US20070123969A1 - Braided stent - Google Patents
Braided stent Download PDFInfo
- Publication number
- US20070123969A1 US20070123969A1 US11/657,858 US65785807A US2007123969A1 US 20070123969 A1 US20070123969 A1 US 20070123969A1 US 65785807 A US65785807 A US 65785807A US 2007123969 A1 US2007123969 A1 US 2007123969A1
- Authority
- US
- United States
- Prior art keywords
- stent
- plastically deformed
- braided
- distal end
- proximal end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04C—BRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
- D04C1/00—Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
- D04C1/06—Braid or lace serving particular purposes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04C—BRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
- D04C3/00—Braiding or lacing machines
- D04C3/48—Auxiliary devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/88—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2403/00—Details of fabric structure established in the fabric forming process
- D10B2403/02—Cross-sectional features
- D10B2403/024—Fabric incorporating additional compounds
- D10B2403/0241—Fabric incorporating additional compounds enhancing mechanical properties
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2509/00—Medical; Hygiene
- D10B2509/06—Vascular grafts; stents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
- Y10T29/49874—Prestressing rod, filament or strand
Definitions
- the present invention relates to a stent for use in a body passageway, comprising a flexible self-expanding braided tubular wall being composed of helically wound wires and having proximal and distal ends.
- the invention also relates to a method for manufacturing such a stent.
- a stent of the type as mentioned in the introduction is described for example in U.S. Pat. No. 4,655,771.
- the tubular wall is composed of several flexible thread elements each of which extends along a helix with the center line of the tubular wall as a common axis.
- the thread elements are arranged in two groups of opposite directions of winding crossing each other in a way to form a braided configuration. This is to impart to the tubular body the necessary stability for supporting a vessel.
- the diameter of the tubular wall can be changed by axial movement of the ends relative to each other.
- the stent is transluminally inserted into position in its radially compressed state and then subjected to expansion staying in place by a permanent pressure against the inner wall of the body passageway.
- the stability of the tubular body depends in general from the number of the thread elements, their diameter and material and from the braiding angle of the thread elements at their crossings. It is preferred to have the axially directed braiding angle being obtuse, i.e. larger than 90°, in order to obtain a large force in radial directions. But the braiding angle also influences the shortening of the stent, which is the reduction of the scent length upon conversion from its compressed to its expanded state. At a given diameter expansion the stent shortens less at braiding angles smaller than around 120° than at larger angles.
- stents with a braiding angle larger than about 120° are referred to as “normal-shortening” whereas stents having a braiding angle of less than about 120° are referred to as “less-shortening.” It is an advantage of less-shortening stents that they can be placed more accurately because the practitioner can better estimate the final positions of the stent ends after expansion. The less-shortening feature comes also to fruition when the stent is implanted in a moving hollow organ in which the stent is repeatedly radially compressed, such as in the esophagus, in the trachea or in a pulsating blood vessel.
- the reduced shortening of the stent is less traumatic for the inner wall of the hollow organ since the stent ends perform smaller axial movements than normal-shortening stents do.
- less-shortening stents are preferably implanted in ostium regions, for example in the aorta next to the entries into the renal arteries or in side branches. Exact placement capability and less axial movement of the stent ends reduce the risk of unwanted perturbation or obstruction of the blood flow by stent ends projecting into the ostium.
- stents of the less-shortening type comprise smaller hoop strength compared to normal-shortening prostheses due to their smaller braiding angle.
- a consequence of the lower radial force is a reduction of the self fixation characteristics with the risk of a local axial displacement of the stent within the body passageway.
- the stent is not stable enough to resist flattening if it is implanted in arched vessels. This means that a more or less strong deformation of the stent cross-section deviating from its original circular shape can partially close the stent.
- an improved stent comprising a flexible self expanding braided tubular wall having a proximal segment of smaller diameter and a distal segment of larger diameter and in-between an intermediate segment forming a truncated cone.
- a covering layer is arranged within the tubular wall.
- the large-diameter segment serves as a migration anchor while the less-shortening segment with smaller diameter makes an easier and safer way through curves or at the end of for example a food pipe.
- the less-shortening stent segment still has not sufficient shape stability for use in curved areas of body vessels.
- the cross-section of this segment may be deformed elliptically if bended in curved body vessels as it will occur generally for less-shortening stents.
- because of the conical shape such a stent can be used only at particular areas, such as in food pipes.
- the used manufacturing methods are quite expensive.
- a further object of the invention is to provide a stent which can be manufactured easier.
- the term “elevation” has the meaning of an impression or bulge of the stent wall as well in the negative as in the positive sense, i.e. extending inwardly or outwardly of the tubular stent wall. Accordingly, the tubular wall has at least a local inwardly and/or outwardly formed elevation, whereby the wires are plastically deformed in a way that the number of degrees of freedom for their movement within the braiding is reduced.
- the mesh cells defined by the braided wires are “frozen” by a reduced capability of the wires to rotate and shift relative to each other at their crossing points.
- the braided tubular wall retains its less-shortening feature and becomes more stable against radial deformation.
- a further advantage of the formed elevations is the possibility to make a short stent of the type mentioned in the introduction.
- Such stents are usually cut from the braiding blank and comprise an unwanted conical shape due to a memory effect from the braiding process. This shape can be converted into a cylindrical tube and conserved by forming elevations on the stent wall.
- the stent will be anchored firmly with the tissue of the body vessel without damaging.
- the homogeneity of the elevation distribution is for example preferred if the stent is to be implanted in a curved area of a body passageway.
- More dense distribution of the elevations at the proximal and distal ends of the stent will provide higher stability at these areas for better anchoring thereof with the tissue of the body vessel.
- This embodiment is preferred if the stent is to be implanted in ostium positions for a safe fixation of the stent ends in order to prevent migration of the stent and disturbing for example the blood flow into a side branch through this ostium.
- Another preferred application of such a stent is the support of a vessel having a hard plaque stenosis whereby the stent comprises a higher density of elevations in the stenotic region.
- the elevations are formed outwardly so that they can serve as an anchor against stent migration by engaging into the inner vessel wall to be supported. Moreover, the deployment of such a stent with delivery devices as known in the art is enhanced since the retraction of the outer sheath is easier. This results from a reduced friction between the inside of the delivery sheath and the radially outwardly pressing stent touching the sheath only at the elevations.
- the local elevations have an elongate shape which makes the manufacturing of such stents very easy by using wires to emboss the tubular wall.
- the elevations may have an arched cross-sectional shape.
- the height of the elevations are approximately one to two times the wire diameter of the braid.
- embossments or elevations can be formed in patterns helically on the tubular wall, where in a preferred embodiment the helical elevation pattern has a different pitch than the wires of the braid in order to deform as many wires as possible.
- the elevations may also be formed annularly or in an axial direction on the tubular wall depending on the desired effect. Where the elevations are placed annularly the stent wall comprises an improved radial stability, whereas elevations in axial directions impart to the stent a higher longitudinal stability which is especially useful for implantation in the airways.
- the manufacturing method according to the present invention is determined by the steps of forming an elongate mandrel having at least one local outwardly bound elevation, forming an elongated tubular braid of spring steel having proximal and distal ends and an inner diameter commensurate with the diameter of the mandrel, engaging said tubular braid over said mandrel, heating the tubular braid on the mandrel, cooling the tubular braid and disengaging the braid from the mandrel. Preferably previous to the disengaging step the braid will be compressed in the axial direction.
- a flexible self expanding braided tubular wall is composed of helically wound wires and has proximal and distal ends, wherein the tubular wall has at least a local inwardly and/or outwardly formed elevation.
- the local elevations may be distributed regularly over the tubular wall and distributed more densely at the proximal and distal ends.
- the local elevations of the stent may be formed outwardly and may have an elongated shape.
- the stent elevations may have an arched cross-sectional shape and/or a height of approximately one to two times of the diameter of the wires.
- the elevations may be formed helically on the tubular wall.
- the helical elevation may have a different pitch than the wires of the braid.
- the elevation may be formed annularly on the tubular wall or formed in an axial direction on the tubular wall.
- the invention further relates to a method for manufacturing a stent by forming or providing an elongated mandrel having at least one local outwardly bound elevation; forming or providing an elongated tubular braid of spring steel having proximal and distal ends and an inner diameter commensurate with the diameter of the mandrel; engaging the tubular braid over the mandrel; heating the tubular braid over the mandrel; cooling the tubular braid; and disengaging the braid from the mandrel. Prior to disengaging the braid from the mandrel, the braid may be compressed in an axial direction. The steps of heating the tubular braid over the mandrel and cooling the tubular braid may be performed under vacuum condition.
- FIG. 1 shows a stent with a helical elevation in side view
- FIG. 2 shows a cross-sectional view according to line A-A in FIG. 1 ,
- FIG. 3 shows a stent with a plurality of radial elevations in side view
- FIG. 4 shows a stent with a plurality of axial elevations in side view
- FIG. 5 shows the stent of FIG. 4 in front view according to arrow B
- FIG. 6 shows a stent similar to that in FIG. 1 , but with increased densities of elevations at its ends, and
- FIG. 7 shows a stent similar to that in FIG. 3 , but with increased densities of elevations at its ends.
- the stent depicted in FIG. 1 comprises a flexible self expanding braided tubular wall 1 which is composed of a first plurality of parallel spring stainless steel wires 2 helically wound in a first direction crossing a second plurality of parallel spring stainless steel wires 3 helically wound in a second direction opposite to the first one.
- the braided structure assures contraction of the stent in the radial direction when the proximal and distal ends 4 and 5 of the stent are pulled away from one another as exemplified by arrows 6 , and self expansion of the stent in the radial direction when the pull according to arrows 6 is released.
- This configuration is well known in the art and needs no further explanation. Of course, other known braidings or patterns providing the same effect may be used.
- the tubular wall 1 of the stent having a helical pattern of elevations 7 which is outwardly formed and has an angle of gradient or pitch slightly smaller than the angle of gradient or pitch of the steel wires 2 shown in the same winding direction.
- the elevations 7 have an elongate and arched cross-sectional shape.
- the height of the elevations 7 over the tubular wall 1 is about once or twice the diameter of the wires 2 or 3 of the braided configuration.
- the wires 2 and 3 may be made of a metallic material, e.g. stainless steel, which may be filled with a radiopaque core, or made of a thermoplastic polymer, such as polyesters, polyurethanes, polycarbonates, polysulphides, polypropylene, polyethylene or polysulphonates.
- the diameter of the wires 2 and 3 lie within the range 0.01 to 0.5 mms.
- the helical elevation 7 provides a greater stability of the meshes of the braided tubular wall 1 , i.e. the parallel wires 2 and the parallel wires 3 will be prevented from moving apart at the crossing points 8 .
- wires 2 and 3 have been deformed locally in a tubular shape.
- the elevation pattern is normally distributed in a regular manner over the tubular wall 1 . Therefore a specific wire 2 or 3 will have several elevation areas over its whole length within the tubular wall 1 and a much greater stability of the wires 2 and 3 within the braid will be obtained.
- the elevation is further smooth curved, i.e.
- the braiding angle between the wires 2 and 3 will be enlarged locally in the area of the elevations which will additionally enhance the mechanical stability of the tubular wall 1 .
- the meshes are immobilized or “frozen” at the crossing points of the wires 2 and 3 in the area of the elevation. By the frozen meshes the tubular wall 1 will obtain an enlarged shape stability which will resist the deforming forces of the body vessel.
- the elevation 7 will also reduce the tendency of the wires 2 and 3 to debraid at the proximal and distal ends 4 and 5 of the tubular wall 1 .
- the aforementioned stent will have a greater form or shape stability if the tubular wall 1 will be bent in blood vessels with a strong curvature, i.e. the circular cross-section of the tubular wall 1 will be retained and not deformed to an elliptical one as can be observed with less-shortening stents.
- FIG. 3 Another possibility of providing elevations for stents according to the present invention is shown in FIG. 3 , where the stent having annular pattern of outwardly formed elevations 12 which, are equidistant and parallel to each other.
- the stability of the stent has been improved over the well-known stents. If an annular pattern of elevations 12 will be provided near the proximal and distal ends 4 and 5 the tendency of debraiding of the wires 2 and 3 can be reduced further.
- FIG. 4 another example of a stent according to the invention is shown, wherein outwardly formed elevations 13 are provided in an axial direction on the tubular wall- 1 , which elevations 13 are also equidistant and parallel to each other.
- the front view of FIG. 5 shows that these elevations are also smoothly curved as in the previous examples. Since the wires 2 and 3 are intertwined with a relatively dense mesh the four patterns of elevations 13 as depicted in this example are sufficient to prevent debraiding at the proximal and distal ends 4 and 5 of the stent.
- elevations 7 , 12 and 13 in the examples of FIGS. 1, 3 and 4 are formed outwardly on the tubular wall 1 , they may also be formed inwardly on the tubular wall 1 or possibly provided in combination of outwardly and inwardly formed elevations.
- FIG. 6 shows a stent of the type shown in FIG. 1 , but with increased densities of elevations at the proximal and distal ends.
- FIG. 7 shows a stent of the type shown in FIG. 3 , but with annular elevation patterns near the proximal and distal ends 4 and 5 .
- the stent will be produced in the known manner, i.e. the wires 2 and 3 will be intertwined with a predetermined braiding angle and with a predetermined mesh size dependent from the wire cross-section.
- the braiding angle of the so formed stent will normally be between 100°and 120°.
- the stent will be pushed over a cylindrical mandrel with a regular pattern of outwardly formed elevations like the helical shape of wires provided on the surface of the mandrel as will be used to form a stent according to FIG. 1 .
- the mandrel with the stent will then be heated up to process temperature, kept under process temperature for a certain period of time, and cooled down afterwards.
- the heating and cooling procedure is carried out under vacuum condition.
- the thermal treatment may take up to sixteen hours, whereby the process temperature of 550° C. is maintained for about two hours. Then the stent will be pulled from the mandrel.
- the tubular wall 1 may be compressed in order to enlarge the diameter thereof for an easier disengagement.
- the stent may also be unscrewed from the mandrel.
- the shown patterns are preferred since they guarantee a smooth outer surface of the tubular wall 1 which is especially important for stents to be used at delicate areas such as blood vessels in order not to damage the tissue.
- the helical shape and the annular shape of the pattern of elevations are preferred for stents used at the junction between the esophagus and the stomach as these will prevent much better the migration of the stent as in case of the axial pattern of elevations.
- the elevations may also be formed inwardly instead of outwardly as shown and described above, i.e. the tubular stent wall having depressions. This may be advantageous if the body vessel to be repaired needs more support and a larger contact area with the stent.
- Stents according to the present invention have a further advantage in that they can be handled easier in the flexible shaft of the positioning instrument since the friction between the stent and the inner wall thereof will be reduced. This applies more for the outwardly formed elevations as for the ones inwardly formed. But in both cases the friction will be reduced in comparison to conventional stents. Thus repositioning of stents with elevations as shown before has been improved also.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Textile Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Manufacturing & Machinery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
A stent for use in a body passageway includes a plurality of wires braided to form a self-expanding braided tubular structure. The braided wires form braiding angles along a length of the tubular structure. A portion of the wires are plastically deformed to reduce foreshortening of the braided structure.
Description
- This application is a continuation of application Ser. No. 10/674,729, filed Sep. 30, 2003, which is a divisional of application Ser. No. 09/874,609, filed Jun. 5, 2001, now U.S. Pat. No. 6,652,577, which is a divisional of application Ser. No. 09/431,988, filed Nov. 2, 1999, now U.S. Pat. No. 6,240,978, which is a divisional of application Ser. No. 08/993,033, filed Dec. 18, 1997, now U.S. Pat. No. 5,993,483, which claims the benefit of European Patent Application No. 97202152.1, filed in the European Patent Office on Jul. 17, 1997, the contents of all of which are incorporated herein by reference.
- The present invention relates to a stent for use in a body passageway, comprising a flexible self-expanding braided tubular wall being composed of helically wound wires and having proximal and distal ends. The invention also relates to a method for manufacturing such a stent.
- A stent of the type as mentioned in the introduction is described for example in U.S. Pat. No. 4,655,771. The tubular wall is composed of several flexible thread elements each of which extends along a helix with the center line of the tubular wall as a common axis. The thread elements are arranged in two groups of opposite directions of winding crossing each other in a way to form a braided configuration. This is to impart to the tubular body the necessary stability for supporting a vessel. The diameter of the tubular wall can be changed by axial movement of the ends relative to each other. The stent is transluminally inserted into position in its radially compressed state and then subjected to expansion staying in place by a permanent pressure against the inner wall of the body passageway. The stability of the tubular body depends in general from the number of the thread elements, their diameter and material and from the braiding angle of the thread elements at their crossings. It is preferred to have the axially directed braiding angle being obtuse, i.e. larger than 90°, in order to obtain a large force in radial directions. But the braiding angle also influences the shortening of the stent, which is the reduction of the scent length upon conversion from its compressed to its expanded state. At a given diameter expansion the stent shortens less at braiding angles smaller than around 120° than at larger angles.
- In the following stents with a braiding angle larger than about 120° are referred to as “normal-shortening” whereas stents having a braiding angle of less than about 120° are referred to as “less-shortening.” It is an advantage of less-shortening stents that they can be placed more accurately because the practitioner can better estimate the final positions of the stent ends after expansion. The less-shortening feature comes also to fruition when the stent is implanted in a moving hollow organ in which the stent is repeatedly radially compressed, such as in the esophagus, in the trachea or in a pulsating blood vessel. In those cases the reduced shortening of the stent is less traumatic for the inner wall of the hollow organ since the stent ends perform smaller axial movements than normal-shortening stents do. For the aforesaid reasons less-shortening stents are preferably implanted in ostium regions, for example in the aorta next to the entries into the renal arteries or in side branches. Exact placement capability and less axial movement of the stent ends reduce the risk of unwanted perturbation or obstruction of the blood flow by stent ends projecting into the ostium.
- However, stents of the less-shortening type comprise smaller hoop strength compared to normal-shortening prostheses due to their smaller braiding angle. A consequence of the lower radial force is a reduction of the self fixation characteristics with the risk of a local axial displacement of the stent within the body passageway. Moreover, the stent is not stable enough to resist flattening if it is implanted in arched vessels. This means that a more or less strong deformation of the stent cross-section deviating from its original circular shape can partially close the stent.
- In EP-A-O 775 471 an improved stent is disclosed comprising a flexible self expanding braided tubular wall having a proximal segment of smaller diameter and a distal segment of larger diameter and in-between an intermediate segment forming a truncated cone. A covering layer is arranged within the tubular wall. Although the document does not disclose any specific braiding angles the proximal segment will have a similar braiding angle as the above described less-shortening stent and the distal segment will have a larger braiding angle. The different geometry can be derived from the manufacturing methods as described in the document. The large-diameter segment serves as a migration anchor while the less-shortening segment with smaller diameter makes an easier and safer way through curves or at the end of for example a food pipe. But the less-shortening stent segment still has not sufficient shape stability for use in curved areas of body vessels. The cross-section of this segment may be deformed elliptically if bended in curved body vessels as it will occur generally for less-shortening stents. Moreover, because of the conical shape such a stent can be used only at particular areas, such as in food pipes. In addition, it is to be said that the used manufacturing methods are quite expensive.
- All documents cited herein, including the foregoing, are incorporated herein by reference in their entireties for all purposes.
- It is therefore an object of the present invention to improve a less-shortening stent such that it can be used universally, and more specifically in moving and/or in curved body passageways avoiding migration and flattening deformation thereof. A further object of the invention is to provide a stent which can be manufactured easier.
- The term “elevation” has the meaning of an impression or bulge of the stent wall as well in the negative as in the positive sense, i.e. extending inwardly or outwardly of the tubular stent wall. Accordingly, the tubular wall has at least a local inwardly and/or outwardly formed elevation, whereby the wires are plastically deformed in a way that the number of degrees of freedom for their movement within the braiding is reduced. This means that the mesh cells defined by the braided wires are “frozen” by a reduced capability of the wires to rotate and shift relative to each other at their crossing points. The braided tubular wall retains its less-shortening feature and becomes more stable against radial deformation. A further advantage of the formed elevations is the possibility to make a short stent of the type mentioned in the introduction. Such stents are usually cut from the braiding blank and comprise an unwanted conical shape due to a memory effect from the braiding process. This shape can be converted into a cylindrical tube and conserved by forming elevations on the stent wall.
- Where the elevations are distributed regularly over the tubular wall, the stent will be anchored firmly with the tissue of the body vessel without damaging. The homogeneity of the elevation distribution is for example preferred if the stent is to be implanted in a curved area of a body passageway.
- More dense distribution of the elevations at the proximal and distal ends of the stent will provide higher stability at these areas for better anchoring thereof with the tissue of the body vessel. This embodiment is preferred if the stent is to be implanted in ostium positions for a safe fixation of the stent ends in order to prevent migration of the stent and disturbing for example the blood flow into a side branch through this ostium. Another preferred application of such a stent is the support of a vessel having a hard plaque stenosis whereby the stent comprises a higher density of elevations in the stenotic region.
- In a preferred embodiment of the invention the elevations are formed outwardly so that they can serve as an anchor against stent migration by engaging into the inner vessel wall to be supported. Moreover, the deployment of such a stent with delivery devices as known in the art is enhanced since the retraction of the outer sheath is easier. This results from a reduced friction between the inside of the delivery sheath and the radially outwardly pressing stent touching the sheath only at the elevations.
- In another preferred embodiment of the present invention the local elevations have an elongate shape which makes the manufacturing of such stents very easy by using wires to emboss the tubular wall. The elevations may have an arched cross-sectional shape. Preferably the height of the elevations are approximately one to two times the wire diameter of the braid.
- These embossments or elevations can be formed in patterns helically on the tubular wall, where in a preferred embodiment the helical elevation pattern has a different pitch than the wires of the braid in order to deform as many wires as possible. The elevations may also be formed annularly or in an axial direction on the tubular wall depending on the desired effect. Where the elevations are placed annularly the stent wall comprises an improved radial stability, whereas elevations in axial directions impart to the stent a higher longitudinal stability which is especially useful for implantation in the airways.
- The manufacturing method according to the present invention is determined by the steps of forming an elongate mandrel having at least one local outwardly bound elevation, forming an elongated tubular braid of spring steel having proximal and distal ends and an inner diameter commensurate with the diameter of the mandrel, engaging said tubular braid over said mandrel, heating the tubular braid on the mandrel, cooling the tubular braid and disengaging the braid from the mandrel. Preferably previous to the disengaging step the braid will be compressed in the axial direction.
- In sum the present invention relates to a stent for use in a body passageway. A flexible self expanding braided tubular wall is composed of helically wound wires and has proximal and distal ends, wherein the tubular wall has at least a local inwardly and/or outwardly formed elevation. The local elevations may be distributed regularly over the tubular wall and distributed more densely at the proximal and distal ends. The local elevations of the stent may be formed outwardly and may have an elongated shape. The stent elevations may have an arched cross-sectional shape and/or a height of approximately one to two times of the diameter of the wires. The elevations may be formed helically on the tubular wall. The helical elevation may have a different pitch than the wires of the braid. The elevation may be formed annularly on the tubular wall or formed in an axial direction on the tubular wall.
- The invention further relates to a method for manufacturing a stent by forming or providing an elongated mandrel having at least one local outwardly bound elevation; forming or providing an elongated tubular braid of spring steel having proximal and distal ends and an inner diameter commensurate with the diameter of the mandrel; engaging the tubular braid over the mandrel; heating the tubular braid over the mandrel; cooling the tubular braid; and disengaging the braid from the mandrel. Prior to disengaging the braid from the mandrel, the braid may be compressed in an axial direction. The steps of heating the tubular braid over the mandrel and cooling the tubular braid may be performed under vacuum condition.
- These and other objects, features and advantages of the present invention will become readily apparent from the subsequent description, wherein the invention will be explained in further details with reference to the accompanying drawings which show, diagrammatically and by way of example only, preferred but still illustrative embodiments of the invention.
-
FIG. 1 shows a stent with a helical elevation in side view, -
FIG. 2 shows a cross-sectional view according to line A-A inFIG. 1 , -
FIG. 3 shows a stent with a plurality of radial elevations in side view, -
FIG. 4 shows a stent with a plurality of axial elevations in side view, -
FIG. 5 shows the stent ofFIG. 4 in front view according to arrow B, -
FIG. 6 shows a stent similar to that inFIG. 1 , but with increased densities of elevations at its ends, and -
FIG. 7 shows a stent similar to that inFIG. 3 , but with increased densities of elevations at its ends. - In the following description of the drawings the same reference numbers have been used for all figures if not mentioned otherwise.
- The stent depicted in
FIG. 1 comprises a flexible self expanding braidedtubular wall 1 which is composed of a first plurality of parallel springstainless steel wires 2 helically wound in a first direction crossing a second plurality of parallel springstainless steel wires 3 helically wound in a second direction opposite to the first one. The braided structure assures contraction of the stent in the radial direction when the proximal anddistal ends arrows 6, and self expansion of the stent in the radial direction when the pull according toarrows 6 is released. This configuration is well known in the art and needs no further explanation. Of course, other known braidings or patterns providing the same effect may be used. - The
tubular wall 1 of the stent having a helical pattern ofelevations 7 which is outwardly formed and has an angle of gradient or pitch slightly smaller than the angle of gradient or pitch of thesteel wires 2 shown in the same winding direction. Theelevations 7 have an elongate and arched cross-sectional shape. The height of theelevations 7 over thetubular wall 1 is about once or twice the diameter of thewires wires wires helical elevation 7 provides a greater stability of the meshes of the braidedtubular wall 1, i.e. theparallel wires 2 and theparallel wires 3 will be prevented from moving apart at the crossing points 8. Especially in the cross-sectional view ofFIG. 2 it can be seen thatwires tubular wall 1. Therefore aspecific wire tubular wall 1 and a much greater stability of thewires wires wires tubular wall 1. In fact, the meshes are immobilized or “frozen” at the crossing points of thewires tubular wall 1 will obtain an enlarged shape stability which will resist the deforming forces of the body vessel. Theelevation 7 will also reduce the tendency of thewires distal ends tubular wall 1. Thus the aforementioned stent will have a greater form or shape stability if thetubular wall 1 will be bent in blood vessels with a strong curvature, i.e. the circular cross-section of thetubular wall 1 will be retained and not deformed to an elliptical one as can be observed with less-shortening stents. - Another possibility of providing elevations for stents according to the present invention is shown in
FIG. 3 , where the stent having annular pattern of outwardly formedelevations 12 which, are equidistant and parallel to each other. Here also the stability of the stent has been improved over the well-known stents. If an annular pattern ofelevations 12 will be provided near the proximal anddistal ends wires - In
FIG. 4 another example of a stent according to the invention is shown, wherein outwardly formedelevations 13 are provided in an axial direction on the tubular wall-1, whichelevations 13 are also equidistant and parallel to each other. The front view ofFIG. 5 shows that these elevations are also smoothly curved as in the previous examples. Since thewires elevations 13 as depicted in this example are sufficient to prevent debraiding at the proximal anddistal ends - Although the
elevations FIGS. 1, 3 and 4 are formed outwardly on thetubular wall 1, they may also be formed inwardly on thetubular wall 1 or possibly provided in combination of outwardly and inwardly formed elevations. - As mentioned previously, more dense distributions of elevations at the proximal and distal ends of the stent will provide higher stability at these areas for better anchoring of the stent with the tissue of the body vessel. Also, in connection with
FIG. 3 it is noted above that anannular elevation pattern 12 near the proximal anddistal ends FIG. 6 shows a stent of the type shown inFIG. 1 , but with increased densities of elevations at the proximal and distal ends.FIG. 7 shows a stent of the type shown inFIG. 3 , but with annular elevation patterns near the proximal anddistal ends - The manufacturing of the aforementioned stents is as follows:
- Firstly the stent will be produced in the known manner, i.e. the
wires FIG. 1 . The mandrel with the stent will then be heated up to process temperature, kept under process temperature for a certain period of time, and cooled down afterwards. The heating and cooling procedure is carried out under vacuum condition. In the case of stainless steel wires the thermal treatment may take up to sixteen hours, whereby the process temperature of 550° C. is maintained for about two hours. Then the stent will be pulled from the mandrel. In cases where the patterns of elevations are not axially directed as for the stent depicted inFIG. 4 , thetubular wall 1 may be compressed in order to enlarge the diameter thereof for an easier disengagement. In case of the helical pattern of the elevations the stent may also be unscrewed from the mandrel. - Although other patterns of elevations may also be used for the stents according to the invention the shown patterns are preferred since they guarantee a smooth outer surface of the
tubular wall 1 which is especially important for stents to be used at delicate areas such as blood vessels in order not to damage the tissue. The helical shape and the annular shape of the pattern of elevations are preferred for stents used at the junction between the esophagus and the stomach as these will prevent much better the migration of the stent as in case of the axial pattern of elevations. In particular the elevations may also be formed inwardly instead of outwardly as shown and described above, i.e. the tubular stent wall having depressions. This may be advantageous if the body vessel to be repaired needs more support and a larger contact area with the stent. - Stents according to the present invention have a further advantage in that they can be handled easier in the flexible shaft of the positioning instrument since the friction between the stent and the inner wall thereof will be reduced. This applies more for the outwardly formed elevations as for the ones inwardly formed. But in both cases the friction will be reduced in comparison to conventional stents. Thus repositioning of stents with elevations as shown before has been improved also.
- The above-described embodiments of the invention are merely descriptive of its principles and are not to be considered limiting. Further modifications of the invention herein disclosed will occur to those skilled in the respective arts and all such modifications are deemed to be within the scope of the invention as defined by the following claims.
Claims (48)
1-76. (canceled)
77. A stent for use in a body passageway, comprising:
a plurality of wires braided to form a self-expanding braided tubular structure, the braided wires forming braiding angles along a length of the tubular structure;
wherein a portion of the wires are plastically deformed to reduce foreshortening of the braided structure.
78. The stent of claim 77 , wherein the braiding angles are obtuse angles.
79. The stent of claim 78 , therein the obtuse angles from about 110° to about 120°.
80. The stent of claim 77 , wherein the wires comprise metallic material.
81. The stent of claim 77 , wherein the plastically deformed portion is a bend.
82. The stent of claim 77 , wherein the plastically deformed portion is an arched portion.
83. The stent of claim 77 , wherein the plastically deformed portion is a smooth curved portion.
84. The stent of claim 77 , wherein braided tubular structure has a substantially uniform diameter.
85. The stent of claim 77 , wherein the braided structure further comprises a proximal end and a distal end; and a plurality of plastically deformed portions, wherein the plastically deformed portions are disposed at at least one of the proximal end or the distal end.
86. The stent of claim 85 , wherein the plastically deformed portions are disposed at both the proximal end and the distal end.
87. The stent of claim 81 , wherein the braided structure further comprises a proximal end and a distal end; and a plurality of plastically deformed portions, wherein the plastically deformed portions are disposed at at least one of the proximal end or the distal end.
88. The stent of claim 87 , wherein the plastically deformed portions are disposed at both the proximal end and the distal end.
89. A stent for use in a body passageway, comprising:
a plurality of wires braided to form a self-expanding braided tubular structure, the braided wires forming braiding angles along a length of the tubular structure;
wherein a portion of the wires are plastically deformed to reduce flattening of the braided structure under radial deformation.
90. The stent of claim 89 , wherein the braiding angles are obtuse angles.
91. The stent of claim 90 , therein the obtuse angles from about 110° to about 120°.
92. The stent of claim 89 , wherein the wires comprise metallic material.
93. The stent of claim 89 , wherein the plastically deformed portion is a bend.
94. The stent of claim 89 , wherein the plastically deformed portion is an arched portion.
95. The stent of claim 89 , wherein the plastically deformed portion is a smooth curved portion.
96. The stent of claim 89 , wherein braided tubular structure has a substantially uniform diameter.
97. The stent of claim 89 , wherein the braided structure further comprises a proximal end and a distal end; and a plurality of plastically deformed portions, wherein the plastically deformed portions are disposed at at least one of the proximal end or the distal end.
98. The stent of claim 97 , wherein the plastically deformed portions are disposed at both the proximal end and the distal end.
99. The stent of claim 93 , wherein the braided structure further comprises a proximal end and a distal end; and a plurality of plastically deformed portions, wherein the plastically deformed portions are disposed at at least one of the proximal end or the distal end.
100. The stent of claim 99 , wherein the plastically deformed portions are disposed at both the proximal end and the distal end.
101. A stent for use in a body passageway, comprising:
a plurality of wires braided to form a self-expanding braided tubular structure, the braided wires forming braiding angles along a length of the tubular structure;
wherein a portion of the wires are plastically deformed to restrict their movement within the braided tubular structure.
102. The stent of claim 101 , wherein the braiding angles are obtuse angles.
103. The stent of claim 102 , wherein the obtuse angles from about 110° to about 120°.
104. The stent of claim 101 , wherein the wires comprise metallic material.
105. The stent of claim 101 , wherein the plastically deformed portion is a bend.
106. The stent of claim 101 , wherein the plastically deformed portion is an arched portion.
107. The stent of claim 101 , wherein the plastically deformed portion is a smooth curved portion.
108. The stent of claim 101 , wherein braided tubular structure has a substantially uniform diameter.
109. The stent of claim 101 , wherein the braided structure further comprises a proximal end and a distal end; and a plurality of plastically deformed portions, wherein the plastically deformed portions are disposed at at least one of the proximal end or the distal end.
110. The stent of claim 101 , wherein the plastically deformed portions are disposed at both the proximal end and the distal end.
111. The stent of claim 105 , wherein the braided structure further comprises a proximal end and a distal end; and a plurality of plastically deformed portions, wherein the plastically deformed portions are disposed at at least one of the proximal end or the distal end.
112. The stent of claim 111 , wherein the plastically deformed portions are disposed at both the proximal end and the distal end.
113. A stent for use in a body passageway, comprising:
a plurality of wires braided to form a self-expanding braided tubular structure, the braided wires forming braiding angles along a length of the tubular structure;
wherein portions of the wires are plastically deformed to provide smooth curved, arched portions.
114. The stent of claim 113 , wherein the braiding angles are obtuse angles.
115. The stent of claim 114 , therein the obtuse angles from about 110° to about 120°.
116. The stent of claim 113 , wherein the wires comprise metallic material.
117. The stent of claim 113 , wherein the smooth curved, arched portions are bends.
118. The stent of claim 113 , wherein the smooth curved, arched portions equidistant from one and another.
119. The stent of claim 113 , wherein braided tubular structure has a substantially uniform diameter.
120. The stent of claim 113 , wherein the braided structure further comprises a proximal end and a distal end; and wherein the arched portions are disposed at at least one of the proximal end or the distal end.
121. The stent of claim 120 , wherein the arched portions are disposed at both the proximal end and the distal end.
122. The stent of claim 117 , wherein the braided structure further comprises a proximal end and a distal end; and wherein the arched portions are disposed at at least one of the proximal end or the distal end.
123. The stent of claim 117 , wherein the arched portions are disposed at both the proximal end and the distal end.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/657,858 US20070123969A1 (en) | 1997-07-17 | 2007-01-25 | Braided stent |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97202152.1 | 1997-07-17 | ||
EP97202152A EP0891752B1 (en) | 1997-07-17 | 1997-07-17 | Stent and method for manufacturing such a stent |
US08/993,033 US5993483A (en) | 1997-07-17 | 1997-12-18 | Stent and method of manufacturing same |
US09/431,988 US6240978B1 (en) | 1997-07-17 | 1999-11-02 | Stent and method for manufacturing such a stent |
US09/874,609 US6652577B2 (en) | 1997-07-17 | 2001-06-05 | Stents with elevations at selected crossing points |
US10/674,729 US7331990B2 (en) | 1997-07-17 | 2003-09-30 | Stents with proximal and distal end elevations |
US11/657,858 US20070123969A1 (en) | 1997-07-17 | 2007-01-25 | Braided stent |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/674,729 Continuation US7331990B2 (en) | 1997-07-17 | 2003-09-30 | Stents with proximal and distal end elevations |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070123969A1 true US20070123969A1 (en) | 2007-05-31 |
Family
ID=8228539
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/993,033 Expired - Lifetime US5993483A (en) | 1997-07-17 | 1997-12-18 | Stent and method of manufacturing same |
US09/431,988 Expired - Lifetime US6240978B1 (en) | 1997-07-17 | 1999-11-02 | Stent and method for manufacturing such a stent |
US09/874,609 Expired - Lifetime US6652577B2 (en) | 1997-07-17 | 2001-06-05 | Stents with elevations at selected crossing points |
US10/674,729 Expired - Fee Related US7331990B2 (en) | 1997-07-17 | 2003-09-30 | Stents with proximal and distal end elevations |
US11/657,858 Abandoned US20070123969A1 (en) | 1997-07-17 | 2007-01-25 | Braided stent |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/993,033 Expired - Lifetime US5993483A (en) | 1997-07-17 | 1997-12-18 | Stent and method of manufacturing same |
US09/431,988 Expired - Lifetime US6240978B1 (en) | 1997-07-17 | 1999-11-02 | Stent and method for manufacturing such a stent |
US09/874,609 Expired - Lifetime US6652577B2 (en) | 1997-07-17 | 2001-06-05 | Stents with elevations at selected crossing points |
US10/674,729 Expired - Fee Related US7331990B2 (en) | 1997-07-17 | 2003-09-30 | Stents with proximal and distal end elevations |
Country Status (7)
Country | Link |
---|---|
US (5) | US5993483A (en) |
EP (1) | EP0891752B1 (en) |
JP (1) | JPH1170172A (en) |
AT (1) | ATE286687T1 (en) |
AU (1) | AU724305B2 (en) |
CA (1) | CA2242444A1 (en) |
DE (1) | DE69732229T2 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060271153A1 (en) * | 2005-05-25 | 2006-11-30 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying an occluding device within a vessel |
US20080319540A1 (en) * | 2007-06-13 | 2008-12-25 | Boston Scientific Scimed, Inc. | Anti-migration features and geometry for a shape memory polymer stent |
US20090187240A1 (en) * | 2008-01-17 | 2009-07-23 | Boston Scientific Scimed, Inc. | Stent with anti-migration feature |
US20090192536A1 (en) * | 2005-05-25 | 2009-07-30 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying an occluding device within a vessel |
US20090192588A1 (en) * | 2008-01-29 | 2009-07-30 | Taeoong Medical Co., Ltd | Biodegradable double stent |
US20090318947A1 (en) * | 2005-05-25 | 2009-12-24 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying an occluding device within a vessel |
WO2011044486A1 (en) | 2009-10-09 | 2011-04-14 | Boston Scientific Scimed, Inc. | Stomach bypass for the treatment of obesity |
US8382825B2 (en) | 2004-05-25 | 2013-02-26 | Covidien Lp | Flexible vascular occluding device |
US8394119B2 (en) | 2006-02-22 | 2013-03-12 | Covidien Lp | Stents having radiopaque mesh |
US8398701B2 (en) | 2004-05-25 | 2013-03-19 | Covidien Lp | Flexible vascular occluding device |
US8617234B2 (en) | 2004-05-25 | 2013-12-31 | Covidien Lp | Flexible vascular occluding device |
US8623067B2 (en) | 2004-05-25 | 2014-01-07 | Covidien Lp | Methods and apparatus for luminal stenting |
US9114001B2 (en) | 2012-10-30 | 2015-08-25 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9155647B2 (en) | 2012-07-18 | 2015-10-13 | Covidien Lp | Methods and apparatus for luminal stenting |
US9157174B2 (en) | 2013-02-05 | 2015-10-13 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US20160175123A1 (en) * | 2013-02-28 | 2016-06-23 | Boston Scientific Scimed, Inc. | Medical devices for use along the biliary and/or pancreatic tract |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9675482B2 (en) | 2008-05-13 | 2017-06-13 | Covidien Lp | Braid implant delivery systems |
US9943427B2 (en) | 2012-11-06 | 2018-04-17 | Covidien Lp | Shaped occluding devices and methods of using the same |
US10004618B2 (en) | 2004-05-25 | 2018-06-26 | Covidien Lp | Methods and apparatus for luminal stenting |
US10500035B2 (en) | 2014-10-09 | 2019-12-10 | Boston Scientific Scimed, Inc. | Pancreatic stent with drainage feature |
US20220142763A1 (en) * | 2013-03-15 | 2022-05-12 | Boston Scientific Scimed, Inc. | Anti-migration micropatterned stent coating |
US11559412B2 (en) | 2019-01-07 | 2023-01-24 | Boston Scientific Scimed, Inc. | Stent with anti-migration feature |
US11759341B2 (en) | 2020-01-13 | 2023-09-19 | Boston Scientific Scimed, Inc. | Anti-migration stent |
US11918496B2 (en) | 2020-12-02 | 2024-03-05 | Boston Scientific Scimed, Inc. | Stent with improved deployment characteristics |
Families Citing this family (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0792976B2 (en) * | 1983-10-27 | 1995-10-09 | キヤノン株式会社 | Recording or playback device |
EP0891752B1 (en) * | 1997-07-17 | 2005-01-12 | Schneider (Europe) GmbH | Stent and method for manufacturing such a stent |
US7713282B2 (en) * | 1998-11-06 | 2010-05-11 | Atritech, Inc. | Detachable atrial appendage occlusion balloon |
US7044134B2 (en) * | 1999-11-08 | 2006-05-16 | Ev3 Sunnyvale, Inc | Method of implanting a device in the left atrial appendage |
US7128073B1 (en) | 1998-11-06 | 2006-10-31 | Ev3 Endovascular, Inc. | Method and device for left atrial appendage occlusion |
GB2344053A (en) * | 1998-11-30 | 2000-05-31 | Imperial College | Stents for blood vessels |
US7018401B1 (en) | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
DE60116486T2 (en) * | 2000-05-19 | 2006-09-07 | Conmed Endoscopic Technologies, Inc., Billerica | GALLENGANGSTENT AND METHOD FOR THE PRODUCTION THEREOF |
WO2002101118A2 (en) | 2001-06-11 | 2002-12-19 | Ev3 Inc. | A method of training nitinol wire |
US7097665B2 (en) | 2003-01-16 | 2006-08-29 | Synecor, Llc | Positioning tools and methods for implanting medical devices |
US6675809B2 (en) * | 2001-08-27 | 2004-01-13 | Richard S. Stack | Satiation devices and methods |
CN101810521B (en) | 2001-08-27 | 2015-05-13 | 辛尼科有限责任公司 | Satiation devices and methods |
US6845776B2 (en) * | 2001-08-27 | 2005-01-25 | Richard S. Stack | Satiation devices and methods |
US20040117031A1 (en) * | 2001-08-27 | 2004-06-17 | Stack Richard S. | Satiation devices and methods |
US7708712B2 (en) | 2001-09-04 | 2010-05-04 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
GB2382776A (en) * | 2001-11-21 | 2003-06-11 | Tayside Flow Technologies Ltd | Helix shaped insert for flow modification in a duct or stent |
US7147617B2 (en) * | 2001-11-27 | 2006-12-12 | Scimed Life Systems, Inc. | Arterio-venous shunt graft |
US8308797B2 (en) | 2002-01-04 | 2012-11-13 | Colibri Heart Valve, LLC | Percutaneously implantable replacement heart valve device and method of making same |
US7029494B2 (en) * | 2002-02-08 | 2006-04-18 | Scimed Life Systems, Inc. | Braided modular stent with hourglass-shaped interfaces |
WO2003070127A1 (en) * | 2002-02-20 | 2003-08-28 | Nemcomed, Ltd. | Knee arthroplasty prosthesis and method |
US7146984B2 (en) | 2002-04-08 | 2006-12-12 | Synecor, Llc | Method and apparatus for modifying the exit orifice of a satiation pouch |
AU2003241129A1 (en) | 2002-06-13 | 2003-12-31 | Existent, Inc. | Guidewire system |
US7879085B2 (en) * | 2002-09-06 | 2011-02-01 | Boston Scientific Scimed, Inc. | ePTFE crimped graft |
US20040143342A1 (en) * | 2003-01-16 | 2004-07-22 | Stack Richard S. | Satiation pouches and methods of use |
US8308682B2 (en) | 2003-07-18 | 2012-11-13 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue |
US7735493B2 (en) * | 2003-08-15 | 2010-06-15 | Atritech, Inc. | System and method for delivering a left atrial appendage containment device |
US8206456B2 (en) | 2003-10-10 | 2012-06-26 | Barosense, Inc. | Restrictive and/or obstructive implant system for inducing weight loss |
US20050247320A1 (en) | 2003-10-10 | 2005-11-10 | Stack Richard S | Devices and methods for retaining a gastro-esophageal implant |
US7377939B2 (en) * | 2003-11-19 | 2008-05-27 | Synecor, Llc | Highly convertible endolumenal prostheses and methods of manufacture |
US7686825B2 (en) | 2004-03-25 | 2010-03-30 | Hauser David L | Vascular filter device |
WO2005105003A1 (en) | 2004-04-26 | 2005-11-10 | Synecor, Llc | Restrictive and/or obstructive implant for inducing weight loss |
ATE504251T1 (en) * | 2004-06-30 | 2011-04-15 | Synthes Gmbh | SURGICAL NAIL |
CA2591543A1 (en) * | 2004-07-19 | 2006-02-09 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US8409167B2 (en) | 2004-07-19 | 2013-04-02 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway |
EP1789030A2 (en) | 2004-08-30 | 2007-05-30 | Interstitial Therapeutics | Medical implant provided with inhibitors of atp synthesis |
WO2006034436A2 (en) | 2004-09-21 | 2006-03-30 | Stout Medical Group, L.P. | Expandable support device and method of use |
US7909851B2 (en) | 2006-02-03 | 2011-03-22 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US9017381B2 (en) | 2007-04-10 | 2015-04-28 | Biomet Sports Medicine, Llc | Adjustable knotless loops |
US8118836B2 (en) | 2004-11-05 | 2012-02-21 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US7601165B2 (en) | 2006-09-29 | 2009-10-13 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable suture loop |
US8298262B2 (en) | 2006-02-03 | 2012-10-30 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US8128658B2 (en) | 2004-11-05 | 2012-03-06 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to bone |
US8361113B2 (en) | 2006-02-03 | 2013-01-29 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8137382B2 (en) | 2004-11-05 | 2012-03-20 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US7749250B2 (en) | 2006-02-03 | 2010-07-06 | Biomet Sports Medicine, Llc | Soft tissue repair assembly and associated method |
US7905904B2 (en) | 2006-02-03 | 2011-03-15 | Biomet Sports Medicine, Llc | Soft tissue repair device and associated methods |
US8088130B2 (en) | 2006-02-03 | 2012-01-03 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
US8303604B2 (en) | 2004-11-05 | 2012-11-06 | Biomet Sports Medicine, Llc | Soft tissue repair device and method |
DE102005019649A1 (en) * | 2005-04-26 | 2006-11-02 | Alveolus Inc. | Flexible stent for positioning in lumen of esophagus comprises tube and stabilization members defined circumferentially about tube, where each member extends inwardly in tube to define inner diameter that is less than inner diameter of tube |
EP1903949A2 (en) | 2005-07-14 | 2008-04-02 | Stout Medical Group, L.P. | Expandable support device and method of use |
US20070061010A1 (en) * | 2005-09-09 | 2007-03-15 | Hauser David L | Device and method for reshaping mitral valve annulus |
US7972359B2 (en) | 2005-09-16 | 2011-07-05 | Atritech, Inc. | Intracardiac cage and method of delivering same |
US9055942B2 (en) | 2005-10-03 | 2015-06-16 | Boston Scienctific Scimed, Inc. | Endoscopic plication devices and methods |
US20070135826A1 (en) | 2005-12-01 | 2007-06-14 | Steve Zaver | Method and apparatus for delivering an implant without bias to a left atrial appendage |
US8052715B2 (en) * | 2005-12-01 | 2011-11-08 | Atritech, Inc. | Method and apparatus for recapturing an implant from the left atrial appendage |
US8801783B2 (en) | 2006-09-29 | 2014-08-12 | Biomet Sports Medicine, Llc | Prosthetic ligament system for knee joint |
US9078644B2 (en) | 2006-09-29 | 2015-07-14 | Biomet Sports Medicine, Llc | Fracture fixation device |
US8652171B2 (en) | 2006-02-03 | 2014-02-18 | Biomet Sports Medicine, Llc | Method and apparatus for soft tissue fixation |
US8936621B2 (en) | 2006-02-03 | 2015-01-20 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US8968364B2 (en) | 2006-02-03 | 2015-03-03 | Biomet Sports Medicine, Llc | Method and apparatus for fixation of an ACL graft |
US8562647B2 (en) | 2006-09-29 | 2013-10-22 | Biomet Sports Medicine, Llc | Method and apparatus for securing soft tissue to bone |
US10517587B2 (en) | 2006-02-03 | 2019-12-31 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
US11259792B2 (en) | 2006-02-03 | 2022-03-01 | Biomet Sports Medicine, Llc | Method and apparatus for coupling anatomical features |
US11311287B2 (en) | 2006-02-03 | 2022-04-26 | Biomet Sports Medicine, Llc | Method for tissue fixation |
US8597327B2 (en) | 2006-02-03 | 2013-12-03 | Biomet Manufacturing, Llc | Method and apparatus for sternal closure |
US8562645B2 (en) | 2006-09-29 | 2013-10-22 | Biomet Sports Medicine, Llc | Method and apparatus for forming a self-locking adjustable loop |
JP5542273B2 (en) | 2006-05-01 | 2014-07-09 | スタウト メディカル グループ,エル.ピー. | Expandable support device and method of use |
US7761968B2 (en) * | 2006-05-25 | 2010-07-27 | Advanced Cardiovascular Systems, Inc. | Method of crimping a polymeric stent |
WO2007149404A2 (en) * | 2006-06-22 | 2007-12-27 | Wilson-Cook Medical Inc. | Self-cleaning stent |
US8109895B2 (en) | 2006-09-02 | 2012-02-07 | Barosense, Inc. | Intestinal sleeves and associated deployment systems and methods |
WO2008033474A2 (en) | 2006-09-15 | 2008-03-20 | Synecor, Llc | System for anchoring stomach implant |
US11259794B2 (en) | 2006-09-29 | 2022-03-01 | Biomet Sports Medicine, Llc | Method for implanting soft tissue |
US8672969B2 (en) | 2006-09-29 | 2014-03-18 | Biomet Sports Medicine, Llc | Fracture fixation device |
EP3034046B1 (en) | 2006-10-22 | 2018-01-17 | IDEV Technologies, INC. | Methods for securing strand ends and the resulting devices |
JP5581209B2 (en) | 2007-07-18 | 2014-08-27 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Endoscopic implant system |
US20090030284A1 (en) | 2007-07-18 | 2009-01-29 | David Cole | Overtube introducer for use in endoscopic bariatric surgery |
US10098772B2 (en) * | 2007-10-10 | 2018-10-16 | C. R. Bard, Inc. | Kink resistant stent graft |
US9375327B2 (en) | 2007-12-12 | 2016-06-28 | Intact Vascular, Inc. | Endovascular implant |
US10166127B2 (en) | 2007-12-12 | 2019-01-01 | Intact Vascular, Inc. | Endoluminal device and method |
US9603730B2 (en) | 2007-12-12 | 2017-03-28 | Intact Vascular, Inc. | Endoluminal device and method |
US10022250B2 (en) | 2007-12-12 | 2018-07-17 | Intact Vascular, Inc. | Deployment device for placement of multiple intraluminal surgical staples |
US8128677B2 (en) * | 2007-12-12 | 2012-03-06 | Intact Vascular LLC | Device and method for tacking plaque to a blood vessel wall |
US20110230954A1 (en) * | 2009-06-11 | 2011-09-22 | Peter Schneider | Stent device having focal elevating elements for minimal surface area contact with lumen walls |
US7896911B2 (en) | 2007-12-12 | 2011-03-01 | Innovasc Llc | Device and method for tacking plaque to blood vessel wall |
US20090171383A1 (en) | 2007-12-31 | 2009-07-02 | David Cole | Gastric space occupier systems and methods of use |
US8020741B2 (en) | 2008-03-18 | 2011-09-20 | Barosense, Inc. | Endoscopic stapling devices and methods |
US10245165B2 (en) * | 2009-04-02 | 2019-04-02 | Q3 Medical Devices Limited | Stent |
US20100030321A1 (en) * | 2008-07-29 | 2010-02-04 | Aga Medical Corporation | Medical device including corrugated braid and associated method |
US7934631B2 (en) | 2008-11-10 | 2011-05-03 | Barosense, Inc. | Multi-fire stapling systems and methods for delivering arrays of staples |
US20100211176A1 (en) | 2008-11-12 | 2010-08-19 | Stout Medical Group, L.P. | Fixation device and method |
WO2010056895A1 (en) | 2008-11-12 | 2010-05-20 | Stout Medical Group, L.P. | Fixation device and method |
US20100185179A1 (en) * | 2009-01-21 | 2010-07-22 | Abbott Cardiovascular Systems Inc. | Needled cannula with filter device |
US20100256772A1 (en) * | 2009-04-02 | 2010-10-07 | Wilson-Cook Medical Inc. | System and method for maintaining patency of a stent using a magnet |
US8961539B2 (en) | 2009-05-04 | 2015-02-24 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US20110319987A1 (en) | 2009-05-20 | 2011-12-29 | Arsenal Medical | Medical implant |
US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
US9265633B2 (en) | 2009-05-20 | 2016-02-23 | 480 Biomedical, Inc. | Drug-eluting medical implants |
US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
US8888840B2 (en) * | 2009-05-20 | 2014-11-18 | Boston Scientific Scimed, Inc. | Drug eluting medical implant |
AU2010249558A1 (en) * | 2009-05-20 | 2011-12-08 | Arsenal Medical, Inc. | Medical implant |
US12096928B2 (en) | 2009-05-29 | 2024-09-24 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to a bone |
CZ20011U1 (en) * | 2009-08-11 | 2009-08-31 | Ella-Cs, S. R. O. | Biodegradable stent |
EP2298201A1 (en) * | 2009-08-31 | 2011-03-23 | Ozics Oy | Arrangement for internal bone support |
US8372133B2 (en) * | 2009-10-05 | 2013-02-12 | 480 Biomedical, Inc. | Polymeric implant delivery system |
SG186837A1 (en) | 2010-03-01 | 2013-02-28 | Colibri Heart Valve Llc | Percutaneously deliverable heart valve and methods associated therewith |
JP2011224123A (en) * | 2010-04-19 | 2011-11-10 | Kanji Inoue | Stent |
US9155643B2 (en) | 2010-04-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Apparatus and method for manufacturing a single wire stent |
US20120004677A1 (en) | 2010-05-21 | 2012-01-05 | Balbierz Daniel J | Tissue-acquisition and fastening devices and methods |
US10010439B2 (en) | 2010-06-13 | 2018-07-03 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US9526648B2 (en) | 2010-06-13 | 2016-12-27 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US10420665B2 (en) | 2010-06-13 | 2019-09-24 | W. L. Gore & Associates, Inc. | Intragastric device for treating obesity |
US8628554B2 (en) | 2010-06-13 | 2014-01-14 | Virender K. Sharma | Intragastric device for treating obesity |
CN103153384B (en) | 2010-06-28 | 2016-03-09 | 科利柏心脏瓣膜有限责任公司 | For the device of device in the delivery of vascular of chamber |
WO2012027490A2 (en) | 2010-08-24 | 2012-03-01 | Stout Medical Group, L.P. | Support device and method for use |
CA2820738C (en) | 2010-12-14 | 2019-01-15 | Colibri Heart Valve Llc | Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets |
US8709034B2 (en) | 2011-05-13 | 2014-04-29 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
JP2014521381A (en) | 2011-05-13 | 2014-08-28 | ブロンカス テクノロジーズ, インコーポレイテッド | Methods and devices for tissue ablation |
US10271973B2 (en) | 2011-06-03 | 2019-04-30 | Intact Vascular, Inc. | Endovascular implant |
US9357991B2 (en) | 2011-11-03 | 2016-06-07 | Biomet Sports Medicine, Llc | Method and apparatus for stitching tendons |
US9357992B2 (en) | 2011-11-10 | 2016-06-07 | Biomet Sports Medicine, Llc | Method for coupling soft tissue to a bone |
US9381013B2 (en) | 2011-11-10 | 2016-07-05 | Biomet Sports Medicine, Llc | Method for coupling soft tissue to a bone |
WO2013078235A1 (en) | 2011-11-23 | 2013-05-30 | Broncus Medical Inc | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
CN107028691B (en) | 2012-01-25 | 2019-08-16 | 因特脉管有限公司 | Intracavitary unit and method |
ES2823583T3 (en) | 2012-09-24 | 2021-05-07 | Inari Medical Inc | Device for the treatment of vascular occlusion |
US8784434B2 (en) | 2012-11-20 | 2014-07-22 | Inceptus Medical, Inc. | Methods and apparatus for treating embolism |
US9918827B2 (en) | 2013-03-14 | 2018-03-20 | Biomet Sports Medicine, Llc | Scaffold for spring ligament repair |
US10238406B2 (en) | 2013-10-21 | 2019-03-26 | Inari Medical, Inc. | Methods and apparatus for treating embolism |
US20150148888A1 (en) * | 2013-11-26 | 2015-05-28 | Cook Medical Technologies Llc | Braided stent |
WO2015191646A1 (en) | 2014-06-09 | 2015-12-17 | Inceptus Medical, Llc | Retraction and aspiration device for treating embolism and associated systems and methods |
KR101657648B1 (en) * | 2014-10-21 | 2016-09-19 | (주) 태웅메디칼 | Manufacturing methods for anti-migration stent and the anti-migration stent thereof |
US9375336B1 (en) | 2015-01-29 | 2016-06-28 | Intact Vascular, Inc. | Delivery device and method of delivery |
US9433520B2 (en) | 2015-01-29 | 2016-09-06 | Intact Vascular, Inc. | Delivery device and method of delivery |
US10342571B2 (en) | 2015-10-23 | 2019-07-09 | Inari Medical, Inc. | Intravascular treatment of vascular occlusion and associated devices, systems, and methods |
US9700332B2 (en) | 2015-10-23 | 2017-07-11 | Inari Medical, Inc. | Intravascular treatment of vascular occlusion and associated devices, systems, and methods |
JP7253376B2 (en) | 2015-10-23 | 2023-04-06 | イナリ メディカル, インコーポレイテッド | Endovascular treatment of vascular occlusion and related devices, systems and methods |
CN115300748A (en) | 2015-12-18 | 2022-11-08 | 伊纳里医疗有限公司 | Catheter shafts and related devices, systems, and methods |
US10993824B2 (en) | 2016-01-01 | 2021-05-04 | Intact Vascular, Inc. | Delivery device and method of delivery |
US10779980B2 (en) | 2016-04-27 | 2020-09-22 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US10098651B2 (en) | 2017-01-10 | 2018-10-16 | Inari Medical, Inc. | Devices and methods for treating vascular occlusion |
US10744009B2 (en) | 2017-03-15 | 2020-08-18 | Merit Medical Systems, Inc. | Transluminal stents and related methods |
US11432809B2 (en) | 2017-04-27 | 2022-09-06 | Boston Scientific Scimed, Inc. | Occlusive medical device with fabric retention barb |
US11660218B2 (en) | 2017-07-26 | 2023-05-30 | Intact Vascular, Inc. | Delivery device and method of delivery |
CN116421876A (en) | 2017-09-06 | 2023-07-14 | 伊纳里医疗有限公司 | Hemostatic valve and method of use thereof |
US11395726B2 (en) | 2017-09-11 | 2022-07-26 | Incubar Llc | Conduit vascular implant sealing device for reducing endoleaks |
EP3700474B1 (en) | 2017-10-25 | 2023-08-23 | Boston Scientific Scimed, Inc. | Stent with atraumatic spacer |
WO2019089741A1 (en) | 2017-11-01 | 2019-05-09 | Boston Scientific Scimed, Inc. | Esophageal stent including a valve member |
WO2019126124A1 (en) | 2017-12-18 | 2019-06-27 | Boston Scientific Scimed, Inc. | Occlusive device with expandable member |
EP3740139A1 (en) | 2018-01-19 | 2020-11-25 | Boston Scientific Scimed Inc. | Occlusive medical device with delivery system |
US11154314B2 (en) | 2018-01-26 | 2021-10-26 | Inari Medical, Inc. | Single insertion delivery system for treating embolism and associated systems and methods |
US11331104B2 (en) | 2018-05-02 | 2022-05-17 | Boston Scientific Scimed, Inc. | Occlusive sealing sensor system |
EP3793450B1 (en) | 2018-05-15 | 2024-06-26 | Boston Scientific Scimed, Inc. | Occlusive medical device with charged polymer coating |
EP3801301A1 (en) | 2018-06-08 | 2021-04-14 | Boston Scientific Scimed Inc. | Occlusive device with actuatable fixation members |
EP3801300A1 (en) | 2018-06-08 | 2021-04-14 | Boston Scientific Scimed, Inc. | Medical device with occlusive member |
CN112566566A (en) | 2018-07-06 | 2021-03-26 | 波士顿科学医学有限公司 | Closed medical device |
FI3836855T3 (en) | 2018-08-13 | 2024-11-01 | Inari Medical Inc | System for treating embolism and associated devices and methods |
CN112714632B (en) | 2018-08-21 | 2024-08-30 | 波士顿科学医学有限公司 | Barbed protruding member for cardiovascular device |
EP4403118A3 (en) | 2019-07-17 | 2024-10-09 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with continuous covering |
US11540838B2 (en) | 2019-08-30 | 2023-01-03 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with sealing disk |
WO2021076954A1 (en) | 2019-10-16 | 2021-04-22 | Inari Medical, Inc. | Systems, devices, and methods for treating vascular occlusions |
EP4057948A4 (en) * | 2019-11-12 | 2023-11-22 | Microvention, Inc. | Stent delivery system and method |
KR20240111019A (en) * | 2020-02-03 | 2024-07-16 | 보스톤 싸이엔티픽 싸이메드 인코포레이티드 | Stent, mandrel, and method for forming a stent with anti-migration features |
WO2021195085A1 (en) | 2020-03-24 | 2021-09-30 | Boston Scientific Scimed, Inc. | Medical system for treating a left atrial appendage |
EP4185239A4 (en) | 2020-07-24 | 2024-08-07 | Merit Medical Systems Inc | Esophageal stents and related methods |
EP4231973A4 (en) | 2020-10-26 | 2024-10-02 | Merit Medical Systems Inc | Esophageal stents with helical thread |
EP4262583A1 (en) | 2020-12-18 | 2023-10-25 | Boston Scientific Scimed Inc. | Occlusive medical device having sensing capabilities |
CN116370008B (en) * | 2023-04-24 | 2024-01-30 | 上海励楷科技有限公司 | Multi-pitch woven support |
Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US548444A (en) * | 1895-10-22 | Carpet-fastener | ||
US4875480A (en) * | 1986-09-30 | 1989-10-24 | Medinvent S.A. | Device for transluminal implantation |
US4891191A (en) * | 1983-12-05 | 1990-01-02 | Monsanto Company | High efficiency column crystallizer |
US4954126A (en) * | 1982-04-30 | 1990-09-04 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US5019090A (en) * | 1988-09-01 | 1991-05-28 | Corvita Corporation | Radially expandable endoprosthesis and the like |
US5026377A (en) * | 1989-07-13 | 1991-06-25 | American Medical Systems, Inc. | Stent placement instrument and method |
US5061275A (en) * | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
US5071407A (en) * | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5092877A (en) * | 1988-09-01 | 1992-03-03 | Corvita Corporation | Radially expandable endoprosthesis |
US5147385A (en) * | 1989-11-01 | 1992-09-15 | Schneider (Europe) A.G. | Stent and catheter for the introduction of the stent |
US5201757A (en) * | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
US5221261A (en) * | 1990-04-12 | 1993-06-22 | Schneider (Usa) Inc. | Radially expandable fixation member |
US5226913A (en) * | 1988-09-01 | 1993-07-13 | Corvita Corporation | Method of making a radially expandable prosthesis |
US5356423A (en) * | 1991-01-04 | 1994-10-18 | American Medical Systems, Inc. | Resectable self-expanding stent |
US5405380A (en) * | 1992-10-12 | 1995-04-11 | Schneider (Europe) A.G. | Catheter with a vascular support |
US5464408A (en) * | 1991-06-14 | 1995-11-07 | Duc; Jerome | Transluminal implantation or extraction device |
US5507767A (en) * | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5534287A (en) * | 1993-04-23 | 1996-07-09 | Schneider (Europe) A.G. | Methods for applying an elastic coating layer on stents |
US5554181A (en) * | 1994-05-04 | 1996-09-10 | Regents Of The University Of Minnesota | Stent |
US5556426A (en) * | 1994-08-02 | 1996-09-17 | Meadox Medicals, Inc. | PTFE implantable tubular prostheses with external coil support |
US5575818A (en) * | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
US5591172A (en) * | 1991-06-14 | 1997-01-07 | Ams Medinvent S.A. | Transluminal implantation device |
US5591226A (en) * | 1995-01-23 | 1997-01-07 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
US5607466A (en) * | 1992-02-03 | 1997-03-04 | Schneider (Europe) A.G. | Catheter with a stent |
US5609624A (en) * | 1993-10-08 | 1997-03-11 | Impra, Inc. | Reinforced vascular graft and method of making same |
US5628788A (en) * | 1995-11-07 | 1997-05-13 | Corvita Corporation | Self-expanding endoluminal stent-graft |
US5628787A (en) * | 1993-01-19 | 1997-05-13 | Schneider (Usa) Inc. | Clad composite stent |
US5630840A (en) * | 1993-01-19 | 1997-05-20 | Schneider (Usa) Inc | Clad composite stent |
US5645559A (en) * | 1992-05-08 | 1997-07-08 | Schneider (Usa) Inc | Multiple layer stent |
US5661703A (en) * | 1995-06-27 | 1997-08-26 | Fujitsu Limited | Optical recording medium having a non-volatile identification code and method for encoding data using same |
US5662703A (en) * | 1995-04-14 | 1997-09-02 | Schneider (Usa) Inc. | Rolling membrane stent delivery device |
US5667486A (en) * | 1993-04-27 | 1997-09-16 | Ams Medinvent, S.A. | Prostatic stent |
US5697970A (en) * | 1994-08-02 | 1997-12-16 | Meadox Medicals, Inc. | Thinly woven flexible graft |
US5709713A (en) * | 1995-03-31 | 1998-01-20 | Cardiovascular Concepts, Inc. | Radially expansible vascular prosthesis having reversible and other locking structures |
US5725547A (en) * | 1996-01-04 | 1998-03-10 | Chuter; Timothy A. M. | Corrugated stent |
US5817126A (en) * | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
US5836964A (en) * | 1996-10-30 | 1998-11-17 | Medinol Ltd. | Stent fabrication method |
US5879342A (en) * | 1996-10-21 | 1999-03-09 | Kelley; Gregory S. | Flexible and reinforced tubing |
US5891191A (en) * | 1996-04-30 | 1999-04-06 | Schneider (Usa) Inc | Cobalt-chromium-molybdenum alloy stent and stent-graft |
US5993483A (en) * | 1997-07-17 | 1999-11-30 | Schneider (Usa) Inc | Stent and method of manufacturing same |
US6027529A (en) * | 1997-04-15 | 2000-02-22 | Schneider (Usa) Inc | Protheses with selectively welded crossing strands |
US6162244A (en) * | 1996-03-29 | 2000-12-19 | Willy Ruesch Ag | Layered stent |
US6231598B1 (en) * | 1997-09-24 | 2001-05-15 | Med Institute, Inc. | Radially expandable stent |
US20010010015A1 (en) * | 1999-10-05 | 2001-07-26 | Hijlkema Lukas J. | Flexible endoluminal stent and process of repairing a body lumen |
US20020040236A1 (en) * | 1994-09-08 | 2002-04-04 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
US20020062148A1 (en) * | 1997-02-26 | 2002-05-23 | Charles C. Hart | Kinetic stent |
US20020165597A1 (en) * | 2001-05-03 | 2002-11-07 | Clerc Claude O. | Method for attaching axial filaments to a self expanding stent |
US20030065381A1 (en) * | 2001-09-28 | 2003-04-03 | Solar Ronald J. | Longitudinal focussed force stent |
US6585758B1 (en) * | 1999-11-16 | 2003-07-01 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US20030130718A1 (en) * | 1999-11-19 | 2003-07-10 | Palmas Julio C. | Endoluminal implantable stent-grafts |
US20030135265A1 (en) * | 2002-01-04 | 2003-07-17 | Stinson Jonathan S. | Prostheses implantable in enteral vessels |
US6596191B2 (en) * | 1998-06-03 | 2003-07-22 | Mitsubishi Gas Chemical Company, Inc. | Oxygen absorbing composition, oxygen absorbing resin composition using the oxygen absorbing composition, and preserving method utilizing these compositions |
US20040162606A1 (en) * | 1995-10-11 | 2004-08-19 | Thompson Paul J. | Braided composite prosthesis |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3019996A1 (en) * | 1980-05-24 | 1981-12-03 | Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen | HOHLORGAN |
BR8208063A (en) * | 1981-09-16 | 1984-01-10 | Hans Ivar Wallsten | DEVICE FOR APPLICATION IN BLOOD VESSELS OR OTHER DIFFICULT ACCESS PLACES AND THEIR USE |
SE452404B (en) * | 1984-02-03 | 1987-11-30 | Medinvent Sa | MULTILAYER PROTEST MATERIAL AND PROCEDURE FOR ITS MANUFACTURING |
ES8705239A1 (en) * | 1984-12-05 | 1987-05-01 | Medinvent Sa | A device for implantation and a method of implantation in a vessel using such device. |
SE450809B (en) * | 1985-04-10 | 1987-08-03 | Medinvent Sa | PLANT TOPIC PROVIDED FOR MANUFACTURING A SPIRAL SPRING SUITABLE FOR TRANSLUMINAL IMPLANTATION AND MANUFACTURED SPIRAL SPRINGS |
SE447061B (en) * | 1985-06-10 | 1986-10-27 | Medinvent Sa | INFO DEVICE, SPEC FOR IMPLEMENTATION IN A LIVE ORGANISM |
SE455834B (en) * | 1986-10-31 | 1988-08-15 | Medinvent Sa | DEVICE FOR TRANSLUMINAL IMPLANTATION OF A PRINCIPLE RODFORMALLY RADIALLY EXPANDABLE PROSTHESIS |
SE8803444D0 (en) * | 1988-09-28 | 1988-09-28 | Medinvent Sa | A DEVICE FOR TRANSLUMINAL IMPLANTATION OR EXTRACTION |
WO1994012136A1 (en) | 1992-10-13 | 1994-06-09 | Boston Scientific Corporation | Stents for body lumens exhibiting peristaltic |
EP0596145B1 (en) * | 1992-10-31 | 1996-05-08 | Schneider (Europe) Ag | Disposition for implanting a self-expanding endoprothesis |
ATE218052T1 (en) | 1995-11-27 | 2002-06-15 | Schneider Europ Gmbh | STENT FOR USE IN A PHYSICAL PASSAGE |
JPH10118188A (en) | 1996-10-24 | 1998-05-12 | Terumo Corp | Medical treatment appliance for insertion into celom and its production |
-
1997
- 1997-07-17 EP EP97202152A patent/EP0891752B1/en not_active Expired - Lifetime
- 1997-07-17 AT AT97202152T patent/ATE286687T1/en not_active IP Right Cessation
- 1997-07-17 DE DE69732229T patent/DE69732229T2/en not_active Expired - Fee Related
- 1997-12-18 US US08/993,033 patent/US5993483A/en not_active Expired - Lifetime
-
1998
- 1998-07-07 CA CA002242444A patent/CA2242444A1/en not_active Abandoned
- 1998-07-16 AU AU76288/98A patent/AU724305B2/en not_active Ceased
- 1998-07-17 JP JP20321398A patent/JPH1170172A/en active Pending
-
1999
- 1999-11-02 US US09/431,988 patent/US6240978B1/en not_active Expired - Lifetime
-
2001
- 2001-06-05 US US09/874,609 patent/US6652577B2/en not_active Expired - Lifetime
-
2003
- 2003-09-30 US US10/674,729 patent/US7331990B2/en not_active Expired - Fee Related
-
2007
- 2007-01-25 US US11/657,858 patent/US20070123969A1/en not_active Abandoned
Patent Citations (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US548444A (en) * | 1895-10-22 | Carpet-fastener | ||
US4954126A (en) * | 1982-04-30 | 1990-09-04 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4954126B1 (en) * | 1982-04-30 | 1996-05-28 | Ams Med Invent S A | Prosthesis comprising an expansible or contractile tubular body |
US4891191A (en) * | 1983-12-05 | 1990-01-02 | Monsanto Company | High efficiency column crystallizer |
US5061275A (en) * | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
US4875480A (en) * | 1986-09-30 | 1989-10-24 | Medinvent S.A. | Device for transluminal implantation |
US5226913A (en) * | 1988-09-01 | 1993-07-13 | Corvita Corporation | Method of making a radially expandable prosthesis |
US5092877A (en) * | 1988-09-01 | 1992-03-03 | Corvita Corporation | Radially expandable endoprosthesis |
US5019090A (en) * | 1988-09-01 | 1991-05-28 | Corvita Corporation | Radially expandable endoprosthesis and the like |
US5026377A (en) * | 1989-07-13 | 1991-06-25 | American Medical Systems, Inc. | Stent placement instrument and method |
US5147385A (en) * | 1989-11-01 | 1992-09-15 | Schneider (Europe) A.G. | Stent and catheter for the introduction of the stent |
US5221261A (en) * | 1990-04-12 | 1993-06-22 | Schneider (Usa) Inc. | Radially expandable fixation member |
US5378239A (en) * | 1990-04-12 | 1995-01-03 | Schneider (Usa) Inc. | Radially expandable fixation member constructed of recovery metal |
US5496277A (en) * | 1990-04-12 | 1996-03-05 | Schneider (Usa) Inc. | Radially expandable body implantable device |
US5071407A (en) * | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5356423A (en) * | 1991-01-04 | 1994-10-18 | American Medical Systems, Inc. | Resectable self-expanding stent |
US5591172A (en) * | 1991-06-14 | 1997-01-07 | Ams Medinvent S.A. | Transluminal implantation device |
US5464408A (en) * | 1991-06-14 | 1995-11-07 | Duc; Jerome | Transluminal implantation or extraction device |
US5507767A (en) * | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5607466A (en) * | 1992-02-03 | 1997-03-04 | Schneider (Europe) A.G. | Catheter with a stent |
US5201757A (en) * | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
US5645559A (en) * | 1992-05-08 | 1997-07-08 | Schneider (Usa) Inc | Multiple layer stent |
US5405380A (en) * | 1992-10-12 | 1995-04-11 | Schneider (Europe) A.G. | Catheter with a vascular support |
US5626602A (en) * | 1992-10-12 | 1997-05-06 | Schneider (Europe) A.G. | Catheter with a vascular support |
US5630840A (en) * | 1993-01-19 | 1997-05-20 | Schneider (Usa) Inc | Clad composite stent |
US5628787A (en) * | 1993-01-19 | 1997-05-13 | Schneider (Usa) Inc. | Clad composite stent |
US5679470A (en) * | 1993-01-19 | 1997-10-21 | Schneider (Usa) Inc. | Process for manufacturing clad composite stent |
US5534287A (en) * | 1993-04-23 | 1996-07-09 | Schneider (Europe) A.G. | Methods for applying an elastic coating layer on stents |
US5667486A (en) * | 1993-04-27 | 1997-09-16 | Ams Medinvent, S.A. | Prostatic stent |
US5609624A (en) * | 1993-10-08 | 1997-03-11 | Impra, Inc. | Reinforced vascular graft and method of making same |
US5554181A (en) * | 1994-05-04 | 1996-09-10 | Regents Of The University Of Minnesota | Stent |
US5697970A (en) * | 1994-08-02 | 1997-12-16 | Meadox Medicals, Inc. | Thinly woven flexible graft |
US5556426A (en) * | 1994-08-02 | 1996-09-17 | Meadox Medicals, Inc. | PTFE implantable tubular prostheses with external coil support |
US20020040236A1 (en) * | 1994-09-08 | 2002-04-04 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
US5591226A (en) * | 1995-01-23 | 1997-01-07 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
US5575818A (en) * | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
US5709713A (en) * | 1995-03-31 | 1998-01-20 | Cardiovascular Concepts, Inc. | Radially expansible vascular prosthesis having reversible and other locking structures |
US5662703A (en) * | 1995-04-14 | 1997-09-02 | Schneider (Usa) Inc. | Rolling membrane stent delivery device |
US5661703A (en) * | 1995-06-27 | 1997-08-26 | Fujitsu Limited | Optical recording medium having a non-volatile identification code and method for encoding data using same |
US20040162606A1 (en) * | 1995-10-11 | 2004-08-19 | Thompson Paul J. | Braided composite prosthesis |
US5628788A (en) * | 1995-11-07 | 1997-05-13 | Corvita Corporation | Self-expanding endoluminal stent-graft |
US5725547A (en) * | 1996-01-04 | 1998-03-10 | Chuter; Timothy A. M. | Corrugated stent |
US6162244A (en) * | 1996-03-29 | 2000-12-19 | Willy Ruesch Ag | Layered stent |
US5891191A (en) * | 1996-04-30 | 1999-04-06 | Schneider (Usa) Inc | Cobalt-chromium-molybdenum alloy stent and stent-graft |
US5879342A (en) * | 1996-10-21 | 1999-03-09 | Kelley; Gregory S. | Flexible and reinforced tubing |
US5836964A (en) * | 1996-10-30 | 1998-11-17 | Medinol Ltd. | Stent fabrication method |
US20020062148A1 (en) * | 1997-02-26 | 2002-05-23 | Charles C. Hart | Kinetic stent |
US5817126A (en) * | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
US6027529A (en) * | 1997-04-15 | 2000-02-22 | Schneider (Usa) Inc | Protheses with selectively welded crossing strands |
US5993483A (en) * | 1997-07-17 | 1999-11-30 | Schneider (Usa) Inc | Stent and method of manufacturing same |
US6231598B1 (en) * | 1997-09-24 | 2001-05-15 | Med Institute, Inc. | Radially expandable stent |
US6596191B2 (en) * | 1998-06-03 | 2003-07-22 | Mitsubishi Gas Chemical Company, Inc. | Oxygen absorbing composition, oxygen absorbing resin composition using the oxygen absorbing composition, and preserving method utilizing these compositions |
US20010010015A1 (en) * | 1999-10-05 | 2001-07-26 | Hijlkema Lukas J. | Flexible endoluminal stent and process of repairing a body lumen |
US6302907B1 (en) * | 1999-10-05 | 2001-10-16 | Scimed Life Systems, Inc. | Flexible endoluminal stent and process of manufacture |
US6585758B1 (en) * | 1999-11-16 | 2003-07-01 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US20030130718A1 (en) * | 1999-11-19 | 2003-07-10 | Palmas Julio C. | Endoluminal implantable stent-grafts |
US6551352B2 (en) * | 2001-05-03 | 2003-04-22 | Bionx Implants, Inc. | Method for attaching axial filaments to a self expanding stent |
US20020165597A1 (en) * | 2001-05-03 | 2002-11-07 | Clerc Claude O. | Method for attaching axial filaments to a self expanding stent |
US20030065381A1 (en) * | 2001-09-28 | 2003-04-03 | Solar Ronald J. | Longitudinal focussed force stent |
US20030135265A1 (en) * | 2002-01-04 | 2003-07-17 | Stinson Jonathan S. | Prostheses implantable in enteral vessels |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8617234B2 (en) | 2004-05-25 | 2013-12-31 | Covidien Lp | Flexible vascular occluding device |
US9801744B2 (en) | 2004-05-25 | 2017-10-31 | Covidien Lp | Methods and apparatus for luminal stenting |
US12042411B2 (en) | 2004-05-25 | 2024-07-23 | Covidien Lp | Methods and apparatus for luminal stenting |
US9855047B2 (en) | 2004-05-25 | 2018-01-02 | Covidien Lp | Flexible vascular occluding device |
US11771433B2 (en) | 2004-05-25 | 2023-10-03 | Covidien Lp | Flexible vascular occluding device |
US10004618B2 (en) | 2004-05-25 | 2018-06-26 | Covidien Lp | Methods and apparatus for luminal stenting |
US9393021B2 (en) | 2004-05-25 | 2016-07-19 | Covidien Lp | Flexible vascular occluding device |
US9295568B2 (en) | 2004-05-25 | 2016-03-29 | Covidien Lp | Methods and apparatus for luminal stenting |
US9125659B2 (en) | 2004-05-25 | 2015-09-08 | Covidien Lp | Flexible vascular occluding device |
US10765542B2 (en) | 2004-05-25 | 2020-09-08 | Covidien Lp | Methods and apparatus for luminal stenting |
US9050205B2 (en) | 2004-05-25 | 2015-06-09 | Covidien Lp | Methods and apparatus for luminal stenting |
US10918389B2 (en) | 2004-05-25 | 2021-02-16 | Covidien Lp | Flexible vascular occluding device |
US8382825B2 (en) | 2004-05-25 | 2013-02-26 | Covidien Lp | Flexible vascular occluding device |
US8628564B2 (en) | 2004-05-25 | 2014-01-14 | Covidien Lp | Methods and apparatus for luminal stenting |
US8398701B2 (en) | 2004-05-25 | 2013-03-19 | Covidien Lp | Flexible vascular occluding device |
US8623067B2 (en) | 2004-05-25 | 2014-01-07 | Covidien Lp | Methods and apparatus for luminal stenting |
US8257421B2 (en) | 2005-05-25 | 2012-09-04 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US9381104B2 (en) | 2005-05-25 | 2016-07-05 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US20090192536A1 (en) * | 2005-05-25 | 2009-07-30 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying an occluding device within a vessel |
US8273101B2 (en) | 2005-05-25 | 2012-09-25 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8267985B2 (en) | 2005-05-25 | 2012-09-18 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US9095343B2 (en) | 2005-05-25 | 2015-08-04 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US20090318947A1 (en) * | 2005-05-25 | 2009-12-24 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying an occluding device within a vessel |
US8236042B2 (en) | 2005-05-25 | 2012-08-07 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US10064747B2 (en) | 2005-05-25 | 2018-09-04 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US20060271153A1 (en) * | 2005-05-25 | 2006-11-30 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying an occluding device within a vessel |
US9198666B2 (en) | 2005-05-25 | 2015-12-01 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US9204983B2 (en) | 2005-05-25 | 2015-12-08 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US8147534B2 (en) | 2005-05-25 | 2012-04-03 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US10322018B2 (en) | 2005-05-25 | 2019-06-18 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US9320590B2 (en) | 2006-02-22 | 2016-04-26 | Covidien Lp | Stents having radiopaque mesh |
US11382777B2 (en) | 2006-02-22 | 2022-07-12 | Covidien Lp | Stents having radiopaque mesh |
US10433988B2 (en) | 2006-02-22 | 2019-10-08 | Covidien Lp | Stents having radiopaque mesh |
US9610181B2 (en) | 2006-02-22 | 2017-04-04 | Covidien Lp | Stents having radiopaque mesh |
US8394119B2 (en) | 2006-02-22 | 2013-03-12 | Covidien Lp | Stents having radiopaque mesh |
US10117759B2 (en) | 2007-06-13 | 2018-11-06 | Boston Scientific Scimed, Inc. | Anti-migration features and geometry for a shape memory polymer stent |
US8435283B2 (en) * | 2007-06-13 | 2013-05-07 | Boston Scientific Scimed, Inc. | Anti-migration features and geometry for a shape memory polymer stent |
US20080319540A1 (en) * | 2007-06-13 | 2008-12-25 | Boston Scientific Scimed, Inc. | Anti-migration features and geometry for a shape memory polymer stent |
US10426641B2 (en) | 2008-01-17 | 2019-10-01 | Boston Scientific Scimed, Inc. | Stent with anti-migration feature |
US9439790B2 (en) * | 2008-01-17 | 2016-09-13 | Boston Scientific Scimed, Inc. | Stent with anti-migration feature |
US20090187240A1 (en) * | 2008-01-17 | 2009-07-23 | Boston Scientific Scimed, Inc. | Stent with anti-migration feature |
US20090192588A1 (en) * | 2008-01-29 | 2009-07-30 | Taeoong Medical Co., Ltd | Biodegradable double stent |
US11707371B2 (en) | 2008-05-13 | 2023-07-25 | Covidien Lp | Braid implant delivery systems |
US9675482B2 (en) | 2008-05-13 | 2017-06-13 | Covidien Lp | Braid implant delivery systems |
US10610389B2 (en) | 2008-05-13 | 2020-04-07 | Covidien Lp | Braid implant delivery systems |
US8636760B2 (en) | 2009-04-20 | 2014-01-28 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
WO2011044486A1 (en) | 2009-10-09 | 2011-04-14 | Boston Scientific Scimed, Inc. | Stomach bypass for the treatment of obesity |
US9877856B2 (en) | 2012-07-18 | 2018-01-30 | Covidien Lp | Methods and apparatus for luminal stenting |
US9155647B2 (en) | 2012-07-18 | 2015-10-13 | Covidien Lp | Methods and apparatus for luminal stenting |
US9907643B2 (en) | 2012-10-30 | 2018-03-06 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9114001B2 (en) | 2012-10-30 | 2015-08-25 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9301831B2 (en) | 2012-10-30 | 2016-04-05 | Covidien Lp | Methods for attaining a predetermined porosity of a vascular device |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US10952878B2 (en) | 2012-10-31 | 2021-03-23 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US10206798B2 (en) | 2012-10-31 | 2019-02-19 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9943427B2 (en) | 2012-11-06 | 2018-04-17 | Covidien Lp | Shaped occluding devices and methods of using the same |
US9157174B2 (en) | 2013-02-05 | 2015-10-13 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US9561122B2 (en) | 2013-02-05 | 2017-02-07 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
AU2017201668B2 (en) * | 2013-02-28 | 2018-05-17 | Boston Scientific Scimed, Inc. | Medical devices for use along the biliary and/or pancreatic tract |
US20170079815A1 (en) * | 2013-02-28 | 2017-03-23 | Boston Scientific Scimed, Inc. | Medical devices for use along the biliary and/or pancreatic tract |
US20160175123A1 (en) * | 2013-02-28 | 2016-06-23 | Boston Scientific Scimed, Inc. | Medical devices for use along the biliary and/or pancreatic tract |
US11229536B2 (en) | 2013-02-28 | 2022-01-25 | Boston Scientific Scimed, Inc. | Medical devices for use along the biliary and/or pancreatic tract |
US10406007B2 (en) * | 2013-02-28 | 2019-09-10 | Boston Scientific Scimed, Inc. | Medical devices for use along the biliary and/or pancreatic tract |
US9675475B2 (en) * | 2013-02-28 | 2017-06-13 | Boston Scientific Scimed, Inc. | Medical devices for use along the biliary and/or pancreatic tract |
US11779480B2 (en) | 2013-02-28 | 2023-10-10 | Boston Scientific Scimed, Inc. | Medical devices for use along the biliary and/or pancreatic tract |
US10357387B2 (en) * | 2013-02-28 | 2019-07-23 | Boston Scientific Scimed, Inc. | Medical devices for use along the biliary and/or pancreatic tract |
US20220142763A1 (en) * | 2013-03-15 | 2022-05-12 | Boston Scientific Scimed, Inc. | Anti-migration micropatterned stent coating |
US11752018B2 (en) * | 2013-03-15 | 2023-09-12 | Boston Scientific Scimed, Inc. | Anti-migration micropatterned stent coating |
US11376111B2 (en) | 2014-10-09 | 2022-07-05 | Boston Scientific Scimed, Inc. | Pancreatic stent with drainage feature |
US10500035B2 (en) | 2014-10-09 | 2019-12-10 | Boston Scientific Scimed, Inc. | Pancreatic stent with drainage feature |
US11559412B2 (en) | 2019-01-07 | 2023-01-24 | Boston Scientific Scimed, Inc. | Stent with anti-migration feature |
US11759341B2 (en) | 2020-01-13 | 2023-09-19 | Boston Scientific Scimed, Inc. | Anti-migration stent |
US11918496B2 (en) | 2020-12-02 | 2024-03-05 | Boston Scientific Scimed, Inc. | Stent with improved deployment characteristics |
Also Published As
Publication number | Publication date |
---|---|
US20010027341A1 (en) | 2001-10-04 |
US6652577B2 (en) | 2003-11-25 |
US5993483A (en) | 1999-11-30 |
US20040098077A1 (en) | 2004-05-20 |
DE69732229D1 (en) | 2005-02-17 |
CA2242444A1 (en) | 1999-01-17 |
ATE286687T1 (en) | 2005-01-15 |
EP0891752B1 (en) | 2005-01-12 |
US6240978B1 (en) | 2001-06-05 |
DE69732229T2 (en) | 2005-12-29 |
AU724305B2 (en) | 2000-09-14 |
AU7628898A (en) | 1999-01-28 |
JPH1170172A (en) | 1999-03-16 |
US7331990B2 (en) | 2008-02-19 |
EP0891752A1 (en) | 1999-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6652577B2 (en) | Stents with elevations at selected crossing points | |
US11786386B2 (en) | Integrated stent repositioning and retrieval loop | |
US6283992B1 (en) | Conical stent | |
JP3647456B2 (en) | Medical artificial stent and method for producing the same | |
US5226913A (en) | Method of making a radially expandable prosthesis | |
US5092877A (en) | Radially expandable endoprosthesis | |
US7462190B2 (en) | Stent matrix | |
US9301862B2 (en) | Stent retrieval member and devices and methods for retrieving or repositioning a stent | |
US20070112415A1 (en) | Braided stent | |
JP2004073876A (en) | Expandable intravascular stent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC CORPORATION, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHNEIDER (EUROPE) GMBH (FKA SCHNEIDER (EUROPE) AG);REEL/FRAME:037359/0669 Effective date: 20150723 |