US20070135265A1 - Apparatus and Method for Characterizing Contributions of Forces Associated with a Body Part of a Subject - Google Patents
Apparatus and Method for Characterizing Contributions of Forces Associated with a Body Part of a Subject Download PDFInfo
- Publication number
- US20070135265A1 US20070135265A1 US11/675,818 US67581807A US2007135265A1 US 20070135265 A1 US20070135265 A1 US 20070135265A1 US 67581807 A US67581807 A US 67581807A US 2007135265 A1 US2007135265 A1 US 2007135265A1
- Authority
- US
- United States
- Prior art keywords
- body part
- appendage
- displacement
- forces
- measurement device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title abstract description 23
- 230000033001 locomotion Effects 0.000 claims abstract description 84
- 238000006073 displacement reaction Methods 0.000 claims abstract description 46
- 238000012544 monitoring process Methods 0.000 claims abstract description 23
- 210000003205 muscle Anatomy 0.000 claims description 35
- 210000002414 leg Anatomy 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 22
- 230000000694 effects Effects 0.000 claims description 20
- 210000000629 knee joint Anatomy 0.000 claims description 20
- 210000004394 hip joint Anatomy 0.000 claims description 17
- 238000004891 communication Methods 0.000 claims description 5
- 210000003414 extremity Anatomy 0.000 description 35
- 238000002560 therapeutic procedure Methods 0.000 description 20
- 210000003127 knee Anatomy 0.000 description 16
- 230000003387 muscular Effects 0.000 description 13
- 206010033799 Paralysis Diseases 0.000 description 11
- 210000001624 hip Anatomy 0.000 description 9
- 230000006690 co-activation Effects 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- 230000003042 antagnostic effect Effects 0.000 description 6
- 210000003169 central nervous system Anatomy 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- 230000001537 neural effect Effects 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 210000001503 joint Anatomy 0.000 description 4
- 208000006011 Stroke Diseases 0.000 description 3
- 208000030886 Traumatic Brain injury Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000002146 bilateral effect Effects 0.000 description 3
- 208000020431 spinal cord injury Diseases 0.000 description 3
- 230000009529 traumatic brain injury Effects 0.000 description 3
- 208000008238 Muscle Spasticity Diseases 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000003137 locomotive effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 208000018198 spasticity Diseases 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 0 *CCCC=C1CCCCC1 Chemical compound *CCCC=C1CCCCC1 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 206010033892 Paraplegia Diseases 0.000 description 1
- 235000011449 Rosa Nutrition 0.000 description 1
- 206010040030 Sensory loss Diseases 0.000 description 1
- 206010041415 Spastic paralysis Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000037023 motor activity Effects 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000000118 neural pathway Anatomy 0.000 description 1
- 230000010004 neural pathway Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000003016 quadriplegic effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000037152 sensory function Effects 0.000 description 1
- 230000001148 spastic effect Effects 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/22—Ergometry; Measuring muscular strength or the force of a muscular blow
- A61B5/224—Measuring muscular strength
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/1036—Measuring load distribution, e.g. podologic studies
- A61B5/1038—Measuring plantar pressure during gait
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1071—Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring angles, e.g. using goniometers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4528—Joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0237—Stretching or bending or torsioning apparatus for exercising for the lower limbs
- A61H1/024—Knee
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/22—Ergometry; Measuring muscular strength or the force of a muscular blow
- A61B5/221—Ergometry, e.g. by using bicycle type apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4519—Muscles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6823—Trunk, e.g., chest, back, abdomen, hip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6828—Leg
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/164—Feet or leg, e.g. pedal
- A61H2201/1642—Holding means therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1657—Movement of interface, i.e. force application means
- A61H2201/1676—Pivoting
Definitions
- the present invention relates to stimulation of neural tissue and, in particular, to methods and apparatuses for causing prescribed movement of a portion of a subject's body using a mechanical device.
- CNS central nervous system
- locomotion therapy using a treadmill and a partial weight bearing harness has become an accepted standard of care (Rossignol I S, Barbeau H. New approaches to locomotor rehabilitation in spinal cord injury. Annals of Neurology 1995;37(5):555-556).
- the overhead harness system supports the patient sufficiently such that the motion of the treadmill belt assists the patient in moving the legs in a locomotor-like pattern.
- Such partial weight bearing treadmill methods are of proven clinical value in restoring the ability to move and walk in patients with unilateral paralysis and/or with sufficient residual function to generate a minimum level of limb movement in response to the treadmill belt motion (Dobkin B H. An overview of treadmill locomotor training with partial body weight support: a neurophysiologically sound approach whose time has come for randomized trialy. Neurorehabilitation and Neuronal Repair 1999;13(3):157-164).
- the HealthSouth website describes the AutoAmbultor as including an overhead harness system able to fully or partially support a subject's weight, two mechanically motorized braces to move each of the subject's legs, computerized sensors to track the subject's vital signs, leg motions and speed of leg movements, devices that permit automatic belt speed adjustments based on leg movement speed, and emergency controls that permit the subject or therapist to stop the machine.
- the site further describes the ability of the machine to mimic the proper human gait as well as to provide the clinician with the above described data to monitor patient progress.
- the HealthSouth website also provides two studies.
- the first study describes a normal subject walking on the AutoAmbulator system with partial weight support while wearing a tight nylon suit fitted with reflectors. The positions of the reflectors over time are recorded by a computer-video based motion analysis system.
- the purpose of the first study is to measure the subject's leg motions during robotic patterning and to compare the patterned motions to those produced by the same subjects during normal unassisted walking on the treadmill.
- the second study uses x-ray imaging techniques to analyze the position of the lower back while normal subjects are suspended in the harness six inches above the treadmill and while wearing the harness with the feet on the treadmill. The purpose of the second study is to assure that the harness system does not cause potential harm to the lower back.
- a second partial weight bearing treadmill device incorporating a robotic appendage to provide patterns for movement of the legs is the LOKO System® manufactured jointly by Woodway GmbH of Weil am Rhein, Germany, and Hocoma AG of Zurich, Switzerland.
- a method for characterizing contributions of forces associated with a body part of a subject when the body part is involved in movement includes causing movement of the body part in a prescribed manner and monitoring quantities related to at least one of displacement of the body part and external force on the body part. At least one quantity related to a force contribution associated with the body part is determined from the quantities measured.
- the method may also include monitoring activity of a muscle associated with the body part in relation to displacement of the body part. Additionally, causing movement of the body part may include causing a large slow displacement of the body part. Similarly, causing movement of the body part may include causing a small rapid displacement of the body part. In accordance with other related embodiments, activity of a muscle associated with the body part may be monitored when the muscle is relaxed and/or activity of a muscle associated with the body part may be monitored when the muscle is active.
- the body part may include a limb or a set of limbs.
- monitoring quantities related to displacement of the body part may include monitoring the displacement of a joint associated with the body part and the joint may be a knee.
- Monitoring quantities related to the displacement of the knee may include monitoring displacement along a knee-flexion-extension axis and/or monitoring displacement along a knee pronation-supination axis.
- monitoring quantities related to the displacement of knee may include monitoring displacement along an eversion-inversion axis.
- the joint may be a hip.
- causing movement of the body part by the application of external force may include causing cyclic movement typical of walking.
- an apparatus for characterizing contributions of forces associated with a body part of a subject when the body part is involved in movement includes means for causing movement of the body part in a prescribed manner, means for monitoring quantities related to at least one of displacement of the body part and external force on the body part and means for determining at least one quantity related to a force contribution associated with the body part from the quantities measured.
- the apparatus may include means for monitoring activity of a muscle associated with the body part in relation to displacement of the body part.
- the means for causing movement of the body part may include a mechanical arm.
- the means for causing movement of the body part may include an actuator.
- the means for monitoring displacement of the body part may include means for accepting signals for controlling the position of the body part. Further, the means for monitoring displacement of the body part may include means for generating signals for related to the position of the body part and forces generated by the body part.
- an apparatus for characterizing contributions of forces associated with a body part of a subject when the body part is involved in movement includes an appendage coupled to the body part for causing movement of the body part in a prescribed manner, a measurement device that measures quantities related to at least one of displacement of the body part, external forces on the body part and forces generated by the appendage.
- a computational device is in communication with the measurement device for determining at least one quantity related to a force contribution associated with the body part.
- the apparatus may also include surface electromygraphic recorder for monitoring the activity of a muscle associated with the body part.
- the computational device may calculate forces necessary to move the body part when no muscle activity is detected.
- the body part may be a leg and the appendage attaches to the leg and causes knee and hip joints of the leg to move in patterns similar to those generated when walking.
- the measurement device may measure angular displacement of the knee and hip joints and/or the measurement device may measure forces generated by the appendage in rotating the knee and hip joints.
- the appendage may include an actuator.
- the measurement device may include an input for receiving and an output for transmitting signals related to displacement of the appendage and of the body part and forces generated by the appendage and the body part.
- the appendage may include the measurement device.
- the measurement device may be integrated with an actuator.
- the apparatus may include a display for displaying the at least one quantity related to a force contribution associated with the body part to a clinician.
- the apparatus may include a display for displaying the at least one quantity related to a force contribution associated with the body part to the subject.
- FIG. 1 is graphical illustration of a mechanical device for moving knee and hip joints in a prescribed pattern in accordance with an embodiment of the invention
- FIG. 2 is a block diagram illustrating an apparatus for characterizing contributions of forces associated with a body part of a subject in accordance with an embodiment of the invention
- FIG. 3 is a block diagram illustrating is an apparatus for characterizing contributions of forces associated with a body part of a subject in accordance with a further embodiment of the invention.
- FIG. 4 is a flow chart illustrating a method for characterizing contributions of forces associated with a body part of a subject in accordance with a further embodiment of the invention.
- the force required to impose a movement on the limb is related to the combined effects of the physical mass of the limb, the passive visco-elastic properties of the limb, and any active muscular forces generated by the limb either in support of or opposition to the imposed motion.
- the external force required to move a passive limb i.e., a limb displaying no active muscular forces
- antagonist pairs The force generating properties of individual human muscles and pairs of muscles acting in opposition to one another about a body joint, termed antagonist pairs, are well described in the prior art (Principles of Neural Science. Kandel & Schwaretz, editors. Elsevier/North Holland, N.Y., 1981).
- a muscular driving force is generated tending to move the joint in the direction of the active muscle, with the driving force proportional to the level of the neural activation.
- co-activation no driving force tending to move the joint is generated.
- the elastic resistance of the joint to an externally imposed displacement increases, with the active component of the elastic resistance proportional to the level of co-activation.
- the result is combination of a muscular driving force tending to move the joint in the direction of the more active muscle and an increased active elastic component.
- the muscular driving force is related to the difference in levels of activation of the two antagonist muscles, while the active elastic component is related to the activation level of the muscle undergoing the lesser activation.
- One quantitative method for measuring the level of neural activation of a muscle uses surface electromyographic (“EMG”) recording techniques well-known in the prior art.
- EMG surface electromyographic
- a second method for measuring the activation level of a muscle is for a trained clinician to manually press on the belly of the muscle and then observe the degree of muscle hardness.
- One method of recording the passive elastic and viscous forces is to move the limb according to the above described methods, monitor the EMG activity level of the muscle, or the degree of muscle belly hardness, to assure that the antagonistic muscles are not active, and record the passive elastic and viscous components. During subsequent movements of the limb, differences in recorded elastic forces are related to the active elastic force, while the force component unrelated to the limb displacement is related to the muscular driving force component.
- a multi-segmented limb it is possible to cause a multi-segmented limb to move about several joints at the same time and to determine the passive, elastic, viscous, and active muscle components of force acting about each of the moving joints separately.
- an appendage such as that described for the AutoAmbulator may be used to move the knee and hip joints in a cyclic pattern resembling normal walking.
- the above described measurements may be performed with the limb moving while suspended or while moving in contact with the moving belt of a treadmill.
- the above described methods can be further used to determine the passive, elastic, passive viscous, active elastic, and active force components acting about different axes of limb joint motion.
- the inertial, elastic, viscous, and active muscular force components acting at the knee joint may be determined for not only the normal axis of bending (the knee flexion-extension axis) but also for the axis of lateral twisting motion (knee pronation-supination) and the axis of longitudinal twisting motion (eversion-inversion).
- the ability to quantify during imposed movement therapy the extent to which a patient contributes effort to generation of the imposed movement compared to the extent generated by the forces and motions of the motorized appendage would provide several forms of clinically useful information.
- the information would be useful to assure the safety of imposed movement therapy using a powered appendage.
- One example would be a subject whose knee joint motion is severely restricted about a specific axis of motion.
- the powered appendage might continue to force the knee into positions causing further damaging the joint.
- maximum levels of elastic, viscous, and active muscular forces may be established and motions of the appendage halted or otherwise modified whenever one more of these force levels are exceeded.
- the information may be used as a measure of treatment progress. Specifically, as a patient's improves over time, the percentage of the movement generated by the efforts of the patient will increase, while that imposed by the motorized appendage will decrease.
- the information may be used as a measure of the effectiveness of the pattered movement therapy.
- Imposed movement therapy may be problematic in patients with excess spasticity or excessive co-activation of antagonistic muscles, for examples.
- Spasticity is a condition that causes a paralyzed limb to react reflexively so as to actively resist externally imposed movements such as those provided by the motorized appendage.
- the spastic reflex reactions may contribute inappropriately in that they would generate forces actively resisting rather than supporting the motions imposed by the appendage.
- the joints of the limb become excessively stiff and thereby also tend to actively resist rather than support the motions imposed by the motorized appendage.
- information related to the quality of the patient's contribution to the imposed movement may allow the clinician to modify the pattern of the movement to reduce the confounding effects of spactisity and co-activation or otherwise to take other medical actions to reduce these adverse effects.
- the information may be used as a biofeedback signal provided to the patient and the supervising clinician during the patterned movement therapy.
- the biofeedback signal can provide immediate information related to the effectiveness of the subject's efforts as well as help focus effort on those actions having the greatest positive impact on performance.
- Such biofeedback information is particularly valuable, because a paralyzed patient may be unable to accurately sense how his or her actions contribute to the imposed movement, which in the absence of biofeedback may lead to discouragement and loss of motivation.
- Embodiments of this invention therefore address such problems.
- FIG. 1 is graphical illustration of a mechanical device for moving knee and hip joints in a prescribed pattern in accordance with an embodiment of the invention.
- a combination trunk brace and hip actuator 101 is coupled to the subject's body at the hip.
- the trunk brace and hip actuator 101 is used to move the upper leg segment 110 relative to the trunk 112 about the hip joint.
- the trunk brace and hip actuator includes at least one input or signal receiver 103 for accepting signals used to control the position of the hip actuator 101 and thus cause motion of the hip in a prescribed manner.
- At least one output or signal transmitter 104 provides signals related to the position of the hip joint and the forces generated by the hip actuator 101 .
- the device also includes a combination upper leg brace and knee actuator 102 which is coupled to the subject's knee.
- the upper leg brace and knee actuator 102 is used to move the lower leg segment 114 relative to the upper leg segment 110 about the knee joint.
- the upper leg brace and knee actuator includes at least one input or signal receiver 105 for accepting signals used to control the position of the knee actuator and consequently cause motion of the knee in a prescribed manner.
- At least one output or signal transmitter provides signals related to the position of the knee joint and the forces generated by the knee actuator.
- the device further includes a lower leg segment brace 107 which is coupled to the knee joint actuator 102 .
- the upper leg brace and knee actuator is continually coupled to the knee joint even when the knee joint is in a flexed position relative to the upper leg, as shown at 121 .
- the trunk brace and hip actuator stays coupled to the hip joint even with the hip joint in a flexed position relative to the trunk as shown at 120 .
- FIG. 2 is a block diagram illustrating an apparatus for characterizing contributions of forces associated with a body part of a subject in accordance with an embodiment of the invention.
- the apparatus includes an appendage 201 which is coupled to the body part of the subject.
- the appendage 201 which may be designed as brace as shown with respect to FIG. 1 , or a mechanical device, such as a robotic arm, causes movement of the body part in a prescribed manner.
- the appendage 201 may cause the body part to move (i) through large displacement amplitudes at very slow displacement rates in order to maximize the effect of the elastic component of force while minimizing the viscous component of force and (ii) through, small, rapid displacements to maximize the viscous component of force as described above.
- the appendage 201 may cause the body part to move in a manner that the body part would move during normal physical activity.
- the appendage may attach to the leg of the subject and cause knee and hip joints of the leg to move in patterns similar to those generated when walking.
- the appendage may include an actuator 203 .
- a measurement device 204 measures quantities related to at least one of displacement of the body part, external forces on the body part, or forces generated by the motorized appendage as it imposes a displacement on the body part.
- the measurement device 203 may measure angular displacement of the knee and hip joints and/or forces generated by the appendage in rotating the knee and hip joints.
- the measurement device may include an input for receiving and an output for transmitting signals related to displacement of the appendage and of the body part and/or signals related to forces generated by the appendage and the body part as shown in FIG. 1 .
- the measurement device 204 may be included in the appendage 201 , as shown here, or it may simply be coupled to the appendage as shown in FIG. 3 . Similarly, the measurement device may be integrated with the actuator 203 .
- a computational device 205 is in communication with the measurement device 204 .
- the computation device 205 determines at least one quantity related to a force contribution associated with the body part.
- the computational device may calculate forces necessary to move the body part when no muscle activity is detected.
- the computational device 205 may also be in communication with the actuator 203 in order to provide control signals for controlling the actuator.
- the computation device 205 may also be in communication with a surface electromygraphic recorder (not shown) which monitors the activity of a muscle associated with the body part.
- FIG. 3 is a block diagram illustrating is an apparatus for characterizing contributions of forces associated with a body part of a subject in accordance with a further embodiment of the invention.
- the measuring device 302 and actuator 303 are not integrated with the appendage 301 .
- the appendage 301 is coupled to the actuator 302 and measuring device 303 which may also be coupled to one another.
- a computation device 304 is coupled to the actuator 302 and the measuring device 303 .
- a display 305 may be coupled to the computational device 304 for displaying at least one quantity related to a force contribution associated with the body part to a clinician, such as a health care provider or therapist, or to the subject.
- the display 305 may also display data provided to the computational device as an input.
- FIG. 4 is a flow chart illustrating a method for characterizing contributions of forces associated with a body part of a subject in accordance with a further embodiment of the invention.
- an appendage or mechanical device or a clinician, therapist or other health care provider causes the body part to be moved in a prescribed manner.
- causing movement of the body part may include causing cyclic movement of a leg typical of walking.
- Quantities related to at least one of displacement of the body part and external force on the body part are monitored in process 402 .
- Monitoring quantities related to displacement may include monitoring quantities related to the displacement of a joint associated with the body such as monitoring quantities related to the displacement along a knee-flexion-extension axis, a knee pronation-supination axis and/or an eversion-inversion axis.
- Activity of a muscle associated with the body part may also be monitored when the body part is active and/or when the body part is relaxed. At least one quantity related to a force contribution associated with the body part is then determined 403 from the quantities measured.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Physical Education & Sports Medicine (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Rehabilitation Therapy (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Rehabilitation Tools (AREA)
Abstract
A method and apparatus for characterizing contributions of forces associated with a body part of a subject when the body part is involved in movement is provided. The method includes causing movement of the body part in a prescribed manner and monitoring quantities related to at least one of displacement of the body part and external force on the body part. At least one quantity related to a force contribution associated with the body part is determined from the quantities measured.
Description
- The present application claims priority from U.S. Provisional Application No. 60/486,055, filed Jul. 10, 2003, which is hereby incorporated herein, in its entirety, by reference.
- The present invention relates to stimulation of neural tissue and, in particular, to methods and apparatuses for causing prescribed movement of a portion of a subject's body using a mechanical device.
- In individuals with substantial damage to the central nervous system (“CNS”), the traditional understanding has been that the damaged CNS tissue cannot readily regenerate. As a consequence, it has been further understood that the possibility of substantial recovery of daily life functional capabilities is highly unlikely in individuals with severe paralysis of the legs and/or arms caused by CNS diseases such as strokes, spinal cord injuries, and traumatic brain injuries.
- New hope for individuals with CNS damage has been provided by recent research studies demonstrating regeneration of substantially damaged CNS pathways controlling the sensory and motor activities of the limbs (Taub Edward, PhD; Gitendra Uswatte, MA; Rama Pidikiti, MD. Constraint-Induced Movement Therapy: A New Family of Techniques with Broad Application to Physical Rehabilitation—A Clinical Review. Journal of Rehabilitation Research and Development 1999; 37). Frequent stimulation of damaged neural pathways has been cited as a critical factor to CNS tissue regeneration. For individuals with paralysis concentrated in the limbs on one side of the body, one approach to providing the necessary stimulation therapy is to force the subject to use the impaired limbs by constraining use of the unimpaired ones while the patient performs simple tasks. For individuals with incomplete bilateral paralysis, including paraplegic and quadriplegic injuries, spastic paralysis, multiple sclerosis, stroke, and traumatic brain injuries, locomotion therapy using a treadmill and a partial weight bearing harness has become an accepted standard of care (Rossignol I S, Barbeau H. New approaches to locomotor rehabilitation in spinal cord injury. Annals of Neurology 1995;37(5):555-556). In this type of therapy, the overhead harness system supports the patient sufficiently such that the motion of the treadmill belt assists the patient in moving the legs in a locomotor-like pattern. Such partial weight bearing treadmill methods are of proven clinical value in restoring the ability to move and walk in patients with unilateral paralysis and/or with sufficient residual function to generate a minimum level of limb movement in response to the treadmill belt motion (Dobkin B H. An overview of treadmill locomotor training with partial body weight support: a neurophysiologically sound approach whose time has come for randomized trialy. Neurorehabilitation and Neuronal Repair 1999;13(3):157-164).
- For individuals with more severe bilateral paralysis involving the two legs, forced use of the impaired limbs and treadmill-based locomotion therapies are impractical and potentially unsafe. The patient is too impaired to move the legs independently while either freely standing or suspended over a moving treadmill belt. In these cases, stimulation therapy can be provided only by externally imposing movements of the legs in repetitive patterns resembling daily life activities such as walking.
- The effectiveness of providing stimulation to individuals with bilateral paralysis by externally imposed movements of the impaired limbs has been dramatized in popular press descriptions of Christopher Reeves' medical situation. Reeves, an actor famous for his film portrayal of Superman, suffered a complete section of his spinal cord resulting in total paralysis and loss of sensation below the neck. Despite the conventional belief that his paralysis was permanent and complete, Reeves has undergone imposed movement stimulation therapy as administered by a team of clinicians for several hours per day, resulting in measurable recovery of sensory and motor function in the legs.
- There are practical and technical barriers to widespread treatment of severe stroke, spinal cord injury, and traumatic brain injury patients using externally imposed movement therapy similar to that used with Reeves. When the movement therapy is provided manually, the therapy requires multiple clinicians for multiple hours per day to manipulate the limbs, making the cost of such therapy prohibitive. Even with the patient suspended on a moving treadmill belt, the assistance of multiple clinicians to manually move the legs is required, since movement of the treadmill belt alone does not result in stepping-like leg motions.
- In response to increased interest in the use of imposed movement therapy, two manufacturers have developed partial weight bearing treadmill systems that include mechanically powered appendages that can automatically move the legs through pre-programmed patterns of movement. One of these devices, the “AutoAmbulator” manufactured by HealthSouth Corporation of Birmingham, Ala., is described at www.healthsouth.com/medinfo/home/app.
- The HealthSouth website describes the AutoAmbultor as including an overhead harness system able to fully or partially support a subject's weight, two mechanically motorized braces to move each of the subject's legs, computerized sensors to track the subject's vital signs, leg motions and speed of leg movements, devices that permit automatic belt speed adjustments based on leg movement speed, and emergency controls that permit the subject or therapist to stop the machine. The site further describes the ability of the machine to mimic the proper human gait as well as to provide the clinician with the above described data to monitor patient progress.
- The HealthSouth website also provides two studies. The first study describes a normal subject walking on the AutoAmbulator system with partial weight support while wearing a tight nylon suit fitted with reflectors. The positions of the reflectors over time are recorded by a computer-video based motion analysis system. The purpose of the first study is to measure the subject's leg motions during robotic patterning and to compare the patterned motions to those produced by the same subjects during normal unassisted walking on the treadmill. The second study uses x-ray imaging techniques to analyze the position of the lower back while normal subjects are suspended in the harness six inches above the treadmill and while wearing the harness with the feet on the treadmill. The purpose of the second study is to assure that the harness system does not cause potential harm to the lower back.
- A second partial weight bearing treadmill device incorporating a robotic appendage to provide patterns for movement of the legs is the LOKO System® manufactured jointly by Woodway GmbH of Weil am Rhein, Germany, and Hocoma AG of Zurich, Switzerland. The LOKO System, as described at the website www.woodway.com/LOKO=13 new.htm, is an open treadmill and partial weight bearing harness in which the patient can be led through locomotion therapy either with the clinician manipulating the patients leg movements or with the leg movements imposed automatically by an motorized appendage.
- A number of devices and methods for measuring the forces and motions of the legs during free walking and walking on a treadmill have been described in the prior art. Examples of devices for recording the motions of the legs and body using computer-video techniques include systems manufactured by MotionAnalysis Corporation of Santa Rosa, Cailf. and Vicon Ltd. of Oxford, United Kingdom, Lake Forest, Caif. and Hong Kong. Advanced Mechanical Technology, Inc. of Watertown, Mass. markets forceplates that can be mounted in the surface over which a subject walks to document the forces of the feet during human balancing and walking. The Balance Master system manufactured by NeuroCom International, Inc. of Clackamas, Oreg. uses a five-foot long forceplate to record the timing and positions of successive foot placements during locomotion. U.S. Pat. No. 5,474,087, U.S. Pat. No. 5,623,944, and U.S. Pat. No. 6,010,465 (each of which are hereby incorporated herein by reference) describe a treadmill device incorporating at least two forceplates under the moving belt to record the forces of the two legs independently during treadmill walking. GaitRite, a pressure sensitive mat manufactured by CIR Systems Inc. of Clifton, N.J. can measure the locations and timing of the successive steps of a walking subject.
- In a first embodiment of the invention there is provided a method for characterizing contributions of forces associated with a body part of a subject when the body part is involved in movement. The method includes causing movement of the body part in a prescribed manner and monitoring quantities related to at least one of displacement of the body part and external force on the body part. At least one quantity related to a force contribution associated with the body part is determined from the quantities measured.
- In accordance with related embodiments, the method may also include monitoring activity of a muscle associated with the body part in relation to displacement of the body part. Additionally, causing movement of the body part may include causing a large slow displacement of the body part. Similarly, causing movement of the body part may include causing a small rapid displacement of the body part. In accordance with other related embodiments, activity of a muscle associated with the body part may be monitored when the muscle is relaxed and/or activity of a muscle associated with the body part may be monitored when the muscle is active. The body part may include a limb or a set of limbs.
- In accordance with further related embodiments, monitoring quantities related to displacement of the body part may include monitoring the displacement of a joint associated with the body part and the joint may be a knee. Monitoring quantities related to the displacement of the knee may include monitoring displacement along a knee-flexion-extension axis and/or monitoring displacement along a knee pronation-supination axis. Similarly, monitoring quantities related to the displacement of knee may include monitoring displacement along an eversion-inversion axis. In accordance with another related embodiment, the joint may be a hip. In addition, causing movement of the body part by the application of external force may include causing cyclic movement typical of walking.
- In accordance with another embodiment of the invention, an apparatus for characterizing contributions of forces associated with a body part of a subject when the body part is involved in movement includes means for causing movement of the body part in a prescribed manner, means for monitoring quantities related to at least one of displacement of the body part and external force on the body part and means for determining at least one quantity related to a force contribution associated with the body part from the quantities measured. In accordance with related embodiments, the apparatus may include means for monitoring activity of a muscle associated with the body part in relation to displacement of the body part. Additionally, the means for causing movement of the body part may include a mechanical arm. Similarly, the means for causing movement of the body part may include an actuator. In accordance with other related embodiments, the means for monitoring displacement of the body part may include means for accepting signals for controlling the position of the body part. Further, the means for monitoring displacement of the body part may include means for generating signals for related to the position of the body part and forces generated by the body part.
- In accordance with a further embodiment of the invention, an apparatus for characterizing contributions of forces associated with a body part of a subject when the body part is involved in movement includes an appendage coupled to the body part for causing movement of the body part in a prescribed manner, a measurement device that measures quantities related to at least one of displacement of the body part, external forces on the body part and forces generated by the appendage. A computational device is in communication with the measurement device for determining at least one quantity related to a force contribution associated with the body part. In accordance with a related embodiment, the apparatus may also include surface electromygraphic recorder for monitoring the activity of a muscle associated with the body part. In accordance with additional related embodiments, the computational device may calculate forces necessary to move the body part when no muscle activity is detected. Further, the body part may be a leg and the appendage attaches to the leg and causes knee and hip joints of the leg to move in patterns similar to those generated when walking. The measurement device may measure angular displacement of the knee and hip joints and/or the measurement device may measure forces generated by the appendage in rotating the knee and hip joints.
- In accordance with further related embodiments, the appendage may include an actuator. Additionally, the measurement device may include an input for receiving and an output for transmitting signals related to displacement of the appendage and of the body part and forces generated by the appendage and the body part. Further, the appendage may include the measurement device. Similarly, the measurement device may be integrated with an actuator. In accordance with another related embodiment, the apparatus may include a display for displaying the at least one quantity related to a force contribution associated with the body part to a clinician. Similarly, the apparatus may include a display for displaying the at least one quantity related to a force contribution associated with the body part to the subject.
- The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
-
FIG. 1 is graphical illustration of a mechanical device for moving knee and hip joints in a prescribed pattern in accordance with an embodiment of the invention; -
FIG. 2 is a block diagram illustrating an apparatus for characterizing contributions of forces associated with a body part of a subject in accordance with an embodiment of the invention; -
FIG. 3 is a block diagram illustrating is an apparatus for characterizing contributions of forces associated with a body part of a subject in accordance with a further embodiment of the invention; and -
FIG. 4 is a flow chart illustrating a method for characterizing contributions of forces associated with a body part of a subject in accordance with a further embodiment of the invention. - When a portion of a subject's body, for example a limb, is moved by an externally attached mechanical device or appendage, the force required to impose a movement on the limb is related to the combined effects of the physical mass of the limb, the passive visco-elastic properties of the limb, and any active muscular forces generated by the limb either in support of or opposition to the imposed motion. Given knowledge of the physical dimensions and mass of the limb, the external force required to move a passive limb (i.e., a limb displaying no active muscular forces) may be calculated using classical Newtonian mechanics. Thus, with knowledge of the masses of the limb segments, the positions and degrees-of-freedom of the joints linking the limb segments, Newtonian mechanics, and the forces generated by a motorized mechanical device driving the limb motion, it is possible to determine the passive inertial, elastic, viscous components of the driving force. Any additional component of force not attributable to the above three components may be attributed to the active muscular force component.
- It is further possible to differentiate between the contributions of the passive elastic, viscous, and non-visco-elastic active muscular components of the musculoskeletal force using principles of classical Newtonian mechanics. Specifically, it is known that the forces related to the elastic properties of a moving mass are in opposition and proportional to the displacement of the mass from a neutral rest position, whereas force contributed by the viscous property is also in opposition and proportional to rate of displacement.
- The force generating properties of individual human muscles and pairs of muscles acting in opposition to one another about a body joint, termed antagonist pairs, are well described in the prior art (Principles of Neural Science. Kandel & Schwaretz, editors. Elsevier/North Holland, N.Y., 1981). When one of an antagonistic pair of muscles is neurally activated, a muscular driving force is generated tending to move the joint in the direction of the active muscle, with the driving force proportional to the level of the neural activation. When both muscles of an antagonistic pair are simultaneously and equally activated, termed co-activation, no driving force tending to move the joint is generated. During the co-activation state, however, the elastic resistance of the joint to an externally imposed displacement increases, with the active component of the elastic resistance proportional to the level of co-activation. Finally, when an antagonistic pair of muscles undergoes unequal co-activation, the result is combination of a muscular driving force tending to move the joint in the direction of the more active muscle and an increased active elastic component. In this case, the muscular driving force is related to the difference in levels of activation of the two antagonist muscles, while the active elastic component is related to the activation level of the muscle undergoing the lesser activation.
- By imposing movements about the joint of a limb using an attached mechanical device or attached appendage and measuring the forces required to generate such imposed movement, it is possible to isolate the effects of the passive elastic, passive viscous, active elastic, and muscular driving force components. For example, by moving the limb through large displacement amplitudes at very slow displacement rates it is possible to maximize the effect of the passive elastic component of force while minimizing the inertial and passive viscous components. Under this condition of imposed motion, the elastic component is the force directly related to limb position, while the muscular driving force component is unrelated to position. Then, small, rapid displacements of the limb are used to maximize the viscous component and minimize the elastic. Now, the viscous component is the force directly related to limb displacement rate while the muscular driving force component is the force unrelated to displacement.
- By combining the above methods with additional methods for measuring the level of activation of individual muscles, it is further possible to isolate the effects of the passive elastic forces from the active elastic forces generated by to the co-activation of antagonist muscles. One quantitative method for measuring the level of neural activation of a muscle uses surface electromyographic (“EMG”) recording techniques well-known in the prior art. A second method for measuring the activation level of a muscle is for a trained clinician to manually press on the belly of the muscle and then observe the degree of muscle hardness. One method of recording the passive elastic and viscous forces is to move the limb according to the above described methods, monitor the EMG activity level of the muscle, or the degree of muscle belly hardness, to assure that the antagonistic muscles are not active, and record the passive elastic and viscous components. During subsequent movements of the limb, differences in recorded elastic forces are related to the active elastic force, while the force component unrelated to the limb displacement is related to the muscular driving force component.
- Using the above described methods, it is possible to cause a multi-segmented limb to move about several joints at the same time and to determine the passive, elastic, viscous, and active muscle components of force acting about each of the moving joints separately. For example, an appendage such as that described for the AutoAmbulator may be used to move the knee and hip joints in a cyclic pattern resembling normal walking. The above described measurements may be performed with the limb moving while suspended or while moving in contact with the moving belt of a treadmill.
- Since the typical human limb joint can move about more that one axis at a time, the above described methods can be further used to determine the passive, elastic, passive viscous, active elastic, and active force components acting about different axes of limb joint motion. Using the example of cyclic knee and hip joint motions typical of walking, the inertial, elastic, viscous, and active muscular force components acting at the knee joint may be determined for not only the normal axis of bending (the knee flexion-extension axis) but also for the axis of lateral twisting motion (knee pronation-supination) and the axis of longitudinal twisting motion (eversion-inversion).
- The ability to quantify during imposed movement therapy the extent to which a patient contributes effort to generation of the imposed movement compared to the extent generated by the forces and motions of the motorized appendage would provide several forms of clinically useful information. First, the information would be useful to assure the safety of imposed movement therapy using a powered appendage. One example would be a subject whose knee joint motion is severely restricted about a specific axis of motion. In the absence of any information related to the elastic and viscous components, the powered appendage might continue to force the knee into positions causing further damaging the joint. With the information provided by the proposed devices, maximum levels of elastic, viscous, and active muscular forces may be established and motions of the appendage halted or otherwise modified whenever one more of these force levels are exceeded.
- Further, the information may be used as a measure of treatment progress. Specifically, as a patient's improves over time, the percentage of the movement generated by the efforts of the patient will increase, while that imposed by the motorized appendage will decrease.
- In addition, the information may be used as a measure of the effectiveness of the pattered movement therapy. Imposed movement therapy may be problematic in patients with excess spasticity or excessive co-activation of antagonistic muscles, for examples. Spasticity is a condition that causes a paralyzed limb to react reflexively so as to actively resist externally imposed movements such as those provided by the motorized appendage. In the case of imposed movement therapy, the spastic reflex reactions may contribute inappropriately in that they would generate forces actively resisting rather than supporting the motions imposed by the appendage. In patients with excessive co-activation of antagonistic pairs of muscles, the joints of the limb become excessively stiff and thereby also tend to actively resist rather than support the motions imposed by the motorized appendage. Thus, information related to the quality of the patient's contribution to the imposed movement may allow the clinician to modify the pattern of the movement to reduce the confounding effects of spactisity and co-activation or otherwise to take other medical actions to reduce these adverse effects.
- Finally, the information may be used as a biofeedback signal provided to the patient and the supervising clinician during the patterned movement therapy. As the patient struggles to regain active control over the paralyzed limbs during the imposed movement therapy and as the treating clinician works to assist in this effort, the biofeedback signal can provide immediate information related to the effectiveness of the subject's efforts as well as help focus effort on those actions having the greatest positive impact on performance. Such biofeedback information is particularly valuable, because a paralyzed patient may be unable to accurately sense how his or her actions contribute to the imposed movement, which in the absence of biofeedback may lead to discouragement and loss of motivation. Embodiments of this invention therefore address such problems.
-
FIG. 1 is graphical illustration of a mechanical device for moving knee and hip joints in a prescribed pattern in accordance with an embodiment of the invention. A combination trunk brace andhip actuator 101 is coupled to the subject's body at the hip. The trunk brace andhip actuator 101 is used to move theupper leg segment 110 relative to thetrunk 112 about the hip joint. In accordance with this embodiment, the trunk brace and hip actuator includes at least one input orsignal receiver 103 for accepting signals used to control the position of thehip actuator 101 and thus cause motion of the hip in a prescribed manner. At least one output orsignal transmitter 104 provides signals related to the position of the hip joint and the forces generated by thehip actuator 101. - The device also includes a combination upper leg brace and
knee actuator 102 which is coupled to the subject's knee. The upper leg brace andknee actuator 102 is used to move thelower leg segment 114 relative to theupper leg segment 110 about the knee joint. Again, the upper leg brace and knee actuator includes at least one input orsignal receiver 105 for accepting signals used to control the position of the knee actuator and consequently cause motion of the knee in a prescribed manner. At least one output or signal transmitter provides signals related to the position of the knee joint and the forces generated by the knee actuator. The device further includes a lowerleg segment brace 107 which is coupled to the kneejoint actuator 102. By employing this embodiment, the upper leg brace and knee actuator is continually coupled to the knee joint even when the knee joint is in a flexed position relative to the upper leg, as shown at 121. Similarly, the trunk brace and hip actuator stays coupled to the hip joint even with the hip joint in a flexed position relative to the trunk as shown at 120. -
FIG. 2 is a block diagram illustrating an apparatus for characterizing contributions of forces associated with a body part of a subject in accordance with an embodiment of the invention. The apparatus includes anappendage 201 which is coupled to the body part of the subject. Theappendage 201, which may be designed as brace as shown with respect toFIG. 1 , or a mechanical device, such as a robotic arm, causes movement of the body part in a prescribed manner. For example, theappendage 201 may cause the body part to move (i) through large displacement amplitudes at very slow displacement rates in order to maximize the effect of the elastic component of force while minimizing the viscous component of force and (ii) through, small, rapid displacements to maximize the viscous component of force as described above. Similarly, theappendage 201 may cause the body part to move in a manner that the body part would move during normal physical activity. For example, the appendage may attach to the leg of the subject and cause knee and hip joints of the leg to move in patterns similar to those generated when walking. To this end, the appendage may include anactuator 203. - A
measurement device 204 measures quantities related to at least one of displacement of the body part, external forces on the body part, or forces generated by the motorized appendage as it imposes a displacement on the body part. For example, themeasurement device 203 may measure angular displacement of the knee and hip joints and/or forces generated by the appendage in rotating the knee and hip joints. The measurement device may include an input for receiving and an output for transmitting signals related to displacement of the appendage and of the body part and/or signals related to forces generated by the appendage and the body part as shown inFIG. 1 . Themeasurement device 204 may be included in theappendage 201, as shown here, or it may simply be coupled to the appendage as shown inFIG. 3 . Similarly, the measurement device may be integrated with theactuator 203. - A
computational device 205 is in communication with themeasurement device 204. Thecomputation device 205 determines at least one quantity related to a force contribution associated with the body part. The computational device may calculate forces necessary to move the body part when no muscle activity is detected. Thecomputational device 205 may also be in communication with theactuator 203 in order to provide control signals for controlling the actuator. Thecomputation device 205 may also be in communication with a surface electromygraphic recorder (not shown) which monitors the activity of a muscle associated with the body part. -
FIG. 3 is a block diagram illustrating is an apparatus for characterizing contributions of forces associated with a body part of a subject in accordance with a further embodiment of the invention. In accordance with this embodiment, the measuringdevice 302 andactuator 303 are not integrated with theappendage 301. Theappendage 301 is coupled to theactuator 302 and measuringdevice 303 which may also be coupled to one another. Acomputation device 304 is coupled to theactuator 302 and the measuringdevice 303. Adisplay 305 may be coupled to thecomputational device 304 for displaying at least one quantity related to a force contribution associated with the body part to a clinician, such as a health care provider or therapist, or to the subject. Thedisplay 305 may also display data provided to the computational device as an input. -
FIG. 4 is a flow chart illustrating a method for characterizing contributions of forces associated with a body part of a subject in accordance with a further embodiment of the invention. Inprocess 401, an appendage or mechanical device or a clinician, therapist or other health care provider causes the body part to be moved in a prescribed manner. For example, causing movement of the body part may include causing cyclic movement of a leg typical of walking. Quantities related to at least one of displacement of the body part and external force on the body part are monitored inprocess 402. Monitoring quantities related to displacement may include monitoring quantities related to the displacement of a joint associated with the body such as monitoring quantities related to the displacement along a knee-flexion-extension axis, a knee pronation-supination axis and/or an eversion-inversion axis. Activity of a muscle associated with the body part may also be monitored when the body part is active and/or when the body part is relaxed. At least one quantity related to a force contribution associated with the body part is then determined 403 from the quantities measured. - While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modification. This application is intended to cover any variation, uses, or adaptations of the invention and including such departures from the present disclosure as come within known or customary practice in the art to which invention pertains.
Claims (20)
1-15. (canceled)
16. An apparatus for characterizing contributions of forces associated with a body part of a subject when the body part is involved in movement, the apparatus comprising:
means for causing movement of the body part in a prescribed manner;
means for monitoring quantities related to at least one of displacement of the body part and external force on the body part; and
means for determining at least one quantity related to a force contribution associated with the body part from the quantities measured.
17. An apparatus according to claim 16 , further comprising:
means for monitoring activity of a muscle associated with the body part in relation to displacement of the body part.
18. An apparatus according to claim 16 , wherein the means for causing movement of the body part include a mechanical arm.
19. An apparatus according to claim 16 , wherein the means for causing movement of the body part includes an actuator.
20. An apparatus according to claim 16 , wherein the means for monitoring displacement of the body part includes means for accepting signals for controlling the position of the body part.
21. An apparatus according to claim 16 , wherein the means for monitoring displacement of the body part includes means for generating signals for related to the position of the body part and forces generated by the body part.
22. An apparatus for characterizing contributions of forces associated with a body part of a subject when the body part is involved in movement, the apparatus comprising:
an appendage coupled to the body part for causing movement of the body part in a prescribed manner;
a measurement device that measures quantities related to at least one of displacement of the body part, external forces on the body part and force generated by the appendage; and
a computational device in communication with the measurement device for determining at least one quantity related to a force contribution associated with the body part.
23. An apparatus according to claim 22 , further comprising:
a surface electromyographic recorder for monitoring the activity of a muscle associated with the body part.
24. An apparatus according to claim 23 , wherein the computational device calculates forces necessary to move the body part when no muscle activity is detected.
25. An apparatus according to claim 22 , wherein the body part is a leg and the appendage attaches to the leg and causes knee and hip joints of the leg to move in patterns similar to those generated when walking.
26. An apparatus according to claim 25 , wherein the measurement device measures angular displacement of the knee and hip joints.
27. An apparatus according to claim 26 , wherein the measurement device measures forces generated by the appendage in rotating the knee and hip joints.
28. An apparatus according to claim 22 , wherein the appendage includes an actuator.
29. An apparatus according to claim 22 , wherein the measurement device includes an input for receiving and an output for transmitting signals related to displacement of the appendage and of the body part and forces generated by the appendage and the body part.
30. An apparatus according to claim 22 , wherein the appendage includes the measurement device.
31. An apparatus according to claim 30 , wherein the measurement device is integrated with an actuator.
32. An apparatus according to claim 22 , wherein the measurement device is integrated with an actuator.
33. An apparatus according to claim 22 , further comprising a display for displaying
the at least one quantity related to a force contribution associated with the body part to a clinician.
34. An apparatus according to claim 22 , further comprising a display for displaying the at least one quantity related to a force contribution associated with the body part to the subject.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/675,818 US20070135265A1 (en) | 2003-07-10 | 2007-02-16 | Apparatus and Method for Characterizing Contributions of Forces Associated with a Body Part of a Subject |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48605503P | 2003-07-10 | 2003-07-10 | |
US10/889,303 US7179234B2 (en) | 2003-07-10 | 2004-07-12 | Apparatus and method for characterizing contributions of forces associated with a body part of a subject |
US11/675,818 US20070135265A1 (en) | 2003-07-10 | 2007-02-16 | Apparatus and Method for Characterizing Contributions of Forces Associated with a Body Part of a Subject |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/889,303 Division US7179234B2 (en) | 2003-07-10 | 2004-07-12 | Apparatus and method for characterizing contributions of forces associated with a body part of a subject |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070135265A1 true US20070135265A1 (en) | 2007-06-14 |
Family
ID=34079185
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/889,303 Expired - Lifetime US7179234B2 (en) | 2003-07-10 | 2004-07-12 | Apparatus and method for characterizing contributions of forces associated with a body part of a subject |
US11/675,818 Abandoned US20070135265A1 (en) | 2003-07-10 | 2007-02-16 | Apparatus and Method for Characterizing Contributions of Forces Associated with a Body Part of a Subject |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/889,303 Expired - Lifetime US7179234B2 (en) | 2003-07-10 | 2004-07-12 | Apparatus and method for characterizing contributions of forces associated with a body part of a subject |
Country Status (4)
Country | Link |
---|---|
US (2) | US7179234B2 (en) |
EP (1) | EP1643905A2 (en) |
CA (1) | CA2531800A1 (en) |
WO (1) | WO2005007217A2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100312152A1 (en) * | 2009-06-03 | 2010-12-09 | Board Of Regents, The University Of Texas System | Smart gait rehabilitation system for automated diagnosis and therapy of neurologic impairment |
US8704855B1 (en) | 2013-01-19 | 2014-04-22 | Bertec Corporation | Force measurement system having a displaceable force measurement assembly |
US8847989B1 (en) | 2013-01-19 | 2014-09-30 | Bertec Corporation | Force and/or motion measurement system and a method for training a subject using the same |
US9081436B1 (en) | 2013-01-19 | 2015-07-14 | Bertec Corporation | Force and/or motion measurement system and a method of testing a subject using the same |
US9526443B1 (en) | 2013-01-19 | 2016-12-27 | Bertec Corporation | Force and/or motion measurement system and a method of testing a subject |
US9770203B1 (en) | 2013-01-19 | 2017-09-26 | Bertec Corporation | Force measurement system and a method of testing a subject |
US10010286B1 (en) | 2013-01-19 | 2018-07-03 | Bertec Corporation | Force measurement system |
US10231662B1 (en) | 2013-01-19 | 2019-03-19 | Bertec Corporation | Force measurement system |
US10413230B1 (en) | 2013-01-19 | 2019-09-17 | Bertec Corporation | Force measurement system |
US10646153B1 (en) | 2013-01-19 | 2020-05-12 | Bertec Corporation | Force measurement system |
US10856796B1 (en) | 2013-01-19 | 2020-12-08 | Bertec Corporation | Force measurement system |
US11052288B1 (en) | 2013-01-19 | 2021-07-06 | Bertec Corporation | Force measurement system |
US11311209B1 (en) | 2013-01-19 | 2022-04-26 | Bertec Corporation | Force measurement system and a motion base used therein |
US11540744B1 (en) | 2013-01-19 | 2023-01-03 | Bertec Corporation | Force measurement system |
US11857331B1 (en) | 2013-01-19 | 2024-01-02 | Bertec Corporation | Force measurement system |
US12161477B1 (en) | 2013-01-19 | 2024-12-10 | Bertec Corporation | Force measurement system |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040127337A1 (en) * | 1997-03-12 | 2004-07-01 | Nashner Lewis M. | Reducing errors in screening-test administration |
WO2005007217A2 (en) * | 2003-07-10 | 2005-01-27 | Neurocom International, Inc. | Apparatus and method for characterizing contributions of forces associated with a body part of a subject |
US7127376B2 (en) | 2003-09-23 | 2006-10-24 | Neurocom International, Inc. | Method and apparatus for reducing errors in screening-test administration |
US7524297B2 (en) * | 2004-09-08 | 2009-04-28 | Honda Motor Co., Ltd. | Walking assistance device provided with a force sensor |
US7544155B2 (en) * | 2005-04-25 | 2009-06-09 | University Of Delaware | Gravity balanced orthosis apparatus |
US7601104B2 (en) | 2005-04-25 | 2009-10-13 | University Of Delaware | Passive gravity-balanced assistive device for sit-to-stand tasks |
DE102005022005B4 (en) * | 2005-05-09 | 2014-10-30 | Anna Gutmann | Method and device for facilitating the movement control of body parts |
US20060264786A1 (en) * | 2005-05-20 | 2006-11-23 | Nashner Lewis M | Method and system for analyzing status of balance functions in patients with acute neurological disorders |
US8676293B2 (en) | 2006-04-13 | 2014-03-18 | Aecc Enterprises Ltd. | Devices, systems and methods for measuring and evaluating the motion and function of joint structures and associated muscles, determining suitability for orthopedic intervention, and evaluating efficacy of orthopedic intervention |
WO2008124017A1 (en) * | 2007-04-06 | 2008-10-16 | University Of Delaware | Passive swing assist leg exoskeleton |
WO2008124025A1 (en) * | 2007-04-06 | 2008-10-16 | University Of Delaware | Powered orthosis |
JP5427343B2 (en) | 2007-04-20 | 2014-02-26 | 任天堂株式会社 | Game controller |
JP5326223B2 (en) * | 2007-05-14 | 2013-10-30 | 沖電気工業株式会社 | Robot for rehabilitation education |
US20090043357A1 (en) * | 2007-08-07 | 2009-02-12 | The Hong Kong Polytechnic University | Wireless real-time feedback control functional electrical stimulation system |
JP5133022B2 (en) * | 2007-10-04 | 2013-01-30 | 任天堂株式会社 | Program, information processing apparatus, information processing system, and information processing method |
JP5427346B2 (en) * | 2007-10-05 | 2014-02-26 | 任天堂株式会社 | Load detection program, load detection device, load detection system, and load detection method |
JP5080196B2 (en) | 2007-10-09 | 2012-11-21 | 任天堂株式会社 | Program, information processing apparatus, information processing system, and information processing method |
US20090099481A1 (en) * | 2007-10-10 | 2009-04-16 | Adam Deitz | Devices, Systems and Methods for Measuring and Evaluating the Motion and Function of Joints and Associated Muscles |
JP4382844B2 (en) | 2007-10-31 | 2009-12-16 | 任天堂株式会社 | Weighting machine for adjustment and weighting method for adjustment |
JP5361349B2 (en) * | 2008-11-28 | 2013-12-04 | 任天堂株式会社 | Information processing apparatus, computer program, information processing system, and information processing method |
JP5806443B2 (en) * | 2008-12-26 | 2015-11-10 | 任天堂株式会社 | Biological information management system |
WO2010088262A2 (en) * | 2009-01-27 | 2010-08-05 | University Of Washington | Prosthetic limb monitoring system |
US8444564B2 (en) * | 2009-02-02 | 2013-05-21 | Jointvue, Llc | Noninvasive diagnostic system |
JP5271121B2 (en) | 2009-03-09 | 2013-08-21 | 任天堂株式会社 | Information processing program, information processing apparatus, information processing system, and information processing method |
JP5436909B2 (en) * | 2009-03-30 | 2014-03-05 | 任天堂株式会社 | Information processing program, information processing apparatus, information processing system, and information processing method |
JP5456358B2 (en) * | 2009-04-20 | 2014-03-26 | 任天堂株式会社 | Information processing program and information processing apparatus |
US9138163B2 (en) | 2009-09-25 | 2015-09-22 | Ortho Kinematics, Inc. | Systems and devices for an integrated imaging system with real-time feedback loop and methods therefor |
JP5161182B2 (en) * | 2009-09-28 | 2013-03-13 | 任天堂株式会社 | Information processing program and information processing apparatus |
JP5610735B2 (en) * | 2009-09-29 | 2014-10-22 | 任天堂株式会社 | Information processing program, information processing apparatus, information processing method, and information processing system |
JP5496591B2 (en) * | 2009-09-30 | 2014-05-21 | 任天堂株式会社 | Information processing program and information processing apparatus |
US8608479B2 (en) * | 2010-05-07 | 2013-12-17 | The University Of Kansas | Systems and methods for facilitating gait training |
US8771208B2 (en) | 2010-08-19 | 2014-07-08 | Sunil K. Agrawal | Powered orthosis systems and methods |
WO2012050908A2 (en) * | 2010-09-28 | 2012-04-19 | Orthocare Innovations Llc | Computerized orthotic prescription system |
AU2011344107A1 (en) | 2010-12-13 | 2013-06-27 | Ortho Kinematics, Inc. | Methods, systems and devices for clinical data reporting and surgical navigation |
US20120197168A1 (en) * | 2011-01-28 | 2012-08-02 | University Of Delaware | Pelvic orthosis systems and methods |
US10096265B2 (en) | 2012-06-27 | 2018-10-09 | Vincent Macri | Methods and apparatuses for pre-action gaming |
US10632366B2 (en) | 2012-06-27 | 2020-04-28 | Vincent John Macri | Digital anatomical virtual extremities for pre-training physical movement |
US11904101B2 (en) | 2012-06-27 | 2024-02-20 | Vincent John Macri | Digital virtual limb and body interaction |
WO2014186739A1 (en) | 2013-05-17 | 2014-11-20 | Macri Vincent J | System and method for pre-movement and action training and control |
US11673042B2 (en) | 2012-06-27 | 2023-06-13 | Vincent John Macri | Digital anatomical virtual extremities for pre-training physical movement |
US10765908B1 (en) * | 2012-12-19 | 2020-09-08 | Alert Core, Inc. | System and method for muscle engagement identification |
US9226706B2 (en) * | 2012-12-19 | 2016-01-05 | Alert Core, Inc. | System, apparatus, and method for promoting usage of core muscles and other applications |
US10292647B1 (en) * | 2012-12-19 | 2019-05-21 | Alert Core, Inc. | System and method for developing core muscle usage in athletics and therapy |
WO2015080955A1 (en) * | 2013-11-27 | 2015-06-04 | Oregon Health & Science University | Biofeedback during assisted movement rehabilitation therapy |
US10111603B2 (en) * | 2014-01-13 | 2018-10-30 | Vincent James Macri | Apparatus, method and system for pre-action therapy |
US10406059B2 (en) * | 2014-04-21 | 2019-09-10 | The Trustees Of Columbia University In The City Of New York | Human movement research, therapeutic, and diagnostic devices, methods, and systems |
US20160354161A1 (en) | 2015-06-05 | 2016-12-08 | Ortho Kinematics, Inc. | Methods for data processing for intra-operative navigation systems |
US9836118B2 (en) | 2015-06-16 | 2017-12-05 | Wilson Steele | Method and system for analyzing a movement of a person |
US10499842B2 (en) | 2016-09-27 | 2019-12-10 | Diversified Healthcare Development, Llc | Clinical assessment of balance on a platform with controlled stability |
US12207934B2 (en) | 2017-01-20 | 2025-01-28 | Temple University-Of The Commonwealth System Of Higher Education | System and method for assessment and rehabilitation of balance impairment using virtual reality |
US10639510B2 (en) | 2017-03-20 | 2020-05-05 | The Trustees Of Columbia University In The City Of New York | Human musculoskeletal support and training system methods and devices |
KR102631409B1 (en) * | 2018-02-20 | 2024-01-31 | 삼성전자주식회사 | Motion assistance apparatus |
JP7079949B1 (en) | 2021-09-09 | 2022-06-03 | グンゼ株式会社 | Biofeedback system, biofeedback method and control program |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976057A (en) * | 1974-12-23 | 1976-08-24 | Clarence F. Bates | Joint flexing apparatus |
US4549555A (en) * | 1984-02-17 | 1985-10-29 | Orthothronics Limited Partnership | Knee laxity evaluator and motion module/digitizer arrangement |
US4586495A (en) * | 1984-07-02 | 1986-05-06 | Wright State University | Therapy system for acute patient care |
US4697808A (en) * | 1985-05-16 | 1987-10-06 | Wright State University | Walking assistance system |
US4830024A (en) * | 1982-08-16 | 1989-05-16 | Nashner Lewis M | Apparatus and method for determining the presence of vestibular perilymph fistulae and other abnormal coupling between the air-filled middle ear and the fluid-filled inner ear |
US4838272A (en) * | 1987-08-19 | 1989-06-13 | The Regents Of The University Of California | Method and apparatus for adaptive closed loop electrical stimulation of muscles |
US5020790A (en) * | 1990-10-23 | 1991-06-04 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Powered gait orthosis |
US5052406A (en) * | 1982-08-16 | 1991-10-01 | Neurocom International, Inc. | Apparatus and method for movement coordination analysis |
US5112296A (en) * | 1991-04-30 | 1992-05-12 | The Board Of Supervisors Of Louisiana State University | Biofeedback activated orthosis for foot-drop rehabilitation |
US5244441A (en) * | 1990-01-31 | 1993-09-14 | Loredan Biomedical, Inc. | Position-based motion controller |
US5269318A (en) * | 1982-08-16 | 1993-12-14 | Neurocom International Inc. | Apparatus and method for movement coordination analysis |
US5303715A (en) * | 1982-08-16 | 1994-04-19 | Neurocom International, Inc. | Apparatus and method for determining the presence of vestibular pathology |
US5429140A (en) * | 1993-06-04 | 1995-07-04 | Greenleaf Medical Systems, Inc. | Integrated virtual reality rehabilitation system |
US5474087A (en) * | 1991-10-10 | 1995-12-12 | Neurocom International, Inc. | Apparatus for characterizing gait |
US5476103A (en) * | 1991-10-10 | 1995-12-19 | Neurocom International, Inc. | Apparatus and method for assessment and biofeedback training of leg coordination and strength skills |
US5476441A (en) * | 1993-09-30 | 1995-12-19 | Massachusetts Institute Of Technology | Controlled-brake orthosis |
US5697791A (en) * | 1994-11-29 | 1997-12-16 | Nashner; Lewis M. | Apparatus and method for assessment and biofeedback training of body coordination skills critical and ball-strike power and accuracy during athletic activitites |
US5716330A (en) * | 1995-07-13 | 1998-02-10 | Goldman; David A. | Body and limb position/motion detector and power assist apparatus and method |
US5980429A (en) * | 1997-03-12 | 1999-11-09 | Neurocom International, Inc. | System and method for monitoring training programs |
US5980435A (en) * | 1993-07-09 | 1999-11-09 | Kinetecs, Inc. | Methods of therapy or controlled exercise using a jointed brace |
US6436058B1 (en) * | 2000-06-15 | 2002-08-20 | Dj Orthopedics, Llc | System and method for implementing rehabilitation protocols for an orthopedic restraining device |
US20020156399A1 (en) * | 2000-09-06 | 2002-10-24 | Kanderian Sami S. | Quantification of muscle tone |
US6592538B1 (en) * | 1998-03-20 | 2003-07-15 | New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery | Dynamic orthopedic braces |
US6599255B2 (en) * | 2001-05-31 | 2003-07-29 | Rehabilitation Institute Of Chicago | Portable intelligent stretching device |
US6706003B2 (en) * | 2000-02-10 | 2004-03-16 | Jacques Perrad | Muscle strength testing method and apparatus |
US6743187B2 (en) * | 2000-03-14 | 2004-06-01 | Orthorehab, Inc. | Control device for the therapeutic mobilization of joints |
US20040106881A1 (en) * | 2002-11-21 | 2004-06-03 | Mcbean John M. | Powered orthotic device |
US20040127337A1 (en) * | 1997-03-12 | 2004-07-01 | Nashner Lewis M. | Reducing errors in screening-test administration |
US20040127821A1 (en) * | 2002-12-30 | 2004-07-01 | Industrial Technology Research Institute | Continuous passive motion exercise system with driven monitoring |
US20050043661A1 (en) * | 2003-07-10 | 2005-02-24 | Nashner Lewis M. | Apparatus and method for characterizing contributions of forces associated with a body part of a subject |
US6872187B1 (en) * | 1998-09-01 | 2005-03-29 | Izex Technologies, Inc. | Orthoses for joint rehabilitation |
US6966882B2 (en) * | 2002-11-25 | 2005-11-22 | Tibion Corporation | Active muscle assistance device and method |
US7153242B2 (en) * | 2001-05-24 | 2006-12-26 | Amit Goffer | Gait-locomotor apparatus |
-
2004
- 2004-07-12 WO PCT/US2004/022180 patent/WO2005007217A2/en active Application Filing
- 2004-07-12 CA CA002531800A patent/CA2531800A1/en not_active Abandoned
- 2004-07-12 EP EP04756861A patent/EP1643905A2/en not_active Withdrawn
- 2004-07-12 US US10/889,303 patent/US7179234B2/en not_active Expired - Lifetime
-
2007
- 2007-02-16 US US11/675,818 patent/US20070135265A1/en not_active Abandoned
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976057A (en) * | 1974-12-23 | 1976-08-24 | Clarence F. Bates | Joint flexing apparatus |
US5269318A (en) * | 1982-08-16 | 1993-12-14 | Neurocom International Inc. | Apparatus and method for movement coordination analysis |
US4830024A (en) * | 1982-08-16 | 1989-05-16 | Nashner Lewis M | Apparatus and method for determining the presence of vestibular perilymph fistulae and other abnormal coupling between the air-filled middle ear and the fluid-filled inner ear |
US5551445A (en) * | 1982-08-16 | 1996-09-03 | Neurocom International, Inc. | Apparatus and method for movement coordination analysis |
US5052406A (en) * | 1982-08-16 | 1991-10-01 | Neurocom International, Inc. | Apparatus and method for movement coordination analysis |
US5303715A (en) * | 1982-08-16 | 1994-04-19 | Neurocom International, Inc. | Apparatus and method for determining the presence of vestibular pathology |
US4549555A (en) * | 1984-02-17 | 1985-10-29 | Orthothronics Limited Partnership | Knee laxity evaluator and motion module/digitizer arrangement |
US4586495A (en) * | 1984-07-02 | 1986-05-06 | Wright State University | Therapy system for acute patient care |
US4697808A (en) * | 1985-05-16 | 1987-10-06 | Wright State University | Walking assistance system |
US4838272A (en) * | 1987-08-19 | 1989-06-13 | The Regents Of The University Of California | Method and apparatus for adaptive closed loop electrical stimulation of muscles |
US5244441A (en) * | 1990-01-31 | 1993-09-14 | Loredan Biomedical, Inc. | Position-based motion controller |
US5020790A (en) * | 1990-10-23 | 1991-06-04 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Powered gait orthosis |
US5112296A (en) * | 1991-04-30 | 1992-05-12 | The Board Of Supervisors Of Louisiana State University | Biofeedback activated orthosis for foot-drop rehabilitation |
US5474087A (en) * | 1991-10-10 | 1995-12-12 | Neurocom International, Inc. | Apparatus for characterizing gait |
US5476103A (en) * | 1991-10-10 | 1995-12-19 | Neurocom International, Inc. | Apparatus and method for assessment and biofeedback training of leg coordination and strength skills |
US5623944A (en) * | 1991-10-10 | 1997-04-29 | Neurocom International, Inc. | Method for characterizing gait |
US6010465A (en) * | 1991-10-10 | 2000-01-04 | Neurocom International, Inc. | Apparatus and method for characterizing gait |
US5429140A (en) * | 1993-06-04 | 1995-07-04 | Greenleaf Medical Systems, Inc. | Integrated virtual reality rehabilitation system |
US5980435A (en) * | 1993-07-09 | 1999-11-09 | Kinetecs, Inc. | Methods of therapy or controlled exercise using a jointed brace |
US5476441A (en) * | 1993-09-30 | 1995-12-19 | Massachusetts Institute Of Technology | Controlled-brake orthosis |
US5697791A (en) * | 1994-11-29 | 1997-12-16 | Nashner; Lewis M. | Apparatus and method for assessment and biofeedback training of body coordination skills critical and ball-strike power and accuracy during athletic activitites |
US5716330A (en) * | 1995-07-13 | 1998-02-10 | Goldman; David A. | Body and limb position/motion detector and power assist apparatus and method |
US20040127337A1 (en) * | 1997-03-12 | 2004-07-01 | Nashner Lewis M. | Reducing errors in screening-test administration |
US6190287B1 (en) * | 1997-03-12 | 2001-02-20 | Neurocom International, Inc. | Method for monitoring training programs |
US5980429A (en) * | 1997-03-12 | 1999-11-09 | Neurocom International, Inc. | System and method for monitoring training programs |
US6632158B1 (en) * | 1997-03-12 | 2003-10-14 | Neurocom International, Inc. | Monitoring of training programs |
US6592538B1 (en) * | 1998-03-20 | 2003-07-15 | New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery | Dynamic orthopedic braces |
US6872187B1 (en) * | 1998-09-01 | 2005-03-29 | Izex Technologies, Inc. | Orthoses for joint rehabilitation |
US6706003B2 (en) * | 2000-02-10 | 2004-03-16 | Jacques Perrad | Muscle strength testing method and apparatus |
US6743187B2 (en) * | 2000-03-14 | 2004-06-01 | Orthorehab, Inc. | Control device for the therapeutic mobilization of joints |
US6436058B1 (en) * | 2000-06-15 | 2002-08-20 | Dj Orthopedics, Llc | System and method for implementing rehabilitation protocols for an orthopedic restraining device |
US20020156399A1 (en) * | 2000-09-06 | 2002-10-24 | Kanderian Sami S. | Quantification of muscle tone |
US7153242B2 (en) * | 2001-05-24 | 2006-12-26 | Amit Goffer | Gait-locomotor apparatus |
US6599255B2 (en) * | 2001-05-31 | 2003-07-29 | Rehabilitation Institute Of Chicago | Portable intelligent stretching device |
US20040106881A1 (en) * | 2002-11-21 | 2004-06-03 | Mcbean John M. | Powered orthotic device |
US6966882B2 (en) * | 2002-11-25 | 2005-11-22 | Tibion Corporation | Active muscle assistance device and method |
US20040127821A1 (en) * | 2002-12-30 | 2004-07-01 | Industrial Technology Research Institute | Continuous passive motion exercise system with driven monitoring |
US20050043661A1 (en) * | 2003-07-10 | 2005-02-24 | Nashner Lewis M. | Apparatus and method for characterizing contributions of forces associated with a body part of a subject |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100312152A1 (en) * | 2009-06-03 | 2010-12-09 | Board Of Regents, The University Of Texas System | Smart gait rehabilitation system for automated diagnosis and therapy of neurologic impairment |
US8704855B1 (en) | 2013-01-19 | 2014-04-22 | Bertec Corporation | Force measurement system having a displaceable force measurement assembly |
US8847989B1 (en) | 2013-01-19 | 2014-09-30 | Bertec Corporation | Force and/or motion measurement system and a method for training a subject using the same |
US9081436B1 (en) | 2013-01-19 | 2015-07-14 | Bertec Corporation | Force and/or motion measurement system and a method of testing a subject using the same |
US9526443B1 (en) | 2013-01-19 | 2016-12-27 | Bertec Corporation | Force and/or motion measurement system and a method of testing a subject |
US9770203B1 (en) | 2013-01-19 | 2017-09-26 | Bertec Corporation | Force measurement system and a method of testing a subject |
US10010286B1 (en) | 2013-01-19 | 2018-07-03 | Bertec Corporation | Force measurement system |
US10231662B1 (en) | 2013-01-19 | 2019-03-19 | Bertec Corporation | Force measurement system |
US10413230B1 (en) | 2013-01-19 | 2019-09-17 | Bertec Corporation | Force measurement system |
US10646153B1 (en) | 2013-01-19 | 2020-05-12 | Bertec Corporation | Force measurement system |
US10856796B1 (en) | 2013-01-19 | 2020-12-08 | Bertec Corporation | Force measurement system |
US11052288B1 (en) | 2013-01-19 | 2021-07-06 | Bertec Corporation | Force measurement system |
US11311209B1 (en) | 2013-01-19 | 2022-04-26 | Bertec Corporation | Force measurement system and a motion base used therein |
US11540744B1 (en) | 2013-01-19 | 2023-01-03 | Bertec Corporation | Force measurement system |
US11857331B1 (en) | 2013-01-19 | 2024-01-02 | Bertec Corporation | Force measurement system |
US12161477B1 (en) | 2013-01-19 | 2024-12-10 | Bertec Corporation | Force measurement system |
Also Published As
Publication number | Publication date |
---|---|
EP1643905A2 (en) | 2006-04-12 |
US20050043661A1 (en) | 2005-02-24 |
WO2005007217A2 (en) | 2005-01-27 |
CA2531800A1 (en) | 2005-01-27 |
WO2005007217A3 (en) | 2005-03-17 |
US7179234B2 (en) | 2007-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7179234B2 (en) | Apparatus and method for characterizing contributions of forces associated with a body part of a subject | |
Van Asseldonk et al. | The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control | |
Roy et al. | Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation | |
Epro et al. | Retention of gait stability improvements over 1.5 years in older adults: effects of perturbation exposure and triceps surae neuromuscular exercise | |
JP6175050B2 (en) | Active robotic walking training system and method | |
US9186096B2 (en) | System and method for measuring balance and track motion in mammals | |
US20100152629A1 (en) | Integrated system to assist in the rehabilitation and/or exercising of a single leg after stroke or other unilateral injury | |
Verschueren et al. | Effects of tendon vibration on the spatiotemporal characteristics of human locomotion | |
Chinmilli et al. | A review on wearable inertial tracking based human gait analysis and control strategies of lower-limb exoskeletons | |
Gravano et al. | A novel approach to mechanical foot stimulation during human locomotion under body weight support | |
Awai et al. | Preserved gait kinematics during controlled body unloading | |
Lee et al. | The effect of vibrotactile cuing on recovery strategies from a treadmill-induced trip | |
Alingh et al. | Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study | |
Calabrò et al. | Robotic rehabilitation in spinal cord injury: A pilot study on end-effectors and neurophysiological outcomes | |
Toda et al. | Effect of contraction parameters on swing support during walking using wireless pneumatic artificial muscle driver: a preliminary study | |
US20240207134A1 (en) | Devices, Methods, and Systems for Gait Modification | |
Liang et al. | An investigation into the bilateral functional differences of the lower limb muscles in standing and walking | |
Hidler et al. | Inverse-dynamics based assessment of gait using a robotic orthosis | |
Endo et al. | Long-term sustained effect of gait training using a hybrid assistive limb on gait stability via prevention of knee collapse in a patient with cerebral palsy: a case report | |
Otsuki et al. | Automated stride assistance device improved the gait parameters and energy cost during walking of healthy middle-aged females but not those of young controls | |
Prado et al. | Effects of Localized Leg Muscle Vibration Timed to Gait Cycle Percentage During Overground Walking | |
Narducci | The Effects of Static Versus Dynamic Stretching on Fall Risk, Balance and Muscle Function in Older Adults: Is Stretching a Beneficial Intervention? | |
Ye | Investigation of exo-neuro-musculo-skeleton with neural-network-based evaluation for ankle-foot rehabilitation after stroke | |
Chou et al. | An App-Assisted Frontend of Robot Gait Training System for Lower Limb Rehabilitation | |
Zhang et al. | Wearable Robots Improve Upper Limb Function In Stroke Patients |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEUROCOM INTERNATIONAL, INC., OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NASHNER, LEWIS M.;REEL/FRAME:021270/0381 Effective date: 20041020 |
|
AS | Assignment |
Owner name: NATUS MEDICAL INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEUROCOM INTERNATIONAL, INC.;REEL/FRAME:022137/0249 Effective date: 20090121 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |