US20070144482A1 - Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine - Google Patents
Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine Download PDFInfo
- Publication number
- US20070144482A1 US20070144482A1 US11/711,772 US71177207A US2007144482A1 US 20070144482 A1 US20070144482 A1 US 20070144482A1 US 71177207 A US71177207 A US 71177207A US 2007144482 A1 US2007144482 A1 US 2007144482A1
- Authority
- US
- United States
- Prior art keywords
- fuel
- inter
- injection mechanism
- pressure pump
- fuel injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D33/00—Controlling delivery of fuel or combustion-air, not otherwise provided for
- F02D33/003—Controlling the feeding of liquid fuel from storage containers to carburettors or fuel-injection apparatus ; Failure or leakage prevention; Diagnosis or detection of failure; Arrangement of sensors in the fuel system; Electric wiring; Electrostatic discharge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/04—Feeding by means of driven pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3094—Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D41/3836—Controlling the fuel pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/0011—Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
- F02M37/0041—Means for damping pressure pulsations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/0047—Layout or arrangement of systems for feeding fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0225—Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0225—Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
- F02M63/023—Means for varying pressure in common rails
- F02M63/0235—Means for varying pressure in common rails by bleeding fuel pressure
- F02M63/025—Means for varying pressure in common rails by bleeding fuel pressure from the common rail
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0225—Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
- F02M63/0275—Arrangement of common rails
- F02M63/0285—Arrangement of common rails having more than one common rail
- F02M63/029—Arrangement of common rails having more than one common rail per cylinder bank, e.g. storing different fuels or fuels at different pressure levels per cylinder bank
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/04—Injectors peculiar thereto
- F02M69/042—Positioning of injectors with respect to engine, e.g. in the air intake conduit
- F02M69/046—Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/12—Other methods of operation
- F02B2075/125—Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/14—Direct injection into combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/16—Indirect injection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/08—Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
- F02B23/10—Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
- F02B23/104—Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D2041/3881—Common rail control systems with multiple common rails, e.g. one rail per cylinder bank, or a high pressure rail and a low pressure rail
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/04—Fuel pressure pulsation in common rails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/31—Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a fuel supplying apparatus and a fuel injecting apparatus of an internal combustion engine.
- an inter-cylinder injection method for directly injecting a fuel into cylinders of an internal combustion engine an inter-intake path injection method for injecting a fuel into an intake path through which an air is supplied to the cylinder of the internal combustion engine
- an inter-cylinder/inter-intake path injection method that is a combination of the two methods, i.e., method for switching over between inter-cylinder injection and inter-intake path injection according to an operating state of the internal combustion engine.
- This internal combustion engine fuel injecting apparatus includes a fuel supplying system, a first fuel injection mechanism including an inter-intake path injector (an injection valve for injecting a fuel into an intake path of internal combustion engine) for the inter-intake path injection, and a second fuel injection mechanism including an inter-cylinder injector (a fuel injection valve for injecting a fuel into cylinders) for the inter-cylinder injection.
- the fuel supplying apparatus includes a first fuel supply system that pressurizes the fuel in a fuel tank by a low-pressure pump and that supplies the pressurized fuel to the first fuel injection mechanism, and a second fuel supply system that further pressurize the fuel pressurized by the low-pressure pump using the high-pressure pump and that supplies the pressurized fuel to the second fuel injection mechanism.
- the internal combustion engine fuel injecting apparatus controls injection of the first fuel injection mechanism and that of the second fuel injection mechanism according to a map that is generated based on a fuel supply amount (fuel injection amount), an accelerator opening (accelerator pedal depression amount), and the like.
- ranges on the map is divided into three ranges, namely, an injection range for fuel injection only by the first fuel injection mechanism, an injection range for fuel injection by both the first and the second fuel injection mechanisms, and an injection range for fuel injection only by the second fuel injection mechanism.
- a control unit controls injection of the first fuel injection mechanism and/or the second fuel injection mechanism according to the operating state of the internal combustion engine.
- a conventional internal combustion engine fuel injecting apparatus includes a high-pressure pump for supplying the high-pressure fuel to the second fuel injection mechanism.
- This high-pressure pump is constituted so that a cam is driven by rotation of a crankshaft of the internal combustion engine to reciprocate a plunger of the high-pressure pump, and to thereby further pressurize the fuel pressurized by the low-pressure pump.
- This high-pressure pump continues to be driven by the rotation of the crankshaft of the internal combustion engine even when the control unit controls the inter-cylinder injectors not to inject a fuel, that is, the second fuel injection mechanism is not actuated. Therefore, pulsation occurs when the high-pressure pump absorbs the fuel from the second fuel supply system or returns an excessive fuel to a fuel tank and the like.
- This pulsation fluctuates a pressure of the fuel in paths of the second fuel supply system and the first fuel supply system, i.e., fluctuates a fuel pressure.
- This pulsation fluctuates of the fuel pressure is propagated to the first fuel injection mechanism.
- the control unit controls an injection timing and an injection amount of the fuel injected from the first fuel injection mechanism into an intake path of the internal combustion engine according to the operating state of the internal combustion engine.
- the propagation of the pulsation to the first fuel injection mechanism may possibly make it difficult or impossible to inject the fuel of an injection supply amount determined based on the operating state of the internal combustion engine, from the first fuel injection mechanism.
- the fuel in a fuel supply amount by which the fuel is to be supplied to the internal combustion engine may not properly be supplied from the fuel injecting apparatus.
- a fuel supplying apparatus of an internal combustion engine includes a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism; a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism; and a pulsation propagation suppressing unit that is provided in at least one of the first fuel supply system and the second fuel supply system, and that suppresses propagation of a pulsation generated in the high-pressure pump to the first fuel injection mechanism.
- a fuel supplying apparatus includes a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism; and a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism, wherein a path length from the high-pressure pump to the first fuel injection mechanism is a length such that the number of revolutions of the internal combustion engine, at which a pulsation propagated from the high-pressure pump to the first fuel injection mechanism is increased, is out of a common range of the number of revolutions of the internal combustion engine.
- a fuel supplying apparatus includes a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism; a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism; and a pulsation generating number-of-revolutions change unit that changes the number of revolutions of the internal engine at which a pulsation propagated from the high-pressure pump to the first fuel injection mechanism is increased.
- a fuel supplying apparatus includes a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism; and a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel further pressurized by the high-pressure pump to a second fuel injection mechanism, wherein the first fuel injection mechanism is provided for each of cylinder groups of the internal combustion engine, and the first fuel supply system inverts a phase of a pulsation propagated from the high-pressure pump to the first fuel injection mechanism of the one of the cylinder groups, from a phase of the pulsation propagated from the high-pressure pump to the first fuel injection mechanism of the other cylinder group.
- a fuel injecting apparatus includes a fuel supplying apparatus including a first fuel supply system that pressurizes a fuel by a low-pressure pump and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism, and a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism; a first fuel injection mechanism that injects the fuel pressurized by the low-pressure pump; a second fuel injection mechanism that injects the fuel pressurized by the high-pressure pump; and a control unit that controls injection of the first fuel injection mechanism and injection of the second fuel injection mechanism according to the operating state of the internal combustion engine, wherein the first fuel injection mechanism is provided for each of cylinder groups of the internal combustion engine, the first fuel supply system inverts a phase of
- a fuel injecting apparatus includes a low-pressure pump that pressurizes a fuel; a first fuel injection mechanism that injects the fuel pressurized by the low-pressure pump; a first fuel supply system that supplies the fuel from the low-pressure pump to the first fuel injection mechanism; a high-pressure pump that further pressurizes the fuel pressurized by the low-pressure pump; a second fuel injection mechanism that injects the fuel pressurized by the high-pressure pump; a second fuel supply system that is branched from the first fuel supply system, and that supplies the fuel to the second fuel injection mechanism; and a control unit that controls injection of the first fuel injection mechanism and injection of the second fuel injection mechanism according to an operating state of the internal combustion engine, wherein when the control unit determines that an injection range of the fuel is an injection range only by the first fuel injection mechanism based on the operating state of the internal combustion engine, and determines that a pulsation propagated from the high-pressure pump to the first fuel injection mechanism is large, the control unit exercises a control so
- a fuel injecting apparatus includes a low-pressure pump that pressurizes a fuel; a first fuel injection mechanism that injects the fuel pressurized by the low-pressure pump; a first fuel supply system that supplies the fuel from the low-pressure pump to the first fuel injection mechanism; a high-pressure pump that further pressurizes the fuel pressurized by the low-pressure pump; a second fuel injection mechanism that injects the fuel pressurized by the high-pressure pump; a second fuel supply system that is branched from the first fuel supply system, and that supplies the fuel to the second fuel injection mechanism; and a control unit that controls injection of the first fuel injection mechanism and injection of the second fuel injection mechanism according to an operating state of the internal combustion engine, wherein when the control unit determines that an injection range of the fuel is an injection range both by the first fuel injection mechanism and the second fuel injection mechanism based on the operating state of the internal combustion engine, and determines that a pulsation propagated from the high-pressure pump to the first fuel injection mechanism is large, the control unit determines that an injection range of
- FIG. 1 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a first embodiment of the present invention
- FIG. 2 is a cross sectional view of a cylinder of an internal combustion engine that includes the fuel injecting apparatus according to the first embodiment
- FIG. 3 is a flow chart of injection control of the fuel injecting apparatus according to the first embodiment
- FIG. 4 is a map that represents a relationship between a fuel supply amount and an accelerator opening
- FIG. 5 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a second embodiment
- FIG. 6 is a flow chart of injection control of a fuel injecting apparatus according to the second embodiment
- FIG. 7 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a third embodiment
- FIG. 8 is a flow chart of injection control of the fuel injecting apparatus according to the third embodiment.
- FIG. 9 is a diagram for explaining a relationship between a width of a fluctuation in the pressure of a fuel and the number of revolutions of the engine;
- FIG. 10 is a flow chart of another injection control of the fuel injecting apparatus according to the third embodiment.
- FIG. 11 is a map that represents a relationship between a throttling amount of a variable throttle and the number of revolutions of the engine;
- FIG. 12 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a fourth embodiment
- FIG. 13A is a diagram for explaining a width of a fluctuation in the pressure of the fuel in a low-pressure path upstream of a check valve
- FIG. 13B is a diagram for explaining a width of a fluctuation in the pressure of the fuel in the low-pressure path downstream of the check valve;
- FIG. 14 is a configuration diagram of a fuel injecting apparatus that includes a fuel supplying apparatus according to a fifth embodiment
- FIG. 15 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a sixth embodiment
- FIG. 16 is a diagram for explaining a relationship between the width of a fluctuation in the pressure of the fuel and the number of revolutions of the engine;
- FIG. 17 is a flow chart of injection control of a fuel injecting apparatus according to a sixth embodiment.
- FIG. 18 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a seventh embodiment
- FIG. 19A is a diagram for explaining a width of a fluctuation in the pressure of the fuel when the right and the left branch paths are equal in path length;
- FIG. 19B is a diagram for explaining the width of the fluctuation in the pressure of the fuel when the right and the left branch paths differ in path length;
- FIG. 20 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to an eighth embodiment.
- FIG. 21 is a flow chart of injection control of the fuel injecting apparatus according to the eighth embodiment.
- a fuel supplying apparatus or a fuel injecting apparatus including the fuel supplying apparatus to be explained hereinafter is an apparatus that supplies a fuel to an engine that is an internal combustion engine such as a gasoline engine or a diesel engine mounted in a vehicle such as a passenger vehicle or a truck.
- the fuel injecting apparatus including the fuel supplying apparatus is exemplary mounted in an inline four-cylinder engine having inline four cylinders or mounted in a V6 engine having six cylinders in a V configuration wherein three cylinders of the six cylinders composes one cylinder group.
- the present invention is not limited to the embodiments.
- the present invention is also applicable to an inline six-cylinder engine, a V8 engine having eight cylinders in a V configuration wherein four cylinders of the eight cylinders composes one cylinder group, or the like.
- FIG. 1 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a first embodiment.
- FIG. 2 is a cross sectional view of a cylinder of an internal combustion engine that includes the fuel injecting apparatus according to the first embodiment.
- the fuel injecting apparatus 1 - 1 according to the first embodiment includes a fuel supplying apparatus 2 - 1 , an inter-intake path fuel injection mechanism 3 that serves as a first fuel injection mechanism, an inter-cylinder fuel injection mechanism 4 that serves as a second fuel injection mechanism, and an injection controller 5 that serves as a control unit.
- the fuel supplying apparatus 2 - 1 includes a fuel tank 6 that stores a fuel, a feed pump 7 , a first fuel supply system 8 , a high-pressure pump 9 , and a second fuel supply system 10 .
- the feed pump 7 is an electric low-pressure pump that pressurizes the fuel in the fuel tank 6 to a predetermined pressure (low pressure), and that supplies the pressurized fuel to the inter-intake path fuel injection mechanism 3 .
- the first fuel supply system 8 is composed by a low-pressure path 8 a for supplying the fuel pressurized at least by the feed pump 7 to the inter-intake path fuel injection mechanism 3 .
- the high-pressure pump 9 is constituted as follows.
- a cam 9 a coupled to a crankshaft of an engine (not shown in figures) is rotated, whereby a plunger (not shown in figures) in the high-pressure pump 9 reciprocates.
- the reciprocation of the plunger causes the fuel pressurized by the feed pump 7 in the low-pressure path 8 a , that is, in the first fuel supply system 8 , to be further pressurized to a predetermined pressure (high pressure), so as to supply the pressurized fuel to the inter-cylinder fuel injection mechanism 4 .
- the high-pressure pump 9 is driven according to the operating state of the internal combustion engine.
- the high-pressure pump 9 includes a metering valve (not shown in figures) a valve opening of which is controlled by the injection controller 5 to be explained later.
- the second fuel supply system 10 includes a branch path 10 a for supplying the fuel pressurized in the feed pump 7 at least from a branch part A of a low-pressure path 8 a of the first fuel supply system 8 to the high-pressure pump 9 , a high-pressure path 10 b for supplying the fuel further pressurized by the high-pressure pump 9 to the inter-cylinder fuel injection mechanism 4 , and a release path 10 c for returning an excessive fuel among the fuel supplied to the inter-cylinder fuel supply mechanism 4 to the fuel tank 6 .
- shutoff valve 11 d that is a pulsation propagation suppressing unit and that is controlled to be opened and closed by the injection controller to be explained later is provided.
- Reference numeral 7 a denotes a regulator that returns a part of the fuel discharged from the feed pump 7 to the fuel tank 6 when the pressure of the fuel in the low-pressure path 8 a that constitutes the first fuel supply system 8 is higher than the predetermined pressure, and that thereby keeps the pressure of the fuel in the low-pressure path 8 a , that is, the pressure of the fuel supplied to the inter-intake path fuel injection mechanism 3 and the high-pressure pump 9 constant.
- Reference numeral 10 e denotes a check valve that keeps the pressure of the fuel supplied into the inter-cylinder fuel injection mechanism 4 constant.
- Reference numeral 10 f denotes a relief valve that returns a part of the fuel in the inter-cylinder fuel injection mechanism 4 to the fuel tank 6 when the pressure of the fuel supplied into the inter-cylinder fuel injection mechanism 4 is higher than the predetermined pressure and that keeps the pressure of the fuel in the inter-cylinder fuel injection mechanism 4 constant.
- the inter-intake path fuel injection mechanism 3 and the inter-cylinder fuel injection mechanism 4 include inter-intake path injectors 3 a to 3 d and inter-cylinder injectors 4 a to 4 d , respectively, to correspond to cylinders 20 a to 20 d of an inline four-cylinder engine.
- These inter-intake path injectors 3 a to 3 d and inter-cylinder injectors 4 a to 4 d are solenoid valves, and an injection amount of each injector is controlled by the injection controller 5 , to be explained later, based on an injection timing and a current-carrying time for the injector. As shown in FIG.
- the inter-intake path fuel injection mechanism 3 includes a fuel distribution pipe 3 e that distributes the fuel supplied from the low-pressure path 8 a of the first fuel supply system 8 to the respective inter-intake path injectors 3 a to 3 d .
- the inter-cylinder fuel injection mechanism 4 includes a fuel distribution pipe 4 e that distributes the fuel supplied from the high-pressure path 10 b of the second fuel supply system 10 to the respective inter-cylinder injectors 4 a to 4 d .
- the inter-intake path fuel injection mechanism 3 and the inter-cylinder fuel injection mechanism 4 include the inter-intake path injectors 3 a to 3 d and the inter-cylinder injectors 4 a to 4 d , respectively, to correspond to the cylinders 20 a to 20 d of the engine. Therefore, when the engine is, for example, a six-cylinder engine, the inter-intake path fuel injection mechanism 3 and the inter-cylinder fuel injection mechanism 4 include six inter-intake path injectors and six inter-cylinder injectors, respectively.
- each of the cylinders 20 a to 20 d of the engine includes a cylinder block 21 , a piston 22 , a cylinder head 23 fixed to the cylinder block 21 , a fuel chamber 24 formed between the piston 22 and the cylinder head 23 , an intake valve 25 , an exhaust valve 26 , an intake port 27 , an exhaust port 28 , and an ignition plug 29 .
- the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 are provided to be able to inject a fuel into an intake path 30 communicating with the intake port 27 .
- the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 are fixed to the cylinder head 23 and provided to be able to directly inject a fuel into the fuel chamber 24 .
- Reference numeral 22 a denotes a concave portion for introducing the fuel injected from the inter-cylinder injectors 4 a to 4 d to neighborhoods of the ignition plug 29 .
- the inter-intake path injectors of the inter-intake path fuel injection mechanism 3 may inject the fuel into a surge tank (not shown in figures) provided upstream of the intake path 30 so as to supply the fuel to the engine.
- the injection controller 5 receives input signals for the number of revolutions of the engine and the opening of the accelerator or the like from sensors attached to respective portions of the engine.
- the injection controller 5 outputs output signals for controlling injection timings and injection amounts of the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder injection mechanism 4 , driving and stopping of the low-pressure pump 7 , a valve opening of the metering valve of the high-pressure pump 9 , the opening and closing of the shutoff valve 10 d , and the like, based on the received input signals and various maps stored in a storage unit 5 c .
- the injection controller 5 includes an interface unit 5 a for input and output of the input signals and the output signals, a processing unit 5 b that calculates the injection timings, injection amounts, and the like of the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 , and the storage unit 5 c that stores the maps and the like. It is noted that this fuel injecting apparatus 5 may be realized by dedicated hardware.
- the processing unit 5 b may be composed by a memory and a central processing unit (CPU) to realize a fuel injecting method, to be explained later, by loading a program based on the fuel injecting method, to be explained later, to the memory and executing the program.
- this fuel injecting apparatus 5 may be incorporated into an engine control unit (ECU) that controls the engine.
- the storage unit 5 c can be constituted by a nonvolatile memory such as a flash memory and the like, a volatile memory that can perform only reading such as a read only memory (ROM), a volatile memory that can perform reading and writing such as a random access memory (RAM), or a combination thereof.
- FIG. 3 is a flow chart of injection control of the fuel injecting apparatus according to the first embodiment.
- FIG. 4 is a map that represents a relationship between a fuel supply amount and an accelerator opening.
- the processing unit 5 b of the fuel controller 5 calculates a fuel supply amount Q to be supplied to the engine (at a step ST 1 ).
- the fuel supply amount Q is determined by the map that depicts the relationship between the number of revolutions of the engine and the accelerator opening (not shown in figures) stored in the storage unit 5 c , and the input signals for the number of revolutions of the engine and accelerator opening input to the fuel controller 5 from the engine.
- the processing unit 5 b determines whether the accelerator opening L is smaller than a predetermined value L 1 (at a step ST 2 ).
- the injection controller 5 that serves as the control unit determines that a fuel injection range is a fuel range of only the inter-cylinder fuel injection mechanism 4 that serves as the second fuel injection mechanism that is, an inter-cylinder injection range based on the operating state of the engine that serves as the internal combustion engine, as shown in FIG. 4 .
- the processing unit 5 b determines whether the shutoff valve 10 d is open (at a step ST 3 ).
- the processing unit 5 b determines that the shutoff valve 10 d is open, the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 in order to supply the fuel that satisfies a fuel supply amount Q to the engine, and thereby the fuel injecting apparatus 1 - 1 performs inter-cylinder injection (at a step ST 4 ).
- the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 inject the fuel into the fuel chamber 24 only once at a last period of a compression step for the cylinders 20 a to 20 d .
- the injected fuel is raised from below the ignition plug 29 toward the cylinder head 23 along a surface of the concave portion 22 a of the piston 22 shown in FIG. 2 , and mixed with the air that is introduced into the fuel chamber 24 in advance by opening the intake valve 25 , thereby forming a mixture gas.
- This mixture gas is ignited by the ignition plug 29 , thereby applying a rotation force to the crankshaft of the engine (not shown in figures).
- the processing unit 5 b If determining that the shutoff valve 10 d is closed at a step ST 3 , the processing unit 5 b outputs an output signal for opening this shutoff valve 10 d to the shutoff valve 10 d , and thereby opening the shutoff valve 10 d (at a step ST 5 ).
- the processing unit 5 b determines whether the accelerator opening L is smaller than a predetermined value L 2 (at a step ST 6 ).
- the injection controller 5 that serves as the control unit determines that the fuel injection range is a fuel range of the inter-cylinder fuel injection mechanism 4 that serves as the second fuel injection mechanism and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, an inter-cylinder and inter-intake path injection range, based on the operating state of the engine that serves as the internal combustion engine, as shown in FIG. 4 .
- the processing unit 5 b determines whether the shutoff valve 10 d is open (at a step ST 7 ). If determining that the shutoff valve 10 d is open, the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 in order to supply the fuel that satisfies a fuel supply amount Q to the engine, and thereby the fuel injecting apparatus 1 - 1 performs inter-cylinder and inter-intake path injection (at a step ST 8 ).
- the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 inject the fuel into the intake path 30 only once at an initial period of the intake step for the cylinders 20 a to 20 d .
- the fuel thus injected is mixed with the air in the intake path 30 to form a mixture gas, and the mixture gas is introduced into the fuel chamber 24 via the intake port 27 .
- the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 inject the fuel into the fuel chamber 24 only once at the last period of the compression step for the cylinder 20 a to 20 d .
- the injected fuel is raised from below the ignition plug 29 toward the cylinder had 23 along the surface of the concave portion 22 a of the piston 22 , and further mixed with that mixture gas introduced into the fuel chamber 24 in advance by opening the intake valve 25 , thereby forming a mixture gas that is ignitable by the ignition plug 29 .
- This mixture gas is ignited by the ignition plug 29 , thereby applying a rotation force to the crankshaft of the engine (not shown in figures). If determining that the shutoff valve 10 d is closed at the step S 7 , the processing unit 5 b outputs the output signal for opening the shutoff valve 10 d to the shutoff valve 10 d , thereby opening the shutoff valve 10 d (at a step ST 9 ).
- the injection controller 5 that serves as the control unit determines that the injection range is an injection range of only the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, an inter-intake path injection range, based on the operating state of the engine that serves as the internal combustion engine.
- the processing unit 5 b determines whether the shutoff valve 10 d is open (at a step ST 10 ). If determining that the shutoff valve 10 d is open, the processing unit 5 b outputs the output signal for closing the shutoff valve 10 d to the shutoff valve 10 d , thereby closing the shutoff valve 10 d (at a step ST 11 ).
- the processing unit 5 b determines that the shutoff valve 10 d is closed at the step ST 11 , then the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 in order to supply the fuel that satisfies a fuel supply amount Q to the engine, and thereby the fuel injecting apparatus 1 - 1 performs inter-intake path injection (at a step ST 12 ). At this time, the fuel injection amount of the respective inter-intake path injectors 3 a to 3 d does not differ from the fuel supply amount Q since the pulsation generated in the high-pressure pump 9 is not propagated to the inter-intake path fuel injection mechanism 3 .
- the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 inject the fuel into the intake path 30 only once at the initial period of the intake step for the cylinders 20 a to 20 d .
- the injected fuel is mixed with the air in the intake path 30 into a mixture gas, and the mixture gas is introduced into the fuel chamber 24 through the intake port 27 .
- This mixture gas is ignited by the ignition plug 29 , thereby applying a rotation force to the crankshaft of the engine (not shown in figures).
- the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened.
- the metering valve (not shown in figures) provided in the high-pressure pump 9 shown in FIG. 1 may be utilized to operate similarly to the shutoff valve 10 d . Namely, by closing the metering valve of the high-pressure pump 9 when the injection controller 5 determines that the injection range is the inter-intake path injection range, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 that serve as the first fuel injection mechanism may be suppressed.
- the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied to the engine can be lessened without increasing the number of components that constitute the fuel supplying apparatus 2 - 1 of the engine or that constitute the fuel injecting apparatus 1 - 1 that includes the fuel supplying apparatus 2 - 1 .
- FIG. 5 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a second embodiment.
- a fuel injecting apparatus 1 - 2 shown in FIG. 5 differs from the fuel injecting apparatus 1 - 1 shown in FIG. 1 in that a fuel supplying apparatus 2 - 2 includes a fixed throttle 8 b in stead of the shutoff valve 10 d . Since the basic configuration of the fuel injecting apparatus 1 - 2 shown in FIG. 5 is the same as that of the fuel injecting apparatus 1 - 1 shown in FIG. 1 , the explanation of the basic configuration of the fuel injecting apparatus 1 - 2 will be omitted.
- the fixed throttle 8 b that serves as a pulsation propagation suppressing unit is provided between the branch part A at which the second fuel supply system 10 is branched and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism.
- a throttling amount of the fixed throttle 8 b is set so as to reduce the propagated pulsation, that is, a width of a fluctuation in the pressure of the fuel supplied into the inter-intake path fuel injection mechanism 3 when the pulsation generated in the high-pressure pump 9 is propagated to the inter-intake path fuel injection mechanism 3 .
- the throttling amount of the fixed throttle 8 b When the throttling amount of the fixed throttle 8 b is set too large, the fuel passed through the fixed throttle 8 b and supplied into the inter-intake path fuel injection mechanism 3 cannot be injected from the inter-intake path injectors 3 a to 3 d when a flow rate of the fuel supplied to the first fuel supply system 8 is low. It is, therefore, preferable to set the throttling amount so as to be able to at least inject the fuel from the inter-intake path injectors 3 a to 3 d.
- FIG. 6 is a flow chart of injection control of a fuel injecting apparatus according to the second embodiment.
- the flow of the fuel injecting method of the fuel injecting apparatus 1 - 2 shown in FIG. 6 is basically the same as that of the fuel injecting method of the fuel injecting apparatus 1 - 1 shown in FIG. 3 . Therefore, the flow shown in FIG. 6 will be explained simply.
- the processing unit 5 b of the fuel controller 5 calculates the fuel supply amount Q supplied to the engine (at a step ST 1 ).
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 1 (at a step ST 2 ).
- the injection controller 5 that serves as the control unit determines that a fuel injection range is an inter-cylinder injection range, based on the operating state of the engine that serves as the internal combustion engine, as shown in FIG. 4 .
- the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and thereby the fuel injecting apparatus 1 - 2 performs inter-cylinder injection (at a step ST 4 ).
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 2 (at a step ST 6 ).
- the injection controller 5 that serves as the control unit determines that the injection range is the inter-cylinder and inter-intake path injection range, as shown in FIG. 4 .
- the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 2 performs inter-cylinder and inter-intake path injection (at a step ST 8 ).
- the pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the first fuel supply system 8 through the branch path 10 a of the second fuel supply system 10 .
- a magnitude of the pulsation propagated to the low-pressure path 8 a is reduced by the fixed throttle 8 b of this low-pressure path 8 a .
- the pulsation propagated to the low-pressure path 8 a downstream of this fixed throttle 8 b and to the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism that is, a width of a fluctuation in the pressure of the fuel is smaller than a width of a fluctuation in the pressure of the fuel upstream of the fixed throttle 8 b .
- the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be suppressed.
- the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q.
- the injection controller 5 that serves as the control unit determines that the injection range is an inter-intake path injection range.
- the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 2 performs inter-intake path injection (at a step ST 12 ).
- the pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a , the magnitude of the pulsation is reduced by the fixed throttle 8 b of the low-pressure path 8 a .
- the pulsation propagated to the low-pressure path 8 a downstream of the fixed throttle 8 b and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism that is, the width of the fluctuation in the pressure of the fuel is smaller than the width of the fluctuation in the pressure of the fuel upstream of the fixed throttle 8 b .
- the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be suppressed.
- the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q.
- the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened.
- FIG. 7 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a third embodiment.
- a fuel injecting apparatus 1 - 3 shown in FIG. 7 differs from the fuel injecting apparatus 1 - 2 shown in FIG. 5 in that a fuel supplying apparatus 2 - 3 includes a variable throttle 8 c a throttling amount of which is changed according to the operating state of the engine in stead of the fixed throttle 8 b . Since the basic configuration of the fuel injecting apparatus 1 - 3 shown in FIG. 7 is the same as that of the fuel injecting apparatus 1 - 2 shown in FIG. 5 , the explanation of the basic configuration of the fuel injecting apparatus 1 - 3 will be omitted.
- variable throttle 8 c that serves as a pulsation propagation suppressing unit is provided between the branch part A at which the second fuel supply system 10 is branched and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism.
- a throttle amount of the variable throttle 8 c is controlled by an output signal from the injection controller 5 .
- FIG. 8 is a flow chart of injection control of the fuel injecting apparatus according to the third embodiment.
- a fuel injecting method based on changes of a flow rate of the fuel supplied into the low-pressure path 8 a that constitutes the first fuel supply system 8 will be explained herein.
- the flow of the fuel injecting method of the fuel injecting apparatus 1 - 3 shown in FIG. 8 is basically the same as that of the fuel injecting method of the fuel injecting apparatus 1 - 2 shown in FIG. 6 . Therefore, the flow will be explained simply.
- the processing unit 5 b of the fuel controller 5 calculates the fuel supply amount Q to be supplied to the engine (at a step ST 1 ).
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 1 (at a step ST 2 ). When the accelerator opening L is smaller than the predetermined value L 1 , the injection controller 5 that serves as the control unit determines that a fuel injection range is an inter-cylinder injection range based on the operating state of the engine that serves as the internal combustion engine, as shown in FIG. 4 .
- the processing unit 5 b outputs the output signal for controlling the throttling amount of the variable throttle 8 c at zero, that is, the output signal so as not to throttle the variable throttle 8 c , to this variable throttle 8 c (at a step ST 13 ).
- the throttling amount of the variable throttle 8 c is set zero to prevent a fluctuation in the throttling amount.
- the processing unit 5 b then outputs the output signals for the injection timings and the injection amounts to the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 , and the fuel injecting apparatus 1 - 3 performs inter-cylinder injection (at a step ST 4 ).
- the processing unit 5 b determines whether a fuel flow rate Q′ of the fuel supplied into the low-pressure path 8 a that constitutes the first fuel supply system 8 is higher than a predetermined value Q 1 (at a step ST 14 ).
- the fuel flow rate Q′ is calculated based on a driven state of the low-pressure pump 7 .
- the predetermined value Q 1 is a fuel flow rate within the low-pressure path 8 a that constitutes the first fuel supply system 8 that flow rate is necessary so that the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 inject the fuel.
- the processing unit 5 b When the fuel flow rate Q′ is higher than the predetermined value Q 1 , the processing unit 5 b outputs an output signal for setting the throttling amount of the variable throttle 8 c at an amount obtained by multiplying the fuel flow rate Q′ by a constant, to the variable throttle 8 c (at a step ST 15 ). That is, the injection controller 5 controls the throttling amount of the variable throttle 8 c so that the throttling amount is larger proportionally to an increase in the fuel flow rate Q′.
- the processing unit 5 b When the fuel flow rate Q′ is equal to or lower than the predetermined value Q 1 at the step ST 14 , the processing unit 5 b outputs an output signal for setting the throttling amount of the variable throttle 8 c at zero, that is, an output signal so as not to throttle the variable throttle 8 c , to this variable throttle 8 c (at a step ST 16 ).
- the setting is made because, by throttling the variable throttle 8 c when the fuel flow rate Q′ is equal to or lower than the predetermined value Q 1 , the incapability of injecting the fuel from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 is prevented.
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 2 (at a step ST 6 ).
- the injection controller 5 that serves as the control unit determines that the injection range is the injection range is an inter-cylinder and inter-intake path injection range, as shown in FIG. 4 .
- the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 , and the fuel injecting apparatus 1 - 3 performs inter-cylinder and inter-intake path injection (at a step ST 8 ).
- the pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the first fuel supply system 8 through the branch path 10 a of the second fuel supply system 10 .
- the throttling amount of the variable throttle 8 c of the low-pressure path 8 a is increased in proportion to the operating state of the engine, that is, in proportion to an increase in the fuel flow rate Q′ of the fuel supplied to the low-pressure path 8 a that constitutes the first fuel supply system 8 . Therefore, the pulsation propagated to the low-pressure path 8 a is reduced. Namely, the pulsation propagated to the low-pressure path 8 a downstream of the variable throttle 8 c and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, a width of a fluctuation in the pressure of the fuel is smaller than a width of a fluctuation in the pressure of the fuel upstream of the variable throttle 8 c .
- the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be suppressed.
- the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d can be similarly, therefore, made substantially equal to the fuel supply amount Q.
- the injection controller 5 that serves as the control unit determines that the injection range is an inter-intake path injection range.
- the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 3 performs inter-intake path injection (at a step ST 12 ).
- the pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the first fuel supply system 8 through the branch path 10 a of the second fuel supply system 10 . If so, the throttling amount of the variable throttle 8 c of the low-pressure path 8 a is increased in proportion to the operating state of the engine, that is, an increase in the fuel flow rate Q′ of the fuel supplied to the low-pressure path 8 a that constitutes the first fuel supply system 8 . Therefore, the pulsation propagated to the inter-intake path fuel injection mechanism 3 is reduced.
- the pulsation propagated to the low-pressure path 8 a downstream of the variable throttle 8 c and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism that is, the width of the fluctuation in the pressure of the fuel is smaller than the width of the fluctuation in the pressure of the fuel upstream of the variable throttle 8 c . Accordingly, in the inter-intake path injection for supplying the fuel to the engine only by the first fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be suppressed.
- the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q.
- the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened.
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 2 (at a step ST 6 ).
- the fuel injecting apparatus 1 - 3 performs inter-cylinder and inter-intake path injection (at a step ST 8 ).
- the fuel injecting apparatus 1 - 3 performs inter-intake path injection (at a step ST 12 ).
- FIG. 9 is a diagram for explaining a relationship between a width of a fluctuation in the pressure of a fuel and the number of revolutions of the engine.
- FIG. 10 is a flow chart of another injection control of the fuel injecting apparatus according to the third embodiment.
- FIG. 11 is a map that represents a relationship between a throttling amount of a variable throttle and the number of revolutions of the engine.
- the fuel injecting method based on the number of revolutions Ne of the engine as the operating state of the fuel supplying apparatus 1 - 3 will be explained.
- the fuel injecting method of the fuel injecting apparatus 1 - 3 shown in FIG. 10 is basically equal in flow to that of the fuel injecting apparatus 1 - 3 shown in FIG. 8 . Therefore, the fuel injecting method will be explained simply herein.
- the magnitude of the pulsation generated in the high-pressure pump 9 is increased in proportion to an increase in the number of revolutions Ne of the engine. Namely, the width of the fluctuation in the pressure of the fuel in the high-pressure pump 9 is increased. This is because the cam 9 a that drives the high-pressure pump 9 , i.e., that reciprocates the plunger of the high-pressure pump 9 is rotated when the crankshaft of the engine is rotated.
- the pulsation in this inter-intake path fuel injection mechanism 3 exhibits a different characteristic from that of the pulsation in the high-pressure pump 9 .
- the pulsation is large, that is, the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is large until the number of revolutions Ne of the engine reaches a predetermined number of revolutions of the engine.
- the magnitude of the pulsation reaches a peak, that is, the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 reaches a peak B.
- the pulsation is smaller, that is, the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is smaller. Accordingly, at the predetermined number of revolutions of the engine, the magnitude of the pulsation in the inter-intake path fuel injection mechanism 3 , that is, the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is a maximum.
- the predetermined number of revolutions of the engine, at which the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is the maximum, is determined by a path length from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 .
- Another injection control flow of the fuel injecting apparatus shown in FIG. 10 is intended to control the throttling amount of the variable throttle 8 c to be a maximum at the predetermined number of revolutions of the engine at which the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 reaches the peak B by the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism.
- the processing unit 5 b of the injection controller 5 calculates the fuel supply amount Q to be supplied to the engine (at a step ST 1 ).
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 1 (at a step ST 2 ).
- the injection controller 5 that serves as the control unit determines that a fuel injection range is an inter-cylinder injection range based on the operating state of the engine that serves as the internal combustion engine, as shown in FIG. 4 .
- the processing unit 5 b outputs the output signal for controlling the throttling amount of the variable throttle 8 c at zero, that is, the output signal so as not to throttle the variable throttle 8 c , to this variable throttle 8 c (at a step ST 13 ).
- the processing unit 5 b then outputs the output signals for the injection timings and the injection amounts to the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 3 performs inter-cylinder injection (at a step ST 4 ).
- the processing unit 5 b determines whether the present number of revolutions Ne of the engine is within a range between the numbers of revolutions Ne 1 and Ne 2 of the engine in the map stored in the storage unit 5 c and shown in FIG. 11 (at a step ST 17 ). According to the map shown in FIG. 11 , when the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is increased by the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 , the throttling amount of the variable throttle 8 c is increased.
- the throttling amount of the variable throttle 8 c is reduced.
- the number of revolutions of the engine when the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is caused by the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is set at Ne 1 .
- the number of revolutions of the engine at the timing of that the width of the fluctuation in the pressure of the fuel ends is set at Ne 2 .
- the processing unit 5 b calculates the throttling amount of the variable throttle 8 c based on the map shown in FIG. 11 , and outputs an output signal for the throttling amount to the variable throttle 8 c (at a step ST 18 ).
- the processing unit 5 b outputs a control signal for setting the throttling amount of the variable throttle 8 c at zero, that is, an output signal so as not to throttle the variable throttle 8 c , to this variable throttle 8 c (at a step ST 16 ).
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 2 (at a step ST 6 ). When the accelerator opening L is smaller than the predetermined value L 2 , the injection controller 5 that serves as the control unit determines that the injection range is the inter-cylinder and inter-intake path injection range, as shown in FIG. 4 .
- the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 3 performs inter-cylinder and inter-intake path injection (at a step ST 8 ).
- the pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the first fuel supply system 8 through the branch path 10 a of the second fuel supply system 10 .
- the magnitude of the variable throttle 8 c of the low-pressure path 8 a is increased in proportion to the operating state of the engine, that is, the number of revolutions of the engine at which the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 occurs. Therefore, the magnitude of the pulsation propagated to the inter-intake path fuel injection mechanism 3 is reduced.
- the pulsation propagated to the low-pressure path 8 a downstream of this variable throttle 8 c and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism that is, the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is smaller than a width of a fluctuation in the pressure of the fuel upstream of the variable throttle 8 c . Accordingly, in the inter-cylinder and inter-intake path injection for supplying the fuel to the engine by both the first fuel injection mechanism and the second fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be suppressed.
- the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d can be similarly, therefore, made substantially equal to the fuel supply amount Q.
- the injection controller 5 that serves as the control unit determines that the injection range is an inter-intake path injection range as shown in FIG. 4 .
- the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 3 performs inter-intake path injection (at a step ST 12 ).
- the pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the first fuel supply system 8 through the branch path 10 a of the second fuel supply system 10 .
- the throttle amount of the variable throttle 8 c of the low-pressure path 8 a is increased in proportion to the operating state of the engine, that is, based on the number of revolutions of the engine at which the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 occurs. Therefore, the magnitude of the pulsation propagated to the inter-intake path fuel injection mechanism 3 is reduced.
- the pulsation propagated to the low-pressure path 8 a downstream of this variable throttle 8 c and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism that is, the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is smaller than a width of a fluctuation in the pressure of the fuel upstream of the variable throttle 8 c . Accordingly, in the inter-cylinder and inter-intake path injection for supplying the fuel to the engine only by the first fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be suppressed.
- the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d can be similarly, therefore, made substantially equal to the fuel supply amount Q.
- the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine particularly, the fuel injection amount by which the fuel is injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism can be lessened.
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 2 (at a step ST 6 ).
- the fuel injecting apparatus 1 - 3 performs inter-cylinder and inter-intake path injection (at a step ST 8 ).
- the fuel injecting apparatus 1 - 3 performs inter-intake path injection (at a step ST 12 ).
- FIG. 12 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a fourth embodiment.
- a fuel injecting apparatus 1 - 4 shown in FIG. 12 differs from the fuel injecting apparatus 1 - 1 shown in FIG. 1 in that a fuel supplying apparatus 2 - 4 includes a check valve 8 d in stead of the shutoff valve 10 d .
- the basic configuration of the fuel injecting apparatus 1 - 4 shown in FIG. 12 is the same as that of the fuel injecting apparatus 1 - 1 shown in FIG. 1 , the explanation of the basic configuration of the fuel injecting apparatus 1 - 4 will be omitted.
- the fuel injecting method of the fuel injecting apparatus 1 - 4 is the same as the fuel injecting method of the fuel injecting apparatus 1 - 2 shown in FIG. 6 , the explanation therefor will also be omitted.
- the check valve 8 d that serves as a pulsation propagation suppressing unit is provided between the branch part A at which the second fuel supply system 10 is branched and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism.
- Reference numeral 8 e denotes a safety valve that prevents an excessive pressure rise of the fuel in the inter-intake path fuel injection mechanism 3 .
- FIG. 13A is a diagram for explaining a width of a fluctuation in the pressure of the fuel in a low-pressure path upstream of a check valve.
- FIG. 13B is a diagram for explaining a width of a fluctuation in the pressure of the fuel in the low-pressure path downstream of the check valve.
- the width of the fluctuation in the pressure of the fuel in the low-pressure path 8 a due to the pulsation propagated from the high-pressure pump 9 to the low-pressure path 8 a of the first fuel supply system 8 forms a curve on which an upper limit and a lower limit appear at constant intervals.
- the check valve 8 d is not opened unless an upstream fuel pressure is higher than a downstream fuel pressure.
- the fuel pressure in the inter-intake path fuel injection mechanism 3 downstream of the check valve 8 d is kept at a constant higher pressure than that of the fuel in the low-pressure path 8 a upstream of the check valve 8 d .
- This constant higher pressure is a pressure near the upper limit of the width of the fluctuation in the pressure of the fuel in the low-pressure path 8 a upstream of the check valve 8 d due to the pulsation propagated from the high-pressure pump 9 to the low-pressure path 8 a that constitutes the first fuel supply system 8 . That is, as shown in FIG.
- the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel supply mechanism 3 is only near the upper limit of the fluctuation in the pressure of the fuel in the low-pressure path 8 a upstream of the check valve 8 d . Therefore, when the fuel injecting apparatus 14 performs inter-cylinder and inter-intake path injection or inter-intake path injection, the injection amount of the fuel from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism can be made substantially equal to the fuel supply amount Q. This is because the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be suppressed.
- the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism can be lessened.
- the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is kept at the constant higher pressure, the fuel injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 can be transformed to fine particles. Thus, combustion efficiency and an emission of the engine can be enhanced.
- the driving of the low-pressure pump 7 may be stopped.
- the check valve 8 d is not opened unless the pressure of the fuel in the low-pressure path 8 a of the first fuel supply system 8 upstream of the check valve 8 d is higher than that of the fuel in the inter-intake path fuel injection mechanism 3 downstream of the check valve 8 d . Therefore, when the fuel in the inter-intake path fuel injection mechanism 3 is kept at the constant higher pressure and the flow rate of the fuel is low, the fuel can be supplied into the inter-cylinder fuel injection mechanism 4 that serves as the second fuel injection mechanism by driving the high-pressure pump 9 .
- the fuel can be supplied into the inter-cylinder fuel injection mechanism 4 that serves as the second fuel injection mechanism by the high-pressure pump 9 when the fuel injecting apparatus 1 - 4 performs inter-cylinder injection.
- a power consumption required when driving the low-pressure pump 7 can be thereby reduced.
- FIG. 14 is a configuration diagram of a fuel injecting apparatus that includes a fuel supplying apparatus according to a fifth embodiment.
- a fuel injecting apparatus 1 - 5 shown in FIG. 14 differs from the fuel injecting apparatus 1 - 1 shown in FIG. 1 in that a fuel supplying apparatus 2 - 5 does not include the shutoff valve 10 d .
- the basic configuration of the fuel injecting apparatus 1 - 4 shown in FIG. 14 is the same as that of the fuel injecting apparatus 1 - 1 shown in FIG. 1 , the explanation of the basic configuration of the fuel injecting apparatus 1 - 4 will be omitted.
- the fuel injecting method of the fuel injecting apparatus 1 - 5 is the same as the fuel injecting method of the fuel injecting apparatus 1 - 2 shown in FIG. 6 , the explanation therefor will also be omitted.
- the predetermined number of revolutions of the engine at which the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is increased i.e., the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is the maximum is determined by the path length from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 .
- this path length is set long, in particular, the predetermined number of revolutions of the engine at which the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is the maximum is a small number.
- a fuel injecting apparatus 1 - 5 shown in FIG. 14 set a path length H from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism so that the predetermined number of revolutions of the engine, at which the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is increased, that is, the width of the fluctuation in the pressure of the fuel in inter-intake path fuel injection mechanism 3 is the maximum, is out of a common range of the number of revolutions of the engine, e.g., 500 to 7000 rpm.
- the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is not increased.
- the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is not the maximum. Accordingly, when the fuel injecting apparatus 1 - 5 performs inter-cylinder and inter-intake path fuel injection or inter-intake path fuel injection, the injection amount of the fuel from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 can be made substantially equal to the fuel supply amount Q.
- path length H is a combination of a length of the branch path 10 a of the second fuel supply system 10 and that of the low-pressure path 8 a that constitutes the first fuel supply system 8 from the part A at which the second fuel supply system 10 is branched to the inter-intake path fuel injection mechanism 3 .
- the path length H is preferably set such that the predetermined number of revolutions of the engine, at which the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is increased, that is, the width of the fluctuation in the pressure of the fuel in inter-intake path fuel injection mechanism 3 is the maximum, is smaller than the number of revolutions during idling in the common range of the number of revolutions of the engine. This is because the path length from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be easily set large.
- FIG. 15 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a sixth embodiment.
- FIG. 16 is a diagram for explaining a relationship between the width of a fluctuation in the pressure of the fuel and the number of revolutions of the engine.
- a fuel injecting apparatus 1 - 6 shown in FIG. 15 differs from the fuel injecting apparatus 1 - 1 shown in FIG. 1 in that a fuel supplying apparatus 2 - 6 includes a switching valve 8 f and an extension path 8 g in stead of the shutoff valve 10 d . Since the basic configuration of the fuel injecting apparatus 1 - 6 shown in FIG. 15 is the same as that of the fuel injecting apparatus 1 - 1 shown in FIG. 1 , the explanation of the basic configuration of the fuel injecting apparatus 1 - 6 will be omitted.
- the switching valve 8 f and the extension path 8 g that serve as a pulsation generating number-of-revolution change unit is provided between the part A at which the second fuel supply system 10 is branched and the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism.
- the switching valve 8 f switches over between direct supply by the low-pressure path 8 a downstream of the switching valve 8 f and supply through the extension path 8 when the fuel in the low-pressure path 8 a upstream of the switching valve 8 f is supplied to the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism. It is noted that a switching of the switching valve 8 f is controlled by an output signal from the injection controller 5 .
- the path length H from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 when the switching valve 8 f switches over to the direct supply of the fuel by the low-pressure path 8 a downstream of the witching valve 8 f is H 1 . It is also assumed herein that the path length H from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 when the switching valve 8 f switches over to the supply of the fuel through the extension path 8 g is H 2 . If so, the path length H 2 is longer than H 1 .
- a characteristic of the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 caused by the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is represented by D shown in FIG. 16 .
- the predetermined number of revolutions of the engine at which the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is increased, that is, the width of the fluctuation in the pressure is a peak B is Ne 3 .
- a characteristic of the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 caused by the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is represented by E shown in FIG. 16 .
- the predetermined number of revolutions of the engine at which the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is increased, that is, the width of the fluctuation in the pressure is a peak C is Ne 4 that is lower than the predetermined number of revolutions Ne 3 of the engine. This is because the path length H 2 is longer than H 1 .
- the switching valve 8 f by switching the path length from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism by using the switching valve 8 f , the number of revolutions of the engine at which the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is increased can be changed.
- FIG. 17 is a flow chart of injection control of a fuel injecting apparatus according to a sixth embodiment.
- the flow of the fuel injecting method of the fuel injecting apparatus 1 - 6 shown in FIG. 17 is basically the same as that of the fuel injecting method of the fuel injecting apparatus 1 - 2 shown in FIG. 6 . Therefore, the flow will be explained simply.
- the processing unit 5 b of the fuel controller 5 calculates the fuel supply amount Q supplied to the engine (at a step ST 1 ).
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 1 (at a step ST 2 ). When the accelerator opening L is smaller than the predetermined value L 1 , the injection controller 5 that serves as the control unit determines that a fuel injection range is an inter-cylinder injection range based on the operating state of the engine that serves as the internal combustion engine, as shown in FIG. 4 . The processing unit 5 b then outputs output signals for the injection timings and the injection amounts to the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 of the inter-cylinder fuel injection mechanism 4 , and the fuel injecting apparatus 1 - 6 performs inter-cylinder injection (at a step ST 4 ).
- the processing unit 5 b determines whether a present number of revolutions Ne′ of the engine is smaller than a predetermined value Ne 5 (at a step ST 19 ).
- the present number of revolutions Ne′ of the engine is the number of revolutions of the engine input to the injection controller 5 .
- the predetermined value Ne 5 is the number of revolutions of the engine at a point F at which the characteristic D of the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 when the path length H is H 1 crosses the characteristic E of the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 when the path length H is H 2 as shown in FIG.
- the processing unit 5 b changes the path length H from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 to H 1 (at a step ST 20 ). Namely, the processing unit 5 b outputs an output signal to the switching valve 8 f so that the fuel in the low-pressure path 8 a upstream of the switching valve 8 f can be supplied to the inter-intake path fuel injection mechanism 3 directly from the low-pressure path 8 a downstream of the switching valve 8 f .
- the processing unit 5 b changes the path length H from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 to H 2 (at a step ST 21 ). Namely, the processing unit 5 b outputs an output signal to the switching valve 8 f so that the fuel in the low-pressure path 8 a upstream of this switching valve 8 f can be directly supplied to the inter-intake path fuel injection mechanism 3 through the extension path 8 g .
- the path length is changed so that the number of revolutions of the engine at which the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is increased, i.e., the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 reaches a peak, is out of the present number of revolutions of the internal combustion engine.
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 2 (at a step ST 6 ). When the accelerator opening L is smaller than the predetermined value L 2 , the injection controller 5 that serves as the control unit determines that the injection range is an inter-cylinder and inter-intake path injection range as shown in FIG. 4 .
- the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 6 performs inter-cylinder and inter-intake path injection (at a step ST 8 ).
- the pulsation generated in the high-pressure pump 9 is propagated to the inter-intake path fuel injection mechanism 3 .
- the path length H from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is switched to either the path length H 1 or H 2 by the switching valve 8 f so that the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is reduced, i.e., the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is reduced at the present number of revolutions Ne′ of the engine. Therefore, the pulsation propagated to the inter-intake path fuel injection mechanism 3 is reduced.
- the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be suppressed.
- the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q.
- the injection controller 5 that serves as the control unit determines that the injection range is the inter-intake path injection range, as shown in FIG. 4 .
- the processing unit 5 b outputs the output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 6 performs inter-intake path injection (at a step ST 12 ).
- the pulsation generated in the high-pressure pump 9 is propagated to the inter-intake path fuel injection mechanism 3 .
- the path length H from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is switched to either the path length H 1 or H 2 by the switching valve 8 f so that the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is reduced, i.e., the width of the fluctuation in the pressure of the fuel in the inter-intake path fuel injection mechanism 3 is reduced at the present number of revolutions Ne′ of the engine. Therefore, the pulsation propagated to the inter-intake path fuel injection mechanism 3 is reduced.
- the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 can be suppressed.
- the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q.
- the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened.
- FIG. 18 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a seventh embodiment.
- a fuel injecting apparatus 1 - 7 shown in FIG. 18 is a fuel injecting apparatus that includes a fuel supplying apparatus mounted in a V6 engine having six cylinders in a V configuration wherein three cylinders of the six cylinders composes one cylinder group. Each cylinder group is provided in one of left and right banks of the engine. Since the basic configuration of the fuel injecting apparatus 1 - 7 shown in FIG. 18 is the same as that of the fuel injecting apparatus 1 - 1 shown in FIG. 1 , the basic configuration of the fuel injecting apparatus 1 - 7 will be explained simply herein. Furthermore, since the fuel injecting method performed by the fuel injecting apparatus 1 - 7 is the same as fuel injecting method of the fuel injecting apparatus 1 - 2 shown in FIG. 6 , the explanation therefor will be omitted.
- the fuel injecting apparatus 1 - 7 includes a fuel supplying apparatus 2 - 7 , a right inter-intake path fuel injection mechanism 31 and a left inter-intake path fuel injection mechanism 32 that serve as first fuel injection mechanisms, a right inter-cylinder fuel injection mechanism 41 and a left inter-cylinder fuel injection mechanism 42 that serve as second fuel injection mechanisms, and an injection controller 5 that serves as a control unit.
- the first fuel supply system 8 of the fuel supplying apparatus 2 - 7 includes the low-pressure path 8 a , a right branch path 8 h for supplying a fuel in this low-pressure path 8 a from a branch part D to the right inter-intake path fuel injection mechanism 31 , and a left branch path 8 i for supplying the fuel in this low-pressure path 8 a from the branch part D to the left inter-intake path fuel injection mechanism 32 .
- the right branch path 8 h differs in path length from the left branch path 8 i .
- the second fuel supply system 10 includes the branch path 10 a , the high-pressure path 10 b for supplying the fuel further pressurized by the high-pressure pump 9 to the right inter-cylinder fuel injection mechanism 41 and the left inter-cylinder fuel injection mechanism 42 of the inter-cylinder fuel injection mechanism 4 , a communication path 10 g that communicates the right inter-cylinder fuel injection mechanism 41 with the left inter-cylinder fuel injection mechanism 42 , and the release path 10 c.
- the right inter-intake path fuel injection mechanism 31 and the right inter-cylinder fuel injection mechanism 41 include inter-intake path injectors 31 a to 31 c and inter-cylinder injectors 41 a to 41 c , respectively, to correspond to three cylinders included in the right bank (not shown in figures).
- the left inter-intake path fuel injection mechanism 32 and the left inter-cylinder fuel injection mechanism 42 include inter-intake path injectors 32 a to 32 c and inter-cylinder injectors 42 a to 42 c , respectively, to correspond to three cylinders included in a left bank (not shown in figures).
- the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 include fuel distribution pipes 31 d and 32 d that distribute the fuel supplied from the right branch path 8 h and the left branch path 8 i to the right inter-intake path injectors 31 a to 31 c and to the left inter-intake path injectors 32 a to 32 c , respectively.
- the right inter-cylinder fuel injection mechanism 41 and the left inter-cylinder fuel injection mechanism 42 include fuel distribution pipes 41 d and 42 d that distribute the fuel supplied from the high-pressure path 10 b or the communication path 10 g of the second fuel supply system 10 to the right inter-cylinder injectors 41 a to 41 c and to the left inter-cylinder injectors 42 a to 42 c , respectively.
- FIG. 19A is a diagram for explaining a width of a fluctuation in the pressure of the fuel when the right and the left branch paths are equal in path length.
- FIG. 19B is a diagram for explaining the width of the fluctuation in the pressure of the fuel when the right and the left branch paths differ in path length. As shown in FIG.
- the fuel injecting apparatus 1 - 7 When the fuel injecting apparatus 1 - 7 performs inter-cylinder and inter-intake path injection or inter-intake path injection to supply the fuel to the engine, the fuel is injected alternately from the right inter-intake path injectors 31 a to 31 c of the right inter-intake path fuel injection mechanism 31 and the left inter-intake path injectors 32 a to 32 c of the left inter-intake path fuel injection mechanism 32 . Namely, as shown in FIG.
- the fuel is injected from the respective injectors in an order of the right inter-intake path injector 31 a , the left inter-intake path injector 32 a , the right inter-intake path injector 31 b , the left inter-intake path injector 32 b , the right inter-intake path injector 31 c , the left inter-intake path injector 32 c .
- the right inter-intake path injectors 31 a to 31 c inject the fuel at a time of an upper limit of the width of the fluctuation in the pressure of the fuel in the right inter-intake path fuel injection mechanism 31 .
- the left inter-intake path injectors 32 a to 32 c inject the fuel at a time of a lower limit of the width of the fluctuation in the pressure of the fuel in the left inter-intake path fuel injection mechanism 32 .
- valve opening time i.e., current-carrying time
- the fuel injecting apparatus 1 - 7 including the fuel supplying apparatus 2 - 7 according to the seventh embodiment is constituted so that the right branch path 8 h differs in path length from the left branch path 8 i , and so that the phase of the pulsation propagated from the high-pressure pump 9 to the right inter-intake path fuel injection mechanism 31 is inverted from that of the pulsation propagated from the high-pressure pump 9 to the left inter-intake path fuel injection mechanism 32 .
- the phase of the cycle of the width of the fluctuation in the pressure of the fuel in the left inter-intake path fuel injection mechanism 32 is inverted from that of the cycle of the width of the fluctuation in the pressure of the fuel in the right inter-intake path fuel injection mechanism 31 . It is, therefore, possible to prevent the irregularity between the injection amount of the fuel injected from the right inter-intake path fuel injection mechanism 31 and that from the left inter-intake path fuel injection mechanism 32 .
- the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied to the engine, particularly, the injection amount of the fuel injected from the injectors 31 a to 32 c of the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 that serve as the first fuel injection mechanisms can be lessened.
- the injection controller 5 controls the injection of the fuel from the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 based on respective predetermined phases of the pulsations propagated from the high-pressure pump 9 to the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 that serve as the first fuel injection mechanisms. Namely, the injection controller 5 controls the injection of the fuel from the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 so as to inject the fuel from the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 at the respective predetermined phases of the pulsations.
- the predetermined phases of the pulsations are upper limits or lower limits of the pulsation, that is, upper limits or lower limits of the fluctuations in the pressure of the fuel in the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 that serve as the first fuel injection mechanisms, respectively. Therefore, when the fuel is injected from the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 at the upper limits of the fluctuations in the pressure of the fuel in the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 , the injected fuel can be transformed to fine particles. Thus, combustion efficiency and an emission of the engine can be thereby enhanced.
- the pressure of the fuel in the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 is lower than that of the fuel supplied into the right inter-intake path fuel injection mechanism 31 and the left inter-intake path fuel injection mechanism 32 by the low-pressure pump 7 . It is thereby possible to improve dynamic ranges of the respective injectors 31 a to 31 c , that is, inject less fuel from the respective injectors 31 a to 31 c.
- FIG. 20 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to an eighth embodiment.
- a fuel injecting apparatus 1 - 8 shown in FIG. 20 differs from the fuel injecting apparatus 1 - 5 shown in FIG. 14 in that a fuel pressure sensor 3 f is provided in the fuel injecting apparatus 1 - 8 . Since the basic configuration of the fuel injecting apparatus 1 - 8 shown in FIG. 20 is the same as that of the fuel injecting apparatus 1 - 5 shown in FIG. 14 , the explanation therefor will be omitted.
- the fuel pressure sensor 3 f is provided in the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism. This fuel pressure sensor 3 f detects the pressure of the fuel in the inter-intake path fuel injection mechanism 3 , that is, in the fuel distribution pipe 3 e . An output signal corresponding to the pressure of the fuel in the fuel distribution pipe 3 e and detected by the fuel pressure sensor 3 f is input to the injection controller 5 .
- FIG. 21 is a flow chart of injection control of the fuel injecting apparatus according to the eighth embodiment.
- the flow of the fuel injecting method performed by the fuel injecting apparatus shown in FIG. 21 is basically the same as that of the fuel injecting method performed by the fuel injecting apparatus 1 - 2 shown in FIG. 6 . Therefore, the flow will be explained simply.
- the processing unit 5 b of the fuel controller 5 calculates the fuel supply amount Q to be supplied to the engine (at a step ST 1 ).
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 1 (at a step ST 2 ). When the accelerator opening L is smaller than the predetermined value L 1 , the injection controller 5 that serves as the control unit determines that the injection range is the inter-cylinder injection range, based on the operating state of the engine that serves as the internal combustion engine, as shown in FIG. 4 .
- the processing unit 5 b outputs output signals for the injection timings and the injection amounts to the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 8 performs inter-cylinder injection (at a step ST 4 ).
- the processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L 2 (at a step ST 6 ).
- the injection controller 5 that serves as the control unit determines that the injection range is the inter-cylinder and inter-intake path injection range as shown in FIG. 4 .
- the control unit 5 b determines whether the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism is large (at a step ST 22 ).
- the injection controller 5 can determines whether the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 is large based on the output signal that is corresponding to the pressure in the inter-intake path fuel injection mechanism 3 and that output from the fuel pressure sensor 3 f.
- the processing unit 5 b calculates an increase amount of the inter-cylinder injection in proportion to the magnitude of this pulsation (at a step ST 23 ).
- an injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and that of the fuel injected from the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 are determined by the map as shown in FIG. 4 .
- the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d is reduced, and the injection amount of the fuel injected from the inter-cylinder injectors 4 a to 4 d is increased without changing the fuel supply amount Q of the fuel to be supplied to the engine.
- a ratio of the fuel supply amount by which the fuel is supplied to the engine by inter-intake path injection to the fuel supply amount by which the fuel is supplied to the engine by inter-cylinder injection is changed.
- the processing unit 5 b then outputs output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 based on the inter-cylinder injection increase amount calculated at the step ST 23 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 8 performs inter-cylinder and inter-intake path injection (at a step ST 8 ).
- the injection amount of the fuel from the inter-intake path injectors 3 a to 3 d is reduced. Therefore, even if the pulsation generated in the high-pressure pump 9 is propagated to the inter-intake path fuel injection mechanism 3 , the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened.
- the processing unit 5 b If determining that the pulsation is not large at the step ST 22 , the processing unit 5 b outputs output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 based on the map shown in FIG. 4 , and the fuel injecting apparatus 1 - 8 perform inter-cylinder and inter-intake path injection (at a step ST 8 ).
- the injection controller 5 that serves as the control unit determines that the injection range is the inter-intake path injection range as shown in FIG. 4 .
- the processing unit 5 b determines whether the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism is large (at a step ST 24 ).
- the processing unit 5 b outputs output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 and the inter-cylinder injectors 4 a to 4 d of the inter-cylinder fuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1 - 8 performs inter-cylinder and inter-intake path injection (at a step ST 25 ).
- the injection amount of the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 is determined by the map as shown in 4 .
- the fuel is injected from the inter-cylinder injectors 4 a to 4 d without changing the fuel supply amount Q of the fuel to be supplied to the engine, thereby reducing the injection amount of the fuel injected from the inter-intake path injectors 3 a to 3 d . Accordingly, in the inter-intake path injection range for supplying the fuel to the engine only by the first fuel injection mechanism, the injection amount of the fuel from the inter-intake path injectors 3 a to 3 d is reduced.
- the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened.
- the processing unit 5 b If determining that the pulsation is not large at the step ST 24 , the processing unit 5 b outputs output signals for the injection timings and the injection amounts to the inter-intake path injectors 3 a to 3 d of the inter-intake path fuel injection mechanism 3 based on the map shown in FIG. 4 , and the fuel injecting apparatus 1 - 8 performs inter-intake path injection (at a step ST 12 ).
- the fuel controller 5 determines whether the pulsation propagated from the high-pressure pump 9 to the inter-intake path fuel injection mechanism 3 that serves as the first fuel injection mechanism is large, based on the pressure of the fuel in the inter-intake path fuel injection mechanism 3 output from the fuel pressure sensor 3 f .
- the present invention is not limited to this instance.
- the map that represents the relationship between the number of revolutions Ne of the engine and the magnitude of the pulsation may be stored in the storage unit 5 c of the injection controller 5 based on the number of revolutions Ne of the engine and the fuel supply amount Q by which the fuel is supplied to the engine, and the magnitude of the pulsation may be determined from the number of revolutions Ne of the engine.
- the processing unit 5 b may output the output signals for the injection timings and the injection amounts to the inter-cylinder injectors 4 a to 4 d , and the fuel injecting apparatus 1 - 8 may perform only inter-intake path injection.
- the internal combustion engine fuel supplying apparatus and the internal combustion engine fuel injecting apparatus exhibit the following effects.
- the propagation of the pulsation generated in the high-pressure pump to the first fuel injection mechanism is suppressed.
- the irregularity in the injection amount of the fuel among the first fuel injection mechanism for each cylinder group is suppressed.
- An injection amount of the fuel injected from the first fuel injection mechanism is reduced.
- the influence of the pulsation generated from the high-pressure pump on a fuel supply amount, by which the fuel is supplied to the internal combustion engine can be thereby lessened.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
A fuel supplying apparatus of an internal combustion engine includes a first fuel supply system, a second fuel supply system, and a pulsation propagation suppressing unit. The first fuel supply system pressurizes a fuel by a low-pressure pump, and supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism. The second fuel supply system is branched from the first fuel supply system, further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism. The pulsation propagation suppressing unit is provided in at least one of the first fuel supply system and the second fuel supply system, and suppresses propagation of a pulsation generated in the high-pressure pump to the first fuel injection mechanism.
Description
- This is a Continuation of application Ser. No. 10/940,647 filed Sep. 15, 2004. The disclosure of the prior application is hereby incorporated by reference herein in its entirety.
- 1) Field of the Invention
- The present invention relates to a fuel supplying apparatus and a fuel injecting apparatus of an internal combustion engine.
- 2) Description of the Related Art
- As methods for supplying a fuel to an internal combustion engine such as a gasoline engine or a diesel engine mounted in a vehicle such as a passenger vehicle or a truck, there are known an inter-cylinder injection method for directly injecting a fuel into cylinders of an internal combustion engine, an inter-intake path injection method for injecting a fuel into an intake path through which an air is supplied to the cylinder of the internal combustion engine, and an inter-cylinder/inter-intake path injection method that is a combination of the two methods, i.e., method for switching over between inter-cylinder injection and inter-intake path injection according to an operating state of the internal combustion engine.
- As an internal combustion engine fuel injecting system that performs the inter-cylinder/inter-intake path injection according to the operating state of the internal combustion engine, there is known a system disclosed in, for example, Japanese Patent Application Laid-open Publication No. H7-103048. This internal combustion engine fuel injecting apparatus includes a fuel supplying system, a first fuel injection mechanism including an inter-intake path injector (an injection valve for injecting a fuel into an intake path of internal combustion engine) for the inter-intake path injection, and a second fuel injection mechanism including an inter-cylinder injector (a fuel injection valve for injecting a fuel into cylinders) for the inter-cylinder injection. The fuel supplying apparatus includes a first fuel supply system that pressurizes the fuel in a fuel tank by a low-pressure pump and that supplies the pressurized fuel to the first fuel injection mechanism, and a second fuel supply system that further pressurize the fuel pressurized by the low-pressure pump using the high-pressure pump and that supplies the pressurized fuel to the second fuel injection mechanism. The internal combustion engine fuel injecting apparatus controls injection of the first fuel injection mechanism and that of the second fuel injection mechanism according to a map that is generated based on a fuel supply amount (fuel injection amount), an accelerator opening (accelerator pedal depression amount), and the like. Specifically, ranges on the map is divided into three ranges, namely, an injection range for fuel injection only by the first fuel injection mechanism, an injection range for fuel injection by both the first and the second fuel injection mechanisms, and an injection range for fuel injection only by the second fuel injection mechanism. Based on the map, a control unit controls injection of the first fuel injection mechanism and/or the second fuel injection mechanism according to the operating state of the internal combustion engine.
- Meanwhile, a conventional internal combustion engine fuel injecting apparatus includes a high-pressure pump for supplying the high-pressure fuel to the second fuel injection mechanism. This high-pressure pump is constituted so that a cam is driven by rotation of a crankshaft of the internal combustion engine to reciprocate a plunger of the high-pressure pump, and to thereby further pressurize the fuel pressurized by the low-pressure pump. This high-pressure pump continues to be driven by the rotation of the crankshaft of the internal combustion engine even when the control unit controls the inter-cylinder injectors not to inject a fuel, that is, the second fuel injection mechanism is not actuated. Therefore, pulsation occurs when the high-pressure pump absorbs the fuel from the second fuel supply system or returns an excessive fuel to a fuel tank and the like. This pulsation fluctuates a pressure of the fuel in paths of the second fuel supply system and the first fuel supply system, i.e., fluctuates a fuel pressure. This pulsation fluctuates of the fuel pressure is propagated to the first fuel injection mechanism. The control unit controls an injection timing and an injection amount of the fuel injected from the first fuel injection mechanism into an intake path of the internal combustion engine according to the operating state of the internal combustion engine. However, the propagation of the pulsation to the first fuel injection mechanism may possibly make it difficult or impossible to inject the fuel of an injection supply amount determined based on the operating state of the internal combustion engine, from the first fuel injection mechanism. In other words, the fuel in a fuel supply amount by which the fuel is to be supplied to the internal combustion engine may not properly be supplied from the fuel injecting apparatus.
- It is an object of the present invention to solve at least the problems in the conventional technology.
- A fuel supplying apparatus of an internal combustion engine according to one aspect of the present invention includes a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism; a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism; and a pulsation propagation suppressing unit that is provided in at least one of the first fuel supply system and the second fuel supply system, and that suppresses propagation of a pulsation generated in the high-pressure pump to the first fuel injection mechanism.
- A fuel supplying apparatus according to another aspect of the present invention includes a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism; and a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism, wherein a path length from the high-pressure pump to the first fuel injection mechanism is a length such that the number of revolutions of the internal combustion engine, at which a pulsation propagated from the high-pressure pump to the first fuel injection mechanism is increased, is out of a common range of the number of revolutions of the internal combustion engine.
- A fuel supplying apparatus according to still another aspect of the present invention includes a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism; a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism; and a pulsation generating number-of-revolutions change unit that changes the number of revolutions of the internal engine at which a pulsation propagated from the high-pressure pump to the first fuel injection mechanism is increased.
- A fuel supplying apparatus according to still another aspect of the present invention includes a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism; and a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel further pressurized by the high-pressure pump to a second fuel injection mechanism, wherein the first fuel injection mechanism is provided for each of cylinder groups of the internal combustion engine, and the first fuel supply system inverts a phase of a pulsation propagated from the high-pressure pump to the first fuel injection mechanism of the one of the cylinder groups, from a phase of the pulsation propagated from the high-pressure pump to the first fuel injection mechanism of the other cylinder group.
- A fuel injecting apparatus according to still another aspect of the present invention includes a fuel supplying apparatus including a first fuel supply system that pressurizes a fuel by a low-pressure pump and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism, and a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism; a first fuel injection mechanism that injects the fuel pressurized by the low-pressure pump; a second fuel injection mechanism that injects the fuel pressurized by the high-pressure pump; and a control unit that controls injection of the first fuel injection mechanism and injection of the second fuel injection mechanism according to the operating state of the internal combustion engine, wherein the first fuel injection mechanism is provided for each of cylinder groups of the internal combustion engine, the first fuel supply system inverts a phase of a pulsation propagated from the high-pressure pump to the first fuel injection mechanism of the one of the cylinder groups, from a phase of the pulsation propagated from the high-pressure pump to the first fuel injection mechanism of the other cylinder group, and the control unit controls the injection of the fuel from the first fuel injection mechanism based on a predetermined phase of the pulsation propagated from the high-pressure pump to the first fuel injection mechanism.
- A fuel injecting apparatus according to still another aspect of the present invention includes a low-pressure pump that pressurizes a fuel; a first fuel injection mechanism that injects the fuel pressurized by the low-pressure pump; a first fuel supply system that supplies the fuel from the low-pressure pump to the first fuel injection mechanism; a high-pressure pump that further pressurizes the fuel pressurized by the low-pressure pump; a second fuel injection mechanism that injects the fuel pressurized by the high-pressure pump; a second fuel supply system that is branched from the first fuel supply system, and that supplies the fuel to the second fuel injection mechanism; and a control unit that controls injection of the first fuel injection mechanism and injection of the second fuel injection mechanism according to an operating state of the internal combustion engine, wherein when the control unit determines that an injection range of the fuel is an injection range only by the first fuel injection mechanism based on the operating state of the internal combustion engine, and determines that a pulsation propagated from the high-pressure pump to the first fuel injection mechanism is large, the control unit exercises a control so as to inject the fuel at least from the second fuel injection mechanism. The control so as to inject the fuel at least from the second fuel injection mechanism involves not only injecting the fuel from the first fuel injection mechanism and the second fuel injection mechanism but also stopping the injection of the fuel from the first fuel injection mechanism and injecting the fuel only from the second fuel injection mechanism.
- A fuel injecting apparatus according to still another aspect of the present invention includes a low-pressure pump that pressurizes a fuel; a first fuel injection mechanism that injects the fuel pressurized by the low-pressure pump; a first fuel supply system that supplies the fuel from the low-pressure pump to the first fuel injection mechanism; a high-pressure pump that further pressurizes the fuel pressurized by the low-pressure pump; a second fuel injection mechanism that injects the fuel pressurized by the high-pressure pump; a second fuel supply system that is branched from the first fuel supply system, and that supplies the fuel to the second fuel injection mechanism; and a control unit that controls injection of the first fuel injection mechanism and injection of the second fuel injection mechanism according to an operating state of the internal combustion engine, wherein when the control unit determines that an injection range of the fuel is an injection range both by the first fuel injection mechanism and the second fuel injection mechanism based on the operating state of the internal combustion engine, and determines that a pulsation propagated from the high-pressure pump to the first fuel injection mechanism is large, the control unit exercises a control so as to increase the fuel injected from the second fuel injection mechanism. The control so as to increase the fuel injected from the second fuel injection mechanism involves not only increasing an injection amount of the fuel injected from the second fuel injection mechanism but also stopping the injection of the fuel from the first fuel injection mechanism and injecting the fuel only from the second fuel injection mechanism.
- The other objects, features, and advantages of the present invention are specifically set forth in or will become apparent from the following detailed description of the invention when read in conjunction with the accompanying drawings.
-
FIG. 1 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a first embodiment of the present invention; -
FIG. 2 is a cross sectional view of a cylinder of an internal combustion engine that includes the fuel injecting apparatus according to the first embodiment; -
FIG. 3 is a flow chart of injection control of the fuel injecting apparatus according to the first embodiment; -
FIG. 4 is a map that represents a relationship between a fuel supply amount and an accelerator opening; -
FIG. 5 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a second embodiment; -
FIG. 6 is a flow chart of injection control of a fuel injecting apparatus according to the second embodiment; -
FIG. 7 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a third embodiment; -
FIG. 8 is a flow chart of injection control of the fuel injecting apparatus according to the third embodiment; -
FIG. 9 is a diagram for explaining a relationship between a width of a fluctuation in the pressure of a fuel and the number of revolutions of the engine; -
FIG. 10 is a flow chart of another injection control of the fuel injecting apparatus according to the third embodiment; -
FIG. 11 is a map that represents a relationship between a throttling amount of a variable throttle and the number of revolutions of the engine; -
FIG. 12 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a fourth embodiment; -
FIG. 13A is a diagram for explaining a width of a fluctuation in the pressure of the fuel in a low-pressure path upstream of a check valve; -
FIG. 13B is a diagram for explaining a width of a fluctuation in the pressure of the fuel in the low-pressure path downstream of the check valve; -
FIG. 14 is a configuration diagram of a fuel injecting apparatus that includes a fuel supplying apparatus according to a fifth embodiment; -
FIG. 15 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a sixth embodiment; -
FIG. 16 is a diagram for explaining a relationship between the width of a fluctuation in the pressure of the fuel and the number of revolutions of the engine; -
FIG. 17 is a flow chart of injection control of a fuel injecting apparatus according to a sixth embodiment; -
FIG. 18 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a seventh embodiment; -
FIG. 19A is a diagram for explaining a width of a fluctuation in the pressure of the fuel when the right and the left branch paths are equal in path length; -
FIG. 19B is a diagram for explaining the width of the fluctuation in the pressure of the fuel when the right and the left branch paths differ in path length; -
FIG. 20 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to an eighth embodiment; and -
FIG. 21 is a flow chart of injection control of the fuel injecting apparatus according to the eighth embodiment. - Exemplary embodiments of the present invention will be explained in detail with reference to the accompanying drawings. Note that the present invention is not limited by the embodiments. Furthermore, components in the embodiments below may include ones essentially identical or easily occur to those skilled in the art. A fuel supplying apparatus or a fuel injecting apparatus including the fuel supplying apparatus to be explained hereinafter is an apparatus that supplies a fuel to an engine that is an internal combustion engine such as a gasoline engine or a diesel engine mounted in a vehicle such as a passenger vehicle or a truck. In the following embodiments, the fuel injecting apparatus including the fuel supplying apparatus is exemplary mounted in an inline four-cylinder engine having inline four cylinders or mounted in a V6 engine having six cylinders in a V configuration wherein three cylinders of the six cylinders composes one cylinder group. However, the present invention is not limited to the embodiments. The present invention is also applicable to an inline six-cylinder engine, a V8 engine having eight cylinders in a V configuration wherein four cylinders of the eight cylinders composes one cylinder group, or the like.
-
FIG. 1 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a first embodiment.FIG. 2 is a cross sectional view of a cylinder of an internal combustion engine that includes the fuel injecting apparatus according to the first embodiment. As shown inFIG. 1 , the fuel injecting apparatus 1-1 according to the first embodiment includes a fuel supplying apparatus 2-1, an inter-intake pathfuel injection mechanism 3 that serves as a first fuel injection mechanism, an inter-cylinderfuel injection mechanism 4 that serves as a second fuel injection mechanism, and aninjection controller 5 that serves as a control unit. - The fuel supplying apparatus 2-1 includes a
fuel tank 6 that stores a fuel, afeed pump 7, a firstfuel supply system 8, a high-pressure pump 9, and a secondfuel supply system 10. Thefeed pump 7 is an electric low-pressure pump that pressurizes the fuel in thefuel tank 6 to a predetermined pressure (low pressure), and that supplies the pressurized fuel to the inter-intake pathfuel injection mechanism 3. The firstfuel supply system 8 is composed by a low-pressure path 8 a for supplying the fuel pressurized at least by thefeed pump 7 to the inter-intake pathfuel injection mechanism 3. The high-pressure pump 9 is constituted as follows. Acam 9 a coupled to a crankshaft of an engine (not shown in figures) is rotated, whereby a plunger (not shown in figures) in the high-pressure pump 9 reciprocates. The reciprocation of the plunger causes the fuel pressurized by thefeed pump 7 in the low-pressure path 8 a, that is, in the firstfuel supply system 8, to be further pressurized to a predetermined pressure (high pressure), so as to supply the pressurized fuel to the inter-cylinderfuel injection mechanism 4. Namely, the high-pressure pump 9 is driven according to the operating state of the internal combustion engine. The high-pressure pump 9 includes a metering valve (not shown in figures) a valve opening of which is controlled by theinjection controller 5 to be explained later. The secondfuel supply system 10 includes abranch path 10 a for supplying the fuel pressurized in thefeed pump 7 at least from a branch part A of a low-pressure path 8 a of the firstfuel supply system 8 to the high-pressure pump 9, a high-pressure path 10 b for supplying the fuel further pressurized by the high-pressure pump 9 to the inter-cylinderfuel injection mechanism 4, and arelease path 10 c for returning an excessive fuel among the fuel supplied to the inter-cylinderfuel supply mechanism 4 to thefuel tank 6. - At the
branch path 10 a of the secondfuel supply system 10, i.e., an upstream side of the high-pressure pump 9 of the secondfuel supply system 10, a shutoff valve 11 d that is a pulsation propagation suppressing unit and that is controlled to be opened and closed by the injection controller to be explained later is provided.Reference numeral 7 a denotes a regulator that returns a part of the fuel discharged from thefeed pump 7 to thefuel tank 6 when the pressure of the fuel in the low-pressure path 8 a that constitutes the firstfuel supply system 8 is higher than the predetermined pressure, and that thereby keeps the pressure of the fuel in the low-pressure path 8 a, that is, the pressure of the fuel supplied to the inter-intake pathfuel injection mechanism 3 and the high-pressure pump 9 constant.Reference numeral 10 e denotes a check valve that keeps the pressure of the fuel supplied into the inter-cylinderfuel injection mechanism 4 constant.Reference numeral 10 f denotes a relief valve that returns a part of the fuel in the inter-cylinderfuel injection mechanism 4 to thefuel tank 6 when the pressure of the fuel supplied into the inter-cylinderfuel injection mechanism 4 is higher than the predetermined pressure and that keeps the pressure of the fuel in the inter-cylinderfuel injection mechanism 4 constant. - As shown in
FIG. 2 , the inter-intake pathfuel injection mechanism 3 and the inter-cylinderfuel injection mechanism 4 includeinter-intake path injectors 3 a to 3 d andinter-cylinder injectors 4 a to 4 d, respectively, to correspond tocylinders 20 a to 20 d of an inline four-cylinder engine. Theseinter-intake path injectors 3 a to 3 d andinter-cylinder injectors 4 a to 4 d are solenoid valves, and an injection amount of each injector is controlled by theinjection controller 5, to be explained later, based on an injection timing and a current-carrying time for the injector. As shown inFIG. 1 , the inter-intake pathfuel injection mechanism 3 includes afuel distribution pipe 3 e that distributes the fuel supplied from the low-pressure path 8 a of the firstfuel supply system 8 to the respectiveinter-intake path injectors 3 a to 3 d. The inter-cylinderfuel injection mechanism 4 includes afuel distribution pipe 4 e that distributes the fuel supplied from the high-pressure path 10 b of the secondfuel supply system 10 to the respectiveinter-cylinder injectors 4 a to 4 d. The inter-intake pathfuel injection mechanism 3 and the inter-cylinderfuel injection mechanism 4 include theinter-intake path injectors 3 a to 3 d and theinter-cylinder injectors 4 a to 4 d, respectively, to correspond to thecylinders 20 a to 20 d of the engine. Therefore, when the engine is, for example, a six-cylinder engine, the inter-intake pathfuel injection mechanism 3 and the inter-cylinderfuel injection mechanism 4 include six inter-intake path injectors and six inter-cylinder injectors, respectively. - As shown in
FIG. 2 , each of thecylinders 20 a to 20 d of the engine includes acylinder block 21, apiston 22, acylinder head 23 fixed to thecylinder block 21, afuel chamber 24 formed between thepiston 22 and thecylinder head 23, anintake valve 25, anexhaust valve 26, anintake port 27, anexhaust port 28, and anignition plug 29. Theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 are provided to be able to inject a fuel into anintake path 30 communicating with theintake port 27. Theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 are fixed to thecylinder head 23 and provided to be able to directly inject a fuel into thefuel chamber 24.Reference numeral 22 a denotes a concave portion for introducing the fuel injected from theinter-cylinder injectors 4 a to 4 d to neighborhoods of theignition plug 29. The inter-intake path injectors of the inter-intake pathfuel injection mechanism 3 may inject the fuel into a surge tank (not shown in figures) provided upstream of theintake path 30 so as to supply the fuel to the engine. - In
FIG. 1 , theinjection controller 5 receives input signals for the number of revolutions of the engine and the opening of the accelerator or the like from sensors attached to respective portions of the engine. Theinjection controller 5 outputs output signals for controlling injection timings and injection amounts of theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of theinter-cylinder injection mechanism 4, driving and stopping of the low-pressure pump 7, a valve opening of the metering valve of the high-pressure pump 9, the opening and closing of theshutoff valve 10 d, and the like, based on the received input signals and various maps stored in astorage unit 5 c. Specifically, theinjection controller 5 includes aninterface unit 5 a for input and output of the input signals and the output signals, aprocessing unit 5 b that calculates the injection timings, injection amounts, and the like of theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4, and thestorage unit 5 c that stores the maps and the like. It is noted that thisfuel injecting apparatus 5 may be realized by dedicated hardware. Theprocessing unit 5 b may be composed by a memory and a central processing unit (CPU) to realize a fuel injecting method, to be explained later, by loading a program based on the fuel injecting method, to be explained later, to the memory and executing the program. In addition, thisfuel injecting apparatus 5 may be incorporated into an engine control unit (ECU) that controls the engine. Further, thestorage unit 5 c can be constituted by a nonvolatile memory such as a flash memory and the like, a volatile memory that can perform only reading such as a read only memory (ROM), a volatile memory that can perform reading and writing such as a random access memory (RAM), or a combination thereof. - The fuel injecting method performed by the fuel injecting apparatus 1-1 will next be explained.
FIG. 3 is a flow chart of injection control of the fuel injecting apparatus according to the first embodiment.FIG. 4 is a map that represents a relationship between a fuel supply amount and an accelerator opening. As shown inFIG. 3 , theprocessing unit 5 b of thefuel controller 5 calculates a fuel supply amount Q to be supplied to the engine (at a step ST1). The fuel supply amount Q is determined by the map that depicts the relationship between the number of revolutions of the engine and the accelerator opening (not shown in figures) stored in thestorage unit 5 c, and the input signals for the number of revolutions of the engine and accelerator opening input to thefuel controller 5 from the engine. - The
processing unit 5 b determines whether the accelerator opening L is smaller than a predetermined value L1 (at a step ST2). When the accelerator opening L is smaller than the predetermined value L1, theinjection controller 5 that serves as the control unit determines that a fuel injection range is a fuel range of only the inter-cylinderfuel injection mechanism 4 that serves as the second fuel injection mechanism that is, an inter-cylinder injection range based on the operating state of the engine that serves as the internal combustion engine, as shown inFIG. 4 . Theprocessing unit 5 b then determines whether theshutoff valve 10 d is open (at a step ST3). When theprocessing unit 5 b determines that theshutoff valve 10 d is open, theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 in order to supply the fuel that satisfies a fuel supply amount Q to the engine, and thereby the fuel injecting apparatus 1-1 performs inter-cylinder injection (at a step ST4). - Specifically, the
inter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 inject the fuel into thefuel chamber 24 only once at a last period of a compression step for thecylinders 20 a to 20 d. The injected fuel is raised from below theignition plug 29 toward thecylinder head 23 along a surface of theconcave portion 22 a of thepiston 22 shown inFIG. 2 , and mixed with the air that is introduced into thefuel chamber 24 in advance by opening theintake valve 25, thereby forming a mixture gas. This mixture gas is ignited by theignition plug 29, thereby applying a rotation force to the crankshaft of the engine (not shown in figures). If determining that theshutoff valve 10 d is closed at a step ST3, theprocessing unit 5 b outputs an output signal for opening thisshutoff valve 10 d to theshutoff valve 10 d, and thereby opening theshutoff valve 10 d (at a step ST5). - When the accelerator opening L is equal to or larger than the predetermined value L1, the
processing unit 5 b determines whether the accelerator opening L is smaller than a predetermined value L2 (at a step ST6). When the accelerator opening L is smaller than the predetermined value L2, theinjection controller 5 that serves as the control unit determines that the fuel injection range is a fuel range of the inter-cylinderfuel injection mechanism 4 that serves as the second fuel injection mechanism and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, an inter-cylinder and inter-intake path injection range, based on the operating state of the engine that serves as the internal combustion engine, as shown inFIG. 4 . Theprocessing unit 5 b then determines whether theshutoff valve 10 d is open (at a step ST7). If determining that theshutoff valve 10 d is open, theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 in order to supply the fuel that satisfies a fuel supply amount Q to the engine, and thereby the fuel injecting apparatus 1-1 performs inter-cylinder and inter-intake path injection (at a step ST8). - Specifically, as shown in
FIG. 2 , theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 inject the fuel into theintake path 30 only once at an initial period of the intake step for thecylinders 20 a to 20 d. The fuel thus injected is mixed with the air in theintake path 30 to form a mixture gas, and the mixture gas is introduced into thefuel chamber 24 via theintake port 27. Theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 inject the fuel into thefuel chamber 24 only once at the last period of the compression step for thecylinder 20 a to 20 d. The injected fuel is raised from below theignition plug 29 toward the cylinder had 23 along the surface of theconcave portion 22 a of thepiston 22, and further mixed with that mixture gas introduced into thefuel chamber 24 in advance by opening theintake valve 25, thereby forming a mixture gas that is ignitable by theignition plug 29. This mixture gas is ignited by theignition plug 29, thereby applying a rotation force to the crankshaft of the engine (not shown in figures). If determining that theshutoff valve 10 d is closed at the step S7, theprocessing unit 5 b outputs the output signal for opening theshutoff valve 10 d to theshutoff valve 10 d, thereby opening theshutoff valve 10 d (at a step ST9). - When determining that the acceleration opening L is equal to or larger than the predetermined value L2 at the step ST6, the
injection controller 5 that serves as the control unit determines that the injection range is an injection range of only the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, an inter-intake path injection range, based on the operating state of the engine that serves as the internal combustion engine. Theprocessing unit 5 b then determines whether theshutoff valve 10 d is open (at a step ST10). If determining that theshutoff valve 10 d is open, theprocessing unit 5 b outputs the output signal for closing theshutoff valve 10 d to theshutoff valve 10 d, thereby closing theshutoff valve 10 d (at a step ST11). When theshutoff valve 10 d is closed, pulsation generated in the high-pressure pump 9 is not propagated to the low-pressure path 8 a of the firstfuel supply system 8. Namely, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism is suppressed. When theprocessing unit 5 b determines that theshutoff valve 10 d is closed at the step ST11, then theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 in order to supply the fuel that satisfies a fuel supply amount Q to the engine, and thereby the fuel injecting apparatus 1-1 performs inter-intake path injection (at a step ST12). At this time, the fuel injection amount of the respectiveinter-intake path injectors 3 a to 3 d does not differ from the fuel supply amount Q since the pulsation generated in the high-pressure pump 9 is not propagated to the inter-intake pathfuel injection mechanism 3. - Specifically, as shown in
FIG. 2 , theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 inject the fuel into theintake path 30 only once at the initial period of the intake step for thecylinders 20 a to 20 d. The injected fuel is mixed with the air in theintake path 30 into a mixture gas, and the mixture gas is introduced into thefuel chamber 24 through theintake port 27. This mixture gas is ignited by theignition plug 29, thereby applying a rotation force to the crankshaft of the engine (not shown in figures). Thus, by suppressing the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened. - Alternatively, instead of the
shutoff valve 10 d, the metering valve (not shown in figures) provided in the high-pressure pump 9 shown inFIG. 1 may be utilized to operate similarly to theshutoff valve 10 d. Namely, by closing the metering valve of the high-pressure pump 9 when theinjection controller 5 determines that the injection range is the inter-intake path injection range, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 that serve as the first fuel injection mechanism may be suppressed. In this case, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied to the engine can be lessened without increasing the number of components that constitute the fuel supplying apparatus 2-1 of the engine or that constitute the fuel injecting apparatus 1-1 that includes the fuel supplying apparatus 2-1. -
FIG. 5 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a second embodiment. A fuel injecting apparatus 1-2 shown inFIG. 5 differs from the fuel injecting apparatus 1-1 shown inFIG. 1 in that a fuel supplying apparatus 2-2 includes a fixedthrottle 8 b in stead of theshutoff valve 10 d. Since the basic configuration of the fuel injecting apparatus 1-2 shown inFIG. 5 is the same as that of the fuel injecting apparatus 1-1 shown inFIG. 1 , the explanation of the basic configuration of the fuel injecting apparatus 1-2 will be omitted. - In the low-
pressure path 8 a of the firstfuel supply system 8, the fixedthrottle 8 b that serves as a pulsation propagation suppressing unit is provided between the branch part A at which the secondfuel supply system 10 is branched and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism. A throttling amount of the fixedthrottle 8 b is set so as to reduce the propagated pulsation, that is, a width of a fluctuation in the pressure of the fuel supplied into the inter-intake pathfuel injection mechanism 3 when the pulsation generated in the high-pressure pump 9 is propagated to the inter-intake pathfuel injection mechanism 3. When the throttling amount of the fixedthrottle 8 b is set too large, the fuel passed through the fixedthrottle 8 b and supplied into the inter-intake pathfuel injection mechanism 3 cannot be injected from theinter-intake path injectors 3 a to 3 d when a flow rate of the fuel supplied to the firstfuel supply system 8 is low. It is, therefore, preferable to set the throttling amount so as to be able to at least inject the fuel from theinter-intake path injectors 3 a to 3 d. - A fuel injecting method performed by the fuel injecting apparatus 1-2 will next be explained.
FIG. 6 is a flow chart of injection control of a fuel injecting apparatus according to the second embodiment. The flow of the fuel injecting method of the fuel injecting apparatus 1-2 shown inFIG. 6 is basically the same as that of the fuel injecting method of the fuel injecting apparatus 1-1 shown inFIG. 3 . Therefore, the flow shown inFIG. 6 will be explained simply. As shown inFIG. 6 , theprocessing unit 5 b of thefuel controller 5 calculates the fuel supply amount Q supplied to the engine (at a step ST1). - The
processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L1 (at a step ST2). When the accelerator opening L is smaller than the predetermined value L1, theinjection controller 5 that serves as the control unit determines that a fuel injection range is an inter-cylinder injection range, based on the operating state of the engine that serves as the internal combustion engine, as shown inFIG. 4 . Theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and thereby the fuel injecting apparatus 1-2 performs inter-cylinder injection (at a step ST4). - When the accelerator opening L is equal to or larger than the predetermined value L1, the
processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L2 (at a step ST6). When the accelerator opening L is smaller than the predetermined value L2, theinjection controller 5 that serves as the control unit determines that the injection range is the inter-cylinder and inter-intake path injection range, as shown inFIG. 4 . Theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-2 performs inter-cylinder and inter-intake path injection (at a step ST8). The pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the firstfuel supply system 8 through thebranch path 10 a of the secondfuel supply system 10. A magnitude of the pulsation propagated to the low-pressure path 8 a is reduced by the fixedthrottle 8 b of this low-pressure path 8 a. Namely, the pulsation propagated to the low-pressure path 8 a downstream of this fixedthrottle 8 b and to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, a width of a fluctuation in the pressure of the fuel is smaller than a width of a fluctuation in the pressure of the fuel upstream of the fixedthrottle 8 b. Accordingly, in the inter-cylinder and inter-intake path injection for supplying the fuel to the engine by both the first fuel injection mechanism and the second fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. The injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q. - When the acceleration opening L is equal to or larger than the predetermined value L2 at the step ST6, the
injection controller 5 that serves as the control unit determines that the injection range is an inter-intake path injection range. Theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-2 performs inter-intake path injection (at a step ST12). At this time, similarly to the above, even if the pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a, the magnitude of the pulsation is reduced by the fixedthrottle 8 b of the low-pressure path 8 a. Namely, the pulsation propagated to the low-pressure path 8 a downstream of the fixedthrottle 8 b and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, the width of the fluctuation in the pressure of the fuel is smaller than the width of the fluctuation in the pressure of the fuel upstream of the fixedthrottle 8 b. Accordingly, in the inter-intake path injection for supplying the fuel to the engine only by the first fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. The injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q. Thus, by suppressing the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened. -
FIG. 7 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a third embodiment. A fuel injecting apparatus 1-3 shown inFIG. 7 differs from the fuel injecting apparatus 1-2 shown inFIG. 5 in that a fuel supplying apparatus 2-3 includes avariable throttle 8 c a throttling amount of which is changed according to the operating state of the engine in stead of the fixedthrottle 8 b. Since the basic configuration of the fuel injecting apparatus 1-3 shown inFIG. 7 is the same as that of the fuel injecting apparatus 1-2 shown inFIG. 5 , the explanation of the basic configuration of the fuel injecting apparatus 1-3 will be omitted. - The
variable throttle 8 c that serves as a pulsation propagation suppressing unit is provided between the branch part A at which the secondfuel supply system 10 is branched and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism. A throttle amount of thevariable throttle 8 c is controlled by an output signal from theinjection controller 5. - A fuel injecting method performed by the fuel injecting apparatus 1-3 will next be explained.
FIG. 8 is a flow chart of injection control of the fuel injecting apparatus according to the third embodiment. As the operating state of the engine, a fuel injecting method based on changes of a flow rate of the fuel supplied into the low-pressure path 8 a that constitutes the firstfuel supply system 8 will be explained herein. The flow of the fuel injecting method of the fuel injecting apparatus 1-3 shown inFIG. 8 is basically the same as that of the fuel injecting method of the fuel injecting apparatus 1-2 shown inFIG. 6 . Therefore, the flow will be explained simply. As shown inFIG. 8 , theprocessing unit 5 b of thefuel controller 5 calculates the fuel supply amount Q to be supplied to the engine (at a step ST1). - The
processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L1 (at a step ST2). When the accelerator opening L is smaller than the predetermined value L1, theinjection controller 5 that serves as the control unit determines that a fuel injection range is an inter-cylinder injection range based on the operating state of the engine that serves as the internal combustion engine, as shown inFIG. 4 . Theprocessing unit 5 b outputs the output signal for controlling the throttling amount of thevariable throttle 8 c at zero, that is, the output signal so as not to throttle thevariable throttle 8 c, to thisvariable throttle 8 c (at a step ST13). When the fuel is supplied to the engine by the inter-cylinder injection, the throttling amount of thevariable throttle 8 c is set zero to prevent a fluctuation in the throttling amount. By doing so, the injection amount of the fuel injected from theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 is prevented from differing from the fuel supply amount Q of the fuel supplied to the engine. Theprocessing unit 5 b then outputs the output signals for the injection timings and the injection amounts to theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4, and the fuel injecting apparatus 1-3 performs inter-cylinder injection (at a step ST4). - When the accelerator opening L is equal to or larger than the predetermined value L1 at the step ST2, the
processing unit 5 b determines whether a fuel flow rate Q′ of the fuel supplied into the low-pressure path 8 a that constitutes the firstfuel supply system 8 is higher than a predetermined value Q1 (at a step ST14). The fuel flow rate Q′ is calculated based on a driven state of the low-pressure pump 7. In addition, the predetermined value Q1 is a fuel flow rate within the low-pressure path 8 a that constitutes the firstfuel supply system 8 that flow rate is necessary so that theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 inject the fuel. When the fuel flow rate Q′ is higher than the predetermined value Q1, theprocessing unit 5 b outputs an output signal for setting the throttling amount of thevariable throttle 8 c at an amount obtained by multiplying the fuel flow rate Q′ by a constant, to thevariable throttle 8 c (at a step ST15). That is, theinjection controller 5 controls the throttling amount of thevariable throttle 8 c so that the throttling amount is larger proportionally to an increase in the fuel flow rate Q′. When the fuel flow rate Q′ is equal to or lower than the predetermined value Q1 at the step ST14, theprocessing unit 5 b outputs an output signal for setting the throttling amount of thevariable throttle 8 c at zero, that is, an output signal so as not to throttle thevariable throttle 8 c, to thisvariable throttle 8 c (at a step ST16). The setting is made because, by throttling thevariable throttle 8 c when the fuel flow rate Q′ is equal to or lower than the predetermined value Q1, the incapability of injecting the fuel from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 is prevented. - After the throttling amount of the
variable throttle 8 c is controlled, theprocessing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L2 (at a step ST6). When the accelerator opening L is smaller than the predetermined value L2, theinjection controller 5 that serves as the control unit determines that the injection range is the injection range is an inter-cylinder and inter-intake path injection range, as shown inFIG. 4 . Theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4, and the fuel injecting apparatus 1-3 performs inter-cylinder and inter-intake path injection (at a step ST8). The pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the firstfuel supply system 8 through thebranch path 10 a of the secondfuel supply system 10. At this time, the throttling amount of thevariable throttle 8 c of the low-pressure path 8 a is increased in proportion to the operating state of the engine, that is, in proportion to an increase in the fuel flow rate Q′ of the fuel supplied to the low-pressure path 8 a that constitutes the firstfuel supply system 8. Therefore, the pulsation propagated to the low-pressure path 8 a is reduced. Namely, the pulsation propagated to the low-pressure path 8 a downstream of thevariable throttle 8 c and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, a width of a fluctuation in the pressure of the fuel is smaller than a width of a fluctuation in the pressure of the fuel upstream of thevariable throttle 8 c. Accordingly, in the inter-cylinder and inter-intake path injection for supplying the fuel to the engine by both the first fuel injection mechanism and the second fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. The injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d can be similarly, therefore, made substantially equal to the fuel supply amount Q. - When the acceleration opening L is equal to or larger than the predetermined value L2 at the step ST6, the
injection controller 5 that serves as the control unit determines that the injection range is an inter-intake path injection range. Theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-3 performs inter-intake path injection (at a step ST12). At this time, the pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the firstfuel supply system 8 through thebranch path 10 a of the secondfuel supply system 10. If so, the throttling amount of thevariable throttle 8 c of the low-pressure path 8 a is increased in proportion to the operating state of the engine, that is, an increase in the fuel flow rate Q′ of the fuel supplied to the low-pressure path 8 a that constitutes the firstfuel supply system 8. Therefore, the pulsation propagated to the inter-intake pathfuel injection mechanism 3 is reduced. Namely, the pulsation propagated to the low-pressure path 8 a downstream of thevariable throttle 8 c and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, the width of the fluctuation in the pressure of the fuel is smaller than the width of the fluctuation in the pressure of the fuel upstream of thevariable throttle 8 c. Accordingly, in the inter-intake path injection for supplying the fuel to the engine only by the first fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. The injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q. Thus, by suppressing the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened. - At the step ST16, when the
processing unit 5 b outputs the output signal for setting the throttling amount of thevariable throttle 8 c at zero to thevariable throttle 8 c, theprocessing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L2 (at a step ST6). When the accelerator opening L is smaller than the predetermined value L2, the fuel injecting apparatus 1-3 performs inter-cylinder and inter-intake path injection (at a step ST8). When the accelerator opening L is equal to or larger than the predetermined value L2, the fuel injecting apparatus 1-3 performs inter-intake path injection (at a step ST12). - Another fuel injecting method of the fuel injecting apparatus 1-3 will be explained.
FIG. 9 is a diagram for explaining a relationship between a width of a fluctuation in the pressure of a fuel and the number of revolutions of the engine.FIG. 10 is a flow chart of another injection control of the fuel injecting apparatus according to the third embodiment.FIG. 11 is a map that represents a relationship between a throttling amount of a variable throttle and the number of revolutions of the engine. The fuel injecting method based on the number of revolutions Ne of the engine as the operating state of the fuel supplying apparatus 1-3 will be explained. The fuel injecting method of the fuel injecting apparatus 1-3 shown inFIG. 10 is basically equal in flow to that of the fuel injecting apparatus 1-3 shown inFIG. 8 . Therefore, the fuel injecting method will be explained simply herein. - As shown in
FIG. 9 , the magnitude of the pulsation generated in the high-pressure pump 9 is increased in proportion to an increase in the number of revolutions Ne of the engine. Namely, the width of the fluctuation in the pressure of the fuel in the high-pressure pump 9 is increased. This is because thecam 9 a that drives the high-pressure pump 9, i.e., that reciprocates the plunger of the high-pressure pump 9 is rotated when the crankshaft of the engine is rotated. On the other hand, when the pulsation generated in the high-pressure pump 9 is propagated to the inter-intake pathfuel injection mechanism 3 through thebranch path 10 a of the secondfuel supply system 10 and the low-pressure path 8 a of the firstfuel supply system 8, the pulsation in this inter-intake pathfuel injection mechanism 3 exhibits a different characteristic from that of the pulsation in the high-pressure pump 9. Specifically, the pulsation is large, that is, the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is large until the number of revolutions Ne of the engine reaches a predetermined number of revolutions of the engine. In addition, at the predetermined number of revolutions Ne of the engine, the magnitude of the pulsation reaches a peak, that is, the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 reaches a peak B. When the number of revolutions Ne of the engine exceeds this predetermined number of revolutions of the engine, then the pulsation is smaller, that is, the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is smaller. Accordingly, at the predetermined number of revolutions of the engine, the magnitude of the pulsation in the inter-intake pathfuel injection mechanism 3, that is, the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is a maximum. The predetermined number of revolutions of the engine, at which the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is the maximum, is determined by a path length from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3. Another injection control flow of the fuel injecting apparatus shown inFIG. 10 is intended to control the throttling amount of thevariable throttle 8 c to be a maximum at the predetermined number of revolutions of the engine at which the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 reaches the peak B by the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism. - As shown in
FIG. 10 , theprocessing unit 5 b of theinjection controller 5 calculates the fuel supply amount Q to be supplied to the engine (at a step ST1). Theprocessing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L1 (at a step ST2). When the accelerator opening L is smaller than the predetermined value L1, theinjection controller 5 that serves as the control unit determines that a fuel injection range is an inter-cylinder injection range based on the operating state of the engine that serves as the internal combustion engine, as shown inFIG. 4 . Theprocessing unit 5 b outputs the output signal for controlling the throttling amount of thevariable throttle 8 c at zero, that is, the output signal so as not to throttle thevariable throttle 8 c, to thisvariable throttle 8 c (at a step ST13). Theprocessing unit 5 b then outputs the output signals for the injection timings and the injection amounts to theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-3 performs inter-cylinder injection (at a step ST4). - When the accelerator opening L is equal to or larger than the predetermined value L1 at the step ST2, the
processing unit 5 b determines whether the present number of revolutions Ne of the engine is within a range between the numbers of revolutions Ne1 and Ne2 of the engine in the map stored in thestorage unit 5 c and shown inFIG. 11 (at a step ST17). According to the map shown inFIG. 11 , when the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is increased by the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3, the throttling amount of thevariable throttle 8 c is increased. When the width of the fluctuation in the pressure of the fuel is reduced, the throttling amount of thevariable throttle 8 c is reduced. In addition, according to the map shown inFIG. 11 , the number of revolutions of the engine when the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is caused by the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is set at Ne1. The number of revolutions of the engine at the timing of that the width of the fluctuation in the pressure of the fuel ends is set at Ne2. When the present number of revolutions Ne of the engine is within the range between the numbers of revolutions Ne1 and Ne2 of the engine at the step ST17, theprocessing unit 5 b calculates the throttling amount of thevariable throttle 8 c based on the map shown inFIG. 11 , and outputs an output signal for the throttling amount to thevariable throttle 8 c (at a step ST18). When the present number of revolutions Ne of the engine is out of the range between the numbers of revolutions Ne1 and Ne2, theprocessing unit 5 b outputs a control signal for setting the throttling amount of thevariable throttle 8 c at zero, that is, an output signal so as not to throttle thevariable throttle 8 c, to thisvariable throttle 8 c (at a step ST16). - After the throttling amount of the
variable throttle 8 c is controlled, theprocessing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L2 (at a step ST6). When the accelerator opening L is smaller than the predetermined value L2, theinjection controller 5 that serves as the control unit determines that the injection range is the inter-cylinder and inter-intake path injection range, as shown inFIG. 4 . Theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-3 performs inter-cylinder and inter-intake path injection (at a step ST8). The pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the firstfuel supply system 8 through thebranch path 10 a of the secondfuel supply system 10. At this time, the magnitude of thevariable throttle 8 c of the low-pressure path 8 a is increased in proportion to the operating state of the engine, that is, the number of revolutions of the engine at which the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 occurs. Therefore, the magnitude of the pulsation propagated to the inter-intake pathfuel injection mechanism 3 is reduced. Namely, the pulsation propagated to the low-pressure path 8 a downstream of thisvariable throttle 8 c and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is smaller than a width of a fluctuation in the pressure of the fuel upstream of thevariable throttle 8 c. Accordingly, in the inter-cylinder and inter-intake path injection for supplying the fuel to the engine by both the first fuel injection mechanism and the second fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. The injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d can be similarly, therefore, made substantially equal to the fuel supply amount Q. - When the acceleration opening L is equal to or larger than the predetermined value L2 at the step ST6, the
injection controller 5 that serves as the control unit determines that the injection range is an inter-intake path injection range as shown inFIG. 4 . Theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-3 performs inter-intake path injection (at a step ST12). The pulsation generated in the high-pressure pump 9 is propagated to the low-pressure path 8 a of the firstfuel supply system 8 through thebranch path 10 a of the secondfuel supply system 10. At this time, the throttle amount of thevariable throttle 8 c of the low-pressure path 8 a is increased in proportion to the operating state of the engine, that is, based on the number of revolutions of the engine at which the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 occurs. Therefore, the magnitude of the pulsation propagated to the inter-intake pathfuel injection mechanism 3 is reduced. Namely, the pulsation propagated to the low-pressure path 8 a downstream of thisvariable throttle 8 c and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism, that is, the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is smaller than a width of a fluctuation in the pressure of the fuel upstream of thevariable throttle 8 c. Accordingly, in the inter-cylinder and inter-intake path injection for supplying the fuel to the engine only by the first fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. The injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d can be similarly, therefore, made substantially equal to the fuel supply amount Q. Thus, by suppressing the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism can be lessened. - At the step ST16, when the
processing unit 5 b outputs the output signal for setting the throttling amount of thevariable throttle 8 c at zero to thevariable throttle 8 c, theprocessing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L2 (at a step ST6). When the accelerator opening L is smaller than the predetermined value L2, the fuel injecting apparatus 1-3 performs inter-cylinder and inter-intake path injection (at a step ST8). When the accelerator opening L is equal to or larger than the predetermined value L2, the fuel injecting apparatus 1-3 performs inter-intake path injection (at a step ST12). -
FIG. 12 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a fourth embodiment. A fuel injecting apparatus 1-4 shown inFIG. 12 differs from the fuel injecting apparatus 1-1 shown inFIG. 1 in that a fuel supplying apparatus 2-4 includes acheck valve 8 d in stead of theshutoff valve 10 d. Since the basic configuration of the fuel injecting apparatus 1-4 shown inFIG. 12 is the same as that of the fuel injecting apparatus 1-1 shown inFIG. 1 , the explanation of the basic configuration of the fuel injecting apparatus 1-4 will be omitted. Furthermore, since the fuel injecting method of the fuel injecting apparatus 1-4 is the same as the fuel injecting method of the fuel injecting apparatus 1-2 shown inFIG. 6 , the explanation therefor will also be omitted. - The
check valve 8 d that serves as a pulsation propagation suppressing unit is provided between the branch part A at which the secondfuel supply system 10 is branched and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism.Reference numeral 8 e denotes a safety valve that prevents an excessive pressure rise of the fuel in the inter-intake pathfuel injection mechanism 3. -
FIG. 13A is a diagram for explaining a width of a fluctuation in the pressure of the fuel in a low-pressure path upstream of a check valve.FIG. 13B is a diagram for explaining a width of a fluctuation in the pressure of the fuel in the low-pressure path downstream of the check valve. As shown inFIG. 13A , the width of the fluctuation in the pressure of the fuel in the low-pressure path 8 a due to the pulsation propagated from the high-pressure pump 9 to the low-pressure path 8 a of the firstfuel supply system 8 forms a curve on which an upper limit and a lower limit appear at constant intervals. Thecheck valve 8 d is not opened unless an upstream fuel pressure is higher than a downstream fuel pressure. Therefore, the fuel pressure in the inter-intake pathfuel injection mechanism 3 downstream of thecheck valve 8 d is kept at a constant higher pressure than that of the fuel in the low-pressure path 8 a upstream of thecheck valve 8 d. This constant higher pressure is a pressure near the upper limit of the width of the fluctuation in the pressure of the fuel in the low-pressure path 8 a upstream of thecheck valve 8 d due to the pulsation propagated from the high-pressure pump 9 to the low-pressure path 8 a that constitutes the firstfuel supply system 8. That is, as shown inFIG. 13B , the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel supply mechanism 3 is only near the upper limit of the fluctuation in the pressure of the fuel in the low-pressure path 8 a upstream of thecheck valve 8 d. Therefore, when the fuel injecting apparatus 14 performs inter-cylinder and inter-intake path injection or inter-intake path injection, the injection amount of the fuel from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism can be made substantially equal to the fuel supply amount Q. This is because the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. Thus, by suppressing the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism can be lessened. In addition, as explained above, since the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is kept at the constant higher pressure, the fuel injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 can be transformed to fine particles. Thus, combustion efficiency and an emission of the engine can be enhanced. - In the fuel injecting apparatus 1-4, the driving of the low-
pressure pump 7 may be stopped. As already explained, thecheck valve 8 d is not opened unless the pressure of the fuel in the low-pressure path 8 a of the firstfuel supply system 8 upstream of thecheck valve 8 d is higher than that of the fuel in the inter-intake pathfuel injection mechanism 3 downstream of thecheck valve 8 d. Therefore, when the fuel in the inter-intake pathfuel injection mechanism 3 is kept at the constant higher pressure and the flow rate of the fuel is low, the fuel can be supplied into the inter-cylinderfuel injection mechanism 4 that serves as the second fuel injection mechanism by driving the high-pressure pump 9. In other words, even if the driving of the low-pressure pump 7 is stopped, the fuel can be supplied into the inter-cylinderfuel injection mechanism 4 that serves as the second fuel injection mechanism by the high-pressure pump 9 when the fuel injecting apparatus 1-4 performs inter-cylinder injection. A power consumption required when driving the low-pressure pump 7 can be thereby reduced. -
FIG. 14 is a configuration diagram of a fuel injecting apparatus that includes a fuel supplying apparatus according to a fifth embodiment. A fuel injecting apparatus 1-5 shown inFIG. 14 differs from the fuel injecting apparatus 1-1 shown inFIG. 1 in that a fuel supplying apparatus 2-5 does not include theshutoff valve 10 d. Since the basic configuration of the fuel injecting apparatus 1-4 shown inFIG. 14 is the same as that of the fuel injecting apparatus 1-1 shown inFIG. 1 , the explanation of the basic configuration of the fuel injecting apparatus 1-4 will be omitted. Furthermore, since the fuel injecting method of the fuel injecting apparatus 1-5 is the same as the fuel injecting method of the fuel injecting apparatus 1-2 shown inFIG. 6 , the explanation therefor will also be omitted. - As already explained, the predetermined number of revolutions of the engine at which the pulsation propagated from the high-
pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is increased, i.e., the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is the maximum is determined by the path length from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3. When this path length is set long, in particular, the predetermined number of revolutions of the engine at which the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is the maximum is a small number. - A fuel injecting apparatus 1-5 shown in
FIG. 14 set a path length H from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism so that the predetermined number of revolutions of the engine, at which the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is increased, that is, the width of the fluctuation in the pressure of the fuel in inter-intake pathfuel injection mechanism 3 is the maximum, is out of a common range of the number of revolutions of the engine, e.g., 500 to 7000 rpm. Namely, at the common range of the number of revolutions of the engine at which the fuel injecting apparatus 1-5 performs inter-cylinder and inter-intake path fuel injection or inter-intake path fuel injection, the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is not increased. In other words, the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is not the maximum. Accordingly, when the fuel injecting apparatus 1-5 performs inter-cylinder and inter-intake path fuel injection or inter-intake path fuel injection, the injection amount of the fuel from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 can be made substantially equal to the fuel supply amount Q. This is because the propagation of the pulsation from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. The influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied to the engine, particularly, the fuel injection amount by which the fuel is injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as that first fuel injection mechanism can be thereby lessened. It is noted that the path length H is a combination of a length of thebranch path 10 a of the secondfuel supply system 10 and that of the low-pressure path 8 a that constitutes the firstfuel supply system 8 from the part A at which the secondfuel supply system 10 is branched to the inter-intake pathfuel injection mechanism 3. - The path length H is preferably set such that the predetermined number of revolutions of the engine, at which the pulsation propagated from the high-
pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is increased, that is, the width of the fluctuation in the pressure of the fuel in inter-intake pathfuel injection mechanism 3 is the maximum, is smaller than the number of revolutions during idling in the common range of the number of revolutions of the engine. This is because the path length from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be easily set large. -
FIG. 15 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a sixth embodiment.FIG. 16 is a diagram for explaining a relationship between the width of a fluctuation in the pressure of the fuel and the number of revolutions of the engine. A fuel injecting apparatus 1-6 shown inFIG. 15 differs from the fuel injecting apparatus 1-1 shown inFIG. 1 in that a fuel supplying apparatus 2-6 includes a switchingvalve 8 f and anextension path 8 g in stead of theshutoff valve 10 d. Since the basic configuration of the fuel injecting apparatus 1-6 shown inFIG. 15 is the same as that of the fuel injecting apparatus 1-1 shown inFIG. 1 , the explanation of the basic configuration of the fuel injecting apparatus 1-6 will be omitted. - The switching
valve 8 f and theextension path 8 g that serve as a pulsation generating number-of-revolution change unit is provided between the part A at which the secondfuel supply system 10 is branched and the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism. The switchingvalve 8 f switches over between direct supply by the low-pressure path 8 a downstream of the switchingvalve 8 f and supply through theextension path 8 when the fuel in the low-pressure path 8 a upstream of the switchingvalve 8 f is supplied to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism. It is noted that a switching of the switchingvalve 8 f is controlled by an output signal from theinjection controller 5. - It is assumed herein that the path length H from the high-
pressure pump 9 to the inter-intake pathfuel injection mechanism 3 when the switchingvalve 8 f switches over to the direct supply of the fuel by the low-pressure path 8 a downstream of thewitching valve 8 f is H1. It is also assumed herein that the path length H from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 when the switchingvalve 8 f switches over to the supply of the fuel through theextension path 8 g is H2. If so, the path length H2 is longer than H1. When the path length H is H1, a characteristic of the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 caused by the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is represented by D shown inFIG. 16 . The predetermined number of revolutions of the engine at which the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is increased, that is, the width of the fluctuation in the pressure is a peak B is Ne3. On the other hand, when the path length H is H2, a characteristic of the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 caused by the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is represented by E shown inFIG. 16 . The predetermined number of revolutions of the engine at which the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is increased, that is, the width of the fluctuation in the pressure is a peak C is Ne4 that is lower than the predetermined number of revolutions Ne3 of the engine. This is because the path length H2 is longer than H1. Namely, by switching the path length from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism by using the switchingvalve 8 f, the number of revolutions of the engine at which the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is increased can be changed. - A fuel injecting method performed by the fuel injecting apparatus 1-6 will next be explained.
FIG. 17 is a flow chart of injection control of a fuel injecting apparatus according to a sixth embodiment. The flow of the fuel injecting method of the fuel injecting apparatus 1-6 shown inFIG. 17 is basically the same as that of the fuel injecting method of the fuel injecting apparatus 1-2 shown inFIG. 6 . Therefore, the flow will be explained simply. As shown inFIG. 17 , theprocessing unit 5 b of thefuel controller 5 calculates the fuel supply amount Q supplied to the engine (at a step ST1). - The
processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L1 (at a step ST2). When the accelerator opening L is smaller than the predetermined value L1, theinjection controller 5 that serves as the control unit determines that a fuel injection range is an inter-cylinder injection range based on the operating state of the engine that serves as the internal combustion engine, as shown inFIG. 4 . Theprocessing unit 5 b then outputs output signals for the injection timings and the injection amounts to theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 of the inter-cylinderfuel injection mechanism 4, and the fuel injecting apparatus 1-6 performs inter-cylinder injection (at a step ST4). - When the accelerator opening L is equal to or larger than the predetermined value L1 at the step ST2, the
processing unit 5 b determines whether a present number of revolutions Ne′ of the engine is smaller than a predetermined value Ne5 (at a step ST19). The present number of revolutions Ne′ of the engine is the number of revolutions of the engine input to theinjection controller 5. The predetermined value Ne5 is the number of revolutions of the engine at a point F at which the characteristic D of the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 when the path length H is H1 crosses the characteristic E of the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 when the path length H is H2 as shown inFIG. 16 . When the present number of revolutions Ne′ of the engine is smaller than the predetermined value Ne5, theprocessing unit 5 b changes the path length H from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 to H1 (at a step ST20). Namely, theprocessing unit 5 b outputs an output signal to the switchingvalve 8 f so that the fuel in the low-pressure path 8 a upstream of the switchingvalve 8 f can be supplied to the inter-intake pathfuel injection mechanism 3 directly from the low-pressure path 8 a downstream of the switchingvalve 8 f. When the present number of revolutions Ne′ of the engine is equal to or larger than the predetermined value Ne5, theprocessing unit 5 b changes the path length H from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 to H2 (at a step ST21). Namely, theprocessing unit 5 b outputs an output signal to the switchingvalve 8 f so that the fuel in the low-pressure path 8 a upstream of this switchingvalve 8 f can be directly supplied to the inter-intake pathfuel injection mechanism 3 through theextension path 8 g. In other words, the path length is changed so that the number of revolutions of the engine at which the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is increased, i.e., the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 reaches a peak, is out of the present number of revolutions of the internal combustion engine. - After the switching
valve 8 f switches the path length H from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3, theprocessing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L2 (at a step ST6). When the accelerator opening L is smaller than the predetermined value L2, theinjection controller 5 that serves as the control unit determines that the injection range is an inter-cylinder and inter-intake path injection range as shown inFIG. 4 . Theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-6 performs inter-cylinder and inter-intake path injection (at a step ST8). The pulsation generated in the high-pressure pump 9 is propagated to the inter-intake pathfuel injection mechanism 3. At this time, the path length H from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is switched to either the path length H1 or H2 by the switchingvalve 8 f so that the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is reduced, i.e., the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is reduced at the present number of revolutions Ne′ of the engine. Therefore, the pulsation propagated to the inter-intake pathfuel injection mechanism 3 is reduced. Accordingly, even in the inter-cylinder and inter-intake path injection for supplying the fuel to the engine by both the first fuel injection mechanism and the second fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. The injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q. - When the acceleration opening L is equal to or larger than the predetermined value L2 at the step ST6, the
injection controller 5 that serves as the control unit determines that the injection range is the inter-intake path injection range, as shown inFIG. 4 . Theprocessing unit 5 b outputs the output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-6 performs inter-intake path injection (at a step ST12). At this time, the pulsation generated in the high-pressure pump 9 is propagated to the inter-intake pathfuel injection mechanism 3. If so, the path length H from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is switched to either the path length H1 or H2 by the switchingvalve 8 f so that the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is reduced, i.e., the width of the fluctuation in the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 is reduced at the present number of revolutions Ne′ of the engine. Therefore, the pulsation propagated to the inter-intake pathfuel injection mechanism 3 is reduced. Accordingly, in the inter-intake path injection for supplying the fuel to the engine only by the first fuel injection mechanism, the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 can be suppressed. The injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d can be, therefore, made substantially equal to the fuel supply amount Q. Thus, by suppressing the propagation of the pulsation generated in the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened. -
FIG. 18 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to a seventh embodiment. A fuel injecting apparatus 1-7 shown inFIG. 18 is a fuel injecting apparatus that includes a fuel supplying apparatus mounted in a V6 engine having six cylinders in a V configuration wherein three cylinders of the six cylinders composes one cylinder group. Each cylinder group is provided in one of left and right banks of the engine. Since the basic configuration of the fuel injecting apparatus 1-7 shown inFIG. 18 is the same as that of the fuel injecting apparatus 1-1 shown inFIG. 1 , the basic configuration of the fuel injecting apparatus 1-7 will be explained simply herein. Furthermore, since the fuel injecting method performed by the fuel injecting apparatus 1-7 is the same as fuel injecting method of the fuel injecting apparatus 1-2 shown inFIG. 6 , the explanation therefor will be omitted. - As shown in
FIG. 18 , the fuel injecting apparatus 1-7 according to this embodiment includes a fuel supplying apparatus 2-7, a right inter-intake pathfuel injection mechanism 31 and a left inter-intake pathfuel injection mechanism 32 that serve as first fuel injection mechanisms, a right inter-cylinderfuel injection mechanism 41 and a left inter-cylinderfuel injection mechanism 42 that serve as second fuel injection mechanisms, and aninjection controller 5 that serves as a control unit. - The first
fuel supply system 8 of the fuel supplying apparatus 2-7 includes the low-pressure path 8 a, aright branch path 8 h for supplying a fuel in this low-pressure path 8 a from a branch part D to the right inter-intake pathfuel injection mechanism 31, and aleft branch path 8 i for supplying the fuel in this low-pressure path 8 a from the branch part D to the left inter-intake pathfuel injection mechanism 32. Theright branch path 8 h differs in path length from theleft branch path 8 i. That is, a path length from the high-pressure pump 9 to the right inter-intake pathfuel injection mechanism 31 that serves as the first fuel injection mechanism differs from a path length from the high-pressure pump 9 to the left inter-intake pathfuel injection mechanism 32 that serves as the first fuel injection mechanism. The secondfuel supply system 10 includes thebranch path 10 a, the high-pressure path 10 b for supplying the fuel further pressurized by the high-pressure pump 9 to the right inter-cylinderfuel injection mechanism 41 and the left inter-cylinderfuel injection mechanism 42 of the inter-cylinderfuel injection mechanism 4, acommunication path 10 g that communicates the right inter-cylinderfuel injection mechanism 41 with the left inter-cylinderfuel injection mechanism 42, and therelease path 10 c. - The right inter-intake path
fuel injection mechanism 31 and the right inter-cylinderfuel injection mechanism 41 include inter-intake path injectors 31 a to 31 c andinter-cylinder injectors 41 a to 41 c, respectively, to correspond to three cylinders included in the right bank (not shown in figures). The left inter-intake pathfuel injection mechanism 32 and the left inter-cylinderfuel injection mechanism 42 include inter-intake path injectors 32 a to 32 c andinter-cylinder injectors 42 a to 42 c, respectively, to correspond to three cylinders included in a left bank (not shown in figures). The right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 includefuel distribution pipes right branch path 8 h and theleft branch path 8 i to the right inter-intake path injectors 31 a to 31 c and to the left inter-intake path injectors 32 a to 32 c, respectively. The right inter-cylinderfuel injection mechanism 41 and the left inter-cylinderfuel injection mechanism 42 includefuel distribution pipes 41d and 42 d that distribute the fuel supplied from the high-pressure path 10 b or thecommunication path 10 g of the secondfuel supply system 10 to the rightinter-cylinder injectors 41 a to 41 c and to the leftinter-cylinder injectors 42 a to 42 c, respectively. - The problem that occurs when the
right branch path 8 h and theleft branch path 8 i are equal in path length will now be explained.FIG. 19A is a diagram for explaining a width of a fluctuation in the pressure of the fuel when the right and the left branch paths are equal in path length.FIG. 19B is a diagram for explaining the width of the fluctuation in the pressure of the fuel when the right and the left branch paths differ in path length. As shown inFIG. 19A , when theright branch path 8 h and theleft branch path 8 i are equal in path length, the width of the fluctuation in the pressure of the fuel in the right inter-intake pathfuel injection mechanism 31 and that in the left inter-intake pathfuel injection mechanism 32 caused by the pulsation propagated from the high-pressure pump 9 to the right inter-intake pathfuel injection mechanism 31 and to the left inter-intake pathfuel injection mechanism 32 are equal in phase. When the fuel injecting apparatus 1-7 performs inter-cylinder and inter-intake path injection or inter-intake path injection to supply the fuel to the engine, the fuel is injected alternately from the right inter-intake path injectors 31 a to 31 c of the right inter-intake pathfuel injection mechanism 31 and the left inter-intake path injectors 32 a to 32 c of the left inter-intake pathfuel injection mechanism 32. Namely, as shown inFIG. 19A , the fuel is injected from the respective injectors in an order of the right inter-intake path injector 31 a, the left inter-intake path injector 32 a, the right inter-intake path injector 31 b, the left inter-intake path injector 32 b, the right inter-intake path injector 31 c, the left inter-intake path injector 32 c. At this time, when an injection timing of each of theinjectors 31 a to 32 c is half a cycle of the width of the fluctuation in the pressure of the fuel, then the right inter-intake path injectors 31 a to 31 c inject the fuel at a time of an upper limit of the width of the fluctuation in the pressure of the fuel in the right inter-intake pathfuel injection mechanism 31. In addition, the left inter-intake path injectors 32 a to 32 c inject the fuel at a time of a lower limit of the width of the fluctuation in the pressure of the fuel in the left inter-intake pathfuel injection mechanism 32. If theinjection controller 5 controls therespective injectors 31 a to 32 c to be equal in valve opening time, i.e., current-carrying time, an irregularity occurs between the injection amount of the fuel injected from the right inter-intake pathfuel injection mechanism 31 and that from the left inter-intake pathfuel injection mechanism 32. - Considering the above problem, the fuel injecting apparatus 1-7 including the fuel supplying apparatus 2-7 according to the seventh embodiment is constituted so that the
right branch path 8 h differs in path length from theleft branch path 8 i, and so that the phase of the pulsation propagated from the high-pressure pump 9 to the right inter-intake pathfuel injection mechanism 31 is inverted from that of the pulsation propagated from the high-pressure pump 9 to the left inter-intake pathfuel injection mechanism 32. By doing so, as shown inFIG. 19B , the phase of the cycle of the width of the fluctuation in the pressure of the fuel in the left inter-intake pathfuel injection mechanism 32 is inverted from that of the cycle of the width of the fluctuation in the pressure of the fuel in the right inter-intake pathfuel injection mechanism 31. It is, therefore, possible to prevent the irregularity between the injection amount of the fuel injected from the right inter-intake pathfuel injection mechanism 31 and that from the left inter-intake pathfuel injection mechanism 32. By thus preventing the irregularity of the fuel injection amount between the first fuel injection mechanisms of each cylinder group, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied to the engine, particularly, the injection amount of the fuel injected from theinjectors 31 a to 32 c of the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 that serve as the first fuel injection mechanisms can be lessened. - In the fuel injecting apparatus 1-7, the
injection controller 5 controls the injection of the fuel from the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 based on respective predetermined phases of the pulsations propagated from the high-pressure pump 9 to the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 that serve as the first fuel injection mechanisms. Namely, theinjection controller 5 controls the injection of the fuel from the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 so as to inject the fuel from the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 at the respective predetermined phases of the pulsations. The predetermined phases of the pulsations are upper limits or lower limits of the pulsation, that is, upper limits or lower limits of the fluctuations in the pressure of the fuel in the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 that serve as the first fuel injection mechanisms, respectively. Therefore, when the fuel is injected from the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 at the upper limits of the fluctuations in the pressure of the fuel in the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32, the injected fuel can be transformed to fine particles. Thus, combustion efficiency and an emission of the engine can be thereby enhanced. Further, when the fuel is injected from the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 at the lower limits of the fluctuations in the pressure of the fuel in the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32, the pressure of the fuel in the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 is lower than that of the fuel supplied into the right inter-intake pathfuel injection mechanism 31 and the left inter-intake pathfuel injection mechanism 32 by the low-pressure pump 7. It is thereby possible to improve dynamic ranges of therespective injectors 31 a to 31 c, that is, inject less fuel from therespective injectors 31 a to 31 c. -
FIG. 20 is a configuration diagram of a fuel injecting apparatus including a fuel supplying apparatus according to an eighth embodiment. A fuel injecting apparatus 1-8 shown inFIG. 20 differs from the fuel injecting apparatus 1-5 shown inFIG. 14 in that afuel pressure sensor 3 f is provided in the fuel injecting apparatus 1-8. Since the basic configuration of the fuel injecting apparatus 1-8 shown inFIG. 20 is the same as that of the fuel injecting apparatus 1-5 shown inFIG. 14 , the explanation therefor will be omitted. - The
fuel pressure sensor 3 f is provided in the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism. Thisfuel pressure sensor 3 f detects the pressure of the fuel in the inter-intake pathfuel injection mechanism 3, that is, in thefuel distribution pipe 3 e. An output signal corresponding to the pressure of the fuel in thefuel distribution pipe 3 e and detected by thefuel pressure sensor 3 f is input to theinjection controller 5. - A fuel injecting method performed by the fuel injecting apparatus according to the eighth embodiment will next be explained.
FIG. 21 is a flow chart of injection control of the fuel injecting apparatus according to the eighth embodiment. The flow of the fuel injecting method performed by the fuel injecting apparatus shown inFIG. 21 is basically the same as that of the fuel injecting method performed by the fuel injecting apparatus 1-2 shown inFIG. 6 . Therefore, the flow will be explained simply. As shown inFIG. 21 , theprocessing unit 5 b of thefuel controller 5 calculates the fuel supply amount Q to be supplied to the engine (at a step ST1). - The
processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L1 (at a step ST2). When the accelerator opening L is smaller than the predetermined value L1, theinjection controller 5 that serves as the control unit determines that the injection range is the inter-cylinder injection range, based on the operating state of the engine that serves as the internal combustion engine, as shown inFIG. 4 . Theprocessing unit 5 b outputs output signals for the injection timings and the injection amounts to theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-8 performs inter-cylinder injection (at a step ST4). - When the acceleration opening L is equal to or larger than the predetermined value L1 at the step ST2, The
processing unit 5 b determines whether the accelerator opening L is smaller than the predetermined value L2 (at a step ST6). When the accelerator opening L is equal to or smaller than the predetermined value L2, theinjection controller 5 that serves as the control unit determines that the injection range is the inter-cylinder and inter-intake path injection range as shown inFIG. 4 . Thecontrol unit 5 b then determines whether the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism is large (at a step ST22). When the pulsation propagated from the high-pressure pump 9 to the inter-intakepath injection mechanism 3 is large, the width of the fluctuation in the pressure of the fuel in the inter-intakepath injection mechanism 3 is large. Accordingly, theinjection controller 5 can determines whether the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 is large based on the output signal that is corresponding to the pressure in the inter-intake pathfuel injection mechanism 3 and that output from thefuel pressure sensor 3 f. - If determining that the pulsation is large, the
processing unit 5 b calculates an increase amount of the inter-cylinder injection in proportion to the magnitude of this pulsation (at a step ST23). For inter-cylinder and inter-intake path fuel injection, an injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and that of the fuel injected from theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 are determined by the map as shown inFIG. 4 . In this embodiment, the injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d is reduced, and the injection amount of the fuel injected from theinter-cylinder injectors 4 a to 4 d is increased without changing the fuel supply amount Q of the fuel to be supplied to the engine. In other words, a ratio of the fuel supply amount by which the fuel is supplied to the engine by inter-intake path injection to the fuel supply amount by which the fuel is supplied to the engine by inter-cylinder injection is changed. Theprocessing unit 5 b then outputs output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 based on the inter-cylinder injection increase amount calculated at the step ST23 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-8 performs inter-cylinder and inter-intake path injection (at a step ST8). Accordingly, in the inter-cylinder and inter-intake path injection range for supplying the fuel to the engine both by the first fuel injection mechanism and the second fuel injection mechanism, the injection amount of the fuel from theinter-intake path injectors 3 a to 3 d is reduced. Therefore, even if the pulsation generated in the high-pressure pump 9 is propagated to the inter-intake pathfuel injection mechanism 3, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened. - If determining that the pulsation is not large at the step ST22, the
processing unit 5 b outputs output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 based on the map shown inFIG. 4 , and the fuel injecting apparatus 1-8 perform inter-cylinder and inter-intake path injection (at a step ST8). - When the accelerator opening L is equal to or larger than the predetermined value L2 at the step ST6, the
injection controller 5 that serves as the control unit determines that the injection range is the inter-intake path injection range as shown inFIG. 4 . Theprocessing unit 5 b then determines whether the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism is large (at a step ST24). If determining that the pulsation is large, theprocessing unit 5 b outputs output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 and theinter-cylinder injectors 4 a to 4 d of the inter-cylinderfuel injection mechanism 4 in order to supply the fuel that satisfies the fuel supply amount Q to the engine, and the fuel injecting apparatus 1-8 performs inter-cylinder and inter-intake path injection (at a step ST25). For inter-intake path injection, the injection amount of theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 is determined by the map as shown in 4. In this embodiment, the fuel is injected from theinter-cylinder injectors 4 a to 4 d without changing the fuel supply amount Q of the fuel to be supplied to the engine, thereby reducing the injection amount of the fuel injected from theinter-intake path injectors 3 a to 3 d. Accordingly, in the inter-intake path injection range for supplying the fuel to the engine only by the first fuel injection mechanism, the injection amount of the fuel from theinter-intake path injectors 3 a to 3 d is reduced. Therefore, even if the pulsation generated in the high-pressure pump 9 is propagated to the inter-intake pathfuel injection mechanism 3, the influence of the pulsation generated in the high-pressure pump 9 on the fuel supply amount by which the fuel is supplied into the engine, particularly, the fuel injection amount by which the fuel is injected from theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 that serves as that first fuel injection mechanism can be lessened. - If determining that the pulsation is not large at the step ST24, the
processing unit 5 b outputs output signals for the injection timings and the injection amounts to theinter-intake path injectors 3 a to 3 d of the inter-intake pathfuel injection mechanism 3 based on the map shown inFIG. 4 , and the fuel injecting apparatus 1-8 performs inter-intake path injection (at a step ST12). - According to the eighth embodiment, the
fuel controller 5 determines whether the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism is large, based on the pressure of the fuel in the inter-intake pathfuel injection mechanism 3 output from thefuel pressure sensor 3 f. However, the present invention is not limited to this instance. For example, the map that represents the relationship between the number of revolutions Ne of the engine and the magnitude of the pulsation may be stored in thestorage unit 5 c of theinjection controller 5 based on the number of revolutions Ne of the engine and the fuel supply amount Q by which the fuel is supplied to the engine, and the magnitude of the pulsation may be determined from the number of revolutions Ne of the engine. - Further, when the
processing unit 5 b determines that the fuel injection range is the inter-cylinder and inter-intake path injection range or the inter-intake path injection range, and determines whether the pulsation propagated from the high-pressure pump 9 to the inter-intake pathfuel injection mechanism 3 that serves as the first fuel injection mechanism is large, theprocessing unit 5 may output the output signals for the injection timings and the injection amounts to theinter-cylinder injectors 4 a to 4 d, and the fuel injecting apparatus 1-8 may perform only inter-intake path injection. - The internal combustion engine fuel supplying apparatus and the internal combustion engine fuel injecting apparatus according to the above embodiments exhibit the following effects. The propagation of the pulsation generated in the high-pressure pump to the first fuel injection mechanism is suppressed. The irregularity in the injection amount of the fuel among the first fuel injection mechanism for each cylinder group is suppressed. An injection amount of the fuel injected from the first fuel injection mechanism is reduced. The influence of the pulsation generated from the high-pressure pump on a fuel supply amount, by which the fuel is supplied to the internal combustion engine can be thereby lessened.
- Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Claims (8)
1. A fuel supplying apparatus of an internal combustion engine, comprising:
a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism;
a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism; and
a pulsation propagation suppressing unit that is provided in at least one of the first fuel supply system and the second fuel supply system, and that suppresses propagation of a pulsation generated in the high-pressure pump to the first fuel injection mechanism, wherein
the pulsation propagation suppressing unit is a throttle that is provided between a part of the first fuel supply system, at which the second fuel supply system is branched from the first fuel supply system, and the first fuel injection mechanism.
2. The fuel supplying apparatus according to claim 1 , wherein
the throttle is a variable throttle having a throttling amount which can be changed, and
the throttling amount of the throttle is changed according to the operating state of the internal combustion engine.
3. The fuel supplying apparatus according to claim 2 , wherein
the throttling amount of the variable throttle is increased in proportion to an increase in a flow rate of the fuel supplied to the first fuel supply system.
4. The fuel supplying apparatus according to claim 2 , wherein
the throttling amount of the variable throttle is increased as the number of revolutions of the internal combustion engine at which the pulsation propagated from the high-pressure pump to the first fuel injection mechanism is increased.
5. A fuel supplying apparatus of an internal combustion engine, comprising:
a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism;
a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism; and
a pulsation propagation suppressing unit that is provided in at least one of the first fuel supply system and the second fuel supply system, and that suppresses propagation of a pulsation generated in the high-pressure pump to the first fuel injection mechanism, wherein
the pulsation propagation suppressing unit is a check valve that is provided between a part of the first fuel supply system, at which the second fuel supply system is branched from the first fuel supply system, and the first fuel injection mechanism.
6. The fuel supplying apparatus according to claim 5 , wherein
driving of the low-pressure pump is stopped according to the operating state of the internal combustion engine.
7. A fuel supplying apparatus of an internal combustion engine, comprising:
a first fuel supply system that pressurizes a fuel by a low-pressure pump, and that supplies the fuel pressurized by the low-pressure pump to a first fuel injection mechanism; and
a second fuel supply system that is branched from the first fuel supply system, that further pressurizes the fuel, pressurized by the low-pressure pump, by a high-pressure pump that is driven according to an operating state of the internal combustion engine, and that supplies the fuel pressurized by the high-pressure pump to a second fuel injection mechanism, wherein
a path length from the high-pressure pump to the first fuel injection mechanism is a length such that the number of revolutions of the internal combustion engine, at which a pulsation propagated from the high-pressure pump to the first fuel injection mechanism is increased, is out of a common range of the number of revolutions of the internal combustion engine.
8. The fuel supplying apparatus according to claim 7 , wherein
the path length from the high-pressure pump to the first fuel injection mechanism is a length such that the number of revolutions of the internal combustion engine, at which the pulsation propagated from the high-pressure pump to the first fuel injection mechanism is increased, is smaller than the number of revolutions during idling in the common range of the number of revolutions of the internal combustion engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/711,772 US20070144482A1 (en) | 2003-10-02 | 2007-02-28 | Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003343900A JP3894179B2 (en) | 2003-10-02 | 2003-10-02 | Fuel supply device for internal combustion engine |
JP2003-343900 | 2003-10-02 | ||
US10/940,647 US7246602B2 (en) | 2003-10-02 | 2004-09-15 | Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine |
US11/711,772 US20070144482A1 (en) | 2003-10-02 | 2007-02-28 | Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/940,647 Continuation US7246602B2 (en) | 2003-10-02 | 2004-09-15 | Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070144482A1 true US20070144482A1 (en) | 2007-06-28 |
Family
ID=34309124
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/940,647 Expired - Fee Related US7246602B2 (en) | 2003-10-02 | 2004-09-15 | Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine |
US11/711,772 Abandoned US20070144482A1 (en) | 2003-10-02 | 2007-02-28 | Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/940,647 Expired - Fee Related US7246602B2 (en) | 2003-10-02 | 2004-09-15 | Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine |
Country Status (5)
Country | Link |
---|---|
US (2) | US7246602B2 (en) |
EP (1) | EP1520981A3 (en) |
JP (1) | JP3894179B2 (en) |
KR (4) | KR100713605B1 (en) |
CN (1) | CN100350143C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130133622A1 (en) * | 2011-11-25 | 2013-05-30 | Honda Motor Co., Ltd. | Fuel supply apparatus for engine |
US20160363104A1 (en) * | 2015-06-12 | 2016-12-15 | Ford Global Technologies, Llc | Methods and systems for dual fuel injection |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002083609A1 (en) * | 2001-04-12 | 2002-10-24 | Basf Aktiengesellschaft | Method for the production of propene |
JP3894179B2 (en) * | 2003-10-02 | 2007-03-14 | トヨタ自動車株式会社 | Fuel supply device for internal combustion engine |
JP4432610B2 (en) * | 2004-05-17 | 2010-03-17 | トヨタ自動車株式会社 | Fuel supply device for internal combustion engine |
JP4466340B2 (en) * | 2004-11-18 | 2010-05-26 | トヨタ自動車株式会社 | Fuel supply device |
JP4552694B2 (en) | 2005-03-02 | 2010-09-29 | トヨタ自動車株式会社 | Vehicle fuel supply device |
US7395818B2 (en) * | 2005-04-21 | 2008-07-08 | Walbro Engine Management, L.L.C. | Multi-gaseous fuel control device for a combustion engine with a carburetor |
JP4428293B2 (en) * | 2005-06-07 | 2010-03-10 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP4508011B2 (en) * | 2005-06-30 | 2010-07-21 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP4544061B2 (en) | 2005-07-06 | 2010-09-15 | トヨタ自動車株式会社 | Control device for fuel system of internal combustion engine |
JP2007177688A (en) * | 2005-12-28 | 2007-07-12 | Honda Motor Co Ltd | Fuel injection device for engine |
JP4165572B2 (en) | 2006-04-12 | 2008-10-15 | トヨタ自動車株式会社 | Fuel supply device for internal combustion engine |
JP4215094B2 (en) | 2006-11-20 | 2009-01-28 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP4297160B2 (en) | 2006-12-22 | 2009-07-15 | トヨタ自動車株式会社 | Internal combustion engine |
EP2179406A1 (en) * | 2007-08-05 | 2010-04-28 | Masco Corporation | Security system including wireless self-energizing switch |
CN103649500B (en) * | 2012-04-06 | 2016-03-16 | 丰田自动车株式会社 | Mobile engine starts control gear |
JP2014190180A (en) * | 2013-03-26 | 2014-10-06 | Toyota Motor Corp | Fuel injection device of internal combustion engine |
JP6098344B2 (en) * | 2013-05-13 | 2017-03-22 | トヨタ自動車株式会社 | Fuel supply device for internal combustion engine |
US9464609B2 (en) * | 2013-09-06 | 2016-10-11 | Ford Global Technologies, Llc | Fuel delivery system including integrated check valve |
JP6233200B2 (en) * | 2014-06-19 | 2017-11-22 | トヨタ自動車株式会社 | Fuel supply device for internal combustion engine |
US9611801B2 (en) * | 2014-12-15 | 2017-04-04 | Ford Global Technologies, Llc | Methods and systems for fixed and variable pressure fuel injection |
JP6409685B2 (en) * | 2015-06-03 | 2018-10-24 | 株式会社デンソー | Fuel supply device |
CN107035559A (en) * | 2017-04-01 | 2017-08-11 | 中国第汽车股份有限公司 | A kind of double controlled oil rail diesel injection systems of monoblock pump type used for diesel engine |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4064855A (en) * | 1976-02-17 | 1977-12-27 | Johnson Lloyd E | Pressure relief at fuel injection valve upon termination of injection |
US4372272A (en) * | 1981-07-31 | 1983-02-08 | The Bendix Corporation | Fuel delivery system with feed and drain line damping |
US4414940A (en) * | 1981-04-13 | 1983-11-15 | Loyd Robert W | Conditioned compression ignition system for stratified charge engines |
US4608957A (en) * | 1983-03-02 | 1986-09-02 | Robert Bosch Gmbh | Aggregate for supplying fuel, particularly from a supply container to an internal combustion engine of a motor vehicle |
US4805580A (en) * | 1985-06-14 | 1989-02-21 | Robert Bosch Gmbh | Fuel injection device |
US5509391A (en) * | 1994-10-03 | 1996-04-23 | Caterpillar Inc. | Helmoltz isolation spool valve assembly adapted for a hydraulically-actuated fuel injection system |
US5727525A (en) * | 1995-10-03 | 1998-03-17 | Nippon Soken, Inc. | Accumulator fuel injection system |
US5752486A (en) * | 1995-12-19 | 1998-05-19 | Nippon Soken Inc. | Accumulator fuel injection device |
US6276334B1 (en) * | 1998-02-23 | 2001-08-21 | Cummins Engine Company, Inc. | Premixed charge compression ignition engine with optimal combustion control |
US6405709B1 (en) * | 2000-04-11 | 2002-06-18 | Cummins Inc. | Cyclic pressurization including plural pressurization units interconnected for energy storage and recovery |
US6457453B1 (en) * | 2000-03-31 | 2002-10-01 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Accumulator fuel-injection apparatus |
US20020139111A1 (en) * | 2001-03-27 | 2002-10-03 | Toyota Jidosha Kabushiki Kaisha | Fuel supply apparatus for an internal combustion engine |
US20030041838A1 (en) * | 2001-08-31 | 2003-03-06 | Toyota Jidosha Kabushiki Kaisha | Fuel injection device of cylinder injection type internal combustion engine and fuel injection method thereof |
US6598590B1 (en) * | 1999-03-12 | 2003-07-29 | Robert Bosch Gmbh | Fuel injection for an internal combustion engine, with a high-pressure pump and two pressure reservoirs |
US6973921B2 (en) * | 2003-12-12 | 2005-12-13 | Caterpillar Inc. | Fuel pumping system and method |
US20060000452A1 (en) * | 2004-07-02 | 2006-01-05 | Toyota Jidosha Kabushiki Kaisha | Fuel supply system for internal combustion engine |
US20060102149A1 (en) * | 2004-11-18 | 2006-05-18 | Toyota Jidosha Kabushiki Kaisha | Fuel supply apparatus |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4715339A (en) * | 1984-09-01 | 1987-12-29 | Kawasaki Jukogyo Kabushiki Kaisha | Governor for internal combustion engine |
JP3175426B2 (en) | 1993-10-06 | 2001-06-11 | トヨタ自動車株式会社 | Fuel injection device for internal combustion engine |
JP3094751B2 (en) | 1993-10-12 | 2000-10-03 | トヨタ自動車株式会社 | Fuel injection device for internal combustion engine |
JP3747061B2 (en) | 1993-11-08 | 2006-02-22 | ツェーエルテー・コモン・レイル・テクノロジーズ・アクチェンゲゼルシャフト | Control device for injection ratio adjusting pump |
JPH09158814A (en) | 1995-12-11 | 1997-06-17 | Nippon Soken Inc | Accumulator fuel injection device |
JP3511828B2 (en) | 1996-06-24 | 2004-03-29 | 三菱自動車工業株式会社 | Fuel system and fuel pump |
JPH10238437A (en) | 1997-02-25 | 1998-09-08 | Mitsubishi Motors Corp | Pump for internal combustion engine |
JP3999855B2 (en) * | 1997-09-25 | 2007-10-31 | 三菱電機株式会社 | Fuel supply device |
JPH11205898A (en) * | 1998-01-16 | 1999-07-30 | Mitsubishi Electric Corp | Electrode for dielectric thin-film element, its manufacture and ultrasonic oscillator using the electrode |
JP2000008917A (en) | 1998-06-17 | 2000-01-11 | Toyota Motor Corp | Fuel supply device for internal combustion engine |
JP3428443B2 (en) | 1998-06-29 | 2003-07-22 | 株式会社日立製作所 | Variable flow high pressure fuel pump and fuel supply control method |
EP1087130B1 (en) | 1999-09-22 | 2002-07-10 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Accumulator fuel injection system |
US6901913B1 (en) | 2001-07-16 | 2005-06-07 | Usui Kokusai Sangyo Kaisha Ltd. | Fuel pressure pulsation suppressing system |
JP3823060B2 (en) | 2002-03-04 | 2006-09-20 | 株式会社日立製作所 | High pressure fuel supply pump |
JP3894179B2 (en) * | 2003-10-02 | 2007-03-14 | トヨタ自動車株式会社 | Fuel supply device for internal combustion engine |
-
2003
- 2003-10-02 JP JP2003343900A patent/JP3894179B2/en not_active Expired - Fee Related
-
2004
- 2004-09-15 US US10/940,647 patent/US7246602B2/en not_active Expired - Fee Related
- 2004-09-21 EP EP04022421A patent/EP1520981A3/en not_active Withdrawn
- 2004-10-01 KR KR1020040078178A patent/KR100713605B1/en not_active IP Right Cessation
- 2004-10-08 CN CNB2004100834052A patent/CN100350143C/en not_active Expired - Fee Related
-
2006
- 2006-06-26 KR KR1020060057246A patent/KR100637647B1/en not_active IP Right Cessation
- 2006-06-26 KR KR1020060057247A patent/KR100637648B1/en not_active IP Right Cessation
- 2006-06-26 KR KR1020060057248A patent/KR20060086334A/en not_active Application Discontinuation
-
2007
- 2007-02-28 US US11/711,772 patent/US20070144482A1/en not_active Abandoned
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4064855A (en) * | 1976-02-17 | 1977-12-27 | Johnson Lloyd E | Pressure relief at fuel injection valve upon termination of injection |
US4414940A (en) * | 1981-04-13 | 1983-11-15 | Loyd Robert W | Conditioned compression ignition system for stratified charge engines |
US4372272A (en) * | 1981-07-31 | 1983-02-08 | The Bendix Corporation | Fuel delivery system with feed and drain line damping |
US4608957A (en) * | 1983-03-02 | 1986-09-02 | Robert Bosch Gmbh | Aggregate for supplying fuel, particularly from a supply container to an internal combustion engine of a motor vehicle |
US4805580A (en) * | 1985-06-14 | 1989-02-21 | Robert Bosch Gmbh | Fuel injection device |
US5509391A (en) * | 1994-10-03 | 1996-04-23 | Caterpillar Inc. | Helmoltz isolation spool valve assembly adapted for a hydraulically-actuated fuel injection system |
US5727525A (en) * | 1995-10-03 | 1998-03-17 | Nippon Soken, Inc. | Accumulator fuel injection system |
US5752486A (en) * | 1995-12-19 | 1998-05-19 | Nippon Soken Inc. | Accumulator fuel injection device |
US6276334B1 (en) * | 1998-02-23 | 2001-08-21 | Cummins Engine Company, Inc. | Premixed charge compression ignition engine with optimal combustion control |
US6598590B1 (en) * | 1999-03-12 | 2003-07-29 | Robert Bosch Gmbh | Fuel injection for an internal combustion engine, with a high-pressure pump and two pressure reservoirs |
US6457453B1 (en) * | 2000-03-31 | 2002-10-01 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Accumulator fuel-injection apparatus |
US6405709B1 (en) * | 2000-04-11 | 2002-06-18 | Cummins Inc. | Cyclic pressurization including plural pressurization units interconnected for energy storage and recovery |
US20020139111A1 (en) * | 2001-03-27 | 2002-10-03 | Toyota Jidosha Kabushiki Kaisha | Fuel supply apparatus for an internal combustion engine |
US20030041838A1 (en) * | 2001-08-31 | 2003-03-06 | Toyota Jidosha Kabushiki Kaisha | Fuel injection device of cylinder injection type internal combustion engine and fuel injection method thereof |
US6973921B2 (en) * | 2003-12-12 | 2005-12-13 | Caterpillar Inc. | Fuel pumping system and method |
US20060000452A1 (en) * | 2004-07-02 | 2006-01-05 | Toyota Jidosha Kabushiki Kaisha | Fuel supply system for internal combustion engine |
US20060102149A1 (en) * | 2004-11-18 | 2006-05-18 | Toyota Jidosha Kabushiki Kaisha | Fuel supply apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130133622A1 (en) * | 2011-11-25 | 2013-05-30 | Honda Motor Co., Ltd. | Fuel supply apparatus for engine |
US9127630B2 (en) * | 2011-11-25 | 2015-09-08 | Honda Motor Co., Ltd. | Fuel supply apparatus for engine |
US20160363104A1 (en) * | 2015-06-12 | 2016-12-15 | Ford Global Technologies, Llc | Methods and systems for dual fuel injection |
US10323612B2 (en) * | 2015-06-12 | 2019-06-18 | Ford Global Technologies, Llc | Methods and systems for dual fuel injection |
Also Published As
Publication number | Publication date |
---|---|
KR20060082838A (en) | 2006-07-19 |
EP1520981A2 (en) | 2005-04-06 |
KR20060086334A (en) | 2006-07-31 |
CN1603603A (en) | 2005-04-06 |
KR100713605B1 (en) | 2007-05-02 |
JP3894179B2 (en) | 2007-03-14 |
KR20050033017A (en) | 2005-04-08 |
KR100637648B1 (en) | 2006-10-23 |
CN100350143C (en) | 2007-11-21 |
KR100637647B1 (en) | 2006-10-23 |
KR20060082837A (en) | 2006-07-19 |
US20050072405A1 (en) | 2005-04-07 |
JP2005106027A (en) | 2005-04-21 |
EP1520981A3 (en) | 2005-05-11 |
US7246602B2 (en) | 2007-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070144482A1 (en) | Fuel supplying apparatus and fuel injecting apparatus of internal combustion engine | |
US7328687B2 (en) | Fuel supply apparatus for internal combustion engine | |
JP4297160B2 (en) | Internal combustion engine | |
CA2588451C (en) | Fuel supply apparatus for vehicle | |
US7178506B2 (en) | Fuel supply apparatus for internal combustion engine | |
US20140251280A1 (en) | Control apparatus for internal combustion engine and control method for internal combustion engine | |
JP2000080942A (en) | Starting controller for internal combustion engine | |
US8051838B2 (en) | Fuel injection control device | |
JP4135024B2 (en) | Fuel supply device for internal combustion engine | |
JP4196733B2 (en) | Fuel injection timing control method for in-cylinder direct injection CNG engine | |
JP2007315309A (en) | Fuel injection control device for internal combustion engine | |
JP4135254B2 (en) | Fuel injection device for internal combustion engine | |
JP4124097B2 (en) | Fuel injection device for internal combustion engine | |
JP2006170048A (en) | Fuel injection device for vehicle | |
JPH0949449A (en) | Fuel injection device | |
JP2007162642A (en) | High-pressure fuel pump of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |