US20060288288A1 - Methods and interfaces for event timeline and logs of video streams - Google Patents
Methods and interfaces for event timeline and logs of video streams Download PDFInfo
- Publication number
- US20060288288A1 US20060288288A1 US11/324,971 US32497106A US2006288288A1 US 20060288288 A1 US20060288288 A1 US 20060288288A1 US 32497106 A US32497106 A US 32497106A US 2006288288 A1 US2006288288 A1 US 2006288288A1
- Authority
- US
- United States
- Prior art keywords
- video
- interest
- events
- timeline
- event
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000000694 effects Effects 0.000 claims abstract description 59
- 239000003086 colorant Substances 0.000 claims description 11
- 238000012800 visualization Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 4
- 238000009499 grossing Methods 0.000 claims description 3
- 230000001815 facial effect Effects 0.000 claims description 2
- 230000003993 interaction Effects 0.000 abstract description 5
- 230000001360 synchronised effect Effects 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract 1
- 238000013459 approach Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19678—User interface
- G08B13/19682—Graphic User Interface [GUI] presenting system data to the user, e.g. information on a screen helping a user interacting with an alarm system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/73—Querying
- G06F16/738—Presentation of query results
- G06F16/739—Presentation of query results in form of a video summary, e.g. the video summary being a video sequence, a composite still image or having synthesized frames
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/78—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/783—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/7837—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using objects detected or recognised in the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/78—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/783—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/7847—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using low-level visual features of the video content
- G06F16/785—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using low-level visual features of the video content using colour or luminescence
Definitions
- Techniques for generating timelines and event logs from one or more fixed-position cameras based on the identification of activity in the video, an assessment of the importance of the activity, the creation of a timeline identifying events of interest, and interaction techniques for seeing more details of an event or alternate views of the video are identified.
- Timelines have been explored by a variety of researchers. Plaisant et al. use timelines to visualize events in people's lives (e.g., criminal or medical records), Plaisant C., Milash B., Rose A., Widoff S., Shneiderman B., LifeLines: Visualizing Personal Histories. Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 221-227, 1996. Kumar et al. visualize data from digital libraries such as information about music composers in timelines. Kumar V., Furuta R., Allen R. B., Metadata Visualization for Digital Libraries: Interactive Timeline Editing and Review. Proceedings of the third ACM conference on Digital libraries, pp. 126-133, 1998.
- U.S. Pat. No. 6,366,296 discloses a timeline view for a single camera.
- U.S. patent application Ser. No. 10/126,555 Publication Number 20030197731 shows a related map technique where keyframes of events fade in and out while the user moves along the timeline.
- a timeline interface for presenting events of interest within a set of video streams has been developed.
- the timeline interface includes techniques for locating periods of interesting activity within a video stream, methods for grouping activity into events, methods for presenting events, and interface elements for selecting periods of interest and playing through events in a map.
- FIG. 1 shows an artists impression of FIG. 8 where a graph of the importance determined from activity close to hot spots versus time is plotted where horizontal lines are used to indicate the time at which the important event was first present in the video stream and extend to the time the event was last present in the video stream and keyframes representative of the activity are displayed, in FIG. 1 the symbols ( ⁇ , ⁇ , ⁇ , O) corresponding to colors (green, red, yellow, blue) are used to indicate the source camera ( 1 , 2 , 3 , 4 ) and different hatched line drawings of the characters in FIG. 1 are used to better distinguish the different actors present in FIG. 8 ;
- FIG. 2 shows an artists impression of FIG. 9 where a timeline with events from a single source camera ( 2 ) indicated in FIG. 2 using the triangle symbol ( ⁇ ) to exemplify that the horizontal box and the keyframe outlines in FIG. 9 are shaded red and different hatched line drawings of the characters in FIG. 2 are used to better distinguish the different actors present in FIG. 9 ;
- FIG. 3 shows an artists impression of FIG. 10 where a timeline with events from multiple cameras is displayed and keyframes are outlined in FIG. 3 with symbols ( ⁇ , ⁇ , ⁇ , O) corresponding to colors (green, red, yellow, blue) in FIG. 10 to indicate the source camera ( 1 , 2 , 3 , 4 ) and different hatched line drawing of the characters in FIG. 3 are used to better distinguish the different actors present in FIG. 10 ;
- FIG. 4 shows an artists impression of FIG. 11 where a quad representation of keyframes from four cameras is displayed with keyframes cropped to the center of activity and sized proportional to their importance and different hatched line drawings of the characters in FIG. 4 are used to better distinguish the different actors present in FIG. 11 ;
- FIG. 5 shows an artists impression of FIG. 12 where an event list and keyframes with activity close to the hotspot and time-lapse visualization of the whole event are displayed, where the intensity of the object in the time lapse visualization in FIG. 5 is indicated using the code (continuous line, dashed line, dotted line) to indicate intense, weak and faint figures and different hatched line drawings of the characters in FIG. 5 are used to better distinguish the different actors present in FIG. 12 ;
- FIG. 6 shows an artists impression of FIG. 13 which illustrates a map showing camera positions identified in FIG. 6 using symbols ( ⁇ , ⁇ , ⁇ , O) corresponding to colors (green, red, yellow, blue) in FIG. 13 to indicate the camera ( 1 , 2 , 3 , 4 ) respectively, where keyframes of events fade in and out while the user moves along the timeline (not shown) and different hatched line drawings of the characters in FIG. 6 are used to better distinguish the different actors present in FIG. 13 ;
- FIG. 7 shows a block diagram of the steps involved in identifying events in a video streams to generate a timeline
- FIG. 8 shows a graph of the importance determined from activity close to hot spots versus time
- FIG. 9 shows a timeline with events from a single source camera ( 2 );
- FIG. 10 shows a timeline with events from multiple cameras and keyframes
- FIG. 11 shows a quad representation of keyframes from four cameras with keyframes cropped to the center of activity and sized proportional to their importance
- FIG. 12 shows an event list and keyframes with activity close to the hotspot and time-lapse visualization of the whole event
- FIG. 13 illustrates a map showing camera positions, where keyframes of events fade in and out while the user moves along the timeline (not shown).
- the first approach compares successive video frames and determines the pixels that change.
- the second approach models the background of the camera view and determines foreground pixels in every video frame. Both approaches look at the changed or foreground pixels and count them or determine the direction and speed of the overall motion. Frames with sufficient activity are grouped into video segments with activity. Thresholds for the minimum fraction of changed pixels to be considered activity, for the minimum pause in activity to start a new segment, and the minimum length of an activity segment to ignore video noise are experimentally determined.
- Events are identified by determining periods of activity which are considered of interest based on the amount of activity in the video, distance to points of interest in the space being videotaped, detected features such as people's faces, and events from other sensors, e.g., Radio Frequency Identification (RFID). If multiple cameras have the same point of interest in view, the distance measure to the point of interest can be improved by considering all cameras.
- RFID Radio Frequency Identification
- frames are combined into event sequences by first smoothing the importance score with a moving average, and then selecting sequences where the moving average is above a threshold. This is illustrated in FIG. 1 and FIG. 8 , where a graph of the importance, determined from activity close to hot spot, is plotted versus time.
- sequences with the moving average above a threshold are grouped into events and events with short gaps are merged. Another threshold determines the maximum duration for gaps for merging events.
- FIGS. 1 and 8 also depict keyframes with high importance associated with the events.
- FIG. 2 and FIG. 9 show a timeline with events from a single (# 2 ) camera.
- the triangle symbol ( ⁇ ) is used to exemplify that the horizontal bar/line and the keyframe outlines are shaded red in FIG. 9 to indicate that the video comes from the camera associated with that color.
- the horizontal bar/lines indicate the duration of the event, and a keyframe is used to visualize the content of each event. Users can adjust the endpoints of the timeline to obtain the time interval of interest.
- FIG. 7 shows a block diagram of the steps involved in identifying events in video streams to generate a timeline.
- FIG. 3 and FIG. 10 show a timeline with events from multiple cameras.
- keyframe outlines are coded symbols ( ⁇ , ⁇ , ⁇ , O) corresponding to colors (green, red, yellow, blue) in FIG. 10 to indicate the source camera ( 1 , 2 , 3 , 4 ).
- Composite keyframes or activity keyframes are provided to give a sense of the different views of an event and the activity in an event.
- FIG. 4 and FIG. 11 illustrate a quad representation of keyframes from four cameras with keyframes cropped to the center of activity and sized proportional to their importance.
- a map interface component has been designed and developed for this purpose.
- the map and timeline interact to provide the user with the information necessary to locate video segments of interest.
- the Map Shows the Geographic Position
- the map shows the geographic position of the cameras and is used for selecting video streams to include in the timeline.
- Cameras are identified using both color-coding and textual camera identifiers. When a user selects a set of cameras with the mouse, the timeline is recreated.
- FIG. 6 and FIG. 13 illustrate a map showing camera positions where keyframes of events fade in and out while the user moves along the timeline (not shown in Figures).
- FIG. 5 and FIG. 12 illustrate an event list and keyframes with activity close to the hotspot and time-lapse visualization of the whole event, where in FIG. 5 the intensity of the object in the time lapse visualization is indicated using a code (continuous line, dashed line, dotted line) to indicate intense, weak and faint figures.
- Keyframe Compositions An approach to presenting simultaneous action in multiple video streams can be to create a composition from areas of interest in keyframes from multiple cameras. The size of the regions taken from the source keyframes is used to indicate the relative importance of activity in those video streams (see FIGS. 4 and 11 ).
- Various embodiments of the invention may be implemented using a processor(s) programmed according to the teachings of the present disclosure, as will be apparent to those skilled in the computer art.
- Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art.
- the invention may also be implemented by the preparation of integrated circuits and/or by interconnecting an appropriate network of component circuits, as will be readily apparent to those skilled in the art.
- Various embodiments include a computer program product which can be a storage medium (media) having instructions and/or information stored thereon/in which can be used to program a general purpose or specialized computing processor(s)/device(s) to perform any of the features presented herein.
- the storage medium can include, but is not limited to, one or more of the following: any type of physical media including floppy disks, optical discs, DVDs, CD-ROMs, micro drives, magneto-optical disks, holographic storage devices, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, PRAMS, VRAMs, flash memory devices, magnetic or optical cards, nano-systems (including molecular memory ICs); paper or paper-based media; and any type of media or device suitable for storing instructions and/or information.
- any type of physical media including floppy disks, optical discs, DVDs, CD-ROMs, micro drives, magneto-optical disks, holographic storage devices, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, PRAMS, VRAMs, flash memory devices, magnetic or optical cards, nano-systems (including molecular memory ICs); paper or paper-based media; and any type of media or device suitable for storing instructions and/or information.
- Various embodiments include a computer program product that can be transmitted in whole or in parts and over one or more public and/or private networks wherein the transmission includes instructions and/or information, which can be used by one or more processors to perform any of the features, presented herein.
- the transmission may include a plurality of separate transmissions.
- the present disclosure includes software for controlling the hardware of the processor(s), and for enabling the computer(s) and/or processor(s) to interact with a human user or other device utilizing the results of the present invention.
- software may include, but is not limited to, device drivers, interface drivers, operating systems, execution environments/containers, user interfaces and applications.
- the execution of code can be direct or indirect.
- the code can include compiled, interpreted and other types of languages. Unless otherwise limited by claim language, the execution and/or transmission of code and/or code segments for a function can include invocations or calls to other software or devices, local or remote, to do the function.
- the invocations or calls can include invocations or calls to library modules, device drivers, interface drivers and remote software to do the function.
- the invocations or calls can include invocations or calls in distributed and client/server systems.
- a method of identifying events in one or more video streams comprising the steps of: (a) determining a measure of interest; (b) generating an importance score for each video frame based on the measure of interest; (c) computing one or more threshold values; and (d) selecting video frames identifying events based on the threshold values.
- the measure of interest is based on criteria selected from the group consisting of the amount of activity in the video, points of interest in the video, distance to points of interest from the camera, detected features in the video, facial features in the video, if the activity is of interest, if the feature is of interest, activities detected by other sensors and events detected by other sensors.
- determining the measure of interest further comprises the steps of: (e) determining one or more points of interest in the video stream; (f) determining one or more distances from the one or more video camera positions to the one or more points of interest in the video stream; and (g) determining the measure of interest based on the distances to the points of interest.
- generating the importance score further comprises the step of smoothing.
- the smoothed importance score is generated by applying a moving average to the importance score.
- one or more threshold values are computed for measures selected from the group consisting of the minimum measure of interest, the minimum fraction of changed pixels to be considered activity, the minimum pause in activity to start a new video segment and the minimum length of the activity segment to ignore noise.
- selecting video frames further comprises the steps of: (h) including video frames in the event if the smoothed importance score is above a minimum measure of interest threshold; and (i) merging selected consecutive video frames into a single event if the gap between the selected consecutive video frames is below the minimum pause in activity to start a new video segment threshold value.
- Another embodiment of the invention further comprises generating a timeline of at least one of the events in the video stream.
- the duration of events in the timeline are identified using a horizontal line where the line begins at the time the event was first present in the video stream and ends at the time the event was last present in the video stream; and wherein a keyframe is used to visualize the content of each event; wherein the keyframe is associated with the duration of events.
- the code uses different colors to indicate an event shot with a different camera; wherein the same color is used for different events present in the video from the same camera; wherein the same color is used to frame the keyframe for each event from the same camera.
- a map is used to show the geographic position of two or more cameras used to film the two or more video streams; where a code is used to indicate a camera; where a keyframes is used to show the video stream observed from the camera and is framed in that code; where a different code is used to indicate a different camera; where different keyframes used to show the video stream observed from the different cameras are framed with the different code associated with the different cameras; where the keyframes vary as a cursor moves along the timeline.
- the code uses different colors to show the geographic position of two or more cameras used to film the two or more video streams; where a color is used to indicate a camera; where the keyframes is framed in that color; where a different color is used to indicate a different camera; where the different keyframes are framed with the different colors associated with the different cameras; where the keyframes vary as a cursor moves along the timeline.
- keyframes of the identified event are presented; where the keyframes are numbered according to the timeline.
- the keyframes are selected from the group consisting of single action keyframes representative of the period of activity and/or time-lapse visualization of the period of activity.
- keyframes are used to visualize a composition in a video stream; where the keyframes are numbered according to the single timeline.
- an event-log is used with keyframes on a map to visualize the event.
- the event is represented using a medium selected from the group consisting of a map, an event-log and a timeline.
- a program of instructions executable by a computer to generate a timeline of events in a video stream, comprising the steps of: determining a measure of interest; generating an importance score for each video frame based on the measure of interest; computing one or more threshold values; electing video frames identifying events based on the threshold values; and generating a timeline of the one or more events in the video stream.
- a system or apparatus for generating a timeline of events in a video stream comprising: a) one or more processors capable of specifying one or more sets of parameters; capable of transferring the one or more sets of parameters to a source code; capable of compiling the source code into a series of tasks for visualizing an event in a video stream; and b) a machine readable medium including operations stored thereon that when processed by one or more processors cause a system to perform the steps of specifying one or more sets of parameters; transferring one or more sets of parameters to a source code; compiling the source code into a series of tasks for generating a timeline of events in a video stream.
- a machine-readable medium having instructions stored thereon to cause a system to: determine a measure of interest; generate an importance score for each video frame based on the measure of interest; compute one or more threshold values; select video frames identifying events based on the threshold values; and generate a timeline of the one or more events in the video stream.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Library & Information Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Computational Linguistics (AREA)
- Image Analysis (AREA)
Abstract
Description
- This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Application No. 60/691,380, filed Jun. 17, 2005, entitled METHODS AND INTERFACES FOR EVENT TIMELINES AND LOGS OF VIDEO STREAMS, and to U.S. Provisional Application No. 60/691,983, filed Jun. 17, 2005, entitled METHODS AND INTERFACES FOR VISUALIZING ACTIVITY ACROSS VIDEO FRAMES IN AN ACTION KEYFRAME, and to U.S. Provisional Application No. 60/691,899, filed Jun. 17, 2005, entitled METHOD AND SYSTEM FOR ANALYZING FIXED-CAMERA VIDEO VIA THE SELECTION, VISUALIZATION, AND INTERACTION WITH STORYBOARD KEYFRAMES, each of which is incorporated herein by reference.
- This application is related to the following applications, which were filed of even date herewith:
- (1) “Method and System for Analyzing Fixed-Camera Video via the Selection, Visualization, and Interaction with Storyboard Keyframes,” by Andreas Girgensohn, et al. (Attorney Docket No. FXPL-01119US1 MCF/AGC); and
- (2) “Methods and Interfaces for Visualizing Activity across Video Frames in an Action Keyframe,” by Andreas Girgensohn, et al. (Attorney Docket No. FXPL-01121US1 MCF/AGC).
- 1. Field of the Invention
- Techniques for generating timelines and event logs from one or more fixed-position cameras based on the identification of activity in the video, an assessment of the importance of the activity, the creation of a timeline identifying events of interest, and interaction techniques for seeing more details of an event or alternate views of the video are identified.
- 2. Description of the Related Art
- Identifying events of interest within a set of synchronized video streams, such as video from a set of security cameras, is difficult due to the quantity of video and the lack of authored metadata or indexing. Yet, security personnel need to identify, either in real time or after the fact, activities of interest and determine interrelationships between activities in different video streams. They must develop an understanding of the sequence of actions that led to or happened after a particular incident.
- Timelines have been explored by a variety of researchers. Plaisant et al. use timelines to visualize events in people's lives (e.g., criminal or medical records), Plaisant C., Milash B., Rose A., Widoff S., Shneiderman B., LifeLines: Visualizing Personal Histories. Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 221-227, 1996. Kumar et al. visualize data from digital libraries such as information about music composers in timelines. Kumar V., Furuta R., Allen R. B., Metadata Visualization for Digital Libraries: Interactive Timeline Editing and Review. Proceedings of the third ACM conference on Digital libraries, pp. 126-133, 1998.
- Other approaches are given in Chueng, S.-C. S. and Kamath C. Robust Techniques for Background Subtraction in Urban Traffic Video. Video Communications and Image Processing, SPIE Electronic Imaging, San Jose, 2004.
- U.S. Pat. No. 6,366,296 discloses a timeline view for a single camera. U.S. patent application Ser. No. 10/126,555 Publication Number 20030197731 shows a related map technique where keyframes of events fade in and out while the user moves along the timeline.
- A timeline interface for presenting events of interest within a set of video streams has been developed. The timeline interface includes techniques for locating periods of interesting activity within a video stream, methods for grouping activity into events, methods for presenting events, and interface elements for selecting periods of interest and playing through events in a map.
- Preferred embodiments of the present invention will be described in detail based on the following figures, wherein:
-
FIG. 1 shows an artists impression ofFIG. 8 where a graph of the importance determined from activity close to hot spots versus time is plotted where horizontal lines are used to indicate the time at which the important event was first present in the video stream and extend to the time the event was last present in the video stream and keyframes representative of the activity are displayed, inFIG. 1 the symbols (□, Δ, ⋄, O) corresponding to colors (green, red, yellow, blue) are used to indicate the source camera (1, 2, 3, 4) and different hatched line drawings of the characters inFIG. 1 are used to better distinguish the different actors present inFIG. 8 ; -
FIG. 2 shows an artists impression ofFIG. 9 where a timeline with events from a single source camera (2) indicated inFIG. 2 using the triangle symbol (Δ) to exemplify that the horizontal box and the keyframe outlines inFIG. 9 are shaded red and different hatched line drawings of the characters inFIG. 2 are used to better distinguish the different actors present inFIG. 9 ; -
FIG. 3 shows an artists impression ofFIG. 10 where a timeline with events from multiple cameras is displayed and keyframes are outlined inFIG. 3 with symbols (□, Δ, ⋄, O) corresponding to colors (green, red, yellow, blue) inFIG. 10 to indicate the source camera (1, 2, 3, 4) and different hatched line drawing of the characters inFIG. 3 are used to better distinguish the different actors present inFIG. 10 ; -
FIG. 4 shows an artists impression ofFIG. 11 where a quad representation of keyframes from four cameras is displayed with keyframes cropped to the center of activity and sized proportional to their importance and different hatched line drawings of the characters inFIG. 4 are used to better distinguish the different actors present inFIG. 11 ; -
FIG. 5 shows an artists impression ofFIG. 12 where an event list and keyframes with activity close to the hotspot and time-lapse visualization of the whole event are displayed, where the intensity of the object in the time lapse visualization inFIG. 5 is indicated using the code (continuous line, dashed line, dotted line) to indicate intense, weak and faint figures and different hatched line drawings of the characters inFIG. 5 are used to better distinguish the different actors present inFIG. 12 ; -
FIG. 6 shows an artists impression ofFIG. 13 which illustrates a map showing camera positions identified inFIG. 6 using symbols (□, Δ, ⋄, O) corresponding to colors (green, red, yellow, blue) inFIG. 13 to indicate the camera (1, 2, 3, 4) respectively, where keyframes of events fade in and out while the user moves along the timeline (not shown) and different hatched line drawings of the characters inFIG. 6 are used to better distinguish the different actors present inFIG. 13 ; -
FIG. 7 shows a block diagram of the steps involved in identifying events in a video streams to generate a timeline; -
FIG. 8 shows a graph of the importance determined from activity close to hot spots versus time; -
FIG. 9 shows a timeline with events from a single source camera (2); -
FIG. 10 shows a timeline with events from multiple cameras and keyframes; -
FIG. 11 shows a quad representation of keyframes from four cameras with keyframes cropped to the center of activity and sized proportional to their importance; -
FIG. 12 shows an event list and keyframes with activity close to the hotspot and time-lapse visualization of the whole event; and -
FIG. 13 illustrates a map showing camera positions, where keyframes of events fade in and out while the user moves along the timeline (not shown). - Identifying Activity in Video
- Two different approaches for determining activity are proposed. The first approach compares successive video frames and determines the pixels that change. The second approach models the background of the camera view and determines foreground pixels in every video frame. Both approaches look at the changed or foreground pixels and count them or determine the direction and speed of the overall motion. Frames with sufficient activity are grouped into video segments with activity. Thresholds for the minimum fraction of changed pixels to be considered activity, for the minimum pause in activity to start a new segment, and the minimum length of an activity segment to ignore video noise are experimentally determined.
- Turning Activity into Events
- Events are identified by determining periods of activity which are considered of interest based on the amount of activity in the video, distance to points of interest in the space being videotaped, detected features such as people's faces, and events from other sensors, e.g., Radio Frequency Identification (RFID). If multiple cameras have the same point of interest in view, the distance measure to the point of interest can be improved by considering all cameras.
- Once the measure of interest has been computed for each frame in the video, frames are combined into event sequences by first smoothing the importance score with a moving average, and then selecting sequences where the moving average is above a threshold. This is illustrated in
FIG. 1 andFIG. 8 , where a graph of the importance, determined from activity close to hot spot, is plotted versus time. InFIGS. 1 and 8 , sequences with the moving average above a threshold are grouped into events and events with short gaps are merged. Another threshold determines the maximum duration for gaps for merging events.FIGS. 1 and 8 also depict keyframes with high importance associated with the events. - Visualizing Events on a Timeline
- Rather than simply providing a list of events, the events are visualized using a timeline and keyframes.
FIG. 2 andFIG. 9 show a timeline with events from a single (#2) camera. InFIG. 2 the triangle symbol (Δ) is used to exemplify that the horizontal bar/line and the keyframe outlines are shaded red inFIG. 9 to indicate that the video comes from the camera associated with that color. The horizontal bar/lines indicate the duration of the event, and a keyframe is used to visualize the content of each event. Users can adjust the endpoints of the timeline to obtain the time interval of interest.FIG. 7 shows a block diagram of the steps involved in identifying events in video streams to generate a timeline. For multiple cameras, a single timeline is still used, but horizontal bars of different colors indicate events for different cameras.FIG. 3 andFIG. 10 show a timeline with events from multiple cameras. InFIG. 3 keyframe outlines are coded symbols (□, Δ, ⋄, O) corresponding to colors (green, red, yellow, blue) inFIG. 10 to indicate the source camera (1, 2, 3, 4). Composite keyframes or activity keyframes are provided to give a sense of the different views of an event and the activity in an event.FIG. 4 andFIG. 11 illustrate a quad representation of keyframes from four cameras with keyframes cropped to the center of activity and sized proportional to their importance. - Interaction with Timeline
- Users such as security personnel need to be able to select video streams for inclusion in the timeline. A map interface component has been designed and developed for this purpose. The map and timeline interact to provide the user with the information necessary to locate video segments of interest.
- The Map Shows the Geographic Position
- The map shows the geographic position of the cameras and is used for selecting video streams to include in the timeline. Cameras are identified using both color-coding and textual camera identifiers. When a user selects a set of cameras with the mouse, the timeline is recreated.
- Playback of Events in Map
- Users can choose to play through a portion of the timeline. During timeline playback, keyframes indicating interesting activity fade into view on the map near the camera showing the activity and fade out after the time of the activity has passed.
FIG. 6 andFIG. 13 illustrate a map showing camera positions where keyframes of events fade in and out while the user moves along the timeline (not shown in Figures). - Visualizing Activity in Keyframes
- Action Keyframes. To visualize a period of activity in a video stream via a single keyframe, foreground objects appearing in different frames in the video segment are alpha-blended to show motion.
FIG. 5 andFIG. 12 illustrate an event list and keyframes with activity close to the hotspot and time-lapse visualization of the whole event, where inFIG. 5 the intensity of the object in the time lapse visualization is indicated using a code (continuous line, dashed line, dotted line) to indicate intense, weak and faint figures. - Keyframe Compositions. An approach to presenting simultaneous action in multiple video streams can be to create a composition from areas of interest in keyframes from multiple cameras. The size of the regions taken from the source keyframes is used to indicate the relative importance of activity in those video streams (see
FIGS. 4 and 11 ). - Various embodiments of the invention may be implemented using a processor(s) programmed according to the teachings of the present disclosure, as will be apparent to those skilled in the computer art. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art. The invention may also be implemented by the preparation of integrated circuits and/or by interconnecting an appropriate network of component circuits, as will be readily apparent to those skilled in the art.
- Various embodiments include a computer program product which can be a storage medium (media) having instructions and/or information stored thereon/in which can be used to program a general purpose or specialized computing processor(s)/device(s) to perform any of the features presented herein. The storage medium can include, but is not limited to, one or more of the following: any type of physical media including floppy disks, optical discs, DVDs, CD-ROMs, micro drives, magneto-optical disks, holographic storage devices, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, PRAMS, VRAMs, flash memory devices, magnetic or optical cards, nano-systems (including molecular memory ICs); paper or paper-based media; and any type of media or device suitable for storing instructions and/or information. Various embodiments include a computer program product that can be transmitted in whole or in parts and over one or more public and/or private networks wherein the transmission includes instructions and/or information, which can be used by one or more processors to perform any of the features, presented herein. In various embodiments, the transmission may include a plurality of separate transmissions.
- Stored on one or more computer readable media, the present disclosure includes software for controlling the hardware of the processor(s), and for enabling the computer(s) and/or processor(s) to interact with a human user or other device utilizing the results of the present invention. Such software may include, but is not limited to, device drivers, interface drivers, operating systems, execution environments/containers, user interfaces and applications.
- The execution of code can be direct or indirect. The code can include compiled, interpreted and other types of languages. Unless otherwise limited by claim language, the execution and/or transmission of code and/or code segments for a function can include invocations or calls to other software or devices, local or remote, to do the function. The invocations or calls can include invocations or calls to library modules, device drivers, interface drivers and remote software to do the function. The invocations or calls can include invocations or calls in distributed and client/server systems.
- In one embodiment of the invention, a method of identifying events in one or more video streams is envisaged comprising the steps of: (a) determining a measure of interest; (b) generating an importance score for each video frame based on the measure of interest; (c) computing one or more threshold values; and (d) selecting video frames identifying events based on the threshold values.
- In another embodiment of the invention, the measure of interest is based on criteria selected from the group consisting of the amount of activity in the video, points of interest in the video, distance to points of interest from the camera, detected features in the video, facial features in the video, if the activity is of interest, if the feature is of interest, activities detected by other sensors and events detected by other sensors.
- In another embodiment of the invention, determining the measure of interest further comprises the steps of: (e) determining one or more points of interest in the video stream; (f) determining one or more distances from the one or more video camera positions to the one or more points of interest in the video stream; and (g) determining the measure of interest based on the distances to the points of interest.
- In another embodiment of the invention, generating the importance score further comprises the step of smoothing. In another embodiment of the invention, the smoothed importance score is generated by applying a moving average to the importance score.
- In another embodiment of the invention, one or more threshold values are computed for measures selected from the group consisting of the minimum measure of interest, the minimum fraction of changed pixels to be considered activity, the minimum pause in activity to start a new video segment and the minimum length of the activity segment to ignore noise.
- In another embodiment of the invention, selecting video frames further comprises the steps of: (h) including video frames in the event if the smoothed importance score is above a minimum measure of interest threshold; and (i) merging selected consecutive video frames into a single event if the gap between the selected consecutive video frames is below the minimum pause in activity to start a new video segment threshold value.
- Another embodiment of the invention further comprises generating a timeline of at least one of the events in the video stream.
- In another embodiment of the invention, the duration of events in the timeline are identified using a horizontal line where the line begins at the time the event was first present in the video stream and ends at the time the event was last present in the video stream; and wherein a keyframe is used to visualize the content of each event; wherein the keyframe is associated with the duration of events.
- In another embodiment of the invention, where two or more video streams simultaneously recorded with two or more cameras are represented on a single timeline; where the duration of the event present in each video stream is represented with a horizontal line using a code to indicate the camera used to record the stream; wherein the same code is used for different events present in the video from the same camera; wherein the same code is used to frame the keyframe for each event from the same camera.
- In another embodiment of the invention, the code uses different colors to indicate an event shot with a different camera; wherein the same color is used for different events present in the video from the same camera; wherein the same color is used to frame the keyframe for each event from the same camera.
- In another embodiment of the invention, a map is used to show the geographic position of two or more cameras used to film the two or more video streams; where a code is used to indicate a camera; where a keyframes is used to show the video stream observed from the camera and is framed in that code; where a different code is used to indicate a different camera; where different keyframes used to show the video stream observed from the different cameras are framed with the different code associated with the different cameras; where the keyframes vary as a cursor moves along the timeline.
- In another embodiment of the invention, the code uses different colors to show the geographic position of two or more cameras used to film the two or more video streams; where a color is used to indicate a camera; where the keyframes is framed in that color; where a different color is used to indicate a different camera; where the different keyframes are framed with the different colors associated with the different cameras; where the keyframes vary as a cursor moves along the timeline.
- In another embodiment of the invention, keyframes of the identified event are presented; where the keyframes are numbered according to the timeline. In another embodiment of the invention, the keyframes are selected from the group consisting of single action keyframes representative of the period of activity and/or time-lapse visualization of the period of activity. In another embodiment of the invention, keyframes are used to visualize a composition in a video stream; where the keyframes are numbered according to the single timeline.
- In another embodiment of the invention, an event-log is used with keyframes on a map to visualize the event.
- In another embodiment of the invention, the event is represented using a medium selected from the group consisting of a map, an event-log and a timeline.
- In an embodiment of the invention, a program of instructions executable by a computer to generate a timeline of events in a video stream, comprising the steps of: determining a measure of interest; generating an importance score for each video frame based on the measure of interest; computing one or more threshold values; electing video frames identifying events based on the threshold values; and generating a timeline of the one or more events in the video stream.
- In another embodiment of the invention, a system or apparatus for generating a timeline of events in a video stream, wherein generating a timeline comprises: a) one or more processors capable of specifying one or more sets of parameters; capable of transferring the one or more sets of parameters to a source code; capable of compiling the source code into a series of tasks for visualizing an event in a video stream; and b) a machine readable medium including operations stored thereon that when processed by one or more processors cause a system to perform the steps of specifying one or more sets of parameters; transferring one or more sets of parameters to a source code; compiling the source code into a series of tasks for generating a timeline of events in a video stream.
- In another embodiment of the invention, a machine-readable medium having instructions stored thereon to cause a system to: determine a measure of interest; generate an importance score for each video frame based on the measure of interest; compute one or more threshold values; select video frames identifying events based on the threshold values; and generate a timeline of the one or more events in the video stream.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/324,971 US7996771B2 (en) | 2005-06-17 | 2006-01-03 | Methods and interfaces for event timeline and logs of video streams |
JP2006164274A JP2006352879A (en) | 2005-06-17 | 2006-06-14 | Method of identifying and visualizing event in video frame, and system for generating timeline of event in video stream |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69198305P | 2005-06-17 | 2005-06-17 | |
US69138005P | 2005-06-17 | 2005-06-17 | |
US69189905P | 2005-06-17 | 2005-06-17 | |
US11/324,971 US7996771B2 (en) | 2005-06-17 | 2006-01-03 | Methods and interfaces for event timeline and logs of video streams |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060288288A1 true US20060288288A1 (en) | 2006-12-21 |
US7996771B2 US7996771B2 (en) | 2011-08-09 |
Family
ID=37574791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/324,971 Expired - Fee Related US7996771B2 (en) | 2005-06-17 | 2006-01-03 | Methods and interfaces for event timeline and logs of video streams |
Country Status (1)
Country | Link |
---|---|
US (1) | US7996771B2 (en) |
Cited By (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060092295A1 (en) * | 2004-10-29 | 2006-05-04 | Microsoft Corporation | Features such as titles, transitions, and/or effects which vary according to positions |
US20070074115A1 (en) * | 2005-09-23 | 2007-03-29 | Microsoft Corporation | Automatic capturing and editing of a video |
US20070089152A1 (en) * | 2005-10-14 | 2007-04-19 | Microsoft Corporation | Photo and video collage effects |
US20070171224A1 (en) * | 2006-01-25 | 2007-07-26 | Autodesk, Inc. | Universal timelines for coordinated productions |
US20070292106A1 (en) * | 2006-06-15 | 2007-12-20 | Microsoft Corporation | Audio/visual editing tool |
US20080077887A1 (en) * | 2006-05-10 | 2008-03-27 | Stefano Malnati | Spatial and temporal graphical display of verified/validated data organized as complex events |
US20080304706A1 (en) * | 2007-06-08 | 2008-12-11 | Canon Kabushiki Kaisha | Information processing apparatus and information processing method |
US20090058878A1 (en) * | 2007-08-31 | 2009-03-05 | Fujifilm Corporation | Method for displaying adjustment images in multi-view imaging system, and multi-view imaging system |
US20090083787A1 (en) * | 2007-09-20 | 2009-03-26 | Microsoft Corporation | Pivotable Events Timeline |
US20090136208A1 (en) * | 2007-11-28 | 2009-05-28 | Flora Gilboa-Solomon | Virtual Video Clipping and Ranking Based on Spatio-Temporal Metadata |
US7623755B2 (en) | 2006-08-17 | 2009-11-24 | Adobe Systems Incorporated | Techniques for positioning audio and video clips |
US20100020224A1 (en) * | 2008-07-24 | 2010-01-28 | Canon Kabushiki Kaisha | Method for selecting desirable images from among a plurality of images and apparatus thereof |
US20100066905A1 (en) * | 2007-04-10 | 2010-03-18 | C-Nario Ltd. | System, method and device for displaying video signals |
US20100208064A1 (en) * | 2009-02-19 | 2010-08-19 | Panasonic Corporation | System and method for managing video storage on a video surveillance system |
US7823056B1 (en) * | 2006-03-15 | 2010-10-26 | Adobe Systems Incorporated | Multiple-camera video recording |
EP2398021A3 (en) * | 2010-06-15 | 2012-01-04 | Sony Corporation | Information processing apparatus, information processing method, and program |
US20120306847A1 (en) * | 2011-05-31 | 2012-12-06 | Honda Motor Co., Ltd. | Online environment mapping |
US20130091432A1 (en) * | 2011-10-07 | 2013-04-11 | Siemens Aktiengesellschaft | Method and user interface for forensic video search |
US20130271480A1 (en) * | 2012-04-16 | 2013-10-17 | International Business Machines Corporation | Graphical User Interface for Visualizing the Severity of Time Intervals and Events |
US20130293718A1 (en) * | 2012-05-04 | 2013-11-07 | Honeywell International Inc. | System and method of post event/alarm analysis in cctv and integrated security systems |
US20140195965A1 (en) * | 2013-01-10 | 2014-07-10 | Tyco Safety Products Canada Ltd. | Security system and method with scrolling feeds watchlist |
EP2765565A3 (en) * | 2013-02-12 | 2014-09-03 | Honeywell International Inc. | System and method of alarm and history video playback |
US20140289594A1 (en) * | 2009-09-22 | 2014-09-25 | Adobe Systems Incorporated | Methods and Systems for Trimming Video Footage |
US20140344730A1 (en) * | 2013-05-15 | 2014-11-20 | Samsung Electronics Co., Ltd. | Method and apparatus for reproducing content |
US20150015480A1 (en) * | 2012-12-13 | 2015-01-15 | Jeremy Burr | Gesture pre-processing of video stream using a markered region |
US20150149598A1 (en) * | 2013-11-25 | 2015-05-28 | VideoGorillas LLC | Correlating sensor inputs with content stream intervals and selectively requesting and transmitting content streams |
US20150212719A1 (en) * | 2012-09-24 | 2015-07-30 | Robert Bosch Gmbh | User interface arrangement and computer program |
US20160274759A1 (en) | 2008-08-25 | 2016-09-22 | Paul J. Dawes | Security system with networked touchscreen and gateway |
EP3285238A3 (en) * | 2016-08-16 | 2018-02-28 | iControl Networks, Inc. | Automation system user interface |
EP3343525A1 (en) * | 2014-07-07 | 2018-07-04 | Google LLC | Method and device for processing motion events |
US10051078B2 (en) | 2007-06-12 | 2018-08-14 | Icontrol Networks, Inc. | WiFi-to-serial encapsulation in systems |
US10062245B2 (en) | 2005-03-16 | 2018-08-28 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US10062273B2 (en) | 2010-09-28 | 2018-08-28 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US10075680B2 (en) | 2013-06-27 | 2018-09-11 | Stmicroelectronics S.R.L. | Video-surveillance method, corresponding system, and computer program product |
US10078958B2 (en) | 2010-12-17 | 2018-09-18 | Icontrol Networks, Inc. | Method and system for logging security event data |
US10079839B1 (en) | 2007-06-12 | 2018-09-18 | Icontrol Networks, Inc. | Activation of gateway device |
US10091014B2 (en) | 2005-03-16 | 2018-10-02 | Icontrol Networks, Inc. | Integrated security network with security alarm signaling system |
US10127801B2 (en) | 2005-03-16 | 2018-11-13 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US10140840B2 (en) | 2007-04-23 | 2018-11-27 | Icontrol Networks, Inc. | Method and system for providing alternate network access |
US10142166B2 (en) | 2004-03-16 | 2018-11-27 | Icontrol Networks, Inc. | Takeover of security network |
US10142392B2 (en) | 2007-01-24 | 2018-11-27 | Icontrol Networks, Inc. | Methods and systems for improved system performance |
US10142394B2 (en) | 2007-06-12 | 2018-11-27 | Icontrol Networks, Inc. | Generating risk profile using data of home monitoring and security system |
US10156959B2 (en) | 2005-03-16 | 2018-12-18 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US10156831B2 (en) | 2004-03-16 | 2018-12-18 | Icontrol Networks, Inc. | Automation system with mobile interface |
US10200504B2 (en) | 2007-06-12 | 2019-02-05 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US10237237B2 (en) | 2007-06-12 | 2019-03-19 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10237806B2 (en) | 2009-04-30 | 2019-03-19 | Icontrol Networks, Inc. | Activation of a home automation controller |
US10313303B2 (en) | 2007-06-12 | 2019-06-04 | Icontrol Networks, Inc. | Forming a security network including integrated security system components and network devices |
US10339791B2 (en) | 2007-06-12 | 2019-07-02 | Icontrol Networks, Inc. | Security network integrated with premise security system |
US10348575B2 (en) | 2013-06-27 | 2019-07-09 | Icontrol Networks, Inc. | Control system user interface |
US10365810B2 (en) | 2007-06-12 | 2019-07-30 | Icontrol Networks, Inc. | Control system user interface |
US10382452B1 (en) | 2007-06-12 | 2019-08-13 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10380871B2 (en) | 2005-03-16 | 2019-08-13 | Icontrol Networks, Inc. | Control system user interface |
US10389736B2 (en) | 2007-06-12 | 2019-08-20 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10423309B2 (en) | 2007-06-12 | 2019-09-24 | Icontrol Networks, Inc. | Device integration framework |
US10498830B2 (en) | 2007-06-12 | 2019-12-03 | Icontrol Networks, Inc. | Wi-Fi-to-serial encapsulation in systems |
US10523689B2 (en) | 2007-06-12 | 2019-12-31 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US10522026B2 (en) | 2008-08-11 | 2019-12-31 | Icontrol Networks, Inc. | Automation system user interface with three-dimensional display |
US10530839B2 (en) | 2008-08-11 | 2020-01-07 | Icontrol Networks, Inc. | Integrated cloud system with lightweight gateway for premises automation |
US10559193B2 (en) | 2002-02-01 | 2020-02-11 | Comcast Cable Communications, Llc | Premises management systems |
US20200078677A1 (en) * | 2018-09-07 | 2020-03-12 | Mz Ip Holdings, Llc | System and method for managing viewable segments of computer application content |
US10616075B2 (en) | 2007-06-12 | 2020-04-07 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10666523B2 (en) | 2007-06-12 | 2020-05-26 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10721087B2 (en) | 2005-03-16 | 2020-07-21 | Icontrol Networks, Inc. | Method for networked touchscreen with integrated interfaces |
US10747216B2 (en) | 2007-02-28 | 2020-08-18 | Icontrol Networks, Inc. | Method and system for communicating with and controlling an alarm system from a remote server |
US10785319B2 (en) | 2006-06-12 | 2020-09-22 | Icontrol Networks, Inc. | IP device discovery systems and methods |
US10841381B2 (en) | 2005-03-16 | 2020-11-17 | Icontrol Networks, Inc. | Security system with networked touchscreen |
US10979389B2 (en) | 2004-03-16 | 2021-04-13 | Icontrol Networks, Inc. | Premises management configuration and control |
US10977918B2 (en) | 2014-07-07 | 2021-04-13 | Google Llc | Method and system for generating a smart time-lapse video clip |
US10999254B2 (en) | 2005-03-16 | 2021-05-04 | Icontrol Networks, Inc. | System for data routing in networks |
US11062580B2 (en) | 2014-07-07 | 2021-07-13 | Google Llc | Methods and systems for updating an event timeline with event indicators |
US11087271B1 (en) | 2017-03-27 | 2021-08-10 | Amazon Technologies, Inc. | Identifying user-item interactions in an automated facility |
US11089122B2 (en) | 2007-06-12 | 2021-08-10 | Icontrol Networks, Inc. | Controlling data routing among networks |
US11113950B2 (en) | 2005-03-16 | 2021-09-07 | Icontrol Networks, Inc. | Gateway integrated with premises security system |
WO2021183384A1 (en) * | 2020-03-12 | 2021-09-16 | Motorola Solutions, Inc. | Appearance search using a map |
US11146637B2 (en) | 2014-03-03 | 2021-10-12 | Icontrol Networks, Inc. | Media content management |
US11153266B2 (en) | 2004-03-16 | 2021-10-19 | Icontrol Networks, Inc. | Gateway registry methods and systems |
US11182060B2 (en) | 2004-03-16 | 2021-11-23 | Icontrol Networks, Inc. | Networked touchscreen with integrated interfaces |
US11201755B2 (en) | 2004-03-16 | 2021-12-14 | Icontrol Networks, Inc. | Premises system management using status signal |
US11212192B2 (en) | 2007-06-12 | 2021-12-28 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11218878B2 (en) | 2007-06-12 | 2022-01-04 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11238401B1 (en) | 2017-03-27 | 2022-02-01 | Amazon Technologies, Inc. | Identifying user-item interactions in an automated facility |
US11237714B2 (en) | 2007-06-12 | 2022-02-01 | Control Networks, Inc. | Control system user interface |
US11240059B2 (en) | 2010-12-20 | 2022-02-01 | Icontrol Networks, Inc. | Defining and implementing sensor triggered response rules |
US11244545B2 (en) | 2004-03-16 | 2022-02-08 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US11258625B2 (en) | 2008-08-11 | 2022-02-22 | Icontrol Networks, Inc. | Mobile premises automation platform |
US11277465B2 (en) | 2004-03-16 | 2022-03-15 | Icontrol Networks, Inc. | Generating risk profile using data of home monitoring and security system |
US11310199B2 (en) | 2004-03-16 | 2022-04-19 | Icontrol Networks, Inc. | Premises management configuration and control |
US11316958B2 (en) | 2008-08-11 | 2022-04-26 | Icontrol Networks, Inc. | Virtual device systems and methods |
US11316753B2 (en) | 2007-06-12 | 2022-04-26 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11343380B2 (en) | 2004-03-16 | 2022-05-24 | Icontrol Networks, Inc. | Premises system automation |
US11368327B2 (en) | 2008-08-11 | 2022-06-21 | Icontrol Networks, Inc. | Integrated cloud system for premises automation |
US11398147B2 (en) | 2010-09-28 | 2022-07-26 | Icontrol Networks, Inc. | Method, system and apparatus for automated reporting of account and sensor zone information to a central station |
US11405463B2 (en) | 2014-03-03 | 2022-08-02 | Icontrol Networks, Inc. | Media content management |
US11423756B2 (en) | 2007-06-12 | 2022-08-23 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11424980B2 (en) | 2005-03-16 | 2022-08-23 | Icontrol Networks, Inc. | Forming a security network including integrated security system components |
US11451409B2 (en) | 2005-03-16 | 2022-09-20 | Icontrol Networks, Inc. | Security network integrating security system and network devices |
US11489812B2 (en) | 2004-03-16 | 2022-11-01 | Icontrol Networks, Inc. | Forming a security network including integrated security system components and network devices |
US11494729B1 (en) * | 2017-03-27 | 2022-11-08 | Amazon Technologies, Inc. | Identifying user-item interactions in an automated facility |
US11496568B2 (en) | 2005-03-16 | 2022-11-08 | Icontrol Networks, Inc. | Security system with networked touchscreen |
US11582065B2 (en) | 2007-06-12 | 2023-02-14 | Icontrol Networks, Inc. | Systems and methods for device communication |
US11601810B2 (en) | 2007-06-12 | 2023-03-07 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11615697B2 (en) | 2005-03-16 | 2023-03-28 | Icontrol Networks, Inc. | Premise management systems and methods |
US11646907B2 (en) | 2007-06-12 | 2023-05-09 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11677577B2 (en) | 2004-03-16 | 2023-06-13 | Icontrol Networks, Inc. | Premises system management using status signal |
US11700142B2 (en) | 2005-03-16 | 2023-07-11 | Icontrol Networks, Inc. | Security network integrating security system and network devices |
US11706045B2 (en) | 2005-03-16 | 2023-07-18 | Icontrol Networks, Inc. | Modular electronic display platform |
US11706279B2 (en) | 2007-01-24 | 2023-07-18 | Icontrol Networks, Inc. | Methods and systems for data communication |
US11729255B2 (en) | 2008-08-11 | 2023-08-15 | Icontrol Networks, Inc. | Integrated cloud system with lightweight gateway for premises automation |
US11750414B2 (en) | 2010-12-16 | 2023-09-05 | Icontrol Networks, Inc. | Bidirectional security sensor communication for a premises security system |
US11758026B2 (en) | 2008-08-11 | 2023-09-12 | Icontrol Networks, Inc. | Virtual device systems and methods |
US11792330B2 (en) | 2005-03-16 | 2023-10-17 | Icontrol Networks, Inc. | Communication and automation in a premises management system |
US11792036B2 (en) | 2008-08-11 | 2023-10-17 | Icontrol Networks, Inc. | Mobile premises automation platform |
US11811845B2 (en) | 2004-03-16 | 2023-11-07 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US11816323B2 (en) | 2008-06-25 | 2023-11-14 | Icontrol Networks, Inc. | Automation system user interface |
US11831462B2 (en) | 2007-08-24 | 2023-11-28 | Icontrol Networks, Inc. | Controlling data routing in premises management systems |
US11916928B2 (en) | 2008-01-24 | 2024-02-27 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US11916870B2 (en) | 2004-03-16 | 2024-02-27 | Icontrol Networks, Inc. | Gateway registry methods and systems |
US12003387B2 (en) | 2012-06-27 | 2024-06-04 | Comcast Cable Communications, Llc | Control system user interface |
US12063220B2 (en) | 2004-03-16 | 2024-08-13 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US12063221B2 (en) | 2006-06-12 | 2024-08-13 | Icontrol Networks, Inc. | Activation of gateway device |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8943410B2 (en) | 2006-12-22 | 2015-01-27 | Apple Inc. | Modified media presentation during scrubbing |
US8020100B2 (en) * | 2006-12-22 | 2011-09-13 | Apple Inc. | Fast creation of video segments |
WO2008127322A1 (en) * | 2007-04-13 | 2008-10-23 | Thomson Licensing | Method, apparatus and system for presenting metadata in media content |
US8151194B1 (en) * | 2008-03-26 | 2012-04-03 | Google Inc. | Visual presentation of video usage statistics |
JP5393236B2 (en) * | 2009-04-23 | 2014-01-22 | キヤノン株式会社 | Playback apparatus and playback method |
JP5570176B2 (en) | 2009-10-19 | 2014-08-13 | キヤノン株式会社 | Image processing system and information processing method |
US9160898B2 (en) * | 2011-01-25 | 2015-10-13 | Autofuss | System and method for improved video motion control |
US11039109B2 (en) | 2011-08-05 | 2021-06-15 | Fox Sports Productions, Llc | System and method for adjusting an image for a vehicle mounted camera |
BR112014002827B1 (en) * | 2011-08-05 | 2021-09-28 | Fox Sports Productions, Llc | METHOD AND SYSTEM FOR SELECTIVE CAPTURE AND PRESENTATION OF PORTIONS OF NATIVE DIFFUSION IMAGES IN A MULTIPLE DIFFUSION CAMERA SYSTEM; AND METHOD AND SYSTEM FOR SELECTIVE CAPTURE AND DISPLAY PORTIONS OF NATIVE IMAGE DIFFUSION IN A MULTIPLE DIFFUSION CAMERA SYSTEM |
US9958228B2 (en) | 2013-04-01 | 2018-05-01 | Yardarm Technologies, Inc. | Telematics sensors and camera activation in connection with firearm activity |
US20150142587A1 (en) * | 2013-11-20 | 2015-05-21 | Honeywell International Inc. | System and Method of Dynamic Correlation View for Cloud Based Incident Analysis and Pattern Detection |
US9870621B1 (en) | 2014-03-10 | 2018-01-16 | Google Llc | Motion-based feature correspondence |
US10108254B1 (en) | 2014-03-21 | 2018-10-23 | Google Llc | Apparatus and method for temporal synchronization of multiple signals |
US9728055B2 (en) * | 2014-04-11 | 2017-08-08 | Vivint, Inc. | Chronological activity monitoring and review |
AU2014202293B2 (en) * | 2014-04-28 | 2021-02-25 | Sure Technologies Pty Ltd | Monitored security system including cameras |
US9600723B1 (en) | 2014-07-03 | 2017-03-21 | Google Inc. | Systems and methods for attention localization using a first-person point-of-view device |
US11758238B2 (en) | 2014-12-13 | 2023-09-12 | Fox Sports Productions, Llc | Systems and methods for displaying wind characteristics and effects within a broadcast |
US11159854B2 (en) | 2014-12-13 | 2021-10-26 | Fox Sports Productions, Llc | Systems and methods for tracking and tagging objects within a broadcast |
USD812076S1 (en) | 2015-06-14 | 2018-03-06 | Google Llc | Display screen with graphical user interface for monitoring remote video camera |
USD803241S1 (en) | 2015-06-14 | 2017-11-21 | Google Inc. | Display screen with animated graphical user interface for an alert screen |
USD809522S1 (en) | 2015-06-14 | 2018-02-06 | Google Inc. | Display screen with animated graphical user interface for an alert screen |
US9361011B1 (en) * | 2015-06-14 | 2016-06-07 | Google Inc. | Methods and systems for presenting multiple live video feeds in a user interface |
USD797131S1 (en) | 2015-06-14 | 2017-09-12 | Google Inc. | Display screen with user interface for mode selector icons |
USD807376S1 (en) | 2015-06-14 | 2018-01-09 | Google Inc. | Display screen with animated graphical user interface for smart home automation system having a multifunction status |
US10133443B2 (en) | 2015-06-14 | 2018-11-20 | Google Llc | Systems and methods for smart home automation using a multifunction status and entry point icon |
USD796540S1 (en) | 2015-06-14 | 2017-09-05 | Google Inc. | Display screen with graphical user interface for mobile camera history having event-specific activity notifications |
US10219026B2 (en) * | 2015-08-26 | 2019-02-26 | Lg Electronics Inc. | Mobile terminal and method for playback of a multi-view video |
US10783535B2 (en) | 2016-05-16 | 2020-09-22 | Cerebri AI Inc. | Business artificial intelligence management engine |
USD882583S1 (en) | 2016-07-12 | 2020-04-28 | Google Llc | Display screen with graphical user interface |
US10263802B2 (en) | 2016-07-12 | 2019-04-16 | Google Llc | Methods and devices for establishing connections with remote cameras |
US10386999B2 (en) | 2016-10-26 | 2019-08-20 | Google Llc | Timeline-video relationship presentation for alert events |
US11238290B2 (en) | 2016-10-26 | 2022-02-01 | Google Llc | Timeline-video relationship processing for alert events |
USD843398S1 (en) | 2016-10-26 | 2019-03-19 | Google Llc | Display screen with graphical user interface for a timeline-video relationship presentation for alert events |
US10311305B2 (en) | 2017-03-20 | 2019-06-04 | Honeywell International Inc. | Systems and methods for creating a story board with forensic video analysis on a video repository |
US10352496B2 (en) | 2017-05-25 | 2019-07-16 | Google Llc | Stand assembly for an electronic device providing multiple degrees of freedom and built-in cables |
US10972685B2 (en) | 2017-05-25 | 2021-04-06 | Google Llc | Video camera assembly having an IR reflector |
US10819921B2 (en) | 2017-05-25 | 2020-10-27 | Google Llc | Camera assembly having a single-piece cover element |
CN111859028B (en) * | 2019-04-30 | 2024-08-16 | 伊姆西Ip控股有限责任公司 | Method, apparatus and computer program product for creating an index for streaming storage |
WO2021101530A1 (en) * | 2019-11-19 | 2021-05-27 | Hewlett-Packard Development Company, L.P. | Event and incident timelines |
US11599575B2 (en) | 2020-02-17 | 2023-03-07 | Honeywell International Inc. | Systems and methods for identifying events within video content using intelligent search query |
US11030240B1 (en) | 2020-02-17 | 2021-06-08 | Honeywell International Inc. | Systems and methods for efficiently sending video metadata |
US11681752B2 (en) | 2020-02-17 | 2023-06-20 | Honeywell International Inc. | Systems and methods for searching for events within video content |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5136655A (en) * | 1990-03-26 | 1992-08-04 | Hewlett-Pacard Company | Method and apparatus for indexing and retrieving audio-video data |
US5655058A (en) * | 1994-04-12 | 1997-08-05 | Xerox Corporation | Segmentation of audio data for indexing of conversational speech for real-time or postprocessing applications |
US5680558A (en) * | 1993-12-09 | 1997-10-21 | Canon Kabushiki Kaisha | Multimedia file management in which specialized icons can be created for different file types |
US5708767A (en) * | 1995-02-03 | 1998-01-13 | The Trustees Of Princeton University | Method and apparatus for video browsing based on content and structure |
US6366296B1 (en) * | 1998-09-11 | 2002-04-02 | Xerox Corporation | Media browser using multimodal analysis |
US20030025599A1 (en) * | 2001-05-11 | 2003-02-06 | Monroe David A. | Method and apparatus for collecting, sending, archiving and retrieving motion video and still images and notification of detected events |
US20030044045A1 (en) * | 2001-06-04 | 2003-03-06 | University Of Washington | Video object tracking by estimating and subtracting background |
US6535639B1 (en) * | 1999-03-12 | 2003-03-18 | Fuji Xerox Co., Ltd. | Automatic video summarization using a measure of shot importance and a frame-packing method |
US20030090505A1 (en) * | 1999-11-04 | 2003-05-15 | Koninklijke Philips Electronics N.V. | Significant scene detection and frame filtering for a visual indexing system using dynamic thresholds |
US6570608B1 (en) * | 1998-09-30 | 2003-05-27 | Texas Instruments Incorporated | System and method for detecting interactions of people and vehicles |
US20030189588A1 (en) * | 2002-04-03 | 2003-10-09 | Andreas Girgensohn | Reduced representations of video sequences |
US20030234803A1 (en) * | 2002-06-19 | 2003-12-25 | Kentaro Toyama | System and method for automatically generating video cliplets from digital video |
US20040119819A1 (en) * | 2002-10-21 | 2004-06-24 | Sarnoff Corporation | Method and system for performing surveillance |
US6807361B1 (en) * | 2000-07-18 | 2004-10-19 | Fuji Xerox Co., Ltd. | Interactive custom video creation system |
US20040240542A1 (en) * | 2002-02-06 | 2004-12-02 | Arie Yeredor | Method and apparatus for video frame sequence-based object tracking |
US20050122397A1 (en) * | 2003-12-03 | 2005-06-09 | Safehouse International Limited | Recording a sequence of images |
US20050132414A1 (en) * | 2003-12-02 | 2005-06-16 | Connexed, Inc. | Networked video surveillance system |
US20050163346A1 (en) * | 2003-12-03 | 2005-07-28 | Safehouse International Limited | Monitoring an output from a camera |
US7143083B2 (en) * | 2001-06-12 | 2006-11-28 | Lucent Technologies Inc. | Method and apparatus for retrieving multimedia data through spatio-temporal activity maps |
US7221366B2 (en) * | 2004-08-03 | 2007-05-22 | Microsoft Corporation | Real-time rendering system and process for interactive viewpoint video |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7068723B2 (en) | 2002-02-28 | 2006-06-27 | Fuji Xerox Co., Ltd. | Method for automatically producing optimal summaries of linear media |
US7003737B2 (en) | 2002-04-19 | 2006-02-21 | Fuji Xerox Co., Ltd. | Method for interactive browsing and visualization of documents in real space and time |
-
2006
- 2006-01-03 US US11/324,971 patent/US7996771B2/en not_active Expired - Fee Related
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5136655A (en) * | 1990-03-26 | 1992-08-04 | Hewlett-Pacard Company | Method and apparatus for indexing and retrieving audio-video data |
US5680558A (en) * | 1993-12-09 | 1997-10-21 | Canon Kabushiki Kaisha | Multimedia file management in which specialized icons can be created for different file types |
US5655058A (en) * | 1994-04-12 | 1997-08-05 | Xerox Corporation | Segmentation of audio data for indexing of conversational speech for real-time or postprocessing applications |
US5708767A (en) * | 1995-02-03 | 1998-01-13 | The Trustees Of Princeton University | Method and apparatus for video browsing based on content and structure |
US6366296B1 (en) * | 1998-09-11 | 2002-04-02 | Xerox Corporation | Media browser using multimodal analysis |
US6570608B1 (en) * | 1998-09-30 | 2003-05-27 | Texas Instruments Incorporated | System and method for detecting interactions of people and vehicles |
US6535639B1 (en) * | 1999-03-12 | 2003-03-18 | Fuji Xerox Co., Ltd. | Automatic video summarization using a measure of shot importance and a frame-packing method |
US20030090505A1 (en) * | 1999-11-04 | 2003-05-15 | Koninklijke Philips Electronics N.V. | Significant scene detection and frame filtering for a visual indexing system using dynamic thresholds |
US6807361B1 (en) * | 2000-07-18 | 2004-10-19 | Fuji Xerox Co., Ltd. | Interactive custom video creation system |
US20030025599A1 (en) * | 2001-05-11 | 2003-02-06 | Monroe David A. | Method and apparatus for collecting, sending, archiving and retrieving motion video and still images and notification of detected events |
US20030044045A1 (en) * | 2001-06-04 | 2003-03-06 | University Of Washington | Video object tracking by estimating and subtracting background |
US7143083B2 (en) * | 2001-06-12 | 2006-11-28 | Lucent Technologies Inc. | Method and apparatus for retrieving multimedia data through spatio-temporal activity maps |
US20040240542A1 (en) * | 2002-02-06 | 2004-12-02 | Arie Yeredor | Method and apparatus for video frame sequence-based object tracking |
US20030189588A1 (en) * | 2002-04-03 | 2003-10-09 | Andreas Girgensohn | Reduced representations of video sequences |
US20030234803A1 (en) * | 2002-06-19 | 2003-12-25 | Kentaro Toyama | System and method for automatically generating video cliplets from digital video |
US20040119819A1 (en) * | 2002-10-21 | 2004-06-24 | Sarnoff Corporation | Method and system for performing surveillance |
US20050132414A1 (en) * | 2003-12-02 | 2005-06-16 | Connexed, Inc. | Networked video surveillance system |
US20050122397A1 (en) * | 2003-12-03 | 2005-06-09 | Safehouse International Limited | Recording a sequence of images |
US20050163346A1 (en) * | 2003-12-03 | 2005-07-28 | Safehouse International Limited | Monitoring an output from a camera |
US7221366B2 (en) * | 2004-08-03 | 2007-05-22 | Microsoft Corporation | Real-time rendering system and process for interactive viewpoint video |
Cited By (232)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10559193B2 (en) | 2002-02-01 | 2020-02-11 | Comcast Cable Communications, Llc | Premises management systems |
US11310199B2 (en) | 2004-03-16 | 2022-04-19 | Icontrol Networks, Inc. | Premises management configuration and control |
US10692356B2 (en) | 2004-03-16 | 2020-06-23 | Icontrol Networks, Inc. | Control system user interface |
US11916870B2 (en) | 2004-03-16 | 2024-02-27 | Icontrol Networks, Inc. | Gateway registry methods and systems |
US11893874B2 (en) | 2004-03-16 | 2024-02-06 | Icontrol Networks, Inc. | Networked touchscreen with integrated interfaces |
US11811845B2 (en) | 2004-03-16 | 2023-11-07 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US11810445B2 (en) | 2004-03-16 | 2023-11-07 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US11782394B2 (en) | 2004-03-16 | 2023-10-10 | Icontrol Networks, Inc. | Automation system with mobile interface |
US11757834B2 (en) | 2004-03-16 | 2023-09-12 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11677577B2 (en) | 2004-03-16 | 2023-06-13 | Icontrol Networks, Inc. | Premises system management using status signal |
US11656667B2 (en) | 2004-03-16 | 2023-05-23 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US11625008B2 (en) | 2004-03-16 | 2023-04-11 | Icontrol Networks, Inc. | Premises management networking |
US11626006B2 (en) | 2004-03-16 | 2023-04-11 | Icontrol Networks, Inc. | Management of a security system at a premises |
US11601397B2 (en) | 2004-03-16 | 2023-03-07 | Icontrol Networks, Inc. | Premises management configuration and control |
US11588787B2 (en) | 2004-03-16 | 2023-02-21 | Icontrol Networks, Inc. | Premises management configuration and control |
US11343380B2 (en) | 2004-03-16 | 2022-05-24 | Icontrol Networks, Inc. | Premises system automation |
US11537186B2 (en) | 2004-03-16 | 2022-12-27 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US10156831B2 (en) | 2004-03-16 | 2018-12-18 | Icontrol Networks, Inc. | Automation system with mobile interface |
US11489812B2 (en) | 2004-03-16 | 2022-11-01 | Icontrol Networks, Inc. | Forming a security network including integrated security system components and network devices |
US11449012B2 (en) | 2004-03-16 | 2022-09-20 | Icontrol Networks, Inc. | Premises management networking |
US11410531B2 (en) | 2004-03-16 | 2022-08-09 | Icontrol Networks, Inc. | Automation system user interface with three-dimensional display |
US11378922B2 (en) | 2004-03-16 | 2022-07-05 | Icontrol Networks, Inc. | Automation system with mobile interface |
US11368429B2 (en) | 2004-03-16 | 2022-06-21 | Icontrol Networks, Inc. | Premises management configuration and control |
US10447491B2 (en) | 2004-03-16 | 2019-10-15 | Icontrol Networks, Inc. | Premises system management using status signal |
US11991306B2 (en) | 2004-03-16 | 2024-05-21 | Icontrol Networks, Inc. | Premises system automation |
US11082395B2 (en) | 2004-03-16 | 2021-08-03 | Icontrol Networks, Inc. | Premises management configuration and control |
US11244545B2 (en) | 2004-03-16 | 2022-02-08 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US11201755B2 (en) | 2004-03-16 | 2021-12-14 | Icontrol Networks, Inc. | Premises system management using status signal |
US11182060B2 (en) | 2004-03-16 | 2021-11-23 | Icontrol Networks, Inc. | Networked touchscreen with integrated interfaces |
US11184322B2 (en) | 2004-03-16 | 2021-11-23 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11175793B2 (en) | 2004-03-16 | 2021-11-16 | Icontrol Networks, Inc. | User interface in a premises network |
US11159484B2 (en) | 2004-03-16 | 2021-10-26 | Icontrol Networks, Inc. | Forming a security network including integrated security system components and network devices |
US11153266B2 (en) | 2004-03-16 | 2021-10-19 | Icontrol Networks, Inc. | Gateway registry methods and systems |
US11277465B2 (en) | 2004-03-16 | 2022-03-15 | Icontrol Networks, Inc. | Generating risk profile using data of home monitoring and security system |
US11043112B2 (en) | 2004-03-16 | 2021-06-22 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US11037433B2 (en) | 2004-03-16 | 2021-06-15 | Icontrol Networks, Inc. | Management of a security system at a premises |
US12063220B2 (en) | 2004-03-16 | 2024-08-13 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10992784B2 (en) | 2004-03-16 | 2021-04-27 | Control Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US10979389B2 (en) | 2004-03-16 | 2021-04-13 | Icontrol Networks, Inc. | Premises management configuration and control |
US10890881B2 (en) | 2004-03-16 | 2021-01-12 | Icontrol Networks, Inc. | Premises management networking |
US10796557B2 (en) | 2004-03-16 | 2020-10-06 | Icontrol Networks, Inc. | Automation system user interface with three-dimensional display |
US10754304B2 (en) | 2004-03-16 | 2020-08-25 | Icontrol Networks, Inc. | Automation system with mobile interface |
US10735249B2 (en) | 2004-03-16 | 2020-08-04 | Icontrol Networks, Inc. | Management of a security system at a premises |
US10142166B2 (en) | 2004-03-16 | 2018-11-27 | Icontrol Networks, Inc. | Takeover of security network |
US10691295B2 (en) | 2004-03-16 | 2020-06-23 | Icontrol Networks, Inc. | User interface in a premises network |
US9445016B2 (en) | 2004-10-29 | 2016-09-13 | Microsoft Technology Licensing, Llc | Features such as titles, transitions, and/or effects which vary according to positions |
US20060092295A1 (en) * | 2004-10-29 | 2006-05-04 | Microsoft Corporation | Features such as titles, transitions, and/or effects which vary according to positions |
US7752548B2 (en) | 2004-10-29 | 2010-07-06 | Microsoft Corporation | Features such as titles, transitions, and/or effects which vary according to positions |
US20100223302A1 (en) * | 2004-10-29 | 2010-09-02 | Microsoft Corporation | Features such as titles, transitions, and/or effects which vary according to positions |
US10999254B2 (en) | 2005-03-16 | 2021-05-04 | Icontrol Networks, Inc. | System for data routing in networks |
US10156959B2 (en) | 2005-03-16 | 2018-12-18 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US10721087B2 (en) | 2005-03-16 | 2020-07-21 | Icontrol Networks, Inc. | Method for networked touchscreen with integrated interfaces |
US11451409B2 (en) | 2005-03-16 | 2022-09-20 | Icontrol Networks, Inc. | Security network integrating security system and network devices |
US10062245B2 (en) | 2005-03-16 | 2018-08-28 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US11496568B2 (en) | 2005-03-16 | 2022-11-08 | Icontrol Networks, Inc. | Security system with networked touchscreen |
US11595364B2 (en) | 2005-03-16 | 2023-02-28 | Icontrol Networks, Inc. | System for data routing in networks |
US11615697B2 (en) | 2005-03-16 | 2023-03-28 | Icontrol Networks, Inc. | Premise management systems and methods |
US11424980B2 (en) | 2005-03-16 | 2022-08-23 | Icontrol Networks, Inc. | Forming a security network including integrated security system components |
US10091014B2 (en) | 2005-03-16 | 2018-10-02 | Icontrol Networks, Inc. | Integrated security network with security alarm signaling system |
US10127801B2 (en) | 2005-03-16 | 2018-11-13 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US11824675B2 (en) | 2005-03-16 | 2023-11-21 | Icontrol Networks, Inc. | Networked touchscreen with integrated interfaces |
US10841381B2 (en) | 2005-03-16 | 2020-11-17 | Icontrol Networks, Inc. | Security system with networked touchscreen |
US11700142B2 (en) | 2005-03-16 | 2023-07-11 | Icontrol Networks, Inc. | Security network integrating security system and network devices |
US10930136B2 (en) | 2005-03-16 | 2021-02-23 | Icontrol Networks, Inc. | Premise management systems and methods |
US11113950B2 (en) | 2005-03-16 | 2021-09-07 | Icontrol Networks, Inc. | Gateway integrated with premises security system |
US11367340B2 (en) | 2005-03-16 | 2022-06-21 | Icontrol Networks, Inc. | Premise management systems and methods |
US10380871B2 (en) | 2005-03-16 | 2019-08-13 | Icontrol Networks, Inc. | Control system user interface |
US11792330B2 (en) | 2005-03-16 | 2023-10-17 | Icontrol Networks, Inc. | Communication and automation in a premises management system |
US11706045B2 (en) | 2005-03-16 | 2023-07-18 | Icontrol Networks, Inc. | Modular electronic display platform |
US20070074115A1 (en) * | 2005-09-23 | 2007-03-29 | Microsoft Corporation | Automatic capturing and editing of a video |
US7739599B2 (en) * | 2005-09-23 | 2010-06-15 | Microsoft Corporation | Automatic capturing and editing of a video |
US7644364B2 (en) | 2005-10-14 | 2010-01-05 | Microsoft Corporation | Photo and video collage effects |
US20070089152A1 (en) * | 2005-10-14 | 2007-04-19 | Microsoft Corporation | Photo and video collage effects |
US20070171224A1 (en) * | 2006-01-25 | 2007-07-26 | Autodesk, Inc. | Universal timelines for coordinated productions |
US7800615B2 (en) * | 2006-01-25 | 2010-09-21 | Autodesk, Inc. | Universal timelines for coordinated productions |
US7823056B1 (en) * | 2006-03-15 | 2010-10-26 | Adobe Systems Incorporated | Multiple-camera video recording |
US8144151B2 (en) * | 2006-05-10 | 2012-03-27 | Hireright, Inc. | Spatial and temporal graphical display of verified/validated data organized as complex events |
US20080077887A1 (en) * | 2006-05-10 | 2008-03-27 | Stefano Malnati | Spatial and temporal graphical display of verified/validated data organized as complex events |
US10785319B2 (en) | 2006-06-12 | 2020-09-22 | Icontrol Networks, Inc. | IP device discovery systems and methods |
US11418518B2 (en) | 2006-06-12 | 2022-08-16 | Icontrol Networks, Inc. | Activation of gateway device |
US10616244B2 (en) | 2006-06-12 | 2020-04-07 | Icontrol Networks, Inc. | Activation of gateway device |
US12063221B2 (en) | 2006-06-12 | 2024-08-13 | Icontrol Networks, Inc. | Activation of gateway device |
US20110185269A1 (en) * | 2006-06-15 | 2011-07-28 | Microsoft Corporation | Audio/visual editing tool |
US7945142B2 (en) | 2006-06-15 | 2011-05-17 | Microsoft Corporation | Audio/visual editing tool |
US20070292106A1 (en) * | 2006-06-15 | 2007-12-20 | Microsoft Corporation | Audio/visual editing tool |
US7623755B2 (en) | 2006-08-17 | 2009-11-24 | Adobe Systems Incorporated | Techniques for positioning audio and video clips |
US10142392B2 (en) | 2007-01-24 | 2018-11-27 | Icontrol Networks, Inc. | Methods and systems for improved system performance |
US11418572B2 (en) | 2007-01-24 | 2022-08-16 | Icontrol Networks, Inc. | Methods and systems for improved system performance |
US12120171B2 (en) | 2007-01-24 | 2024-10-15 | Icontrol Networks, Inc. | Methods and systems for data communication |
US11412027B2 (en) | 2007-01-24 | 2022-08-09 | Icontrol Networks, Inc. | Methods and systems for data communication |
US10225314B2 (en) | 2007-01-24 | 2019-03-05 | Icontrol Networks, Inc. | Methods and systems for improved system performance |
US11706279B2 (en) | 2007-01-24 | 2023-07-18 | Icontrol Networks, Inc. | Methods and systems for data communication |
US11194320B2 (en) | 2007-02-28 | 2021-12-07 | Icontrol Networks, Inc. | Method and system for managing communication connectivity |
US10657794B1 (en) | 2007-02-28 | 2020-05-19 | Icontrol Networks, Inc. | Security, monitoring and automation controller access and use of legacy security control panel information |
US11809174B2 (en) | 2007-02-28 | 2023-11-07 | Icontrol Networks, Inc. | Method and system for managing communication connectivity |
US10747216B2 (en) | 2007-02-28 | 2020-08-18 | Icontrol Networks, Inc. | Method and system for communicating with and controlling an alarm system from a remote server |
US20100066905A1 (en) * | 2007-04-10 | 2010-03-18 | C-Nario Ltd. | System, method and device for displaying video signals |
US11132888B2 (en) | 2007-04-23 | 2021-09-28 | Icontrol Networks, Inc. | Method and system for providing alternate network access |
US10672254B2 (en) | 2007-04-23 | 2020-06-02 | Icontrol Networks, Inc. | Method and system for providing alternate network access |
US10140840B2 (en) | 2007-04-23 | 2018-11-27 | Icontrol Networks, Inc. | Method and system for providing alternate network access |
US11663902B2 (en) | 2007-04-23 | 2023-05-30 | Icontrol Networks, Inc. | Method and system for providing alternate network access |
US20080304706A1 (en) * | 2007-06-08 | 2008-12-11 | Canon Kabushiki Kaisha | Information processing apparatus and information processing method |
US8437508B2 (en) * | 2007-06-08 | 2013-05-07 | Canon Kabushiki Kaisha | Information processing apparatus and information processing method |
US11625161B2 (en) | 2007-06-12 | 2023-04-11 | Icontrol Networks, Inc. | Control system user interface |
US10382452B1 (en) | 2007-06-12 | 2019-08-13 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10051078B2 (en) | 2007-06-12 | 2018-08-14 | Icontrol Networks, Inc. | WiFi-to-serial encapsulation in systems |
US11316753B2 (en) | 2007-06-12 | 2022-04-26 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11894986B2 (en) | 2007-06-12 | 2024-02-06 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10079839B1 (en) | 2007-06-12 | 2018-09-18 | Icontrol Networks, Inc. | Activation of gateway device |
US11218878B2 (en) | 2007-06-12 | 2022-01-04 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11212192B2 (en) | 2007-06-12 | 2021-12-28 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10523689B2 (en) | 2007-06-12 | 2019-12-31 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US10142394B2 (en) | 2007-06-12 | 2018-11-27 | Icontrol Networks, Inc. | Generating risk profile using data of home monitoring and security system |
US10498830B2 (en) | 2007-06-12 | 2019-12-03 | Icontrol Networks, Inc. | Wi-Fi-to-serial encapsulation in systems |
US10444964B2 (en) | 2007-06-12 | 2019-10-15 | Icontrol Networks, Inc. | Control system user interface |
US11722896B2 (en) | 2007-06-12 | 2023-08-08 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10200504B2 (en) | 2007-06-12 | 2019-02-05 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US10237237B2 (en) | 2007-06-12 | 2019-03-19 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10423309B2 (en) | 2007-06-12 | 2019-09-24 | Icontrol Networks, Inc. | Device integration framework |
US11646907B2 (en) | 2007-06-12 | 2023-05-09 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11632308B2 (en) | 2007-06-12 | 2023-04-18 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11423756B2 (en) | 2007-06-12 | 2022-08-23 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10313303B2 (en) | 2007-06-12 | 2019-06-04 | Icontrol Networks, Inc. | Forming a security network including integrated security system components and network devices |
US11611568B2 (en) | 2007-06-12 | 2023-03-21 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US11089122B2 (en) | 2007-06-12 | 2021-08-10 | Icontrol Networks, Inc. | Controlling data routing among networks |
US10666523B2 (en) | 2007-06-12 | 2020-05-26 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11601810B2 (en) | 2007-06-12 | 2023-03-07 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10339791B2 (en) | 2007-06-12 | 2019-07-02 | Icontrol Networks, Inc. | Security network integrated with premise security system |
US10616075B2 (en) | 2007-06-12 | 2020-04-07 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11582065B2 (en) | 2007-06-12 | 2023-02-14 | Icontrol Networks, Inc. | Systems and methods for device communication |
US10365810B2 (en) | 2007-06-12 | 2019-07-30 | Icontrol Networks, Inc. | Control system user interface |
US11237714B2 (en) | 2007-06-12 | 2022-02-01 | Control Networks, Inc. | Control system user interface |
US10389736B2 (en) | 2007-06-12 | 2019-08-20 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11815969B2 (en) | 2007-08-10 | 2023-11-14 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US11831462B2 (en) | 2007-08-24 | 2023-11-28 | Icontrol Networks, Inc. | Controlling data routing in premises management systems |
US20090058878A1 (en) * | 2007-08-31 | 2009-03-05 | Fujifilm Corporation | Method for displaying adjustment images in multi-view imaging system, and multi-view imaging system |
US20090083787A1 (en) * | 2007-09-20 | 2009-03-26 | Microsoft Corporation | Pivotable Events Timeline |
US20090136208A1 (en) * | 2007-11-28 | 2009-05-28 | Flora Gilboa-Solomon | Virtual Video Clipping and Ranking Based on Spatio-Temporal Metadata |
US11916928B2 (en) | 2008-01-24 | 2024-02-27 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US11816323B2 (en) | 2008-06-25 | 2023-11-14 | Icontrol Networks, Inc. | Automation system user interface |
US20100020224A1 (en) * | 2008-07-24 | 2010-01-28 | Canon Kabushiki Kaisha | Method for selecting desirable images from among a plurality of images and apparatus thereof |
US8199213B2 (en) * | 2008-07-24 | 2012-06-12 | Canon Kabushiki Kaisha | Method for selecting desirable images from among a plurality of images and apparatus thereof |
US11758026B2 (en) | 2008-08-11 | 2023-09-12 | Icontrol Networks, Inc. | Virtual device systems and methods |
US11368327B2 (en) | 2008-08-11 | 2022-06-21 | Icontrol Networks, Inc. | Integrated cloud system for premises automation |
US11711234B2 (en) | 2008-08-11 | 2023-07-25 | Icontrol Networks, Inc. | Integrated cloud system for premises automation |
US11258625B2 (en) | 2008-08-11 | 2022-02-22 | Icontrol Networks, Inc. | Mobile premises automation platform |
US11641391B2 (en) | 2008-08-11 | 2023-05-02 | Icontrol Networks Inc. | Integrated cloud system with lightweight gateway for premises automation |
US11792036B2 (en) | 2008-08-11 | 2023-10-17 | Icontrol Networks, Inc. | Mobile premises automation platform |
US11616659B2 (en) | 2008-08-11 | 2023-03-28 | Icontrol Networks, Inc. | Integrated cloud system for premises automation |
US11962672B2 (en) | 2008-08-11 | 2024-04-16 | Icontrol Networks, Inc. | Virtual device systems and methods |
US11316958B2 (en) | 2008-08-11 | 2022-04-26 | Icontrol Networks, Inc. | Virtual device systems and methods |
US11729255B2 (en) | 2008-08-11 | 2023-08-15 | Icontrol Networks, Inc. | Integrated cloud system with lightweight gateway for premises automation |
US11190578B2 (en) | 2008-08-11 | 2021-11-30 | Icontrol Networks, Inc. | Integrated cloud system with lightweight gateway for premises automation |
US10530839B2 (en) | 2008-08-11 | 2020-01-07 | Icontrol Networks, Inc. | Integrated cloud system with lightweight gateway for premises automation |
US10522026B2 (en) | 2008-08-11 | 2019-12-31 | Icontrol Networks, Inc. | Automation system user interface with three-dimensional display |
US10375253B2 (en) | 2008-08-25 | 2019-08-06 | Icontrol Networks, Inc. | Security system with networked touchscreen and gateway |
US20160274759A1 (en) | 2008-08-25 | 2016-09-22 | Paul J. Dawes | Security system with networked touchscreen and gateway |
US20100208064A1 (en) * | 2009-02-19 | 2010-08-19 | Panasonic Corporation | System and method for managing video storage on a video surveillance system |
US11129084B2 (en) | 2009-04-30 | 2021-09-21 | Icontrol Networks, Inc. | Notification of event subsequent to communication failure with security system |
US11856502B2 (en) | 2009-04-30 | 2023-12-26 | Icontrol Networks, Inc. | Method, system and apparatus for automated inventory reporting of security, monitoring and automation hardware and software at customer premises |
US10813034B2 (en) | 2009-04-30 | 2020-10-20 | Icontrol Networks, Inc. | Method, system and apparatus for management of applications for an SMA controller |
US11665617B2 (en) | 2009-04-30 | 2023-05-30 | Icontrol Networks, Inc. | Server-based notification of alarm event subsequent to communication failure with armed security system |
US11778534B2 (en) | 2009-04-30 | 2023-10-03 | Icontrol Networks, Inc. | Hardware configurable security, monitoring and automation controller having modular communication protocol interfaces |
US10275999B2 (en) | 2009-04-30 | 2019-04-30 | Icontrol Networks, Inc. | Server-based notification of alarm event subsequent to communication failure with armed security system |
US11284331B2 (en) | 2009-04-30 | 2022-03-22 | Icontrol Networks, Inc. | Server-based notification of alarm event subsequent to communication failure with armed security system |
US10674428B2 (en) | 2009-04-30 | 2020-06-02 | Icontrol Networks, Inc. | Hardware configurable security, monitoring and automation controller having modular communication protocol interfaces |
US11997584B2 (en) | 2009-04-30 | 2024-05-28 | Icontrol Networks, Inc. | Activation of a home automation controller |
US11356926B2 (en) | 2009-04-30 | 2022-06-07 | Icontrol Networks, Inc. | Hardware configurable security, monitoring and automation controller having modular communication protocol interfaces |
US12127095B2 (en) | 2009-04-30 | 2024-10-22 | Icontrol Networks, Inc. | Custom content for premises management |
US11223998B2 (en) | 2009-04-30 | 2022-01-11 | Icontrol Networks, Inc. | Security, monitoring and automation controller access and use of legacy security control panel information |
US11601865B2 (en) | 2009-04-30 | 2023-03-07 | Icontrol Networks, Inc. | Server-based notification of alarm event subsequent to communication failure with armed security system |
US10332363B2 (en) | 2009-04-30 | 2019-06-25 | Icontrol Networks, Inc. | Controller and interface for home security, monitoring and automation having customizable audio alerts for SMA events |
US10237806B2 (en) | 2009-04-30 | 2019-03-19 | Icontrol Networks, Inc. | Activation of a home automation controller |
US11553399B2 (en) | 2009-04-30 | 2023-01-10 | Icontrol Networks, Inc. | Custom content for premises management |
US20140289594A1 (en) * | 2009-09-22 | 2014-09-25 | Adobe Systems Incorporated | Methods and Systems for Trimming Video Footage |
US8856636B1 (en) * | 2009-09-22 | 2014-10-07 | Adobe Systems Incorporated | Methods and systems for trimming video footage |
US8774604B2 (en) | 2010-06-15 | 2014-07-08 | Sony Corporation | Information processing apparatus, information processing method, and program |
EP2398021A3 (en) * | 2010-06-15 | 2012-01-04 | Sony Corporation | Information processing apparatus, information processing method, and program |
US10062273B2 (en) | 2010-09-28 | 2018-08-28 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US10127802B2 (en) | 2010-09-28 | 2018-11-13 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US10223903B2 (en) | 2010-09-28 | 2019-03-05 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US11398147B2 (en) | 2010-09-28 | 2022-07-26 | Icontrol Networks, Inc. | Method, system and apparatus for automated reporting of account and sensor zone information to a central station |
US11900790B2 (en) | 2010-09-28 | 2024-02-13 | Icontrol Networks, Inc. | Method, system and apparatus for automated reporting of account and sensor zone information to a central station |
US11750414B2 (en) | 2010-12-16 | 2023-09-05 | Icontrol Networks, Inc. | Bidirectional security sensor communication for a premises security system |
US12088425B2 (en) | 2010-12-16 | 2024-09-10 | Icontrol Networks, Inc. | Bidirectional security sensor communication for a premises security system |
US10741057B2 (en) | 2010-12-17 | 2020-08-11 | Icontrol Networks, Inc. | Method and system for processing security event data |
US10078958B2 (en) | 2010-12-17 | 2018-09-18 | Icontrol Networks, Inc. | Method and system for logging security event data |
US12100287B2 (en) | 2010-12-17 | 2024-09-24 | Icontrol Networks, Inc. | Method and system for processing security event data |
US11341840B2 (en) | 2010-12-17 | 2022-05-24 | Icontrol Networks, Inc. | Method and system for processing security event data |
US11240059B2 (en) | 2010-12-20 | 2022-02-01 | Icontrol Networks, Inc. | Defining and implementing sensor triggered response rules |
US12021649B2 (en) | 2010-12-20 | 2024-06-25 | Icontrol Networks, Inc. | Defining and implementing sensor triggered response rules |
US20120306847A1 (en) * | 2011-05-31 | 2012-12-06 | Honda Motor Co., Ltd. | Online environment mapping |
US8913055B2 (en) * | 2011-05-31 | 2014-12-16 | Honda Motor Co., Ltd. | Online environment mapping |
US9269243B2 (en) * | 2011-10-07 | 2016-02-23 | Siemens Aktiengesellschaft | Method and user interface for forensic video search |
US20130091432A1 (en) * | 2011-10-07 | 2013-04-11 | Siemens Aktiengesellschaft | Method and user interface for forensic video search |
US20130271480A1 (en) * | 2012-04-16 | 2013-10-17 | International Business Machines Corporation | Graphical User Interface for Visualizing the Severity of Time Intervals and Events |
US20140098123A1 (en) * | 2012-04-16 | 2014-04-10 | International Business Machines Corporation | Graphical User Interface for Visualizing the Severity of Time Intervals and Events |
US20130293718A1 (en) * | 2012-05-04 | 2013-11-07 | Honeywell International Inc. | System and method of post event/alarm analysis in cctv and integrated security systems |
US9472072B2 (en) * | 2012-05-04 | 2016-10-18 | Honeywell International Inc. | System and method of post event/alarm analysis in CCTV and integrated security systems |
US12003387B2 (en) | 2012-06-27 | 2024-06-04 | Comcast Cable Communications, Llc | Control system user interface |
US9990120B2 (en) * | 2012-09-24 | 2018-06-05 | Robert Bosch Gmbh | User interface arrangement and computer program for displaying a monitoring period |
US20150212719A1 (en) * | 2012-09-24 | 2015-07-30 | Robert Bosch Gmbh | User interface arrangement and computer program |
US20150015480A1 (en) * | 2012-12-13 | 2015-01-15 | Jeremy Burr | Gesture pre-processing of video stream using a markered region |
US9720507B2 (en) * | 2012-12-13 | 2017-08-01 | Intel Corporation | Gesture pre-processing of video stream using a markered region |
US10261596B2 (en) | 2012-12-13 | 2019-04-16 | Intel Corporation | Gesture pre-processing of video stream using a markered region |
US10146322B2 (en) | 2012-12-13 | 2018-12-04 | Intel Corporation | Gesture pre-processing of video stream using a markered region |
US10958878B2 (en) | 2013-01-10 | 2021-03-23 | Tyco Safety Products Canada Ltd. | Security system and method with help and login for customization |
US9967524B2 (en) * | 2013-01-10 | 2018-05-08 | Tyco Safety Products Canada Ltd. | Security system and method with scrolling feeds watchlist |
US10419725B2 (en) | 2013-01-10 | 2019-09-17 | Tyco Safety Products Canada Ltd. | Security system and method with modular display of information |
US20140195965A1 (en) * | 2013-01-10 | 2014-07-10 | Tyco Safety Products Canada Ltd. | Security system and method with scrolling feeds watchlist |
EP2765565A3 (en) * | 2013-02-12 | 2014-09-03 | Honeywell International Inc. | System and method of alarm and history video playback |
US9398283B2 (en) | 2013-02-12 | 2016-07-19 | Honeywell International Inc. | System and method of alarm and history video playback |
US20140344730A1 (en) * | 2013-05-15 | 2014-11-20 | Samsung Electronics Co., Ltd. | Method and apparatus for reproducing content |
US10075680B2 (en) | 2013-06-27 | 2018-09-11 | Stmicroelectronics S.R.L. | Video-surveillance method, corresponding system, and computer program product |
US10348575B2 (en) | 2013-06-27 | 2019-07-09 | Icontrol Networks, Inc. | Control system user interface |
US11296950B2 (en) | 2013-06-27 | 2022-04-05 | Icontrol Networks, Inc. | Control system user interface |
US20150149598A1 (en) * | 2013-11-25 | 2015-05-28 | VideoGorillas LLC | Correlating sensor inputs with content stream intervals and selectively requesting and transmitting content streams |
US9112940B2 (en) * | 2013-11-25 | 2015-08-18 | VideoGorillas LLC | Correlating sensor inputs with content stream intervals and selectively requesting and transmitting content streams |
US11146637B2 (en) | 2014-03-03 | 2021-10-12 | Icontrol Networks, Inc. | Media content management |
US11405463B2 (en) | 2014-03-03 | 2022-08-02 | Icontrol Networks, Inc. | Media content management |
US11943301B2 (en) | 2014-03-03 | 2024-03-26 | Icontrol Networks, Inc. | Media content management |
US10977918B2 (en) | 2014-07-07 | 2021-04-13 | Google Llc | Method and system for generating a smart time-lapse video clip |
US11062580B2 (en) | 2014-07-07 | 2021-07-13 | Google Llc | Methods and systems for updating an event timeline with event indicators |
US11011035B2 (en) | 2014-07-07 | 2021-05-18 | Google Llc | Methods and systems for detecting persons in a smart home environment |
EP3343525A1 (en) * | 2014-07-07 | 2018-07-04 | Google LLC | Method and device for processing motion events |
EP3285238A3 (en) * | 2016-08-16 | 2018-02-28 | iControl Networks, Inc. | Automation system user interface |
US11887051B1 (en) | 2017-03-27 | 2024-01-30 | Amazon Technologies, Inc. | Identifying user-item interactions in an automated facility |
US11494729B1 (en) * | 2017-03-27 | 2022-11-08 | Amazon Technologies, Inc. | Identifying user-item interactions in an automated facility |
US11087271B1 (en) | 2017-03-27 | 2021-08-10 | Amazon Technologies, Inc. | Identifying user-item interactions in an automated facility |
US11238401B1 (en) | 2017-03-27 | 2022-02-01 | Amazon Technologies, Inc. | Identifying user-item interactions in an automated facility |
US20200078677A1 (en) * | 2018-09-07 | 2020-03-12 | Mz Ip Holdings, Llc | System and method for managing viewable segments of computer application content |
WO2021183384A1 (en) * | 2020-03-12 | 2021-09-16 | Motorola Solutions, Inc. | Appearance search using a map |
Also Published As
Publication number | Publication date |
---|---|
US7996771B2 (en) | 2011-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7996771B2 (en) | Methods and interfaces for event timeline and logs of video streams | |
US8089563B2 (en) | Method and system for analyzing fixed-camera video via the selection, visualization, and interaction with storyboard keyframes | |
US8311277B2 (en) | Method and system for video indexing and video synopsis | |
US20060284976A1 (en) | Methods and interfaces for visualizing activity across video frames in an action keyframe | |
US20090134968A1 (en) | Segmenting time based on the geographic distribution of activity in sensor data | |
US9324374B2 (en) | Method and system for automatic generation of clips from a plurality of images based on an inter-objects relationship score | |
WO2020236949A1 (en) | Forensic video exploitation and analysis tools | |
US11182618B2 (en) | Method and system for dynamically analyzing, modifying, and distributing digital images and video | |
Rachavarapu et al. | Watch to edit: Video retargeting using gaze | |
Tang et al. | Exploring video streams using slit-tear visualizations | |
JP4120378B2 (en) | Surveillance system and program | |
JP2019101892A (en) | Object tracking device and program thereof | |
Fassold et al. | Towards automatic cinematography and annotation for 360° video | |
Assa et al. | The virtual director: a correlation‐based online viewing of human motion | |
Javed et al. | A framework for segmentation of talk and game shows | |
JP2006352879A (en) | Method of identifying and visualizing event in video frame, and system for generating timeline of event in video stream | |
WO2016203469A1 (en) | A digital media reviewing system and methods thereof | |
Hua et al. | Content based photograph slide show with incidental music | |
JP2006352878A (en) | Method of identifying active segment, and method, system and program of creating manga storyboard | |
Saini et al. | Automated Video Mashups: Research and Challenges | |
DeAngelus et al. | On-demand Forensic Video Analytics for Large-Scale Surveillance Systems | |
Martín et al. | Automatic players detection and tracking in multi-camera tennis videos | |
Buono et al. | Video abstraction and detection of anomalies by tracking movements | |
Javed et al. | Visual content-based segmentation of talk and game shows | |
Chen et al. | A simplified approach to rushes summarization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJI XEROX CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GIRGENSOHN, ANDREAS;SHIPMAN III, FRANK M.;WILCOX, LYNN D.;REEL/FRAME:017440/0549 Effective date: 20050815 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: FUJIFILM BUSINESS INNOVATION CORP., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:FUJI XEROX CO., LTD.;REEL/FRAME:058287/0056 Effective date: 20210401 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230809 |