US20070255222A1 - Catheter assembly including internal bolster - Google Patents
Catheter assembly including internal bolster Download PDFInfo
- Publication number
- US20070255222A1 US20070255222A1 US11/389,801 US38980106A US2007255222A1 US 20070255222 A1 US20070255222 A1 US 20070255222A1 US 38980106 A US38980106 A US 38980106A US 2007255222 A1 US2007255222 A1 US 2007255222A1
- Authority
- US
- United States
- Prior art keywords
- catheter
- resilient members
- catheter assembly
- assembly
- resilient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/02—Holding devices, e.g. on the body
- A61M25/04—Holding devices, e.g. on the body in the body, e.g. expansible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J15/00—Feeding-tubes for therapeutic purposes
- A61J15/0015—Gastrostomy feeding-tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J15/00—Feeding-tubes for therapeutic purposes
- A61J15/0026—Parts, details or accessories for feeding-tubes
- A61J15/003—Means for fixing the tube inside the body, e.g. balloons, retaining means
- A61J15/0034—Retainers adjacent to a body opening to prevent that the tube slips through, e.g. bolsters
- A61J15/0038—Retainers adjacent to a body opening to prevent that the tube slips through, e.g. bolsters expandable, e.g. umbrella type
Definitions
- the present invention relates generally to medical catheters and relates more particularly to medical catheters of the type having an internal bolster disposed at one end of said medical catheter for retaining said end of said medical catheter within a patient.
- Certain patients are unable to take food and/or medications transorally due to an inability to swallow. Such an inability to swallow may be due to a variety of reasons, such as esophageal cancer, neurological impairment and the like.
- the intravenous administration of food and/or medications to such patients may be a viable short-term approach, it is not well-suited for the long-term. Accordingly, the most common approach to the long-term feeding of such patients involves gastrostomy, i.e., the creation of a feeding tract or stoma between the stomach and the upper abdominal wall.
- Feeding is then typically performed by administering food through a catheter or feeding tube that has been inserted into the feeding tract, with one end of the feeding tube extending into the stomach and being retained therein by an internal anchor or bolster and the other end of the feeding tube extending through the abdominal wall and terminating outside of the patient.
- direct percutaneous techniques involve (i) inserting an endoscope into the patient and, through transillumination, identifying a desired insertion site; (ii) using sutures or T-fasteners, placed one at a time, to secure the abdominal wall to the stomach wall in a plurality of locations surrounding the future insertion site; (iii) using a scalpel to make an incision at the insertion site; (iv) using a series of dilators to enlarge the insertion site opening until said opening is large enough to pass therethrough the internal bolster at the distal end of a gastrostomy tube; and (v) sliding an external bolster over the proximal end of the gastrostomy tube down to skin level over the T-fastener wires or sutures.
- a catheter assembly comprising (a) a catheter, said catheter having a first end and a second end; and (b) an internal bolster disposed at said first end of said catheter, said internal bolster comprising a plurality of resilient members collectively forming an anchor reversibly transformable between a radially expanded state and a radially condensed state.
- the catheter assembly includes a medical catheter preferably made of extruded silicone rubber.
- the catheter is shaped to include a cylindrical wall defining a primary longitudinal bore.
- a plurality of secondary longitudinal bores are provided in the cylindrical wall, the secondary bores being evenly spaced around the primary bore.
- the assembly also includes a plurality of identical resilient members collectively forming an anchor at a first end of the catheter.
- Each resilient member comprises a resilient wire and a protectivejacket.
- Each wire is preferably made of a shape-memory material and is reversibly transformable between a spiral shape that extends radially outwardly and towards the second end of the catheter, when at rest, and a straightened shape that extends away from the second end of the catheter, when forcibly unfurled.
- each wire is disposed within a secondary bore of the catheter, with the remainder of each wire extending out from the catheter.
- Each jacket is preferably made of silicone rubber and encapsulates all of the length of its wire, except for the small portion of the wire inserted into the bore.
- each resilient member is made by insert-molding the protective jacket over the entirety of the wire and then insert-molding the catheter around one end of each of the plurality of resilient members.
- a unitary insert shaped to include an annular base portion and a plurality of resilient wires extending from the annular base portion. Silicone rubber or a similarly suitable material is then insert-molded over the insert to cover the resilient wires and to define an associated catheter.
- the resilient members do not include an embedded wire, the catheter assembly instead being a unitary structure made entirely of silicone rubber or a similarly suitable material.
- a catheter assembly comprising (a) a catheter, said catheter having a first end and a second end; and (b) a plurality of resilient members disposed at said first end of said catheter, each of said resilient members being reversibly transformable between a spiral shape, when at rest, and a straightened shape, when forcibly unfurled.
- a kit for use in implanting a catheter assembly in a patient comprising (a) a catheter assembly, said catheter assembly comprising (i) a catheter, said catheter having a first end and a second end, and (ii) an internal bolster disposed at said first end of said catheter, said internal bolster comprising a plurality of resilient members, each of said resilient members being reversibly transformable between a spiral shape, when at rest, and a straightened shape, when forcibly unfurled, said spiral shape extending radially outwardly from said catheter and towards said second end of said catheter; and (b) a delivery device, said delivery device being a tubular member appropriately dimensioned to be inserted over said catheter assembly from said second end of said catheter and to unfurl said resilient members.
- FIGS. 1 ( a ) and 1 ( b ) are perspective and longitudinal section views, respectively, of a first embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state;
- FIG. 2 ( a ) through 2 ( e ) are fragmentary schematic views, partly in section, illustrating the manner in which the catheter assembly of FIGS. 1 ( a ) and 1 ( b ) may be implanted in a patient in accordance with the teachings of the present invention;
- FIGS. 3 ( a ) and 3 ( b ) are perspective and longitudinal section views, respectively, of a second embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state;
- FIGS. 4 ( a ) and 4 ( b ) are perspective and longitudinal section views, respectively, of a third embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state;
- FIG. 5 is a perspective view of the wire insert of the catheter assembly of FIGS. 4 ( a ) and 4 ( b );
- FIGS. 6 ( a ) and 6 ( b ) are perspective and longitudinal section views, respectively, of a fourth embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state;
- FIG. 7 is a side view of the catheter assembly of FIGS. 6 ( a ) and 6 ( b ), the internal bolster being shown in an unfurled state;
- FIG. 8 is a perspective view of a fifth embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state.
- Catheter assembly 11 includes a medical catheter 13 and an internal bolster 15 .
- Catheter 13 is an elongated, unitary, tubular structure preferably made of a flexible, biocompatible material, such as silicone rubber.
- Catheter 13 which is preferably made by extrusion, is shaped to include a cylindrical wall 17 terminating in a first end 19 and in a second end 21 , cylindrical wall 17 coaxially surrounding and defining a primary longitudinal bore 23 .
- primary longitudinal bore 23 is preferably used to convey fluids, such as food and/or medications, to a patient in need thereof.
- a plurality of secondary longitudinal bores 25 are provided in cylindrical wall 17 , bores 25 being evenly spaced around the periphery of primary longitudinal bore 23 .
- secondary longitudinal bores 25 are used in the mounting of internal bolster 15 to catheter 13 .
- a series of ruler markings are printed on catheter 13 and extend several inches from first end 19 in the direction of second end 21 to facilitate the cutting of catheter 13 to a desired length after catheter 13 has been implanted in a patient.
- Internal bolster 15 comprises a plurality of identical resilient members 27 disposed at first end 19 of catheter 13 , resilient members 27 collectively functioning as a reversibly transformable anchor.
- this anchor is in the form of an iris diaphragm; however, the anchor may take forms other than that of an iris diaphragm.
- Each resilient member 27 comprises a resilient wire 29 and a protective jacket 31 .
- Each wire 29 is made of a material that permits its reversible transformation between a spiral shape, when relaxed, and a straightened shape, when forcibly unfurled. Examples of the materials that may be used to make wire 29 include shape-memory materials, such as nitinol (a nickel/titanium alloy), and elastomeric materials.
- each member 27 is made by (i) inserting first end 33 of wire 29 into bore 25 , first end 33 fitting within bore 25 by an interference fit, (ii) straightening wire 29 , and (iii) insert-molding jacket 31 around the exposed portion of straightened wire 29 and to catheter 13 .
- resilient members 27 are not limited to assuming, when at rest, the particular spiral shape shown in FIGS. 1 ( a ) and 1 ( b ). Rather, resilient members 27 may instead form a looser curl, a tighter curl, a longer curl, a shorter curl, a fatter curl, a thinner curl, etc. In addition, there may be alternate geometries to spirals, such as balled or knotted members, that may have improved strength. Moreover, there may be various types of resilient members disposed around the catheter.
- catheter assembly 11 is herein shown as an initial placement PEG device being implanted in the stomach of a patient; however, it is to be understood that catheter assembly 11 may be either an initial placement device or a replacement device and may be implanted in the stomach of a patient or at other locations within a patient where the delivery and/or drainage of fluids is desirable.
- catheter assembly 11 may be either an initial placement device or a replacement device and may be implanted in the stomach of a patient or at other locations within a patient where the delivery and/or drainage of fluids is desirable.
- distal end D of endoscope E is inserted into the stomach of a patient, and an intense light source L disposed within endoscope E is used to transilluminate the stomach wall S and the abdominal wall A of the patient so as to indicate externally a desired incision site.
- an intense light source L disposed within endoscope E is used to transilluminate the stomach wall S and the abdominal wall A of the patient so as to indicate externally a desired incision site.
- a supply of gas is used to inflate the patient's stomach, thereby distending the stomach and facilitating the transillumination process.
- FIG. 2 ( b ) using a scalpel P, incisions are made in the abdominal wall A and in the stomach wall S of the patient at the desired incision site.
- assembly 11 (which is not shown in section) is loaded into a delivery device 51 , delivery device 51 being a tubular member whose inner diameter is appropriately dimensioned to receive assembly 11 and to unfurl members 27 to their respective straightened states.
- delivery device 51 preferably has a sharpened distal end 53 to facilitate its insertion through abdominal wall A and stomach wall S.
- FIG. 2 ( d ) the distal ends of delivery device 51 and assembly 11 are inserted through abdominal wall A and stomach wall S at the incision site.
- delivery device 51 in addition to being used to straighten members 27 , delivery device 51 also provides stiffening support to catheter 13 , which possesses limited inherent stiffness and, therefore, cannot easily be inserted by itself through the incision site.
- delivery device 51 is withdrawn from the patient in the direction indicated by arrow A.
- the removal of device 51 from members 27 permits members 27 to assume their relaxed, expanded states, thereby causing catheter 13 to be anchored within the stomach of the patient.
- the implanted device may then be endoscopically checked for proper placement, cut to a desired length, and secured to an external bolster, Y-port and/or clamp in the conventional manner. Food and/or medications may then be delivered to the patient through the central bore of catheter 13 .
- catheter assembly 11 When catheter assembly 11 is thus implanted in a patient, catheter assembly 11 is preferably able to withstand a pull force of about 14 pounds applied to second end 21 of catheter 13 , without permitting assembly 11 to be withdrawn from the patient.
- delivery device 51 may insert delivery device 51 over the implanted assembly 11 , thereby causing members 27 to be unfurled, and may then remove delivery device 51 and assembly 11 together from the patient.
- FIGS. 3 ( a ) and 3 ( b ) there are shown perspective and longitudinal section views, respectively, of a second embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state, said catheter assembly being represented generally by reference numeral 101 .
- Assembly 101 includes a catheter 103 and an internal bolster 105 .
- Catheter 103 is an elongated, unitary, tubular structure preferably made of a flexible, biocompatible material, such as silicone rubber.
- Catheter 103 is shaped to include a cylindrical wall 107 terminating in a first end 109 and in a second end 111 , cylindrical wall 107 coaxially surrounding and defining a longitudinal bore 113 adapted to convey fluids, such as food and/or medications, to a patient in need thereof.
- a series of ruler markings are printed on catheter 103 and extend several inches from first end 109 in the direction of second end 111 to facilitate the cutting of catheter 103 to a desired length after catheter 103 has been implanted in a patient.
- Internal bolster 105 comprises a plurality of identical resilient members 127 collectively forming a reversibly transformable anchor at first end 109 of catheter 103 .
- this anchor is in the form of an iris diaphragm; however, the anchor may take forms other than that of an iris diaphragm.
- Each resilient member 127 comprises a resilient wire 129 and a protective jacket 131 .
- Each wire 129 is made of a material that permits its reversible transformation between a spiral shape, when relaxed, and a straightened shape, when forcibly unfurled. Examples of the materials that may be used to make wire 129 include shape-memory materials, such as nitinol (a nickel/titanium alloy), and elastomeric materials.
- Each wire 129 has a first end 133 and a second end 135 .
- Each jacket 131 which is preferably made of silicone rubber or a similarly flexible, biocompatible material, encapsulates the entire length of its wire 129 .
- Each jacket 131 has a first end 137 and a second end 139 .
- assembly 101 is made by insert-molding jacket 131 around each wire 129 to form each member 127 and then insert-molding catheter 103 around the first end 137 of the six members 127 .
- resilient members 127 are not limited to assuming, when at rest, the particular spiral shape shown in FIGS. 3 ( a ) and 3 ( b ). Rather, resilient members 127 may instead form a looser curl, a tighter curl, a longer curl, a shorter curl, a fatter curl, a thinner curl, etc. In addition, there may be alternate geometries to spirals, such as balled or knotted members, that may have improved strength. Moreover, there may be various types of resilient members disposed around the catheter.
- Assembly 101 may be implanted, used and removed in the same fashion as described above for assembly 11 .
- FIGS. 4 ( a ) and 4 ( b ) there are shown perspective and longitudinal section views, respectively, of a third embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state, said catheter assembly being represented generally by reference numeral 201 .
- Assembly 201 includes a catheter 203 and an internal bolster 205 .
- Catheter 203 is an elongated, tubular structure made primarily of a flexible, biocompatible material, such as silicone rubber.
- Catheter 203 is shaped to include a cylindrical wall 207 terminating in a first end 209 and in a second end 211 .
- Cylindrical wall 207 coaxially surrounds and defines a longitudinal bore 213 adapted to convey fluids, such as food and/or medications, to a patient in need thereof.
- a series of ruler markings are printed on catheter 203 and extend several inches from first end 209 in the direction of second end 211 to facilitate the cutting of catheter 203 to a desired length after catheter 203 has been implanted in a patient.
- Internal bolster 205 comprises a pair of identical resilient members 227 collectively forming a reversibly transformable anchor at first end 209 of catheter 203 .
- this anchor is in the form of an iris diaphragm; however, the anchor may take forms other than that of an iris diaphragm.
- Each resilient member 227 comprises a resilient wire 229 and a protectivejacket 231 .
- Each wire 229 is made of a material that permits its reversible transformation between a spiral shape, when relaxed, and a straightened shape, when forcibly unfurled.
- Each wire 229 has a first end 233 and a second end 235 .
- the second ends 235 of the two wires 229 are joined to a common annular base 236 to form a unitary insert 241 , base 236 being embedded within cylindrical wall 207 of catheter 203 proximate to first end 209 .
- Insert 241 is shown separately in FIG. 5 .
- Each jacket 231 which is preferably made of silicone rubber or a similarly flexible, biocompatible material, encapsulates the entire length of its wire 229 .
- assembly 201 is made by injection molding insert 241 and then insert-molding silicone rubber or the like over insert 241 .
- assembly 201 includes two resilient members 227
- assembly 201 could be modified to include more than two resilient members 227 .
- resilient members 227 are not limited to assuming, when at rest, the particular spiral shape shown in FIGS. 4 ( a ) and 4 ( b ). Rather, resilient members 227 may instead form a looser curl, a tighter curl, a longer curl, a shorter curl, a fatter curl, a thinner curl, etc.
- Assembly 201 may be implanted, used and removed in the same fashion as described above for assembly 11 .
- FIGS. 6 ( a ) and 6 ( b ) there are shown perspective and longitudinal section views, respectively, of a fourth embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state, said catheter assembly being represented generally by reference numeral 301 .
- Catheter assembly 301 comprises a medical catheter 303 and an internal bolster 305 .
- Medical catheter 303 is an elongated, tubular structure preferably made of a flexible, biocompatible material, such as silicone rubber.
- Catheter 303 is shaped to include a cylindrical wall 307 terminating in a first end 309 and in a second end 311 , cylindrical wall 307 coaxially surrounding and defining a longitudinal bore 313 adapted to convey fluids, such as food and/or medications, to a patient in need thereof.
- a series of ruler markings are printed on catheter 303 and extend several inches from first end 309 in the direction of second end 311 to facilitate the cutting of catheter 303 to a desired length after catheter 303 has been implanted in a patient.
- Internal bolster 305 comprises a pair of identical resilient members 327 collectively forming a reversibly transformable anchor at first end 309 of catheter 303 .
- this anchor is in the form of an iris diaphragm; however, the anchor may take forms other than that of an iris diaphragm.
- Each resilient member 327 is reversibly transformable between a spiral shape, when relaxed, and a straightened shape, when forcibly unfurled.
- assembly 301 differs notably from assemblies 11 , 101 and 201 in that members 327 are oriented relative to catheter 303 so that (i) when each member 327 is in a relaxed state, said member 327 spirals radially outwardly relative to catheter 303 and in a direction away from second end 311 of catheter 303 and (ii) when each member 327 is in an unfurled state, said member 327 extends parallel to the longitudinal axis of catheter 303 , with its free end 328 extending in the direction from first end 309 to second end 311 .
- Assembly 301 additionally differs from assemblies 11 , 101 and 201 in that resilient members 327 do not include an embedded wire. Instead, assembly 301 is preferably a unitary structure made entirely of injection molded silicone rubber, said silicone rubber being of sufficient strength for members 327 to retain catheter 303 in a patient.
- resilient members 327 are not limited to assuming, when at rest, the particular spiral shape shown in FIGS. 6 ( a ) and 6 ( b ). Rather, resilient members 327 may instead form a looser curl, a tighter curl, a longer curl, a shorter curl, a fatter curl, a thinner curl, etc. In addition, there may be alternate geometries to spirals, such as balled or knotted members, that may have improved strength. Moreover, there may be various types of resilient members disposed around the catheter.
- Assembly 301 may be implanted in a patient in much the same way as assemblies 11 , 101 and 201 , the principal difference being that assembly 301 does not require the use of an extraneous delivery device to straighten resilient members 327 during implantation. This is because, due to the direction in which resilient members 327 are coiled, one may simply hold members 327 in an unfurled state against the length of catheter 303 with one's hand while inserting first end 309 of catheter 303 into the patient. Once the free ends of resilient members 327 have entered the patient and are released by the medical professional, they will return to their expanded state on their own.
- FIG. 8 there is shown a perspective view of a fifth embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state, said catheter assembly being represented generally by reference numeral 401 .
- Catheter assembly 401 is similar in many respects to catheter assembly 11 , the principal difference between the two assemblies being that catheter assembly 401 includes resilient members 403 , instead of resilient members 27 .
- Resilient members 403 differ principally from resilient members 27 in that resilient members 403 , when at rest, assume a coiled shape that is substantially non-planar or three-dimensional (i.e., the coils extends laterally relative to the length of the resilient member) whereas resilient members 27 , when at rest, assume a spiral shape that is substantially planar or two-dimensional. It should be understood that, although the present embodiment includes two resilient members 403 , there could be more than two members 403 .
- resilient members 403 instead of using resilient members 403 , one could use other types of resilient members that have three-dimensional shapes to increase the extent of engagement between the resilient members and the patient, examples of such resilient members including spiral-type resilient members that bend laterally or that twist away from the perpendicular.
- Assembly 401 may be implanted, used and removed in the same fashion as described above for assembly 11 .
- the resilient members are disposed within the catheter during deployment and, thereafter, are pushed out or pulled out of the catheter to assume their expanded state.
- the curling may be effected or locked by means of a filament or the like. Such locking may involve the distal end of the resilient member locking into itself or the catheter.
- the distal end of the catheter is made to include a plurality of resilient members covered with a sheath.
- the resilient members become uncovered and are allowed to assume their relaxed, curled state.
- the size of the curled resilient members increases.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A catheter assembly including an internal bolster. According to one embodiment, the catheter assembly includes a medical catheter preferably made of extruded silicone rubber. The catheter is shaped to include a cylindrical wall defining a primary longitudinal bore. A plurality of secondary longitudinal bores are provided in the cylindrical wall, the secondary bores being evenly spaced around the primary bore. The assembly also includes a plurality of identical resilient members collectively forming an anchor at a first end of the catheter. Each resilient member comprises a resilient wire and a protective jacket. Each wire is made of a shape-memory material and is reversibly transformable between a spiral shape, when at rest, and a straightened shape, when forcibly unfurled. One end of each wire is disposed within a secondary bore of the catheter, with the remainder of each wire extending out from the catheter. Each jacket is preferably made of silicone rubber and encapsulates all of the length of its wire, except for the small portion of the wire inserted into the bore.
Description
- The present invention relates generally to medical catheters and relates more particularly to medical catheters of the type having an internal bolster disposed at one end of said medical catheter for retaining said end of said medical catheter within a patient.
- Certain patients are unable to take food and/or medications transorally due to an inability to swallow. Such an inability to swallow may be due to a variety of reasons, such as esophageal cancer, neurological impairment and the like. Although the intravenous administration of food and/or medications to such patients may be a viable short-term approach, it is not well-suited for the long-term. Accordingly, the most common approach to the long-term feeding of such patients involves gastrostomy, i.e., the creation of a feeding tract or stoma between the stomach and the upper abdominal wall. (A less common approach involves jejunostomy, i.e., the creating of a feeding tract or stoma leading into the patient's jejunum.) Feeding is then typically performed by administering food through a catheter or feeding tube that has been inserted into the feeding tract, with one end of the feeding tube extending into the stomach and being retained therein by an internal anchor or bolster and the other end of the feeding tube extending through the abdominal wall and terminating outside of the patient.
- Although gastrostomies were first performed surgically, most gastrostomies are now performed using percutaneous endoscopy and result in the implantation in the patient of a feeding tube/internal bolster assembly (said feeding tube/internal bolster assembly also commonly referred to as a percutaneous endoscopic gastrostomy (PEG) device). Two of the more common percutaneous endoscopic techniques for implanting a PEG device in a patient are “the push method” (also known as “the Sacks-Vine method”) and “the pull method” (also known as “the Gauderer-Ponsky method”). Information regarding the foregoing two methods may be found in the following patents, all of which are incorporated herein by reference: U.S. Pat. No. 5,391,159, inventors Hirsch et al., which issued Feb. 21, 1995; U.S. Pat. No. 5,167,627, inventors Clegg et al., which issued Dec. 1, 1992; U.S. Pat. No. 5,112,310, inventor Grobe, which issued May 12, 1992; U.S. Pat. No. 4,900,306, inventors Quinn et al., which issued Feb. 13, 1990; and U.S. Pat. No. 4,861,334, inventor Nawaz, which issued Aug. 29, 1989.
- In addition to the above-described endoscopic techniques for implanting PEG devices, there also exist direct percutaneous techniques. Typically, such direct percutaneous techniques involve (i) inserting an endoscope into the patient and, through transillumination, identifying a desired insertion site; (ii) using sutures or T-fasteners, placed one at a time, to secure the abdominal wall to the stomach wall in a plurality of locations surrounding the future insertion site; (iii) using a scalpel to make an incision at the insertion site; (iv) using a series of dilators to enlarge the insertion site opening until said opening is large enough to pass therethrough the internal bolster at the distal end of a gastrostomy tube; and (v) sliding an external bolster over the proximal end of the gastrostomy tube down to skin level over the T-fastener wires or sutures.
- Other direct percutaneous techniques are disclosed in the following patents and published patent applications, all of which are incorporated herein by reference: U.S. Pat. No. 6,030,364, inventors Durgin et al., which issued Feb. 29, 2000; U.S. Pat. No. 6,402,722, inventors Snow et al., which issued Jun. 11, 2002; and U.S. Published Patent Application No. US-2004-0059293-A1, which was published Mar. 25, 2004.
- It is an object of the present invention to provide a novel catheter assembly.
- Therefore, according to one aspect of the present invention, there is provided a catheter assembly comprising (a) a catheter, said catheter having a first end and a second end; and (b) an internal bolster disposed at said first end of said catheter, said internal bolster comprising a plurality of resilient members collectively forming an anchor reversibly transformable between a radially expanded state and a radially condensed state.
- According to one embodiment, the catheter assembly includes a medical catheter preferably made of extruded silicone rubber. The catheter is shaped to include a cylindrical wall defining a primary longitudinal bore. A plurality of secondary longitudinal bores are provided in the cylindrical wall, the secondary bores being evenly spaced around the primary bore. The assembly also includes a plurality of identical resilient members collectively forming an anchor at a first end of the catheter. Each resilient member comprises a resilient wire and a protectivejacket. Each wire is preferably made of a shape-memory material and is reversibly transformable between a spiral shape that extends radially outwardly and towards the second end of the catheter, when at rest, and a straightened shape that extends away from the second end of the catheter, when forcibly unfurled. One end of each wire is disposed within a secondary bore of the catheter, with the remainder of each wire extending out from the catheter. Each jacket is preferably made of silicone rubber and encapsulates all of the length of its wire, except for the small portion of the wire inserted into the bore.
- According to another embodiment, each resilient member is made by insert-molding the protective jacket over the entirety of the wire and then insert-molding the catheter around one end of each of the plurality of resilient members.
- According to still another embodiment, there is provided a unitary insert shaped to include an annular base portion and a plurality of resilient wires extending from the annular base portion. Silicone rubber or a similarly suitable material is then insert-molded over the insert to cover the resilient wires and to define an associated catheter.
- According to yet another embodiment, the resilient members do not include an embedded wire, the catheter assembly instead being a unitary structure made entirely of silicone rubber or a similarly suitable material.
- According to another aspect of the invention, there is provided a catheter assembly comprising (a) a catheter, said catheter having a first end and a second end; and (b) a plurality of resilient members disposed at said first end of said catheter, each of said resilient members being reversibly transformable between a spiral shape, when at rest, and a straightened shape, when forcibly unfurled.
- According to yet another aspect of the invention, there is provided a kit for use in implanting a catheter assembly in a patient, said kit comprising (a) a catheter assembly, said catheter assembly comprising (i) a catheter, said catheter having a first end and a second end, and (ii) an internal bolster disposed at said first end of said catheter, said internal bolster comprising a plurality of resilient members, each of said resilient members being reversibly transformable between a spiral shape, when at rest, and a straightened shape, when forcibly unfurled, said spiral shape extending radially outwardly from said catheter and towards said second end of said catheter; and (b) a delivery device, said delivery device being a tubular member appropriately dimensioned to be inserted over said catheter assembly from said second end of said catheter and to unfurl said resilient members.
- For purposes of the present specification and claims, various relational terms like “top,” “bottom,” “proximal” and “distal” are used to describe the present invention when said invention is positioned in or viewed from a given orientation. It is to be understood that, by altering the orientation of the invention, certain relational terms may need to be adjusted accordingly.
- Additional objects, as well as features and advantages, of the present invention will be set forth in part in the description which follows, and in part will be obvious from the description or may be learned by practice of the invention. In the description, reference is made to the accompanying drawings which form a part thereof and in which is shown by way of illustration certain embodiments for practicing the invention. The embodiments will be described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is best defined by the appended claims.
- The accompanying drawings, which are hereby incorporated into and constitute a part of this specification, illustrate various embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings wherein like reference numerals represent like parts:
- FIGS. 1(a) and 1(b) are perspective and longitudinal section views, respectively, of a first embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state;
-
FIG. 2 (a) through 2(e) are fragmentary schematic views, partly in section, illustrating the manner in which the catheter assembly of FIGS. 1(a) and 1(b) may be implanted in a patient in accordance with the teachings of the present invention; - FIGS. 3(a) and 3(b) are perspective and longitudinal section views, respectively, of a second embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state;
- FIGS. 4(a) and 4(b) are perspective and longitudinal section views, respectively, of a third embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state;
-
FIG. 5 is a perspective view of the wire insert of the catheter assembly of FIGS. 4(a) and 4(b); - FIGS. 6(a) and 6(b) are perspective and longitudinal section views, respectively, of a fourth embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state;
-
FIG. 7 is a side view of the catheter assembly of FIGS. 6(a) and 6(b), the internal bolster being shown in an unfurled state; and -
FIG. 8 is a perspective view of a fifth embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state. - Referring now to FIGS. 1(a) and 1(b), there are shown perspective and longitudinal section views, respectively, of a first embodiment of a catheter assembly constructed according to the teachings of the present invention, said catheter assembly being shown with its internal bolster in an expanded state, said catheter assembly being represented generally by
reference numeral 11. -
Catheter assembly 11 includes amedical catheter 13 and aninternal bolster 15. -
Catheter 13 is an elongated, unitary, tubular structure preferably made of a flexible, biocompatible material, such as silicone rubber.Catheter 13, which is preferably made by extrusion, is shaped to include acylindrical wall 17 terminating in afirst end 19 and in asecond end 21,cylindrical wall 17 coaxially surrounding and defining a primarylongitudinal bore 23. As will be discussed further below, primarylongitudinal bore 23 is preferably used to convey fluids, such as food and/or medications, to a patient in need thereof. A plurality of secondarylongitudinal bores 25 are provided incylindrical wall 17,bores 25 being evenly spaced around the periphery of primarylongitudinal bore 23. As will be discussed further below, secondarylongitudinal bores 25 are used in the mounting ofinternal bolster 15 tocatheter 13. A series of ruler markings (not shown) are printed oncatheter 13 and extend several inches fromfirst end 19 in the direction ofsecond end 21 to facilitate the cutting ofcatheter 13 to a desired length aftercatheter 13 has been implanted in a patient. - Internal bolster 15 comprises a plurality of identical
resilient members 27 disposed atfirst end 19 ofcatheter 13,resilient members 27 collectively functioning as a reversibly transformable anchor. In the present embodiment, this anchor is in the form of an iris diaphragm; however, the anchor may take forms other than that of an iris diaphragm. Eachresilient member 27 comprises aresilient wire 29 and aprotective jacket 31. Eachwire 29 is made of a material that permits its reversible transformation between a spiral shape, when relaxed, and a straightened shape, when forcibly unfurled. Examples of the materials that may be used to makewire 29 include shape-memory materials, such as nitinol (a nickel/titanium alloy), and elastomeric materials. Eachwire 29 has afirst end 33 and asecond end 35. Thefirst end 33 of eachwire 29 is disposed within acorresponding bore 25 ofcatheter 13, with the remainder of eachwire 29 extending out fromfirst end 19 ofcatheter 13. Eachjacket 31, which is preferably made of silicone rubber or a similarly flexible, biocompatible material, encapsulates most of the length ofwire 29, except for the small portion ofwire 29 inserted intobore 25. Eachjacket 31 has afirst end 37 and asecond end 39. First end 37 ofjacket 31 is in contact withfirst end 19 ofcatheter 13, andsecond end 39 ofjacket 31 extends for a distance beyondsecond end 35 ofwire 29 so that no part ofwire 29 is exposed to the patient. Preferably, eachmember 27 is made by (i) insertingfirst end 33 ofwire 29 intobore 25,first end 33 fitting withinbore 25 by an interference fit, (ii) straighteningwire 29, and (iii) insert-molding jacket 31 around the exposed portion of straightenedwire 29 and tocatheter 13. - As can be seen,
members 27 are oriented relative tocatheter 13 so that (i) when eachmember 27 is in a relaxed state, saidmember 27 spirals radially outwardly relative tocatheter 13 and in the direction ofsecond end 21 ofcatheter 13 and (ii) when eachmember 27 is in an unfurled state, saidmember 27 extends parallel to the longitudinal axis ofcatheter 13, with its free end extending away fromfirst end 19 ofcatheter 13 in the direction opposite tosecond end 21. - It should be understood that, although the present embodiment includes six
resilient members 27 spaced aroundfirst end 19 ofcatheter 13, there could be as few as tworesilient members 27 spaced aroundfirst end 19 ofcatheter 13 or more than sixresilient members 27 spaced aroundfirst end 19 ofcatheter 13. In addition, it should be understood thatresilient members 27 are not limited to assuming, when at rest, the particular spiral shape shown in FIGS. 1(a) and 1(b). Rather,resilient members 27 may instead form a looser curl, a tighter curl, a longer curl, a shorter curl, a fatter curl, a thinner curl, etc. In addition, there may be alternate geometries to spirals, such as balled or knotted members, that may have improved strength. Moreover, there may be various types of resilient members disposed around the catheter. - Referring now to FIGS. 2(a) through 2(e), there is schematically shown the manner in which
catheter assembly 11 may be implanted in a patient. (For illustrative purposes,catheter assembly 11 is herein shown as an initial placement PEG device being implanted in the stomach of a patient; however, it is to be understood thatcatheter assembly 11 may be either an initial placement device or a replacement device and may be implanted in the stomach of a patient or at other locations within a patient where the delivery and/or drainage of fluids is desirable.) First, referring toFIG. 2 (a), distal end D of endoscope E is inserted into the stomach of a patient, and an intense light source L disposed within endoscope E is used to transilluminate the stomach wall S and the abdominal wall A of the patient so as to indicate externally a desired incision site. Preferably, while the aforementioned transillumination process is conducted, a supply of gas is used to inflate the patient's stomach, thereby distending the stomach and facilitating the transillumination process. - Next, as seen in
FIG. 2 (b), using a scalpel P, incisions are made in the abdominal wall A and in the stomach wall S of the patient at the desired incision site. Next, as seen inFIG. 2 (c), assembly 11 (which is not shown in section) is loaded into adelivery device 51,delivery device 51 being a tubular member whose inner diameter is appropriately dimensioned to receiveassembly 11 and to unfurlmembers 27 to their respective straightened states. As shown in the present embodiment,delivery device 51 preferably has a sharpeneddistal end 53 to facilitate its insertion through abdominal wall A and stomach wall S. Next, as seen inFIG. 2 (d), the distal ends ofdelivery device 51 andassembly 11 are inserted through abdominal wall A and stomach wall S at the incision site. It should be noted that, in addition to being used to straightenmembers 27,delivery device 51 also provides stiffening support tocatheter 13, which possesses limited inherent stiffness and, therefore, cannot easily be inserted by itself through the incision site. Next, as seen inFIG. 2 (e), while keepingassembly 11 stationary,delivery device 51 is withdrawn from the patient in the direction indicated by arrow A. The removal ofdevice 51 frommembers 27permits members 27 to assume their relaxed, expanded states, thereby causingcatheter 13 to be anchored within the stomach of the patient. The implanted device may then be endoscopically checked for proper placement, cut to a desired length, and secured to an external bolster, Y-port and/or clamp in the conventional manner. Food and/or medications may then be delivered to the patient through the central bore ofcatheter 13. - When
catheter assembly 11 is thus implanted in a patient,catheter assembly 11 is preferably able to withstand a pull force of about 14 pounds applied tosecond end 21 ofcatheter 13, without permittingassembly 11 to be withdrawn from the patient. - To safely remove
assembly 11 from a patient, one may insertdelivery device 51 over the implantedassembly 11, thereby causingmembers 27 to be unfurled, and may then removedelivery device 51 andassembly 11 together from the patient. - Referring now to FIGS. 3(a) and 3(b), there are shown perspective and longitudinal section views, respectively, of a second embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state, said catheter assembly being represented generally by
reference numeral 101. -
Assembly 101 includes acatheter 103 and an internal bolster 105.Catheter 103 is an elongated, unitary, tubular structure preferably made of a flexible, biocompatible material, such as silicone rubber.Catheter 103 is shaped to include acylindrical wall 107 terminating in afirst end 109 and in asecond end 111,cylindrical wall 107 coaxially surrounding and defining alongitudinal bore 113 adapted to convey fluids, such as food and/or medications, to a patient in need thereof. A series of ruler markings (not shown) are printed oncatheter 103 and extend several inches fromfirst end 109 in the direction ofsecond end 111 to facilitate the cutting ofcatheter 103 to a desired length aftercatheter 103 has been implanted in a patient. - Internal bolster 105 comprises a plurality of identical
resilient members 127 collectively forming a reversibly transformable anchor atfirst end 109 ofcatheter 103. In the present embodiment, this anchor is in the form of an iris diaphragm; however, the anchor may take forms other than that of an iris diaphragm. Eachresilient member 127 comprises aresilient wire 129 and aprotective jacket 131. Eachwire 129 is made of a material that permits its reversible transformation between a spiral shape, when relaxed, and a straightened shape, when forcibly unfurled. Examples of the materials that may be used to makewire 129 include shape-memory materials, such as nitinol (a nickel/titanium alloy), and elastomeric materials. Eachwire 129 has afirst end 133 and asecond end 135. Eachjacket 131, which is preferably made of silicone rubber or a similarly flexible, biocompatible material, encapsulates the entire length of itswire 129. Eachjacket 131 has afirst end 137 and asecond end 139. - Preferably,
assembly 101 is made by insert-molding jacket 131 around eachwire 129 to form eachmember 127 and then insert-molding catheter 103 around thefirst end 137 of the sixmembers 127. - It should be understood that, although the present embodiment includes six
resilient members 127 spaced aroundfirst end 109 ofcatheter 103, there could be as few as tworesilient members 127 spaced aroundfirst end 109 ofcatheter 103 or more than sixresilient members 127 spaced aroundfirst end 109 ofcatheter 103. In addition, it should be understood thatresilient members 127 are not limited to assuming, when at rest, the particular spiral shape shown in FIGS. 3(a) and 3(b). Rather,resilient members 127 may instead form a looser curl, a tighter curl, a longer curl, a shorter curl, a fatter curl, a thinner curl, etc. In addition, there may be alternate geometries to spirals, such as balled or knotted members, that may have improved strength. Moreover, there may be various types of resilient members disposed around the catheter. -
Assembly 101 may be implanted, used and removed in the same fashion as described above forassembly 11. - It should be understood that, instead of insert-
molding catheter 103 around thefirst end 137 of the sixmembers 127, one could simply bond the sixmembers 127 to an end of a suitable medical catheter. - Referring now to FIGS. 4(a) and 4(b), there are shown perspective and longitudinal section views, respectively, of a third embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state, said catheter assembly being represented generally by
reference numeral 201. -
Assembly 201 includes acatheter 203 and an internal bolster 205.Catheter 203 is an elongated, tubular structure made primarily of a flexible, biocompatible material, such as silicone rubber.Catheter 203 is shaped to include acylindrical wall 207 terminating in afirst end 209 and in asecond end 211.Cylindrical wall 207 coaxially surrounds and defines alongitudinal bore 213 adapted to convey fluids, such as food and/or medications, to a patient in need thereof. A series of ruler markings (not shown) are printed oncatheter 203 and extend several inches fromfirst end 209 in the direction ofsecond end 211 to facilitate the cutting ofcatheter 203 to a desired length aftercatheter 203 has been implanted in a patient. - Internal bolster 205 comprises a pair of identical
resilient members 227 collectively forming a reversibly transformable anchor atfirst end 209 ofcatheter 203. In the present embodiment, this anchor is in the form of an iris diaphragm; however, the anchor may take forms other than that of an iris diaphragm. Eachresilient member 227 comprises aresilient wire 229 and aprotectivejacket 231. Eachwire 229 is made of a material that permits its reversible transformation between a spiral shape, when relaxed, and a straightened shape, when forcibly unfurled. Eachwire 229 has afirst end 233 and asecond end 235. The second ends 235 of the twowires 229 are joined to a commonannular base 236 to form aunitary insert 241,base 236 being embedded withincylindrical wall 207 ofcatheter 203 proximate tofirst end 209. (Insert 241 is shown separately inFIG. 5 .) Eachjacket 231, which is preferably made of silicone rubber or a similarly flexible, biocompatible material, encapsulates the entire length of itswire 229. - Preferably,
assembly 201 is made byinjection molding insert 241 and then insert-molding silicone rubber or the like overinsert 241. - It should be understood that, although
assembly 201 includes tworesilient members 227,assembly 201 could be modified to include more than tworesilient members 227. In addition, it should be understood thatresilient members 227 are not limited to assuming, when at rest, the particular spiral shape shown in FIGS. 4(a) and 4(b). Rather,resilient members 227 may instead form a looser curl, a tighter curl, a longer curl, a shorter curl, a fatter curl, a thinner curl, etc. In addition, there may be alternate geometries to spirals, such as balled or knotted members, that may have improved strength. Moreover, there may be various types of resilient members disposed around the catheter. -
Assembly 201 may be implanted, used and removed in the same fashion as described above forassembly 11. - Referring now to FIGS. 6(a) and 6(b), there are shown perspective and longitudinal section views, respectively, of a fourth embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state, said catheter assembly being represented generally by
reference numeral 301. -
Catheter assembly 301 comprises amedical catheter 303 and an internal bolster 305.Medical catheter 303 is an elongated, tubular structure preferably made of a flexible, biocompatible material, such as silicone rubber.Catheter 303 is shaped to include acylindrical wall 307 terminating in afirst end 309 and in asecond end 311,cylindrical wall 307 coaxially surrounding and defining alongitudinal bore 313 adapted to convey fluids, such as food and/or medications, to a patient in need thereof. A series of ruler markings (not shown) are printed oncatheter 303 and extend several inches fromfirst end 309 in the direction ofsecond end 311 to facilitate the cutting ofcatheter 303 to a desired length aftercatheter 303 has been implanted in a patient. - Internal bolster 305 comprises a pair of identical
resilient members 327 collectively forming a reversibly transformable anchor atfirst end 309 ofcatheter 303. In the present embodiment, this anchor is in the form of an iris diaphragm; however, the anchor may take forms other than that of an iris diaphragm. Eachresilient member 327 is reversibly transformable between a spiral shape, when relaxed, and a straightened shape, when forcibly unfurled. As can be seen,assembly 301 differs notably fromassemblies members 327 are oriented relative tocatheter 303 so that (i) when eachmember 327 is in a relaxed state, saidmember 327 spirals radially outwardly relative tocatheter 303 and in a direction away fromsecond end 311 ofcatheter 303 and (ii) when eachmember 327 is in an unfurled state, saidmember 327 extends parallel to the longitudinal axis ofcatheter 303, with itsfree end 328 extending in the direction fromfirst end 309 tosecond end 311. -
Assembly 301 additionally differs fromassemblies resilient members 327 do not include an embedded wire. Instead,assembly 301 is preferably a unitary structure made entirely of injection molded silicone rubber, said silicone rubber being of sufficient strength formembers 327 to retaincatheter 303 in a patient. - It should be understood that, although the present embodiment includes two
resilient members 327 spaced aroundfirst end 309 ofcatheter 303, there could be more than tworesilient members 327 spaced aroundfirst end 309 ofcatheter 303. In addition, it should be understood thatresilient members 327 are not limited to assuming, when at rest, the particular spiral shape shown in FIGS. 6(a) and 6(b). Rather,resilient members 327 may instead form a looser curl, a tighter curl, a longer curl, a shorter curl, a fatter curl, a thinner curl, etc. In addition, there may be alternate geometries to spirals, such as balled or knotted members, that may have improved strength. Moreover, there may be various types of resilient members disposed around the catheter. -
Assembly 301 may be implanted in a patient in much the same way asassemblies assembly 301 does not require the use of an extraneous delivery device to straightenresilient members 327 during implantation. This is because, due to the direction in whichresilient members 327 are coiled, one may simply holdmembers 327 in an unfurled state against the length ofcatheter 303 with one's hand while insertingfirst end 309 ofcatheter 303 into the patient. Once the free ends ofresilient members 327 have entered the patient and are released by the medical professional, they will return to their expanded state on their own. - To remove assembly 301 from a patient, one simply pulls on the external portion of
catheter 303 untilresilient members 327 unfurl. - It should be understood that, if desired, one could insert a wire into each of the
resilient members 327 ofassembly 301. - Referring now to
FIG. 8 , there is shown a perspective view of a fifth embodiment of a catheter assembly constructed according to the teachings of the present invention, the internal bolster of the catheter assembly being shown in an expanded state, said catheter assembly being represented generally byreference numeral 401. -
Catheter assembly 401 is similar in many respects tocatheter assembly 11, the principal difference between the two assemblies being thatcatheter assembly 401 includesresilient members 403, instead ofresilient members 27.Resilient members 403 differ principally fromresilient members 27 in thatresilient members 403, when at rest, assume a coiled shape that is substantially non-planar or three-dimensional (i.e., the coils extends laterally relative to the length of the resilient member) whereasresilient members 27, when at rest, assume a spiral shape that is substantially planar or two-dimensional. It should be understood that, although the present embodiment includes tworesilient members 403, there could be more than twomembers 403. Also, instead of usingresilient members 403, one could use other types of resilient members that have three-dimensional shapes to increase the extent of engagement between the resilient members and the patient, examples of such resilient members including spiral-type resilient members that bend laterally or that twist away from the perpendicular. -
Assembly 401 may be implanted, used and removed in the same fashion as described above forassembly 11. - In another embodiment (not shown), the resilient members are disposed within the catheter during deployment and, thereafter, are pushed out or pulled out of the catheter to assume their expanded state.
- In still another embodiment (not shown), instead of or in addition to the automatic curling of the members forming the anchor, the curling may be effected or locked by means of a filament or the like. Such locking may involve the distal end of the resilient member locking into itself or the catheter.
- In still yet another embodiment (not shown), the distal end of the catheter is made to include a plurality of resilient members covered with a sheath. As the sheath is moved proximally relative to the resilient members, the resilient members become uncovered and are allowed to assume their relaxed, curled state. As more of the length of the resilient members is exposed by continued withdrawal of the sheath, the size of the curled resilient members increases.
- The embodiments of the present invention described above are intended to be merely exemplary and those skilled in the art shall be able to make numerous variations and modifications to it without departing from the spirit of the present invention. All such variations and modifications are intended to be within the scope of the present invention as defined in the appended claims.
Claims (18)
1. A catheter assembly comprising:
(a) a catheter, the catheter having a first end and a second end; and
(b) an internal bolster disposed at the first end of the catheter, the internal bolster comprising a plurality of resilient members collectively forming an anchor reversibly transformable between a radially expanded state and a radially condensed state.
2. The catheter assembly as claimed in claim 1 wherein each of the resilient members is reversibly transformable between a spiral shape, when at rest, and a straightened shape, when forcibly unfurled.
3. The catheter assembly as claimed in claim 2 wherein the spiral shape extends radially outwardly from the catheter and towards the second end of the catheter.
4. The catheter assembly as claimed in claim 2 wherein the spiral shape extends radially outwardly from the catheter and away from the second end of the catheter.
5. The catheter assembly as claimed in claim 1 wherein each of the resilient members comprises a resilient wire and a protective jacket, the protective jacket covering at least a portion of the resilient wire.
6. The catheter assembly as claimed in claim 5 wherein each of the resilient wires is coupled to a common base embedded in the catheter.
7. The catheter assembly as claimed in claim 1 wherein the internal bolster comprises exactly two resilient members.
8. The catheter assembly as claimed in claim 1 wherein the internal bolster comprises more than two resilient members.
9. The catheter assembly as claimed in claim 8 wherein the internal bolster comprises exactly six resilient members.
10. The catheter assembly as claimed in claim 1 wherein the catheter and the resilient members form a unitary structure made entirely of silicone rubber.
11. A catheter assembly comprising:
(a) a catheter, the catheter having a first end and a second end; and
(b) a plurality of resilient members disposed at the first end of the catheter, each of the resilient members being reversibly transformable between a spiral shape, when at rest, and a straightened shape, when forcibly unfurled.
12. The catheter assembly as claimed in claim 11 wherein the spiral shape extends radially outwardly from the catheter and towards the second end of the catheter.
13. The catheter assembly as claimed in claim 11 wherein the spiral shape extends radially outwardly from the catheter and away from the second end of the catheter.
14. The catheter assembly as claimed in claim 11 wherein each of the resilient members comprises a resilient wire and a protective jacket, the protective jacket covering at least a portion of the resilient wire.
15. The catheter assembly as claimed in claim 11 wherein there are exactly two resilient members.
16. The catheter assembly as claimed in claim 11 wherein there are exactly six resilient members.
17. A kit for use in implanting a catheter assembly in a patient, the kit comprising:
(a) a catheter assembly, the catheter assembly comprising
(i) a catheter, the catheter having a first end and a second end, and
(ii) an internal bolster disposed at the first end of the catheter, the internal bolster comprising a plurality of resilient members, each of the resilient members being reversibly transformable between a spiral shape, when at rest, and a straightened shape, when forcibly unfurled, the spiral shape extending radially outwardly from the catheter and towards the second end of the catheter; and
(b) a delivery device, the delivery device being a tubular member appropriately dimensioned to be inserted over the catheter assembly from the second end of the catheter and to unfurl the resilient members.
18. The kit as claimed in claim 17 wherein the delivery device has a sharpened distal end.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/389,801 US20070255222A1 (en) | 2006-03-27 | 2006-03-27 | Catheter assembly including internal bolster |
PCT/US2007/007469 WO2007123630A1 (en) | 2006-03-27 | 2007-03-26 | Catheter assembly including anchor device made from resilient members |
US12/974,363 US8192419B2 (en) | 2006-03-27 | 2010-12-21 | Catheter assembly including internal bolster |
US13/466,276 US20120283643A1 (en) | 2006-03-27 | 2012-05-08 | Catheter assembly including internal bolster |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/389,801 US20070255222A1 (en) | 2006-03-27 | 2006-03-27 | Catheter assembly including internal bolster |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/974,363 Division US8192419B2 (en) | 2006-03-27 | 2010-12-21 | Catheter assembly including internal bolster |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070255222A1 true US20070255222A1 (en) | 2007-11-01 |
Family
ID=38335752
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/389,801 Abandoned US20070255222A1 (en) | 2006-03-27 | 2006-03-27 | Catheter assembly including internal bolster |
US12/974,363 Expired - Fee Related US8192419B2 (en) | 2006-03-27 | 2010-12-21 | Catheter assembly including internal bolster |
US13/466,276 Abandoned US20120283643A1 (en) | 2006-03-27 | 2012-05-08 | Catheter assembly including internal bolster |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/974,363 Expired - Fee Related US8192419B2 (en) | 2006-03-27 | 2010-12-21 | Catheter assembly including internal bolster |
US13/466,276 Abandoned US20120283643A1 (en) | 2006-03-27 | 2012-05-08 | Catheter assembly including internal bolster |
Country Status (2)
Country | Link |
---|---|
US (3) | US20070255222A1 (en) |
WO (1) | WO2007123630A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050256455A1 (en) * | 2004-05-14 | 2005-11-17 | Weststrate Patrice A | Method for percutaneously implanting a medical catheter and medical catheter implanting assembly |
US20080255417A1 (en) * | 2007-04-10 | 2008-10-16 | Invendo Medical Gmbh | Method for reducing the friction of a medico-technical rubber tube |
US20090149833A1 (en) * | 2007-12-11 | 2009-06-11 | Massachusetts Institute Of Technology | Implantable Drug Delivery Device and Methods for Treatment of the Bladder and Other Body Vesicles or Lumens |
US20110251463A1 (en) * | 2010-04-12 | 2011-10-13 | Tyco Healthcare Group Lp | Bariatric foam port |
US20120053570A1 (en) * | 2009-04-20 | 2012-03-01 | Cheiron Japan Co. | Urination control device |
US20130225933A1 (en) * | 2012-02-23 | 2013-08-29 | Covidien Lp | Adjustable height port including retention elements |
US20140288377A1 (en) * | 2010-09-14 | 2014-09-25 | Daniel A. Worrel | Retractable Cannula for Surgical Procedures |
US20140303445A1 (en) * | 2009-11-24 | 2014-10-09 | Covidien Lp | Foam Introduction System Including Modified Port Geometry |
US20150005807A1 (en) * | 2013-06-28 | 2015-01-01 | Cook Medical Technologies Llc | Occlusion Device Including Bundle Of Occlusion Wires Having Preformed Shapes |
US9211234B2 (en) | 2010-09-27 | 2015-12-15 | Avent, Inc. | Configurable percutaneous endoscopic gastrostomy tube |
CN107106811A (en) * | 2014-10-31 | 2017-08-29 | W.L.戈尔及同仁股份有限公司 | Include the Catheter packages of conduit straightener |
US10286199B2 (en) | 2013-03-15 | 2019-05-14 | Taris Biomedical Llc | Drug delivery devices with drug-permeable component and methods |
US20190201670A1 (en) * | 2016-09-08 | 2019-07-04 | Adolfo Napolez | Gastrostomy tube reinsertion device |
WO2020055828A1 (en) * | 2018-09-11 | 2020-03-19 | The Cooper Health System | Body cavity irrigation and drainage system and method |
US10857336B2 (en) | 2012-05-19 | 2020-12-08 | Taris Biomedical Llc | Implantable urological device with improved retrieval feature |
US10894150B2 (en) | 2015-04-23 | 2021-01-19 | Taris Biomedical Llc | Drug delivery devices with drug-permeable component and methods |
US11065426B2 (en) | 2009-12-17 | 2021-07-20 | Taris Biomedical Llc | Implantable device with intravesical tolerability and methods of treatment |
US20220226607A1 (en) * | 2017-07-05 | 2022-07-21 | Duke University | Drainage or infusion catheter and method of use |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8764725B2 (en) * | 2004-02-09 | 2014-07-01 | Covidien Lp | Directional anchoring mechanism, method and applications thereof |
WO2011053242A1 (en) * | 2009-10-29 | 2011-05-05 | Ah San Pang | A spacer and a method of using the same |
US8298185B2 (en) * | 2010-09-14 | 2012-10-30 | Suremka Medical, Llc | Retractable cannula for surgical procedures |
US8679151B2 (en) * | 2010-11-24 | 2014-03-25 | Covidien Lp | Access device including shape memory deployment mechanism |
US9095502B2 (en) * | 2011-02-09 | 2015-08-04 | Applied Medical Technology, Inc. | Low profile G-J feeding tube |
CA2830828A1 (en) * | 2011-04-04 | 2012-10-11 | The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center | Device and method for heart valve repair |
WO2015191729A1 (en) * | 2014-06-10 | 2015-12-17 | Arthroscopic Innovations, Llc | Retractable cannula device |
US11627985B2 (en) * | 2014-06-10 | 2023-04-18 | Suremka, Llc | Surgical devices and deployment apparatuses |
WO2016185478A1 (en) * | 2015-05-19 | 2016-11-24 | Innoventions Ltd. | Urine flow system and method of use |
WO2017219010A1 (en) * | 2016-06-18 | 2017-12-21 | Arthroscopic Innovations, Llc | Surgical devices and methods |
WO2018064673A1 (en) * | 2016-09-30 | 2018-04-05 | Reish Timothy G | Devices and methods for use in performing arthroscopic total shoulder replacement |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3490456A (en) * | 1967-04-14 | 1970-01-20 | William M Kortum | Intrauterine catheter anchor |
US4393873A (en) * | 1980-03-10 | 1983-07-19 | Nawash Michael S | Gastrostomy and other percutaneous transport tubes |
US4623348A (en) * | 1984-08-13 | 1986-11-18 | Fredric Feit | Percutaneous sinus tract maintenance prosthesis |
US4861334A (en) * | 1988-06-24 | 1989-08-29 | Nawaz Arain | Self-retaining gastrostomy tube |
US4900306A (en) * | 1988-01-15 | 1990-02-13 | Corpak, Inc. | Device for intubation of percutaneous endoscopic ostomy |
US5041085A (en) * | 1990-02-26 | 1991-08-20 | Cook Incorporated | Percutaneous lockable sleeve catheter |
US5112310A (en) * | 1991-02-06 | 1992-05-12 | Grobe James L | Apparatus and methods for percutaneous endoscopic gastrostomy |
US5167627A (en) * | 1990-09-13 | 1992-12-01 | Abbott Laboratories | Stoma creator gastrostomy device and method for placement of a feeding tube |
US5267960A (en) * | 1990-03-19 | 1993-12-07 | Omnitron International Inc. | Tissue engaging catheter for a radioactive source wire |
US5279564A (en) * | 1992-09-11 | 1994-01-18 | Edward Weck Incorporated | Cannula retention device |
US5358488A (en) * | 1993-11-16 | 1994-10-25 | Chinda Suriyapa | Device to control gastrostomy leakage |
US5391159A (en) * | 1994-02-04 | 1995-02-21 | Hirsch; William H. | Gastrostomy tube with improved internal retaining member |
US5509900A (en) * | 1992-03-02 | 1996-04-23 | Kirkman; Thomas R. | Apparatus and method for retaining a catheter in a blood vessel in a fixed position |
US5599291A (en) * | 1993-01-04 | 1997-02-04 | Menlo Care, Inc. | Softening expanding ureteral stent |
US5769821A (en) * | 1992-03-02 | 1998-06-23 | Quinton Instrument Company | Catheter tip retainer |
US6030364A (en) * | 1997-10-03 | 2000-02-29 | Boston Scientific Corporation | Apparatus and method for percutaneous placement of gastro-intestinal tubes |
US6402722B1 (en) * | 1997-10-01 | 2002-06-11 | Scimed Life Systems, Inc. | Apparatus and method for percutaneously placing gastrostomy tubes |
US6482178B1 (en) * | 1999-05-21 | 2002-11-19 | Cook Urological Incorporated | Localization device with anchoring barbs |
US6626859B2 (en) * | 2000-01-18 | 2003-09-30 | Coraflo Ltd. | High performance cannulas |
US20040059293A1 (en) * | 2002-05-01 | 2004-03-25 | Chu Michael S.H. | Medical catheter assembly and method of using the same |
US20050216028A1 (en) * | 2004-03-24 | 2005-09-29 | Hart Charles C | Self-sealing cannula having integrated seals |
US20060229553A1 (en) * | 2005-04-12 | 2006-10-12 | Vance Products Incorporated, D/B/A Cook Urological Incorporated | Catheter with superelastic retention device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4921479A (en) * | 1987-10-02 | 1990-05-01 | Joseph Grayzel | Catheter sheath with longitudinal seam |
US5935107A (en) * | 1996-10-07 | 1999-08-10 | Applied Medical Resources Corporation | Apparatus and method for surgically accessing a body cavity |
-
2006
- 2006-03-27 US US11/389,801 patent/US20070255222A1/en not_active Abandoned
-
2007
- 2007-03-26 WO PCT/US2007/007469 patent/WO2007123630A1/en active Application Filing
-
2010
- 2010-12-21 US US12/974,363 patent/US8192419B2/en not_active Expired - Fee Related
-
2012
- 2012-05-08 US US13/466,276 patent/US20120283643A1/en not_active Abandoned
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3490456A (en) * | 1967-04-14 | 1970-01-20 | William M Kortum | Intrauterine catheter anchor |
US4393873A (en) * | 1980-03-10 | 1983-07-19 | Nawash Michael S | Gastrostomy and other percutaneous transport tubes |
US4623348A (en) * | 1984-08-13 | 1986-11-18 | Fredric Feit | Percutaneous sinus tract maintenance prosthesis |
US4900306A (en) * | 1988-01-15 | 1990-02-13 | Corpak, Inc. | Device for intubation of percutaneous endoscopic ostomy |
US4861334A (en) * | 1988-06-24 | 1989-08-29 | Nawaz Arain | Self-retaining gastrostomy tube |
US5041085A (en) * | 1990-02-26 | 1991-08-20 | Cook Incorporated | Percutaneous lockable sleeve catheter |
US5267960A (en) * | 1990-03-19 | 1993-12-07 | Omnitron International Inc. | Tissue engaging catheter for a radioactive source wire |
US5167627A (en) * | 1990-09-13 | 1992-12-01 | Abbott Laboratories | Stoma creator gastrostomy device and method for placement of a feeding tube |
US5112310A (en) * | 1991-02-06 | 1992-05-12 | Grobe James L | Apparatus and methods for percutaneous endoscopic gastrostomy |
US5769821A (en) * | 1992-03-02 | 1998-06-23 | Quinton Instrument Company | Catheter tip retainer |
US5509900A (en) * | 1992-03-02 | 1996-04-23 | Kirkman; Thomas R. | Apparatus and method for retaining a catheter in a blood vessel in a fixed position |
US5279564A (en) * | 1992-09-11 | 1994-01-18 | Edward Weck Incorporated | Cannula retention device |
US5599291A (en) * | 1993-01-04 | 1997-02-04 | Menlo Care, Inc. | Softening expanding ureteral stent |
US5358488A (en) * | 1993-11-16 | 1994-10-25 | Chinda Suriyapa | Device to control gastrostomy leakage |
US5391159A (en) * | 1994-02-04 | 1995-02-21 | Hirsch; William H. | Gastrostomy tube with improved internal retaining member |
US6402722B1 (en) * | 1997-10-01 | 2002-06-11 | Scimed Life Systems, Inc. | Apparatus and method for percutaneously placing gastrostomy tubes |
US6030364A (en) * | 1997-10-03 | 2000-02-29 | Boston Scientific Corporation | Apparatus and method for percutaneous placement of gastro-intestinal tubes |
US6482178B1 (en) * | 1999-05-21 | 2002-11-19 | Cook Urological Incorporated | Localization device with anchoring barbs |
US6626859B2 (en) * | 2000-01-18 | 2003-09-30 | Coraflo Ltd. | High performance cannulas |
US20040059293A1 (en) * | 2002-05-01 | 2004-03-25 | Chu Michael S.H. | Medical catheter assembly and method of using the same |
US20050216028A1 (en) * | 2004-03-24 | 2005-09-29 | Hart Charles C | Self-sealing cannula having integrated seals |
US20060229553A1 (en) * | 2005-04-12 | 2006-10-12 | Vance Products Incorporated, D/B/A Cook Urological Incorporated | Catheter with superelastic retention device |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8043261B2 (en) * | 2004-05-14 | 2011-10-25 | Boston Scientific Scimed, Inc. | Method for percutaneously implanting a medical catheter and medical catheter implanting assembly |
US20050256455A1 (en) * | 2004-05-14 | 2005-11-17 | Weststrate Patrice A | Method for percutaneously implanting a medical catheter and medical catheter implanting assembly |
US7654980B2 (en) * | 2004-05-14 | 2010-02-02 | Boston Scientific Scimed, Inc. | Method for percutaneously implanting a medical catheter and medical catheter implanting assembly |
US20100094212A1 (en) * | 2004-05-14 | 2010-04-15 | Boston Scientific Scimed, Inc. | Method for percutaneously implanting a medical catheter and medical catheter implanting assembly |
US8439869B2 (en) * | 2004-05-14 | 2013-05-14 | Boston Scientific Scimed, Inc. | Method for percutaneously implanting a medical catheter and medical catheter implanting assembly |
US20120010570A1 (en) * | 2004-05-14 | 2012-01-12 | Boston Scientific Scimed, Inc. | Method for percutaneously implanting a medical catheter and medical catheter implanting assembly |
US20080255417A1 (en) * | 2007-04-10 | 2008-10-16 | Invendo Medical Gmbh | Method for reducing the friction of a medico-technical rubber tube |
US9586035B2 (en) * | 2007-12-11 | 2017-03-07 | Massachusetts Institute Of Technology | Implantable drug delivery device and methods for treatment of the bladder and other body vesicles or lumens |
US10646691B2 (en) * | 2007-12-11 | 2020-05-12 | Massachusetts Institute Of Technology | Intravesical drug delivery methods and devices |
US20090149833A1 (en) * | 2007-12-11 | 2009-06-11 | Massachusetts Institute Of Technology | Implantable Drug Delivery Device and Methods for Treatment of the Bladder and Other Body Vesicles or Lumens |
JP2011505988A (en) * | 2007-12-11 | 2011-03-03 | マサチューセッツ インスチテュート オブ テクノロジー | Implantable drug delivery device and method for treating bladder and other body vesicles or lumens |
US20170157360A1 (en) * | 2007-12-11 | 2017-06-08 | Massachusetts Institute Of Technology | Intravesical drug delivery methods and devices |
AU2008335077B2 (en) * | 2007-12-11 | 2014-05-29 | Massachusetts Institute Of Technology | Implantable drug delivery device ant) methods for treatment of the bladder and other body vestcles or lumens |
US11612718B2 (en) | 2007-12-11 | 2023-03-28 | Massachusetts Institute Of Technology | Intravesical drug delivery devices |
US8801697B2 (en) * | 2009-04-20 | 2014-08-12 | Cheiron Japan Co. | Urination control device |
US20120053570A1 (en) * | 2009-04-20 | 2012-03-01 | Cheiron Japan Co. | Urination control device |
US20140303445A1 (en) * | 2009-11-24 | 2014-10-09 | Covidien Lp | Foam Introduction System Including Modified Port Geometry |
US9566054B2 (en) * | 2009-11-24 | 2017-02-14 | Covidien Lp | Foam introduction system including modified port geometry |
US11065426B2 (en) | 2009-12-17 | 2021-07-20 | Taris Biomedical Llc | Implantable device with intravesical tolerability and methods of treatment |
US11890439B2 (en) | 2009-12-17 | 2024-02-06 | Taris Biomedical Llc | Drug delivery device with intravesical tolerability |
US20110251463A1 (en) * | 2010-04-12 | 2011-10-13 | Tyco Healthcare Group Lp | Bariatric foam port |
US10258368B2 (en) * | 2010-09-14 | 2019-04-16 | Suremka, Llc | Retractable cannula for surgical procedures |
US20140288377A1 (en) * | 2010-09-14 | 2014-09-25 | Daniel A. Worrel | Retractable Cannula for Surgical Procedures |
US9211234B2 (en) | 2010-09-27 | 2015-12-15 | Avent, Inc. | Configurable percutaneous endoscopic gastrostomy tube |
US20130225933A1 (en) * | 2012-02-23 | 2013-08-29 | Covidien Lp | Adjustable height port including retention elements |
US9463007B2 (en) * | 2012-02-23 | 2016-10-11 | Covidien Lp | Adjustable height port including retention elements |
US10857336B2 (en) | 2012-05-19 | 2020-12-08 | Taris Biomedical Llc | Implantable urological device with improved retrieval feature |
US10315019B2 (en) | 2013-03-15 | 2019-06-11 | Taris Biomedical Llc | Drug delivery devices with drug-permeable component and methods |
US11285304B2 (en) | 2013-03-15 | 2022-03-29 | Taris Biomedical Llc | Drug delivery devices with drug-permeable component and methods |
US10286199B2 (en) | 2013-03-15 | 2019-05-14 | Taris Biomedical Llc | Drug delivery devices with drug-permeable component and methods |
US20150005807A1 (en) * | 2013-06-28 | 2015-01-01 | Cook Medical Technologies Llc | Occlusion Device Including Bundle Of Occlusion Wires Having Preformed Shapes |
US9968432B2 (en) * | 2013-06-28 | 2018-05-15 | Cook Medical Technologies Llc | Occlusion device including bundle of occlusion wires having preformed shapes |
CN107106811A (en) * | 2014-10-31 | 2017-08-29 | W.L.戈尔及同仁股份有限公司 | Include the Catheter packages of conduit straightener |
US10894150B2 (en) | 2015-04-23 | 2021-01-19 | Taris Biomedical Llc | Drug delivery devices with drug-permeable component and methods |
US11744998B2 (en) | 2015-04-23 | 2023-09-05 | Taris Biomedical Llc | Drug delivery devices with drug-permeable component and methods |
US20190201670A1 (en) * | 2016-09-08 | 2019-07-04 | Adolfo Napolez | Gastrostomy tube reinsertion device |
US20220226607A1 (en) * | 2017-07-05 | 2022-07-21 | Duke University | Drainage or infusion catheter and method of use |
US12090260B2 (en) * | 2017-07-05 | 2024-09-17 | Duke University | Drainage or infusion catheter and method of use |
WO2020055828A1 (en) * | 2018-09-11 | 2020-03-19 | The Cooper Health System | Body cavity irrigation and drainage system and method |
US11426559B2 (en) | 2018-09-11 | 2022-08-30 | The Cooper Health System, a New Jersey Non-Profit Corporation | Body cavity irrigation and drainage system and method |
Also Published As
Publication number | Publication date |
---|---|
US20110092912A1 (en) | 2011-04-21 |
US20120283643A1 (en) | 2012-11-08 |
WO2007123630A1 (en) | 2007-11-01 |
US8192419B2 (en) | 2012-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8192419B2 (en) | Catheter assembly including internal bolster | |
US9078997B2 (en) | Catheter assembly including coiled internal bolster | |
US8475430B2 (en) | Catheter assembly and method for internally anchoring a catheter in a patient | |
US7985205B2 (en) | Medical catheter external bolster having strain relief member | |
US8382770B2 (en) | Method for implanting a percutaneous endoscopic gastrostomy/jejunostomy tube in a patient and access needle for use in said method | |
US8562560B2 (en) | Medical catheter assembly including a balloon bolster | |
JP4805257B2 (en) | Medical catheter implant assembly | |
US8029462B2 (en) | Medical catheter assembly and method of using the same | |
CA2182104C (en) | Gastrostomy tube with improved internal retaining member | |
US8016815B2 (en) | Catheter assembly including foldable internal bolster | |
JP4782012B2 (en) | Medical catheter assembly including multi-piece connector | |
US10085921B2 (en) | Gastric port system | |
US20070233005A1 (en) | Surgical fastening tool | |
US8172801B2 (en) | Method for positioning a catheter guide element in a patient and kit for use in said method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, CHANGQING;MCCALLISTER, GENE;REEL/FRAME:017686/0607 Effective date: 20060314 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |