US20070031976A1 - Oxygen Indicator for Use in Medical Products - Google Patents
Oxygen Indicator for Use in Medical Products Download PDFInfo
- Publication number
- US20070031976A1 US20070031976A1 US11/461,980 US46198006A US2007031976A1 US 20070031976 A1 US20070031976 A1 US 20070031976A1 US 46198006 A US46198006 A US 46198006A US 2007031976 A1 US2007031976 A1 US 2007031976A1
- Authority
- US
- United States
- Prior art keywords
- oxygen
- indicator
- color
- present
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 152
- 239000001301 oxygen Substances 0.000 title claims abstract description 150
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 150
- 229940127554 medical product Drugs 0.000 title abstract 2
- 239000000203 mixture Substances 0.000 claims abstract description 163
- 238000009472 formulation Methods 0.000 claims abstract description 137
- 230000002829 reductive effect Effects 0.000 claims abstract description 49
- 230000001954 sterilising effect Effects 0.000 claims abstract description 42
- 238000004659 sterilization and disinfection Methods 0.000 claims abstract description 42
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 49
- KHLVKKOJDHCJMG-QDBORUFSSA-L indigo carmine Chemical compound [Na+].[Na+].N/1C2=CC=C(S([O-])(=O)=O)C=C2C(=O)C\1=C1/NC2=CC=C(S(=O)(=O)[O-])C=C2C1=O KHLVKKOJDHCJMG-QDBORUFSSA-L 0.000 claims description 49
- 229960003988 indigo carmine Drugs 0.000 claims description 49
- 235000012738 indigotine Nutrition 0.000 claims description 49
- 239000004179 indigotine Substances 0.000 claims description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 47
- 229920002678 cellulose Polymers 0.000 claims description 45
- 239000001913 cellulose Substances 0.000 claims description 45
- 239000012530 fluid Substances 0.000 claims description 33
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical group [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 claims description 25
- 235000019818 tetrasodium diphosphate Nutrition 0.000 claims description 25
- 239000000872 buffer Substances 0.000 claims description 20
- 239000008121 dextrose Substances 0.000 claims description 20
- 239000003638 chemical reducing agent Substances 0.000 claims description 16
- 235000016709 nutrition Nutrition 0.000 claims description 15
- 230000004888 barrier function Effects 0.000 claims description 13
- 235000018417 cysteine Nutrition 0.000 claims description 10
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 10
- 235000000346 sugar Nutrition 0.000 claims description 7
- 239000008363 phosphate buffer Substances 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 239000011230 binding agent Substances 0.000 claims 2
- 238000003860 storage Methods 0.000 abstract description 34
- 230000008859 change Effects 0.000 abstract description 12
- 230000002035 prolonged effect Effects 0.000 abstract description 6
- 150000002632 lipids Chemical class 0.000 description 77
- 235000001014 amino acid Nutrition 0.000 description 71
- 229940024606 amino acid Drugs 0.000 description 71
- 150000001413 amino acids Chemical class 0.000 description 68
- 235000014633 carbohydrates Nutrition 0.000 description 59
- 150000001720 carbohydrates Chemical class 0.000 description 52
- 239000010410 layer Substances 0.000 description 49
- 239000003792 electrolyte Substances 0.000 description 44
- 239000000243 solution Substances 0.000 description 40
- 239000008103 glucose Substances 0.000 description 29
- 235000010980 cellulose Nutrition 0.000 description 26
- 239000000463 material Substances 0.000 description 26
- 238000005096 rolling process Methods 0.000 description 26
- 235000015097 nutrients Nutrition 0.000 description 25
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 22
- 229910052698 phosphorus Inorganic materials 0.000 description 22
- 239000011574 phosphorus Substances 0.000 description 22
- 230000004913 activation Effects 0.000 description 20
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- -1 Polypropylene Polymers 0.000 description 15
- 239000011575 calcium Substances 0.000 description 15
- 239000000853 adhesive Substances 0.000 description 14
- 230000001070 adhesive effect Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 13
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 13
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 13
- 229920003023 plastic Polymers 0.000 description 13
- 239000004033 plastic Substances 0.000 description 13
- 239000001110 calcium chloride Substances 0.000 description 12
- 229910001628 calcium chloride Inorganic materials 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 11
- 229960002901 sodium glycerophosphate Drugs 0.000 description 11
- REULQIKBNNDNDX-UHFFFAOYSA-M sodium;2,3-dihydroxypropyl hydrogen phosphate Chemical compound [Na+].OCC(O)COP(O)([O-])=O REULQIKBNNDNDX-UHFFFAOYSA-M 0.000 description 11
- 239000003086 colorant Substances 0.000 description 10
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 10
- 238000002835 absorbance Methods 0.000 description 9
- 239000006096 absorbing agent Substances 0.000 description 9
- 239000002960 lipid emulsion Substances 0.000 description 9
- 238000002560 therapeutic procedure Methods 0.000 description 9
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 8
- 230000005856 abnormality Effects 0.000 description 8
- 230000015271 coagulation Effects 0.000 description 8
- 238000005345 coagulation Methods 0.000 description 8
- 239000008155 medical solution Substances 0.000 description 8
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 8
- 239000008108 microcrystalline cellulose Substances 0.000 description 8
- 229940016286 microcrystalline cellulose Drugs 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 239000008215 water for injection Substances 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 7
- 206010040070 Septic Shock Diseases 0.000 description 7
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 7
- 229940089206 anhydrous dextrose Drugs 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000006731 degradation reaction Methods 0.000 description 7
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 7
- 239000011654 magnesium acetate Substances 0.000 description 7
- 235000011285 magnesium acetate Nutrition 0.000 description 7
- 229940069446 magnesium acetate Drugs 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000036303 septic shock Effects 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 229920002633 Kraton (polymer) Polymers 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000000565 sealant Substances 0.000 description 6
- 229940048086 sodium pyrophosphate Drugs 0.000 description 6
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 6
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229940021013 electrolyte solution Drugs 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 235000012041 food component Nutrition 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000004006 olive oil Substances 0.000 description 5
- 235000008390 olive oil Nutrition 0.000 description 5
- 235000011056 potassium acetate Nutrition 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 4
- 239000005025 cast polypropylene Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000007792 gaseous phase Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 239000005026 oriented polypropylene Substances 0.000 description 4
- 229960003104 ornithine Drugs 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 4
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000013373 food additive Nutrition 0.000 description 3
- 239000002778 food additive Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000383 hazardous chemical Substances 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 239000001630 malic acid Substances 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- FHUOTRMCFQTSOA-UHFFFAOYSA-M potassium;acetic acid;acetate Chemical compound [K+].CC(O)=O.CC([O-])=O FHUOTRMCFQTSOA-UHFFFAOYSA-M 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002028 premature Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000003549 soybean oil Substances 0.000 description 3
- 235000012424 soybean oil Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 229960004308 acetylcysteine Drugs 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 235000021323 fish oil Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 238000005502 peroxidation Methods 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000012414 sterilization procedure Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 229960003080 taurine Drugs 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 150000003573 thiols Chemical group 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 229960004799 tryptophan Drugs 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 229920003313 Bynel® Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920003299 Eltex® Polymers 0.000 description 1
- 229920003345 Elvax® Polymers 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920011453 Hytrel® 4056 Polymers 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 102000005298 Iron-Sulfur Proteins Human genes 0.000 description 1
- 108010081409 Iron-Sulfur Proteins Proteins 0.000 description 1
- 229930182844 L-isoleucine Natural products 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- KBCVYUJDWLQICP-WEZHESDKSA-N O=C1C2=C(C=CC(S(=O)(=O)O)=C2)N/C1=C1\NC2=C(C=C(SOOO)C=C2)C1O.O=C1C2=C(C=CC(SOOO)=C2)N/C1=C1\NC2=C(C=C(S(=O)(=O)O)C=C2)C1=O Chemical compound O=C1C2=C(C=CC(S(=O)(=O)O)=C2)N/C1=C1\NC2=C(C=C(SOOO)C=C2)C1O.O=C1C2=C(C=CC(SOOO)=C2)N/C1=C1\NC2=C(C=C(S(=O)(=O)O)C=C2)C1=O KBCVYUJDWLQICP-WEZHESDKSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- 239000006035 Tryptophane Substances 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000012730 carminic acid Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000385 dialysis solution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- IIYILCZIHLINSB-BTVCFUMJSA-N lead;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound [Pb].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O IIYILCZIHLINSB-BTVCFUMJSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid group Chemical group C(\C=C/C(=O)O)(=O)O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 238000005497 microtitration Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 1
- 229940048084 pyrophosphate Drugs 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920013730 reactive polymer Polymers 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000009517 secondary packaging Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/14—Details; Accessories therefor
- A61J1/20—Arrangements for transferring or mixing fluids, e.g. from vial to syringe
- A61J1/2093—Containers having several compartments for products to be mixed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/16—Inorganic salts, minerals or trace elements
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/40—Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/48—Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/63—Oleaceae (Olive family), e.g. jasmine, lilac or ash tree
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/22—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
- G01N31/223—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols
- G01N31/225—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols for oxygen, e.g. including dissolved oxygen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/05—Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
- A61J1/10—Bag-type containers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/14—Details; Accessories therefor
- A61J1/1462—Containers with provisions for hanging, e.g. integral adaptations of the container
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/14—Details; Accessories therefor
- A61J1/20—Arrangements for transferring or mixing fluids, e.g. from vial to syringe
- A61J1/2003—Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
- A61J1/202—Separating means
- A61J1/2024—Separating means having peelable seals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
- G01N21/783—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
Definitions
- the present invention is directed generally to medical solutions, containers for storing medical solutions and oxygen indicators for detecting the presence of oxygen in a medical container. More particularly, the present invention is directed to ready-to-use ternary parenteral nutritional formulations for certain patient populations, particularly fluid limited populations, the container systems for long-term storage and selective administration of such formulations and oxygen indicators for such container systems. More specifically, the present invention is directed to such formulations being stored in flexible containers having multiple chambers for isolated long-term storage of the various nutritional components of such formulations, oxygen indicators for alerting healthcare professionals of an oxygen compromised container and containers facilitating selective sterile admixing into a ready to infuse formulation and administration of such formulation.
- the invention is directed to multi-chamber containers allowing selective admixing of two or more solutions contained in the chambers such as nutritional solutions of lipids, carbohydrates, amino acids and electrolytes and oxygen indicators able to withstand heat sterilization and having acceptable storage characteristics.
- Medical solutions such as parenteral and enteral nutrient solutions, dialysis solutions, pharmacological solutions, and chemotherapy solutions are routinely stored in a variety of containers made of glass or plastic. While glass containers offer many benefits such as gas impermeability and virtually complete compatibility with medical solutions, glass containers are heavy, easily broken, difficult to handle and can release aluminum into the solutions. As a result, more and more medical solutions are being stored in plastic containers. Flexible containers such as bags made from plastic films have gained increased acceptance.
- the prescription to be administered to a patient is comprised of components which will are not compatible for long storage periods.
- One method of overcoming this limitation is to combine or compound the components just prior to administration. Such compounding may be accomplished manually or with automated compounders. However such a combination method is time consuming, may give rise to errors in formulation and increases the risks of contamination of the final mixture.
- flexible containers can be formed with multiple chambers for separately storing medical solutions. These bags are formed with frangible connections or peal seals which provide for mixing of the all the contents of the chambers by manipulation of the connections or seals.
- a drawback of utilizing such multi-chamber containers is that one is restricted to the formulation which are provided by the supplied components and proportional amounts which are housed in the various chambers. When seeking to address the needs of varying patient populations, particularly fluid restricted populations, such restriction may hinder the ability to utilize such a containers, cause use of only a portion of the contents of such a container or cause multiple versions of such containers to be stored.
- multi-chamber bags have separation means that permit communication and mixing of the separately stored components or solutions.
- Some such multiple chamber containers utilize frangible valves while others use a score line or line of weakness in the barrier separating the chambers to effect mixing of the separately stored components.
- Still others use tear strips or tear tabs.
- More advantageous multi-chamber containers in terms of cost and ease of use are of the type which include peel seals formed by heat or radio frequency sealing of the two sheets of thermoplastic material that comprise a flexible bag to define multiple interior chambers. The heat seal provides a barrier that is resistant to unintentional opening forces but is openable with the application of a specific force.
- Plastic containers such as those just discussed however can also present unique issues which must be addressed.
- heat sterilization such as autoclaving can affect certain plastic materials used to form the container and/or the heat seal separating the chambers.
- certain plastic materials are permeable to atmospheric oxygen and may inadequately protect oxygen sensitive solutions or components.
- certain fat soluble or lipophilic solutions or components may not be compatible with certain plastic materials.
- lipid formulations such as Lipid emulsions used in parenteral nourishment cannot be stored in certain plastics because it can leach out some plastic material from the container. The lipid emulsion would be contaminated and the plastic containers integrity can be compromised.
- Lipid emulsions are generally one component of a parenteral nutritional solution (PN).
- PN parenteral nutritional solution
- Ternary parenteral nutritional formulations are used to provide all the nutritional components required by a patient.
- These PN formulations include also a carbohydrate component, an amino acid component, vitamin, trace element mid electrolytes components. Because of various incompatibilities, nutritional components of PN formulations are prime examples of medical solutions that cannot be stored long term as a mixture in a ready-to-use state. They can only be combined in a relatively short time period prior to administration.
- the individual constituents of each component should be determined by the nutritional recommended requirements of the particular patient population to be treated.
- PN formulations for adult patients may have different constituents in each component or at least different amounts of each constituent than PN formulations for infants.
- preparation of the separate components of PN formulations for premature infants, neonatal patients or small children presents unique problems.
- the volume of fluid that may be infused into such patients is relatively small. Seeking to provide all of the desired nutritional components in such a low volume is extremely difficult.
- the concentration ranges for individual constituents of certain component solutions must be narrowly constricted.
- some of the individual constituents are either interdependent or incompatible if present in certain forms and concentrations.
- the breadth of the acceptable concentration range for magnesium for a premature infant is about 0.2 mmol.
- the difference between the lowest acceptable concentration of magnesium and the highest acceptable concentration of magnesium is 0.2 mmol.
- electrolytes such as calcium and phosphate may be incompatible in certain concentration levels.
- storing the components of a PN formulation in a single or multi-chamber plastic container for sterile mixing to form the PN formulation also presents unique problems.
- the lipid component is incompatible with certain plastic material.
- some of the components are sensitive to oxygen which can permeate through certain plastics.
- Overwraps or overpouches are typically used to restrict the ability of oxygen to get to the multi-chamber containers; however, the overwrap may still allow a small amount of oxygen to diffuse through.
- the overwrap may develop a leak which would allow an excessive amount of oxygen to be exposed to the container. Such a leak may not be visible and the presence of such oxygen needs to be indicated to the health care provider.
- oxygen indicators exist they appear to not be able to withstand heat sterilization and still function properly after prolonged storage.
- the oxygen indicator should be able to indicate the presence of oxygen (oxidized form or positive result) such as with a change in color that is distinguishable from the condition indicating a lack of presence oxygen (reduced form or negative result). Additionally, the oxidized and reduced colors of the indicator should not fade or alter after prolonged storage so as to create uncertainty as to the result.
- certain amino acids with thiol function such as cysteine or acetyl-cysteine can form hydrogen sulfide as a decomposition product during sterilization.
- An excessive level of hydrogen sulfide may negatively affect some of the nutritional components.
- the all the separately stored components are mixed to form the final PN formulation prior to administration, there are circumstances when it is undesirable to include one or more of the components found in one of the chambers in the final solution. For example, it may be desirable to not include the lipid component in the final solution for infants under septic status, coagulation abnormalities, high bilirubin level or for other reasons.
- an oxygen indicator for detecting the presence of oxygen in medical container comprises: a) greater than 6 and less than 60 g/L, of indigo carmine; b) a buffer to adjust the pH to a range of about 9.0 to about 9.75; c) cellulose; d) a reducing agent; e) water; and f) a color of an oxidized form of the oxygen indicator being distinct from a color of a reduced form of the oxygen indicator; wherein following sterilization by autoclaving, the color of the reduced form remains distinct from the color of the oxidized form and the color of the oxidized form remains distinct from the color of the reduced form for at least six months at 40° C.
- an oxygen indicating packet for detecting the presence of oxygen in a medical container.
- the oxygen indicating packet comprises an oxygen indicator including: i) an oxidized color and a reduced color; the oxidized color being distinct from the reduced color; ii) greater than 6 and less than about 40 g/L of indigo carmine; iii) a buffer; iv) a reducing agent; v) cellulose; and vi) water; wherein following sterilization by autoclaving both the reduced color remains substantially visually unchanged and the oxidized color remains substantially visually unchanged after at least six months at 40° C.
- an oxygen indicator comprises: a) water; b) greater than 6 and less than about 40 g/L of indigo carmine; c) a buffer; d) at least one reducing agent; and e) an oxidized indicator color and a reduced indicator color distinct from the oxidized indicator color; wherein the indicator is reduced by autoclaving and any subsequent oxidation of the indicator produces the oxidized color that remains distinct from the reduced color for at least six months at 40° C.
- FIG. 1 is a plan view of one embodiment of a 300 ml container of the present invention.
- FIG. 2 is a cross sectional view of the container of FIG. 1 ;
- FIG. 3 shows a typical rolling method for opening all the seal of a container having multiple chambers.
- FIG. 4 is a plan view of the container of FIG. 1 after activation of peel seals
- FIG. 5 is a plan view of one embodiment of a 500 ml container of the present invention.
- FIG. 6 is a plan view of one embodiment of a 1000 ml container of the present invention.
- FIG. 7 is a plan view of another embodiment of a container of the present invention.
- FIG. 8 is a plan view of another embodiment of a container of the present invention.
- FIG. 9 is a plan view of another embodiment of a container of the present invention.
- FIG. 10 is a cross sectional view of one embodiment of a flexible film material used to construct the container of the present invention.
- FIG. 11 is a cross sectional view of one embodiment of a flexible film material used to construct the overpouch of the present invention.
- FIG. 12 is a graph representing Absorbance Units over time of the first and second embodiments of oxygen indicator stored at three different temperature conditions.
- FIG. 13 is a graph of the optical densities of one embodiment of an oxygen indicator of the present invention.
- FIG. 14 is a graph of Absorbance Units over time of one embodiment of an oxygen indicator of the present invention fit in an exponential curve.
- FIG. 15 is a graph representing Absorbance Units over time of one embodiment of an oxygen indicator of the present invention stored at three different temperature conditions.
- FIG. 16 shows the colors of the reduced form of samples of an oxygen indicator of the present invention stored at 25° C./40% RH and categorized by Pantone® references.
- FIG. 17 shows the colors of the reduced form of samples of an oxygen indicator of the present invention stored at 30° C./35% RH and categorized by Pantone® references.
- FIG. 18 shows the colors of the reduced form of samples of an oxygen indicator of the present invention stored at 40° C./25% RH and categorized by Pantone® references.
- FIG. 19 shows the colors of the reduced form of samples of an oxygen indicator of the present invention after illumination of 2000 lux with a daylight tube for 30 days at 25° C. and categorized by Pantone® references.
- FIG. 20 shows the colors of the oxidized form of samples of an oxygen indicator of the present invention stored at 25° C./40% RH and categorized by Pantone® references.
- FIG. 21 shows the colors of the oxidized form of samples of an oxygen indicator of the present invention stored at 30° C./35% RH and categorized by Pantone® references.
- FIG. 22 shows the colors of the oxidized form of samples of an oxygen indicator of the present invention stored at 40° C./25% RH and categorized by Pantone® references.
- a flexible multiple chamber container for separately storing medical solutions prior to use and facilitates selective activation of the frangible barriers separating the chambers.
- the container is preferably constructed to permit the storage of aqueous or lipid formulations without the leaching issues discussed above and to facilitate selective opening of the frangible barriers separating the chambers.
- FIG. 1 illustrates one embodiment of a multiple chamber container of the present invention.
- the container 10 which is configured as a bag includes three adjacent chambers or chambers 12 , 14 , and 16 .
- Chamber 12 is located at a lateral or side end 18 and chamber 16 is located at an opposite lateral or side end 20 .
- the three chambers 12 , 14 , and 16 are preferably designed to hold aqueous solutions and/or lipid emulsions.
- container 10 has a total fluid capacity of 300 ml with chamber 12 having a fluid capacity of 80 ml, chamber 14 having a capacity of 160 and chamber 16 having a capacity of 60 ml.
- FIG. 2 shows a cross-section of container 10 and illustrates how the openable seals 22 , 24 separate the formulations contained in chambers 12 , 14 , 16 .
- the openable seals may be in the form of peel seal or frangible seals.
- the openable seals permit formulations to be separately stored and admixed just prior to administration thereby allowing storage in a single container of formulations which should not be stored as an admixture for an extended period of time. Opening of the seals allows communication between the chambers and mixing of the contents of the respective chambers.
- Container 10 also preferably includes ports 26 , 28 , and 30 at the bottom end 32 of the container to provide communication with chambers 12 , 14 , and 16 respectively.
- One or more of the ports can be constructed for use as an additive port to allow the addition of materials such as micronutrients and/or can be constructed as administration ports.
- the port 28 is administration port and includes a membrane that can be pierced by a cannula or spike of an administration set to deliver the contents to a patient and port 26 is for additions.
- any number of ports can be used.
- the ports may be positioned in any number of ways; however it is preferred that the access ports are located on the same end of the container to permit more efficient manufacturing and filling of the chambers.
- one of the seals 22 , 24 is made openable or peelable while the second seal is made permanent.
- Administration ports are then provided on two of the chambers such that one administration port is provided so that the chamber separated by the permanent seal may be administered while a second administration port is provided to allow the admixture to be administered.
- a hanger portion 36 which in the embodiment shown in FIG. 1 is a flap having a centrally located hole 38 for hanging the container.
- the flap 36 defines a border 40 of the upper end of all the chambers 12 , 14 , and 16 .
- the central portion 42 of the hanger flap 36 preferably extends a substantial distance towards the bottom end 32 of the container 10 , more preferably about one-fourth the longitudinal length L of the container 10 and even more preferably about one-third of the length L of the container 10 .
- the flap 36 extends a greater distance towards the bottom end 32 at least at the central chamber 14 and can also extend a greater distance towards the bottom end 32 at the central chamber 14 and at one of the other chambers 12 , 16 .
- This extra extension of the flap 36 with respect to center chamber 14 results in chamber 14 having a shorter longitudinal length than the longitudinal length of lateral or side end chambers 12 , 16 .
- the longitudinal length of central chamber should be from about two-thirds to about three-quarters the longitudinal length of at least one of the lateral end chambers. This configuration allows for selective opening of the seals as will be discussed below.
- the longitudinal length of the chambers is measured from their respective top borders to their respective bottom borders. For curved or irregular borders the longitudinal length is the average of the longitudinal lengths taken continuously across the border.
- FIG. 3 illustrates the typical rolling method of opening the seals 22 , 24 to mix the contents of chambers 12 , 14 , and 16 .
- the hanger flap 36 or top end 34 is rolled over itself in a squeezing motion.
- rolling the bag would pressurize all the chambers too much risking unintended activation of the wrong seal.
- multi-chamber bags having a central chamber that extends a greater distance from its bottom border to its top border than the other lateral end chambers rolling of the bag would pressurized the central chamber and randomly activate one or more seals bordering the central chamber.
- Multi-chamber containers of the present invention however include chamber arrangements to facilitate selective activation of the seals.
- chamber 14 does not extend as far towards the top end 34 as do chambers 12 and 16 , i.e. chamber 14 is about three-fourths the longitudinal length of the other chambers 12 , 16 ; therefore rolling the bag from the top end 34 only pressurizes chambers 12 and 16 .
- chamber 14 In order to selectively activate only one of the seals 22 , 24 , only the end chamber adjacent to the seal desired to be activated is squeezed with a continuation of the rolling motion. Because of the extend of the hanger flap 36 , the central chamber 14 is not pressurized preventing the activation or partial activation of the second peel seal. Further rolling and squeezing of the opposite lateral end chamber would activate the other seal. In this manner sequential activation of the seal is possible with containers of the present invention. Accordingly, the formulation which on occasion may not be administered should therefore be housed in one of the chambers located at the lateral ends of the container.
- the user may start rolling the bag 10 at the top end 34 . Without pressurizing chamber 14 , the user can squeeze the bag at the location of chamber 12 . Once seal 24 is activated, the user can stop rolling and squeezing. If the user wanted both seals 22 , 24 activated instead, bag 10 can be rolled starting at the top end 34 while squeezing down on both end chambers 12 , 16 .
- the contents of the container 10 may be mixed by manipulation of the container and then administered to the patient by first hanging the bag from a hook using hole 38 .
- Another rolling technique is also used to activate the seals of multi-chamber bags.
- this technique also uses a rolling motion except instead of starting at the top end 34 , container 10 is can be rolled starting at one of the top end corners 44 , 46 .
- rolling from a corner produces too much pressure on a central chamber risking the unintended activation of the wrong seal.
- Using this corner rolling method with containers of the present invention would not result in the activation of an unintended seal or at least not occur as often.
- Containers 110 and 210 shown in FIGS. 5 and 6 respectively also include three chambers 112 , 114 , and 116 and 212 , 214 , and 216 respectively.
- Containers 110 and 210 are constructed using the same materials and similar methods as those used in container 10 . The only significant difference is the size and capacity of the containers 10 , 110 , and 210 .
- container 110 has a fluid capacity of 500 ml with chamber 112 having a fluid capacity of 221 ml, chamber 114 having a capacity of 155 ml and chamber 116 having a capacity of 124 ml.
- container 210 has a fluid capacity of 1000 ml with chamber 212 having a fluid capacity of 392 ml, chamber 214 having a fluid capacity of 383 ml, and chamber 216 having a fluid capacity 225 ml.
- Containers 110 and 210 also preferably include peelable seals 122 and 124 and 222 , 224 respectively which separate the chambers aid permit opening of the chambers to allow communication between the chambers and admixing of the contents of the respective chambers. Both containers 110 and 210 also include hanger flaps 136 and 236 including hanger holes 138 and 238 , respectively.
- containers 110 and 210 have hanger portions or flaps and chambers that are configured to facilitate selective activation of the seals.
- containers 110 , 210 both have hanger flaps 136 , 236 that extend towards bottom ends 132 , 232 (about one fourth to about one-third the longitudinal length of the container 110 , 210 ) respectively more so with respect to central chambers 114 , 214 . Consequently, the majority of the area of chambers 114 , 214 have a longitudinal length that is about two-thirds to about three-quarter less than the longitudinal length of the majority of the area of their respective lateral end chambers 112 , 116 and 212 , 214 .
- Rolling containers 110 , 210 starting at the top ends 134 , 234 , or one of corners 144 , 146 , 244 , 246 , respectively allows rolling of the containers 110 , 210 and squeezing of the chamber adjacent to the seal desired to be selectively activated without undue pressure being placed on the central chambers 114 , 214 which could cause unintended activation of the other seal.
- Containers 110 and 210 also include access ports 126 , 128 , and 130 , and 226 , 228 , and 230 , respectively. These ports are constructed using the same materials and in a similar manner as access ports 26 , 28 , and 30 . To permit the same equipment to fill containers 10 , 110 , and 210 it is preferable to position so to be the same distance from each other, FIGS. 7, 8 , and 9 illustrate other embodiments of a multiple chamber container of the present invention.
- Containers 310 , 410 , 510 all include three adjacent chambers 312 , 314 , 316 and 412 , 414 , 416 , and 512 , 514 , 516 , respectively.
- Chambers 312 , 412 , 512 are located at lateral or side ends 318 , 418 , 518 , respectively and chambers 316 , 416 , 516 are located at opposite lateral or side ends 320 , 420 , 520 .
- Hanger portion 336 is located at the top end 334 and includes hole 338 for hanging the container.
- Hanger portion 336 defines the top border 340 of chambers 312 , 314 , 316 .
- Chambers 312 is separated from chamber 314 by peelable seal 324 , and peelable seal 326 separates chamber 314 from 316 .
- Container 410 also includes peelable seals 424 , 426 separating chamber 412 from chamber 414 and chamber 414 from chamber 416 , respectively. Peelable seal 524 separates chamber 512 from chamber 514 and peelable seal 526 separates chamber 514 from 516 .
- the peelable seals allow isolated storage of distinct formulations in the chambers for subsequent admixing prior to administration.
- Chamber 314 has a longitudinal length that is from about two-thirds to about three-quarters the longitudinal lengths of both lateral end chambers 312 , 316 . While the longitudinal lengths of chambers 312 , 316 are equal, differing lengths can be used. Selective activation of either peelable seal 324 , 326 can when rolling container 310 starting at top end 334 and squeezing chamber 312 or chamber 316 depending on which of the peelable seals 324 , 324 is to be activated.
- the lateral end chamber 416 of container 410 has a longitudinal length that is from about two-thirds to about three-fourths less than the longitudinal length of chamber 412 positioned at opposite lateral end 418 and is equal to the longitudinal length of lateral end chamber 416 .
- Chamber 412 having a longitudinal length greater than that of chamber 414 allows peelable seal 424 to be activated without the inadvertent activation of peelable seal 426 when rolling container 410 starting at top end 434 .
- Container 510 shown in FIG. 9 includes chambers 512 , 514 , 516 all of which have longitudinal lengths that differ from each other.
- Lateral end chamber 512 has a longitudinal length that is from about twenty five percent to about thirty three percent greater than the longitudinal length of chamber 514 which in turn has a longitudinal length that is from about twenty five percent to about thirty three percent greater than the longitudinal length of chamber 516
- Rolling container 510 starting at the top end 534 allows selective activation of peelable seal 524 , 526 by first pressurizing chamber 512 until seal 524 activates. Further rolling would begin to pressurized chamber 514 until seal 526 activates.
- any additional chamber included between chamber 512 and 514 and having a longitudinal length less the longitudinal length of chamber 512 but greater than the longitudinal length of chamber 514 , or between chamber 514 and 516 and having a longitudinal length less the longitudinal length of chamber 514 but greater than the longitudinal length of chamber 516 may allow sequential activation of seals starting with the seal bordering chamber 512 and end with the seal bordering chamber 516 when rolling the container starting at the top end 534 .
- one or more of the chambers could store a non-liquid such as a solid in powder or crystalline form with at least one chamber holding a liquid for dissolving the solid once the communication is established between the chambers.
- FIG. 10 is a cross-sectional view of one embodiment of the film or sheet 48 used to construct the container 10 .
- the sheet 48 is made from four layers 50 , 52 , 54 and 56 .
- the outer layer 50 is preferably formed from a high melting temperature flexible material, more preferably a polyester material such as PCCE copolyester. Such a PCCE copolyester is sold by Eastman Kodak under the designation Ecdel 9965.
- a typical thickness of the outer layer 50 is from about 0.39 mils to about 0.71 mils with the actual thickness of the outer layer show in FIG. 3 being 0.55 mils.
- a tie layer 52 is provided to secure the first layer 50 to a third layer 54 .
- the tie layer is a highly reactive polymer adhesive such as EVA copolymer chemically modified with maleic acid.
- EVA copolymer chemically modified with maleic acid is available from DuPont under the name Bynel E-361.
- the tie layer 52 may have a varied thickness for example from 0.20 mils to 0.60 mils, e.g., 0.40 mils.
- the third layer 54 preferably is a radio frequency (RF) responsive polymer, such as EVA copolymer. Such a material is available from DuPont under the name Elvax 3182-2.
- RF radio frequency
- the third layer has a thickness of about 5.56 mils to about 6.84 mils, e g., 6.20 mils.
- This film also includes a sealant layer 56 constructed of: 1) a bulk polyolefin that is thermally stable at heat sterilization temperatures, yet melts below the outside layer melting temperature; such polymers are preferably polypropylene-ethylene copolymers, such as grades Z9450 or 8650 from Total; and 2) a thermoplastic elastomer which produces a more flexible and free radical resistant sealant layer and gives the sealant layer two melt points with the elastomer having the lower value; such polymers preferably are styrene-ethylene-butene-styrene block copolymers such as Kraton G-1652 from Kraton polymers.
- a sealant layer 56 constructed of: 1) a bulk polyolefin that is thermally stable at heat sterilization temperatures, yet melts below the outside layer melting temperature; such polymers are preferably polypropylene-ethylene copolymers, such as grades Z9450 or 8650 from Total; and 2) a thermoplastic elastomer which produces a more flexible and free radical resistant sealant
- the sealant layer preferably has a thickness of from about 1.28 mils to about 1.92 mils, e.g., 1.60 mils.
- the sealant layer 56 is adjacent the interior side of the container 10 ( FIG. 1 ) such that when the seal is ruptured, communication is provided between the chambers.
- the container 10 is constructed by overlaying two sheets on one another or by folding one sheet over onto itself or by flattening an extruded tube if tubular extrusion is used.
- FIG. 10 shows two sheets 48 and 48 a with layer 56 contacting the corresponding layer 56 a of sheet 48 a.
- the sheets 48 and 48 a are bonded or welded together permanently at the perimeter to form the container taking into account the placement of access ports.
- the sheets are also bonded together at other area to form the outer contours of the chamber that will be formed later.
- the heat seals are the formed to create the multiple chambers.
- the peelable seals are formed preferably using a heated seal bar to heat and soften the layer 56 , but not liquefy the layer. A resulting cohesive bond develops from contact between the sheet 48 and the sheet 48 a, but fusion between the sheets, which can cause permanent bonding, does not occur.
- the peelable seals can be formed to require a force of from about 16 to about 21 Newtons to open or activate the peelable seals, preferably about 19N.
- the temperature of the seal bar will vary depending upon the material used to construct the container.
- the seal bar can be heated to from about 116 to about 122° C., preferably about 118° C. It should be noted that this temperature can vary substantially between different lots of the same film material and that the cohesive bond of the peelable seal is slightly reinforced or strengthened by heat sterilization.
- the ports 26 , 28 and 30 can be constructed by any number of methods and by a variety of materials. Ports can be made from coextruded tube with clear PVC material inside to allow solvent-bonding to regular PVC closure systems. Alternatively, non-PVC tubes can be used. However, if one of the chambers is to contain a lipid for example in chamber 16 then port 30 is preferably constructed from a non-PVC containing material. If no administration site is added on the port of the chamber containing lipid, the port will be more preferably formed of a monolayer extruded tube with the following preferred formulation:
- some or all of the ports 22 , 24 , and 26 can be constructed from a non-PVC material such as the above formulation.
- the same central and lateral end chambers were filled with water while the other lateral end chamber was filled with a colored solution Additional water was added in the central chamber to compensate for the added volumetric capacity. In other words even though the central chamber of container 10 had a slightly smaller volume than the central chamber of other container they were similarly inflated with water.
- PN parenteral nutritional
- the patient populations are pre-term infants (PT), term to two years old children (TT), and children over the age of two (OT).
- the PN formulation can have three components which are stored separately and mixed prior to administration.
- the three components can be a carbohydrate component, an amino acid (AA) component and a lipid component.
- One or more electrolytes can also preferably be included in the PN formulations
- the electrolytes can be included in one or more of the components or can be added by the healthcare professional either before or after the components are combined.
- one or more electrolytes can be included in the carbohydrate component, but more preferably, one or more of the electrolytes are included in the amino acid component.
- the three components of the preterm PN formulation are preferably stored in a container having three chambers separated by openable seals such as frangible or peelable seals, having a total capacity of about 300 ml and having the ability to selectively open the seals, more preferably in container 10 ( FIG. 1 ) described above.
- the three components of the PN formulation for term to two years old children is preferably stored in a similar three chamber container except that the container has a total capacity of about 500 ml, more preferably in container 110 ( FIG. 5 ) described above.
- the three components of the PN formulation for children over the age of two are preferably stored in a similar three chamber container, except that the container has a total capacity of about 1000 ml, more preferably in container 210 ( FIG. 6 ) described above.
- the carbohydrate component can include an aqueous solution containing from about 10% to about 70% of one or more carbohydrates such as glucose, fructose, and or sucrose.
- the amino acid component can include an aqueous solution containing from about 3% to about 10% of one or more amino acids.
- the lipid component can include an emulsion containing about 10% to about 30% of lipids such as fatty acids and/or triglycerides from plant, animal or synthetic sources such as, but not limited to olive oil, Medium Chain Triglyceride oil, soybean oil and fish oil. All of the percentages are expressed in weight to volume (w/v) unless otherwise specified.
- MNRG mean nutritional recommended guidelines
- MMNG likely minimum to maximum nutritional guidelines
- a PN formulation for preterm infants is provided in container 10 .
- the PN formulation can include an amino acid component that can comprise a solution including water for injection, malic acid for pH adjustment to about 5.5 and the following amino acids: Amino Acid Concentration (g/100 ml) Lysine 0.641 Glutamic acid 0.583 Leucine 0.583 Arginine 0.489 Alanine 0.466 Valine 0.443 Isoleucine 0.390 Aspartic acid 0.350 Phenylalanine 0.245 Glycine 0.233 Serine 0.233 Histidine 0.221 Threonine 0.216 Ornithine (as 0.185 mg Ornithine 0.145 Hydrochloride) Proline 0.175 Methionine 0.140 Tryptophan 0.117 Cysteine 0.110 Taurine 0.035 Tyrosine 0.045 Totals 5.726.860
- cysteine should be present in amino acid solutions; specifically those administered to preterm infants because cysteine is a conditionally essential amino acid and because preterm infants a limited capacity to synthesize cysteine.
- the PN formulation can also include a lipid component that can comprise a 12 . 5 % lipid emulsion in water for injection Lipid emulsion at 12.5% Role Concentration Purified olive oil Active drug about 80% of total oil Soybean oil Active drug about 20% of total oil Egg phospholipids Emulsifier 1.2% Sodium oleate Emulsifier 0.03% Glycerol Iso-osmolarity 2.25% Water for injection Dispersant qs
- Olive oil is a preferred lipid because of its desirable immunoneutrality.
- the above combination is preferred because the combination evokes less peroxidation and no additional oxidative stress. While these are the preferred lipids and lipid concentration, other lipid sources may be used such as lipids from animal, vegetable or synthetic origin.
- the PN can also include a carbohydrate component that can comprise a 50% aqueous glucose and electrolyte solution as shown in the following table: Concentration Nutrient Source (per 100 ml) Na+ Sodium Glycerophosphate 3.4-7.8 mmol P Sodium Glycerophosphate 1.7-3.9 mmol Ca++ Calcium Chloride 2.7-4.7 mmol K+ Potassium Acetate 0.0-7.8 mmol Mg++ Magnesium Acetate 0.6-1.6 mmol Cl ⁇ Calcium Chloride 5.4-9.4 mmol Acetate ⁇ Potassium Acetate 0.6-9.4 mmol and Magnesium Acetate Glucose Glucose 50.0 g
- the electrolytes and carbohydrate may be used. It is preferred that the phosphorus comes from organic sources and the above table indicates the most preferred sources of the nutrients. It is also preferred that the pH be adjusted to about 4.0 and in the preferred embodiment the adjustment is achieved using hydrochloric acid along with other pH adjusters such as malic acid or ascetic acid to also achieve the desired level of chlorides.
- each chamber of container 10 is filled with one of the components of the PN formulation.
- containers of a PN formulation for pre-term infants may include about 80 ml of the carbohydrate component in chamber 12 , about 160 ml of the amino acid component in chamber 14 , and about 60 ml of the lipid component in chamber 16 .
- it may not be advisable to administer the lipid component such as if it is the first day, the patient is suffering from septic shock, coagulation abnormalities, high bilirubin level or other reasons.
- container 10 permits the selective opening of seal 24 .
- the PN formulation in order to provide the MNRG (or nutrition at least at the minimum of MMNG) about 120 ml of the PN formulation should be infused per kilogram of the patient per day.
- the 300 ml container would then provide enough PN for 2.5 kg neonate (PT) over a 24-hour period.
- the following table illustrates the approximate values of the PN formulation in a three chambered container: Amino Component Acid Carbohydrate Lipids Total Volume concentration (%) 5.86 50 12.5 — mI/kg/day 64 32 24 120 ml/chamber 160 80 60 300
- administering about 120 ml/kg/day of the above PN formulation for preterm patients provides about the following nutrients and electrolytes: Nutrient/Electrolytes Amount (/kg/day) Na+ 1.1-2.5 mmol K+ 0.0-2.5 mmol P 0.54-1.25 mmol P (Total) 0.77-1.48 mmol (includes phosphorus present in lipid component) Ca++ 0.9-1.5 mmol Mg++ 0.2-0.5 mmol Cl ⁇ 1.7-3.0 mmol Cl ⁇ (Total) 2.1-3.4 mmol (includes chloride from amino acid Orn HCl) Acetate ⁇ 0.2-3.0 mmol Amino Acids 3.75 grams Glucose 16 grams Lipid 3 grams
- a PN formulation for term to two years old children is provided in a 500 ml container having three chambers preferably container 110 .
- the PN formulation can include a carbohydrate component and can be housed in an end chamber 112 having a volumetric capacity of about 155 ml and having a longitudinal length substantially greater than the longitudinal length of the center chamber 114 . This is to permit selective opening of the seal 124 adjacent the carbohydrate containing chamber 112 without opening the seal 122 adjacent chamber 116 .
- An amino acid component can also be included in the PN formulation and can be housed in a central chamber 114 having a volumetric capacity of about 221 ml.
- a lipid formulation can be included in the PN formulation and can be housed in an end chamber 116 having a volumetric capacity of about 124 ml.
- the lipid and amino acid components can be formulated as described above
- the carbohydrate component can comprise a 50% aqueous glucose and electrolyte solution as shown in the following table: Nutrient/ Concentration Electrolytes Source (per 100 ml) Na+ Sodium 3.4-4.0 mmol Glycerophosphate Na+ Sodium Chloride 0.0-3.3 mmol K+ Potassium Acetate 3.3-7.3 mmol P Sodium Glycerophosphate 1.7-2.0 mmol Ca++ Calcium Chloride 0.8-2.0 mmol Mg++ Magnesium Acetate 0.7-1.0 mmol Cl ⁇ Calcium Chloride and Sodium Chloride 1.6-7.3 mmol Acetate ⁇ Potassium Acetate and 4.0-8.3 mmol Magnesium Acetate Glucose Glucose 50.0 g
- Each chamber is filled with one of the components.
- about 155 ml of the carbohydrate component can fill an end chamber 112 as described above
- about 221 ml of the amino acid component can fill a central chamber 114 as described above
- about 124 ml of the lipid component can fill an end chamber 116 as described above.
- the above-described peel seal 124 allows mixing of the carbohydrate and amino acid components or all the seals 122 , 124 may be opened to create the ternary PN formulation.
- the container permits the selective opening of only the seal adjacent an end chamber with the longitudinal length substantially greater than the longitudinal length of a central chamber without opening the seal adjacent the lipid chamber as discussed above.
- a PN formulation for children over the age of two is provided in a 1000 ml container having three chambers, preferably container 210 .
- the PN formulation can include a carbohydrate component and can be housed in an end chamber 212 having a volumetric capacity of about 383 ml and having a longitudinal length substantially greater than the longitudinal length of the center chamber 214 . This is to permit selective opening of the seal 224 adjacent the carbohydrate containing chamber 212 without opening the seal 222 adjacent chamber 216 .
- An amino acid component can be included in the PN formulation and can be housed in central chamber 214 having a volumetric capacity of about 392 ml.
- a lipid component can be included in the PN formulation and can be housed in an end chamber 216 having a volumetric capacity of about 225 ml.
- the lipid and amino acid components can be formulated as described above.
- the carbohydrate component can comprise a 50% aqueous glucose and electrolyte solution as shown in the following table Nutrient/ Concentration Electrolytes Source (per 100 ml) Na+ Sodium Glycerophosphate 1.0-3.7 mmol Na+ Sodium Chloride 2.2-8.0 mmol K+ Potassium Acetate 3.3-8.3 mmol P Sodium Glycerophosphate 0.65-1.83 mmol Ca++ Calcium Chloride 0.65-1.00 mmol Mg++ Magnesium Acetate 0.33-0.67 mmol Cl ⁇ Calcium Chloride, Sodium Chloride 3.5-10.0 mmol Acetate ⁇ Potassium Acetate 3.6-9.0 mmol and Magnesium Acetate Glucose Glucose 50.0 g
- Each chamber is filled with one of the components.
- about 383 ml of the carbohydrate component fills end chamber 212 as described above, about 392 ml of the amino acid component fills central chamber 214 as described above, and about 225 ml of the lipid component fills end chamber 216 as described above.
- Each component can be administered to the patient separately or all the seals 222 , 224 may be opened to create the PN formulation, However, in some instances it may not be advisable to administer the lipid component such as if it is the first day, the patient is suffering from septic shock, coagulation abnormalities, high bilirubin level or other reasons.
- the container permits the selective opening of the seal adjacent an end chamber having a longitudinal length substantially greater the longitudinal length of the central chamber without opening the seal adjacent the lipid chamber as discussed above.
- the reduced fluid level permits the healthcare professional to administer other fluid therapy which may be desirable in certain circumstances
- a PN formulation for children over the age of two is provided in a 1000 ml container having three chambers, preferably container 210 .
- the PN formulation can include a carbohydrate component and can be housed in an end chamber 212 having a volumetric capacity of about 332 ml and having a longitudinal length substantially greater than the longitudinal length of central chamber 214 . This is to permit selective opening of the seal 224 adjacent the carbohydrate containing chamber 212 and without opening the seal 222 adjacent chamber 216 .
- An amino acid component can also be included in the PN formulation and can be housed in a central chamber 214 having a volumetric capacity of about 425 ml.
- a lipid component can also be included in the PN formulation and can be housed in an end chamber 216 having a volumetric capacity of about 243 ml.
- the lipid and amino acid components are formulated as described above.
- the carbohydrate component comprises a 62.5% aqueous glucose and electrolyte solution as shown in the following table Concentration Nutrient/Electrolytes Source (per 100 ml) Na+ Sodium Glycerophosphate 1.285-4.583 mmol Na+ Sodium Chloride 2.804-9.998 mmol K+ Potassium Acetate 4.09-10.415 mmol P Sodium Glycerophosphate 0.818-2.291 mmol Ca++ Calcium Chloride 0.818-1.250 mmol Mg++ Magnesium Chloride 0.409-0.833 mmol Cl ⁇ Calcium Chloride, Sodium 14.643 mmol Chloride and Magnesium Chloride Glucose Glucose 62.5 g
- the electrolytes and carbohydrate may be used. It is preferred that the phosphorus in the carbohydrate component come from organic sources and the above table indicates the most preferred sources of the nutrients.
- Each chamber is filled with one of the components.
- about 332 ml of the carbohydrate component fills an end chamber 212 as described above
- about 425 ml of the amino acid component fills a central chamber 214 as described above
- about 243 ml of the lipid component fills an end chamber 216 as described above.
- Each component can be administered to the patient separately or all the seals 222 , 224 may be opened to create the PN formulation. However, in some instances it may not be advisable to administer the lipid component such as if the patient is suffering from septic shock, coagulation abnormalities, high bilirubin level or other reasons.
- the container permits the selective opening of the seal 224 adjacent an end chamber 212 having a longitudinal length substantially greater than the longitudinal length of the central chamber 214 without opening the seal 222 adjacent the lipid compartment 216 as discussed above.
- PN formulation in order to provide the MNRG and at least at the minimum of MMNG, about 72.3 ml/kg/day of the described PN formulation should be infused per kilogram of the patient per day.
- the 1000 ml container provides enough PN per day for about a 13.5 kg child over a 24-hour period. Thus this container provides for a larger child over a 24 hour period than the previously described embodiment of a 1000 ml chamber.
- the following table illustrates the approximate values of the PN formulation in a three chambered container: Component Amino Acid Carbohydrate Lipids Total Volume concentration 5.86 62.5 12.5 — (%) ml/kg/day 30.7 30 17.6 72.3 ml/chamber 425 332 243 1000
- the reduced fluid level permits the healthcare professional to administer other fluid therapy which may be desirable in certain circumstances.
- any increase in the electrolyte concentration above the minimum level increases the buffer capacity of the carbohydrate component (aqueous glucose and electrolyte solution). This increased buffer capacity results in the lowering of the pH of the admixed PN formulation to a level potentially incompatible with the targeted pediatric populations.
- PN parenteral nutritional
- the more preferred PN formulation can have three components which are stored separately and mixed prior to administration.
- the three components can be a carbohydrate component, an amino acid (AA) component and a lipid component.
- One or more electrolytes can also preferably be included in the PN formulation, more preferably a number of electrolytes are included in the amino acid component.
- the three components of the preterm PN formulation are preferably stored in a container having three chambers separated by openable seals such as frangible or peelable seals, having a total capacity of about 300 ml and having the ability to selectively open the seals, more preferably in container 10 ( FIG. 1 ) described above.
- the three components of the PN formulation for term to two years old children are preferably stored in a similar three chamber container except that the container has a total capacity of 500 ml, more preferably in container 110 ( FIG. 5 ) described above.
- the three components of the PN formulation for children over the age of two are preferably stored in a similar three chamber container except that the container has a total capacity of 1000 ml, more preferably in container 210 ( FIG. 6 ) described above.
- the carbohydrate component can include an aqueous solution containing from about 10% to about 70% of one or more carbohydrates such as glucose, fructose and/or sucrose.
- the amino acid component can include an aqueous solution containing from about 3% to about 10% of one or more amino acids.
- the lipid component can include an emulsion containing about 10% to about 30% of lipids such as fatty acids and/or triglycerides from plant, animal or synthetic sources such as, but not limited to olive oil, Medium Chain Triglyceride oil, soybean oil and fish oil. All of the percentages are expressed in weight to volume (w/v) unless otherwise specified.
- a preferred lipid component for the PN formulation for all three patient populations comprise a 12.5% lipid emulsion in water for injection as described previously.
- Olive oil is a preferred lipid because of its desirable immunoneutrality.
- the above combination is preferred because the combination evokes less peroxidation and no additional oxidative stress. While these are the preferred lipids and lipid concentration, other lipid sources may be used such as lipids from animal, vegetable or synthetic origins
- a preferred carbohydrate component for the PN formulation for all three patient populations can comprise 50.0% glucose in water for injection.
- One or more carbohydrates may be used in lieu of glucose.
- the pH should be adjusted to about 4.0 and in a preferred embodiment the adjustment may be accomplished with hydrochloric acid.
- a preferred amino acid component for the PN formulation for each of the three patient populations can comprise a solution of amino acids and electrolytes.
- the approximate amounts of the constituents of the amino acid component for each patient population are shown in the following table A: Patient Patient Patient Population Population Population Compound PT TT OT Alanine 0.466 g 0.466 g 0.466 g Arginine 0.489 g 0.489 g 0.489 g Aspartic acid 0.350 g 0.350 g 0.350 g Cysteine 0.110 g 0.110 g 0.110 g Glutamic acid 0.583 g 0.583 g 0.583 g Glycine 0.233 g 0.233 g 0.233 g Histidine 0.221 g 0.221 g 0.221 g L-Isoleucine 0.390 g 0.390 g 0.390 g Leucine 0.583 g 0.583 g 0.583 g Lysine 0.644 g 0.644 g 0.644 g Methi
- each chamber of container 10 is filled with one of the components of the PN formulation.
- containers of a PN formulation for pre-term infants may include about 80 ml of the carbohydrate component in chamber 12 , about 160 ml of the amino acid component for the PT population in chamber 14 , and about 60 ml of the lipid component in chamber 16 .
- it may not be advisable to administer the lipid component such as if it is the first day, the patient is suffering from septic shock, coagulation abnormalities, high bilirubin level or other reasons.
- container 10 permits the selective opening of the seals.
- administration of about 120 ml/kg/day of the above PN formulation for preterm patients provides about the following nutrients and electrolytes: Nutrient/Electrolytes Amount (/kg/day) Na+ 2.6 mmol K+ 2.5 mmol P 1.3 mmol P (Total) 1.5 mmol (includes phosphorus present in lipid component) Ca++ 1.5 mmol Mg++ 0.5 mmol Cl ⁇ 3.7 mmol Acetate ⁇ 3.0 mmol Amino Acids 3.75 grams Glucose 16 grams Lipid 3 grams
- a PN formulation for term to two years old children is provided in a 500 ml container having three chambers, preferably container 110 .
- the PN formulation can include a carbohydrate component and can be housed in an end chamber 112 having a volumetric capacity of about 155 ml and having a longitudinal length substantially greater than the longitudinal length of the center chamber 114 . This is to permit selective opening of the seal 124 adjacent the carbohydrate containing chamber 112 without opening the seal 122 adjacent chamber 116 .
- An amino acid component can also be included in the PN formulation and can be housed in a central chamber 114 having a volumetric capacity of about 221 ml.
- a lipid formulation can be included in the PN formulation and can be housed in an end chamber 116 having a volumetric capacity of about 124 ml.
- the lipid component can be formulated as described above and the amino acid component can be formulated for the TT population as shown in table A above.
- a preferred carbohydrate component for the PN formulation for all three patient populations can comprise 50.0% glucose in water for injection.
- One or more carbohydrates may be used in lieu of glucose.
- the pH may be adjusted to around 4.0 with hydrochloric acid.
- Each chamber is filled with one of the components.
- about 155 ml of the carbohydrate component can fill an end chamber 112 as described above
- about 221 ml of the amino acid component can fill a central chamber 114 as described above
- about 124 ml of the lipid component can fill an end chamber 116 as described above.
- the above-described optional peel seal 124 allows to mix the carbohydrate and amino acid components or all the seals 122 , 124 may be opened to create the ternary PN formulation.
- the container permits the selective opening of only the seal adjacent an end chamber with the longitudinal length substantially greater than the longitudinal length of a central chamber without opening the seal adjacent the lipid chamber as discussed above.
- a PN formulation for children over the age of two is provided in a 1000 ml container having three chambers, preferably container 210 .
- the PN formulation can include a carbohydrate component and can be housed in an end chamber 212 having a volumetric capacity of about 383 ml and having a longitudinal length substantially greater than the longitudinal length of the center chamber 214 . This is to permit selective opening of the seal 224 adjacent the carbohydrate containing chamber 212 without opening the seal 222 adjacent chamber 216 .
- An amino acid component can be included in the PN formulation and can be housed in central chamber 214 having a volumetric capacity of about 392 ml.
- a lipid component can be included in the PN formulation and can be housed in an end chamber 216 having a volumetric capacity of about 225 ml.
- the lipid component can be formulated as described above and the amino acid component can be formulated for the TT population as shown in table A above.
- a preferred carbohydrate component for the PN formulation for all three patient populations can comprise 50.0% glucose in water for injection.
- One or more carbohydrates may be used in lieu of glucose.
- the pH may be adjusted to around 4.0 with hydrochloric acid.
- Each chamber is filled with one of the components.
- about 383 ml of the carbohydrate component fills end chamber 212 as described above, about 392 ml of the amino acid component fills central chamber 214 as described above, and about 225 ml of the lipid component fills end chamber 216 as described above.
- Each component can be administered to the patient separately or all the seals 222 , 224 may be opened to create the PN formulation. However, in some instances it may not be advisable to administer the lipid component such as if it is the first day, the patient is suffering from septic shock, coagulation abnormalities, high bilirubin level or other reasons.
- the container permits the selective opening of only the seal adjacent an end chamber with having a longitudinal length substantially greater the longitudinal length of the central chamber without opening the seal adjacent the lipid chamber as discussed above.
- the reduced fluid level permits the healthcare professional to administer other fluid therapy which may be desirable in certain circumstances.
- containers of TPN formulations in accordance with the present invention may be placed in pouches selected to retain solution viability and protect the solution from degradation.
- an overpouch is provided for housing a container 10 , 110 , 210 , 310 , 410 , 510 having multiple chambers containing a carbohydrate component, a lipid component and an amino acid component of a TPN formulation.
- the overpouch is preferably constructed of a multi-layered plastic film or sheet and prevents oxygen from entering the interior of the overpouch. It is also preferable that the overpouch is able to withstand sterilization such autoclaving.
- One or more of the layers of the film used to construct the overpouch can include oxygen scavenging polymers or the layer can provide a physical barrier to prevent oxygen permeation.
- FIG. 11 shows a cross-section of one embodiment of the film 310 used to construct the overpouch.
- the preferred film 58 comprises 4 layers 60 , 62 , 64 , and 66 .
- Layer 60 is the exterior most layer of the film and is preferably a high melting temperature polymer having an oxygen barrier coating.
- layer 60 is a polyester material having an aluminum oxide coating 68 .
- the thickness of layer 60 can range from about 6 to about 18 um, preferably from about 10 to about 14 um, most preferably about 12 um.
- the coating 68 can range in thickness from about 400 Angstrom.
- the layer 312 is oriented so that the aluminum oxide coating faces toward the interior of the overpouch.
- next layer 62 moving towards the interior is same as layer 60 except that the coating 70 faces the exterior.
- a different polymer having oxygen impermeable qualities can be used instead such as an oxygen scavenging polymer.
- the two layers 60 and 62 are bonded or welded together in a variety of ways. As shown on FIG. 111 , an adhesive 72 is placed between layers 60 and 62 .
- the adhesive can be applied in a thickness range of from about 1.5 to about 5.5 um, preferably about 3.5 um. While many different adhesive may be used, the preferred adhesive is a polyurethane-polyester resin adhesive
- Layer 64 is preferably a nylon material, more preferably nylon-6.
- the thickness of layer 64 can be from about 10 to about 20 um, with the preferred thickness being about 15 um.
- Layer 64 is bonded to layer 62 with adhesive 74 which in this embodiment is the sane adhesive and thickness as adhesive 72 .
- Layer 66 is the interior most layer and is preferably a polypropylene material, more preferably a cast polypropylene.
- the thickness of layer 66 can range from about 30 to about 70 um, more preferably about 50 um.
- Layers 64 and 66 are also bonded together with an adhesive 76 which in this embodiment is the same adhesive and having the same thickness as adhesive 72 .
- the overpouch can be made from two webs having different structures.
- the top web can be the structure described above whereas the bottom web could be a thermoformable structure or an opaque structure or could have a sealant layer allowing peelable opening.
- a multiple chamber container 10 ( FIG. 1 ) storing a TPN formulation is then placed in the overpouch.
- the headspace of the overpouch is fed with an inert gas such as nitrogen to remove the atmospheric oxygen and then the overpouch can be sealed.
- the overpouch can be closed using an adhesive or by heat sealing. Once the overpouch is seal shut the entire package can be sterilized.
- a odor absorber (not shown) can be placed in the overpouch.
- absorbers There are many types of absorbers that can be used and most of them contain active carbon that attracts and attaches the molecules to the surface of the pores with Van der Waals forces mechanism.
- an oxygen absorber can also be placed in the overpouch to absorb any oxygen that may still be left inside the over pouch or that may diffuse through the overpouch material during the shelf life of the product.
- the oxygen absorber has also the capability to absorb the H 2 S by establishing covalent bonding with iron to form iron sulfur. It is also contemplated that a combined oxygen and odor scavenger may be used.
- the container housing the cysteine containing TPN formulation should be permeable to the hydrogen sulfide so that it can enter the interior of the overpouch were it can be absorbed or scavenged.
- sterilization at a slightly higher temperature than the industry standard of 121 degrees centigrade may be performed to reduce the level of hydrogen sulfide.
- sterilization at 125 degrees centigrade and for a shorter time period or sterilization cycle has been found to reduce hydrogen sulfide levels and reduce the degradation of some of the amino acids. With less degradation the formulated levels of amino acids can be closer to the levels desired after sterilization which facilitates the ability to tightly control the amino acid levels.
- an oxygen indicator is provided.
- Oxygen indicators are used to demonstrate that the oxygen sensitive components of TPN formulation such as lipid emulsions were not exposed to undesired oxygen levels during transport and/or storage.
- a preferred oxygen indicator provides a distinct and marked color change to indicate oxygen is present even after undergoing heat sterilization. Moreover, once the color change has occurred the oxidized color must then remain substantially unchanged visually to the observer in circumstances in which the indicator is not observed for some time such as during prolonged storage.
- the indicator of the present invention is placed in the overpouch and may be adhered to the medical container prior to sterilization.
- the indicator must be able to withstand steam sterilization.
- the reduced color of the indicator i.e. the color of the indicator prior to exposure to oxygen sufficient to oxidize the indicator, should still change color when oxidized (exposed to a sufficient amount of oxygen) and the oxidized color should remain substantially unchanged visually and distinct from the reduced color.
- the indicator is manufactured in its oxidized form and is reduced upon steam sterilization. Additionally, both the color of the reduced forms and the color of the oxidized form should not fade or significantly change during storage of up to three months at 40° C. more preferably up to six months at 40° C. Further, both the color of the reduced form and the color of the oxidized form should not fade or significantly change during storage of up to two years at 25° C. and 30° C.
- the oxygen indicators come in small pouches containing an indicator solution.
- the pouches are usually constructed of a top web and bottom or base web which are sealed about their edges to each other to create a sealed pouch.
- An adhesive such as double-side tape can be placed on the base web to fix the indicator pouch inside the secondary packaging or to the container housing the medical formulation.
- the indicator is fixed on the surface of the oxygen absorberd.
- the material forming the pouch can be selected to comply with the kinetic of color change requirement. Some such materials can be:
- a pinhole exposure to an oxygen environment caused the color of the indicator to change in less than three days to indicate the presence of oxygen.
- the indicator solution includes indigo carmine that changes from a yellow color when in reduced form which indicates a lack of oxygen to a blue when oxidized by the presence of oxygen.
- the pouches are preferably constructed with a transparent portion to view the color of the indicating solution.
- the indicator solution is prepared under atmospheric conditions which means that the indicator is in its oxidized form and blue in color.
- the pouch containing the oxidized form of the indicator solution is placed in an overpouch with the container housing a TPN formulation and the overpouch is sealed and sterilized.
- the indicator solution is reduced and the solution turns yellow.
- the oxidation reduction reaction is shown below:
- the reaction is reversible, i.e. the solution becomes blue again upon exposure to oxygen.
- the indicators should be formed using components that would be nontoxic to the contents of the containers and to those users of the product who may be exposed to the indicator solution if there is a leakage through a breach in the film.
- the components would consist of food additives that are well known for their non-toxicity.
- An embodiment of an oxygen indicator is based on a 3 g/L indigo carmine concentration.
- the specific formulation is a mixture of 20 ml of 1.5% indigo carmine, 80 ml of 0.13M of sodium pyrophosphate and 18 g of microcrystalline cellulose and pH adjusted to 8.75 with HCl.
- the oxidized color of this currently available oxygen indicator produces a blue color when oxidized but this color degrades relatively quickly. After three months of storage at 40° C., the blue color fades to a skin color that it not distinct enough from the yellow color or reduced form of the indicator. This faded color would fail to provide unambiguous identification of exposure to oxygen. Similar results were observed for sample maintained at 30° C. for 8 months and 25° C. for 12 months.
- the indigo carmine concentration was increased to 6 g/L concentration and compared to the currently available indicator (reference).
- the table below provides details of each formulation.
- Sodium Indigo Pyrophosphate HCl adjusted carmine 1.5% 0.13 M Cellulose pH Reference 20 mL 80 mL 18 g 8.75 Alternate1 40 mL 60 mL 30 g 8.75
- FIG. 12 A graphical representation of the above date is shown in FIG. 12 .
- the initial absorbance after sterilization is about 1.4 AU with the alternate 1 formulation versus 0.8 AU for the first iteration.
- the trend of decreasing is similar for both iterations.
- a longer stability of the oxidized color is expected but the expected 24 months' stability might be borderline with this formulation.
- cellulose Other types were also investigated using the reference indicator formulation, specifically DS-0 TLC cellulose, colloidal micro-crystalline cellulose, powder for chromatography cellulose, powder for chromatography acid washed cellulose, low and high viscosity carboxymethyl cellulose sodium salt, acetate cellulose and methyl cellulose. No major difference was observed between the formulations including other insoluble cellulose compounds. The testing did show that insoluble cellulose cannot be replaced by soluble grafted cellulose.
- EDTA was investigated as an additive known as a stabilizing agent. Again, the EDTA did not have a significant effect on the degradation of the oxidized color of the indicator.
- the indicating solution includes, in addition to indigo carmine, a buffer for pH adjustment in the range of about 9.0 to about 9.75 prior to sterilization and from about 7.0 to about 9.0 after sterilization, cellulose and a reducing agent.
- Indigo carmine is deemed as not a hazardous substance under European Community Directive 67/548/EEC.
- the concentration of indigo carmine can be greater than 6 g/l and less than about 60 g/L, preferably from about 10 to about 40 g/L, more preferably from about 14 to about 20 g/L with the lower concentration producing a more pleasing visual indicator. Concentrations of indigo carmine above 20 g/L further exceed the solubility limit and one would observe a lack of homogeneity in the color such as spots or clumps of dark color
- Buffers can include phosphate and acetate buffers. Specific buffers include sodium phosphate buffers and sodium acetate buffer with a preferred being sodium pyrophosphate buffer. Sodium pyrophosphate is deemed as not a hazardous substance under European Community Directive 67/548/EEC. Concentration of the sodium pyrophosphate buffer can be from about 0.11M to about 0.18M, preferably from 013M to about 017M. Other buffers may be suitable to arrive at the desired pH of 7-9 after sterilization. It has been observed that for the sterilization cycle being used for such nutritional products that a pH prior to sterilization of 9.0-10.0 will lead to the desired post sterilization pH.
- Color and/or thickening agents can include insoluble cellulose compounds since it also has some reducing ability and is an approved food additive.
- Preferred cellulose is microcrystalline cellulose included at from about 150 to about 210 g/L, more preferably at about 180 g/L. Microcrystalline cellulose is deemed as not a hazardous substance under European Community Directive 67/548/EEC. Levels of cellulose up to 300 g/L were used but the mixture becomes a paste like mixture which creates issues in manufacturing using preferred equipment. It is envisioned that greater concentrations are feasible using other manufacturing techniques for producing the indicator.
- An additional reducing agent is included such as one or more reducing sugars.
- a preferred reducing sugar can be dextrose although other reducing agents and sugars may be employed. However as previously described, in a preferred embodiment reducing sugars that are approved food additives are used.
- dextrose is a common ingredient used in infusion fluids. The concentration of the dextrose has to be adjusted in function of the indigo carmine concentration. It can be between about 1 and about 5 g/L of anhydrous dextrose, preferably from about 2 to about 4 g/L more preferably from about 2.5 to about 4 g/L. Higher levels of dextrose lead to a decrease in pH of the resultant mixture after sterilization which negatively impacts on the performance of the indicator.
- an indigo carmine mixture retains the yellow color and remains functional, i.e. chances from yellow to blue upon exposure to oxygen, after at least three months of storage at 40° C. and more preferably up to six months of storage at 40° C.
- the oxidized form retains the blue color for at least three months of storage at 40° C. and more preferably up to six months of storage at 40° C.
- an indicator mixture is made by dissolving from about 14 to about 20 grams of indigo carmine in one liter of water.
- the water is preferably distilled.
- the mixture also include from about 2-5 to about 4.0 grams/L dextrose and from about 60 grams/L to about 75 grams/L tetrasodium pyrophosphate.
- a thickening agent acting as color enhancer and having reducing ability is included in the mixture such as, microcrystalline cellulose added at about 180 grams/L.
- An indigo carmine indicator mixture was made as follows:
- This mixture was placed in small pouches that were packed with oxygen absorber in an oxygen barrier overpouch and exposed to steam sterilization at 121° C.
- the samples were then stored in reduced form and the reduced form, i.e. yellow color of the indicator mixture, was still yellow after storage in a substantially oxygen free environment for 112 days at 50° C.
- An indigo carmine indicator mixture was made as follows: 14 g indigo carmine, 60 g tetrasodium pyrophosphate, 2.00 g anhydrous dextrose and 180 g microcrystalline cellulose were added to one liter of distilled water. The results were similar to those found in Example 2 above.
- a 14 g/L indigo carmine solution was made to determine the degradation kinetics of the blue color or oxidized form during a few months storage.
- the indicator was made by mixing 14 g of indigo carmine, 60 g of tetrasodium pyrophosphate, 2.5 g of anhydrous dextrose and 180 g of cellulose in one liter of distilled water.
- An indigo carmine indicator mixture was made as follows:
- this 20 g/L formulation showed no degradation of the oxidized color after 124 days, but this may be due to saturation of the detector as absorbance values approach 4 A.U. in conjunction with some water loss.
- absorbance values approach 4 A.U. in conjunction with some water loss.
- samples are diluted 10 times, a slight decreasing trend in absorbance is observed at 40° C. but again, the results indicate that the 6 months stability of the oxidized blue color at 40° C. will be reached with this formulation.
- the 20 g/L formulation was made by dissolving 150 g of sodium pyrophosphate in 2000 ml of water. In this solution 40 g of indigo carmine was added followed by 8 g of anhydrous dextrose. The solution was stirred for a few minutes to maximize the dissolution of indigo carmine. 360 g of cellulose was then added. The pH was measured but not adjusted. The pH should be above 9.4.
- a large number of small pouches were produced with half of which were filled with about 0.2 ml of the 14 g/L indicator formulation and the other half with the 20 g/L indicator formulation. These indicator pouches were then placed in separate overpouches containing multi-chambered bags of water. Half of the overpouches containing the 14 g/L indicators were heat sterilized using a short heat sterilization procedure, specifically 27 minutes exposure at 121° C. to determine if the indicators would change from the oxidized form (blue color) to the reduced form (yellow color) and the other half of the 14 g/L indicator were heat sterilized using a long heat sterilization procedure, specifically +42 minutes exposure at 122° C. to test the stability of the both the reduced color and oxidized color. The same was performed on the overpouches containing the 20 g/L indicators.
- a subset of the stored samples was selected from the exposed lots and the unexposed lots from each room.
- the indicator from the exposed lot was examined to determine whether the indicator still indicated the presence of oxygen by displaying a blue color.
- the non-exposed samples were initially examined to determine if the indicator still indicated the absence of oxygen, then the overpouch was pierced with the 21 G needle to allow oxygen to flow into the overpouched product and the indicators were observed for a color shift sufficient to show the presence of oxygen.
- a pinhole was pierced in the overpouch using a 21 G needle of all the units including the illuminated units. All units turned blue after puncturing within 1 to 67 hours.
- the closest Pantone® reference was estimated at each temperature and period and the results for each temperature and period are shown in FIGS. 20, 21 , 22 which indicate the oxidized color of the oxygen units, did not vary significantly after 6 months storage under any of the storage conditions tested.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Medical Informatics (AREA)
- Botany (AREA)
- Alternative & Traditional Medicine (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Dermatology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Pediatric Medicine (AREA)
- Emergency Medicine (AREA)
- Dispersion Chemistry (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application Ser. No. 60/704,555 filed on Aug. 2, 2005.
- The present invention is directed generally to medical solutions, containers for storing medical solutions and oxygen indicators for detecting the presence of oxygen in a medical container. More particularly, the present invention is directed to ready-to-use ternary parenteral nutritional formulations for certain patient populations, particularly fluid limited populations, the container systems for long-term storage and selective administration of such formulations and oxygen indicators for such container systems. More specifically, the present invention is directed to such formulations being stored in flexible containers having multiple chambers for isolated long-term storage of the various nutritional components of such formulations, oxygen indicators for alerting healthcare professionals of an oxygen compromised container and containers facilitating selective sterile admixing into a ready to infuse formulation and administration of such formulation. Even more specifically, the invention is directed to multi-chamber containers allowing selective admixing of two or more solutions contained in the chambers such as nutritional solutions of lipids, carbohydrates, amino acids and electrolytes and oxygen indicators able to withstand heat sterilization and having acceptable storage characteristics.
- Medical solutions such as parenteral and enteral nutrient solutions, dialysis solutions, pharmacological solutions, and chemotherapy solutions are routinely stored in a variety of containers made of glass or plastic. While glass containers offer many benefits such as gas impermeability and virtually complete compatibility with medical solutions, glass containers are heavy, easily broken, difficult to handle and can release aluminum into the solutions. As a result, more and more medical solutions are being stored in plastic containers. Flexible containers such as bags made from plastic films have gained increased acceptance.
- Frequently the prescription to be administered to a patient is comprised of components which will are not compatible for long storage periods. One method of overcoming this limitation is to combine or compound the components just prior to administration. Such compounding may be accomplished manually or with automated compounders. However such a combination method is time consuming, may give rise to errors in formulation and increases the risks of contamination of the final mixture.
- To overcome the drawbacks of long tern incompatibility and reduce the risks of compounding, flexible containers can be formed with multiple chambers for separately storing medical solutions. These bags are formed with frangible connections or peal seals which provide for mixing of the all the contents of the chambers by manipulation of the connections or seals. A drawback of utilizing such multi-chamber containers is that one is restricted to the formulation which are provided by the supplied components and proportional amounts which are housed in the various chambers. When seeking to address the needs of varying patient populations, particularly fluid restricted populations, such restriction may hinder the ability to utilize such a containers, cause use of only a portion of the contents of such a container or cause multiple versions of such containers to be stored.
- As described previously, flexible containers having multiple chambers such as multi-chamber bags have separation means that permit communication and mixing of the separately stored components or solutions. Some such multiple chamber containers utilize frangible valves while others use a score line or line of weakness in the barrier separating the chambers to effect mixing of the separately stored components. Still others use tear strips or tear tabs. More advantageous multi-chamber containers in terms of cost and ease of use are of the type which include peel seals formed by heat or radio frequency sealing of the two sheets of thermoplastic material that comprise a flexible bag to define multiple interior chambers. The heat seal provides a barrier that is resistant to unintentional opening forces but is openable with the application of a specific force. These types of multiple chamber containers are disclosed in U.S. Pat. No. 6,319,243 which is incorporated herein by reference.
- Plastic containers such as those just discussed however can also present unique issues which must be addressed. One possible issue is that heat sterilization such as autoclaving can affect certain plastic materials used to form the container and/or the heat seal separating the chambers. Another possible issue is that certain plastic materials are permeable to atmospheric oxygen and may inadequately protect oxygen sensitive solutions or components. Yet another is that certain fat soluble or lipophilic solutions or components may not be compatible with certain plastic materials. For example, lipid formulations such as Lipid emulsions used in parenteral nourishment cannot be stored in certain plastics because it can leach out some plastic material from the container. The lipid emulsion would be contaminated and the plastic containers integrity can be compromised.
- Lipid emulsions are generally one component of a parenteral nutritional solution (PN). Ternary parenteral nutritional formulations are used to provide all the nutritional components required by a patient. These PN formulations include also a carbohydrate component, an amino acid component, vitamin, trace element mid electrolytes components. Because of various incompatibilities, nutritional components of PN formulations are prime examples of medical solutions that cannot be stored long term as a mixture in a ready-to-use state. They can only be combined in a relatively short time period prior to administration.
- The individual constituents of each component should be determined by the nutritional recommended requirements of the particular patient population to be treated. For example, PN formulations for adult patients may have different constituents in each component or at least different amounts of each constituent than PN formulations for infants. Moreover, preparation of the separate components of PN formulations for premature infants, neonatal patients or small children presents unique problems. For one, the volume of fluid that may be infused into such patients is relatively small. Seeking to provide all of the desired nutritional components in such a low volume is extremely difficult. For example, the concentration ranges for individual constituents of certain component solutions must be narrowly constricted. In addition, some of the individual constituents are either interdependent or incompatible if present in certain forms and concentrations. For example, the breadth of the acceptable concentration range for magnesium for a premature infant is about 0.2 mmol. In other words, the difference between the lowest acceptable concentration of magnesium and the highest acceptable concentration of magnesium is 0.2 mmol. In addition, there is a limit to the amount of chloride a premature infant can tolerate; so in an attempt to provide the required amount of certain electrolytes such as magnesium and calcium as a chloride, the chloride maximum may be exceeded. Furthermore, electrolytes such as calcium and phosphate may be incompatible in certain concentration levels.
- Also, storing the components of a PN formulation in a single or multi-chamber plastic container for sterile mixing to form the PN formulation also presents unique problems. As already discussed above, the lipid component is incompatible with certain plastic material. In addition, some of the components are sensitive to oxygen which can permeate through certain plastics. Overwraps or overpouches are typically used to restrict the ability of oxygen to get to the multi-chamber containers; however, the overwrap may still allow a small amount of oxygen to diffuse through. In addition, the overwrap may develop a leak which would allow an excessive amount of oxygen to be exposed to the container. Such a leak may not be visible and the presence of such oxygen needs to be indicated to the health care provider. While oxygen indicators exist they appear to not be able to withstand heat sterilization and still function properly after prolonged storage. In other words, the oxygen indicator should be able to indicate the presence of oxygen (oxidized form or positive result) such as with a change in color that is distinguishable from the condition indicating a lack of presence oxygen (reduced form or negative result). Additionally, the oxidized and reduced colors of the indicator should not fade or alter after prolonged storage so as to create uncertainty as to the result.
- Furthermore, certain amino acids with thiol function, such as cysteine or acetyl-cysteine can form hydrogen sulfide as a decomposition product during sterilization. An excessive level of hydrogen sulfide may negatively affect some of the nutritional components. Moreover, while the all the separately stored components are mixed to form the final PN formulation prior to administration, there are circumstances when it is undesirable to include one or more of the components found in one of the chambers in the final solution. For example, it may be desirable to not include the lipid component in the final solution for infants under septic status, coagulation abnormalities, high bilirubin level or for other reasons.
- Therefore, there is a need for a flexible multiple chamber container that facilitates selective opening of one but not another frangible barrier, less than all the frangible barriers or the frangible barriers in a sequential manner.
- There is also a need for individual components of a PN formulation that meets the recommended volume and nutritional requirements for certain patient populations and in particular infants or small children at different stages of development.
- In addition, there is a need for means of providing a reliable indicator that atmospheric oxygen may have contaminated the contents of the container, a low level of hydrogen sulfide in case the formulation contains cysteine or derivatives amino acids and an oxygen absorber to eliminate residual oxygen in the overpouch. It would be desirable to provide absorbers and/or indicators that can withstand heat sterilization and prolonged storage and still possess the ability to indicate that an unacceptable amount of oxygen has been exposed to the container.
- In a first aspect of the present invention an oxygen indicator for detecting the presence of oxygen in medical container is provided. The oxygen indicator comprises: a) greater than 6 and less than 60 g/L, of indigo carmine; b) a buffer to adjust the pH to a range of about 9.0 to about 9.75; c) cellulose; d) a reducing agent; e) water; and f) a color of an oxidized form of the oxygen indicator being distinct from a color of a reduced form of the oxygen indicator; wherein following sterilization by autoclaving, the color of the reduced form remains distinct from the color of the oxidized form and the color of the oxidized form remains distinct from the color of the reduced form for at least six months at 40° C.
- In a second aspect of the present invention an oxygen indicating packet for detecting the presence of oxygen in a medical container is provided. The oxygen indicating packet comprises an oxygen indicator including: i) an oxidized color and a reduced color; the oxidized color being distinct from the reduced color; ii) greater than 6 and less than about 40 g/L of indigo carmine; iii) a buffer; iv) a reducing agent; v) cellulose; and vi) water; wherein following sterilization by autoclaving both the reduced color remains substantially visually unchanged and the oxidized color remains substantially visually unchanged after at least six months at 40° C.
- In a third aspect of the present invention an oxygen indicator is provided The oxygen indicator comprises: a) water; b) greater than 6 and less than about 40 g/L of indigo carmine; c) a buffer; d) at least one reducing agent; and e) an oxidized indicator color and a reduced indicator color distinct from the oxidized indicator color; wherein the indicator is reduced by autoclaving and any subsequent oxidation of the indicator produces the oxidized color that remains distinct from the reduced color for at least six months at 40° C.
-
FIG. 1 is a plan view of one embodiment of a 300 ml container of the present invention. -
FIG. 2 is a cross sectional view of the container ofFIG. 1 ; -
FIG. 3 shows a typical rolling method for opening all the seal of a container having multiple chambers. -
FIG. 4 is a plan view of the container ofFIG. 1 after activation of peel seals; -
FIG. 5 is a plan view of one embodiment of a 500 ml container of the present invention. -
FIG. 6 is a plan view of one embodiment of a 1000 ml container of the present invention. -
FIG. 7 is a plan view of another embodiment of a container of the present invention. -
FIG. 8 is a plan view of another embodiment of a container of the present invention -
FIG. 9 is a plan view of another embodiment of a container of the present invention. -
FIG. 10 is a cross sectional view of one embodiment of a flexible film material used to construct the container of the present invention. -
FIG. 11 is a cross sectional view of one embodiment of a flexible film material used to construct the overpouch of the present invention. -
FIG. 12 is a graph representing Absorbance Units over time of the first and second embodiments of oxygen indicator stored at three different temperature conditions. -
FIG. 13 is a graph of the optical densities of one embodiment of an oxygen indicator of the present invention. -
FIG. 14 is a graph of Absorbance Units over time of one embodiment of an oxygen indicator of the present invention fit in an exponential curve. -
FIG. 15 is a graph representing Absorbance Units over time of one embodiment of an oxygen indicator of the present invention stored at three different temperature conditions. -
FIG. 16 shows the colors of the reduced form of samples of an oxygen indicator of the present invention stored at 25° C./40% RH and categorized by Pantone® references. -
FIG. 17 shows the colors of the reduced form of samples of an oxygen indicator of the present invention stored at 30° C./35% RH and categorized by Pantone® references. -
FIG. 18 shows the colors of the reduced form of samples of an oxygen indicator of the present invention stored at 40° C./25% RH and categorized by Pantone® references. -
FIG. 19 shows the colors of the reduced form of samples of an oxygen indicator of the present invention after illumination of 2000 lux with a daylight tube for 30 days at 25° C. and categorized by Pantone® references. -
FIG. 20 shows the colors of the oxidized form of samples of an oxygen indicator of the present invention stored at 25° C./40% RH and categorized by Pantone® references. -
FIG. 21 shows the colors of the oxidized form of samples of an oxygen indicator of the present invention stored at 30° C./35% RH and categorized by Pantone® references. -
FIG. 22 shows the colors of the oxidized form of samples of an oxygen indicator of the present invention stored at 40° C./25% RH and categorized by Pantone® references. - In one embodiment of the present invention, there is provided a flexible multiple chamber container for separately storing medical solutions prior to use and facilitates selective activation of the frangible barriers separating the chambers. The container is preferably constructed to permit the storage of aqueous or lipid formulations without the leaching issues discussed above and to facilitate selective opening of the frangible barriers separating the chambers.
-
FIG. 1 illustrates one embodiment of a multiple chamber container of the present invention. Preferably, thecontainer 10 which is configured as a bag includes three adjacent chambers orchambers Chamber 12 is located at a lateral orside end 18 andchamber 16 is located at an opposite lateral orside end 20. The threechambers FIG. 1 ,container 10 has a total fluid capacity of 300 ml withchamber 12 having a fluid capacity of 80 ml,chamber 14 having a capacity of 160 andchamber 16 having a capacity of 60 ml. - Preferably, frangible barriers or
openable seals FIG. 2 shows a cross-section ofcontainer 10 and illustrates how theopenable seals chambers -
Container 10 also preferably includesports bottom end 32 of the container to provide communication withchambers port 28 is administration port and includes a membrane that can be pierced by a cannula or spike of an administration set to deliver the contents to a patient andport 26 is for additions. In an alternate embodiment, there are twoadministration ports chambers chamber 16 such as a lipid emulsion if desired. Of course, any number of ports can be used. In addition, the ports may be positioned in any number of ways; however it is preferred that the access ports are located on the same end of the container to permit more efficient manufacturing and filling of the chambers. In a further embodiment, one of theseals - At the
top end 34 of thecontainer 10, preferably oppositeend 32 where the administration port(s) are located, there is provided ahanger portion 36 which in the embodiment shown inFIG. 1 is a flap having a centrally locatedhole 38 for hanging the container. Theflap 36 defines aborder 40 of the upper end of all thechambers central portion 42 of thehanger flap 36 preferably extends a substantial distance towards thebottom end 32 of thecontainer 10, more preferably about one-fourth the longitudinal length L of thecontainer 10 and even more preferably about one-third of the length L of thecontainer 10. Preferably, theflap 36 extends a greater distance towards thebottom end 32 at least at thecentral chamber 14 and can also extend a greater distance towards thebottom end 32 at thecentral chamber 14 and at one of theother chambers flap 36 with respect tocenter chamber 14 results inchamber 14 having a shorter longitudinal length than the longitudinal length of lateral orside end chambers - Before addressing how the configuration of the
chambers hanger flap 36 facilitates selective opening of theseals seals -
FIG. 3 illustrates the typical rolling method of opening theseals chambers hanger flap 36 ortop end 34 is rolled over itself in a squeezing motion. In multi-chamber bags where all the chambers extend substantially the same distance from their respective bottom borders to their respective top borders, rolling the bag would pressurize all the chambers too much risking unintended activation of the wrong seal. Also, multi-chamber bags having a central chamber that extends a greater distance from its bottom border to its top border than the other lateral end chambers, rolling of the bag would pressurized the central chamber and randomly activate one or more seals bordering the central chamber. Multi-chamber containers of the present invention however include chamber arrangements to facilitate selective activation of the seals. - In
container 10,chamber 14 does not extend as far towards thetop end 34 as dochambers chamber 14 is about three-fourths the longitudinal length of theother chambers top end 34 only pressurizeschambers seals hanger flap 36, thecentral chamber 14 is not pressurized preventing the activation or partial activation of the second peel seal. Further rolling and squeezing of the opposite lateral end chamber would activate the other seal. In this manner sequential activation of the seal is possible with containers of the present invention. Accordingly, the formulation which on occasion may not be administered should therefore be housed in one of the chambers located at the lateral ends of the container. - Specifically, if the user wanted to activate only seal 24, the user may start rolling the
bag 10 at thetop end 34. Without pressurizingchamber 14, the user can squeeze the bag at the location ofchamber 12. Onceseal 24 is activated, the user can stop rolling and squeezing. If the user wanted bothseals bag 10 can be rolled starting at thetop end 34 while squeezing down on bothend chambers - Referring briefly to
FIG. 4 after theseals container 10 may be mixed by manipulation of the container and then administered to the patient by first hanging the bag from ahook using hole 38. - Another rolling technique is also used to activate the seals of multi-chamber bags. Referring to
FIG. 1 , this technique also uses a rolling motion except instead of starting at thetop end 34,container 10 is can be rolled starting at one of thetop end corners - In the chamber arrangement of
container 10, selective activation ofseal 24 using the corner rolling technique is as follows.Container 10 is rolled starting atcorner 44. The rolling would continue untilchamber 12 is sufficiently pressurized enough to causeseal 24 to activate.Chamber 12 can also be squeezed in order to prevent rolling the container too far. Sincechamber 14 does not extend towards thetop end 34 as far aschamber 12, the rolling is not enough to pressurizechamber 14 to the degree necessary to activateseal 22 by thetime seal 24 is activated. Therefore, ifchamber 14 were to extend the length of the container to the same degree aschambers 12, much more attention and care would have to be exercised to prevent inadvertent pressurizing of chamber, 14 if it could be accomplished at all. - Two other embodiments of the container of the present invention are shown in
FIGS. 5 and 6 .Containers FIGS. 5 and 6 , respectively also include threechambers Containers container 10. The only significant difference is the size and capacity of thecontainers FIG. 5 , in a preferred embodiment,container 110 has a fluid capacity of 500 ml withchamber 112 having a fluid capacity of 221 ml,chamber 114 having a capacity of 155 ml andchamber 116 having a capacity of 124 ml. - As illustrated in
FIG. 6 , in apreferred embodiment container 210 has a fluid capacity of 1000 ml withchamber 212 having a fluid capacity of 392 ml,chamber 214 having a fluid capacity of 383 ml, andchamber 216 having a fluid capacity 225 ml. -
Containers peelable seals containers - Just as
container 10,containers containers hanger flaps container 110, 210) respectively more so with respect tocentral chambers chambers lateral end chambers Rolling containers corners containers central chambers -
Containers access ports access ports containers FIGS. 7, 8 , and 9 illustrate other embodiments of a multiple chamber container of the present invention.Containers adjacent chambers Chambers chambers Hanger portion 336 is located at thetop end 334 and includeshole 338 for hanging the container.Hanger portion 336 defines thetop border 340 ofchambers Chambers 312 is separated fromchamber 314 bypeelable seal 324, andpeelable seal 326 separateschamber 314 from 316.Container 410 also includespeelable seals separating chamber 412 fromchamber 414 andchamber 414 fromchamber 416, respectively.Peelable seal 524 separateschamber 512 fromchamber 514 andpeelable seal 526 separateschamber 514 from 516. The peelable seals allow isolated storage of distinct formulations in the chambers for subsequent admixing prior to administration. -
Chamber 314 has a longitudinal length that is from about two-thirds to about three-quarters the longitudinal lengths of bothlateral end chambers chambers peelable seal container 310 starting attop end 334 and squeezingchamber 312 orchamber 316 depending on which of thepeelable seals - As is shown in
FIG. 8 , thelateral end chamber 416 ofcontainer 410 has a longitudinal length that is from about two-thirds to about three-fourths less than the longitudinal length ofchamber 412 positioned at oppositelateral end 418 and is equal to the longitudinal length oflateral end chamber 416.Chamber 412 having a longitudinal length greater than that ofchamber 414 allowspeelable seal 424 to be activated without the inadvertent activation ofpeelable seal 426 when rollingcontainer 410 starting attop end 434. -
Container 510 shown inFIG. 9 includeschambers Lateral end chamber 512 has a longitudinal length that is from about twenty five percent to about thirty three percent greater than the longitudinal length ofchamber 514 which in turn has a longitudinal length that is from about twenty five percent to about thirty three percent greater than the longitudinal length ofchamber 516Rolling container 510 starting at thetop end 534 allows selective activation ofpeelable seal chamber 512 untilseal 524 activates. Further rolling would begin topressurized chamber 514 untilseal 526 activates. Any additional chamber included betweenchamber chamber 512 but greater than the longitudinal length ofchamber 514, or betweenchamber chamber 514 but greater than the longitudinal length ofchamber 516 may allow sequential activation of seals starting with theseal bordering chamber 512 and end with theseal bordering chamber 516 when rolling the container starting at thetop end 534. - It is contemplated that one or more of the chambers could store a non-liquid such as a solid in powder or crystalline form with at least one chamber holding a liquid for dissolving the solid once the communication is established between the chambers.
-
FIG. 10 is a cross-sectional view of one embodiment of the film orsheet 48 used to construct thecontainer 10. Preferably, thesheet 48 is made from fourlayers outer layer 50 is preferably formed from a high melting temperature flexible material, more preferably a polyester material such as PCCE copolyester. Such a PCCE copolyester is sold by Eastman Kodak under the designation Ecdel 9965. A typical thickness of theouter layer 50 is from about 0.39 mils to about 0.71 mils with the actual thickness of the outer layer show inFIG. 3 being 0.55 mils. - A
tie layer 52 is provided to secure thefirst layer 50 to athird layer 54. Preferably the tie layer is a highly reactive polymer adhesive such as EVA copolymer chemically modified with maleic acid. Such a material is available from DuPont under the name Bynel E-361. Thetie layer 52 may have a varied thickness for example from 0.20 mils to 0.60 mils, e.g., 0.40 mils. - The
third layer 54 preferably is a radio frequency (RF) responsive polymer, such as EVA copolymer. Such a material is available from DuPont under the name Elvax 3182-2. Preferably the third layer has a thickness of about 5.56 mils to about 6.84 mils, e g., 6.20 mils. - This film also includes a
sealant layer 56 constructed of: 1) a bulk polyolefin that is thermally stable at heat sterilization temperatures, yet melts below the outside layer melting temperature; such polymers are preferably polypropylene-ethylene copolymers, such as grades Z9450 or 8650 from Total; and 2) a thermoplastic elastomer which produces a more flexible and free radical resistant sealant layer and gives the sealant layer two melt points with the elastomer having the lower value; such polymers preferably are styrene-ethylene-butene-styrene block copolymers such as Kraton G-1652 from Kraton polymers. The sealant layer preferably has a thickness of from about 1.28 mils to about 1.92 mils, e.g., 1.60 mils. Thesealant layer 56 is adjacent the interior side of the container 10 (FIG. 1 ) such that when the seal is ruptured, communication is provided between the chambers. - The
container 10 is constructed by overlaying two sheets on one another or by folding one sheet over onto itself or by flattening an extruded tube if tubular extrusion is used.FIG. 10 shows twosheets layer 56 contacting thecorresponding layer 56 a ofsheet 48 a. Thesheets - The peelable seals are formed preferably using a heated seal bar to heat and soften the
layer 56, but not liquefy the layer. A resulting cohesive bond develops from contact between thesheet 48 and thesheet 48 a, but fusion between the sheets, which can cause permanent bonding, does not occur. The peelable seals can be formed to require a force of from about 16 to about 21 Newtons to open or activate the peelable seals, preferably about 19N. In order to obtain such an activation force, the temperature of the seal bar will vary depending upon the material used to construct the container. Forfilm 48, the seal bar can be heated to from about 116 to about 122° C., preferably about 118° C. It should be noted that this temperature can vary substantially between different lots of the same film material and that the cohesive bond of the peelable seal is slightly reinforced or strengthened by heat sterilization. - A more detailed explanation of forming the peelable seal is provided in U.S. Pat. No. 6,319,243 which incorporated herein by references.
- Referring to
FIG. 1 , theports chamber 16 thenport 30 is preferably constructed from a non-PVC containing material. If no administration site is added on the port of the chamber containing lipid, the port will be more preferably formed of a monolayer extruded tube with the following preferred formulation: - 60% Polypropylene Total 8473
- 40% Styrene ethylene butylenes styrene copolymer Kraton G1652
- This port is then sealed off after filling.
If an administration site is added on the port of the chamber containing lipid, the port will be more preferably formed of a three layer coextruded tube with the following preferred formulations: - External layer (+/−330 um):
- 100% Polypropylene Solvay Eltex PKS490
- or
- 60% Polypropylene Total 8473
- 40% Styrene ethylene butylenes styrene copolymer Kraton G1652
- Medium layer (+/−170 um)
- 35% Polypropylene Fortilene 4265
- 25% Polyethylene Tafmer A4085
- 10% Styrene ethylene butylenes styrene copolymer Kraton FG1924
- 10% Polyamide Macromelt TPX16-159
- 20% EVA Escorene UL00328)
- or
- 50% Styrene ethylene butylenes styrene copolymer Kraton G1660
- 38% Polyester Dupont Hytrel 4056
- 10% EVA AT Plastic Ateva 2803G
- 2% Polypropylene Total 6232
- Internal layer (+/−330 um)
- 50% EVA Escorene UL00119
- 50% EVA Escorene UL00328
- or
- 50% EVA Ateva 2803G
- 50% EVA Ateva 1807G
- In a preferred embodiment some or all of the
ports - A comparison was of a 300 ml multi-chamber container of the present invention best exemplified by
container 10 was compared to a currently available multi-chamber container which was the same in all respects tocontainer 10 expect that the hanger flap extended only about half as far into the central chamber ashanger flap 36 extends intochamber 14 making the central chamber of this bag slightly larger in capacity. The same central and lateral end chambers were filled with water while the other lateral end chamber was filled with a colored solution Additional water was added in the central chamber to compensate for the added volumetric capacity. In other words even though the central chamber ofcontainer 10 had a slightly smaller volume than the central chamber of other container they were similarly inflated with water. - Twenty operators were selected (10 male & 10 female). Each operator received 5 units of each design and the following instructions:
- Instructions: For the ten containers, we are asking you to use the rolling procedure starting from the hanger end of the container to open only the peel seal separating the two compartments filled with colorless water. The peel seal separating the compartment filled with blue colored water should not be opened.
- The operators were asked “Which design allows an easier and more efficient activation of only one peel seal of the bag?” All twenty selected
container 10 of the present invention - In different embodiment of the present invention, six parenteral nutritional (PN) formulations are provided for three patient populations. The patient populations are pre-term infants (PT), term to two years old children (TT), and children over the age of two (OT). The PN formulation can have three components which are stored separately and mixed prior to administration. The three components can be a carbohydrate component, an amino acid (AA) component and a lipid component. One or more electrolytes can also preferably be included in the PN formulations The electrolytes can be included in one or more of the components or can be added by the healthcare professional either before or after the components are combined. Preferably, one or more electrolytes can be included in the carbohydrate component, but more preferably, one or more of the electrolytes are included in the amino acid component.
- The three components of the preterm PN formulation are preferably stored in a container having three chambers separated by openable seals such as frangible or peelable seals, having a total capacity of about 300 ml and having the ability to selectively open the seals, more preferably in container 10 (
FIG. 1 ) described above. The three components of the PN formulation for term to two years old children is preferably stored in a similar three chamber container except that the container has a total capacity of about 500 ml, more preferably in container 110 (FIG. 5 ) described above. The three components of the PN formulation for children over the age of two are preferably stored in a similar three chamber container, except that the container has a total capacity of about 1000 ml, more preferably in container 210 (FIG. 6 ) described above. - The carbohydrate component can include an aqueous solution containing from about 10% to about 70% of one or more carbohydrates such as glucose, fructose, and or sucrose. The amino acid component can include an aqueous solution containing from about 3% to about 10% of one or more amino acids. The lipid component can include an emulsion containing about 10% to about 30% of lipids such as fatty acids and/or triglycerides from plant, animal or synthetic sources such as, but not limited to olive oil, Medium Chain Triglyceride oil, soybean oil and fish oil. All of the percentages are expressed in weight to volume (w/v) unless otherwise specified.
- Several members of the scientific community have determined mean nutritional recommended guidelines (MNRG) for the amino acids, carbohydrate, and lipid components and the likely minimum to maximum nutritional guidelines (MMNG) for the electrolytes see below per kilogram per day for the three patient populations as shown in the following table:
NUTRIENT PT (/kg/day) TT (/kg/day) OT (/kg/day) Amino acid 3.75 g 2.5 g 1.8 g Carbohydrate 16 g 15 g 15 g Lipid 3 g 3 g 2.2 g Sodium 0.0-2.5 mmol 2.0-2.2 mmol 1.0-3.5 mmol Potassium 0.0-2.5 mmol 1.0-2.2 mmol 1.0-2.5 mmol Phosphorus 1.0-2.25 mmol 0.5-0.6 mmol 0.2-0.6 mmol Calcium* 1.3-2.25 mmol 0.5-0.6 mmol 0.2-0.3 mmol Magnesium 0.2-0.5 mmol 0.2-0.3 mmol 0.1-0.2 mmol Chloride <6 mmol 2-3 mmol 3-5 mmol Fluids (water) 120 ml 100 ml 80 ml
*The ratio of calcium to phosphorus should be between 1:1 and 1:1.1.
- Referring to
FIG. 1 in one embodiment of the present invention a PN formulation for preterm infants is provided incontainer 10. The PN formulation can include an amino acid component that can comprise a solution including water for injection, malic acid for pH adjustment to about 5.5 and the following amino acids:Amino Acid Concentration (g/100 ml) Lysine 0.641 Glutamic acid 0.583 Leucine 0.583 Arginine 0.489 Alanine 0.466 Valine 0.443 Isoleucine 0.390 Aspartic acid 0.350 Phenylalanine 0.245 Glycine 0.233 Serine 0.233 Histidine 0.221 Threonine 0.216 Ornithine (as 0.185 mg Ornithine 0.145 Hydrochloride) Proline 0.175 Methionine 0.140 Tryptophan 0.117 Cysteine 0.110 Taurine 0.035 Tyrosine 0.045 Totals 5.726.860 - While the above amino acids at their respective amounts are preferred, other amino acids in different amounts and combinations may be used. Nevertheless, cysteine should be present in amino acid solutions; specifically those administered to preterm infants because cysteine is a conditionally essential amino acid and because preterm infants a limited capacity to synthesize cysteine.
- The PN formulation can also include a lipid component that can comprise a 12.5% lipid emulsion in water for injection
Lipid emulsion at 12.5% Role Concentration Purified olive oil Active drug about 80% of total oil Soybean oil Active drug about 20% of total oil Egg phospholipids Emulsifier 1.2% Sodium oleate Emulsifier 0.03% Glycerol Iso-osmolarity 2.25% Water for injection Dispersant qs - Olive oil is a preferred lipid because of its desirable immunoneutrality. The above combination is preferred because the combination evokes less peroxidation and no additional oxidative stress. While these are the preferred lipids and lipid concentration, other lipid sources may be used such as lipids from animal, vegetable or synthetic origin.
- The PN can also include a carbohydrate component that can comprise a 50% aqueous glucose and electrolyte solution as shown in the following table:
Concentration Nutrient Source (per 100 ml) Na+ Sodium Glycerophosphate 3.4-7.8 mmol P Sodium Glycerophosphate 1.7-3.9 mmol Ca++ Calcium Chloride 2.7-4.7 mmol K+ Potassium Acetate 0.0-7.8 mmol Mg++ Magnesium Acetate 0.6-1.6 mmol Cl− Calcium Chloride 5.4-9.4 mmol Acetate− Potassium Acetate 0.6-9.4 mmol and Magnesium Acetate Glucose Glucose 50.0 g - Other sources and amounts for the electrolytes and carbohydrate may be used. It is preferred that the phosphorus comes from organic sources and the above table indicates the most preferred sources of the nutrients. It is also preferred that the pH be adjusted to about 4.0 and in the preferred embodiment the adjustment is achieved using hydrochloric acid along with other pH adjusters such as malic acid or ascetic acid to also achieve the desired level of chlorides.
- Referring to
FIG. 1 , each chamber ofcontainer 10 is filled with one of the components of the PN formulation. In particular, containers of a PN formulation for pre-term infants may include about 80 ml of the carbohydrate component inchamber 12, about 160 ml of the amino acid component inchamber 14, and about 60 ml of the lipid component inchamber 16. In some instances it may not be advisable to administer the lipid component such as if it is the first day, the patient is suffering from septic shock, coagulation abnormalities, high bilirubin level or other reasons. In this case,container 10 permits the selective opening ofseal 24. - In order to provide the MNRG (or nutrition at least at the minimum of MMNG) about 120 ml of the PN formulation should be infused per kilogram of the patient per day. The 300 ml container would then provide enough PN for 2.5 kg neonate (PT) over a 24-hour period. The following table illustrates the approximate values of the PN formulation in a three chambered container:
Amino Component Acid Carbohydrate Lipids Total Volume concentration (%) 5.86 50 12.5 — mI/kg/ day 64 32 24 120 ml/chamber 160 80 60 300 - In one embodiment, administration of about 120 ml/kg/day of the above PN formulation for preterm patients provides about the following nutrients and electrolytes:
Nutrient/Electrolytes Amount (/kg/day) Na+ 1.1-2.5 mmol K+ 0.0-2.5 mmol P 0.54-1.25 mmol P(Total) 0.77-1.48 mmol (includes phosphorus present in lipid component) Ca++ 0.9-1.5 mmol Mg++ 0.2-0.5 mmol Cl− 1.7-3.0 mmol Cl−(Total) 2.1-3.4 mmol (includes chloride from amino acid Orn HCl) Acetate− 0.2-3.0 mmol Amino Acids 3.75 grams Glucose 16 grams Lipid 3 grams - It is desirable to provide calcium and phosphate levels above the lower end of the mean recommended requirements. However increasing the sodium glycerophosphate would cause the sodium level to exceed the upper range of the mean recommended requirement range. Although calcium can easily be increased by adding more calcium chloride, this would alter the recommended calcium to phosphorus ratio of 1:1 or 1:1.1. In one embodiment, an inorganic form of phosphorus is added to the amino acid component to meet the mean recommended requirement. In conjunction with this addition, more calcium is preferably added to maintain the proper ratio.
- It may be desirable to provide less fluid than the mean recommended requirement so that other fluid therapy could be provided by the healthcare practitioner. Such fluid therapy is often necessary in patients that require PN. To allow the administration of other fluids, 120 ml/kg/day was chosen as being supplied in nutritional volume, while the overall required fluid level intake in preterm neonates is 150-170 ml/kg/day.
- Referring to
FIG. 5 in another embodiment of the present invention a PN formulation for term to two years old children is provided in a 500 ml container having three chambers preferablycontainer 110. The PN formulation can include a carbohydrate component and can be housed in anend chamber 112 having a volumetric capacity of about 155 ml and having a longitudinal length substantially greater than the longitudinal length of thecenter chamber 114. This is to permit selective opening of theseal 124 adjacent thecarbohydrate containing chamber 112 without opening theseal 122adjacent chamber 116. An amino acid component can also be included in the PN formulation and can be housed in acentral chamber 114 having a volumetric capacity of about 221 ml. Also, a lipid formulation can be included in the PN formulation and can be housed in anend chamber 116 having a volumetric capacity of about 124 ml. The lipid and amino acid components can be formulated as described above The carbohydrate component can comprise a 50% aqueous glucose and electrolyte solution as shown in the following table:Nutrient/ Concentration Electrolytes Source (per 100 ml) Na+ Sodium 3.4-4.0 mmol Glycerophosphate Na+ Sodium Chloride 0.0-3.3 mmol K+ Potassium Acetate 3.3-7.3 mmol P Sodium Glycerophosphate 1.7-2.0 mmol Ca++ Calcium Chloride 0.8-2.0 mmol Mg++ Magnesium Acetate 0.7-1.0 mmol Cl− Calcium Chloride and Sodium Chloride 1.6-7.3 mmol Acetate− Potassium Acetate and 4.0-8.3 mmol Magnesium Acetate Glucose Glucose 50.0 g - Other sources, amounts and combinations for the electrolytes and carbohydrate may be used. It is preferred that the phosphorus in the carbohydrate component comes from organic sources and the above table indicates the most preferred sources of the nutrients.
- Each chamber is filled with one of the components. In particular, about 155 ml of the carbohydrate component can fill an
end chamber 112 as described above, about 221 ml of the amino acid component can fill acentral chamber 114 as described above, and about 124 ml of the lipid component can fill anend chamber 116 as described above. The above-describedpeel seal 124 allows mixing of the carbohydrate and amino acid components or all theseals - In order to provide the MNRG and at least at the minimum of MMNG about 96.7 ml/kg/day of the PN formulation should be infused per kilogram of the patient per day. The 500 ml container would then provide enough PN for about a 5 kg child over a 24-hour period. The following table illustrates the approximate values of the PN formulation in a three chambered container:
Amino Component Acid Carbohydrate Lipids Total Volume concentration (%) 5.86 50 12.5 — ml/kg/day 42.7 30 24 96.7 ml/chamber 221 155 124 500 - Administration of 96.7 ml/kg/day of the above PN formulation for term to two years old children provides approximately the following nutrients and electrolytes:
Nutrient/Electrolytes Amount (per kg/day) Na+ 1.0-2.2 mmol K+ 1.0-2.2 mmol P 0.5-0.6 mmol P(Total) 0.73-0.83 mmol (includes phosphorus present in lipid component) Ca++ 0.24-0.60 mmol Mg++ 0.2-0.3 mmol Cl− 0.5-2.2 mmol Cl−(Total) 0.7-2.4 mmol (includes chloride from amino acid Orn HCl) Acetate− 1.2-2.5 mmol Amino Acids 2.5 grams Glucose 15 grams Lipid 3 grams - With all lipids added, phosphorus intake is higher and the P/Ca ratio increases, however, this patient population can accommodate such a small excess of phosphorus. The reduced fluid amount permits the healthcare professional to administer other fluid therapy if necessary which may be advantageous in certain circumstances.
- Referring to
FIG. 6 , in another embodiment of the present invention, a PN formulation for children over the age of two is provided in a 1000 ml container having three chambers, preferablycontainer 210. The PN formulation can include a carbohydrate component and can be housed in anend chamber 212 having a volumetric capacity of about 383 ml and having a longitudinal length substantially greater than the longitudinal length of thecenter chamber 214. This is to permit selective opening of theseal 224 adjacent thecarbohydrate containing chamber 212 without opening theseal 222adjacent chamber 216. An amino acid component can be included in the PN formulation and can be housed incentral chamber 214 having a volumetric capacity of about 392 ml. In addition, a lipid component can be included in the PN formulation and can be housed in anend chamber 216 having a volumetric capacity of about 225 ml. The lipid and amino acid components can be formulated as described above. The carbohydrate component can comprise a 50% aqueous glucose and electrolyte solution as shown in the following tableNutrient/ Concentration Electrolytes Source (per 100 ml) Na+ Sodium Glycerophosphate 1.0-3.7 mmol Na+ Sodium Chloride 2.2-8.0 mmol K+ Potassium Acetate 3.3-8.3 mmol P Sodium Glycerophosphate 0.65-1.83 mmol Ca++ Calcium Chloride 0.65-1.00 mmol Mg++ Magnesium Acetate 0.33-0.67 mmol Cl− Calcium Chloride, Sodium Chloride 3.5-10.0 mmol Acetate− Potassium Acetate 3.6-9.0 mmol and Magnesium Acetate Glucose Glucose 50.0 g - Other sources, amounts and combinations for the electrolytes and carbohydrate may be used. It is preferred that the phosphorus in the carbohydrate component come from organic sources and the above table indicates the most preferred sources of the nutrients,
- Each chamber is filled with one of the components. In particular, about 383 ml of the carbohydrate component fills
end chamber 212 as described above, about 392 ml of the amino acid component fillscentral chamber 214 as described above, and about 225 ml of the lipid component fillsend chamber 216 as described above. Each component can be administered to the patient separately or all theseals - In order to provide the MNRG and at least at the minimum of MMNG), about 78.3 ml/kg/day of the PN formulation should be infused per kilogram of the patient per day, The 1000 ml container would then provide enough PN for about a 12.5 kg child over a 24-hour period. The following table illustrates the approximate values of the PN formulation in a three chambered container:
Component Amino Acid Carbohydrate Lipids Total Volume concentration 5.86 50 12.5 — (%) ml/kg/day 30.7 30 17.6 78.3 ml/chamber 392 383 225 1000 - Administration of about 78.3 ml/kg/day of the above PN formulation for children over the age of two provides about the following nutrients and electrolytes:
Nutrient/Electrolytes Amount (per kg/day) Na+ 1.0-3.5 mmol K+ 1.0-2.5 mmol P 0.20-0.55 mmol P(Total) 0.37-0.72 mmol (includes phosphorus present in lipid component) Ca++ 0.2-0.3 mmol Mg++ 0.1-0.2 mmol Cl− 1.0-3.0 mmol Cl−(Total) 1.1-3.1 mmol (includes chloride from amino acid Orn HCl) Acetate− 1.1-2.7 mmol Amino Acids 1.8 grams Glucose 15 grams Lipid 2.2 grams - The reduced fluid level permits the healthcare professional to administer other fluid therapy which may be desirable in certain circumstances
- In another embodiment of the present invention a PN formulation for children over the age of two is provided in a 1000 ml container having three chambers, preferably
container 210. The PN formulation can include a carbohydrate component and can be housed in anend chamber 212 having a volumetric capacity of about 332 ml and having a longitudinal length substantially greater than the longitudinal length ofcentral chamber 214. This is to permit selective opening of theseal 224 adjacent thecarbohydrate containing chamber 212 and without opening theseal 222adjacent chamber 216. An amino acid component can also be included in the PN formulation and can be housed in acentral chamber 214 having a volumetric capacity of about 425 ml. A lipid component can also be included in the PN formulation and can be housed in anend chamber 216 having a volumetric capacity of about 243 ml. The lipid and amino acid components are formulated as described above. In the preferred embodiment the carbohydrate component comprises a 62.5% aqueous glucose and electrolyte solution as shown in the following tableConcentration Nutrient/Electrolytes Source (per 100 ml) Na+ Sodium Glycerophosphate 1.285-4.583 mmol Na+ Sodium Chloride 2.804-9.998 mmol K+ Potassium Acetate 4.09-10.415 mmol P Sodium Glycerophosphate 0.818-2.291 mmol Ca++ Calcium Chloride 0.818-1.250 mmol Mg++ Magnesium Chloride 0.409-0.833 mmol Cl− Calcium Chloride, Sodium 14.643 mmol Chloride and Magnesium Chloride Glucose Glucose 62.5 g - Other sources, amounts and combinations for the electrolytes and carbohydrate may be used. It is preferred that the phosphorus in the carbohydrate component come from organic sources and the above table indicates the most preferred sources of the nutrients.
- Each chamber is filled with one of the components. In particular, about 332 ml of the carbohydrate component fills an
end chamber 212 as described above, about 425 ml of the amino acid component fills acentral chamber 214 as described above, and about 243 ml of the lipid component fills anend chamber 216 as described above. Each component can be administered to the patient separately or all theseals seal 224 adjacent anend chamber 212 having a longitudinal length substantially greater than the longitudinal length of thecentral chamber 214 without opening theseal 222 adjacent thelipid compartment 216 as discussed above. - In order to provide the MNRG and at least at the minimum of MMNG, about 72.3 ml/kg/day of the described PN formulation should be infused per kilogram of the patient per day. The 1000 ml container provides enough PN per day for about a 13.5 kg child over a 24-hour period. Thus this container provides for a larger child over a 24 hour period than the previously described embodiment of a 1000 ml chamber. The following table illustrates the approximate values of the PN formulation in a three chambered container:
Component Amino Acid Carbohydrate Lipids Total Volume concentration 5.86 62.5 12.5 — (%) ml/kg/day 30.7 30 17.6 72.3 ml/chamber 425 332 243 1000 - Administration of about 72.3 ml/kg/day of the above PN formulation for children over the age of two provides the following nutrients and electrolytes:
Nutrient/Electrolytes Amount (/kg/day) Na+ 1.0-3.5 mmol (includes sodium glycerophosphate and sodium chloride) K+ 1.0-2.5 mmol P 0.2-0.55 mmol P(Total) 0.2-0.715 mmol (includes phosphorus present in lipid component) Ca++ 0.2-0.3 mmol Mg++ 0.1-0.2 mmol Cl− 3.4 mmol (Magnesium chloride, calcium chloride and sodium chloride) Cl−(Total) 3.51 mmol (includes chloride from amino acid Orn HCl) Amino Acids 1.8 grams Glucose 15 grams Lipid 2.2 grams - The reduced fluid level permits the healthcare professional to administer other fluid therapy which may be desirable in certain circumstances.
- In some instances it has been determined that any increase in the electrolyte concentration above the minimum level increases the buffer capacity of the carbohydrate component (aqueous glucose and electrolyte solution). This increased buffer capacity results in the lowering of the pH of the admixed PN formulation to a level potentially incompatible with the targeted pediatric populations.
- As a result, it may be preferable to either not include electrolytes beyond the minimum concentration shown above, to not include electrolytes beyond the minimum concentration shown above in the PN formulation as manufactured but allowing the addition of electrolytes by the healthcare practitioner prior to administration) or to include the electrolytes even at concentrations above the minimum base level in another component.
- Therefore in these instances, in more preferred embodiments of the present invention, three parenteral nutritional (PN) formulations are provided for the above described patient populations, i.e. pre-term infants (PT), term to two years old children (TT), and children over the age of two (OT). The more preferred PN formulation can have three components which are stored separately and mixed prior to administration. The three components can be a carbohydrate component, an amino acid (AA) component and a lipid component. One or more electrolytes can also preferably be included in the PN formulation, more preferably a number of electrolytes are included in the amino acid component.
- The three components of the preterm PN formulation are preferably stored in a container having three chambers separated by openable seals such as frangible or peelable seals, having a total capacity of about 300 ml and having the ability to selectively open the seals, more preferably in container 10 (
FIG. 1 ) described above. The three components of the PN formulation for term to two years old children are preferably stored in a similar three chamber container except that the container has a total capacity of 500 ml, more preferably in container 110 (FIG. 5 ) described above. The three components of the PN formulation for children over the age of two are preferably stored in a similar three chamber container except that the container has a total capacity of 1000 ml, more preferably in container 210 (FIG. 6 ) described above. - The carbohydrate component can include an aqueous solution containing from about 10% to about 70% of one or more carbohydrates such as glucose, fructose and/or sucrose. The amino acid component can include an aqueous solution containing from about 3% to about 10% of one or more amino acids. The lipid component can include an emulsion containing about 10% to about 30% of lipids such as fatty acids and/or triglycerides from plant, animal or synthetic sources such as, but not limited to olive oil, Medium Chain Triglyceride oil, soybean oil and fish oil. All of the percentages are expressed in weight to volume (w/v) unless otherwise specified.
- A preferred lipid component for the PN formulation for all three patient populations (PT, TT and OT) comprise a 12.5% lipid emulsion in water for injection as described previously.
- Olive oil is a preferred lipid because of its desirable immunoneutrality. The above combination is preferred because the combination evokes less peroxidation and no additional oxidative stress. While these are the preferred lipids and lipid concentration, other lipid sources may be used such as lipids from animal, vegetable or synthetic origins
- A preferred carbohydrate component for the PN formulation for all three patient populations (PT, TT and OT) can comprise 50.0% glucose in water for injection. One or more carbohydrates may be used in lieu of glucose. The pH should be adjusted to about 4.0 and in a preferred embodiment the adjustment may be accomplished with hydrochloric acid.
- A preferred amino acid component for the PN formulation for each of the three patient populations (PT, TT and OT) can comprise a solution of amino acids and electrolytes. The approximate amounts of the constituents of the amino acid component for each patient population are shown in the following table A:
Patient Patient Patient Population Population Population Compound PT TT OT Alanine 0.466 g 0.466 g 0.466 g Arginine 0.489 g 0.489 g 0.489 g Aspartic acid 0.350 g 0.350 g 0.350 g Cysteine 0.110 g 0.110 g 0.110 g Glutamic acid 0.583 g 0.583 g 0.583 g Glycine 0.233 g 0.233 g 0.233 g Histidine 0.221 g 0.221 g 0.221 g L-Isoleucine 0.390 g 0.390 g 0.390 g Leucine 0.583 g 0.583 g 0.583 g Lysine 0.644 g 0.644 g 0.644 g Methionine 0.140 g 0.140 g 0.140 g Ornithine 0.145 g 0.145 g 0.145 g (as L-Ornithine (0.185 g) (0.185 g) (0.185 g) hydrochloride) Phenylalanine 0.245 g 0.245 g 0.245 g Proline 0.175 g 0.175 g 0.175 g Serine 0.233 g 0.233 g 0.233 g Taurine 0.035 g 0.035 g 0.035 g Threonine 0.216 g 0.216 g 0.216 g Tryptophane 0.117 g 0.117 g 0.117 g Tyrosine 0.045 g 0.045 g 0.045 g Valine 0.443 g 0.443 g 0.443 g Sodium 3.9 mmol 5.1 mmol 11.4 mmol (source(s) can include sodium glycerophosphate and/or sodium chloride) Potassium 3.9 mmol 5.1 mmol 8.2 mmol (source(s) can include potassium acetate) Magnesium 0.78 mmol 0.70 mmol 0.65 mmol (source(s) can include magnesium acetate) Calcium 2.35 mmol 1.40 mmol 0.98 mmol (source(s) can include calcium chloride) Phosphate 2.0 mmol 1.45 mmol 1.85 mmol Acetate (the amount of acetate 4.7 mmol 5.9 mmol 8.8 mmol my vary depending on the appr. appr. appr. source of the other electrolytes) Malate 1.9 mmol 1.9 mmol 2.0 mmol Chloride (the amount of 5.8 mmol 6.2 mmol 11.0 mmol chloride my vary depending appr. appr. appr. on the source of the other electrolytes) Malic acid qs to pH 5.5 qs to pH 5.5 qs to pH 5.5 Water for injection qs to 100 ml qs to 100 ml qs to 100 ml - Other sources, combinations and amounts for the electrolytes and amino acids may be used. It is preferred that the phosphorus comes from organic sources and the above table indicates the most preferred sources of the nutrients.
- Referring to
FIG. 1 , each chamber ofcontainer 10 is filled with one of the components of the PN formulation. In particular, containers of a PN formulation for pre-term infants may include about 80 ml of the carbohydrate component inchamber 12, about 160 ml of the amino acid component for the PT population inchamber 14, and about 60 ml of the lipid component inchamber 16. In some instances it may not be advisable to administer the lipid component such as if it is the first day, the patient is suffering from septic shock, coagulation abnormalities, high bilirubin level or other reasons. In this case,container 10 permits the selective opening of the seals. - In order to provide the MNRG for the amino acids, carbohydrate, lipid and electrolytes about 120 ml of the PN formulation should be infused per kilogram of the patient per day. The 300 ml container would then provide enough PN for 2.5 kg neonate (PT) over a 24-hour period. The following table illustrates the approximate values of the PN formulation in a three chambered container:
Component Amino Acid Carbohydrate Lipids Total Volume concentration 5.86 50 12.5 — (%) ml/kg/ day 64 32 24 120 ml/chamber 160 80 60 300 - In one embodiment, administration of about 120 ml/kg/day of the above PN formulation for preterm patients provides about the following nutrients and electrolytes:
Nutrient/Electrolytes Amount (/kg/day) Na+ 2.6 mmol K+ 2.5 mmol P 1.3 mmol P(Total) 1.5 mmol (includes phosphorus present in lipid component) Ca++ 1.5 mmol Mg++ 0.5 mmol Cl− 3.7 mmol Acetate− 3.0 mmol Amino Acids 3.75 grams Glucose 16 grams Lipid 3 grams - It is desirable to provide calcium and potassium levels above the lower end of the mean recommended requirements. However increasing the sodium glycerophosphate would cause the sodium level to exceed the upper range of the mean recommended requirement range. Although calcium can easily be increased by adding more calcium chloride, this would alter the recommended calcium to phosphorus ratio of 1:1 or 1:1.1. In one embodiment, an inorganic form of phosphorus is added to the amino acid component to meet the mean recommended requirement. In conjunction with this addition, more calcium is preferably added to maintain the proper ratio.
- It may be desirable to provide less fluid than the mean recommended requirement so that other fluid therapy could be provided by the healthcare practitioner. Such fluid therapy is often necessary in patients that require PN. To allow the administration of other fluids, 120 ml/kg/day was chosen as being supplied in nutritional volume, while the overall required fluid level intake in preterm neonates is 150-170 ml/kg/day.
- Referring to
FIG. 5 in another embodiment of the present invention a PN formulation for term to two years old children is provided in a 500 ml container having three chambers, preferablycontainer 110. The PN formulation can include a carbohydrate component and can be housed in anend chamber 112 having a volumetric capacity of about 155 ml and having a longitudinal length substantially greater than the longitudinal length of thecenter chamber 114. This is to permit selective opening of theseal 124 adjacent thecarbohydrate containing chamber 112 without opening theseal 122adjacent chamber 116. An amino acid component can also be included in the PN formulation and can be housed in acentral chamber 114 having a volumetric capacity of about 221 ml. Also, a lipid formulation can be included in the PN formulation and can be housed in anend chamber 116 having a volumetric capacity of about 124 ml. - The lipid component can be formulated as described above and the amino acid component can be formulated for the TT population as shown in table A above.
- A preferred carbohydrate component for the PN formulation for all three patient populations (PT, TT and OT) can comprise 50.0% glucose in water for injection. One or more carbohydrates may be used in lieu of glucose. In the preferred embodiment the pH may be adjusted to around 4.0 with hydrochloric acid.
- Each chamber is filled with one of the components. In particular, about 155 ml of the carbohydrate component can fill an
end chamber 112 as described above, about 221 ml of the amino acid component can fill acentral chamber 114 as described above, and about 124 ml of the lipid component can fill anend chamber 116 as described above. The above-describedoptional peel seal 124 allows to mix the carbohydrate and amino acid components or all theseals - In order to provide the MNRG for the amino acids, carbohydrate, lipid and electrolytes about 96.7 ml/kg/day of the PN formulation should be infused per kilogram of the patient per day. The 500 ml container would then provide enough PN for about a 5 kg child over a 24-hour period. The following table illustrates the approximate values of the PN formulation in a three chambered container:
Component Amino Acid Carbohydrate Lipids Total Volume concentration 5.86 50 12.5 — (%) ml/kg/day 42.7 30.0 24 96.7 ml/chamber 221 155 124 500 - Administration of 96.7 of the above PN formulation for term to two years old children provides approximately the following nutrients and electrolytes:
Nutrient/Electrolytes Amount (per kg/day) Na+ 2.3 mmol K+ 2.2 mmol P 0.62 mmol P(Total) 0.84 mmol (includes phosphorus present in lipid component) Ca++ 0.60 mmol Mg++ 0.30 mmol Cl− 2.7 mmol Acetate− 2.5 mmol Amino Acids 2.5 grams Glucose 15 grams Lipid 3 grams
With all lipids added, phosphorus intake is higher and the P/Ca ratio increases, however, this patient population can accommodate such a small excess of phosphorus. The reduced fluid amount permits the healthcare professional to administer other fluid therapy if necessary which may be advantageous in certain circumstances. Referring toFIG. 6 , in another embodiment of the present invention, a PN formulation for children over the age of two is provided in a 1000 ml container having three chambers, preferablycontainer 210. The PN formulation can include a carbohydrate component and can be housed in anend chamber 212 having a volumetric capacity of about 383 ml and having a longitudinal length substantially greater than the longitudinal length of thecenter chamber 214. This is to permit selective opening of theseal 224 adjacent thecarbohydrate containing chamber 212 without opening theseal 222adjacent chamber 216. An amino acid component can be included in the PN formulation and can be housed incentral chamber 214 having a volumetric capacity of about 392 ml. In addition, a lipid component can be included in the PN formulation and can be housed in anend chamber 216 having a volumetric capacity of about 225 ml. - The lipid component can be formulated as described above and the amino acid component can be formulated for the TT population as shown in table A above.
- A preferred carbohydrate component for the PN formulation for all three patient populations (PT, TT and OT) can comprise 50.0% glucose in water for injection. One or more carbohydrates may be used in lieu of glucose. In the preferred embodiment the pH may be adjusted to around 4.0 with hydrochloric acid.
- Each chamber is filled with one of the components. In particular, about 383 ml of the carbohydrate component fills
end chamber 212 as described above, about 392 ml of the amino acid component fillscentral chamber 214 as described above, and about 225 ml of the lipid component fillsend chamber 216 as described above. Each component can be administered to the patient separately or all theseals - In order to provide the MNRG for the amino acids, carbohydrate, lipid and electrolytes, about 78.3 ml/kg/day of the PN formulation should be infused per kilogram of the patient per day. The 1000 ml container would then provide enough PN for about a 12.5 kg child over a 24-hour period. The following table illustrates the approximate values of the PN formulation in a three chambered:
Component Amino Acid Carbohydrate Lipids Total Volume concentration 5.86 50 12.5 — (%) ml/kg/day 30.7 30 17.6 78.3 ml/chamber 392 383 225 1000 - Administration of about 78.3 ml/kg/day of the above PN formulation for children over the age of two provides about the following nutrients and electrolytes:
Nutrient/Electrolytes Amount (per kg/day) Na+ 3.6 mmol K+ 2.5 mmol P 0.57 mmol P(Total) 0.73 mmol (includes phosphorus present in lipid component) Ca++ 0.30 mmol Mg++ 0.20 mmol Cl− 3.4 mmol Amino Acids 1.8 grams Glucose 15 grams Lipid 2.2 grams - The reduced fluid level permits the healthcare professional to administer other fluid therapy which may be desirable in certain circumstances.
- Referring to
FIG. 11 , containers of TPN formulations in accordance with the present invention may be placed in pouches selected to retain solution viability and protect the solution from degradation. In one embodiment of the present invention, an overpouch is provided for housing acontainer - One or more of the layers of the film used to construct the overpouch can include oxygen scavenging polymers or the layer can provide a physical barrier to prevent oxygen permeation.
-
FIG. 11 shows a cross-section of one embodiment of thefilm 310 used to construct the overpouch. Thepreferred film 58 comprises 4layers Layer 60 is the exterior most layer of the film and is preferably a high melting temperature polymer having an oxygen barrier coating. As illustrated,layer 60 is a polyester material having analuminum oxide coating 68. The thickness oflayer 60 can range from about 6 to about 18 um, preferably from about 10 to about 14 um, most preferably about 12 um. Thecoating 68 can range in thickness from about 400 Angstrom. Thelayer 312 is oriented so that the aluminum oxide coating faces toward the interior of the overpouch. - Preferably, the
next layer 62 moving towards the interior is same aslayer 60 except that thecoating 70 faces the exterior. A different polymer having oxygen impermeable qualities can be used instead such as an oxygen scavenging polymer. - The two
layers FIG. 111 , an adhesive 72 is placed betweenlayers -
Layer 64 is preferably a nylon material, more preferably nylon-6. The thickness oflayer 64 can be from about 10 to about 20 um, with the preferred thickness being about 15 um.Layer 64 is bonded to layer 62 with adhesive 74 which in this embodiment is the sane adhesive and thickness asadhesive 72. -
Layer 66 is the interior most layer and is preferably a polypropylene material, more preferably a cast polypropylene. The thickness oflayer 66 can range from about 30 to about 70 um, more preferably about 50 um. -
Layers adhesive 72. - In another embodiment, the overpouch can be made from two webs having different structures. The top web can be the structure described above whereas the bottom web could be a thermoformable structure or an opaque structure or could have a sealant layer allowing peelable opening.
- A multiple chamber container 10 (
FIG. 1 ) storing a TPN formulation is then placed in the overpouch. Preferably the headspace of the overpouch is fled with an inert gas such as nitrogen to remove the atmospheric oxygen and then the overpouch can be sealed. The overpouch can be closed using an adhesive or by heat sealing. Once the overpouch is seal shut the entire package can be sterilized. - It is known that heat sterilization of amino acid solutions having amino acids with a thiol function such as cysteine or N-acetyl-cysteine can produce hydrogen sulfide gas as a decomposition product and most likely also ppb levels of other unidentified volatile organic sulphured compounds noticeable by their odor. Hydrogen sulfide equilibrates between the liquid phase and the gaseous phase or headspace if present. A limit of 1 ppm of hydrogen sulfide in the aqueous phase has been assessed as non-toxic for the patient by intravenous route. But even if this limit in the aqueous phase is applied, some hydrogen sulfide and related sulphured compounds in the gaseous phase can still be present at a very low level but at a level sufficient to produce an unpleasant odor, (hydrogen sulfide can be smelled from levels of 0.1 ppm in the gaseous phase). This unpleasant odor can be disconcerting to the patient and others in the area and create an impression that the TPN formulation is stale or contaminated.
- In this regard, to remove any unpleasant odor linked to very low levels of hydrogen sulfide and/or related sulphured compounds in the gaseous phase, before the overpouch is sealed shut a odor absorber (not shown) can be placed in the overpouch. There are many types of absorbers that can be used and most of them contain active carbon that attracts and attaches the molecules to the surface of the pores with Van der Waals forces mechanism. In addition, an oxygen absorber can also be placed in the overpouch to absorb any oxygen that may still be left inside the over pouch or that may diffuse through the overpouch material during the shelf life of the product. The oxygen absorber has also the capability to absorb the H2S by establishing covalent bonding with iron to form iron sulfur. It is also contemplated that a combined oxygen and odor scavenger may be used.
- It should be noted that the container housing the cysteine containing TPN formulation should be permeable to the hydrogen sulfide so that it can enter the interior of the overpouch were it can be absorbed or scavenged.
- In a further embodiment of the present invention, sterilization at a slightly higher temperature than the industry standard of 121 degrees centigrade may be performed to reduce the level of hydrogen sulfide. For example, sterilization at 125 degrees centigrade and for a shorter time period or sterilization cycle has been found to reduce hydrogen sulfide levels and reduce the degradation of some of the amino acids. With less degradation the formulated levels of amino acids can be closer to the levels desired after sterilization which facilitates the ability to tightly control the amino acid levels.
- In another embodiment of the present invention an oxygen indicator is provided. Oxygen indicators are used to demonstrate that the oxygen sensitive components of TPN formulation such as lipid emulsions were not exposed to undesired oxygen levels during transport and/or storage. A preferred oxygen indicator provides a distinct and marked color change to indicate oxygen is present even after undergoing heat sterilization. Moreover, once the color change has occurred the oxidized color must then remain substantially unchanged visually to the observer in circumstances in which the indicator is not observed for some time such as during prolonged storage.
- In an embodiment of an indicator the indicator of the present invention is placed in the overpouch and may be adhered to the medical container prior to sterilization. Thus the indicator must be able to withstand steam sterilization. In other words the reduced color of the indicator, i.e. the color of the indicator prior to exposure to oxygen sufficient to oxidize the indicator, should still change color when oxidized (exposed to a sufficient amount of oxygen) and the oxidized color should remain substantially unchanged visually and distinct from the reduced color. In a preferred embodiment, the indicator is manufactured in its oxidized form and is reduced upon steam sterilization. Additionally, both the color of the reduced forms and the color of the oxidized form should not fade or significantly change during storage of up to three months at 40° C. more preferably up to six months at 40° C. Further, both the color of the reduced form and the color of the oxidized form should not fade or significantly change during storage of up to two years at 25° C. and 30° C.
- Typically the oxygen indicators come in small pouches containing an indicator solution. The pouches are usually constructed of a top web and bottom or base web which are sealed about their edges to each other to create a sealed pouch. An adhesive such as double-side tape can be placed on the base web to fix the indicator pouch inside the secondary packaging or to the container housing the medical formulation. In a preferred embodiment, the indicator is fixed on the surface of the oxygen absorberd. The material forming the pouch can be selected to comply with the kinetic of color change requirement. Some such materials can be:
- top web: Oriented polypropylene (OPP) 25μ/Cast polypropylene (CCP) 40μ. A multi color printing can be applied between the OPP and CPP layers
- base web: Polyethylene terephthalate (PET) 12μ/Oriented polypropylene (OPP) 20μ/Cast polypropylene 30μ. Any printing such as a white opaque printing can be placed between the PET layer and the OPP layer.
- In one embodiment utilizing the above described film, a pinhole exposure to an oxygen environment caused the color of the indicator to change in less than three days to indicate the presence of oxygen. The indicator solution includes indigo carmine that changes from a yellow color when in reduced form which indicates a lack of oxygen to a blue when oxidized by the presence of oxygen.
- The pouches are preferably constructed with a transparent portion to view the color of the indicating solution. The indicator solution is prepared under atmospheric conditions which means that the indicator is in its oxidized form and blue in color. During manufacturing the pouch containing the oxidized form of the indicator solution is placed in an overpouch with the container housing a TPN formulation and the overpouch is sealed and sterilized. During the sterilization cycle, the indicator solution is reduced and the solution turns yellow. The oxidation reduction reaction is shown below:
- The reaction is reversible, i.e. the solution becomes blue again upon exposure to oxygen. In a preferred embodiment the indicators should be formed using components that would be nontoxic to the contents of the containers and to those users of the product who may be exposed to the indicator solution if there is a leakage through a breach in the film. In a more preferred embodiment, the components would consist of food additives that are well known for their non-toxicity.
- An embodiment of an oxygen indicator is based on a 3 g/L indigo carmine concentration. The specific formulation is a mixture of 20 ml of 1.5% indigo carmine, 80 ml of 0.13M of sodium pyrophosphate and 18 g of microcrystalline cellulose and pH adjusted to 8.75 with HCl. The oxidized color of this currently available oxygen indicator produces a blue color when oxidized but this color degrades relatively quickly. After three months of storage at 40° C., the blue color fades to a skin color that it not distinct enough from the yellow color or reduced form of the indicator. This faded color would fail to provide unambiguous identification of exposure to oxygen. Similar results were observed for sample maintained at 30° C. for 8 months and 25° C. for 12 months.
- In one attempt to overcome this shortcoming, the indigo carmine concentration was increased to 6 g/L concentration and compared to the currently available indicator (reference). The table below provides details of each formulation.
Sodium Indigo Pyrophosphate HCl adjusted carmine 1.5% 0.13 M Cellulose pH Reference 20 mL 80 mL 18 g 8.75 Alternate1 40 mL 60 mL 30 g 8.75 - Since cellulose is provided to act as a reducing agent, the cellulose content was increased in this second embodiment (alternate 1) of indicator to compensate for the increase indigo carmine. In other words, more cellulose is needed to ensure the indicator reduces during sterilization.
- Samples of each of the indicators were analyzed for their optical densities in absorption units (AU) at 610 nm, which is the absorbance range for the blue oxidized color, after formulation, sterilization and storage at a few temperatures over time. The results are show in the following table.
REF- REF- REF- ALT1- ALT1- ALT1- Days 25° C. 30° C. 40° C. 25° C. 30° C. 40° C. 0 1.185 1.281 1.281 2.116 2.116 2.116 1 0.814 0.827 0.82 1.4614 1.3934 1.4246 15 1.3382 1.2337 1.1308 21 0.7162 0.603 0.2973 40 1.2816 1.1279 0.711 46 0.6312 0.4465 0.1168 63 1.1903 1.1008 0.4358 69 0.5975 0.3726 0.0964 82 1.0662 0.9486 0.2445 87 0.5645 0.332 0.0574
Day 0 means solution prior to sterilization whileday 1 means solution after sterilization
- A graphical representation of the above date is shown in
FIG. 12 . - The initial absorbance after sterilization is about 1.4 AU with the alternate 1 formulation versus 0.8 AU for the first iteration. As shown on
FIG. 9 , the trend of decreasing is similar for both iterations. A longer stability of the oxidized color is expected but the expected 24 months' stability might be borderline with this formulation. - Other types of cellulose were also investigated using the reference indicator formulation, specifically DS-0 TLC cellulose, colloidal micro-crystalline cellulose, powder for chromatography cellulose, powder for chromatography acid washed cellulose, low and high viscosity carboxymethyl cellulose sodium salt, acetate cellulose and methyl cellulose. No major difference was observed between the formulations including other insoluble cellulose compounds. The testing did show that insoluble cellulose cannot be replaced by soluble grafted cellulose. In addition, EDTA was investigated as an additive known as a stabilizing agent. Again, the EDTA did not have a significant effect on the degradation of the oxidized color of the indicator.
- Further increasing the concentration of the indigo carmine manufacturing complications caused by increasing the cellulose content and it was seen that increasing the level above the 300 g/L cellulose used in the alternate 1 indicator hampered manufacturability of the indicating pouch and created an undesirably paste like mixture. Any further increase would further exacerbate these issues and yet failure to increase the level of cellulose led to an inability to adequately reduce the higher levels of indigo carmine during sterilization.
- It has been determined that adding an appropriate amount of a reducing agent and in a preferred example a stronger reducing sugar such as dextrose allows the indigo carmine concentration to be increased beyond the 6 g/L concentration while maintaining the cellulose content at the more preferred level of 180 g/L.
- In one embodiment, the indicating solution includes, in addition to indigo carmine, a buffer for pH adjustment in the range of about 9.0 to about 9.75 prior to sterilization and from about 7.0 to about 9.0 after sterilization, cellulose and a reducing agent.
- Indigo carmine is deemed as not a hazardous substance under European Community Directive 67/548/EEC. The concentration of indigo carmine can be greater than 6 g/l and less than about 60 g/L, preferably from about 10 to about 40 g/L, more preferably from about 14 to about 20 g/L with the lower concentration producing a more pleasing visual indicator. Concentrations of indigo carmine above 20 g/L further exceed the solubility limit and one would observe a lack of homogeneity in the color such as spots or clumps of dark color
- Buffers can include phosphate and acetate buffers. Specific buffers include sodium phosphate buffers and sodium acetate buffer with a preferred being sodium pyrophosphate buffer. Sodium pyrophosphate is deemed as not a hazardous substance under European Community Directive 67/548/EEC. Concentration of the sodium pyrophosphate buffer can be from about 0.11M to about 0.18M, preferably from 013M to about 017M. Other buffers may be suitable to arrive at the desired pH of 7-9 after sterilization. It has been observed that for the sterilization cycle being used for such nutritional products that a pH prior to sterilization of 9.0-10.0 will lead to the desired post sterilization pH.
- Color and/or thickening agents can include insoluble cellulose compounds since it also has some reducing ability and is an approved food additive. Preferred cellulose is microcrystalline cellulose included at from about 150 to about 210 g/L, more preferably at about 180 g/L. Microcrystalline cellulose is deemed as not a hazardous substance under European Community Directive 67/548/EEC. Levels of cellulose up to 300 g/L were used but the mixture becomes a paste like mixture which creates issues in manufacturing using preferred equipment. It is envisioned that greater concentrations are feasible using other manufacturing techniques for producing the indicator.
- An additional reducing agent is included such as one or more reducing sugars. A preferred reducing sugar can be dextrose although other reducing agents and sugars may be employed. However as previously described, in a preferred embodiment reducing sugars that are approved food additives are used. For example dextrose is a common ingredient used in infusion fluids. The concentration of the dextrose has to be adjusted in function of the indigo carmine concentration. It can be between about 1 and about 5 g/L of anhydrous dextrose, preferably from about 2 to about 4 g/L more preferably from about 2.5 to about 4 g/L. Higher levels of dextrose lead to a decrease in pH of the resultant mixture after sterilization which negatively impacts on the performance of the indicator.
- In one embodiment of an indicator of the present invention, an indigo carmine mixture retains the yellow color and remains functional, i.e. chances from yellow to blue upon exposure to oxygen, after at least three months of storage at 40° C. and more preferably up to six months of storage at 40° C. In addition, once exposed to oxygen the oxidized form retains the blue color for at least three months of storage at 40° C. and more preferably up to six months of storage at 40° C.
- In one embodiment, an indicator mixture is made by dissolving from about 14 to about 20 grams of indigo carmine in one liter of water. The water is preferably distilled. The mixture also include from about 2-5 to about 4.0 grams/L dextrose and from about 60 grams/L to about 75 grams/L tetrasodium pyrophosphate. A thickening agent acting as color enhancer and having reducing ability is included in the mixture such as, microcrystalline cellulose added at about 180 grams/L.
- An indigo carmine indicator mixture was made as follows:
- 14 g indigo carmine, 60 g tetrasodium pyrophosphate, 2.75 g anhydrous dextrose, and 180 g microcrystalline cellulose were added to one liter of distilled water.
- This mixture was placed in small pouches that were packed with oxygen absorber in an oxygen barrier overpouch and exposed to steam sterilization at 121° C. The samples were then stored in reduced form and the reduced form, i.e. yellow color of the indicator mixture, was still yellow after storage in a substantially oxygen free environment for 112 days at 50° C.
- When similar packages were exposed to oxygen after being first placed in a reduced state as described above, the mixture changed to the oxidized form, i.e. dark blue color. The mixture remained dark blue after storage for 112 days at 50° C.
- An indigo carmine indicator mixture was made as follows: 14 g indigo carmine, 60 g tetrasodium pyrophosphate, 2.00 g anhydrous dextrose and 180 g microcrystalline cellulose were added to one liter of distilled water. The results were similar to those found in Example 2 above.
- A 14 g/L indigo carmine solution was made to determine the degradation kinetics of the blue color or oxidized form during a few months storage. The indicator was made by mixing 14 g of indigo carmine, 60 g of tetrasodium pyrophosphate, 2.5 g of anhydrous dextrose and 180 g of cellulose in one liter of distilled water.
- Empty bags of
nominal volume 50 ml were filled with this 14 g/L indicator formulation, then overpouched with oxygen absorber and sterilized. During sterilization, the color of the indicating mixture turns from blue (oxidized form) to yellow (reduced form). - The overpouch was then pierced and the indicating mixture was allowed to react with atmospheric oxygen under ambient conditions. Then the color of the indicating mixture turns back to blue (oxidized form). Using a syringe with a needle, a 1.0 ml of indicating mixture was withdrawn through the medication port of the container. This aliquot was diluted to 50 ml with water and the cellulose was removed by filtration or centrifugation. Finally, 200 μl of the solution were dispensed in a well of a polystyrene microtitration plate and the absorbance was recorded at 610 nm, i.e. the maximum wavelength at peak optical densities of the indigo carmine in its oxidized form. A graph of optical densities (O.D.), measured from 350 to 750 nm is shown in
FIG. 13 . - The test units were then stored at 25° C., 30° C. and 40° C. Samples were taken at several time intervals and spectrometric measurements were made. The following table shows the results:
Formulation with 14 g/l Optical density @ 610 nm (A.U.) Days T = 25° C. T = 30° C. T = 40° C. 0 3.1118 2.9853 2.7592 0 3.0046 2.7807 2.7297 15 3.1118 2.9853 2.7592 15 3.0046 2.7807 2.7297 57 3.0515 2.9714 2.5663 57 2.9727 2.8054 2.3863 130 2.7753 2.6868 2.3288 130 2.7006 2.6237 2.0991
note:
P0 measurements are not available and P15 measurements were therefore reported at P0
- These data fit an exponential curve which is shown in
FIG. 14 . - The values recorded up to 130 days indicate that the oxidized color is acceptable after 3 months at the three temperatures and that the six months stability of the oxidized blue color will most likely be reached at the three storage temperatures,
- An indigo carmine indicator mixture was made as follows:
- 20 g indigo carmine, 75 g tetrasodium pyrophosphate, 4.0 g anhydrous dextrose and 180 g microcrystalline cellulose were added to one liter of distilled water. This mixture was placed in small pouches that were packed with oxygen absorber in an oxygen barrier overpouch and exposed to steam sterilization at 121° C. The samples were then stored in reduced form and the reduced form, i.e. yellow color of the indicator mixture, was still yellow after storage in a substantially oxygen free environment for 112 days at 50° C.
- When similar packages were exposed to oxygen after being first placed in a reduced state as described above, the mixture changed to the oxidized form, i.e. dark blue color. The mixture remained dark blue after storage for 112 days at 50° C.
- Spectrographic analysis was conducted on the oxidized form of this indicating mixture (20 g/L) in the same manner described with regards to the formulation with 14 g/L indigo carmine and the results are shown in the following table:
Formulation with 20 g/l Optical density @ 610 nm (A.U.) Days T = 25° C. T = 30° C. T = 40° C. 0 3.434 3.473 3.465 7 3.4463 3.5024 3.6194 51 3.5678 3.5471 4.0000 124 3.5293 3.5593 4.0000 After 1/10 dilution 0 0.606 0.683 0.634 7 0.613 0.562 0.620 51 0.731 0.711 0.646 124 0.631 0.626 0.572 - The results are also represented graphically in
FIG. 15 . - According to the absorbance data this 20 g/L formulation showed no degradation of the oxidized color after 124 days, but this may be due to saturation of the detector as absorbance values approach 4 A.U. in conjunction with some water loss. When samples are diluted 10 times, a slight decreasing trend in absorbance is observed at 40° C. but again, the results indicate that the 6 months stability of the oxidized blue color at 40° C. will be reached with this formulation.
- Long term stability studies were then conducted to show that the indicators would function over the desired shelf life of the products which would be employing the indicator. Two liters of a 14 g/L indigo carmine indicator and a 20 g/L indigo carmine indicator formulation were made to determine indicator activity and color degradation. The 14 g/L formulation was made by dissolving 120 g of sodium pyrophosphate in 2000 ml of water. In this solution 28 g of indigo carmine was added followed by 5 g of anhydrous dextrose. The solution was stirred for a few minutes to maximize the dissolution of indigo carmine. 360 g of cellulose was then added. The pH was measured but not adjusted. The pH should be above 9.4. The 20 g/L formulation was made by dissolving 150 g of sodium pyrophosphate in 2000 ml of water. In this solution 40 g of indigo carmine was added followed by 8 g of anhydrous dextrose. The solution was stirred for a few minutes to maximize the dissolution of indigo carmine. 360 g of cellulose was then added. The pH was measured but not adjusted. The pH should be above 9.4.
- A large number of small pouches were produced with half of which were filled with about 0.2 ml of the 14 g/L indicator formulation and the other half with the 20 g/L indicator formulation. These indicator pouches were then placed in separate overpouches containing multi-chambered bags of water. Half of the overpouches containing the 14 g/L indicators were heat sterilized using a short heat sterilization procedure, specifically 27 minutes exposure at 121° C. to determine if the indicators would change from the oxidized form (blue color) to the reduced form (yellow color) and the other half of the 14 g/L indicator were heat sterilized using a long heat sterilization procedure, specifically +42 minutes exposure at 122° C. to test the stability of the both the reduced color and oxidized color. The same was performed on the overpouches containing the 20 g/L indicators.
- Half of the samples or each lot were exposed to oxygen by piercing the overpouch using a 21 G needle to create a pinhole. The all these indicators in these exposed samples then turned blue.
- All of the samples were divided and stored in controlled climatic rooms. One of the rooms was maintained at 25° C., and 40% relative humidity, a second room was maintained at 30° C., 35% relative humidity, and a third room was maintained at 40° C., 25% relative humidity. These rooms were maintained at these conditions with a tolerance of ±2° C. for temperature and ±5% for relative humidity. Samples maintained at 40° C. were tested at 0, 2, 4, 6 months and samples in the 25° C. and 30° C. rooms were tested at 0, 2, 4, 6, 9, 12, 15, months for each storage condition. The samples were visually inspected and categorized at the closest Pantone® reference via the Pantone® formula guide—solid coated (second edition 2004) for each period and at each temperature. At each testing period a subset of the stored samples was selected from the exposed lots and the unexposed lots from each room. The indicator from the exposed lot was examined to determine whether the indicator still indicated the presence of oxygen by displaying a blue color. The non-exposed samples were initially examined to determine if the indicator still indicated the absence of oxygen, then the overpouch was pierced with the 21 G needle to allow oxygen to flow into the overpouched product and the indicators were observed for a color shift sufficient to show the presence of oxygen.
- In summary, at 40 C and 6 months all of the samples of oxygen indicators performed as desired. All of the exposed samples continued to display a bluish color sufficient to indicate the presence of oxygen. All of the non-exposed samples displayed the yellowish color to indicate the absence of oxygen. When the overpouch was pierced, all of the now exposed, non-exposed samples changed to the bluish color sufficient to indicate the presence of oxygen. After 6 months the testing at 40 C was concluded.
- Similar results were found in the samples kept at 25 C and 30 C at the 2, 4, 6, 9, 12, 15 month intervals. Exposed samples continued to display a color indicating the presence of oxygen and non-exposed sample continued to display a color indicating the absence of oxygen. When the non-exposed samples were then exposed to oxygen by penetration of the overpouch with a needle, the samples changed colors to indicate the presence of oxygen within 67 hours.
- The results are shown in
FIGS. 16, 17 and 18. which indicate the reduced color of the oxygen units, did not vary significantly after 6 months storage under any of the storage conditions tested. - After sterilization two units per formulation per sterilization cycle (8 units total) were exposed to constant illumination of 2000 lux with TL tube (tube daylight) for 30 days at 25° C., using a light box. The Pantone® references are shown in
FIG. 20 which indicate the formulations were not deteriorated by light exposure. - A pinhole was pierced in the overpouch using a 21 G needle of all the units including the illuminated units. All units turned blue after puncturing within 1 to 67 hours. The closest Pantone® reference was estimated at each temperature and period and the results for each temperature and period are shown in
FIGS. 20, 21 , 22 which indicate the oxidized color of the oxygen units, did not vary significantly after 6 months storage under any of the storage conditions tested. - From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/461,980 US20070031976A1 (en) | 2005-08-02 | 2006-08-02 | Oxygen Indicator for Use in Medical Products |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70455505P | 2005-08-02 | 2005-08-02 | |
US11/461,980 US20070031976A1 (en) | 2005-08-02 | 2006-08-02 | Oxygen Indicator for Use in Medical Products |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070031976A1 true US20070031976A1 (en) | 2007-02-08 |
Family
ID=37434338
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/461,980 Abandoned US20070031976A1 (en) | 2005-08-02 | 2006-08-02 | Oxygen Indicator for Use in Medical Products |
US11/461,970 Abandoned US20070092579A1 (en) | 2005-08-02 | 2006-08-02 | Medical Products and Parenteral Formulations |
US11/461,963 Active 2031-02-09 US8485727B2 (en) | 2005-08-02 | 2006-08-02 | Multiple chamber container |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/461,970 Abandoned US20070092579A1 (en) | 2005-08-02 | 2006-08-02 | Medical Products and Parenteral Formulations |
US11/461,963 Active 2031-02-09 US8485727B2 (en) | 2005-08-02 | 2006-08-02 | Multiple chamber container |
Country Status (19)
Country | Link |
---|---|
US (3) | US20070031976A1 (en) |
EP (3) | EP1909739B1 (en) |
JP (3) | JP2009503549A (en) |
KR (3) | KR20080043804A (en) |
CN (3) | CN101351179A (en) |
AT (1) | ATE493105T1 (en) |
AU (3) | AU2006295338B2 (en) |
BR (3) | BRPI0614606A2 (en) |
CA (3) | CA2617627C (en) |
DE (1) | DE602006019259D1 (en) |
DK (2) | DK1909736T3 (en) |
ES (2) | ES2525930T3 (en) |
HK (2) | HK1121031A1 (en) |
IL (3) | IL189197A (en) |
MX (3) | MX2008001621A (en) |
NZ (2) | NZ565764A (en) |
PT (2) | PT1909739E (en) |
RU (3) | RU2405141C2 (en) |
WO (3) | WO2007037793A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080004594A1 (en) * | 2004-07-29 | 2008-01-03 | Olof Pahlberg | Flexible Multi-Chamber Container for the Preparation of Medical Mixed Solutions |
US20080017543A1 (en) * | 2004-07-29 | 2008-01-24 | Olof Pahlberg | Medical Container With Improved Peelable Seal |
EP2264448A1 (en) | 2009-06-19 | 2010-12-22 | B. Braun Melsungen AG | Oxygen indicator for parenteral and enteral application forms |
US20110136238A1 (en) * | 2008-06-18 | 2011-06-09 | Teknologian Tutkimuskeskus Vtt | Oxygen indicator |
US10888534B2 (en) | 2019-04-26 | 2021-01-12 | InfoRLife SA | Storage stable ready-to-use norepinephrine aqueous solutions in flexible plastic bags |
US20230172806A1 (en) * | 2021-12-07 | 2023-06-08 | Baxter International Inc. | Multi-chamber bag for parenteral nutrition solutions |
US20230172809A1 (en) * | 2021-12-07 | 2023-06-08 | Baxter International Inc. | Multi-chamber bag for parenteral nutrition solutions |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8603805B2 (en) | 2005-04-22 | 2013-12-10 | Hyclone Laboratories, Inc. | Gas spargers and related container systems |
JP4765653B2 (en) * | 2005-12-16 | 2011-09-07 | 凸版印刷株式会社 | Ink composition for oxygen indicator, oxygen indicator using the same, and packaging material containing oxygen indicator |
US7618406B2 (en) * | 2007-01-22 | 2009-11-17 | Baxter International, Inc. | Break seal before access dual chamber bag |
JP2010520822A (en) * | 2007-03-02 | 2010-06-17 | マーベル インターナショナル リミテッド | Ink supply for handheld inkjet printers |
DE102007028733A1 (en) * | 2007-06-21 | 2008-12-24 | Fresenius Kabi Deutschland Gmbh | Container for use in enteral nutrition |
US7658952B2 (en) | 2007-10-11 | 2010-02-09 | Baxter International Inc. | Dialysis solutions containing pyrophosphates |
AU2009209514A1 (en) * | 2008-01-28 | 2009-08-06 | Milux Holding Sa | An implantable drainage device |
BRPI0915744A2 (en) * | 2008-07-07 | 2020-08-04 | Pentec Health, Inc. | nutrient composition, dosage form and method of use |
US8808595B2 (en) * | 2009-04-07 | 2014-08-19 | Cryovac, Inc. | Multilayer film for medical solution pouches having reduced proficiency for forming bubbles |
US9040095B2 (en) * | 2009-10-14 | 2015-05-26 | Gi Innovations, Pllc | Colon cleansing of residual stool and secretions during colonoscopy |
CA2786375A1 (en) | 2010-01-04 | 2011-07-07 | Pentec Health, Inc. | Nutritive compositions and methods of using same |
EP2386283A1 (en) * | 2010-05-10 | 2011-11-16 | B. Braun Melsungen AG | Filling |
EP2386286A1 (en) | 2010-05-10 | 2011-11-16 | B. Braun Melsungen AG | Handling |
EP2386284A1 (en) | 2010-05-10 | 2011-11-16 | B. Braun Melsungen AG | Shape |
US20130126370A1 (en) | 2010-06-17 | 2013-05-23 | David DiLiberto | Multi-compartment container with frangible seal and external means for applying opening force between compartments |
EP2489408A1 (en) * | 2011-01-13 | 2012-08-22 | Michael Tchirikov | Amino acid compound and use of same for treating intrauterine growth restriction (IUGR) and for parenteral feeding of extremely premature infants |
EP2670373B1 (en) * | 2011-02-03 | 2016-02-03 | Fresenius Medical Care | System for preparing a medical fluid and method for preparing a medical fluid |
US20120199205A1 (en) * | 2011-02-03 | 2012-08-09 | Fresenius Medical Care Deutschland Gmbh | System for preparing a medical fluid and method for preparing a medical fluid |
ES2659983T3 (en) * | 2011-02-03 | 2018-03-20 | Fresenius Medical Care Deutschland Gmbh | System for preparing a medical fluid |
EP2537541A1 (en) * | 2011-06-23 | 2012-12-26 | Metpro AB | Container and connector for providing a medical solution |
US8979817B2 (en) * | 2011-07-14 | 2015-03-17 | Fenwal, Inc. | Multi-chamber container with seal breach detection |
CN102772299A (en) * | 2011-07-28 | 2012-11-14 | 辽宁海思科制药有限公司 | Novel three-chamber transfusion bag for packaging fat emulsion, amino acid and dextrose injection |
US9376655B2 (en) | 2011-09-29 | 2016-06-28 | Life Technologies Corporation | Filter systems for separating microcarriers from cell culture solutions |
WO2013049692A1 (en) | 2011-09-30 | 2013-04-04 | Hyclone Laboratories, Inc. | Container with film sparger |
US8820549B1 (en) | 2011-11-17 | 2014-09-02 | Christopher Estrada | Multi-chamber nursing bottle having frangible portion for separately storing liquids and other substances |
CN105267035A (en) * | 2012-07-27 | 2016-01-27 | 辽宁海思科制药有限公司 | Novel three-chamber transfusion bag used for packaging Medium- and long-chain fat emulsion, amino acid and glucose injection |
US9266647B2 (en) * | 2012-08-23 | 2016-02-23 | Waterview Innovation, Llc | Reusable shopping bag having multiple secondary uses |
CA2881412A1 (en) | 2012-08-23 | 2014-02-27 | Waterview Innovation, Llc | Reusable multi-purpose bag formed of nonwoven fibrous material |
US20140373974A1 (en) * | 2013-06-24 | 2014-12-25 | Brandon Ragan | Pouch-type Sealant Injector |
DE102014202261A1 (en) * | 2014-02-07 | 2015-08-27 | Eurozyto Gmbh | Container and set for providing parenteral nutrition |
DE102014005569A1 (en) * | 2014-04-16 | 2015-10-22 | Fresenius Medical Care Deutschland Gmbh | Multi-chamber bag opening aid |
US9079690B1 (en) | 2014-06-26 | 2015-07-14 | Advanced Scientifics, Inc. | Freezer bag, storage system, and method of freezing |
CN107107620B (en) * | 2015-04-23 | 2019-03-08 | 惠普发展公司有限责任合伙企业 | Liquid container |
KR102431069B1 (en) * | 2016-04-07 | 2022-08-09 | 하비 글로벌 솔루션즈 엘엘씨 | Fluid pouch with inner microstructure |
CN109414299A (en) * | 2016-06-16 | 2019-03-01 | 德普伊新特斯产品公司 | Surgical instruments delivery system and correlation technique |
CN208684945U (en) | 2016-12-01 | 2019-04-02 | 生命科技股份有限公司 | Filter bag assembly and filtration system |
DE102017202510A1 (en) | 2017-02-16 | 2018-08-16 | Eurozyto Gmbh | Container for providing patient-specific drugs |
US10507165B2 (en) * | 2017-05-31 | 2019-12-17 | Adienne Pharma & Biotech Sa | Multi chamber flexible bag and methods of using same |
CA3069444A1 (en) * | 2017-07-11 | 2019-01-17 | Universal Stabilization Technologies, Inc. | Method for preserving biopharmaceuticals |
KR102112136B1 (en) * | 2018-05-09 | 2020-05-18 | 고려대학교산학협력단 | Smart functional drainage system |
USD900311S1 (en) | 2018-05-18 | 2020-10-27 | Baxter International Inc. | Dual chamber flexible container |
WO2019222673A2 (en) | 2018-05-18 | 2019-11-21 | Baxter International Inc. | Dual chamber flexible container, method of making and drug product using same |
US20210212936A1 (en) | 2018-06-01 | 2021-07-15 | Baxter International Inc. | Parenteral nutrition formulation |
US11419791B2 (en) | 2018-07-05 | 2022-08-23 | Fresenius Medical Care Holdings, Inc. | Flexible container systems and nozzles, and related methods |
US11278510B2 (en) * | 2019-09-05 | 2022-03-22 | Baxter International Inc. | Parenteral nutrition formulation with optimized amino acid and glucose content |
JP7496200B2 (en) * | 2019-11-20 | 2024-06-06 | 大王製紙株式会社 | Packaging Bag |
EP3838278A1 (en) | 2019-12-17 | 2021-06-23 | Baxter International Inc | Stabilization of selenite in a nutritional solution by dissolved oxygen |
EP3838258A1 (en) | 2019-12-17 | 2021-06-23 | Baxter International Inc. | Parenteral nutrition solution comprising a selenium source |
EP3878434A1 (en) | 2020-03-12 | 2021-09-15 | Lipoid GmbH | Sunflower phospholipid composition containing phosphatidylcholine |
US11666548B2 (en) | 2020-06-05 | 2023-06-06 | Baxter International Inc. | Parenteral nutrition formulation |
CN111728866B (en) * | 2020-07-27 | 2024-09-17 | 四川科伦药业股份有限公司 | Compression-resistant infusion bag with buffer cavity |
EP3973950A1 (en) | 2020-09-25 | 2022-03-30 | Baxter International Inc | Parenteral nutrition formulation comprising vitamin b12 |
EP3973949A1 (en) | 2020-09-25 | 2022-03-30 | Baxter International Inc | Stabilization of vitamin a in a nutritional solution |
US11389376B2 (en) * | 2020-12-21 | 2022-07-19 | Mediccene Inc. | Wearable intravenous fluid delivery system |
US11944586B2 (en) | 2021-05-25 | 2024-04-02 | Baxter International Inc. | Containers with selective dissolved gas content |
EP4140467A1 (en) * | 2021-08-25 | 2023-03-01 | B. Braun Melsungen AG | Peel seam opening aid and method for opening peel seams of a multichamber bag |
WO2023170680A1 (en) | 2022-03-08 | 2023-09-14 | Equashield Medical Ltd | Fluid transfer station in a robotic pharmaceutical preparation system |
CN116350504A (en) * | 2023-02-03 | 2023-06-30 | 苏州欧康维视生物科技有限公司 | Multi-cavity container for eye drops and preparation method thereof |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4169811A (en) * | 1977-03-23 | 1979-10-02 | Mitsubishi Gas Chemical Co., Inc. | Oxygen indicator |
US4349509A (en) * | 1979-07-03 | 1982-09-14 | Mitsubishi Gas Chemical Co., Inc. | Oxygen indicator adapted for printing or coating and oxygen-indicating device |
US4526752A (en) * | 1982-12-16 | 1985-07-02 | Daniel Perlman | Oxygen indicator for packaging |
US4834977A (en) * | 1987-03-06 | 1989-05-30 | Sumitomo Chemical Company, Limited | Poison bait for control of noxious insects |
US5096813A (en) * | 1988-07-18 | 1992-03-17 | Massachusetts Institute Of Technology | Visual indicator system |
US5260023A (en) * | 1991-05-07 | 1993-11-09 | Everseal Preservation Labs, Inc. | System and method for preserving acid-containing articles |
US5358876A (en) * | 1991-07-17 | 1994-10-25 | Mitsubishi Gas Chemical Company, Inc. | Oxygen indicator |
US6093572A (en) * | 1996-07-19 | 2000-07-25 | Pharmacia & Upjohn Ab | Colored composition |
US6291462B1 (en) * | 1998-05-09 | 2001-09-18 | Gruenenthal Gmbh | Oral medicinal preparations with reproducible release of the active ingredient gatifloxacin or its pharmaceutically suitable salts or hydrates |
US6319243B1 (en) * | 1996-09-11 | 2001-11-20 | Baxter International, Inc. | Containers and methods for storing and admixing medical solutions |
US20030082823A1 (en) * | 2001-10-26 | 2003-05-01 | Makoto Sumitani | Oxygen detecting composition |
US6561008B1 (en) * | 1999-10-28 | 2003-05-13 | Guelph Food Technology Centre | Determination of oxygen permeation into containers |
US6676901B1 (en) * | 1997-10-17 | 2004-01-13 | Mitsubishi Gas Chemical Company, Inc. | Oxygen indicator package equipped with oxygen indicator and method for manufacturing the same |
US20050049157A1 (en) * | 2003-08-29 | 2005-03-03 | Kimberly-Clark Worldwide, Inc. | Single phase color change agents |
US20050085577A1 (en) * | 2003-09-11 | 2005-04-21 | Ta Yen Ching | Oxygen scavenging packaging having improved sensory properties |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2502735B2 (en) | 1975-01-23 | 1978-11-23 | J. Pfrimmer & Co, 8520 Erlangen | Use of glycerophosphates |
DE2742875A1 (en) * | 1977-09-23 | 1979-04-05 | Merck Patent Gmbh | Colorimetric determn. of blood oxygen - using alkaline test reagent contg. reduced indigo:carmine and emulsifier |
US4467588A (en) * | 1982-04-06 | 1984-08-28 | Baxter Travenol Laboratories, Inc. | Separated packaging and sterile processing for liquid-powder mixing |
US4491589A (en) * | 1982-05-17 | 1985-01-01 | The Trustees Of Columbia University In The City Of New York | Amino acid solutions for parenteral nutrition and methods of formulation and use |
JPS5916818A (en) | 1982-07-20 | 1984-01-28 | Shimizu Seiyaku Kk | Solution for fluid therapy by administration through vein |
US4602910A (en) * | 1984-02-28 | 1986-07-29 | Larkin Mark E | Compartmented flexible solution container |
US4519499A (en) * | 1984-06-15 | 1985-05-28 | Baxter Travenol Laboratories, Inc. | Container having a selectively openable seal line and peelable barrier means |
US4608043A (en) * | 1984-06-22 | 1986-08-26 | Abbott Laboratories | I.V. fluid storage and mixing system |
US4952068A (en) * | 1989-03-21 | 1990-08-28 | Flint Theodore R | Static mixing device and container |
DE4107223C1 (en) * | 1991-03-07 | 1992-09-10 | Fresenius Ag, 6380 Bad Homburg, De | |
TW205591B (en) | 1991-07-17 | 1993-05-11 | Mitsubishi Gas Chemical Co | |
CN1046315C (en) * | 1991-10-11 | 1999-11-10 | 应浙鸿 | Multidose anaerobic indicator |
US5287961A (en) * | 1992-10-23 | 1994-02-22 | W.R. Grace & Co.-Conn. | Multi-compartment package having improved partition strip |
AU5637094A (en) * | 1993-03-16 | 1994-09-22 | Clintec Nutrition Company | Peelable seal and container having same |
US5549906A (en) * | 1993-07-26 | 1996-08-27 | Pharmacia Ab | Nicotine lozenge and therapeutic method for smoking cessation |
AU2999995A (en) * | 1994-07-22 | 1996-02-22 | G.D. Searle & Co. | Self-emulsifying drug delivery system |
US5549905A (en) * | 1994-10-18 | 1996-08-27 | Clintec Nutrition Co. | Enternal composition for pediatric patients |
US5756356A (en) | 1995-03-31 | 1998-05-26 | Toyo Ink Manufacturing Co., Ltd. | Method of indicating time or temperature-time accumulated value as color change, and materials therefor |
US5635199A (en) * | 1995-10-27 | 1997-06-03 | Nestec Ltd. | Support of pediatric patients |
SE9601348D0 (en) * | 1996-04-10 | 1996-04-10 | Pharmacia Ab | Improved containers for parenteral fluids |
US5928213A (en) * | 1996-05-13 | 1999-07-27 | B. Braun Medical, Inc. | Flexible multiple compartment medical container with preferentially rupturable seals |
HU223375B1 (en) * | 1996-07-19 | 2004-06-28 | Fresenius Kabi Ab | Color composition comprising an agent containing pyrogallol entities, a salt of iron (ii) and an organic acid |
DE19641909A1 (en) * | 1996-10-11 | 1998-04-16 | Braun Melsungen Ag | Flexible plastic container with three chambers |
CN1142757C (en) * | 1997-02-14 | 2004-03-24 | 布劳恩梅尔松根公开股份有限公司 | Flesible plastic container |
DE19718543A1 (en) * | 1997-05-02 | 1998-11-05 | Braun Melsungen Ag | Flexible, tight multi-chamber bag |
US6074366A (en) * | 1998-01-16 | 2000-06-13 | Tandem Medical Inc. | Medication delivery apparatus |
CN2323794Y (en) * | 1998-04-01 | 1999-06-16 | 喻敏 | Separating infusion soft bag |
JP2002136570A (en) * | 2000-08-24 | 2002-05-14 | Otsuka Pharmaceut Factory Inc | Medical double-chamber container |
US20030099722A1 (en) * | 2001-10-09 | 2003-05-29 | Baxter Jeffrey H. | Methods and compositions for providing glutamine |
US7175614B2 (en) * | 2002-10-17 | 2007-02-13 | Baxter International Inc. | Peelable seal |
US7323206B1 (en) * | 2003-03-04 | 2008-01-29 | B. Braun Medical Inc. | Reagents and methods for all-in-one total parenteral nutrition for neonates and infants |
GB0305602D0 (en) | 2003-03-12 | 2003-04-16 | Univ Strathclyde | Indicator |
DE10345589A1 (en) | 2003-09-29 | 2005-05-04 | Andre Schelbach | flask |
EP1621178A1 (en) * | 2004-07-29 | 2006-02-01 | Fresenius Kabi Deutschland GmbH | Flexible multi-chamber container for the preparation of medical mixed solutions |
EP1621177A1 (en) * | 2004-07-29 | 2006-02-01 | Fresenius Kabi Deutschland GmbH | Medical container with improved peelable seal |
-
2006
- 2006-08-02 AU AU2006295338A patent/AU2006295338B2/en active Active
- 2006-08-02 CN CNA2006800360091A patent/CN101351179A/en active Pending
- 2006-08-02 US US11/461,980 patent/US20070031976A1/en not_active Abandoned
- 2006-08-02 ES ES06789170.5T patent/ES2525930T3/en active Active
- 2006-08-02 AU AU2006275435A patent/AU2006275435B2/en active Active
- 2006-08-02 PT PT06836097T patent/PT1909739E/en unknown
- 2006-08-02 KR KR20087005120A patent/KR20080043804A/en not_active Application Discontinuation
- 2006-08-02 NZ NZ565764A patent/NZ565764A/en unknown
- 2006-08-02 NZ NZ565765A patent/NZ565765A/en unknown
- 2006-08-02 EP EP06836097A patent/EP1909739B1/en active Active
- 2006-08-02 DK DK06789170.5T patent/DK1909736T3/en active
- 2006-08-02 CA CA2617627A patent/CA2617627C/en active Active
- 2006-08-02 AT AT06836097T patent/ATE493105T1/en active
- 2006-08-02 CA CA2616928A patent/CA2616928C/en active Active
- 2006-08-02 PT PT06789170T patent/PT1909736E/en unknown
- 2006-08-02 BR BRPI0614606-6A patent/BRPI0614606A2/en not_active IP Right Cessation
- 2006-08-02 CN CN2006800359639A patent/CN101277670B/en active Active
- 2006-08-02 DK DK06836097.3T patent/DK1909739T3/en active
- 2006-08-02 EP EP06789170.5A patent/EP1909736B1/en active Active
- 2006-08-02 US US11/461,970 patent/US20070092579A1/en not_active Abandoned
- 2006-08-02 MX MX2008001621A patent/MX2008001621A/en active IP Right Grant
- 2006-08-02 AU AU2006275439A patent/AU2006275439A1/en not_active Abandoned
- 2006-08-02 KR KR1020087005116A patent/KR101242905B1/en active IP Right Grant
- 2006-08-02 MX MX2008001620A patent/MX2008001620A/en not_active Application Discontinuation
- 2006-08-02 RU RU2008107992A patent/RU2405141C2/en not_active IP Right Cessation
- 2006-08-02 KR KR1020087005118A patent/KR101333956B1/en active IP Right Grant
- 2006-08-02 BR BRPI0614097A patent/BRPI0614097B8/en active IP Right Grant
- 2006-08-02 JP JP2008525142A patent/JP2009503549A/en not_active Withdrawn
- 2006-08-02 CA CA002617230A patent/CA2617230A1/en not_active Abandoned
- 2006-08-02 MX MX2008001619A patent/MX2008001619A/en active IP Right Grant
- 2006-08-02 ES ES06836097T patent/ES2358682T3/en active Active
- 2006-08-02 JP JP2008525148A patent/JP2009502436A/en not_active Withdrawn
- 2006-08-02 WO PCT/US2006/030064 patent/WO2007037793A1/en active Application Filing
- 2006-08-02 EP EP06789172A patent/EP1909737A1/en not_active Withdrawn
- 2006-08-02 JP JP2008525145A patent/JP2009502435A/en not_active Withdrawn
- 2006-08-02 CN CN2006800362010A patent/CN101287438B/en active Active
- 2006-08-02 US US11/461,963 patent/US8485727B2/en active Active
- 2006-08-02 WO PCT/US2006/030058 patent/WO2007016615A1/en active Application Filing
- 2006-08-02 DE DE602006019259T patent/DE602006019259D1/en active Active
- 2006-08-02 WO PCT/US2006/030051 patent/WO2007016611A2/en active Application Filing
- 2006-08-02 BR BRPI0614521A patent/BRPI0614521B8/en active IP Right Grant
- 2006-08-02 RU RU2008108007/15A patent/RU2008108007A/en not_active Application Discontinuation
- 2006-08-02 RU RU2008108005A patent/RU2390324C2/en not_active IP Right Cessation
-
2008
- 2008-02-03 IL IL189197A patent/IL189197A/en active IP Right Grant
- 2008-02-03 IL IL189196A patent/IL189196A/en active IP Right Grant
- 2008-02-03 IL IL189198A patent/IL189198A0/en unknown
- 2008-11-20 HK HK08112693.7A patent/HK1121031A1/en unknown
- 2008-11-20 HK HK08112695.5A patent/HK1121032A1/en unknown
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4169811A (en) * | 1977-03-23 | 1979-10-02 | Mitsubishi Gas Chemical Co., Inc. | Oxygen indicator |
US4349509A (en) * | 1979-07-03 | 1982-09-14 | Mitsubishi Gas Chemical Co., Inc. | Oxygen indicator adapted for printing or coating and oxygen-indicating device |
US4526752A (en) * | 1982-12-16 | 1985-07-02 | Daniel Perlman | Oxygen indicator for packaging |
US4834977A (en) * | 1987-03-06 | 1989-05-30 | Sumitomo Chemical Company, Limited | Poison bait for control of noxious insects |
US5096813A (en) * | 1988-07-18 | 1992-03-17 | Massachusetts Institute Of Technology | Visual indicator system |
US5260023A (en) * | 1991-05-07 | 1993-11-09 | Everseal Preservation Labs, Inc. | System and method for preserving acid-containing articles |
US5358876A (en) * | 1991-07-17 | 1994-10-25 | Mitsubishi Gas Chemical Company, Inc. | Oxygen indicator |
US6627443B1 (en) * | 1996-07-19 | 2003-09-30 | Fresenius Kabi Ab | Colored composition |
US6093572A (en) * | 1996-07-19 | 2000-07-25 | Pharmacia & Upjohn Ab | Colored composition |
US6399387B1 (en) * | 1996-07-19 | 2002-06-04 | Pharmacia Ab | Colored composition |
US6319243B1 (en) * | 1996-09-11 | 2001-11-20 | Baxter International, Inc. | Containers and methods for storing and admixing medical solutions |
US6676901B1 (en) * | 1997-10-17 | 2004-01-13 | Mitsubishi Gas Chemical Company, Inc. | Oxygen indicator package equipped with oxygen indicator and method for manufacturing the same |
US6291462B1 (en) * | 1998-05-09 | 2001-09-18 | Gruenenthal Gmbh | Oral medicinal preparations with reproducible release of the active ingredient gatifloxacin or its pharmaceutically suitable salts or hydrates |
US6561008B1 (en) * | 1999-10-28 | 2003-05-13 | Guelph Food Technology Centre | Determination of oxygen permeation into containers |
US20030082823A1 (en) * | 2001-10-26 | 2003-05-01 | Makoto Sumitani | Oxygen detecting composition |
US20050049157A1 (en) * | 2003-08-29 | 2005-03-03 | Kimberly-Clark Worldwide, Inc. | Single phase color change agents |
US20050085577A1 (en) * | 2003-09-11 | 2005-04-21 | Ta Yen Ching | Oxygen scavenging packaging having improved sensory properties |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080004594A1 (en) * | 2004-07-29 | 2008-01-03 | Olof Pahlberg | Flexible Multi-Chamber Container for the Preparation of Medical Mixed Solutions |
US20080017543A1 (en) * | 2004-07-29 | 2008-01-24 | Olof Pahlberg | Medical Container With Improved Peelable Seal |
US7875015B2 (en) | 2004-07-29 | 2011-01-25 | Fresenius Kabi Deutschland Gmbh | Medical container with improved peelable seal |
US7875016B2 (en) * | 2004-07-29 | 2011-01-25 | Fresenius Kabi Deutschland Gmbh | Flexible multi-chamber container for the preparation of medical mixed solutions |
US20110136238A1 (en) * | 2008-06-18 | 2011-06-09 | Teknologian Tutkimuskeskus Vtt | Oxygen indicator |
EP2264448A1 (en) | 2009-06-19 | 2010-12-22 | B. Braun Melsungen AG | Oxygen indicator for parenteral and enteral application forms |
WO2010146076A1 (en) | 2009-06-19 | 2010-12-23 | B. Braun Melsungen Ag | Oxygen indicator for parenteral and enteral modes of administration |
US8987001B2 (en) | 2009-06-19 | 2015-03-24 | B. Braun Melsungen Ag | Oxygen indicator for parenteral and enteral dosage forms |
US10888534B2 (en) | 2019-04-26 | 2021-01-12 | InfoRLife SA | Storage stable ready-to-use norepinephrine aqueous solutions in flexible plastic bags |
US20230172806A1 (en) * | 2021-12-07 | 2023-06-08 | Baxter International Inc. | Multi-chamber bag for parenteral nutrition solutions |
US20230172809A1 (en) * | 2021-12-07 | 2023-06-08 | Baxter International Inc. | Multi-chamber bag for parenteral nutrition solutions |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8485727B2 (en) | Multiple chamber container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAXTER HEALTHCARE S.A., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TROUILLY, JEAN LUC;DESBROSSES, FREDDY;BONNOT, DENIS;AND OTHERS;SIGNING DATES FROM 20060904 TO 20060906;REEL/FRAME:018250/0563 Owner name: BAXTER INTERNATIONAL INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TROUILLY, JEAN LUC;DESBROSSES, FREDDY;BONNOT, DENIS;AND OTHERS;SIGNING DATES FROM 20060904 TO 20060906;REEL/FRAME:018250/0563 Owner name: BAXTER HEALTHCARE S.A., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TROUILLY, JEAN LUC;DESBROSSES, FREDDY;BONNOT, DENIS;AND OTHERS;REEL/FRAME:018250/0563;SIGNING DATES FROM 20060904 TO 20060906 Owner name: BAXTER INTERNATIONAL INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TROUILLY, JEAN LUC;DESBROSSES, FREDDY;BONNOT, DENIS;AND OTHERS;REEL/FRAME:018250/0563;SIGNING DATES FROM 20060904 TO 20060906 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |