US20080032123A1 - Dual electron-transporting layer for oled device - Google Patents
Dual electron-transporting layer for oled device Download PDFInfo
- Publication number
- US20080032123A1 US20080032123A1 US11/461,821 US46182106A US2008032123A1 US 20080032123 A1 US20080032123 A1 US 20080032123A1 US 46182106 A US46182106 A US 46182106A US 2008032123 A1 US2008032123 A1 US 2008032123A1
- Authority
- US
- United States
- Prior art keywords
- light
- electron
- layer
- emitting
- oled device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000009977 dual effect Effects 0.000 title 1
- -1 anthracene compound Chemical class 0.000 claims abstract description 39
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 15
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 7
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 7
- 230000000737 periodic effect Effects 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 36
- 125000001424 substituent group Chemical group 0.000 claims description 20
- 125000000217 alkyl group Chemical group 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 9
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 5
- 150000004696 coordination complex Chemical group 0.000 claims description 5
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 4
- 235000010290 biphenyl Nutrition 0.000 claims description 3
- 238000000295 emission spectrum Methods 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- 150000001454 anthracenes Chemical class 0.000 claims description 2
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 claims description 2
- 239000004305 biphenyl Substances 0.000 claims description 2
- 239000003446 ligand Substances 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- QRDZFPUVLYEQTA-UHFFFAOYSA-N quinoline-8-carboxylic acid Chemical group C1=CN=C2C(C(=O)O)=CC=CC2=C1 QRDZFPUVLYEQTA-UHFFFAOYSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 170
- 125000003118 aryl group Chemical group 0.000 description 30
- 239000002019 doping agent Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 19
- 239000000758 substrate Substances 0.000 description 14
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- IMKMFBIYHXBKRX-UHFFFAOYSA-M lithium;quinoline-2-carboxylate Chemical compound [Li+].C1=CC=CC2=NC(C(=O)[O-])=CC=C21 IMKMFBIYHXBKRX-UHFFFAOYSA-M 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 125000005259 triarylamine group Chemical group 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000003086 colorant Substances 0.000 description 7
- 125000001072 heteroaryl group Chemical group 0.000 description 7
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 125000000732 arylene group Chemical group 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005401 electroluminescence Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 5
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical class C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 229960003540 oxyquinoline Drugs 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 3
- 125000003367 polycyclic group Chemical group 0.000 description 3
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 3
- 125000003107 substituted aryl group Chemical group 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 238000001429 visible spectrum Methods 0.000 description 3
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 2
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 2
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 125000004986 diarylamino group Chemical group 0.000 description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical compound C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- ZMLPKJYZRQZLDA-UHFFFAOYSA-N 1-(2-phenylethenyl)-4-[4-(2-phenylethenyl)phenyl]benzene Chemical group C=1C=CC=CC=1C=CC(C=C1)=CC=C1C(C=C1)=CC=C1C=CC1=CC=CC=C1 ZMLPKJYZRQZLDA-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- XNCMQRWVMWLODV-UHFFFAOYSA-N 1-phenylbenzimidazole Chemical compound C1=NC2=CC=CC=C2N1C1=CC=CC=C1 XNCMQRWVMWLODV-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- YFCSASDLEBELEU-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene-11,12,15,16,17,18-hexacarbonitrile Chemical group N#CC1=C(C#N)C(C#N)=C2C3=C(C#N)C(C#N)=NN=C3C3=NN=NN=C3C2=C1C#N YFCSASDLEBELEU-UHFFFAOYSA-N 0.000 description 1
- VIZUPBYFLORCRA-UHFFFAOYSA-N 9,10-dinaphthalen-2-ylanthracene Chemical compound C12=CC=CC=C2C(C2=CC3=CC=CC=C3C=C2)=C(C=CC=C2)C2=C1C1=CC=C(C=CC=C2)C2=C1 VIZUPBYFLORCRA-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000063 azene Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 125000006269 biphenyl-2-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C(*)C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000006268 biphenyl-3-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C([H])C(*)=C([H])C([H])=C1[H] 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229940071257 lithium acetate Drugs 0.000 description 1
- 229940031993 lithium benzoate Drugs 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- COLNWNFTWHPORY-UHFFFAOYSA-M lithium;8-hydroxyquinoline-2-carboxylate Chemical compound [Li+].C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1 COLNWNFTWHPORY-UHFFFAOYSA-M 0.000 description 1
- LDJNSLOKTFFLSL-UHFFFAOYSA-M lithium;benzoate Chemical compound [Li+].[O-]C(=O)C1=CC=CC=C1 LDJNSLOKTFFLSL-UHFFFAOYSA-M 0.000 description 1
- XKPJKVVZOOEMPK-UHFFFAOYSA-M lithium;formate Chemical compound [Li+].[O-]C=O XKPJKVVZOOEMPK-UHFFFAOYSA-M 0.000 description 1
- GQCUGWCIKIYVOY-UHFFFAOYSA-M lithium;quinoline-8-carboxylate Chemical compound [Li+].C1=CN=C2C(C(=O)[O-])=CC=CC2=C1 GQCUGWCIKIYVOY-UHFFFAOYSA-M 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229940103091 potassium benzoate Drugs 0.000 description 1
- 235000010235 potassium benzoate Nutrition 0.000 description 1
- 239000004300 potassium benzoate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/165—Electron transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/19—Tandem OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/322—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/611—Charge transfer complexes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
Definitions
- the present invention relates to a white OLED device with good luminance and reduced drive voltage.
- an organic EL device is comprised of an anode for hole injection, a cathode for electron injection, and an organic medium sandwiched between these electrodes to support charge recombination that yields emission of light. These devices are also commonly referred to as organic light-emitting diodes, or OLEDs.
- organic EL devices are Gurnee et al. U.S. Pat. No. 3,172,862, issued Mar. 9, 1965; Gurnee U.S. Pat. No. 3,173,050, issued Mar.
- organic EL devices include an organic EL element consisting of extremely thin layers (e.g. ⁇ 1.0 ⁇ m) between the anode and the cathode.
- organic EL element encompasses the layers between the anode and cathode. Reducing the thickness lowered the resistance of the organic layers and has enabled devices that operate at much lower voltage.
- one organic layer of the EL element adjacent to the anode is specifically chosen to transport holes, and therefore is referred to as the hole-transporting layer, and the other organic layer is specifically chosen to transport electrons and is referred to as the electron-transporting layer.
- a useful class of electron-transporting materials is that derived from metal-chelated oxinoid compounds including chelates of oxine itself, also commonly referred to as 8-quinolinol or 8-hydroxyquinoline.
- Tris(8-quinolinolato)aluminum (III), also known as Alq or Alq 3 , and other metal and non-metal oxine chelates are well known in the art as electron-transporting materials.
- Tang et al., in U.S. Pat. No. 4,769,292 and VanSlyke et al., in U.S. Pat. No. 4,539,507 teach lowering the drive voltage of the EL devices by the use of Alq as an electron-transporting material in the luminescent layer or luminescent zone.
- Baldo et al. in U.S. Pat. No. 6,097,147 and Hung et al., in U.S. Pat. No. 6,172,459 teach the use of an organic electron-transporting layer adjacent to the cathode so that when electrons are injected from the cathode into the electron-transporting layer, the electrons traverse both the electron-transporting layer and the light-emitting layer.
- Tamano et al. in U.S. Pat. No. 6,150,042, teach use of hole-injecting materials in an organic EL device. Examples of electron-transporting materials useful in the device are given, and included therein are mixtures of electron-transporting materials.
- Seo et al. in U.S. Patent Application Publication 2002/0086180, teach the use of a 1:1 mixture of Bphen, (also known as 4,7-diphenyl-1,10-phenanthroline or bathophenanthroline) as an electron-transporting material, and Alq as an electron-injecting material, to form an electron-transporting mixed layer.
- Bphen also known as 4,7-diphenyl-1,10-phenanthroline or bathophenanthroline
- Alq as an electron-injecting material
- U.S. Patent Application Publication 2004/0207318 and U.S. Pat. No. 6,396,209 describe an OLED structure including a mixed layer of an electron-transporting organic compound and an organic metal complex compound containing at least one of alkali metal ion, alkaline earth metal ion, or rare earth metal ion.
- JP 2000/053957 teaches the use of photogenes and WO 9963023 teaches the use of organometallic complexes useful in the luminescent layer or the electron-injecting/transporting layers.
- U.S. Patent Application Publication 2004/0067387 teaches the use of one or more compounds of an anthracene structure in the electron-transporting/electron-injecting layer(s) and one or more other compounds, including Alq 3 , may be added.
- U.S. Pat. No. 6,468,676 teaches the use of an organic metal salt, a halogenide, or an organic metal complex for the electron-injecting layer.
- the organic metal complex is selected from a list of metal complexes.
- Organometallic complexes such as lithium quinolate (also known as lithium 8-hydroxyquinolate, lithium 8-quinolate, 8-quinolinolatolithium, or Liq) have been used in EL devices, for example see WO 0032717 and U.S. Patent Application Publication 2005/0106412.
- lithium quinolate also known as lithium 8-hydroxyquinolate, lithium 8-quinolate, 8-quinolinolatolithium, or Liq
- EL devices for example see WO 0032717 and U.S. Patent Application Publication 2005/0106412.
- mixtures of lithium quinolate and Alq have been described as useful, for example see U.S. Pat. No. 6,396,209 and U.S. Patent Application Publication 2004/0207318.
- an OLED device comprising:
- W 1 -W 10 independently represent hydrogen or an independently selected substituent
- FIG. 1 shows a cross-sectional view of one embodiment of an OLED device in accordance with this invention
- FIG. 2 shows a cross-sectional view of another embodiment of an OLED device in accordance with this invention.
- FIG. 3 shows a cross-sectional view of another embodiment of an OLED device in accordance with this invention.
- OLED device is used in its art-recognized meaning of a display device comprising organic light-emitting diodes as pixels. It can mean a device having a single pixel.
- OLED display as used herein means an OLED device comprising a plurality of pixels, which can be of different colors. A color OLED device emits light of at least one color.
- multicolor is employed to describe a display panel that is capable of emitting light of a different hue in different areas. In particular, it is employed to describe a display panel that is capable of displaying images of different colors. These areas are not necessarily contiguous.
- full color is employed to describe multicolor display panels that are capable of emitting in the red, green, and blue regions of the visible spectrum and displaying images in any combination of hues.
- the red, green, and blue colors constitute the three primary colors from which all other colors can be generated by appropriate mixing.
- the term “hue” refers to the intensity profile of light emission within the visible spectrum, with different hues exhibiting visually discernible differences in color.
- the term “pixel” is employed in its art-recognized usage to designate an area of a display panel that is stimulated to emit light independently of other areas. It is recognized that in full color systems, several pixels of different colors will be used together to produce a wide range of colors, and a viewer can term such a group a single pixel. For the purposes of this discussion, such a group will be considered several different colored pixels.
- broadband emission is light that has significant components in multiple portions of the visible spectrum, for example, blue and green.
- Broadband emission can also include light being emitted in the red, green, and blue portions of the spectrum in order to produce white light.
- White light is that light that is perceived by a user as having a white color, or light that has an emission spectrum sufficient to be used in combination with color filters to produce a practical full color display.
- white light-emitting refers to a device that produces white light internally, even though part of such light can be removed by color filters before viewing.
- FIG. 1 there is shown a cross-sectional view of a pixel of a light-emitting OLED device 10 according to a first embodiment of the present invention.
- Such an OLED device can be incorporated into e.g. a display.
- the OLED device 10 includes at a minimum a substrate 20 , an anode 30 , a cathode 90 spaced from anode 30 , at least one light-emitting layer 50 provided between anode 30 and cathode 90 , a hole-transporting layer 40 disposed between anode 30 and light-emitting layer 50 , a first electron-transporting layer 52 in contact with the at least one light-emitting layer 50 , and a second electron-transporting layer 55 in contact with first electron-transporting layer 52 .
- the first and second electron-transporting layers 52 and 55 are disposed between light-emitting layer 50 and cathode 90 .
- OLED device 10 can further include other layers, e.g. hole-injecting layer 35 , electron-injecting layer 60 , and color filter 25 . These will be described further below.
- First electron-transporting layer 52 contains an anthracene compound of Formula (1);
- First electron-transporting layer 52 has a thickness in the range of 1 to 20 nm, and desirably in the range of 2 to 5 nm.
- the anthracene compound of Formula (1) comprises greater than 10% by volume of first electron-transporting layer 52 .
- Second electron-transporting layer 55 contains an anthracene compound of Formula (1), which can be the same as or different from the anthracene compound of first electron-transporting layer 52 .
- Second electron-transporting layer 55 has a thickness in the range of 10 to 200 nm.
- the anthracene compound of formula (1) includes from 10% to 90% by volume of second electron-transporting layer 55 .
- Second electron-transporting layer 55 further includes at least one salt or complex of an element selected from Group 1 (e.g. Li + , Na + ), 2 (e.g. Mg +2 , Ca ⁇ 2 ), 12 (e.g. Zn +2 ), or 13 (e.g. Al +3 ) of the Periodic Table.
- the metal complex is present in the layer at a level of at least 1%, more commonly at a level of 5% or more, and frequently at a level of 10% or even 20% or greater by volume.
- the complex is comprised of 20-60% of the layer by volume. Overall, the complex or salt can be present in the balance amount of the anthracene compound.
- first electron-transporting layer 52 can also include at least one salt or complex of an element selected from Group 1, 2, 12 or 13 of the Periodic Table as described above.
- Second electron-transporting layer 55 is doped with an elemental metal having a work function less than 4.2 eV.
- elemental metal having a work function less than 4.2 eV.
- the definition of work function and a list of the work functions for various metals can be found in CRC Handbook of Chemistry and Physics, 84th Edition, 2003-2004, CRC Press Inc., page 12-130.
- Typical examples of such metals include Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, La, Sm, Gd, Yb, and is conveniently an alkali metal.
- the alkali metal is Li.
- the elemental metal is often present in the amount of from 0.1% to 15%, commonly in the amount of 0.1% to 10%, and often in the amount of 1 to 5% by volume of the total material in the layer.
- W 1 -W 10 independently represent hydrogen or an independently selected substituent, provided that two adjacent substituents can combine to form rings.
- Such anthracene compounds have been described by Begley et al. in U.S. patent application Ser. No. 11/393,767, the disclosure of which is herein incorporated by reference.
- W 1 -W 10 are independently selected from hydrogen, alkyl, aromatic carbocyclic or aromatic heterocyclic groups.
- W 9 and W 10 represent independently selected aromatic carbocyclic or aromatic heterocyclic groups.
- W 9 and W 10 are independently selected from phenyl, naphthyl, biphenyl, or anthracenyl groups.
- W 9 and W 10 can represent such groups as 1-naphthyl, 2-naphthyl, 4-biphenyl, 2-biphenyl, 3-biphenyl, or 9-anthracenyl.
- W 1 - W 8 represent hydrogen, alkyl, or phenyl groups.
- Particularly useful embodiments of the invention are when W 9 and W 10 are aromatic carbocyclic groups and W 7 and W 3 are independently selected from hydrogen, alkyl or phenyl groups. Examples of useful carbocyclic aromatic fused ring compounds for the invention are as follows.
- the salt or complex in the electron-transporting layer(s) can be a metal complex represented by Formula (2):
- M represents an element selected from Group 1, 2, 12, or 13 of the periodic table
- each Q represents an independently selected ligand
- n and n are integers selected to provide a neutral charge on the complex (2).
- M is an alkali or alkaline earth metal, having a work function less than 4.2 eV, wherein the metal has a charge of +1 or +2.
- Further common embodiments of the invention include those in which there are more than one salt or complex, or a mixture of a salt and a complex in the layer.
- the salt can be any organic or inorganic salt or oxide of an alkali or alkaline earth metal that can be reduced to the free metal, either as a free entity or a transient species in the device.
- Examples include, but are not limited to, the alkali and alkaline earth halides, including lithium fluoride (LiF), sodium fluoride (NaF), cesium fluoride (CsF), calcium fluoride (CaF 2 ) lithium oxide (Li 2 O), lithium acetylacetonate (Liacac), lithium benzoate, potassium benzoate, lithium acetate and lithium formate.
- the alkali and alkaline earth halides including lithium fluoride (LiF), sodium fluoride (NaF), cesium fluoride (CsF), calcium fluoride (CaF 2 ) lithium oxide (Li 2 O), lithium acetylacetonate (Liacac), lithium benzoate, potassium benzoate, lithium acetate and lithium formate.
- Examples MC-1-MC-30 are further examples of useful salts or complexes for the invention.
- M represents Li + and Q represents an 8-quinolate group, as represented by MC-1 through MC-3.
- OLED device layers that can be used in this invention have been well described in the art, and OLED device 10 , and other such devices described herein, can include layers commonly used for such devices.
- OLED devices are commonly formed on a substrate, e.g. OLED substrate 20 . Such substrates have been well-described in the art.
- a bottom electrode is formed over OLED substrate 20 and is most commonly configured as an anode 30 , although the practice of this invention is not limited to this configuration.
- Example conductors for this application include, but are not limited to, gold, iridium, molybdenum, palladium, platinum, aluminum or silver. Desired anode materials can be deposited by any suitable means such as evaporation, sputtering, chemical vapor deposition, or electrochemical means. Anode materials can be patterned using well-known photolithographic processes.
- Hole-transporting layer 40 can be formed and disposed over the anode. Desired hole-transporting materials can be deposited by any suitable means such as evaporation, sputtering, chemical vapor deposition, electrochemical means, thermal transfer, or laser thermal transfer from a donor material. Hole-transporting materials useful in hole-transporting layers are well known to include compounds such as an aromatic tertiary amine, where the latter is understood to be a compound containing at least one trivalent nitrogen atom that is bonded only to carbon atoms, at least one of which is a member of an aromatic ring.
- the aromatic tertiary amine can be an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine.
- arylamine such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine.
- Exemplary monomeric triarylamines are illustrated by Klupfel et al. in U.S. Pat. No. 3,180,730.
- Other suitable triarylamines substituted with one or more vinyl radicals and/or comprising at least one active hydrogen-containing group are disclosed by Brantley et al. in U.S. Pat. Nos. 3,567,450 and 3,658,520.
- a more preferred class of aromatic tertiary amines are those which include at least two aromatic tertiary amine moieties as described in U.S. Pat. Nos. 4,720,432 and 5,061,569. Such compounds include those represented by structural Formula A.
- Q 1 and Q 2 are independently selected aromatic tertiary amine moieties
- G is a linking group such as an arylene, cycloalkylene, or alkylene group of a carbon to carbon bond.
- At least one of Q1 or Q2 contains a polycyclic fused ring structure, e.g., a naphthalene.
- G is an aryl group, it is conveniently a phenylene, biphenylene, or naphthalene moiety.
- a useful class of triarylamines satisfying structural Formula A and containing two triarylamine moieties is represented by structural Formula B.
- R 1 and R 2 each independently represent a hydrogen atom, an aryl group, or an alkyl group or R 1 and R 2 together represent the atoms completing a cycloalkyl group;
- R 3 and R 4 each independently represent an aryl group, which is in turn substituted with a diaryl substituted amino group, as indicated by structural Formula C.
- R 5 and R 6 are independently selected aryl groups.
- at least one of R 5 or R 6 contains a polycyclic fused ring structure, e.g., a naphthalene.
- tetraaryldiamines Another class of aromatic tertiary amines are the tetraaryldiamines. Desirable tetraaryldiamines include two diarylamino groups, such as indicated by Formula C, linked through an arylene group. Useful tetraaryldiamines include those represented by Formula D.
- each Are is an independently selected arylene group, such as a phenylene or anthracene moiety
- n is an integer of from 1 to 4.
- Ar, R 7 , R 8 , and R 9 are independently selected aryl groups.
- At least one of Ar, R 7 , R 8 , and R 9 is a polycyclic fused ring structure, e.g., a naphthalene.
- the various alkyl, alkylene, aryl, and arylene moieties of the foregoing structural Formulae A, B, C, and D can each in turn be substituted.
- Typical substituents include alkyl groups, alkoxy groups, aryl groups, aryloxy groups, and halogens such as fluoride, chloride, and bromide.
- the various alkyl and alkylene moieties typically contain from 1 to about 6 carbon atoms.
- the cycloalkyl moieties can contain from 3 to about 10 carbon atoms, but typically contain five, six, or seven carbon atoms—e.g., cyclopentyl, cyclohexyl, and cycloheptyl ring structures.
- the aryl and arylene moieties are usually phenyl and phenylene moieties.
- the hole-transporting layer in an OLED device can be formed of a single or a mixture of aromatic tertiary amine compounds.
- a triarylamine such as a triarylamine satisfying the Formula B
- a tetraaryldiamine such as indicated by Formula D.
- a triarylamine is employed in combination with a tetraaryldiamine, the latter is positioned as a layer interposed between the triarylamine and the electron-injecting and transporting layer.
- Another class of useful hole-transporting materials includes polycyclic aromatic compounds as described in EP 1 009 041.
- polymeric hole-transporting materials can be used such as poly(N-vinylcarbazole) (PVK), polythiophenes, polypyrrole, polyaniline, and copolymers such as poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), also called PEDOT/PSS.
- Light-emitting layers produce light in response to hole-electron recombination.
- the light-emitting layers are commonly disposed over the hole-transporting layer.
- Desired organic light-emitting materials can be deposited by any suitable means such as evaporation, sputtering, chemical vapor deposition, electrochemical means, or radiation thermal transfer from a donor material. Useful organic light-emitting materials are well known. As are more fully described in U.S. Pat. Nos. 4,769,292 and 5,935,721, the light-emitting layers of the OLED device consist of a luminescent or fluorescent material where electroluminescence is produced as a result of electron-hole pair recombination in this region.
- the light-emitting layers can include a single material, but more commonly include a host material doped with a guest compound or dopant where light emission comes primarily from the dopant.
- the dopant is selected to produce color light having a particular spectrum.
- the host materials in the light-emitting layers can be an electron-transporting material, a hole-transporting material, or another material that supports hole-electron recombination.
- the dopant is usually chosen from highly fluorescent dyes, but phosphorescent compounds, e.g., transition metal complexes as described in WO 98/55561, WO 00/18851, WO 00/57676, and WO 00/70655 are also useful. Dopants are typically coated as 0.01 to 10% by weight into the host material.
- Host and emitting molecules known to be of use include, but are not limited to, those disclosed in U.S. Pat. Nos. 4,768,292; 5,141,671; 5,150,006; 5,151,629; 5,294,870; 5,405,709; 5,484,922; 5,593,788; 5,645,948; 5,683,823; 5,755,999; 5,928,802; 5,935,720; 5,935,721; and 6,020,078.
- Form E Metal complexes of 8-hydroxyquinoline and similar derivatives constitute one class of useful host materials capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 500 nm, e.g., green, yellow, orange, and red.
- M represents a metal
- n is an integer of from 1 to 3;
- Z independently in each occurrence represents the atoms completing a nucleus having at least two fused aromatic rings.
- the metal can be a monovalent, divalent, or trivalent metal.
- the metal can, for example, be an alkali metal, such as lithium, sodium, or potassium; an alkaline earth metal, such as magnesium or calcium; or an earth metal, such as boron or aluminum.
- alkali metal such as lithium, sodium, or potassium
- alkaline earth metal such as magnesium or calcium
- earth metal such as boron or aluminum.
- any monovalent, divalent, or trivalent metal known to be a useful chelating metal can be employed.
- Z completes a heterocyclic nucleus containing at least two fused aromatic rings, at least one of which is an azole or azine ring. Additional rings, including both aliphatic and aromatic rings, can be fused with the two required rings, if required. To avoid adding molecular bulk without improving on function the number of ring atoms is usually maintained at 18 or less.
- Benzazole derivatives constitute another class of useful host materials capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 400 nm, e.g., blue, green, yellow, orange or red.
- An example of a useful benzazole is 2, 2′, 2′′-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole].
- OLED device 10 is represented with a single light-emitting layer 50 , this invention is not limited to that. OLED device 10 can have additional light-emitting layers as well, and it will be understood that light-emitting layer 50 can represent these as well.
- the at least one light-emitting layer 50 represents one or more layers capable of emitting broadband light, e.g. white light.
- OLED device 10 can include a yellow light-emitting layer disposed over hole-transporting layer 40 and doped with a yellow light-emitting compound, and a blue light-emitting layer with a blue light-emitting compound disposed directly on the yellow light-emitting layer.
- the at least one light-emitting layer 50 represents four different light-emitting layers including a red light-emitting layer with a red light-emitting compound, a yellow light-emitting layer, a blue light-emitting layer, and a green light-emitting layer with a green light-emitting compound, arranged, as taught by Hatwar et al. in U.S. patent application Ser. No.
- each of the light-emitting layers is in contact with at least one other light-emitting layer, ii) the blue light-emitting layer is in contact with the green light-emitting layer, and iii) the red light-emitting layer is in contact with only one other light-emitting layer.
- FIG. 2 one such arrangement of the light-emitting layers is shown in OLED device 15 . In the arrangement of FIG.
- red light-emitting layer 50 r is formed closest to anode 30
- yellow light-emitting layer 50 y is in contact with red light-emitting layer 50 r
- blue light-emitting layer 50 b is in contact with yellow light-emitting layer 50 y
- green light-emitting layer 50 g is in contact with blue light-emitting layer 50 b.
- First electron-transporting layer 52 and second electron-transporting layer 55 are as described above.
- FIG. 3 there is shown a cross-sectional view of a pixel of a tandem white-light-emitting OLED device 80 according to another embodiment of the present invention.
- OLED device 80 includes a substrate 20 , a spaced anode 30 and cathode 90 , at least two white light-emitting units 75 and 85 disposed between the electrodes, and an intermediate connector 95 disposed between blue and white light-emitting units 75 and 85 respectively.
- Hatwar et al. in U.S. patent application Ser. No. 11/393,767 has described the use of multiple white light-emitting units of this arrangement.
- White light-emitting units 75 and 85 each produce emission spectra corresponding to white light.
- Each white light-emitting unit has four light-emitting layers: a red light-emitting layer ( 50 r and 51 r ), a yellow light-emitting layer ( 50 y and 51 y ), a blue light-emitting layer 50 b and 51 b ), and a green light-emitting layer 50 g and 51 g ).
- the light-emitting layers of white light-emitting units 75 and 85 can have the arrangement according to the criteria described above for OLED device 15 .
- White light-emitting units 75 and 85 can have the same order of light-emitting layers, or can have different orders. Further, the light-emitting layers used can be the same or different (e.g.
- White light-emitting units 75 and 85 can have red light-emitting layers of the same or different composition, etc.)
- White light-emitting unit 85 includes first electron-transporting layer 52 and second electron-transporting layer 55 , which are as described above, and hole-transporting layer 45 .
- White light-emitting unit 75 includes electron-transporting layer 65 .
- Tandem OLED device 80 further includes an intermediate connector 95 disposed between white light-emitting units 75 and 85 .
- the intermediate connector provides effective carrier injection into the adjacent EL units. Metals, metal compounds, or other inorganic compounds are effective for carrier injection. However, such materials often have low resistivity, which can result in pixel crosstalk. Also, the optical transparency of the layers constituting the intermediate connector should be as high as possible to permit for radiation produced in the EL units to exit the device. Therefore, it is often preferred to use mainly organic materials in the intermediate connector.
- Intermediate connector 95 and materials used in its construction have been described in detail by Hatwar et al. in U.S. patent application Ser. No. 11/170,681. Some further nonlimiting examples of intermediate connectors are described in U.S. Pat. Nos. 6,717,358 and 6,872,472, and U.S. Patent Application Publication 2004/0227460 A1.
- a red-light-emitting compound can include a diindenoperylene compound of the following structure F:
- red dopants useful in the present invention belong to the DCM class of dyes represented by Formula G:
- Y 1 -Y 5 represent one or more groups independently selected from: hydro, alkyl, substituted alkyl, aryl, or substituted aryl; Y 1 -Y 5 independently include acyclic groups or can be joined pairwise to form one or more fused rings; provided that Y 3 and Y 5 do not together form a fused ring.
- Y 1 -Y 5 are selected independently from: hydro, alkyl and aryl. Structures of particularly useful dopants of the DCM class are shown by Ricks et al. in U.S. Patent Application Publication No. 2005/0181232, the disclosure of which is incorporated by reference.
- a light-emitting yellow dopant can include a compound of the following structures:
- a 1 -A 6 and A′ 1 -A′ 6 represent one or more substituents on each ring and where each substituent is individually selected from one of the following:
- a green-light-emitting compound can include a quinacridone compound of the following structure:
- substituent groups R1 and R2 are independently alkyl, alkoxyl, aryl, or heteroaryl; and substituent groups R3 through R12 are independently hydrogen, alkyl, alkoxyl, halogen, aryl, or heteroaryl, and adjacent substituent groups R3 through R10 can optionally be connected to form one or more ring systems, including fused aromatic and fused heteroaromatic rings, provided that the substituents are selected to provide an emission maximum between 510 nm and 540 nm, and a full width at half maximum of 40 nm or less.
- Alkyl, alkoxyl, aryl, heteroaryl, fused aromatic ring and fused heteroaromatic ring substituent groups can be further substituted.
- R1 and R2 are aryl, and R2 through R12 are hydrogen, or substituent groups that are more electron withdrawing than methyl.
- Some examples of useful quinacridones include those disclosed in U.S. Pat. No. 5,593,788 and in U.S. Patent Application Publication 2004/0001969A1.
- a green-light-emitting compound can include a coumarin compound of the following structure:
- R 1 , R 2 , R 3 and R 6 can individually be hydrogen, alkyl, or aryl; R 4 and R 5 can individually be alkyl or aryl; or where either R 3 and R 4 , or R 5 and R 6 , or both together represent the atoms completing a cycloalkyl group; provided that the substituents are selected to provide an emission maximum between 510 nm and 540 nm, and a full width at half maximum of 40 nm or less.
- a blue-light-emitting dopant can include perylene or derivatives thereof, or a bis(azinyl)azene boron complex compound of the structure L:
- Particularly useful blue dopants of the perylene class include perylene and tetra-t-butylperylene (TBP).
- Another particularly useful class of blue dopants in this invention includes blue-emitting derivatives of such distyrylarenes as distyrylbenzene and distyrylbiphenyl, including compounds described in U.S. Pat. No. 5,121,029.
- derivatives of distyrylarenes that provide blue luminescence particularly useful are those substituted with diarylamino groups, also known as distyrylamines. Examples include bis[2-[4-[N,N-diarylamino]phenyl]vinyl]-benzenes of the general structure M1 shown below:
- X 1 -X 4 can be the same or different, and individually represent one or more substituents such as alkyl, aryl, fused aryl, halo, or cyano.
- X 1 -X 4 are individually alkyl groups, each containing from one to about ten carbon atoms.
- a particularly preferred blue dopant of this class is disclosed by Ricks et al U.S. Patent Application Publication 2005/0181232.
- An upper electrode most commonly configured as a cathode 90 is formed over the electron-transporting layer. If the device is top-emitting, the electrode must be transparent or nearly transparent. For such applications, metals must be thin (preferably less than 25 nm) or one must use transparent conductive oxides (e.g. indium-tin oxide, indium-zinc oxide), or a combination of these materials. Optically transparent cathodes have been described in more detail in U.S. Pat. No. 5,776,623. Cathode materials can be deposited by evaporation, sputtering, or chemical vapor deposition. When needed, patterning can be achieved through many well known methods including, but not limited to, through-mask deposition, integral shadow masking as described in U.S. Pat. No. 5,276,380 and EP 0 732 868, laser ablation, and selective chemical vapor deposition.
- OLED device 10 can include other layers as well.
- a hole-injecting layer 35 can be formed over the anode, as described in U.S. Pat. Nos. 4,720,432;. 6,208,075 and EP 0 891 121 A1, and EP 1 029 909 A1.
- An electron-injecting layer 60 such as alkaline or alkaline earth metals, alkali halide salts, or alkaline or alkaline earth metal doped organic layers, can also be present between the cathode and the electron-transporting layer.
- White light-emitting OLED devices can include one or more color filters 25 , which have been well-described in the art.
- the invention and its advantages can be better appreciated by the following comparative examples.
- the layers described as vacuum-deposited were deposited by evaporation from heated boats under a vacuum of approximately 10-6 Torr. After deposition of the OLED layers each device was then transferred to a dry box for encapsulation. The OLED has an emission area of 10 mm 2 .
- the devices were tested by applying a current of 20 mA/cm 2 across electrodes, except for operational fade, which was tested at 80 mA/cm 2 .
- the performance of the devices is given in Table 1.
- a comparative color OLED display was constructed in the following manner:
- a comparative color OLED display was constructed as in Example 1, except that Step 7 was as follows:
- An inventive color OLED display was constructed as in Example 1, except that Steps 7 and 8 were replaced with the following steps:
- An inventive color OLED display was constructed as in Example 3, except that Step 7 was as follows:
- An inventive color OLED display was constructed as in Example 3, except that Step 7 was as follows:
- Example 1 shows the results for an OLED device known in the art.
- Example 2 demonstrates the addition of dopant lithium to the electron-transporting layer, with a strong decrease in luminance efficiency and fade stability.
- the addition of a thin lithium-free electron-transporting layer comprising lithium quinolate between the standard electron-transporting layer and the emitting layers, as in Example 3, gives improved luminance efficiency and lower drive voltage, but the fade stability is still poor.
- the use of an anthracene in the thin electron-transporting layer, as in Examples 4 and 5 gives good stability while retaining good drive voltage and luminance efficiency.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
- Reference is made to commonly assigned U.S. patent application Ser. No. 11/393,767 filed Mar. 20, 2006, entitled “Efficient White-Light OLED Display with Filters” by Hatwar et al.; U.S. patent application Ser. No. 11/258,671, filed Oct. 26, 2005, entitled “Organic Element for Low Voltage Electroluminescent Devices” by Begley et al; U.S. patent application Ser. No. 11/170,681 filed Jun. 29, 2005, entitled “White Light Tandem OLED Display With Filters” by Hatwar et al., the disclosures of which are incorporated herein by reference.
- The present invention relates to a white OLED device with good luminance and reduced drive voltage.
- While organic electroluminescent (EL) devices have been known for over two decades, their performance limitations have represented a barrier to many desirable applications. In simplest form, an organic EL device is comprised of an anode for hole injection, a cathode for electron injection, and an organic medium sandwiched between these electrodes to support charge recombination that yields emission of light. These devices are also commonly referred to as organic light-emitting diodes, or OLEDs. Representative of earlier organic EL devices are Gurnee et al. U.S. Pat. No. 3,172,862, issued Mar. 9, 1965; Gurnee U.S. Pat. No. 3,173,050, issued Mar. 9, 1965; Dresner, “Double Injection Electroluminescence in Anthracene”, RCA Review, 30, 322, (1969); and Dresner U.S. Pat. No. 3,710,167, issued Jan. 9, 1973. The organic layers in these devices, usually composed of a polycyclic aromatic hydrocarbon, were very thick (much greater than 1 μm). Consequently, operating voltages were very high, often greater than 100V.
- More recent organic EL devices include an organic EL element consisting of extremely thin layers (e.g. <1.0 μm) between the anode and the cathode. Herein, the term “organic EL element” encompasses the layers between the anode and cathode. Reducing the thickness lowered the resistance of the organic layers and has enabled devices that operate at much lower voltage. In a basic two-layer EL device structure, described first in U.S. Pat. No. 4,356,429, one organic layer of the EL element adjacent to the anode is specifically chosen to transport holes, and therefore is referred to as the hole-transporting layer, and the other organic layer is specifically chosen to transport electrons and is referred to as the electron-transporting layer. Recombination of the injected holes and electrons within the organic EL element results in efficient electroluminescence. There have also been proposed three-layer organic EL devices that contain an organic light-emitting layer (LEL) between the hole-transporting layer and electron-transporting layer, such as that disclosed by C. Tang et al. (J. Applied Physics, Vol. 65, 3610 (1989)), and in U.S. Pat. No. 4,769,292 a four-layer EL element comprising a hole injecting layer (HIL), a hole-transporting layer (HTL), a light-emitting layer (LEL) and an electron-transporting/injecting layer (ETL). These structures have resulted in improved device efficiency.
- Since these early inventions, further improvements in device materials have resulted in improved performance in attributes such as color, stability, luminance efficiency and manufacturability, e.g., as disclosed in U.S. Pat. Nos. 5,061,569; 5,409,783; 5,554,450; ;5,593,788; 5,683,823; 5,908,581; 5,928,802; 6,020,078 and 6,208,077, amongst others. For example, a useful class of electron-transporting materials is that derived from metal-chelated oxinoid compounds including chelates of oxine itself, also commonly referred to as 8-quinolinol or 8-hydroxyquinoline. Tris(8-quinolinolato)aluminum (III), also known as Alq or Alq3, and other metal and non-metal oxine chelates are well known in the art as electron-transporting materials. Tang et al., in U.S. Pat. No. 4,769,292 and VanSlyke et al., in U.S. Pat. No. 4,539,507 teach lowering the drive voltage of the EL devices by the use of Alq as an electron-transporting material in the luminescent layer or luminescent zone.
- Baldo et al., in U.S. Pat. No. 6,097,147 and Hung et al., in U.S. Pat. No. 6,172,459 teach the use of an organic electron-transporting layer adjacent to the cathode so that when electrons are injected from the cathode into the electron-transporting layer, the electrons traverse both the electron-transporting layer and the light-emitting layer.
- The use of a mixed layer of a hole-transporting material and an electron-transporting material in the light-emitting layer is well known. For example, see U.S. Patent Application Publication 2004/0229081; U.S. Pat. Nos. 6,759,146; 6,759,146; 6,753,098 and 6,713,192 and references cited therein. Kwong et al., U.S. Patent Application Publication 2002/0074935, describe a mixed layer comprising an organic small molecule hole-transporting material, an organic small molecule electron-transporting material and a phosphorescent dopant.
- Tamano et al., in U.S. Pat. No. 6,150,042, teach use of hole-injecting materials in an organic EL device. Examples of electron-transporting materials useful in the device are given, and included therein are mixtures of electron-transporting materials.
- Seo et al., in U.S. Patent Application Publication 2002/0086180, teach the use of a 1:1 mixture of Bphen, (also known as 4,7-diphenyl-1,10-phenanthroline or bathophenanthroline) as an electron-transporting material, and Alq as an electron-injecting material, to form an electron-transporting mixed layer. However, the Bphen/Alq mix of Seo et al. has inferior stability.
- U.S. Patent Application Publication 2004/0207318 and U.S. Pat. No. 6,396,209 describe an OLED structure including a mixed layer of an electron-transporting organic compound and an organic metal complex compound containing at least one of alkali metal ion, alkaline earth metal ion, or rare earth metal ion.
- JP 2000/053957 teaches the use of photogenes and WO 9963023 teaches the use of organometallic complexes useful in the luminescent layer or the electron-injecting/transporting layers.
- U.S. Patent Application Publication 2004/0067387 teaches the use of one or more compounds of an anthracene structure in the electron-transporting/electron-injecting layer(s) and one or more other compounds, including Alq3, may be added.
- U.S. Pat. No. 6,468,676 teaches the use of an organic metal salt, a halogenide, or an organic metal complex for the electron-injecting layer. The organic metal complex is selected from a list of metal complexes.
- Xie et al., in Chinese Journal of Semiconductors, Vol. 21, Part 2 (2000), page 184 teaches mixtures of rubrene and phenylpyridine beryllium (BePP2) as a yellow light-emitting layer for white OLED. Use of rubrene as a dopant necessitates the rubrene to be present in 2-3% by volume.
- Organometallic complexes, such as lithium quinolate (also known as lithium 8-hydroxyquinolate, lithium 8-quinolate, 8-quinolinolatolithium, or Liq) have been used in EL devices, for example see WO 0032717 and U.S. Patent Application Publication 2005/0106412. In particular, mixtures of lithium quinolate and Alq have been described as useful, for example see U.S. Pat. No. 6,396,209 and U.S. Patent Application Publication 2004/0207318.
- However, these devices do not have all desired EL characteristics in terms of high luminance in combination with low drive voltages. Thus, notwithstanding these developments, there remains a need to reduce drive voltage of OLED devices while maintaining good luminance and luminance stability.
- It is therefore an object of the present invention to provide a white-light-emitting OLED device with good luminance and reduced drive voltage.
- This object is achieved by an OLED device comprising:
- (a) an anode and a cathode spaced apart; and
- (b) at least one light-emitting layer, and a hole-transporting layer disposed between the anode and the light-emitting layer; and
- (c) a first electron-transporting layer in contact with at least one light-emitting layer and a second electron-transporting layer in contact with the first electron-transporting layer, wherein the first and second layers are disposed between the at least one light-emitting layer and the cathode, wherein:
-
- (i) the first electron-transporting layer contains an anthracene compound of Formula (1);
- wherein W1-W10 independently represent hydrogen or an independently selected substituent, and
-
-
- (ii) the second electron-transporting layer contains an anthracene compound of Formula (1) and at least one salt or complex of an element selected from Group 1, 2, 12 or 13 of the Periodic Table, and is further doped with an alkali metal.
-
- It is an advantage of this invention that it can produce an OLED device with improved efficiency and stability. It is a further advantage of this invention that it can reduce the voltage requirements of an OLED device.
-
FIG. 1 shows a cross-sectional view of one embodiment of an OLED device in accordance with this invention; -
FIG. 2 shows a cross-sectional view of another embodiment of an OLED device in accordance with this invention; and -
FIG. 3 shows a cross-sectional view of another embodiment of an OLED device in accordance with this invention. - Since device feature dimensions such as layer thicknesses are frequently in sub-micrometer ranges, the drawings are scaled for ease of visualization rather than dimensional accuracy.
- The term “OLED device” is used in its art-recognized meaning of a display device comprising organic light-emitting diodes as pixels. It can mean a device having a single pixel. The term “OLED display” as used herein means an OLED device comprising a plurality of pixels, which can be of different colors. A color OLED device emits light of at least one color. The term “multicolor” is employed to describe a display panel that is capable of emitting light of a different hue in different areas. In particular, it is employed to describe a display panel that is capable of displaying images of different colors. These areas are not necessarily contiguous. The term “full color” is employed to describe multicolor display panels that are capable of emitting in the red, green, and blue regions of the visible spectrum and displaying images in any combination of hues. The red, green, and blue colors constitute the three primary colors from which all other colors can be generated by appropriate mixing. The term “hue” refers to the intensity profile of light emission within the visible spectrum, with different hues exhibiting visually discernible differences in color. The term “pixel” is employed in its art-recognized usage to designate an area of a display panel that is stimulated to emit light independently of other areas. It is recognized that in full color systems, several pixels of different colors will be used together to produce a wide range of colors, and a viewer can term such a group a single pixel. For the purposes of this discussion, such a group will be considered several different colored pixels.
- In accordance with this disclosure, broadband emission is light that has significant components in multiple portions of the visible spectrum, for example, blue and green. Broadband emission can also include light being emitted in the red, green, and blue portions of the spectrum in order to produce white light. White light is that light that is perceived by a user as having a white color, or light that has an emission spectrum sufficient to be used in combination with color filters to produce a practical full color display. For low power consumption, it is often advantageous for the chromaticity of the white light-emitting OLED to be close to CIE D65, i.e., CIEx=0.31 and CIEy=0.33. This is particularly the case for so-called RGBW displays having red, green, blue, and white pixels. Although CIEx, CIEy coordinates of about 0.31, 0.33 are ideal in some circumstances, the actual coordinates can vary significantly and still be very useful. The term “white light-emitting” as used herein refers to a device that produces white light internally, even though part of such light can be removed by color filters before viewing.
- Turning now to
FIG. 1 , there is shown a cross-sectional view of a pixel of a light-emittingOLED device 10 according to a first embodiment of the present invention. Such an OLED device can be incorporated into e.g. a display. TheOLED device 10 includes at a minimum asubstrate 20, ananode 30, acathode 90 spaced fromanode 30, at least one light-emittinglayer 50 provided betweenanode 30 andcathode 90, a hole-transportinglayer 40 disposed betweenanode 30 and light-emittinglayer 50, a first electron-transportinglayer 52 in contact with the at least one light-emittinglayer 50, and a second electron-transportinglayer 55 in contact with first electron-transportinglayer 52. The first and second electron-transportinglayers layer 50 andcathode 90. -
OLED device 10 can further include other layers, e.g. hole-injectinglayer 35, electron-injectinglayer 60, andcolor filter 25. These will be described further below. - First electron-transporting
layer 52 contains an anthracene compound of Formula (1); - wherein W1-W10 independently represent hydrogen or an independently selected substituent. First electron-transporting
layer 52 has a thickness in the range of 1 to 20 nm, and desirably in the range of 2 to 5 nm. The anthracene compound of Formula (1) comprises greater than 10% by volume of first electron-transportinglayer 52. Second electron-transportinglayer 55 contains an anthracene compound of Formula (1), which can be the same as or different from the anthracene compound of first electron-transportinglayer 52. Second electron-transportinglayer 55 has a thickness in the range of 10 to 200 nm. The anthracene compound of formula (1) includes from 10% to 90% by volume of second electron-transportinglayer 55. - Second electron-transporting
layer 55 further includes at least one salt or complex of an element selected from Group 1 (e.g. Li+, Na+), 2 (e.g. Mg+2, Ca−2), 12 (e.g. Zn+2), or 13 (e.g. Al+3) of the Periodic Table. Desirably, the metal complex is present in the layer at a level of at least 1%, more commonly at a level of 5% or more, and frequently at a level of 10% or even 20% or greater by volume. In one embodiment, the complex is comprised of 20-60% of the layer by volume. Overall, the complex or salt can be present in the balance amount of the anthracene compound. - In some embodiments of this invention, first electron-transporting
layer 52 can also include at least one salt or complex of an element selected from Group 1, 2, 12 or 13 of the Periodic Table as described above. - Second electron-transporting
layer 55 is doped with an elemental metal having a work function less than 4.2 eV. The definition of work function and a list of the work functions for various metals can be found in CRC Handbook of Chemistry and Physics, 84th Edition, 2003-2004, CRC Press Inc., page 12-130. Typical examples of such metals include Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, La, Sm, Gd, Yb, and is conveniently an alkali metal. In one preferred embodiment the alkali metal is Li. The elemental metal is often present in the amount of from 0.1% to 15%, commonly in the amount of 0.1% to 10%, and often in the amount of 1 to 5% by volume of the total material in the layer. - In Formula (1), W1-W10 independently represent hydrogen or an independently selected substituent, provided that two adjacent substituents can combine to form rings. Such anthracene compounds have been described by Begley et al. in U.S. patent application Ser. No. 11/393,767, the disclosure of which is herein incorporated by reference. In one embodiment of the invention W1-W10 are independently selected from hydrogen, alkyl, aromatic carbocyclic or aromatic heterocyclic groups. In another embodiment of the invention, W9 and W10 represent independently selected aromatic carbocyclic or aromatic heterocyclic groups. In yet another embodiment of the invention, W9 and W10 are independently selected from phenyl, naphthyl, biphenyl, or anthracenyl groups. For example, W9 and W10 can represent such groups as 1-naphthyl, 2-naphthyl, 4-biphenyl, 2-biphenyl, 3-biphenyl, or 9-anthracenyl. In further embodiments of the invention, W1 - W8 represent hydrogen, alkyl, or phenyl groups. Particularly useful embodiments of the invention are when W9 and W10 are aromatic carbocyclic groups and W7 and W3 are independently selected from hydrogen, alkyl or phenyl groups. Examples of useful carbocyclic aromatic fused ring compounds for the invention are as follows.
- The salt or complex in the electron-transporting layer(s) can be a metal complex represented by Formula (2):
-
(M)m(Q)n (2) - wherein:
- M represents an element selected from Group 1, 2, 12, or 13 of the periodic table,
- each Q represents an independently selected ligand; and
- m and n are integers selected to provide a neutral charge on the complex (2).
- Desirably, M is an alkali or alkaline earth metal, having a work function less than 4.2 eV, wherein the metal has a charge of +1 or +2. Further common embodiments of the invention include those in which there are more than one salt or complex, or a mixture of a salt and a complex in the layer. The salt can be any organic or inorganic salt or oxide of an alkali or alkaline earth metal that can be reduced to the free metal, either as a free entity or a transient species in the device. Examples include, but are not limited to, the alkali and alkaline earth halides, including lithium fluoride (LiF), sodium fluoride (NaF), cesium fluoride (CsF), calcium fluoride (CaF2) lithium oxide (Li2O), lithium acetylacetonate (Liacac), lithium benzoate, potassium benzoate, lithium acetate and lithium formate. Examples MC-1-MC-30 are further examples of useful salts or complexes for the invention.
- Conveniently, M represents Li+ and Q represents an 8-quinolate group, as represented by MC-1 through MC-3.
- OLED device layers that can be used in this invention have been well described in the art, and
OLED device 10, and other such devices described herein, can include layers commonly used for such devices. OLED devices are commonly formed on a substrate,e.g. OLED substrate 20. Such substrates have been well-described in the art. A bottom electrode is formed overOLED substrate 20 and is most commonly configured as ananode 30, although the practice of this invention is not limited to this configuration. Example conductors for this application include, but are not limited to, gold, iridium, molybdenum, palladium, platinum, aluminum or silver. Desired anode materials can be deposited by any suitable means such as evaporation, sputtering, chemical vapor deposition, or electrochemical means. Anode materials can be patterned using well-known photolithographic processes. - Hole-transporting
layer 40 can be formed and disposed over the anode. Desired hole-transporting materials can be deposited by any suitable means such as evaporation, sputtering, chemical vapor deposition, electrochemical means, thermal transfer, or laser thermal transfer from a donor material. Hole-transporting materials useful in hole-transporting layers are well known to include compounds such as an aromatic tertiary amine, where the latter is understood to be a compound containing at least one trivalent nitrogen atom that is bonded only to carbon atoms, at least one of which is a member of an aromatic ring. In one form the aromatic tertiary amine can be an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine. Exemplary monomeric triarylamines are illustrated by Klupfel et al. in U.S. Pat. No. 3,180,730. Other suitable triarylamines substituted with one or more vinyl radicals and/or comprising at least one active hydrogen-containing group are disclosed by Brantley et al. in U.S. Pat. Nos. 3,567,450 and 3,658,520. - A more preferred class of aromatic tertiary amines are those which include at least two aromatic tertiary amine moieties as described in U.S. Pat. Nos. 4,720,432 and 5,061,569. Such compounds include those represented by structural Formula A.
- wherein:
- Q1 and Q2 are independently selected aromatic tertiary amine moieties; and
- G is a linking group such as an arylene, cycloalkylene, or alkylene group of a carbon to carbon bond.
- In one embodiment, at least one of Q1 or Q2 contains a polycyclic fused ring structure, e.g., a naphthalene. When G is an aryl group, it is conveniently a phenylene, biphenylene, or naphthalene moiety.
- A useful class of triarylamines satisfying structural Formula A and containing two triarylamine moieties is represented by structural Formula B.
- where:
- R1 and R2 each independently represent a hydrogen atom, an aryl group, or an alkyl group or R1 and R2 together represent the atoms completing a cycloalkyl group; and
- R3 and R4 each independently represent an aryl group, which is in turn substituted with a diaryl substituted amino group, as indicated by structural Formula C.
- wherein R5 and R6 are independently selected aryl groups. In one embodiment, at least one of R5 or R6 contains a polycyclic fused ring structure, e.g., a naphthalene.
- Another class of aromatic tertiary amines are the tetraaryldiamines. Desirable tetraaryldiamines include two diarylamino groups, such as indicated by Formula C, linked through an arylene group. Useful tetraaryldiamines include those represented by Formula D.
- wherein:
- each Are is an independently selected arylene group, such as a phenylene or anthracene moiety;
- n is an integer of from 1 to 4; and
- Ar, R7, R8, and R9 are independently selected aryl groups.
- In a typical embodiment, at least one of Ar, R7, R8, and R9 is a polycyclic fused ring structure, e.g., a naphthalene.
- The various alkyl, alkylene, aryl, and arylene moieties of the foregoing structural Formulae A, B, C, and D can each in turn be substituted. Typical substituents include alkyl groups, alkoxy groups, aryl groups, aryloxy groups, and halogens such as fluoride, chloride, and bromide. The various alkyl and alkylene moieties typically contain from 1 to about 6 carbon atoms. The cycloalkyl moieties can contain from 3 to about 10 carbon atoms, but typically contain five, six, or seven carbon atoms—e.g., cyclopentyl, cyclohexyl, and cycloheptyl ring structures. The aryl and arylene moieties are usually phenyl and phenylene moieties.
- The hole-transporting layer in an OLED device can be formed of a single or a mixture of aromatic tertiary amine compounds. Specifically, one can employ a triarylamine, such as a triarylamine satisfying the Formula B, in combination with a tetraaryldiamine, such as indicated by Formula D. When a triarylamine is employed in combination with a tetraaryldiamine, the latter is positioned as a layer interposed between the triarylamine and the electron-injecting and transporting layer.
- Another class of useful hole-transporting materials includes polycyclic aromatic compounds as described in EP 1 009 041. In addition, polymeric hole-transporting materials can be used such as poly(N-vinylcarbazole) (PVK), polythiophenes, polypyrrole, polyaniline, and copolymers such as poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), also called PEDOT/PSS.
- Light-emitting layers produce light in response to hole-electron recombination. The light-emitting layers are commonly disposed over the hole-transporting layer. Desired organic light-emitting materials can be deposited by any suitable means such as evaporation, sputtering, chemical vapor deposition, electrochemical means, or radiation thermal transfer from a donor material. Useful organic light-emitting materials are well known. As are more fully described in U.S. Pat. Nos. 4,769,292 and 5,935,721, the light-emitting layers of the OLED device consist of a luminescent or fluorescent material where electroluminescence is produced as a result of electron-hole pair recombination in this region. The light-emitting layers can include a single material, but more commonly include a host material doped with a guest compound or dopant where light emission comes primarily from the dopant. The dopant is selected to produce color light having a particular spectrum. The host materials in the light-emitting layers can be an electron-transporting material, a hole-transporting material, or another material that supports hole-electron recombination. The dopant is usually chosen from highly fluorescent dyes, but phosphorescent compounds, e.g., transition metal complexes as described in WO 98/55561, WO 00/18851, WO 00/57676, and WO 00/70655 are also useful. Dopants are typically coated as 0.01 to 10% by weight into the host material. Host and emitting molecules known to be of use include, but are not limited to, those disclosed in U.S. Pat. Nos. 4,768,292; 5,141,671; 5,150,006; 5,151,629; 5,294,870; 5,405,709; 5,484,922; 5,593,788; 5,645,948; 5,683,823; 5,755,999; 5,928,802; 5,935,720; 5,935,721; and 6,020,078.
- Metal complexes of 8-hydroxyquinoline and similar derivatives (Formula E) constitute one class of useful host materials capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 500 nm, e.g., green, yellow, orange, and red.
- wherein:
- M represents a metal;
- n is an integer of from 1 to 3; and
- Z independently in each occurrence represents the atoms completing a nucleus having at least two fused aromatic rings.
- From the foregoing it is apparent that the metal can be a monovalent, divalent, or trivalent metal. The metal can, for example, be an alkali metal, such as lithium, sodium, or potassium; an alkaline earth metal, such as magnesium or calcium; or an earth metal, such as boron or aluminum. Generally any monovalent, divalent, or trivalent metal known to be a useful chelating metal can be employed.
- Z completes a heterocyclic nucleus containing at least two fused aromatic rings, at least one of which is an azole or azine ring. Additional rings, including both aliphatic and aromatic rings, can be fused with the two required rings, if required. To avoid adding molecular bulk without improving on function the number of ring atoms is usually maintained at 18 or less.
- Benzazole derivatives constitute another class of useful host materials capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 400 nm, e.g., blue, green, yellow, orange or red. An example of a useful benzazole is 2, 2′, 2″-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole].
- While
OLED device 10 is represented with a single light-emittinglayer 50, this invention is not limited to that.OLED device 10 can have additional light-emitting layers as well, and it will be understood that light-emittinglayer 50 can represent these as well. In one useful embodiment, the at least one light-emittinglayer 50 represents one or more layers capable of emitting broadband light, e.g. white light. For example, in one embodiment,OLED device 10 can include a yellow light-emitting layer disposed over hole-transportinglayer 40 and doped with a yellow light-emitting compound, and a blue light-emitting layer with a blue light-emitting compound disposed directly on the yellow light-emitting layer. - In another useful embodiment, the at least one light-emitting
layer 50 represents four different light-emitting layers including a red light-emitting layer with a red light-emitting compound, a yellow light-emitting layer, a blue light-emitting layer, and a green light-emitting layer with a green light-emitting compound, arranged, as taught by Hatwar et al. in U.S. patent application Ser. No. 11/393,767 according to the following criteria: i) each of the light-emitting layers is in contact with at least one other light-emitting layer, ii) the blue light-emitting layer is in contact with the green light-emitting layer, and iii) the red light-emitting layer is in contact with only one other light-emitting layer. InFIG. 2 , one such arrangement of the light-emitting layers is shown inOLED device 15. In the arrangement ofFIG. 2 , red light-emittinglayer 50 r is formed closest toanode 30, yellow light-emittinglayer 50 y is in contact with red light-emittinglayer 50 r, blue light-emittinglayer 50 b is in contact with yellow light-emittinglayer 50 y, and green light-emittinglayer 50 g is in contact with blue light-emittinglayer 50 b. First electron-transportinglayer 52 and second electron-transportinglayer 55 are as described above. - Turning now to
FIG. 3 , there is shown a cross-sectional view of a pixel of a tandem white-light-emittingOLED device 80 according to another embodiment of the present invention.OLED device 80 includes asubstrate 20, a spacedanode 30 andcathode 90, at least two white light-emittingunits intermediate connector 95 disposed between blue and white light-emittingunits units layer layer units OLED device 15. White light-emittingunits units unit 85 includes first electron-transportinglayer 52 and second electron-transportinglayer 55, which are as described above, and hole-transportinglayer 45. White light-emittingunit 75 includes electron-transportinglayer 65. -
Tandem OLED device 80 further includes anintermediate connector 95 disposed between white light-emittingunits Intermediate connector 95 and materials used in its construction have been described in detail by Hatwar et al. in U.S. patent application Ser. No. 11/170,681. Some further nonlimiting examples of intermediate connectors are described in U.S. Pat. Nos. 6,717,358 and 6,872,472, and U.S. Patent Application Publication 2004/0227460 A1. - A red-light-emitting compound can include a diindenoperylene compound of the following structure F:
- wherein:
-
- X1-X16 are independently selected as hydrogen or substituents that include alkyl groups of from 1 to 24 carbon atoms; aryl or substituted aryl groups of from 5 to 20 carbon atoms; hydrocarbon groups containing 4 to 24 carbon atoms that complete one or more fused aromatic rings or ring systems; or halogen, provided that the substituents are selected to provide an emission maximum between 560 nm and 640 nm.
- Illustrative examples of useful red dopants of this class are shown by Hatwar et al. in U.S. Patent Application Publication 2005/0249972, the disclosure of which is incorporated by reference.
- Other red dopants useful in the present invention belong to the DCM class of dyes represented by Formula G:
- wherein Y1-Y5 represent one or more groups independently selected from: hydro, alkyl, substituted alkyl, aryl, or substituted aryl; Y1-Y5 independently include acyclic groups or can be joined pairwise to form one or more fused rings; provided that Y3 and Y5 do not together form a fused ring.
- In a useful and convenient embodiment that provides red luminescence, Y1-Y5 are selected independently from: hydro, alkyl and aryl. Structures of particularly useful dopants of the DCM class are shown by Ricks et al. in U.S. Patent Application Publication No. 2005/0181232, the disclosure of which is incorporated by reference.
- A light-emitting yellow dopant can include a compound of the following structures:
- wherein A1-A6 and A′1-A′6 represent one or more substituents on each ring and where each substituent is individually selected from one of the following:
-
- Category 1: hydrogen, or alkyl of from 1 to 24 carbon atoms;
- Category 2: aryl or substituted aryl of from 5 to 20 carbon atoms;
- Category 3: hydrocarbon containing 4 to 24 carbon atoms, completing a fused aromatic ring or ring system;
- Category 4: heteroaryl or substituted heteroaryl of from 5 to 24 carbon atoms such as thiazolyl, furyl, thienyl, pyridyl, quinolinyl or other heterocyclic systems, which are bonded via a single bond, or complete a fused heteroaromatic ring system;
- Category 5: alkoxylamino, alkylamino, or arylamino of from 1 to 24 carbon atoms; or
- Category 6: fluoro, chloro, bromo or cyano.
- Examples of particularly useful yellow dopants are shown by Ricks et al.
- A green-light-emitting compound can include a quinacridone compound of the following structure:
- wherein substituent groups R1 and R2 are independently alkyl, alkoxyl, aryl, or heteroaryl; and substituent groups R3 through R12 are independently hydrogen, alkyl, alkoxyl, halogen, aryl, or heteroaryl, and adjacent substituent groups R3 through R10 can optionally be connected to form one or more ring systems, including fused aromatic and fused heteroaromatic rings, provided that the substituents are selected to provide an emission maximum between 510 nm and 540 nm, and a full width at half maximum of 40 nm or less. Alkyl, alkoxyl, aryl, heteroaryl, fused aromatic ring and fused heteroaromatic ring substituent groups can be further substituted. Conveniently, R1 and R2 are aryl, and R2 through R12 are hydrogen, or substituent groups that are more electron withdrawing than methyl. Some examples of useful quinacridones include those disclosed in U.S. Pat. No. 5,593,788 and in U.S. Patent Application Publication 2004/0001969A1.
- A green-light-emitting compound can include a coumarin compound of the following structure:
- wherein X is O or S; R1, R2, R3 and R6 can individually be hydrogen, alkyl, or aryl; R4 and R5 can individually be alkyl or aryl; or where either R3 and R4, or R5 and R6, or both together represent the atoms completing a cycloalkyl group; provided that the substituents are selected to provide an emission maximum between 510 nm and 540 nm, and a full width at half maximum of 40 nm or less.
- Examples of useful green dopants are disclosed by Hatwar et al. in U.S. Patent Application Publication 2005/0249972.
- A blue-light-emitting dopant can include perylene or derivatives thereof, or a bis(azinyl)azene boron complex compound of the structure L:
- wherein:
-
- A and A′ represent independent azine ring systems corresponding to 6-membered aromatic ring systems containing at least one nitrogen;
- (Xa)n and (Xb)m represent one or more independently selected substituents and include acyclic substituents or are joined to form a ring fused to A or A′;
- m and n are independently 0 to 4;
- Za and Zb are independently selected substituents;
- 1, 2, 3, 4, 1′, 2′, 3′, and 4′ are independently selected as either carbon or nitrogen atoms; and
- provided that Xa, Xb, Za, and Zb, 1, 2, 3, 4, 1′, 2′, 3′, and 4′ are selected to provide blue luminescence.
- Some examples of the above class of dopants are disclosed by Ricks et al U.S. Patent Application Publication 2005/0181232.
- Particularly useful blue dopants of the perylene class include perylene and tetra-t-butylperylene (TBP).
- Another particularly useful class of blue dopants in this invention includes blue-emitting derivatives of such distyrylarenes as distyrylbenzene and distyrylbiphenyl, including compounds described in U.S. Pat. No. 5,121,029. Among derivatives of distyrylarenes that provide blue luminescence, particularly useful are those substituted with diarylamino groups, also known as distyrylamines. Examples include bis[2-[4-[N,N-diarylamino]phenyl]vinyl]-benzenes of the general structure M1 shown below:
- and bis[2-[4-[N,N-diarylamino]phenyl]vinyl]biphenyls of the general structure M2 shown below:
- In Formulas M1 and M2, X1-X4 can be the same or different, and individually represent one or more substituents such as alkyl, aryl, fused aryl, halo, or cyano. In a preferred embodiment, X1-X4 are individually alkyl groups, each containing from one to about ten carbon atoms. A particularly preferred blue dopant of this class is disclosed by Ricks et al U.S. Patent Application Publication 2005/0181232.
- An upper electrode most commonly configured as a
cathode 90 is formed over the electron-transporting layer. If the device is top-emitting, the electrode must be transparent or nearly transparent. For such applications, metals must be thin (preferably less than 25 nm) or one must use transparent conductive oxides (e.g. indium-tin oxide, indium-zinc oxide), or a combination of these materials. Optically transparent cathodes have been described in more detail in U.S. Pat. No. 5,776,623. Cathode materials can be deposited by evaporation, sputtering, or chemical vapor deposition. When needed, patterning can be achieved through many well known methods including, but not limited to, through-mask deposition, integral shadow masking as described in U.S. Pat. No. 5,276,380 and EP 0 732 868, laser ablation, and selective chemical vapor deposition. -
OLED device 10 can include other layers as well. For example, a hole-injectinglayer 35 can be formed over the anode, as described in U.S. Pat. Nos. 4,720,432;. 6,208,075 and EP 0 891 121 A1, and EP 1 029 909 A1. An electron-injectinglayer 60, such as alkaline or alkaline earth metals, alkali halide salts, or alkaline or alkaline earth metal doped organic layers, can also be present between the cathode and the electron-transporting layer. White light-emitting OLED devices can include one ormore color filters 25, which have been well-described in the art. - The invention and its advantages can be better appreciated by the following comparative examples. The layers described as vacuum-deposited were deposited by evaporation from heated boats under a vacuum of approximately 10-6 Torr. After deposition of the OLED layers each device was then transferred to a dry box for encapsulation. The OLED has an emission area of 10 mm2. The devices were tested by applying a current of 20 mA/cm2 across electrodes, except for operational fade, which was tested at 80 mA/cm2. The performance of the devices is given in Table 1.
- A comparative color OLED display was constructed in the following manner:
-
- 1. A clean glass substrate was deposited by sputtering with indium tin oxide (ITO) to form a transparent electrode of 60 nm thickness.
- 2. The above-prepared ITO surface was treated with a plasma oxygen etch.
- 3. The above-prepared substrate was further treated by vacuum-depositing a 10 nm layer of hexacyanohexaazatriphenylene (CHATP) as a hole-injecting layer (HIL).
-
- 4. The above-prepared substrate was further treated by vacuum-depositing a 10 nm layer of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB) as a hole-transporting layer (HTL).
- 5. The above-prepared substrate was further treated by vacuum-depositing a 20 nm yellow light-emitting layer including 13.6 nm NPB (as host) and 6 nm 9,10-bis(2-naphthyl)anthracene (ADN) as a stabilizer with 2% yellow-orange emitting dopant diphenyltetra-t-butylrubrene (PTBR).
-
- 6. The above-prepared substrate was further treated by vacuum-depositing a 20 nm blue light-emitting layer including 18.4 nm 9-(2-naphthyl)-10-(4-biphenyl)anthracene (BNA) host and 1.4 nm NPB cohost with 1% BEP as blue-emitting dopant.
-
- 7. A 40 nm mixed electron-transporting layer was vacuum-deposited, including 10 nm BNA and 30 nm lithium quinolate (LiQ).
- 8. A 100 nm layer of aluminum was evaporatively deposited onto the substrate to form a cathode layer.
- A comparative color OLED display was constructed as in Example 1, except that Step 7 was as follows:
-
- 7. A 40 nm mixed electron-transporting layer was vacuum-deposited, including 10 nm BNA, 30 nm LiQ, and doped with 1% Li metal.
- An inventive color OLED display was constructed as in Example 1, except that Steps 7 and 8 were replaced with the following steps:
-
- 7. A 3 nm layer of LiQ was vacuum-deposited.
- 8. A 40 nm mixed electron-transporting layer was vacuum-deposited, including 10 nm BNA, 30 nm LiQ, and doped with 1% Li metal.
- 9. A 100 nm layer of aluminum was evaporatively deposited onto the substrate to form a cathode layer.
- An inventive color OLED display was constructed as in Example 3, except that Step 7 was as follows:
-
- 7. A 3 nm mixed electron-transporting layer was vacuum-deposited, including 1.5 nm BNA and 1.5 nm LiQ.
- An inventive color OLED display was constructed as in Example 3, except that Step 7 was as follows:
-
- 7. A 3 nm layer of BNA was vacuum-deposited.
- The results of testing these examples are shown in Table 1, below. Example 1 shows the results for an OLED device known in the art. Example 2 demonstrates the addition of dopant lithium to the electron-transporting layer, with a strong decrease in luminance efficiency and fade stability. The addition of a thin lithium-free electron-transporting layer comprising lithium quinolate between the standard electron-transporting layer and the emitting layers, as in Example 3, gives improved luminance efficiency and lower drive voltage, but the fade stability is still poor. However, the use of an anthracene in the thin electron-transporting layer, as in Examples 4 and 5, gives good stability while retaining good drive voltage and luminance efficiency.
-
TABLE 1 Device data measured at 20 mA/cm2 (except as noted) Room Temp Fade Stability Lum Efficiency @80 mA/cm2 Device # Voltage (cd/A) CIEx CIEy (hrs to 50%) Example 1 Undoped ETL 5.2 9.5 0.31 0.31 500 (Comparative) Example 2 Li-doped ETL 5.0 2.3 0.27 0.31 268 (Comparative) Example 3 LiQ 2nd ETL 3.6 12.7 0.35 0.35 200 (Comparative) Example 4 Mixed 2nd 3.4 12.9 0.36 0.36 400 (Inventive) ETL Example 5 BNA 2nd 3.2 12.8 0.37 0.37 400 (Inventive) ETL - The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
-
- 10 OLED device
- 15 OLED device
- 20 substrate
- 25 color filter
- 30 anode
- 35 hole-injecting layer
- 40 hole-transporting layer
- 45 hole-transporting layer
- 50 light-emitting layer
- 50 r red light-emitting layer
- 50 y yellow light-emitting layer
- 50 b blue light-emitting layer
- 50 g green light-emitting layer
- 51 r red light-emitting layer
- 51 y yellow light-emitting layer
- 51 b blue light-emitting layer
- 51 g green light-emitting layer
- 52 electron-transporting layer
- 55 electron-transporting layer
- 60 electron-injecting layer
- 65 electron-transporting layer
- 75 white light-emitting unit
- 80 OLED device
- 85 white light-emitting unit
- 90 cathode
- 95 intermediate connector
Claims (21)
(M)m(Q)n (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/461,821 US20080032123A1 (en) | 2006-08-02 | 2006-08-02 | Dual electron-transporting layer for oled device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/461,821 US20080032123A1 (en) | 2006-08-02 | 2006-08-02 | Dual electron-transporting layer for oled device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080032123A1 true US20080032123A1 (en) | 2008-02-07 |
Family
ID=39029546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/461,821 Abandoned US20080032123A1 (en) | 2006-08-02 | 2006-08-02 | Dual electron-transporting layer for oled device |
Country Status (1)
Country | Link |
---|---|
US (1) | US20080032123A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080136321A1 (en) * | 2006-12-06 | 2008-06-12 | Electronics And Telecommunications Research Institute | Organic light emitting diode device |
US20090189521A1 (en) * | 2008-01-28 | 2009-07-30 | Min-Seung Chun | Organic light emitting diode and method of manufacturing the same |
US20090233125A1 (en) * | 2007-03-14 | 2009-09-17 | Samsung Sdi Co., Ltd. | Organic light-emitting device including organic layer including anthracene derivative compound |
US20100253210A1 (en) * | 2009-04-06 | 2010-10-07 | Vargas J Ramon | Organic element for electroluminescent devices |
WO2010114749A1 (en) * | 2009-04-03 | 2010-10-07 | Global Oled Technology Llc | Tandem white oled with efficient electron transfer |
US20110309343A1 (en) * | 2010-06-18 | 2011-12-22 | Basf Se | Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex |
US20120211743A1 (en) * | 2010-10-08 | 2012-08-23 | Idemitsu Kosan Co., Ltd. | BENZO[k]FLUORANTHENE DERIVATIVE AND ORGANIC ELECTROLUMINESCENCE DEVICE CONTAINING THE SAME |
CN104064678A (en) * | 2013-03-21 | 2014-09-24 | 海洋王照明科技股份有限公司 | Organic electroluminescent device and preparation method thereof |
CN104183792A (en) * | 2013-05-23 | 2014-12-03 | 海洋王照明科技股份有限公司 | Organic light emitting device and manufacturing method thereof |
TWI493017B (en) * | 2009-12-17 | 2015-07-21 | Global Oled Technology Llc | Oled with high efficiency blue light-emitting layer |
US20160308157A1 (en) * | 2013-06-24 | 2016-10-20 | Samsung Display Co., Ltd. | Organic light-emitting device |
US9559311B2 (en) | 2013-02-22 | 2017-01-31 | Idemitsu Kosan Co., Ltd. | Anthracene derivative, organic-electroluminescence-device material, organic electroluminescence device, and electronic equipment |
US20170170411A1 (en) * | 2014-07-04 | 2017-06-15 | Novaled Gmbh | Organic Light-Emitting Diode (OLED) Including an Electron Transport Layer Stack Comprising Different Lithium Compounds |
WO2024197596A1 (en) * | 2023-03-28 | 2024-10-03 | 京东方科技集团股份有限公司 | Organic light-emitting diode and display apparatus |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3172862A (en) * | 1960-09-29 | 1965-03-09 | Dow Chemical Co | Organic electroluminescent phosphors |
US3173050A (en) * | 1962-09-19 | 1965-03-09 | Dow Chemical Co | Electroluminescent cell |
US3710167A (en) * | 1970-07-02 | 1973-01-09 | Rca Corp | Organic electroluminescent cells having a tunnel injection cathode |
US4356429A (en) * | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4539507A (en) * | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
US4769292A (en) * | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US5061569A (en) * | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
US5394560A (en) * | 1992-09-30 | 1995-02-28 | Motorola, Inc. | Nationwide satellite message delivery system |
US5409783A (en) * | 1994-02-24 | 1995-04-25 | Eastman Kodak Company | Red-emitting organic electroluminescent device |
US5593788A (en) * | 1996-04-25 | 1997-01-14 | Eastman Kodak Company | Organic electroluminescent devices with high operational stability |
US5683823A (en) * | 1996-01-26 | 1997-11-04 | Eastman Kodak Company | White light-emitting organic electroluminescent devices |
US5908581A (en) * | 1997-04-07 | 1999-06-01 | Eastman Kodak Company | Red organic electroluminescent materials |
US5928802A (en) * | 1997-05-16 | 1999-07-27 | Eastman Kodak Company | Efficient blue organic electroluminescent devices |
US6020078A (en) * | 1998-12-18 | 2000-02-01 | Eastman Kodak Company | Green organic electroluminescent devices |
US6097147A (en) * | 1998-09-14 | 2000-08-01 | The Trustees Of Princeton University | Structure for high efficiency electroluminescent device |
US6150042A (en) * | 1996-12-09 | 2000-11-21 | Toyo Ink Manufacturing Co., Ltd. | Material for organoelectro-luminescence device and use thereof |
US6172459B1 (en) * | 1998-07-28 | 2001-01-09 | Eastman Kodak Company | Electron-injecting layer providing a modified interface between an organic light-emitting structure and a cathode buffer layer |
US6208077B1 (en) * | 1998-11-05 | 2001-03-27 | Eastman Kodak Company | Organic electroluminescent device with a non-conductive fluorocarbon polymer layer |
US6396209B1 (en) * | 1998-12-16 | 2002-05-28 | International Manufacturing And Engineering Services Co., Ltd. | Organic electroluminescent device |
US6509109B1 (en) * | 1998-04-08 | 2003-01-21 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US6627333B2 (en) * | 2001-08-15 | 2003-09-30 | Eastman Kodak Company | White organic light-emitting devices with improved efficiency |
US6717358B1 (en) * | 2002-10-09 | 2004-04-06 | Eastman Kodak Company | Cascaded organic electroluminescent devices with improved voltage stability |
US20040067387A1 (en) * | 2002-05-07 | 2004-04-08 | Ji-Eun Kim | Organic compounds for electroluminescence and organic electroluminescent devices using the same |
US20040229081A1 (en) * | 2000-12-26 | 2004-11-18 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US20040241491A1 (en) * | 2003-05-28 | 2004-12-02 | Eastman Kodak Company | White light-emitting device structures |
US20050106412A1 (en) * | 2001-11-23 | 2005-05-19 | Poopathy Kathirgamanathan | Doped lithium quinolate |
US20050142379A1 (en) * | 2003-12-26 | 2005-06-30 | Nitto Denko Corporation | Electroluminescence device, planar light source and display using the same |
US20050173700A1 (en) * | 2004-02-06 | 2005-08-11 | Eastman Kodak Company | Full-color organic display having improved blue emission |
US20060003184A1 (en) * | 2004-07-01 | 2006-01-05 | Eastman Kodak Company | High performance white light-emitting OLED device |
US20060144276A1 (en) * | 2004-12-30 | 2006-07-06 | Macpherson Charles D | Electronic devices and processes for forming the same |
US7126271B2 (en) * | 2003-04-17 | 2006-10-24 | Samsung Sdi Co., Ltd. | Organic electroluminescent display device having bi-layer electron injection structure |
US20070026257A1 (en) * | 2005-07-28 | 2007-02-01 | Eastman Kodak Company | Low voltage organic electroluminescent element |
US7332860B2 (en) * | 2006-03-30 | 2008-02-19 | Eastman Kodak Company | Efficient white-light OLED display with filters |
-
2006
- 2006-08-02 US US11/461,821 patent/US20080032123A1/en not_active Abandoned
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3172862A (en) * | 1960-09-29 | 1965-03-09 | Dow Chemical Co | Organic electroluminescent phosphors |
US3173050A (en) * | 1962-09-19 | 1965-03-09 | Dow Chemical Co | Electroluminescent cell |
US3710167A (en) * | 1970-07-02 | 1973-01-09 | Rca Corp | Organic electroluminescent cells having a tunnel injection cathode |
US4356429A (en) * | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4539507A (en) * | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
US4769292A (en) * | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US5061569A (en) * | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
US5394560A (en) * | 1992-09-30 | 1995-02-28 | Motorola, Inc. | Nationwide satellite message delivery system |
US5409783A (en) * | 1994-02-24 | 1995-04-25 | Eastman Kodak Company | Red-emitting organic electroluminescent device |
US5683823A (en) * | 1996-01-26 | 1997-11-04 | Eastman Kodak Company | White light-emitting organic electroluminescent devices |
US5593788A (en) * | 1996-04-25 | 1997-01-14 | Eastman Kodak Company | Organic electroluminescent devices with high operational stability |
US6150042A (en) * | 1996-12-09 | 2000-11-21 | Toyo Ink Manufacturing Co., Ltd. | Material for organoelectro-luminescence device and use thereof |
US5908581A (en) * | 1997-04-07 | 1999-06-01 | Eastman Kodak Company | Red organic electroluminescent materials |
US5928802A (en) * | 1997-05-16 | 1999-07-27 | Eastman Kodak Company | Efficient blue organic electroluminescent devices |
US6509109B1 (en) * | 1998-04-08 | 2003-01-21 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US6172459B1 (en) * | 1998-07-28 | 2001-01-09 | Eastman Kodak Company | Electron-injecting layer providing a modified interface between an organic light-emitting structure and a cathode buffer layer |
US6097147A (en) * | 1998-09-14 | 2000-08-01 | The Trustees Of Princeton University | Structure for high efficiency electroluminescent device |
US6208077B1 (en) * | 1998-11-05 | 2001-03-27 | Eastman Kodak Company | Organic electroluminescent device with a non-conductive fluorocarbon polymer layer |
US6396209B1 (en) * | 1998-12-16 | 2002-05-28 | International Manufacturing And Engineering Services Co., Ltd. | Organic electroluminescent device |
US6020078A (en) * | 1998-12-18 | 2000-02-01 | Eastman Kodak Company | Green organic electroluminescent devices |
US20040229081A1 (en) * | 2000-12-26 | 2004-11-18 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US6627333B2 (en) * | 2001-08-15 | 2003-09-30 | Eastman Kodak Company | White organic light-emitting devices with improved efficiency |
US20050106412A1 (en) * | 2001-11-23 | 2005-05-19 | Poopathy Kathirgamanathan | Doped lithium quinolate |
US20040067387A1 (en) * | 2002-05-07 | 2004-04-08 | Ji-Eun Kim | Organic compounds for electroluminescence and organic electroluminescent devices using the same |
US6717358B1 (en) * | 2002-10-09 | 2004-04-06 | Eastman Kodak Company | Cascaded organic electroluminescent devices with improved voltage stability |
US7126271B2 (en) * | 2003-04-17 | 2006-10-24 | Samsung Sdi Co., Ltd. | Organic electroluminescent display device having bi-layer electron injection structure |
US20040241491A1 (en) * | 2003-05-28 | 2004-12-02 | Eastman Kodak Company | White light-emitting device structures |
US20050142379A1 (en) * | 2003-12-26 | 2005-06-30 | Nitto Denko Corporation | Electroluminescence device, planar light source and display using the same |
US20050173700A1 (en) * | 2004-02-06 | 2005-08-11 | Eastman Kodak Company | Full-color organic display having improved blue emission |
US20060003184A1 (en) * | 2004-07-01 | 2006-01-05 | Eastman Kodak Company | High performance white light-emitting OLED device |
US20060144276A1 (en) * | 2004-12-30 | 2006-07-06 | Macpherson Charles D | Electronic devices and processes for forming the same |
US20070026257A1 (en) * | 2005-07-28 | 2007-02-01 | Eastman Kodak Company | Low voltage organic electroluminescent element |
US7332860B2 (en) * | 2006-03-30 | 2008-02-19 | Eastman Kodak Company | Efficient white-light OLED display with filters |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7952273B2 (en) * | 2006-12-06 | 2011-05-31 | Electronics And Telecommunications Research Institute | Organic light emitting diode device |
US20080136321A1 (en) * | 2006-12-06 | 2008-06-12 | Electronics And Telecommunications Research Institute | Organic light emitting diode device |
US20090233125A1 (en) * | 2007-03-14 | 2009-09-17 | Samsung Sdi Co., Ltd. | Organic light-emitting device including organic layer including anthracene derivative compound |
US20090189521A1 (en) * | 2008-01-28 | 2009-07-30 | Min-Seung Chun | Organic light emitting diode and method of manufacturing the same |
US7999459B2 (en) * | 2008-01-28 | 2011-08-16 | Samsung Mobile Display Co., Ltd. | Organic light emitting diode and method of manufacturing the same |
KR101595433B1 (en) | 2009-04-03 | 2016-02-18 | 글로벌 오엘이디 테크놀러지 엘엘씨 | Tandem white oled with efficient electron transfer |
KR20120027157A (en) * | 2009-04-03 | 2012-03-21 | 글로벌 오엘이디 테크놀러지 엘엘씨 | Tandem white oled with efficient electron transfer |
CN102414861A (en) * | 2009-04-03 | 2012-04-11 | 全球Oled科技有限责任公司 | Tandem white OLED with efficient electron transfer |
WO2010114749A1 (en) * | 2009-04-03 | 2010-10-07 | Global Oled Technology Llc | Tandem white oled with efficient electron transfer |
EP2417647A4 (en) * | 2009-04-06 | 2012-09-12 | Global Oled Technology Llc | Organic element for electroluminescent devices |
US20100253210A1 (en) * | 2009-04-06 | 2010-10-07 | Vargas J Ramon | Organic element for electroluminescent devices |
EP2417647A1 (en) * | 2009-04-06 | 2012-02-15 | Global OLED Technology LLC | Organic element for electroluminescent devices |
US8206842B2 (en) * | 2009-04-06 | 2012-06-26 | Global Oled Technology Llc | Organic element for electroluminescent devices |
TWI493017B (en) * | 2009-12-17 | 2015-07-21 | Global Oled Technology Llc | Oled with high efficiency blue light-emitting layer |
US9203037B2 (en) * | 2010-06-18 | 2015-12-01 | Basf Se | Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex |
US20110309343A1 (en) * | 2010-06-18 | 2011-12-22 | Basf Se | Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex |
US20120211743A1 (en) * | 2010-10-08 | 2012-08-23 | Idemitsu Kosan Co., Ltd. | BENZO[k]FLUORANTHENE DERIVATIVE AND ORGANIC ELECTROLUMINESCENCE DEVICE CONTAINING THE SAME |
US9273002B2 (en) * | 2010-10-08 | 2016-03-01 | Idemitsu Kosan Co., Ltd. | Benzo[k]fluoranthene derivative and organic electroluminescence device containing the same |
US9559311B2 (en) | 2013-02-22 | 2017-01-31 | Idemitsu Kosan Co., Ltd. | Anthracene derivative, organic-electroluminescence-device material, organic electroluminescence device, and electronic equipment |
CN104064678A (en) * | 2013-03-21 | 2014-09-24 | 海洋王照明科技股份有限公司 | Organic electroluminescent device and preparation method thereof |
CN104183792A (en) * | 2013-05-23 | 2014-12-03 | 海洋王照明科技股份有限公司 | Organic light emitting device and manufacturing method thereof |
US20160308157A1 (en) * | 2013-06-24 | 2016-10-20 | Samsung Display Co., Ltd. | Organic light-emitting device |
US9825244B2 (en) * | 2013-06-24 | 2017-11-21 | Samsung Display Co., Ltd. | Organic light-emitting device |
US20170170411A1 (en) * | 2014-07-04 | 2017-06-15 | Novaled Gmbh | Organic Light-Emitting Diode (OLED) Including an Electron Transport Layer Stack Comprising Different Lithium Compounds |
US10205107B2 (en) * | 2014-07-04 | 2019-02-12 | Novaled Gmbh | Organic light-emitting diode (OLED) including an electron transport layer stack comprising different lithium compounds |
WO2024197596A1 (en) * | 2023-03-28 | 2024-10-03 | 京东方科技集团股份有限公司 | Organic light-emitting diode and display apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2145354B1 (en) | High-performance tandem white oled | |
US20080032123A1 (en) | Dual electron-transporting layer for oled device | |
US7332860B2 (en) | Efficient white-light OLED display with filters | |
EP2220701B1 (en) | White oled with blue light-emitting layers | |
KR101225673B1 (en) | High-color-temperature tandem white oled | |
KR101595433B1 (en) | Tandem white oled with efficient electron transfer | |
EP2243176B1 (en) | Tandem oled device with intermediate connector | |
KR101457576B1 (en) | Stabilized White-Emitting OLED Device | |
US7821201B2 (en) | Tandem OLED device with intermediate connector | |
US20080176099A1 (en) | White oled device with improved functions | |
JP2007533157A (en) | OLED device with low driving voltage | |
EP2183799B1 (en) | High-performance broadband oled device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPINDLER, JEFFREY P.;HATWAR, TUKARAM K.;BEGLEY, WILLIAM J.;AND OTHERS;REEL/FRAME:018043/0284;SIGNING DATES FROM 20060719 TO 20060801 |
|
AS | Assignment |
Owner name: GLOBAL OLED TECHNOLOGY LLC,DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:024068/0468 Effective date: 20100304 Owner name: GLOBAL OLED TECHNOLOGY LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:024068/0468 Effective date: 20100304 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |