (1999) from the Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School wrote: “There is no treatment to prevent the development of neuropathic pain, nor to adequately, predictably and specifically control established neuropathic pain.”
- PN3 is a promising molecular target for the treatment of neuropathic pain. One of the most attractive features of PN3 is the highly restricted and peripheral nature of its expression. Antisense studies have revealed no overt (particularly CNS-related) adverse effects, consistent with the localized, peripheral distribution of the channel (Novakovic et al., J. Neurosci., 18(6): 2174-2187 (1998)). Additionally, the high activation threshold of PN3 suggests that the channel may be relatively uninvolved in normal nociception. These properties of PN3 present the possibility that selective blockade of this particular voltage-gated sodium channel (VGSC) may offer effective pain relief without the significant side effect liability normally associated with more promiscuous VGSC blocking drugs. The compounds of the invention are potent inhibitors of PN3 channels.
- Ohkawa et al. have described a class of cyclic ethers that are of use as sodium channel blockers (U.S. Pat. No. 6,172,085).
- Currently, gabapentin is the market leading treatment for neuropathic pain. As with epilepsy, its mechanism of action for pain is unknown. It is a very safe, easy to use drug, which contributes to its sales. Efficacy for neuropathic pain is not impressive, as few as only 30% of patients respond to gabapentin treatment. Carbamazepine is also used to treat neuropathic pain.
- In view of the limited number of agents presently available and the low levels of efficacy of the available agents, there is a pressing need for compounds that are potent, specific inhibitors of ion channels implicated in neuropathic pain. The present invention provides such compounds, methods of using them, and compositions that include the compounds.
- It has now been discovered that piperidines are potent inhibitors of sodium channels. In the discussion that follows, the invention is exemplified by reference to the inhibition of sodium channels that are localized in the peripheral nervous system, and in particular those inhibitors that are selective inhibitors of PN3, and are useful for treating neuropathic pain through the inhibition of sodium ion flux through channels that include the PN3 subunit. The focus of the discussion is for clarity of illustration only.
- The compounds and methods of the present invention are useful for treating diseases in which blocking or inhibiting one or more PN3 ion channel provides relief from the disease. Of particular interest is the use of the compounds and methods of the invention for treating pain and central or peripheral nervous system disorders. The present invention is of use for treating both inflammatory and neuropathic pain.
- The present invention provides compounds which are useful in the treatment of diseases through the inhibition of sodium ion flux through voltage-dependent sodium channels. More particularly, the invention provides compounds, compositions and methods that are useful in the treatment of central or peripheral nervous system disorders, particularly pain and chronic pain.
-
- In Formula I, R1 represents a moiety is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted heteroaryl,
- The symbol R2 represents substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, alkoxy, or —NR15R16. R15 and R16 are each members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl and R15 and R16 taken together with the nitrogen atom to which they are attached form a 4- to 8-membered heterocyclic ring.
- R3 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and NR15R16. R4 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, and NR15R16. R5 is a member selected from H, nitro, substituted or unsubstituted alkyl, cyano, acyl, and SO2R11. R11 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
- Y is a member selected from O, C—NO2 and S. Z is a member selected from:
in which A, D, E and M are independently selected from CR12, N, and N-oxide. R12 is a member selected from hydrogen, halo, amino, hydroxy, cyano, nitro, acyl, alkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroaryl, and at least two of A, D, E and M is a selected from CR12, and at most one of A, D, E, and M is N-oxide. X is a member selected from O, C—NO2, S and NR10. - R6, R7 and R8 are members independently selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aminoalkyl, and R7 and R8 together with the atom to which they are joined are optionally joined to form a 4- to 8-membered heterocycloalkyl ring.
- R9 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted and unsubstituted heterocycloalkyl, OR20, and SR20. R20 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, and substituted and unsubstituted heterocycloalkyl.
- R10 is a member selected from hydrogen cyano, nitro, acyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted and unsubstituted heteroaryl and SO2R11.
- The dashed bond marked a is either a single or a double bond; and n is and integer selected from 0, 1, and 2.
- In another aspect, the present invention provides pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound provided above.
- In yet another aspect, the present invention provides a method for inhibition of ion flux through voltage dependent sodium channels, comprising contacting a cell containing the target ion channels with a compound of the formula provided above.
- In still another aspect, the present invention provides a method for the treatment of diseases through inhibition of ion flux through voltage dependent sodium channels, the method comprising treating the host with an effective amount of a sodium channel inhibiting compound of the formula provided above.
- Other objects, advantages and embodiments of the invention will be apparent from review of the detailed description that follows.
-
FIG. 1 displays structures of representative compounds of the invention. - The abbreviations used herein have their conventional meaning within the chemical and biological arts. For example: CHO, Chinese hamster ovary; EBSS, Earl's Balanced Salt Solution; SDS, sodium dodecyl sulfate; Et3N, triethylamine; MeOH, methanol; and DMSO, dimethylsulfoxide.
- The term “pain” refers to all categories of pain, including pain that is described in terms of stimulus or nerve response, e.g., somatic pain (normal nerve response to a noxious stimulus) and neuropathic pain (abnormal response of a injured or altered sensory pathway, often without clear noxious input); pain that is categorized temporally, e.g., chronic pain and acute pain; pain that is categorized in terms of its severity, e.g., mild, moderate, or severe; and pain that is a symptom or a result of a disease state or syndrome, e.g., inflammatory pain, cancer pain, AIDS pain, arthropathy, migraine, trigeminal neuralgia, cardiac ischaemia, and diabetic neuropathy (see, e.g., Harrison's Principles of Internal Medicine, pp. 93-98 (Wilson et al., eds., 12th ed. 1991); Williams et al., J. of Medicinal Chem. 42:1481-1485 (1999), herein each incorporated by reference in their entirety).
- “Somatic” pain, as described above, refers to a normal nerve response to a noxious stimulus such as injury or illness, e.g., trauma, burn, infection, inflammation, or disease process such as cancer, and includes both cutaneous pain (e.g., skin, muscle or joint derived) and visceral pain (e.g., organ derived).
- “Neuropathic” pain, as described above, refers to pain resulting from injury to or chronic changes in peripheral and/or central sensory pathways, where the pain often occurs or persists without an obvious noxious input.
- “Biological medium,” as used herein refers to both in vitro and in vivo biological milieus. Exemplary in vitro “biological media” include, but are not limited to, cell culture, tissue culture, homogenates, plasma and blood. In vivo applications are generally performed in mammals, preferably humans.
- “Compound of the invention,” as used herein refers to the compounds discussed herein, pharmaceutically acceptable salts and prodrugs of these compounds.
- “Inhibiting” and “blocking,” are used interchangeably herein to refer to the partial or full blockade of a PN3 channel by a compound of the invention, which leads to a decrease in ion flux either into or out of a cell in which a PN3 channel is found.
- Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents which would result from writing the structure from right to left, e.g., —CH2O— is intended to also recite —OCH2—; —NHS(O)2— is also intended to represent. —S(O)2HN—, etc.
- The term “alkyl,” by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. C1-C10 means one to ten carbons). Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. The term “alkyl,” unless otherwise noted, is also meant to include those derivatives of alkyl defined in more detail below, such as “heteroalkyl.” Alkyl groups, which are limited to hydrocarbon groups are termed “homoalkyl”.
- The term “alkylene” by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by —CH2CH2CH2CH2—, and further includes those groups described below as “heteroalkylene.” Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention. A “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
- The terms “alkoxy,” “alkylamino” and “alkylthio” (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively.
- The term “heteroalkyl,” by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and at least one heteroatom selected from O, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. Examples include, but are not limited to, —CH2—CH2—O—CH3, —CH2—CH2—NH—CH3, —CH2—CH2—N(CH3)—CH3, —CH2—S—CH2—CH3, —CH2—CH2, —S(O)—CH3, —CH2—CH2—S(O)2—CH3, —CH═CH—O—CH3, —Si(CH3)3, —CH2—CH═N—OCH3, and —CH═CH—N(CH3)—CH3. Up to two heteroatoms may be consecutive, such as, for example, —CH2—NH—OCH3 and —CH2—O—Si(CH3)3. Similarly, the term “heteroalkylene” by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH2—CH2—S—CH2—CH2— and —CH2—S—CH2—CH2—NH—CH2—. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula —C(O)2R′— represents both —C(O)2R′— and —R′C(O)2—.
- In general, an “acyl substituent” is also selected from the group set forth above. As used herein, the term “acyl substituent” refers to groups attached to, and fulfilling the valence of a carbonyl carbon that is either directly or indirectly attached to the polycyclic nucleus of the compounds of the present invention.
- The terms “cycloalkyl” and “heterocycloalkyl”, by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of “alkyl” and “heteroalkyl”, respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
- The terms “halo” or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as “haloalkyl,” are meant to include monohaloalkyl and polyhaloalkyl. For example, the term “halo(C1-C4)alkyl” is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.
- The term “aryl” means, unless otherwise stated, a polyunsaturated, aromatic, hydrocarbon substituent which can be a single ring or multiple rings (preferably from 1 to 3 rings) which are fused together or linked covalently. The term “heteroaryl” refers to aryl groups (or rings) that contain from one to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized. A heteroaryl group can be attached to the remainder of the molecule through a heteroatom. Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5-isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3-quinolyl, and 6-quinolyl. Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below.
- For brevity, the term “aryl” when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above. Thus, the term “arylalkyl” is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like).
- Each of the above terms (e.g., “alkyl,” “heteroalkyl,” “aryl” and “heteroaryl”) include both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.
- Substituents for the alkyl, and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) are generally referred to as “alkyl substituents” and “heteroalkyl substituents,” respectively, and they can be one or more of a variety of groups selected from, but not limited to: -hydrogen, —OR′, ═O, ═NR′″, ═N—OR′, —NR′R″, —SR′, -halogen, —SiR′R″R′″, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R″, —OC(O)NR′R″, —NR′C(O)R″, —NR′″—C(O)NR′R″, —NR′C(O)2R″, —NR′″—C(NR′R″)═NR″″, —NR′″—C(NR′R″)═NR″″, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NR′SO2R″, —NR′″SO2NR′R″—CN, —R′ and —NO2 in a number ranging from zero to (2m′+1), where m′ is the total number of carbon atoms in such radical. R′, R″, R′″ each preferably independently refer to hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, (e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups), substituted or unsubstituted heteroaryl and substituted or unsubstituted arylalkyl. R″″ refers to hydrogen, alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, —CN, —NO2 and —S(O)2R′. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R′, R″, R′″ and R″″ groups when more than one of these groups is present. When R′ and R″ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring. For example, —NR′R″ is meant to include, but not be limited to, 1-pyrrolidinyl, 1-piperidinyl, 1-piperazinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term “alkyl” is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., —CF3 and —CH2CF3) and acyl (e.g., —C(O)CH3, —C(O)CF3, —C(O)CH2OCH3, and the like).
- Similar to the substituents described for the alkyl radical, the aryl substituents and heteroaryl substituents are generally referred to as “aryl substituents” and “heteroaryl substituents,” respectively and are varied and selected from, for example: hydrogen, —OR′, —C═NR″″NR′R″, —NR′″SO2NR′R″, —NR′R″, —SR′, -halogen, —SiR′R″R′″, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R″, —OC(O)NR′R″, —NR″C(O)R′, —NR′″—C(O)NR′R″, —NR″C(O)2R′, —NR′″—C(NR′R″)═NR″″, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NR″SO2R′, —CN and —NO2, —R′, —N3, —CH(Ph)2, fluoro(C1-C4)alkoxy, and fluoro(C1-C4)alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R′, R″ and R′″ each preferably independently refer to hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, (e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups), substituted or unsubstituted heteroaryl and substituted or unsubstituted arylalkyl. R″″ refers to hydrogen, alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, —CN, —NO2 and —S(O)2R′. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R′, R″, R′″ and R″″ groups when more than one of these groups is present. When R′ and R″ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring. For example, —NR′R″ is meant to include, but not be limited to, 1-pyrrolidinyl, 1-piperidinyl, 1-piperazinyl and 4-morpholinyl.
- Two of the aryl substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)—(CRR′)q-U-, wherein T and U are independently —NR—, —O—, —CRR′— or a single bond, and q is an integer of from 0 to 3. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH2)r—B—, wherein A and B are independently —CRR′—, —O—, —NR—, —S—, —S(O)—, —S(O)2—, —S(O)2NR′— or a single bond, and r is an integer of from 1 to 4. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula —(CRR′)s—X—(CR″R′″)d—, where s and d are independently integers of from 0 to 3, and X is —O—, —NR′—, —S—, —S(O)—, —S(O)2—, or —S(O)2NR′—. The substituents R, R′, R″ and R′″ are preferably independently selected from hydrogen or substituted or unsubstituted (C1-C6)alkyl.
- As used herein, the term “heteroatom” includes oxygen (O), nitrogen (N), sulfur (S) and silicon (Si).
- The symbol “R” is a general abbreviation that represents a substituent group that is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocycloalkyl groups.
- The term “pharmaceutically acceptable salts” includes salts of the active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein. When compounds of the present invention contain relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present invention contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge et al., “Pharmaceutical Salts”, Journal of Pharmaceutical Science, 1977, 66, 1-19). Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.
- The neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the purposes of the present invention.
- In addition to salt forms, the present invention provides compounds, which are in a prodrug form. Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention. Additionally, prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.
- Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
- Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the racemates, diastereomers, geometric isomers and individual isomers are encompassed within the scope of the present invention.
- The compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (3H), iodine-125 (125I) or carbon-14 (14C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are intended to be encompassed within the scope of the present invention.
- I. Inhibitors of Voltage-Dependent Sodium Channels
-
- In Formula I, R1 represents a moiety is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted heteroaryl,
- The symbol R2 represents substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, alkoxy, or —NR15R16. R15 and R16 are each members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl and R15 and R16 taken together with the nitrogen atom to which they are attached form a 4- to 8-membered heterocyclic ring.
- R3 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and NR15R16. R4 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, and NR15R16. R5 is a member selected from H, nitro, substituted or unsubstituted alkyl, cyano, acyl, and SO2R11. R11 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
- Y is a member selected from O, C—NO2 and S. Z is a member selected from:
in which A, D, E and M are independently selected from CR12, N, and N-oxide. R12 is a member selected from hydrogen, halo, amino, hydroxy, cyano, nitro, acyl, alkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroaryl, and at least two of A, D, E and M is a selected from CR12, and at most one of A, D, E, and M is N-oxide. X is a member selected from O, C—NO2, S and NR10. - R6, R7 and R8 are members independently selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aminoalkyl, and R7 and R8 together with the atom to which they are joined are optionally joined to form a 4- to 8-membered heterocycloalkyl ring.
- R9 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted and unsubstituted heterocycloalkyl, OR20, and SR20. R20 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, and substituted and unsubstituted heterocycloalkyl.
- R10 is a member selected from hydrogen cyano, nitro, acyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted and unsubstituted heteroaryl and SO2R11.
- The dashed bond marked a is either a single or a double bond; and n is and integer selected from 0, 1, and 2.
-
- In yet another preferred embodiment, R7 and R8 are members independently selected from H, and substituted or unsubstituted alkyl.
- Representative compounds according to Formula I are set forth in Example 12 and
FIG. 1 . Activities towards PN3 of selected compounds of the invention are provided in Table 1. The compound numbers in Table 1 are cross-referenced to Example 12.TABLE 1 Activity in Flux Compound # Assay 34 +++ 150 +++ 160 +++ 181 +++ 185 ++ 188 +++ 189 +++ 198 +++ 200 +++ 203 ++ 206 +++ 208 +++ 221 ++ 300 +++ 304 ++
(+++ 0.1-4 μM; ++ 4.1-10 μM)
- Also within the scope of the present invention are compounds of the invention that are poly- or multi-valent species, including, for example, species such as dimers, trimers, tetramers and higher homologs of the compounds of the invention or reactive analogues thereof. The poly- and multi-valent species can be assembled from a single species or more than one species of the invention. For example, a dimeric construct can be “homo-dimeric” or “heterodimeric.” Moreover, poly- and multi-valent constructs in which a compound of the invention or a reactive analogue thereof, is attached to an oligomeric or polymeric framework (e.g., polylysine, dextran, hydroxyethyl starch and the like) are within the scope of the present invention. The framework is preferably polyfunctional (i.e. having an array of reactive sites for attaching compounds of the invention). Moreover, the framework can be derivatized with a single species of the invention or more than one species of the invention.
- Moreover, the present invention includes compounds within the motif set forth in Formulae I, which are functionalized to afford compounds having water-solubility that is enhanced relative to analogous compounds that are not similarly functionalized. Thus, any of the substituents set forth herein can be replaced with analogous radicals that have enhanced water solubility. For example, it is within the scope of the invention to, for example, replace a hydroxyl group with a diol, or an amine with a quaternary amine, hydroxy amine or similar more water-soluble moiety. In a preferred embodiment, additional water solubility is imparted by substitution at a site not essential for the activity towards the ion channel of the compounds set forth herein with a moiety that enhances the water solubility of the parent compounds. Methods of enhancing the water-solubility of organic compounds are known in the art. Such methods include, but are not limited to, functionalizing an organic nucleus with a permanently charged moiety, e.g., quaternary ammonium, or a group that is charged at a physiologically relevant pH, e.g. carboxylic acid, amine. Other methods include, appending to the organic nucleus hydroxyl- or amine-containing groups, e.g. alcohols, polyols, polyethers, and the like. Representative examples include, but are not limited to, polylysine, polyethyleneimine, poly(ethyleneglycol) and poly(propyleneglycol). Suitable functionalization chemistries and strategies for these compounds are known in the art. See, for example, Dunn, R. L., et al., Eds. P
OLYMERIC DRUGS AND DRUG DELIVERY SYSTEMS , ACS Symposium Series Vol. 469, American Chemical Society, Washington, D.C. 1991. - Preparation of Sodium Channel Inhibitors
- Compounds of the present invention can be prepared using readily available starting materials or known intermediates. Examples of starting materials available from commercial suppliers include, but are not limited to 1-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one, 5-chloro-1-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one, 1-methyl-3-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one, 1-piperidin-4-yl-1H-benzoimidazole hydrochloride, 2-methyl-1-piperidin-4-yl-1H-benzoimidazole hydrochloride, 7-Fluoro-1-piperidin-4-yl-1H-benzoimidazole hydrochloride and 2-phenyl-1-piperidin-4-yl-1H-benzoimidazole hydrochloride. Scheme 1 sets forth an exemplary synthetic scheme for the preparation of compounds of the invention.
- In Scheme 1, the endocyclic nitrogen atom of the piperidine moiety of compound 1 is protected, forming a derivative bearing protecting group, P. The protected piperidine 2 is contacted with an alkylating agent R6—X, affording compound 3. The amine protecting group of compound 3 is removed to produce compound 4, which bears a piperidine moiety in which the endocyclic nitrogen atom is unprotected. Compound 4 is contacted with an alkylating, sulfonylating or acylating reagent (i.e.; R1—X) yielding compound 5. Examples of appropriate acylating agents include, but are not limited to, R2CO2H (e.g.; benzoic acid) and R2COCl (e.g.; benzoyl chloride and benzyl chloroformate). Examples of appropriate sulfonylating agents include, but are not limited to, R3SO2Cl (e.g.; benzenesulfonyl chloride) and R3SO2F (e.g.; benzenesulfonyl fluororide).
-
- In Scheme 2, the 1-fluoro-2-nitro aromatic compound 6 is contacted with a piperidine amine 7 under conditions appropriate for fluoro displacement by the amine substituent of the piperidine, thereby forming compound 8. The nitro group of compound 8 is reduced to the corresponding amine group, affording compound 9. The 1,2-diaminobenzene substructure of compound 9 is converted to cyclic thiourea 10, which is S-alkylated, affording compound II. One skilled in the art will recognize that compound 9 may be also converted to the cyclic urea (i.e.; compound 5, Scheme 1 where R6 is hydrogen). Compound 11 is oxidized to compound 12, which is converted into the corresponding amine by reaction with an amine HNR7R8, producing compound 13.
-
- Similar to Scheme 2, in Scheme 3, starting materials 6 and 7 are combined under conditions appropriate for fluoro group displacement affording compound 8. The nitro group is reduced to the amine 9 at which point Schemes 2 and 3 diverge. In Scheme 3, the amine of compound 9 is acylated with R9COCl to produce amide 14, which is subsequently cyclized to compound 15.
- Scheme 4 sets forth an exemplary synthetic scheme for producing compounds of the invention in which the nitrogen of the cyclic urea system is not alkylated. In Scheme 4, starting piperidine 1 is treated with an alkylating, sulfonylating or acylating agent (i.e.; R1—X) to produce compound 16. Examples of appropriate acylating agents include, but are not limited to, R2CO2H (i.e.; benzoic acid) and R2COCl (i.e.; benzoyl chloride and benzyl chloroformate). Examples of appropriate sulfonylating agents include, but are not limited to, R3SO2Cl (i.e; benzenesulfonyl chloride) and R3SO2F (i.e.; benzenesulfonyl fluororide).
- Scheme 5 sets forth an exemplary synthetic scheme for producing compounds of the invention in which the R1 is
R4 is —NR15R16 and R5 is cyano. In Scheme 5 starting piperidine 1 is treated with diphenyl N-cyanocarbonimidate to produce compound 17. Compound 17 may be made to react with amine HNR15R16 to produce compound 18. - Scheme 6 sets forth an exemplary synthetic scheme for producing compounds of the invention in which R1 is
and R3 is —NR15R16. In Scheme 6, starting piperidine 1 is made to react with oxazolidinone intermediate 19 to produce compound 20. Methods used to produce intermediate 19 are known in the literature. - The alkylating, sulfonyating and acylating agents used in the reaction pathway set forth in Schemes 1-4 are of essentially any structure, e.g., substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl or substituted and unsubstituted heteroalkyl. Moreover, leaving groups, X, include, but are not limited to, halides, sulfonic esters, oxonium ions, alkyl perchlorates, ammonioalkanesulfonate esters, alkylfluorosulfonates and fluorinated compounds (e.g., triflates, nonaflates, tresylates) and the like. The choice of these and other leaving groups appropriate for a particular set of reaction conditions is within the abilities of those of skill in the art (see, for example, March J, A
DVANCED ORGANIC CHEMISTRY, 2nd Edition, John Wiley and Sons, 1992; Sandler S R, Karo W, ORGANIC FUNCTIONAL GROUP PREPARATIONS, 2nd Edition, Academic Press, Inc., 1983; and Wade L G, COMPENDIUM OF ORGANIC SYNTHETIC METHODS , John Wiley and Sons, 1980). - Methods for preparing dimers, trimers and higher homologs of small organic molecules, such as those of the present invention, as well as methods of functionalizing a polyfunctional framework molecule are well known to those of skill in the art. For example, an aromatic amine of the invention is converted to the corresponding isothiocyanate by the action of thiophosgene. The resulting isothiocyanate is coupled to an amine of the invention, thereby forming either a homo- or heterodimeric species. Alternatively, the isothiocyanate is coupled with an amine-containing backbone, such as polylysine, thereby forming a conjugate between a polyvalent framework and a compound of the invention. If it is desired to prepare a heterofuntionalized polyvalent species, the polylysine is underlabeled with the first isothiocyanate and subsequently labeled with one or more different isothiocyanates. Alternatively, a mixture of isothiocyanates is added to the backbone. Purification proceeds by, for example, size exclusion chromatography, dialysis, nanofiltration and the like.
- II. Assays for Blockers of Sodium Ion Channels
- PN3 monomers as well as PN3 alleles and polymorphic variants are subunits of sodium channels. The activity of a sodium channel comprising PN3 subunits can be assessed using a variety of in vitro and in vivo assays, e.g., measuring current, measuring membrane potential, measuring ion flux, e.g., sodium or guanidinium, measuring sodium concentration, measuring second messengers and transcription levels, and using e.g., voltage-sensitive dyes, radioactive tracers, and patch-clamp electrophysiology.
- A number of experimental models in the rat are appropriate for assessing the efficacy of the compounds of the invention. For example, the tight ligation of spinal nerves described by Kim et al., Pain 50: 355-363 (1992) can be used to experimentally determine the effect of the compounds of the invention on a PN3 channel. For example, a sodium channel blockade in vitro assay can be used to determine the effectiveness of compounds of Formula I as sodium channel blockers in an in vitro model by the inhibition of compound action potential propagation in isolated nerve preparations (Kourtney and Stricharz, L
OCAL ANESTHETICS , Springer-Verlag, New York, 1987). The mechanical allodynia in vivo assay is also of use in determining the efficacy of compounds of the invention (Kim and Chung Pain 50:355 (1992)). Mechanical sensitivity can be assessed using a procedure described by Chaplan et al., J. Neurosci. Methods 53: 55-63 (1994). Other assays of use are known to those of skill in the art. See, for example, Loughhead et al., U.S. Pat. No. 6,262,078. - Inhibitors of the PN3 sodium channels can be tested using biologically active recombinant PN3, or naturally occurring TTX-resistant sodium channels, or by using native cells, like cells from the nervous system expressing a PN3 channel. PN3 channels can be isolated, co-expressed or expressed in a cell, or expressed in a membrane derived from a cell. In such assays, PN3 is expressed alone to form a homomeric sodium channel or is co-expressed with a second subunit (e.g., another PN3 family member) so as to form a heteromeric sodium channel. Exemplary expression vectors include, but are not limited to, PN3-pCDNA3.1, and PN3-pOX. The PN3 channel is stably expressed in mammalian expression systems.
- Inhibition can be tested using one of the in vitro or in vivo assays described above. Samples or assays that are treated with a potential sodium channel inhibitor or activator are compared to control samples without the test compound, to examine the extent of inhibition. Control samples (untreated with activators or inhibitors) are assigned a relative sodium channel activity value of 100. Inhibition of channels comprising PN3 is achieved when the sodium channel activity value relative to the control is less than 70%, preferably less than 40% and still more preferably, less than 30%. Compounds that decrease the flux of ions will cause a detectable decrease in the ion current density by decreasing the probability of a channel comprising PN3 being open, by decreasing conductance through the channel, decreasing the number of channels, or decreasing the expression of channels.
- Changes in ion flux may be assessed by determining changes in polarization (i.e., electrical potential) of the cell or membrane expressing the sodium channel. A preferred means to determine changes in cellular polarization is by measuring changes in current or voltage with the voltage-clamp and patch-clamp techniques, using the “cell-attached” mode, the “inside-out” mode, the “outside-out” mode, the “perforated cell” mode, the “one or two electrode” mode, or the “whole cell” mode (see, e.g., Ackerman et al., New Engl. J. Med. 336: 1575-1595 (1997)). Whole cell currents are conveniently determined using the standard methodology (see, e.g., Hamil et al., Pflugers. Archiv. 391: 85 (1981). Other known assays include: radiolabeled rubidium flux assays and fluorescence assays using voltage-sensitive dyes (see, e.g., Vestergarrd-Bogind et al., J. Membrane Biol. 88: 67-75 (1988); Daniel et al., J. Pharmacol. Meth. 25: 185-193 (1991); Holevinsky et al., J. Membrane Biology 137: 59-70 (1994)). Assays for compounds capable of inhibiting or increasing sodium flux through the channel proteins can be performed by application of the compounds to a bath solution in contact with and comprising cells having a channel of the present invention (see, e.g., Blatz et al., Nature 323: 718-720 (1986); Park, J. Physiol. 481: 555-570 (1994)). Generally, the compounds to be tested are present in the range from about 1 pM to about 100 mM, preferably from about 1 pM to about 1 μM.
- The effects of the test compounds upon the function of the channels can be measured by changes in the electrical currents or ionic flux or by the consequences of changes in currents and flux. Changes in electrical current or ionic flux are measured by either increases or decreases in flux of ions such as sodium or guanidinium ions (see, e.g., Berger et al., U.S. Pat. No. 5,688,830). The cations can be measured in a variety of standard ways. They can be measured directly by concentration changes of the ions or indirectly by membrane potential or by radio-labeling of the ions. Consequences of the test compound on ion flux can be quite varied. Accordingly, any suitable physiological change can be used to assess the influence of a test compound on the channels of this invention. The effects of a test compound can be measured by a toxin-binding assay. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as transmitter release, hormone release, transcriptional changes to both known and uncharacterized genetic markers, changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as Ca2+, or cyclic nucleotides.
- High throughput screening (HTS) is of use in identifying promising candidates of the invention. Physiologically, Na channels open and close on a ms timescale. To overcome the short time in which channels are open the HTS assay can be run in the presence of an agent that modifies the gating of the channel, such as deltamethrin. This agent modifies the gating of Na channels and keeps the pore open for extended periods of time. In addition, while Na channels are primarily selective for Na, other monovalent cations can permeate the channel.
- The specificity and effect of the PN3 blocking agents of the invention can also be assayed against non-specific blockers of PN3, such as tetracaine, mexilitine, and flecamide.
- III. Pharmaceutical Compositions of Sodium Channel Openers
- In another aspect, the present invention provides pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound of Formula I provided above.
- Formulation of the Compounds (Compositions)
- The compounds of the present invention can be prepared and administered in a wide variety of oral, parenteral and topical dosage forms. Thus, the compounds of the present invention can be administered by injection, that is, intravenously, intramuscularly, intracutaneously, subcutaneously, intraduodenally, or intraperitoneally. Also, the compounds described herein can be administered by inhalation, for example, intranasally. Additionally, the compounds of the present invention can be administered transdermally. Accordingly, the present invention also provides pharmaceutical compositions comprising a pharmaceutically acceptable carrier or excipient and either a compound of Formula I, or a pharmaceutically acceptable salt of a compound of Formula I.
- For preparing pharmaceutical compositions from the compounds of the present invention, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more substances, which may also act as diluents, flavoring agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.
- In powders, the carrier is a finely divided solid, which is in a mixture with the finely divided active component. In tablets, the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
- The powders and tablets preferably contain from 5% or 10% to 70% of the active compound. Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term “preparation” is intended to include the formulation of the active compound with encapsulating material as a carrier providing a capsule in which the active component with or without other carriers, is surrounded by a carrier, which is thus in association with it. Similarly, cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid dosage forms suitable for oral administration.
- For preparing suppositories, a low melting wax, such as a mixture of fatty acid glycerides or cocoa butter, is first melted and the active component is dispersed homogeneously therein, as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and thereby to solidify.
- Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water/propylene glycol solutions. For parenteral injection, liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.
- Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizers, and thickening agents as desired. Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well-known suspending agents.
- Also included are solid form preparations, which are intended to be converted, shortly before use, to liquid form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. These preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
- The pharmaceutical preparation is preferably in unit dosage form. In such form the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
- The quantity of active component in a unit dose preparation may be varied or adjusted from 0.1 mg to 10000 mg, more typically 1.0 mg to 1000 mg, most typically 10 mg to 500 mg, according to the particular application and the potency of the active component. The composition can, if desired, also contain other compatible therapeutic agents.
- IV. Methods for Inhibiting Ion Flow in Voltage-Dependent Sodium Channels
- In yet another aspect, the present invention provides methods for decreasing ion flow through voltage dependent sodium channels in a cell, comprising contacting a cell containing the target ion channels with a sodium channel-inhibiting amount of a compound of Formula I provided above.
- The methods provided in this aspect of the invention are useful for the diagnosis of conditions that can be treated by inhibiting ion flux through voltage-dependent sodium channels, or for determining if a patient will be responsive to therapeutic agents, which act by inhibiting sodium channels.
- V. Methods for Treating Conditions Mediated by Voltage-Dependent Sodium Channels
- In still another aspect, the present invention provides a method for the treatment of a disorder or condition through inhibition of a voltage-dependent sodium channel. In this method, a subject in need of such treatment is administered an effective amount of a compound having the formula provided above. In a preferred embodiment, the compounds provided herein are used to treat a disorder or condition by inhibiting an ion channel of the voltage gated sodium channel family, e.g., PN3.
- The compounds provided herein are useful as sodium channel inhibitors and find therapeutic utility via inhibition of voltage-dependent sodium channels in the treatment of diseases or conditions. The sodium channels that are typically inhibited are described herein as voltage-dependent sodium channels such as the PN3 sodium channels.
- The compounds of the invention are particularly preferred for use in the treating, preventing or ameliorating pain or convulsions. The method includes administering to a patient in need of such treatment, a therapeutically effective amount of a compound according to Formula I, or a pharmaceutically acceptable salt thereof.
- The compounds, compositions and methods of the present invention are of particular use in treating pain, including both inflammatory and neuropathic pain. Exemplary forms of pain treated by a compound of the invention include, postoperative pain, osteoarthritis pain, pain associated with metastatic cancer, neuropathy secondary to metastatic inflammation, trigeminal neuralgia, glossopharangyl neuralgia, adiposis dolorosa, burn pain, acute herpetic and postherpetic neuralgia, diabetic neuropathy, causalgia, brachial plexus avulsion, occipital neuralgia, reflex sympathetic dystrophy, fibromyalgia, gout, phantom limb pain, burn pain, pain following stroke, thalamic lesions, radiculopathy, and other forms of neuralgic, neuropathic, and idiopathic pain syndromes.
- Idiopathic pain is pain of unknown origin, for example, phantom limb pain. Neuropathic pain is generally caused by injury or infection of the peripheral sensory nerves. It includes, but is not limited to pain from peripheral nerve trauma, herpes virus infection, diabetes mellitus, causalgia, plexus avulsion, neuroma, limb amputation, and vasculitis. Neuropathic pain is also caused by nerve damage from chronic alcoholism, human immunodeficiency virus infection, hypothyroidism, uremia, or vitamin deficiencies.
- Moreover, any sodium channel inhibitory substance possessed of satisfactory sodium channel inhibiting activity coupled with favorable intracranial transfer kinetics and metabolic stability is expected to show good efficacy in central nervous system (CNS) diseases and disorders such as central nervous system ischemia, central nervous system trauma (e.g. brain trauma, spinal cord injury, whiplash injury, etc.), epilepsy, neurodegenerative diseases (e.g. amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Huntington's chorea, Parkinson's disease, diabetic neuropathy, etc.), vascular dementia (e.g. multi-infarct dementia, Binswanger's disease, etc.), manic-depressive psychosis, depression, schizophrenia, chronic pain, trigeminal neuralgia, migraine and cerebral edema.
- In treatment of the above conditions, the compounds utilized in the method of the invention are administered at the initial dosage of about 0.001 mg/kg to about 1000 mg/kg daily. A daily dose range of about 0.1 mg/kg to about 100 mg/kg is more typical. The dosages, however, may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the compound being employed. Determination of the proper dosage for a particular situation is within the skill of the practitioner. Generally, treatment is initiated with smaller dosages, which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day, if desired.
- The following examples are offered to illustrate, but not to limit the claimed invention.
- In the examples below, unless otherwise stated, temperatures are given in degrees Celsius (° C.); operations were carried out at room or ambient temperature (typically a range of from about 18-25° C.; evaporation of solvent was carried out using a rotary evaporator under reduced pressure (typically, 4.5-30 mmHg) with a bath temperature of up to 60° C.; the course of reactions was typically followed by TLC and reaction times are provided for illustration only; melting points are uncorrected; products exhibited satisfactory 1H-NMR and/or microanalytical data; yields are provided for illustration only; and the following conventional abbreviations are also used: mp (melting point), L (liter(s)), mL (milliliters), mmol (millimoles), g (grams), mg (milligrams), min (minutes), LC-MS (liquid chromatography-mass spectrometry) and h (hours), PS (polystyrene), DIE (diisopropylethylamine).
- PN3 stably expressed in a host cell line were maintained in DMEM with 5% fetal bovine serum and 300 μg/ml G-418. The cells were subcultured and grown to confluence in 96-well plates 24-48 h before each experiment. After the growth medium was removed, the cells were washed with warm buffer (25 mM Hepes-Tris, 135 mM choline chloride, 5.4 mM potassium chloride, 0.98 mM magnesium sulfate, 5.5 mM glucose, and 1 mg/ml BSA, pH 7.4) and incubated in buffer on a 36° C. slide warmer for approximately 10 minutes. Various concentrations of the test compounds or standard sodium channel blockers (10 μM) and then deltamethrine (10 μM) were added to each well. After the cells were exposed to deltamethrine for 5 minutes, 5 μM of 14C-guanidinium was added, incubated with the radioligand (30-60 min), washed with ice-cold buffer, and dissolved in 0.1N sodium hydroxide. The radioactivity and the protein concentration of each cell lysate were determined by liquid scintillation counting and the protein assay using Pierce BCA reagent.
- This assay determines the effectiveness of compounds of Formula I in relieving one of the symptoms in an in vivo model of neuropathic pain produced by spinal nerve ligation, namely mechanical allodynia.
- Tactile allodynia was induced in rats using the procedures described by Kim and Chung, Pain 50: 355-363 (1992). Briefly, the rats were anesthetized with 2-5% inhaled isoflurane and maintained by 1% isoflurane. Each animal was then placed in a prone position, a 3 cm lateral incision was made, and the left paraspinal muscles separated from the spinous process at the L4-S2 level. The L6 transverse process was then removed in order to visually identify the L4-L6 spinal nerves. The L5 and L6 spinal nerves were then individually isolated and tightly ligated with silk thread. The wound was then closed in layers by silk sutures. These procedures produced rats which developed a significant increase in sensitivity to mechanical stimuli that did not elicit a response in normal rats.
- Mechanical sensitivity was assessed using a procedure described by Chaplan et al., J. Neurosci. Methods 53: 55-63 (1994). Briefly, a series of eight Von Frey filaments of varying rigidity strength were applied to the plantar surface of the hind paw ipsilaterial to the ligations with just enough force to bend the filament. The filaments were held in this position for no more than three seconds or until a positive allodynic response was displayed by the rat. A positive allodynic response consisted of lifting the affected paw followed immediately by licking or shaking of the paw. The order and frequency with which the individual filaments were applied were determined by using Dixon up-down method. Testing was initiated with the middle hair of the series with subsequent filaments being applied in consecutive fashion, either ascending or descending, depending on whether a negative or positive response, respectively, was obtained with the initial filament.
- This assay determines the effectiveness of compounds in relieving one of the symptoms of neuropathic pain produced by unilateral mononeuropathy, namely thermal hyperalgesia.
- The rats having had surgery as described above were assessed for thermal hyperalgesia sensitivity at least 5-7 days post-surgery. Briefly, the rats were placed beneath inverted plexiglass cages upon an elevated glass platform and a radiant heat source beneath the glass was aimed at the plantar hindpaw. The duration of time before the hindpaw was withdrawn from the floor was measured to the nearest tenth of a second. The cutoff time for the heat stimulus was 40 seconds, and the light was calibrated such that this stimulus duration did not burn or blister the skin. Three latency measurements were taken for each hindpaw ipsilateral to the ligation in each test session, alternating left and right hindpaws, with greater than 1 minute intervals between tests.
- The results show that after oral administration the compounds of the invention produce efficacious anti-allodynic effects at doses less then or equal to 100 mg/kg. The results show that after IV administration the compounds of the invention produce efficacious anti-hyperalgesic effects at doses less than or equal to 30 mg/kg. Overall, the compounds of the present invention were found to be effective in reversing mechanical allodynia-like and thermal hyperalgesia-like symptoms.
- To a solution of 4-(2-keto-1-benzimidazolonyl)piperidine (0.34 g, 1.57 mmol) in methylene chloride (8 mL) was added pyridine (0.15 mL, 1.88 mmol) and 4-n-butylbenzoyl chloride (0.37 g, 1.88 mmol). The reaction mixture was stirred for 1 h then purified directly by column chromatography on silica gel by eluting with methylene chloride followed by ethyl acetate. The product fractions were combined and concentrated in vacuo. The residue was triturated with ethyl ether and the solids collected by filtration and rinsed with hexanes. 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one (0.48 g; 81%) was obtained as white solid.
- A suspension of 1,4-difluoro-2-nitrobenzene (0.477 g, 3 mmol), ethyl 4-amino 1-piperidinecarboxylate (0.568 g, 3.3 mmol), and powdered potassium carbonate (0.456 g, 3.3 mmol) in dimethylformamide (5 mL) was stirred at 50° C. for 2 h. The reaction mixture was diluted with water then extracted with dichloromethane (5×30 mL). The combined organic phase was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel by eluting with methylene chloride followed by ethyl acetate. Product fractions were combined and evaporated in vacuo to give 4-(4-fluoro-2-nitro-phenylamino)piperidine-1-carboxylic acid ethyl ester (0.761 g, 81%) as an orange solid.
- 4-(4-Fluoro-2-nitro-phenylamino)-piperidine-1-carboxylic acid ethyl ester (0.761 g, 2.45 mmol) (from step 1 above) was dissolved in methanol (10 mL) then hydrogenated over 10% Pd/C (balloon pressure). The hydrogenation was run until the orange color turned colorless. The reaction mixture was filtered through a celite pad, and the filtrate evaporated to a give 4-(2-amino-4-fluoro-phenylamino)-piperidine-1-carboxylic acid ethyl ester as a dark residue (0.679 g, 99%).
- To a solution of 4-(2-amino-4-fluoro-phenylamino)-piperidine 1-carboxylic acid ethyl ester (0.100 g, 0.36 mmol) and triethylamine (0.110 mg, 1.08 mmol) in methylene chloride (2 mL) at 0° C. was added a solution of diphosgene (0.71 mg, 0.36 mmol) in methylene chloride (4 mL) at room temperature. The reaction mixture was stirred for 18 h then quenched with a saturated aqueous solution of sodium bicarbonate. The organic phase was separated and washed with brine. The organic phase was purified by passing it through a plug of silica gel, using ethyl acetate as the eluent. The filtrate was evaporated, in vacuo, to a residue. The residue was triturated with hexanes/dichlormethane (95:5) and the solid collected by filtration. Vacuum drying yielded 4-(5-fluoro-2-oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboxylic acid ethyl ester (77.8 mg, 71%) as a light tan solid.
- 4-(5-Fluoro-2-oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboxylic acid ethyl ester was refluxed with 10% sodium hydroxide (2 mL) for 4 h. The reaction was allowed to cool to room temperature and acidified with concentrated hydrochloric acid. The acidified reaction mixture was adjusted to pH 10 with the slow addition of sodium carbonate. The pink solid that formed was collected by filtration and vacuum dried to give 5-Fluoro-1-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one (29.4 mg, 73%).
- To a solution of 5-fluoro-1-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one (29.4 mg, 0.125 mmol) in methylene chloride (1 mL) was added pyridine (0.12 μL, 0.15 mmol) and 4-n-butylbenzoyl chloride (26 μL, 0.138 mmol). The reaction mixture was stirred overnight then purified directly by column chromatography on silica gel by eluting with methylene chloride followed by ethyl acetate. The product fractions were combined and concentrated in vacuo to give 1-[1-(4-butyl-benzoyl)-piperidin-4-yl]-5-fluoro-1,3-dihydro-benzoimidazol-2-one (6.1 mg; 12%) was obtained as a glass.
- Excess 3-trifluoromethylbenzenesulfonyl chloride and polystyrene-diisopropylethylamine resin (ca. 40 mg) were added to a 50 mM solution of 4-(2-keto-1-benzimidazolinyl)piperidine in methylene chloride-dimethyl formamide (9:1) (1 mL). The mixture was shaken 18 hours then scavenged with polystyrene-trisamine resin (ca. 33 mg) for another 18 hours. The reaction was filtered and evaporated to give 1-[1-(3-Trifluoromethyl-benzenesulfonyl)-piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one (18.6 mg, 87%).
- To a solution of 4-(2-keto-1-benzimidazolinyl)piperidine (1.3 g; 5.98 mmol) in acetonitrile was added diphenyl N-cyanocarbonimidate (1.56 g; 6.55 mmol; 1.1 equiv). The reaction mixture was stirred at 60° C. for 48 h under nitrogen atmosphere and then concentrated under reduced pressure. The crude product was suspended in ethyl acetate (50 mL) and a saturated aqueous solution of sodium bicarbonate (50 mL) and stirred overnight at room temperature. The solid was collected by filtration and dried to give N-cyano-4-(2-oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboximidic acid phenyl ester (1.85 g; 85%) as a white solid.
- N-cyano-4-(2-oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboximidic acid phenyl ester (0.050 g; 0.14 mmol) was treated with a 2M solution of ethylamine in tetrahydrofuran (2 mL) and subjected to microwave irradiation (temperature approximately 110° C.) for 0.5 h. The reaction mixture was concentrated under reduced pressure. The crude product was purified by preparative reverse-phase liquid chromatography to give N-cyano-N′-ethyl-4-(2-oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboxamidine (0.01 g) as a white solid.
- A suspension of 2-fluoronitrobenzene (1.41 g, 10 mmol), ethyl 4-amino 1-piperidinecarboxylate (2.00 g, 11.6 mmol), and powdered potassium carbonate (1.38 g, 10 mmol) in dimethylformamide (10 mL) was stirred for 18 h. The reaction mixture was diluted with water the extracted with ethyl ether (3×40 mL). The combined organic layers was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel by eluting with methylene chloride followed by ethyl acetate. Product fractions were combined and evaporated in vacuo to give 4-(2-nitro-phenylamino)-piperidine-1-carboxylic acid ethyl ester.
- 4-(2-Nitro-phenylamino)-piperidine-1-carboxylic acid ethyl ester (from step 1 above) was dissolved in methanol then hydrogenated over 10% Pd/C (balloon pressure). The hydrogenation was run until the yellow color turned colorless. It was filtered through a celite pad, and the filtrated evaporated to a reddish brown residue. The residue was triturated with 1% ethyl acetate in hexanes and the solid collected by filtration to give 4-(2-amino-phenylamino)-piperidine-1-carboxylic acid ethyl ester (2.02 g; 77%, 2 steps). 1H NMR (CDCl3) δ 1.27 (t, 3H, J=7.2), 1.4 (m, 2H), 2.05 (m, 2H), 3.0 (m, 2H), 3.4 (m, 4H), 4.1 (m, 4H), 6.7 (m, 4H)
- To a solution of 4-(2-amino-phenylamino)-piperidine-1-carboxylic acid ethyl ester (0.76 g, 2.9 mmol) and triethylamine (0.81 ml, 5.8 mmol) in methylene chloride (10 mL) at 0° C. was added a solution of thiophosgene (0.22 mL, 2.9 mmol) in methylene chloride (10 mL) at room temperature. The reaction mixture was stirred for 2 h then quenched with 1N sodium hydroxide. The organic phase was separated and dried over sodium sulfate, filtered and concentrated. The crude product (i.e.; 4-(2-thioxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-carboxylic acid ethyl ester) was treated with 10% sodium hydroxide (10 mL) and refluxed for 4 h. The reaction was allowed to cool to room temperature and the aqueous layer was washed with ethyl ether (50 mL), acidified to pH<2 with 6N hydrochloric acid, washed with ethyl ether (50 ml) and filtered (to remove a small amount of precipitated solid). The aqueous layer was adjusted to pH 10 by slowly adding sodium carbonate and then cooled to 0° C. The solid that formed was collected by filtration to give 1-piperidin-4-yl-1,3-dihydro-benzoimidazole-2-thione (0.2 g).
- A solution of 1-piperidin-4-yl-1,3-dihydro-benzoimidazole-2-thione (0.2 g, 0.84 mmol) in methylene chloride (20 mL) was treated with pyridine (0.040 mL, 0.497 mmol) and 4-n-butylbenzoyl chloride (0.093 mL, 0.497 mmol). The reaction mixture was stirred for 18 h then purified directly by column chromatography on silica gel using ethyl acetate as the eluent to give (4-butyl-phenyl)-[4-(2-thioxo-2,3-dihydro-benzoimidazol-1-yl)-piperidin-1-yl]-methanone (0.167 g; 86%).
- A solution of (4-butyl-phenyl)-[4-(2-thioxo-2,3-dihydro-benzoimidazol-1-yl)-piperidin-1-yl]-methanone (0.167 g, 0.424 mmol) in acetonitrile (5 mL) was treated with methyl iodide (0.120 g, 0.848 mmol) and potassium carbonate (0.117 g, 0.848 mmol). The reaction mixture was stirred 18 h then filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using ethyl acetate as the eluent to give (4-butyl-phenyl)-[4-(2-methylsulfanyl-benzoimidazol-1-yl)-piperidin-1-yl]-methanone (0.164 g; 95%).
- A solution of (4-butyl-phenyl)-[4-(2-methylsulfanyl-benzoimidazol-1-yl)piperidin-1-yl]-methanone (0.164 g, 0.403 mmol) in methylene chloride (15 mL) was treated with m-CPBA (0.180 g, 0.806 mmol) and stirred at room temperature for 1 h. LCMS analysis of the reaction mixture revealed that starting material still remained. Additional m-CPBA (0.090 g, 0.403 mmol) was added and the reaction mixture was allowed to stir 18 h at room temperature. The reaction mixture was washed with a saturated aqueous solution of sodium bicarbonate (3×20 mL), dried over sodium sulfate, and concentrated under reduced pressure to give an oil. The residue was purified by column chromatography on silica gel using hexanes/ethyl acetate as the eluent to give (4-butyl-phenyl)-[4-(2-methanesulfonyl-benzoimidazol-1-yl)-piperidin-1-yl]-methanone (0.22 g).
- In a sealed glass tube, (4-butyl-phenyl)-[4-(2-methanesulfonyl-benzoimidazol-1-yl)-piperidin-1-yl]-methanone (9 mg) and hexyl amine (3 drops) were heated at 120-150° C. for 18 h. The crude product was taken into 1 ml 1:1 acetonitrile/water and purified via preparative liquid chromatography to give (4-butyl-phenyl)-[4-(2-hexylamino-benzoimidazol-1-yl)-piperidin-1-yl]-methanone (4.8 mg).
- 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one (197.2 mg, 0.522 mmol), allyl bromide (260 μL, 3.0 mmol) and cesium carbonate (excess) were added to dimethyl formamide (3 mL) and the suspension was stirred at 120° C. in a sealed tube for 72 hours. The reaction was allowed to cool to room temperature and diluted with water (9 mL) then extracted with ethyl ether (2×10 mL). The combined organic phase was dried over sodium sulfate and purified by column chromatography on silica gel using ethyl ether as the eluent. The product fractions were combined and concentrated to give an oily residue. The residue was triturated with ethyl ether and the white crystals that formed were collected by filtration. Vacuum drying yielded 1-allyl-3-[1-(4-butyl-benzoyl)-piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one (144 mg, 66%) as a white crystalline solid.
- p-Toluenesulfonic acid (catalytic amount) was added to a solution of [4-(2-amino-phenylamino)-piperidin-1-yl]-(4-butyl-phenyl)-methanone (50 mg, 0.142 mmol) and paraformaldehyde (500 mg) in acetonitrile (10 mL). The reaction was heated at 80° C. for 4 h. The reaction mixture was concentrated and the crude product was purified by column chromatography on silica gel using chloroform/methanol/ammonia (96:3.6:0.4) as the eluent. The product fractions were combined and evaporated to give (4-benzoimidazol-1-yl-piperidin-1-yl)-(4-butyl-phenyl)-methanone (39 mg, 76%) as an amber oil.
- 2-Oxo-oxazolidine-3-sulfonic acid benzylamide (0.059 g; 0.23 mmol; 1 equiv) was added to a solution of 1-piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one (0.050 mg; 0.23 mmol) in acetonitrile (2 mL). Triethylamine (32 μL; 0.23 mmol) was added and the reaction mixture was heated at 80° C. for 48 h. The reaction mixture was evaporated under reduced pressure and the crude product was purified by preparative liquid chromatography to provide 4-(2-oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1-sulfonic acid benzylamide (0.010 g) as a white solid.
- Example 12 sets forth representative compounds of the invention.
com- pound # name MZ 1 1-{1-[3-(2-Chloro-phenyl)-5-methyl-isoxazole-4- 434 carbonyl]-1,2,3,6-tetrahydro-pyridin-4-yl}-1,3-dihydro- benzoimidazol-2-one 2 1-[1-(5-Methyl-3-phenyl-isoxazole-4-carbonyl)-1,2,3,6- 400 tetrahydro-pyridin-4-yl]-1,3-dihydro-benzoimidazol-2- one 3 1-[1-(3,5-Dimethyl-isoxazole-4-carbonyl)-1,2,3,6- 338 tetrahydro-pyridin-4-yl]-1,3-dihydro-benzoimidazol-2- one 4 1-{1-[3-(2,6-Dichloro-phenyl)-5-methyl-isoxazole-4- 468 carbonyl]-1,2,3,6-tetrahydro-pyridin-4-yl}-1,3-dihydro- benzoimidazol-2-one 5 1-{1-[3-(2-Chloro-6-fluoro-phenyl)-5-methyl-isoxazole- 452 4-carbonyl]-1,2,3,6-tetrahydro-pyridin-4-yl}-1,3- dihydro-benzoimidazol-2-one 6 1-[1-(4-Chloro-1,3-dimethyl-1H-pyrazolo[3,4- 422 b]pyridine-5-carbonyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 1,3-dihydro-benzoimidazol-2-one 7 1-[1-(5-Methyl-isoxazole-3-carbonyl)-1,2,3,6-tetrahydro- 324 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 8 1-{1-[5-(4-Chloro-phenyl)-2-methyl-furan-3-carbonyl]- 433 1,2,3,6-tetrahydro-pyridin-4-yl}-1,3-dihydro- benzoimidazol-2-one 9 1-[1-(4-Methoxy-benzenesulfonyl)-1,2,3,6-tetrahydro- 385 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 10 1-[1-(2,5-Dimethoxy-benzenesulfonyl)-1,2,3,6- 415 tetrahydro-pyridin-4-yl]-1,3-dihydro-benzoimidazol-2- one 11 1-[1-(3,4-Dichloro-benzenesulfonyl)-1,2,3,6-tetrahydro- 423 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 12 1-[1-(4-Ethyl-benzenesulfonyl)-1,2,3,6-tetrahydro- 383 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 13 1-[1-(4-Trifluoromethoxy-benzenesulfonyl)-1,2,3,6- 439 tetrahydro-pyridin-4-yl]-1,3-dihydro-benzoimidazol-2- one 14 1-[1-(2-Chloro-benzenesulfonyl)-1,2,3,6-tetrahydro- 389 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 15 1-[1-(5-Chloro-thiophene-2-sulfonyl)-1,2,3,6-tetrahydro- 395 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 16 1-[1-(3,4-Dimethoxy-benzenesulfonyl)-1,2,3,6- 415 tetrahydro-pyridin-4-yl]-1,3-dihydro-benzoimidazol-2- one 17 1-[1-(2,4-Dichloro-benzoyl)-1,2,3,6-tetrahydro-pyridin- 387 4-yl]-1,3-dihydro-benzoimidazol-2-one 18 1-[1-(3-Methoxy-benzoyl)-1,2,3,6-tetrahydro-pyridin-4- 349 yl]-1,3-dihydro-benzoimidazol-2-one 19 1-[1-(4-Trifluoromethyl-benzoyl)-1,2,3,6-tetrahydro- 387 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 20 1-[1-(2,2-Dimethyl-propionyl)-1,2,3,6-tetrahydro- 299 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 21 1-(1-Isobutyryl-1,2,3,6-tetrahydro-pyridin-4-yl)-1,3- 285 dihydro-benzoimidazol-2-one 22 1-(1-Phenylacetyl-1,2,3,6-tetrahydro-pyridin-4-yl)-1,3- 333 dihydro-benzoimidazol-2-one 23 1-[1-(3-Phenyl-acryloyl)-1,2,3,6-tetrahydro-pyridin-4- 345 yl]-1,3-dihydro-benzoimidazol-2-one 24 1-[1-(3-Methyl-butyryl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 299 1,3-dihydro-benzoimidazol-2-one 25 1-Piperidin-4-yl-1,3-dihydro-benzoimidazol-2-one 217 26 1-Nonanoyl-3-(1-nonanoyl-piperidin-4-yl)-1,3-dihydro- 497 benzoimidazol-2-one 27 1-(1-Nonanoyl-piperidin-4-yl)-1,3-dihydro- 357 benzoimidazol-2-one 28 1-[1-(Naphthalene-2-carbonyl)-piperidin-4-yl]-1,3- 371 dihydro-benzoimidazol-2-one 29 1-[1-(3-Trifluoromethyl-benzoyl)-piperidin-4-yl]-1,3- 389 dihydro-benzoimidazol-2-one 30 1-[1-(3,4-Difluoro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 357 benzoimidazol-2-one 31 1-[1-(4-Ethyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 349 benzoimidazol-2-one 32 1-[1-(2-Fluoro-3-trifluoromethyl-benzoyl)-piperidin-4- 407 yl]-1,3-dihydro-benzoimidazol-2-one 33 1-[1-(4-Fluoro-3-trifluoromethyl-benzoyl)-piperidin-4- 407 yl]-1,3-dihydro-benzoimidazol-2-one 34 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 377 benzoimidazol-2-one 35 1-[1-(Pyridine-3-carbonyl)-piperidin-4-yl]-1,3-dihydro- 322 benzoimidazol-2-one 36 1-[1-(Benzo[1,3]dioxole-5-carbonyl)-piperidin-4-yl]-1,3- 365 dihydro-benzoimidazol-2-one 37 1-[1-(3-Fluoro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 339 benzoimidazol-2-one 38 1-[1-(2-Cyclopentyl-acetyl)-piperidin-4-yl]-1,3-dihydro- 327 benzoimidazol-2-one 39 1-(1-Diphenylacetyl-piperidin-4-yl)-1,3-dihydro- 411 benzoimidazol-2-one 40 1-[1-(Furan-2-carbonyl)-piperidin-4-yl]-1,3-dihydro- 311 benzoimidazol-2-one 41 1-[1-(3-Phenyl-propionyl)-piperidin-4-yl]-1,3-dihydro- 349 benzoimidazol-2-one 42 1-[1-(6-Chloro-pyridine-3-carbonyl)-piperidin-4-yl]-1,3- 356 dihydro-benzoimidazol-2-one 43 1-[1-(2-Phenoxy-acetyl)-piperidin-4-yl]-1,3-dihydro- 351 benzoimidazol-2-one 44 1-{1-[2-(3,4-Dimethoxy-phenyl)-acetyl]-piperidin-4-yl}- 395 1,3-dihydro-benzoimidazol-2-one 45 1-[1-(Thiophene-2-carbonyl)-piperidin-4-yl]-1,3- 327 dihydro-benzoimidazol-2-one 46 1-[1-(3-Methyl-butyryl)-piperidin-4-yl]-1,3-dihydro- 301 benzoimidazol-2-one 47 1-[1-(3-Phenyl-acryloyl)-piperidin-4-yl]-1,3-dihydro- 347 benzoimidazol-2-one 48 1-[1-(Quinoxaline-2-carbonyl)-piperidin-4-yl]-1,3- 373 dihydro-benzoimidazol-2-one 49 4-Oxo-4-[4-(2-oxo-2,3-dihydro-benzoimidazol-1-yl)- 331 piperidin-1-yl]-butyric acid methyl ester 50 1-{1-[1-(4-Chloro-phenyl)-cyclopentanecarbonyl]- 423 piperidin-4-yl}-1,3-dihydro-benzoimidazol-2-one 51 1-[1-(2-Phenyl-cyclopropanecarbonyl)-piperidin-4-yl]- 361 1,3-dihydro-benzoimidazol-2-one 52 1-[1-(5-Methyl-2-phenyl-2H-[1,2,3]triazole-4-carbonyl)- 402 piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one 53 1-[1-(5-Bromo-pyridine-3-carbonyl)-piperidin-4-yl]-1,3- 400 dihydro-benzoimidazol-2-one 54 1-(1-Cyclopentanecarbonyl-piperidin-4-yl)-1,3-dihydro- 313 benzoimidazol-2-one 55 1-[1-(2-p-Tolyloxy-pyridine-3-carbonyl)-piperidin-4-yl]- 428 1,3-dihydro-benzoimidazol-2-one 56 1-[1-(5-Nitro-furan-2-carbonyl)-piperidin-4-yl]-1,3- 356 dihydro-benzoimidazol-2-one 57 1-[1-(3,5-Dimethyl-isoxazole-4-carbonyl)-piperidin-4- 340 yl]-1,3-dihydro-benzoimidazol-2-one 58 1-[1-(4-Butyl-benzenesulfonyl)-piperidin-4-yl]-1,3- 413 dihydro-benzoimidazol-2-one 59 1-(1-Acetyl-piperidin-4-yl)-1,3-dihydro-benzoimidazol- 259 2-one 60 1-[1-(4-Methyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 335 benzoimidazol-2-one 61 1-(1-Phenylacetyl-piperidin-4-yl)-1,3-dihydro- 335 benzoimidazol-2-one 62 1-[1-(Biphenyl-4-carbonyl)-piperidin-4-yl]-1,3-dihydro- 397 benzoimidazol-2-one 63 3-[4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)- 346 piperidine-1-carbonyl]-benzonitrile 64 1-[1-(4-Methoxy-benzoyl)-piperidin-4-yl]-1,3-dihydro- 351 benzoimidazol-2-one 65 1-[1-(3-Trifluoromethyl-benzenesulfonyl)-piperidin-4- 425 yl]-1,3-dihydro-benzoimidazol-2-one 66 1-(1-Methanesulfonyl-piperidin-4-yl)-1,3-dihydro- 295 benzoimidazol-2-one 67 1-[1-(4-Isopropyl-benzenesulfonyl)-piperidin-4-yl]-1,3- 399 dihydro-benzoimidazol-2-one 68 1-[1-(4-Chloro-benzenesulfonyl)-piperidin-4-yl]-1,3- 391 dihydro-benzoimidazol-2-one 69 1-[1-(Toluene-4-sulfonyl)-piperidin-4-yl]-1,3-dihydro- 371 benzoimidazol-2-one 70 1-[1-(2,5-Dimethoxy-benzenesulfonyl)-piperidin-4-yl]- 417 1,3-dihydro-benzoimidazol-2-one 71 1-[1-(Naphthalene-1-sulfonyl)-piperidin-4-yl]-1,3- 407 dihydro-benzoimidazol-2-one 72 1-[1-(2-Nitro-benzenesulfonyl)-piperidin-4-yl]-1,3- 402 dihydro-benzoimidazol-2-one 73 1-[1-(1-Methyl-3H-imidazole-4-sulfonyl)-piperidin-4- yl]-1,3-dihydro-benzoimidazol-2-one 74 1-[1-(2-Bromo-benzenesulfonyl)-piperidin-4-yl]-1,3- 435 dihydro-benzoimidazol-2-one 75 1-[1-(2-Nitro-phenylmethanesulfonyl)-piperidin-4-yl]- 416 1,3-dihydro-benzoimidazol-2-one 76 1-[1-(2-Methyl-5-nitro-benzenesulfonyl)-piperidin-4-yl]- 416 1,3-dihydro-benzoimidazol-2-one 77 1-[1-(4-Nitro-benzenesulfonyl)-piperidin-4-yl]-1,3- 402 dihydro-benzoimidazol-2-one 78 1-[1-(2,5-Dichloro-benzenesulfonyl)-piperidin-4-yl]-1,3- 425 dihydro-benzoimidazol-2-one 79 1-[1-(3,4-Dimethoxy-benzenesulfonyl)-piperidin-4-yl]- 417 1,3-dihydro-benzoimidazol-2-one 80 1-[1-(4-Bromo-benzenesulfonyl)-piperidin-4-yl]-1,3- 435 dihydro-benzoimidazol-2-one 81 1-[1-(5-Chloro-4-nitro-thiophene-2-sulfonyl)-piperidin- 442 4-yl]-1,3-dihydro-benzoimidazol-2-one 82 1-[1-(3-Nitro-benzenesulfonyl)-piperidin-4-yl]-1,3- 402 dihydro-benzoimidazol-2-one 83 1-[1-(4-tert-Butyl-benzenesulfonyl)-piperidin-4-yl]-1,3- 413 dihydro-benzoimidazol-2-one 84 1-[1-(2,4-Dinitro-benzenesulfonyl)-piperidin-4-yl]-1,3- 447 dihydro-benzoimidazol-2-one 85 1-[1-(4-Chloro-3-nitro-benzenesulfonyl)-piperidin-4-yl]- 436 1,3-dihydro-benzoimidazol-2-one 86 1-[1-(3,5-Dichloro-benzenesulfonyl)-piperidin-4-yl]-1,3- 425 dihydro-benzoimidazol-2-one 87 1-[1-(7,7-Dimethyl-2-oxo-bicyclo[2.2.1]hept-1- 431 ylmethanesulfonyl)-piperidin-4-yl]-1,3-dihydro- benzoimidazol-2-one 88 1-[1-(4-Acetyl-benzenesulfonyl)-piperidin-4-yl]-1,3- 399 dihydro-benzoimidazol-2-one 89 1-[1-(2,3-Dichloro-benzenesulfonyl)-piperidin-4-yl]-1,3- 425 dihydro-benzoimidazol-2-one 90 1-[1-(5-Bromo-2-methoxy-benzenesulfonyl)-piperidin-4- 465 yl]-1,3-dihydro-benzoimidazol-2-one 91 1-[1-(4-Pentyl-benzenesulfonyl)-piperidin-4-yl]-1,3- 427 dihydro-benzoimidazol-2-one 92 2-[4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)- 382 piperidine-1-sulfonyl]-benzonitrile 93 1-[1-(3,5-Dimethyl-isoxazole-4-sulfonyl)-piperidin-4- 376 yl]-1,3-dihydro-benzoimidazol-2-one 94 1-[1-(2-Nitro-4-trifluoromethyl-benzenesulfonyl)- 470 piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one 95 1-[1-(4-Fluoro-benzenesulfonyl)-piperidin-4-yl]-1,3- 375 dihydro-benzoimidazol-2-one 96 1-[1-(3,5-Bis-trifluoromethyl-benzenesulfonyl)- 493 piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one 97 1-(1-Benzenesulfonyl-piperidin-4-yl)-1,3-dihydro- 357 benzoimidazol-2-one 98 1-[1-(3,4-Difluoro-benzenesulfonyl)-piperidin-4-yl]-1,3- 393 dihydro-benzoimidazol-2-one 99 1-[1-(Butane-1-sulfonyl)-piperidin-4-yl]-1,3-dihydro- 337 benzoimidazol-2-one 100 1-[1-(2,4-Difluoro-benzenesulfonyl)-piperidin-4-yl]-1,3- 393 dihydro-benzoimidazol-2-one 101 1-(1-Ethanesulfonyl-piperidin-4-yl)-1,3-dihydro- 309 benzoimidazol-2-one 102 1-[1-(3,4-Dichloro-benzenesulfonyl)-piperidin-4-yl]-1,3- 425 dihydro-benzoimidazol-2-one 103 1-[1-(4-Trifluoromethoxy-benzenesulfonyl)-piperidin-4- 441 yl]-1,3-dihydro-benzoimidazol-2-one 104 1-[1-(4-Ethyl-benzenesulfonyl)-piperidin-4-yl]-1,3- 385 dihydro-benzoimidazol-2-one 105 1-[1-(Nonafluorobutane-1-sulfonyl)-piperidin-4-yl]-1,3- 499 dihydro-benzoimidazol-2-one 106 1-[1-(3-Chloro-benzenesulfonyl)-piperidin-4-yl]-1,3- 391 dihydro-benzoimidazol-2-one 107 1-[1-(4-Propyl-benzenesulfonyl)-piperidin-4-yl]-1,3- 399 dihydro-benzoimidazol-2-one 108 1-[1-(2-Fluoro-benzenesulfonyl)-piperidin-4-yl]-1,3- 375 dihydro-benzoimidazol-2-one 109 1-[1-(Toluene-3-sulfonyl)-piperidin-4-yl]-1,3-dihydro- 371 benzoimidazol-2-one 110 1-[1-(4-tert-Butyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 377 benzoimidazol-2-one 111 1-(1-Cyclohexanecarbonyl-piperidin-4-yl)-1,3-dihydro- 327 benzoimidazol-2-one 112 1-[1-(3-Chloro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 355 benzoimidazol-2-one 113 1-(1-Butyryl-piperidin-4-yl)-1,3-dihydro-benzoimidazol- 287 2-one 114 1-(1-Propionyl-piperidin-4-yl)-1,3-dihydro- 273 benzoimidazol-2-one 115 1-[1-(3-Cyclopentyl-propionyl)-piperidin-4-yl]-1,3- 341 dihydro-benzoimidazol-2-one 116 1-(1-Pentanoyl-piperidin-4-yl)-1,3-dihydro- 301 benzoimidazol-2-one 117 1-[1-(2,2-Dimethyl-propionyl)-piperidin-4-yl]-1,3- 301 dihydro-benzoimidazol-2-one 118 1-[1-(3,5-Bis-trifluoromethyl-benzoyl)-piperidin-4-yl]- 457 1,3-dihydro-benzoimidazol-2-one 119 1-[1-(2-Methoxy-acetyl)-piperidin-4-yl]-1,3-dihydro- 289 benzoimidazol-2-one 120 1-{1-[2-(4-Chloro-phenyl)-acetyl]-piperidin-4-yl}-1,3- 369 dihydro-benzoimidazol-2-one 121 1-[1-(Morpholine-4-carbonyl)-piperidin-4-yl]-1,3- 330 dihydro-benzoimidazol-2-one 122 1-[1-(4-Chloro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 355 benzoimidazol-2-one 123 1-[1-(2,4-Difluoro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 357 benzoimidazol-2-one 124 1-[1-(2,6-Difluoro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 357 benzoimidazol-2-one 125 1-[1-(1-Phenyl-5-propyl-1H-pyrazole-4-carbonyl)- 429 piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one 126 1-(1-Cyclobutanecarbonyl-piperidin-4-yl)-1,3-dihydro- 299 benzoimidazol-2-one 127 1-[1-(5-tert-Butyl-2-methyl-2H-pyrazole-3-carbonyl)- 381 piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one 128 1-[1-(3,5-Difluoro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 357 benzoimidazol-2-one 129 1-[1-(2-Thiophen-2-yl-acetyl)-piperidin-4-yl]-1,3- 341 dihydro-benzoimidazol-2-one 130 1-{1-[2-(4-Methoxy-phenyl)-acetyl]-piperidin-4-yl}-1,3- 365 dihydro-benzoimidazol-2-one 131 1-[1-(4-Propyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 363 benzoimidazol-2-one 132 1-[1-(3-Methyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 335 benzoimidazol-2-one 133 1-[1-(2,3-Difluoro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 357 benzoimidazol-2-one 134 1-[1-(Isoxazole-5-carbonyl)-piperidin-4-yl]-1,3-dihydro- 312 benzoimidazol-2-one 135 1-[1-(2,4,5-Trifluoro-benzoyl)-piperidin-4-yl]-1,3- 375 dihydro-benzoimidazol-2-one 136 1-[1-(2,5-Difluoro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 357 benzoimidazol-2-one 137 1-{1-[2-(4-Fluoro-phenyl)-acetyl]-piperidin-4-yl}-1,3- 353 dihydro-benzoimidazol-2-one 138 1-{1-[2-(3-Methoxy-phenyl)-acetyl]-piperidin-4-yl}-1,3- 365 dihydro-benzoimidazol-2-one 139 1-[1-(4-Ethoxy-benzoyl)-piperidin-4-yl]-1,3-dihydro- 365 benzoimidazol-2-one 140 1-[1-(2-Chloro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 355 benzoimidazol-2-one 141 1-[1-(2-Methoxy-benzoyl)-piperidin-4-yl]-1,3-dihydro- 351 benzoimidazol-2-one 142 1-[1-(2-Fluoro-4-trifluoromethyl-benzoyl)-piperidin-4- 407 yl]-1,3-dihydro-benzoimidazol-2-one 143 1-[1-(2,3,4-Trifluoro-benzoyl)-piperidin-4-yl]-1,3- 375 dihydro-benzoimidazol-2-one 144 1-[1-(2,3-Difluoro-4-methyl-benzoyl)-piperidin-4-yl]- 371 1,3-dihydro-benzoimidazol-2-one 145 1-[1-(3-Chloro-2,4-difluoro-benzoyl)-piperidin-4-yl]-1,3- 391 dihydro-benzoimidazol-2-one 146 1-[1-(5-Methyl-isoxazole-3-carbonyl)-piperidin-4-yl]- 326 1,3-dihydro-benzoimidazol-2-one 147 1-{1-[5-(4-Chloro-phenyl)-2-methyl-furan-3-carbonyl]- 435 piperidin-4-yl}-1,3-dihydro-benzoimidazol-2-one 148 1-[1-(Adamantane-1-carbonyl)-piperidin-4-yl]-1,3- 379 dihydro-benzoimidazol-2-one 149 1-[1-(3,4-Dichloro-benzoyl)-piperidin-4-yl]-1,3-dihydro- 389 benzoimidazol-2-one 150 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-methyl-1,3- 391 dihydro-benzoimidazol-2-one 151 4-(2-Oxo-5-trifluoromethyl-2,3-dihydro-benzoimidazol- 357 1-yl)-piperidine-1-carboxylic acid ethyl ester 152 1-[1-(4-Pentyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 391 benzoimidazol-2-one 153 1-[1-(4-Hexyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 405 benzoimidazol-2-one 154 1-[1-(4-Heptyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 419 benzoimidazol-2-one 155 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-5-trifluoromethyl- 445 1,3-dihydro-benzoimidazol-2-one 156 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-ethyl-1,3- 405 dihydro-benzoimidazol-2-one 157 1-Benzyl-3-[1-(4-butyl-benzoyl)-piperidin-4-yl]-1,3- 467 dihydro-benzoimidazol-2-one 158 1-[1-(4-Cyclohexyl-benzoyl)-piperidin-4-yl]-1,3- 403 dihydro-benzoimidazol-2-one 159 4-(5-Fluoro-2-oxo-2,3-dihydro-benzoimidazol-1-yl)- 307 piperidine-1-carboxylic acid ethyl ester 160 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-5-fluoro-1,3- 395 dihydro-benzoimidazol-2-one 161 1-[1-(4-Ethoxymethyl-benzoyl)-piperidin-4-yl]-1,3- 379 dihydro-benzoimidazol-2-one 162 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-propyl-1,3- 419 dihydro-benzoimidazol-2-one 163 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3- 431 cyclopropylmethyl-1,3-dihydro-benzoimidazol-2-one 164 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(3-methyl- 447 butyl)-1,3-dihydro-benzoimidazol-2-one 165 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-isobutyl-1,3- 433 dihydro-benzoimidazol-2-one 166 1-Allyl-3-[1-(4-butyl-benzoyl)-piperidin-4-yl]-1,3- 417 dihydro-benzoimidazol-2-one 167 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-pyridin-2- 468 ylmethyl-1,3-dihydro-benzoimidazol-2-one 168 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-pyridin-3- 468 ylmethyl-1,3-dihydro-benzoimidazol-2-one 169 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(4-methyl- 481 benzyl)-1,3-dihydro-benzoimidazol-2-one 170 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(4-tert-butyl- 523 benzyl)-1,3-dihydro-benzoimidazol-2-one 171 1-(4-Bromo-benzyl)-3-[1-(4-butyl-benzoyl)-piperidin-4- 545 yl]-1,3-dihydro-benzoimidazol-2-one 172 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(4-chloro- 501 benzyl)-1,3-dihydro-benzoimidazol-2-one 173 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(4- 535 trifluoromethyl-benzyl)-1,3-dihydro-benzoimidazol-2- one 174 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(4- 551 trifluoromethoxy-benzyl)-1,3-dihydro-benzoimidazol-2- one 175 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(4- 545 methanesulfonyl-benzyl)-1,3-dihydro-benzoimidazol-2- one 176 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(2-chloro- 501 benzyl)-1,3-dihydro-benzoimidazol-2-one 177 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(3-chloro- 501 benzyl)-1,3-dihydro-benzoimidazol-2-one 178 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(3-methoxy- 497 benzyl)-1,3-dihydro-benzoimidazol-2-one 179 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(2- 535 trifluoromethyl-benzyl)-1,3-dihydro-benzoimidazol-2- one 180 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(3- 535 trifluoromethyl-benzyl)-1,3-dihydro-benzoimidazol-2- one 181 1-[1-(4-Butyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 375 1,3-dihydro-benzoimidazol-2-one 182 1-[1-(4-Pentyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 389 1,3-dihydro-benzoimidazol-2-one 183 1-[1-(4-Hexyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 403 1,3-dihydro-benzoimidazol-2-one 184 1-[1-(4-Heptyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 417 1,3-dihydro-benzoimidazol-2-one 185 (4-Butyl-phenyl)-(4-{2-[(pyridin-2-ylmethyl)-amino]- 467 benzoimidazol-1-yl}-piperidin-1-yl)-methanone 186 (4-Butyl-phenyl)-{4-[2-(3-cyclohexylamino- 515 propylamino)-benzoimidazol-1-yl]-piperidin-1-yl}- methanone 187 (4-Butyl-phenyl)-{4-[2-(3-diethylamino-propylamino)- 489 benzoimidazol-1-yl]-piperidin-1-yl}-methanone 188 (4-Butyl-phenyl)-[4-(2-hexylamino-benzoimidazol-1-yl)- 460 piperidin-1-yl]-methanone 189 1-[1-(4-Butyl-benzyl)-piperidin-4-yl]-1,3-dihydro- 363 benzoimidazol-2-one 190 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(2- 448 dimethylamino-ethyl)-1,3-dihydro-benzoimidazol-2-one 191 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(2-morpholin- 490 4-yl-ethyl)-1,3-dihydro-benzoimidazol-2-one 192 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(2-methyl- 488 thiazol-4-ylmethyl)-1,3-dihydro-benzoimidazol-2-one 193 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-[2-(1-methyl- 488 pyrrolidin-2-yl)-ethyl]-1,3-dihydro-benzoimidazol-2-one 194 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(2-piperidin-1- 488 yl-ethyl)-1,3-dihydro-benzoimidazol-2-one 195 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(3,5-dimethyl- 486 isoxazol-4-ylmethyl)-1,3-dihydro-benzoimidazol-2-one 196 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(tetrahydro- 475 pyran-2-ylmethyl)-1,3-dihydro-benzoimidazol-2-one 197 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-(tetrahydro- 461 furan-2-ylmethyl)-1,3-dihydro-benzoimidazol-2-one 198 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-3-pyridin-4- 468 ylmethyl-1,3-dihydro-benzoimidazol-2-one 199 1-(1-Benzoyl-piperidin-4-yl)-1,3-dihydro- 321 benzoimidazol-2-one 200 3-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-1,3-dihydro- 378 imidazo[4,5-b]pyridin-2-one 201 3-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-7-methyl-1,3- 392 dihydro-imidazo[4,5-b]pyridin-2-one 202 1-{1-[4-(1-Methyl-butyl)-benzoyl]-piperidin-4-yl}-1,3- 391 dihydro-benzoimidazol-2-one 203 (4-Butyl-phenyl)-[4-(2-methyl-benzoimidazol-1-yl)- 375 piperidin-1-yl]-methanone 204 4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1- 392 carboxylic acid (4-butyl-phenyl)-amide 205 1-[1-(4-Butyl-benzoyl)-piperidin-4-yl]-5,6-dichloro-1,3- 445 dihydro-benzoimidazol-2-one 206 1-[1-(4-Butyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 389 3-methyl-1,3-dihydro-benzoimidazol-2-one 207 1-[1-(4-Butyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 403 3-ethyl-1,3-dihydro-benzoimidazol-2-one 208 1-Benzyl-3-[1-(4-butyl-benzoyl)-1,2,3,6-tetrahydro- 465 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 209 1-[1-(4-Butyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 499 3-(3-chloro-benzyl)-1,3-dihydro-benzoimidazol-2-one 210 1-Allyl-3-[1-(4-butyl-benzoyl)-1,2,3,6-tetrahydro- 415 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 211 1-[1-(4-Butyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 499 3-(4-chloro-benzyl)-1,3-dihydro-benzoimidazol-2-one 212 1-[1-(4-Butyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 459 3-(tetrahydro-furan-2-ylmethyl)-1,3-dihydro- benzoimidazol-2-one 213 1-[1-(4-Butyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 484 3-(3,5-dimethyl-isoxazol-4-ylmethyl)-1,3-dihydro- benzoimidazol-2-one 214 1-[1-(4-Butyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 466 3-pyridin-4-ylmethyl-1,3-dihydro-benzoimidazol-2-one 215 1-[1-(4-Butyl-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 466 3-pyridin-3-ylmethyl-1,3-dihydro-benzoimidazol-2-one 216 (4-Butyl-phenyl)-{4-[2-(2-hydroxy-ethylamino)- 420 benzoimidazol-1-yl]-piperidin-1-yl}-methanone 217 4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1- 317 carboxylic acid tert-butyl ester 218 4-(3-Methyl-2-oxo-2,3-dihydro-benzoimidazol-1-yl)- 331 piperidine-1-carboxylic acid tert-butyl ester 219 (4-Butyl-phenyl)-[4-(2-trifluoromethyl-benzoimidazol-1- 429 yl)-piperidin-1-yl]-methanone 220 1-Methyl-3-piperidin-4-yl-1,3-dihydro-benzoimidazol-2- 231 one 221 1-(1-Benzyl-piperidin-4-yl)-3-methyl-1,3-dihydro- 321 benzoimidazol-2-one 222 1-[1-(4-Chloro-benzyl)-piperidin-4-yl]-3-methyl-1,3- 355 dihydro-benzoimidazol-2-one 223 1-[1-(4-tert-Butyl-benzyl)-piperidin-4-yl]-3-methyl-1,3- 377 dihydro-benzoimidazol-2-one 224 1-[1-(2-Methoxy-benzyl)-piperidin-4-yl]-3-methyl-1,3- 351 dihydro-benzoimidazol-2-one 225 1-[1-(3,5-Difluoro-benzyl)-piperidin-4-yl]-3-methyl-1,3- 357 dihydro-benzoimidazol-2-one 226 1-Methyl-3-[1-(3-methyl-benzyl)-piperidin-4-yl]-1,3- 335 dihydro-benzoimidazol-2-one 227 1-[1-(2-Chloro-benzyl)-piperidin-4-yl]-3-methyl-1,3- 355 dihydro-benzoimidazol-2-one 228 1-[1-(3-Chloro-benzyl)-piperidin-4-yl]-3-methyl-1,3- 355 dihydro-benzoimidazol-2-one 229 1-[1-(2,4-Dichloro-benzyl)-piperidin-4-yl]-3-methyl-1,3- 389 dihydro-benzoimidazol-2-one 230 1-[1-(3,5-Dimethyl-isoxazol-4-ylmethyl)-piperidin-4-yl]- 340 3-methyl-1,3-dihydro-benzoimidazol-2-one 231 1-[1-(3,4-Dichloro-benzyl)-piperidin-4-yl]-3-methyl-1,3- 389 dihydro-benzoimidazol-2-one 232 1-[1-(4-Methoxy-benzyl)-piperidin-4-yl]-3-methyl-1,3- 351 dihydro-benzoimidazol-2-one 233 1-[1-(3-Fluoro-5-trifluoromethyl-benzyl)-piperidin-4-yl]- 407 3-methyl-1,3-dihydro-benzoimidazol-2-one 234 1-Methyl-3-[1-(3-trifluoromethyl-benzyl)-piperidin-4- 389 yl]-1,3-dihydro-benzoimidazol-2-one 235 1-Methyl-3-[1-(2-methyl-benzyl)-piperidin-4-yl]-1,3- 335 dihydro-benzoimidazol-2-one 236 1-Methyl-3-(1-pyridin-2-ylmethyl-piperidin-4-yl)-1,3- 322 dihydro-benzoimidazol-2-one 237 1-Methyl-3-[1-(4-methyl-benzyl)-piperidin-4-yl]-1,3- 335 dihydro-benzoimidazol-2-one 238 1-Methyl-3-[1-(2-trifluoromethyl-benzyl)-piperidin-4- 389 yl]-1,3-dihydro-benzoimidazol-2-one 239 1-[1-(4-Bromo-benzyl)-piperidin-4-yl]-3-methyl-1,3- 399 dihydro-benzoimidazol-2-one 240 1-Methyl-3-[1-(4-nitro-benzyl)-piperidin-4-yl]-1,3- 366 dihydro-benzoimidazol-2-one 241 1-Methyl-3-(1-naphthalen-2-ylmethyl-piperidin-4-yl)- 371 1,3-dihydro-benzoimidazol-2-one 242 1-[1-(4-Methanesulfonyl-benzyl)-piperidin-4-yl]-3- 399 methyl-1,3-dihydro-benzoimidazol-2-one 243 1-Methyl-3-[1-(3-nitro-benzyl)-piperidin-4-yl]-1,3- 366 dihydro-benzoimidazol-2-one 244 1-[1-(4-Methanesulfonyl-benzyl)-piperidin-4-yl]-3- 322 methyl-1,3-dihydro-benzoimidazol-2-one 245 4-(2-Methylamino-benzoimidazol-1-yl)-piperidine-1- 330 carboxylic acid tert-butyl ester 246 4-(2-Propylamino-benzoimidazol-1-yl)-piperidine-1- 358 carboxylic acid tert-butyl ester 247 4-(2-Hexylamino-benzoimidazol-1-yl)-piperidine-1- 400 carboxylic acid tert-butyl ester 248 4-(2-Cyclohexylamino-benzoimidazol-1-yl)-piperidine- 398 1-carboxylic acid tert-butyl ester 249 4-(2-Phenylamino-benzoimidazol-1-yl)-piperidine-1- 392 carboxylic acid tert-butyl ester 250 4-(2-Benzylamino-benzoimidazol-1-yl)-piperidine-1- 406 carboxylic acid tert-butyl ester 251 4-(2-Phenethylamino-benzoimidazol-1-yl)-piperidine-1- 420 carboxylic acid tert-butyl ester 252 4-[2-(3-Trifluoromethyl-phenylamino)-benzoimidazol-1- 460 yl]-piperidine-1-carboxylic acid tert-butyl ester 253 4-[2-(Pyridin-3-ylamino)-benzoimidazol-1-yl]- 393 piperidine-1-carboxylic acid tert-butyl ester 254 1-Methyl-3-[1-(tetrahydro-pyran-2-ylmethyl)-piperidin- 329 4-yl]-1,3-dihydro-benzoimidazol-2-one 255 1-Methyl-3-(1-pyridin-4-ylmethyl-piperidin-4-yl)-1,3- 322 dihydro-benzoimidazol-2-one 256 (3-Fluoro-phenyl)-[4-(2-methylamino-benzoimidazol-1- 352 yl)-piperidin-1-yl]-methanone 257 (3-Fluoro-phenyl)-[4-(2-propylamino-benzoimidazol-1- 380 yl)-piperidin-1-yl]-methanone 258 (3-Fluoro-phenyl)-[4-(2-hexylamino-benzoimidazol-1- 422 yl)-piperidin-1-yl]-methanone 259 [4-(2-Cyclohexylamino-benzoimidazol-1-yl)-piperidin-1- 420 yl]-(3-fluoro-phenyl)-methanone 260 (3-Fluoro-phenyl)-[4-(2-phenylamino-benzoimidazol-1- 414 yl)-piperidin-1-yl]-methanone 261 [4-(2-Benzylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 428 (3-fluoro-phenyl)-methanone 262 (3-Fluoro-phenyl)-[4-(2-phenethylamino-benzoimidazol- 442 1-yl)-piperidin-1-yl]-methanone 263 (3-Fluoro-phenyl)-{4-[2-(3-trifluoromethyl- 482 phenylamino)-benzoimidazol-1-yl]-piperidin-1-yl}- methanone 264 (3-Fluoro-phenyl)-{4-[2-(pyridin-3-ylamino)- 415 benzoimidazol-1-yl]-piperidin-1-yl}-methanone 265 1-[1-(3-Fluoro-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 337 1,3-dihydro-benzoimidazol-2-one 266 [4-(2-Methylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 334 phenyl-methanone 267 Phenyl-[4-(2-propylamino-benzoimidazol-1-yl)- 362 piperidin-1-yl]-methanone 268 [4-(2-Hexylamino-benzoimidazol-1-yl)-piperidin-1-yl] 404 phenyl-methanone 269 [4-(2-Cyclohexylamino-benzoimidazol-1-yl)-piperidin-1- 402 yl]-phenyl-methanone 270 Phenyl-[4-(2-phenylamino-benzoimidazol-1-yl)- 396 piperidin-1-yl]-methanone 271 [4-(2-Benzylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 410 phenyl-methanone 272 [4-(2-Phenethylamino-benzoimidazol-1-yl)-piperidin-1- 424 yl]-phenyl-methanone 273 Phenyl-{4-[2-(3-trifluoromethyl-phenylamino)- 464 benzoimidazol-1-yl]-piperidin-1-yl}-methanone 274 Phenyl-{4-[2-(pyridin-3-ylamino)-benzoimidazol-1-yl]- 397 piperidin-1-yl}-methanone 275 1-(1-Benzoyl-1,2,3,6-tetrahydro-pyridin-4-yl)-1,3- 319 dihydro-benzoimidazol-2-one 276 1-[4-(2-Methylamino-benzoimidazol-1-yl)-piperidin-1- 286 yl]-propan-1-one 277 1-[4-(2-Propylamino-benzoimidazol-1-yl)-piperidin-1- 314 yl]-propan-1-one 278 1-[4-(2-Hexylamino-benzoimidazol-1-yl)-piperidin-1- 356 yl]-propan-1-one 279 1-[4-(2-Cyclohexylamino-benzoimidazol-1-yl)-piperidin- 354 1-yl]-propan-1-one 280 1-[4-(2-Phenylamino-benzoimidazol-1-yl)-piperidin-1- 348 yl]-propan-1-one 281 1-[4-(2-Benzylamino-benzoimidazol-1-yl)-piperidin-1- 362 yl]-propan-1-one 282 1-[4-(2-Phenethylamino-benzoimidazol-1-yl)-piperidin- 376 1-yl]-propan-1-one 283 1-{4-[2-(3-Trifluoromethyl-phenylamino)- 416 benzoimidazol-1-yl]-piperidin-1-yl}-propan-1-one 284 1-{4-[2-(Pyridin-3-ylamino)-benzoimidazol-1-yl]- 349 piperidin-1-yl}-propan-1-one 285 1-(1-Propionyl-1,2,3,6-tetrahydro-pyridin-4-yl)-1,3- 271 dihydro-benzoimidazol-2-one 286 (2-Fluoro-phenyl)-[4-(2-methylamino-benzoimidazol-1- 352 yl)-piperidin-1-yl]-methanone 287 (2-Fluoro-phenyl)-[4-(2-propylamino-benzoimidazol-1- 380 yl)-piperidin-1-yl]-methanone 288 (2-Fluoro-phenyl)-[4-(2-hexylamino-benzoimidazol-1- 422 yl)-piperidin-1-yl]-methanone 289 [4-(2-Cyclohexylamino-benzoimidazol-1-yl)-piperidin-1- 420 yl]-(2-fluoro-phenyl)-methanone 290 (2-Fluoro-phenyl)-[4-(2-phenylamino-benzoimidazol-1- 414 yl)-piperidin-1-yl]-methanone 291 [4-(2-Benzylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 428 (2-fluoro-phenyl)-methanone 292 (2-Fluoro-phenyl)-[4-(2-phenethylamino-benzoimidazol- 442 1-yl)-piperidin-1-yl]-methanone 293 (2-Fluoro-phenyl)-{4-[2-(3-trifluoromethyl- 482 phenylamino)-benzoimidazol-1-yl]-piperidin-1-yl}- methanone 294 (2-Fluoro-phenyl)-{4-[2-(pyridin-3-ylamino)- 415 benzoimidazol-1-yl]-piperidin-1-yl}-methanone 295 1-[1-(2-Fluoro-benzoyl)-1,2,3,6-tetrahydro-pyridin-4-yl]- 337 1,3-dihydro-benzoimidazol-2-one 296 (4-Butyl-phenyl)-[4-(2-methylamino-benzoimidazol-1- 390 yl)-piperidin-1-yl]-methanone 297 (4-Butyl-phenyl)-[4-(2-propylamino-benzoimidazol-1- 418 yl)-piperidin-1-yl]-methanone 298 (4-Butyl-phenyl)-[4-(2-cyclohexylamino-benzoimidazol- 458 1-yl)-piperidin-1-yl]-methanone 299 (4-Butyl-phenyl)-[4-(2-phenylamino-benzoimidazol-1- 452 yl)-piperidin-1-yl]-methanone 300 [4-(2-Benzylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 466 (4-butyl-phenyl)-methanone 301 (4-Butyl-phenyl)-[4-(2-phenethylamino-benzoimidazol- 480 1-yl)-piperidin-1-yl]-methanone 302 (4-Butyl-phenyl)-{4-[2-(3-trifluoromethyl-phenylamino)- 520 benzoimidazol-1-yl]-piperidin-1-yl}-methanone 303 (4-Butyl-phenyl)-{4-[2-(pyridin-3-ylamino)- 453 benzoimidazol-1-yl]-piperidin-1-yl}-methanone 304 1-[1-(Naphthalene-2-sulfonyl)-piperidin-4-yl]-1,3- 407 dihydro-benzoimidazol-2-one 305 [4-(2-Methylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 402 (3-trifluoromethyl-phenyl)-methanone 306 [4-(2-Propylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 430 (3-trifluoromethyl-phenyl)-methanone 307 [4-(2-Hexylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 472 (3-trifluoromethyl-phenyl)-methanone 308 [4-(2-Cyclohexylamino-benzoimidazol-1-yl)-piperidin-1- 470 yl]-(3-trifluoromethyl-phenyl)-methanone 309 [4-(2-Phenylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 464 (3-trifluoromethyl-phenyl)-methanone 310 [4-(2-Benzylamino-benzoimidazol-1-yl)-piperidin-1-yl]- 478 (3-trifluoromethyl-phenyl)-methanone 311 [4-(2-Phenethylamino-benzoimidazol-1-yl)-piperidin-1- 492 yl]-(3-trifluoromethyl-phenyl)-methanone 312 (3-Trifluoromethyl-phenyl)-{4-[2-(3-trifluoromethyl- 532 phenylamino)-benzoimidazol-1-yl]-piperidin-1-yl}- methanone 313 {4-[2-(Pyridin-3-ylamino)-benzoimidazol-1-yl]- 465 piperidin-1-yl}-(3-trifluoromethyl-phenyl)-methanone 314 1-[1-(3-Trifluoromethyl-benzoyl)-1,2,3,6-tetrahydro- 387 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 315 1-[4-(2-Methylamino-benzoimidazol-1-yl)-piperidin-1- 360 yl]-3-phenyl-propenone 316 3-Phenyl-1-[4-(2-propylamino-benzoimidazol-1-yl)- 388 piperidin-1-yl]-propenone 317 1-[4-(2-Hexylamino-benzoimidazol-1-yl)-piperidin-1- 430 yl]-3-phenyl-propenone 318 1-[4-(2-Cyclohexylamino-benzoimidazol-1-yl)-piperidin- 428 1-yl]-3-phenyl-propenone 319 3-Phenyl-1-[4-(2-phenylamino-benzoimidazol-1-yl)- 422 piperidin-1-yl]-propenone 320 1-[4-(2-Benzylamino-benzoimidazol-1-yl)-piperidin-1- 436 yl]-3-phenyl-propenone 321 1-[4-(2-Phenethylamino-benzoimidazol-1-yl)-piperidin- 450 1-yl]-3-phenyl-propenone 322 3-Phenyl-1-{4-[2-(3-trifluoromethyl-phenylamino)- 490 benzoimidazol-1-yl]-piperidin-1-yl}-propenone 323 3-Phenyl-1-{4-[2-(pyridin-3-ylamino)-benzoimidazol-1- 423 yl]-piperidin-1-yl}-propenone 324 4-Methyl-1-[1-(3-phenyl-acryloyl)-1,2,3,6-tetrahydro- 359 pyridin-4-yl]-1,3-dihydro-benzoimidazol-2-one 325 [1-(1-Benzenesulfonyl-piperidin-4-yl)-1H- 370 benzoimidazol-2-yl]-methyl-amine 326 [1-(1-Benzenesulfonyl-piperidin-4-yl)-1H- 398 benzoimidazol-2-yl]-propyl-amine 327 [1-(1-Benzenesulfonyl-piperidin-4-yl)-1H- 440 benzoimidazol-2-yl]-hexyl-amine 328 [1-(1-Benzenesulfonyl-piperidin-4-yl)-1H- 438 benzoimidazol-2-yl]-cyclohexyl-amine 329 [1-(1-Benzenesulfonyl-piperidin-4-yl)-1H- 432 benzoimidazol-2-yl]-phenyl-amine 330 [1-(1-Benzenesulfonyl-piperidin-4-yl)-1H- 446 benzoimidazol-2-yl]-benzyl-amine 331 [1-(1-Benzenesulfonyl-piperidin-4-yl)-1H- 460 benzoimidazol-2-yl]-phenethyl-amine 332 [1-(1-Benzenesulfonyl-piperidin-4-yl)-1H- 500 benzoimidazol-2-yl]-(3-trifluoromethyl-phenyl)-amine 333 [1-(1-Benzenesulfonyl-piperidin-4-yl)-1H- 433 benzoimidazol-2-yl]-pyridin-3-yl-amine 334 1-(1-Benzenesulfonyl-1,2,3,6-tetrahydro-pyridin-4-yl)- 355 1,3-dihydro-benzoimidazol-2-one 335 1-[1-(5-Dimethylamino-naphthalene-1-sulfonyl)- 450 piperidin-4-yl]-1,3-dihydro-benzoimidazol-2-one 343 4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1- 386 sulfonic acid benzylamide 344 4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1- 404 sulfonic acid 4-fluoro-benzylamide 345 4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1- 354 sulfonic acid (2-methoxy-ethyl)-amide 346 4-(2-Oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidine-1- 336 sulfonic acid allylamide - It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to included within the spirit and purview of this application and are considered within the scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
Claims (20)
1. A compound having the formula:
in which
R1 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted heteroaryl,
R2 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, alkoxy, —NR15R16
wherein
R15 and R16 are each members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl and R15 and R16 taken together with the nitrogen atom to which they are attached form a 4- to 8-membered heterocyclic ring
R3 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and NR15R16;
R4 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, and NR15R16;
R5 is a member selected from H, nitro, substituted or unsubstituted alkyl, cyano, acyl, and SO2R11
wherein
R11 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
Y is a member selected from O, C—NO2 and S;
Z is a member selected from:
in which
A, D, E and M are independently selected from CR12, N, and N-oxide,
wherein
R12 is a member selected from hydrogen, halo, amino, hydroxy, cyano, nitro, acyl, alkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroaryl, and at least two of A, D, E and M is a selected from CR12, and at most one of A, D, E, and M is N-oxide;
X is a member selected from O, C—NO2, S and NR10;
R6, R7 and R8 are members independently selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aminoalkyl, and R7 and R8 together with the atom to which they are joined are optionally joined to form a 4- to 8-membered heterocycloalkyl ring.
R9 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted and unsubstituted heterocycloalkyl, OR20, and SR20;
wherein
R20 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, and substituted and unsubstituted heterocycloalkyl;
R10 is a member selected from hydrogen cyano, nitro, acyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted and unsubstituted heteroaryl and SO2R11;
the dashed bond marked a is either a single or a double bond; and
n is and integer selected from 0, 1, and 2.
3. The compound according to claim 2 , wherein Y is O; and X is O.
4. The compound according to claim 3 , wherein R7 and R8 are members independently selected from H, substituted or unsubstituted aminoalkyl, and substituted or unsubstituted alkyl.
5. The compound according to claim 4 , wherein R2 is a member selected from substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; and R3 is a member selected from substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl.
6. The compound according to claim 2 , wherein
R3 is substituted or unsubstituted aryl.
7. The compound according to claim 6 , wherein Y is O.
8. The compound according to 6 wherein R7 and R8 are members independently selected from H, and substituted or unsubstituted alkyl.
9. A compound having the formula:
in which
R1 is a member selected from
R2 is a member selected from substituted or unsubstituted phenyl, and —NR15R16;
R3 is a member selected from NR15R16, and substituted or unsubstituted phenyl;
R4 is a member selected from NR15R16;
R5 is a member selected from hydrogen, nitro, substituted or unsubstituted alkyl, cyano, acyl, and SO2R11
wherein
R11 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
Y is a member selected from O and S;
Z is a member selected from:
in which
A, D, E and M are independently selected from CR12, N, and N-oxide
wherein
R12 is a member selected from hydrogen, halo, amino, hydroxy, cyano, nitro, acyl, alkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroaryl, and
at least two of A, D, E and M is a selected from CR12, and at most one of A, D, E, and M is N-oxide;
X is a member selected from O, S, NR10, and C—NO2;
R6, R7 and R8 are members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, and substituted or unsubstituted heterocycloalkyl, and R7 and R8 together with the atom to which they are joined are optionally joined to form a 4- to 8-membered heterocycloalkyl ring.
R9 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted and unsubstituted heterocycloalkyl;
R10 is a member selected from hydrogen, substituted or unsubstituted alkyl, cyano, nitro, acyl, and SO2R11
the dashed bond marked a is either a single or a double bond; and
n is and integer selected from 0, 1, and 2; and
R15 and R16 are each members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, and R15 and R16 taken together with the nitrogen atom to which they are attached to form a 4- to 8-membered heterocyclic ring.
10. The compound according to claim 9 , wherein n is 1.
11. The compound according to claim 10 , wherein X is O.
12. The compound according to claim 11 , wherein Y is O.
14. A method of decreasing ion flow through voltage-dependent sodium channels in a cell, said method comprising contacting said cell with a sodium channel-inhibiting amount of a compound comprising a piperidinyl moiety.
15. The method according to claim 14 , wherein said cell is in a human.
16. A method of decreasing ion flow through voltage-dependent sodium channels in a cell, said method comprising contacting said cell with a sodium channel-inhibiting amount of a compound of the formula:
in which
R1 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted heteroaryl,
R2 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, alkoxy, —NR15R16
wherein
R15 and R16 are each members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl and R15 and R16 taken together with the nitrogen atom to which they are attached form a 4- to 8-membered heterocyclic ring
R3 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and NR15R16;
R4 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, and NR15R16;
R5 is a member selected from H, nitro, substituted or unsubstituted alkyl, cyano, acyl, and SO2R11
wherein
R11 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
Y is a member selected from O, C—NO2 and S;
Z is a member selected from:
in which
A, D, E and M are independently selected from CR12, N, and N-oxide,
wherein
R12 is a member selected from hydrogen, halo, amino, hydroxy, cyano, nitro, acyl, alkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroaryl, and at least two of A, D, E and M is a selected from CR12, and at most one of A, D, E, and M is N-oxide;
X is a member selected from O, C—NO2, S and NR10;
R6, R7 and R8 are members independently selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aminoalkyl, and R7 and R8 together with the atom to which they are joined are optionally joined to form a 4- to 8-membered heterocycloalkyl ring.
R9 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted and unsubstituted heterocycloalkyl, OR20, and SR20;
wherein
R20 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, and substituted and unsubstituted heterocycloalkyl;
R10 is a member selected from hydrogen cyano, nitro, acyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted and unsubstituted heteroaryl and SO2R11;
the dashed bond marked a is either a single or a double bond; and
n is and integer selected from 0, 1, and 2.
17. A method of treating a central or peripheral nervous system disorder or condition through inhibition of a voltage-dependent sodium channel, said method comprising administering to a subject in need of such treatment, an effective amount of a compound comprising a piperidinyl moiety.
18. The method according to claim 16 , said compound having the formula:
in which
R1 is a member selected from hydrogen, substituted or unsubstituted alkyl substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted heteroaryl,
R2 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, alkoxy, —NR15R16
wherein
R15 and R16 are each members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl and R15 and R16 taken together with the nitrogen atom to which they are attached form a 4- to 8-membered heterocyclic ring
R3 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and NR15R16;
R4 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, and NR15R16;
R5 is a member selected from H, nitro, substituted or unsubstituted alkyl, cyano, acyl, and SO2R11
wherein
R11 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
Y is a member selected from O, C—NO2 and S;
Z is a member selected from:
in which
A, D, E and M are independently selected from CR12, N, and N-oxide,
wherein
R12 is a member selected from hydrogen, halo, amino, hydroxy, cyano, nitro, acyl, alkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroaryl, and at least two of A, D, E and M is a selected from CR12, and at most one of A, D, E, and M is N-oxide;
X is a member selected from O, C—NO2, S and NR10;
R6, R7 and R8 are members independently selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aminoalkyl, and R7 and R8 together with the atom to which they are joined are optionally joined to form a 4- to 8-membered heterocycloalkyl ring.
R9 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted and unsubstituted heterocycloalkyl, OR20, and SR20;
wherein
R20 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, and substituted and unsubstituted heterocycloalkyl;
R10 is a member selected from hydrogen cyano, nitro, acyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted and unsubstituted heteroaryl and SO2R11;
the dashed bond marked a is either a single or a double bond; and
n is and integer selected from 0, 1, and 2.
19. The method according to claim 16 , wherein said disorder is pain selected from inflammatory pain, neuropathic pain and combinations thereof.
20. A composition comprising a pharmaceutically acceptable excipient and a compound having the formula:
in which
R1 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted heteroaryl,
R2 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, alkoxy, —NR15R16
wherein
R15 and R16 are each members independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl and R15 and R16 taken together with the nitrogen atom to which they are attached form a 4- to 8-membered heterocyclic ring
R3 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and NR15R16;
R4 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, and NR15R16;
R5 is a member selected from H, nitro, substituted or unsubstituted alkyl, cyano, acyl, and SO2R11
wherein
R11 is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;
Y is a member selected from O, C—NO2 and S;
Z is a member selected from:
in which
A, D, E and M are independently selected from CR12, N, and N-oxide,
wherein
R12 is a member selected from hydrogen, halo, amino, hydroxy, cyano, nitro, acyl, alkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroaryl, and at least two of A, D, E and M is a selected from CR12, and at most one of A, D, E, and M is N-oxide;
X is a member selected from O, C—NO2, S and NR10;
R6, R7 and R8 are members independently selected from substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aminoalkyl, and R7 and R8 together with the atom to which they are joined are optionally joined to form a 4- to 8-membered heterocycloalkyl ring.
R9 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted and unsubstituted heterocycloalkyl, OR20, and SR20;
wherein
R20 is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroarylalkyl, and substituted and unsubstituted heterocycloalkyl;
R10 is a member selected from hydrogen cyano, nitro, acyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocycloalkyl, substituted and unsubstituted heteroaryl and SO2R11;
the dashed bond marked a is either a single or a double bond; and
n is and integer selected from 0, 1, and 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/764,125 US20080058376A1 (en) | 2001-11-01 | 2007-06-15 | Piperidines |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33593001P | 2001-11-01 | 2001-11-01 | |
US10/286,662 US7244744B2 (en) | 2001-11-01 | 2002-11-01 | Piperidines |
US11/764,125 US20080058376A1 (en) | 2001-11-01 | 2007-06-15 | Piperidines |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/286,662 Continuation US7244744B2 (en) | 2001-11-01 | 2002-11-01 | Piperidines |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080058376A1 true US20080058376A1 (en) | 2008-03-06 |
Family
ID=23313831
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/286,662 Expired - Fee Related US7244744B2 (en) | 2001-11-01 | 2002-11-01 | Piperidines |
US11/764,125 Abandoned US20080058376A1 (en) | 2001-11-01 | 2007-06-15 | Piperidines |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/286,662 Expired - Fee Related US7244744B2 (en) | 2001-11-01 | 2002-11-01 | Piperidines |
Country Status (4)
Country | Link |
---|---|
US (2) | US7244744B2 (en) |
EP (1) | EP1451173A4 (en) |
CA (1) | CA2465328C (en) |
WO (1) | WO2003037890A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210002250A1 (en) * | 2018-03-01 | 2021-01-07 | Thomas Helledays Stiftelse För Medicinsk Forskning | Substituted benzodiazoles and use thereof in therapy |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ540235A (en) * | 2001-04-18 | 2007-01-26 | Euro Celtique Sa | Nociceptin analogs for the treatment of pain |
WO2004091514A2 (en) * | 2003-04-15 | 2004-10-28 | Merck & Co., Inc. | Cgrp receptor antagonists |
US7141669B2 (en) | 2003-04-23 | 2006-11-28 | Pfizer Inc. | Cannabiniod receptor ligands and uses thereof |
DE602004026053D1 (en) * | 2003-06-26 | 2010-04-29 | Merck Sharp & Dohme | |
US7196079B2 (en) * | 2003-06-26 | 2007-03-27 | Merck & Co, Inc. | Benzodiazepine CGRP receptor antagonists |
WO2005005392A1 (en) * | 2003-07-07 | 2005-01-20 | Ionix Pharmaceuticals Limited | Azacyclic compounds as inhibitors of sensory neurone specific channels |
CA2554351A1 (en) * | 2004-01-29 | 2005-08-11 | Merck & Co., Inc. | Cgrp receptor antagonists |
EP1753421B1 (en) | 2004-04-20 | 2012-08-01 | Amgen Inc. | Arylsulfonamides and uses as hydroxysteroid dehydrogenase |
JPWO2006080519A1 (en) * | 2005-01-31 | 2008-06-19 | 協和醗酵工業株式会社 | Diamine derivatives |
EP1866298A2 (en) * | 2005-03-31 | 2007-12-19 | Takeda San Diego, Inc. | Hydroxysteroid dehydrogenase inhibitors |
AR056968A1 (en) | 2005-04-11 | 2007-11-07 | Xenon Pharmaceuticals Inc | ESPIRO-OXINDOL COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS |
AR053710A1 (en) | 2005-04-11 | 2007-05-16 | Xenon Pharmaceuticals Inc | SPIROHETEROCICLIC COMPOUNDS AND THEIR USES AS THERAPEUTIC AGENTS |
US20090131412A1 (en) * | 2005-06-07 | 2009-05-21 | Dainippon Sumitomo Pharma Co., Ltd. | Novel 2-quinolone derivative |
EA200800549A1 (en) * | 2005-09-06 | 2008-08-29 | Смитклайн Бичем Корпорейшн | REGIONAL SELECTIVE METHOD FOR OBTAINING BENZIMIDAZOLTHIOPHENES |
MY148504A (en) * | 2005-09-30 | 2013-04-30 | Glaxo Group Ltd | Compounds which have activity at m? receptor and their uses in medicine |
US8288413B2 (en) * | 2005-09-30 | 2012-10-16 | Glaxo Group Limited | Benzimidazolones which have activity at M1 receptor |
WO2007036718A2 (en) * | 2005-09-30 | 2007-04-05 | Glaxo Group Limited | Compounds which have activity at m1 receptor and their uses in medicine |
AR058277A1 (en) * | 2005-12-09 | 2008-01-30 | Solvay Pharm Gmbh | N- SULFAMOIL - PIPERIDIN - AMIDAS, PHARMACEUTICAL COMPOSITIONS THAT UNDERSTAND AND PROCEDURE FOR PREPARATION |
GB0526042D0 (en) * | 2005-12-21 | 2006-02-01 | Syngenta Participations Ag | Chemical compounds |
US9018222B2 (en) | 2006-03-27 | 2015-04-28 | Wex Medical Limited | Use of sodium channel blockers for the treatment of neuropathic pain developing as a consequence of chemotherapy |
TW200813018A (en) | 2006-06-09 | 2008-03-16 | Astrazeneca Ab | Novel compounds |
CL2007002950A1 (en) | 2006-10-12 | 2008-02-01 | Xenon Pharmaceuticals Inc | USE OF COMPOUNDS DERIVED FROM ESPIRO-OXINDOL IN THE TREATMENT OF HYPERCHOLESTEROLEMIA, BENIGNA HYPERPLASIA DE PROSTATA, PRURITIS, CANCER |
WO2008046084A2 (en) * | 2006-10-12 | 2008-04-17 | Xenon Pharmaceuticals Inc. | Spiroheterocyclic compounds and their uses as therapeutic agents |
JP2010043004A (en) * | 2006-12-06 | 2010-02-25 | Dainippon Sumitomo Pharma Co Ltd | New bicyclic heterocyclic compound |
EP1997805A1 (en) * | 2007-06-01 | 2008-12-03 | Commissariat à l'Energie Atomique | Compounds with antiparasitic activity, applications thereof to the treatment of infectious diseases caused by apicomplexans |
US8119661B2 (en) | 2007-09-11 | 2012-02-21 | Astrazeneca Ab | Piperidine derivatives and their use as muscarinic receptor modulators |
MX2010008818A (en) | 2008-02-13 | 2010-09-07 | Eisai R&D Man Co Ltd | Bicycloamine derivative. |
WO2010045197A1 (en) | 2008-10-17 | 2010-04-22 | Xenon Pharmaceuticals, Inc. | Spiro-oxindole compounds and their use as therapeutic agents |
DK2350090T3 (en) | 2008-10-17 | 2015-09-07 | Xenon Pharmaceuticals Inc | Spiro-oxindole compounds and their use as therapeutic agents |
WO2010078307A1 (en) | 2008-12-29 | 2010-07-08 | Xenon Pharmaceuticals Inc. | Spiro-oxindole-derivatives as sodium channel blockers |
AR077252A1 (en) | 2009-06-29 | 2011-08-10 | Xenon Pharmaceuticals Inc | ESPIROOXINDOL COMPOUND ENANTIOMERS AND THEIR USES AS THERAPEUTIC AGENTS |
MY179342A (en) | 2009-10-14 | 2020-11-04 | Xenon Pharmaceuticals Inc | Synthetic methods for spiro-oxindole compounds |
EP2518064A1 (en) * | 2009-12-25 | 2012-10-31 | Mochida Pharmaceutical Co., Ltd. | Novel aryl urea derivative |
US9504671B2 (en) | 2010-02-26 | 2016-11-29 | Xenon Pharmaceuticals Inc. | Pharmaceutical compositions of spiro-oxindole compound for topical administration and their use as therapeutic agents |
SG10201503991SA (en) * | 2010-05-31 | 2015-07-30 | Ono Pharmaceutical Co | Purinone derivative |
EP2786996B1 (en) | 2011-11-29 | 2016-09-14 | ONO Pharmaceutical Co., Ltd. | Purinone derivative hydrochloride |
US9102669B2 (en) | 2011-12-06 | 2015-08-11 | Janssen Pharmaceutica Nv | Substituted piperidinyl-pyridazinyl derivatives useful as SCD 1 inhibitors |
US9238658B2 (en) | 2011-12-06 | 2016-01-19 | Janssen Pharmaceutica Nv | Substituted piperidinyl-carboxamide derivatives useful as SCD 1 inhibitors |
LT3181567T (en) | 2012-09-10 | 2019-07-25 | Principia Biopharma Inc. | Pyrazolopyrimidine compounds as kinase inhibitors |
US10092574B2 (en) | 2012-09-26 | 2018-10-09 | Valorisation-Recherche, Limited Partnership | Inhibitors of polynucleotide repeat-associated RNA foci and uses thereof |
EP2968285A4 (en) * | 2013-03-13 | 2016-12-21 | Flatley Discovery Lab | Compounds and methods for the treatment of cystic fibrosis |
JP6458018B2 (en) | 2013-07-02 | 2019-01-23 | ファーマサイクリックス エルエルシー | Prinone compounds as kinase inhibitors |
EP3107544B1 (en) | 2014-02-21 | 2020-10-07 | Principia Biopharma Inc. | Salts and solid form of a btk inhibitor |
US9416131B2 (en) | 2014-03-25 | 2016-08-16 | Ono Pharmaceutical Co., Ltd. | Prophylactic agent and/or therapeutic agent for diffuse large B-cell lymphoma |
PT3233103T (en) | 2014-12-18 | 2021-01-18 | Principia Biopharma Inc | Treatment of pemphigus |
US9682033B2 (en) | 2015-02-05 | 2017-06-20 | Teva Pharmaceuticals International Gmbh | Methods of treating postherpetic neuralgia with a topical formulation of a spiro-oxindole compound |
EP3268356B1 (en) | 2015-03-12 | 2021-08-25 | Novartis Ag | Heterocyclic compounds and methods for their use |
US10239879B2 (en) | 2015-04-09 | 2019-03-26 | Ono Pharmaceutical Co., Ltd. | Process for producing purinone derivative |
EP3303334B1 (en) | 2015-06-03 | 2021-06-02 | Principia Biopharma Inc. | Tyrosine kinase inhibitors |
US20180305350A1 (en) | 2015-06-24 | 2018-10-25 | Principia Biopharma Inc. | Tyrosine kinase inhibitors |
AU2016370554B2 (en) | 2015-12-18 | 2018-11-29 | Merck Sharp & Dohme Corp. | Hydroxyalkylamine- and hydroxycycloalkylamine-substituted diamine-arylsulfonamide compounds with selective activity in voltage-gated sodium channels |
WO2017161017A1 (en) * | 2016-03-15 | 2017-09-21 | The Scripps Research Institute | Signaling-biased mu opioid receptor agonists |
CN109600989B (en) | 2016-06-29 | 2022-11-04 | 普林斯匹亚生物制药公司 | Modified release formulations of 2- [3- [ 4-amino-3- (2-fluoro-4-phenoxy-phenyl) pyrazolo [3,4-d ] pyrimidin-1-yl ] piperidine-1-carbonyl ] -4-methyl-4- [4- (oxetan-3-yl) piperazin-1-yl ] pent-2-enenitrile |
GB201713780D0 (en) * | 2017-08-29 | 2017-10-11 | E-Therapeutics Plc | Modulators of hedgehog (Hh) signalling pathway |
CN111615513A (en) | 2018-01-19 | 2020-09-01 | 爱杜西亚药品有限公司 | C5a receptor modulators |
MX2021003027A (en) | 2018-09-13 | 2021-05-27 | Kissei Pharmaceutical | Imidazopyridinone compound. |
EP3960736A4 (en) * | 2019-04-26 | 2023-04-19 | Generos Biopharma Ltd. | Heterocyclic compound, application thereof, and composition containing same |
CN111848598A (en) * | 2019-04-26 | 2020-10-30 | 健艾仕生物医药有限公司 | Heterocyclic ring-containing compound, application thereof and composition containing heterocyclic ring-containing compound |
WO2021150476A1 (en) | 2020-01-20 | 2021-07-29 | Genzyme Corporation | Therapeutic tyrosine kinase inhibitors for relapsing multiple sclerosis (rms) |
EP3868376A1 (en) * | 2020-02-21 | 2021-08-25 | Institut national de recherche pour l'agriculture, l'alimentation et l'environnement | Method of treating bacterial infections and pharmaceutical composition for treating bacterial infections |
KR20220152276A (en) | 2020-03-11 | 2022-11-15 | 깃세이 야쿠힌 고교 가부시키가이샤 | Crystals of imidazopyridinone compounds or salts thereof |
AU2021398051A1 (en) | 2020-12-10 | 2023-07-27 | Principia Biopharma Inc. | Crystal form of tolebrutinib, preparation method therefor and use thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3910930A (en) * | 1973-01-04 | 1975-10-07 | Janssen Pharmaceutica Nv | 1-{55 1-{8 2-(1,4-Benzodioxan-2-yl)-2-hydroxyethyl{9 -4-piperidyl{56 -2-benzimidazolinones |
US3989707A (en) * | 1974-06-21 | 1976-11-02 | Janssen Pharmaceutica N.V. | Benzimidazolinone derivatives |
US4344948A (en) * | 1979-11-21 | 1982-08-17 | Kyowa Hakko Kogyo Co., Ltd. | Piperidine derivatives and pharmaceutical compositions containing same |
US4470989A (en) * | 1981-06-20 | 1984-09-11 | Hoechst Aktiengesellschaft | Neuroleptic n-oxacyclyl-alkylpiperidine derivatives |
US5492918A (en) * | 1993-06-08 | 1996-02-20 | Bayer Aktiengesellschaft | Use of substituted chromans, some of which are known, as medicaments, new active compounds and processes for their preparation |
US20020128288A1 (en) * | 1999-12-06 | 2002-09-12 | Donald Kyle | Benzimidazole compounds having nociceptin receptor affinity |
US6506738B1 (en) * | 2000-09-27 | 2003-01-14 | Bristol-Myers Squibb Company | Benzimidazolone antiviral agents |
US6653478B2 (en) * | 2000-10-27 | 2003-11-25 | Ortho-Mcneil Pharmaceutical, Inc. | Substituted benzimidazol-2-ones as vasopressin receptor antagonists and neuropeptide Y modulators |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69736776T2 (en) * | 1996-04-19 | 2007-01-18 | Neurosearch A/S | 1- (4-PIPERIDYL) -BENZIMIDAZOLE WITH NEUROTROPHIC ACTIVITY |
EP0905512A1 (en) | 1997-09-25 | 1999-03-31 | Cerep | Method of identification of leads or active compounds |
GB9823873D0 (en) | 1998-10-30 | 1998-12-30 | Pharmacia & Upjohn Spa | 2-ureido-thiazole derivatives,process for their preparation,and their use as antitumour agents |
CN1360577A (en) | 1999-05-12 | 2002-07-24 | G.D.瑟尔公司 | Hydroxamic acid derivs. as matrix metalloprotease inhibitors |
CA2379554A1 (en) | 1999-07-21 | 2001-01-25 | Fujisawa Pharmaceuticals Co., Ltd. | Benzimidazolone derivatives and their use as phosphodiesterase inhibitors |
GB0005642D0 (en) * | 2000-03-10 | 2000-05-03 | Astrazeneca Uk Ltd | Chemical compounds |
-
2002
- 2002-11-01 WO PCT/US2002/035173 patent/WO2003037890A2/en not_active Application Discontinuation
- 2002-11-01 US US10/286,662 patent/US7244744B2/en not_active Expired - Fee Related
- 2002-11-01 EP EP02792225A patent/EP1451173A4/en not_active Withdrawn
- 2002-11-01 CA CA2465328A patent/CA2465328C/en not_active Expired - Fee Related
-
2007
- 2007-06-15 US US11/764,125 patent/US20080058376A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3910930A (en) * | 1973-01-04 | 1975-10-07 | Janssen Pharmaceutica Nv | 1-{55 1-{8 2-(1,4-Benzodioxan-2-yl)-2-hydroxyethyl{9 -4-piperidyl{56 -2-benzimidazolinones |
US3989707A (en) * | 1974-06-21 | 1976-11-02 | Janssen Pharmaceutica N.V. | Benzimidazolinone derivatives |
US4344948A (en) * | 1979-11-21 | 1982-08-17 | Kyowa Hakko Kogyo Co., Ltd. | Piperidine derivatives and pharmaceutical compositions containing same |
US4470989A (en) * | 1981-06-20 | 1984-09-11 | Hoechst Aktiengesellschaft | Neuroleptic n-oxacyclyl-alkylpiperidine derivatives |
US5492918A (en) * | 1993-06-08 | 1996-02-20 | Bayer Aktiengesellschaft | Use of substituted chromans, some of which are known, as medicaments, new active compounds and processes for their preparation |
US20020128288A1 (en) * | 1999-12-06 | 2002-09-12 | Donald Kyle | Benzimidazole compounds having nociceptin receptor affinity |
US6506738B1 (en) * | 2000-09-27 | 2003-01-14 | Bristol-Myers Squibb Company | Benzimidazolone antiviral agents |
US6653478B2 (en) * | 2000-10-27 | 2003-11-25 | Ortho-Mcneil Pharmaceutical, Inc. | Substituted benzimidazol-2-ones as vasopressin receptor antagonists and neuropeptide Y modulators |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210002250A1 (en) * | 2018-03-01 | 2021-01-07 | Thomas Helledays Stiftelse För Medicinsk Forskning | Substituted benzodiazoles and use thereof in therapy |
US11970474B2 (en) * | 2018-03-01 | 2024-04-30 | Thomas Helledays Stiftelse För Medicinsk Forskning | Substituted benzodiazoles and use thereof in therapy |
Also Published As
Publication number | Publication date |
---|---|
EP1451173A4 (en) | 2005-10-26 |
WO2003037890A2 (en) | 2003-05-08 |
EP1451173A2 (en) | 2004-09-01 |
US20030171360A1 (en) | 2003-09-11 |
CA2465328C (en) | 2011-06-14 |
WO2003037890A3 (en) | 2003-08-21 |
CA2465328A1 (en) | 2003-05-08 |
US7244744B2 (en) | 2007-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7244744B2 (en) | Piperidines | |
KR102534962B1 (en) | 8,9-dihydroimidazole[1,2-a]pyrimido[5,4-e]pyrimidine-5(6H)-ketone compound | |
JP7491900B2 (en) | TLR7/8 ANTAGONISTS AND USES THEREOF | |
DE69332504T2 (en) | TRIFLUOROMETHYLPYRROLOINDOLCARBOXYLIC ACID AND ITS ESTER DERIVATIVE AND A METHOD FOR THE PRODUCTION THEREOF | |
EP2231645B1 (en) | 5-Halogen-substituted oxindole derivatives and their use in the manufacture of a medicament for the treatment of vasopressin-dependent diseases | |
HU228128B1 (en) | 1-(1,2-disubstituted piperidinyl)-4-substituted piperidine derivatives as tachykinin receptor antagonists | |
DE60212146T2 (en) | Piperidine derivatives as CCR5 receptor antagonists for the treatment of HIV | |
BR112016018384B1 (en) | PHARMACEUTICAL COMPOUNDS AND PHARMACEUTICAL COMPOSITION THEREOF | |
BRPI0707816A2 (en) | pi - 3 kinase inhibitors and methods of use | |
JP2005511478A (en) | N-substituted non-aryl heterocyclic amidyl NMDA / NR2B antagonist | |
RU2477724C2 (en) | Mdm2 and p53 interaction inhibitors | |
EP4200292B1 (en) | 1h-benzo[d]imidazole derivatives as tlr9 inhibitors for the treatment of fibrosis | |
CA2999395A1 (en) | Isoindolinone inhibitors of the mdm2-p53 interaction having anticancer activity | |
EP2964613B1 (en) | H3 antagonists containing phenoxypiperidine core structure | |
CA2942636A1 (en) | Macrocylic pyrimidine derivatives | |
TWI826406B (en) | Triazolobenzazepines as vasopressin v1a receptor antagonists | |
PL184489B1 (en) | N-acyl-substituted 4-(benzimidazollyl- or imidarolylpyrimidyl-substituted) piperidines as antagonists of tachykinin | |
CZ251692A3 (en) | Methanoanthracene compounds and process for preparing thereof | |
TW202341983A (en) | Compounds for mutant kras protein degradation and uses thereof | |
CA3102458A1 (en) | Oga inhibitor compounds | |
DE60112725T2 (en) | PHENOXYALKYLAMINE DERIVATIVES AS AGONISTS OF THE OPIOID DELTA RECEPTOR | |
WO2009071691A2 (en) | Oxindole derivatives and the use thereof as a medication | |
DE60021521T4 (en) | ISONIPECOTAMIDE FOR THE TREATMENT OF INTEGRIN-MEDIATED INTERFERENCE | |
EP4006033A1 (en) | Adenosine receptor antagonist | |
EP3960736A1 (en) | Heterocyclic compound, application thereof, and composition containing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |