US20060288692A1 - Exhaust treatment system - Google Patents
Exhaust treatment system Download PDFInfo
- Publication number
- US20060288692A1 US20060288692A1 US11/511,393 US51139306A US2006288692A1 US 20060288692 A1 US20060288692 A1 US 20060288692A1 US 51139306 A US51139306 A US 51139306A US 2006288692 A1 US2006288692 A1 US 2006288692A1
- Authority
- US
- United States
- Prior art keywords
- exhaust
- flow
- power source
- filter
- further including
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
Definitions
- the present disclosure relates generally to an exhaust treatment system and, more particularly, to an exhaust treatment system having a regeneration device.
- Air pollutants may be composed of gaseous compounds, which may include nitrous oxides (NOx), and solid particulate matter, which may include unburned carbon particulates called soot.
- NOx nitrous oxides
- soot solid particulate matter
- EGR exhaust gas recirculation
- the exhaust gas is passed through a particulate filter and catalyst containing precious metals.
- the particulate filter may capture a portion of the solid particulate matter carried by the exhaust. After a period of use, the particulate filter may become saturated and may require cleaning through a regeneration process wherein the particulate matter is purged from the filter.
- the catalyst may oxidize a portion of the unburned carbon particulates contained within the exhaust gas and may convert sulfur present in the exhaust to sulfate (SO 3 ).
- a filter system can be used to remove particulate matter from a flow of engine exhaust gas before a portion of the gas is fed back to an intake air stream of the engine.
- the '436 patent discloses an engine exhaust filter containing a catalyst and a filter element. A portion of the filtered exhaust is extracted downstream of the filter and is directed to an intake of the engine through a recirculation loop.
- the filter system of the '436 patent may protect the engine from harmful particulate matter
- the catalyst may convert sulfur present in the exhaust gas to sulfate. As mentioned above, the formation of sulfate may cause particulate emissions to exceed regulated levels.
- the disclosed exhaust treatment system is directed to overcoming one or more of the problems set forth above.
- an exhaust treatment system of a power source includes a filter having a housing with an inlet and an outlet, and a regeneration device disposed outside of the housing of the filter.
- the regeneration device is fluidly connected to the inlet of the housing.
- the exhaust treatment system also includes an exhaust line configured to assist in directing a portion of a filtered flow of exhaust from the filter outlet to the power source.
- an exhaust treatment system of a combustion engine includes a filter and a regeneration device fluidly connected to the filter.
- the regeneration device is configured to selectively assist in increasing the temperature of an entire exhaust flow of the combustion engine to a desired temperature.
- the exhaust treatment system further includes an exhaust line configured to direct a portion of a filtered flow of exhaust from the filter to the combustion engine.
- a method of removing matter from a filter of a combustion engine includes reducing the pressure of an exhaust flow of the engine and injecting a combustible substance into the exhaust flow upstream of the filter. The method also includes igniting the combustible substance, filtering the exhaust flow, and directing at least a portion of the filtered flow to an inlet of the engine.
- FIG. 1 is a diagrammatic illustration of an engine having an exhaust treatment system according to an exemplary embodiment of the present disclosure.
- FIG. 2 is a diagrammatic illustration of an engine having an exhaust treatment system according to another exemplary embodiment of the present disclosure.
- FIG. 1 illustrates a power source 12 having an exemplary exhaust treatment system 10 .
- the power source 12 may include an engine such as, for example, a diesel engine, a gasoline engine, a natural gas engine, or any other engine apparent to one skilled in the art.
- the power source 12 may, alternately, include another source of power such as a furnace or any other source of power known in the art.
- the exhaust treatment system 10 may be configured to direct exhaust gases out of the power source 12 , treat the gases, and introduce a portion of the treated gases into an intake 21 of the power source 12 .
- the exhaust treatment system 10 may include an energy extraction assembly 22 , a regeneration device 20 , a filter 16 , a catalyst 18 , a recirculation line 24 fluidly connected between the filter 16 and the catalyst 18 , and a flow cooler 26 .
- the exhaust treatment system 10 may further include a flow sensor 28 , a mixing valve 30 , a compression assembly 32 , and an aftercooler 34 .
- a flow of exhaust produced by the power source 12 may be directed from the power source 12 to components of the exhaust treatment system 10 by flow lines 15 .
- the flow lines 15 may include pipes, tubing, and/or other exhaust flow carrying means known in the art.
- the flow lines 15 may be made of alloys of steel, aluminum, and/or other materials known in the art.
- the flow lines 15 may be rigid or flexible, and may be capable of safely carrying high temperature exhaust flows, such as flows having temperatures in excess of 700 degrees Celsius (approximately 1,292 degrees Fahrenheit).
- the energy extraction assembly 22 may be configured to extract energy from, and reduce the pressure of, the exhaust gases produced by the power source 12 .
- the energy extraction assembly 22 may be fluidly connected to the power source 12 by one or more flow lines 15 and may reduce the pressure of the exhaust gases to any desired pressure.
- the energy extraction assembly 22 may include one or more turbines 14 , diffusers, or other energy extraction devices known in the art. In an exemplary embodiment wherein the energy extraction assembly 22 includes more than one turbine 14 , the multiple turbines 14 may be disposed in parallel or in series relationship. It is also understood that in an embodiment of the present disclosure, the energy extraction assembly 22 may, alternately, be omitted.
- the power source 12 may include, for example, a naturally aspirated engine.
- a component of the energy extraction assembly 22 may be configured in certain embodiments to drive a component of the compression assembly 32 .
- the regeneration device 20 may be fluidly connected to the energy extraction assembly 22 via flow line 15 , and may be configured to increase the temperature of an entire flow of exhaust produced by the power source 12 to a desired temperature.
- the desired temperature may be, for example, a regeneration temperature of the filter 16 .
- the regeneration device 20 may be configured to assist in regenerating the filter 16 .
- the regeneration device 20 may be configured to increase the temperature of only a portion of the entire flow of exhaust produced by the power source 12 .
- the regeneration device 20 may include, for example, a fuel injector and an ignitor (not shown), heat coils (not shown), and/or other heat sources known in the art.
- Such heat sources may be disposed within the regeneration device 20 and may be configured to assist in increasing the temperature of the flow of exhaust through convection, combustion, and/or other methods.
- the regeneration device 20 includes a fuel injector and an ignitor
- the regeneration device 20 may receive a supply of a combustible substance and a supply of oxygen to facilitate combustion within the regeneration device 20 .
- the combustible substance may be, for example, gasoline, diesel fuel, reformate, and/or any other combustible substance known in the art.
- the supply of oxygen may be provided in addition to the relatively low pressure flow of exhaust gas directed to the regeneration device 20 through flow line 15 .
- the supply of oxygen may be carried by a flow of gas directed to the regeneration device 20 from downstream of the compression assembly 32 via a supply line 40 .
- the flow of gas may include, for example, recirculated exhaust gas and ambient air.
- the supply line 40 may be fluidly connected to an outlet of the compression assembly 32 .
- the regeneration device 20 may be dimensioned and/or otherwise configured to be housed within an engine compartment or other compartment of a work machine (not shown) to which the power source 12 is attached.
- the regeneration device 20 may be desirably calibrated in conjunction with, for example, the filter 16 , the energy extraction assembly 22 , the catalyst 18 , and/or the power source 12 .
- Calibration of the regeneration device 20 may include, for example, among other things, adjusting the rate, angle, and/or atomization at which fuiel is injected into the regeneration device 20 , adjusting the flow rate of the oxygen supplied, adjusting the intensity and/or firing pattern of the ignitor, and adjusting the length, diameter, mounting angle, and/or other configurations of a housing of the regeneration device 20 .
- Such calibration may reduce the time required to regenerate the filter 16 and the amount of fuiel or other combustible substances needed for regeneration.
- the efficiency of the exhaust treatment systems 10 , 100 described herein may be measured by a variety of factors including, among other things, the amount of fuiel used for regeneration, the length of the regeneration period, and the amount (parts per million) of pollutants released to the atmosphere.
- the filter 16 may be connected downstream of the regeneration device 20 .
- the filter 16 may have a housing 25 including an inlet 23 and an outlet 31 .
- the regeneration device 20 may be disposed outside of the housing 25 and may be fluidly connected to the inlet 23 of the housing 25 .
- the regeneration device 20 may be disposed within the housing 25 of the filter 16 .
- the filter 16 may be any type of filter known in the art capable of extracting matter from a flow of gas.
- the filter 16 may be, for example, a particulate matter filter positioned to extract particulates from an exhaust flow of the power source 12 .
- the filter 16 may include, for example, a ceramic substrate, a metallic mesh, foam, or any other porous material known in the art. These materials may form, for example, a honeycomb structure within the housing 25 of the filter 16 to facilitate the removal of particulates.
- the particulates may be, for example, soot.
- a portion of the exhaust produced by the combustion process may leak past piston rings within a crankcase (not shown) of the power source 12 .
- This portion of the exhaust may build up within the crankcase over time, thereby increasing the pressure within the crankcase.
- a ventilation line 42 may be fluidly connected to the crankcase of the power source 12 .
- the ventilation line 42 may comprise piping, tubing, and/or other exhaust flow carrying means known in the art and may be structurally similar to the flow lines 15 described above.
- the ventilation line 42 may be configured to direct, for example, the portion of exhaust gas from the crankcase to a port 46 of the flow line 15 .
- the port 46 may be located in the flow line 15 anywhere upstream of the filter 16 .
- the ventilation line 42 may assist in directing the portion of exhaust gas from the crankcase to a port 46 disposed upstream of the regeneration device 20 .
- the ventilation line 42 may include, for example, a check valve 44 and/or any other valve assembly known in the art.
- the check valve 44 may be configured to assist in controllably regulating a flow of fluid through the ventilation line 42 .
- the exhaust treatment system 10 may further include a catalyst 18 disposed downstream of the filter 16 .
- the catalyst 18 may contain catalyst materials useful in collecting, absorbing, adsorbing, and/or storing hydrocarbons, oxides of sulfur, and/or oxides of nitrogen contained in a flow.
- Such catalyst materials may include, for example, aluminum, platinum, palladium, rhodium, barium, cerium, and/or alkali metals, alkaline-earth metals, rare-earth metals, or combinations thereof.
- the catalyst materials may be situated within the catalyst 18 so as to maximize the surface area available for the collection of, for example, hydrocarbons.
- the catalyst 18 may include, for example, a ceramic substrate, a metallic mesh, foam, or any other porous material known in the art, and the catalyst materials may be located on, for example, a substrate of the catalyst 18 .
- a filter 36 of the exhaust treatment system 100 may include catalyst materials useful in collecting, absorbing, adsorbing, and/or storing hydrocarbons, oxides of sulfur, and/or oxides of nitrogen contained in a flow.
- the catalyst 18 FIG. 1
- the catalyst materials may include, for example, any of the catalyst materials discussed above with respect to the catalyst 18 ( FIG. 1 ).
- the catalyst materials may be situated within the filter 36 so as to maximize the surface area available for absorption, adsorption, and or storage.
- the catalyst materials may be located on a substrate of the filter 36 .
- the catalyst materials may be added to the filter 36 by any conventional means such as, for example, coating or spraying, and the substrate of the filter 36 may be partially or completely coated with the materials. It is understood that the presence of catalyst materials, such as, for example, platinum and/or palladium, upstream of the recirculation line 24 may result in the formation of sulfate in the exhaust treatment system 100 . Accordingly, to minimize the amount of sulfate formed in the exemplary embodiment of FIG. 2 , only minimal amounts of catalyst materials may be incorporated into the filter 36 .
- the catalyst materials described above with respect to FIGS. 1 and 2 may be capable of oxidizing hydrocarbons in certain conditions.
- a portion of the hydrocarbons contained within the exhaust flow may be permitted to travel back to the power source 12 without being oxidized by the catalyst materials.
- the catalyst materials discussed above may assist in the formation of sulfate, the presence of these catalyst materials, either on a substrate of the filter 36 ( FIG. 2 ) or in the catalyst 18 ( FIG. 1 ), may improve the overall emissions characteristics of the exhaust treatment system 10 , 100 by removing hydrocarbons from the treated exhaust flow.
- the exhaust treatment system 10 may further include a recirculation line 24 fluidly connected downstream of the filter 16 .
- the recirculation line 24 may be disposed between the filter 16 and the catalyst 18 and may be configured to assist in directing a portion of the exhaust flow from the filter 16 to the inlet 21 of the power source 12 .
- the recirculation line 24 may comprise piping, tubing, and/or other exhaust flow carrying means known in the art and may be structurally similar to the flow lines 15 described above.
- the exhaust treatment system 100 FIG. 2
- the recirculation line 24 may be disposed downstream of the filter 36 and upstream of an exhaust system outlet 17 .
- the flow cooler 26 may be fluidly connected to the filter 16 via the recirculation line 24 and may be configured to cool the portion of the exhaust flow passing through the recirculation line 24 .
- the flow cooler 26 may include a liquid-to-air heat exchanger, an air-to air heat exchanger, or any other type of heat exchanger known in the art for cooling an exhaust flow. In an alternative exemplary embodiment of the present disclosure, the flow cooler 26 may be omitted.
- the mixing valve 30 may be fluidly connected to the flow cooler 26 via the recirculation line 24 and may be configured to assist in regulating the flow of exhaust through the recirculation line 24 . It is understood that in an exemplary embodiment, a check valve (not shown) may be fluidly connected upstream of the flow cooler 26 to further assist in regulating the flow of exhaust through the recirculation line 24 .
- the mixing valve 30 may be a spool valve, a shutter valve, a butterfly valve, a check valve, a diaphragm valve, a gate valve, a shuttle valve, a ball valve, a globe valve, or any other valve known in the art.
- the mixing valve 30 may be actuated manually, electrically, hydraulically, pneumatically, or in any other manner known in the art.
- the mixing valve 30 may be in communication with a controller (not shown) and may be selectively actuated in response to one or more predetermined conditions.
- the mixing valve 30 may also be fluidly connected to an ambient air intake 29 of the exhaust treatment system 10 .
- the mixing valve 30 may be configured to control the amount of exhaust flow entering a flow line 27 relative to the amount of ambient air flow entering the flow line 27 .
- the amount of exhaust flow passing through the mixing valve 30 may be proportionally decreased and vise versa.
- the flow sensor 28 may be fluidly connected to the recirculation line 24 downstream of the flow cooler 26 .
- the flow sensor 28 may be any type of mass air flow sensor such as, for example, a hot wire anemometer or a venturi-type sensor.
- the flow sensor 28 may be configured to sense the amount of exhaust flow passing through the recirculation line 24 .
- the flow cooler 26 may assist in reducing fluctuations in the temperature of the portion of the exhaust flow passing through the recirculation line 24 . Reducing temperature fluctuations may also assist in reducing fluctuations in the volume occupied by a flow of exhaust gas since a high temperature mass of gas occupies a greater volume than the same mass of gas at a low temperature gases.
- the flow sensor 28 may also include, for example, a thermocouple (not shown) or other device configured to sense the temperature of the exhaust flow.
- the flow line 27 downstream of the mixing valve 30 may direct the ambient air/exhaust flow mixture to the compression assembly 32 .
- the compression assembly 32 may include a compressor 13 configured to increase the pressure of a flow of gas a desired pressure.
- the compressor 13 may include a fixed geometry type compressor, a variable geometry type compressor, or any other type of compressor known in the art.
- the compression assembly 32 may include more than one compressor 13 and the multiple compressors 13 may be disposed in parallel or in series relationship.
- a compressor 13 of the compression assembly 32 may be connected to a turbine 14 of the energy extraction assembly 22 and the turbine 14 may be configured to drive the compressor 13 .
- components of the turbine 14 may rotate and drive the connected compressor 13 .
- the compressor 13 may be driven by, for example, the power source 12 , or by any other drive known in the art. It is also understood that in a non-pressurized air induction system, the compression assembly 32 may be omitted.
- the aftercooler 34 may be fluidly connected to the power source 12 via the flow line 27 and may be configured to cool a flow of gas passing through the flow line 27 .
- this flow of gas may be the ambient air/exhaust flow mixture discussed above.
- the aftercooler 34 may include a liquid-to-air heat exchanger, an air-to air heat exchanger, or any other type of flow cooler or heat exchanger known in the art. In an exemplary embodiment of the present disclosure, the aftercooler 34 may be omitted if desired.
- the exhaust treatment system 10 may further include a condensate drain 38 fluidly connected to the aftercooler 34 .
- the condensate drain 38 may be configured to collect a fluid, such as, for example, water or other condensate formed at the aftercooler 34 . It is understood that such fluids may consist of, for example, condensed water vapor contained in recycled exhaust gas and/or ambient air.
- the condensate drain 38 may include a removably attachable fluid tank (not shown) capable of safely storing the condensed fluid. The fluid tank may be configured to be removed, safely emptied, and reconnected to the condensate drain 38 .
- the condensate drain 38 may be configured to direct the condensed fluid to a fluid container (not shown) and/or other component or location on the work machine.
- the condensate drain 38 may be configured to direct the fluid to the atmosphere or to the surface by which the work machine is supported.
- the exhaust treatment systems 10 , 100 of the present disclosure may be used with any combustion-type device such as, for example, an engine, a furnace, or any other device known in the art where the recirculation of reduced-particulate exhaust into an inlet of the device is desired.
- the exhaust treatment systems 10 , 100 may be useful in reducing the amount of harmful exhaust emissions discharged to the environment and reducing or substantially eliminating the amount of sulfate produced during treatment of the exhaust gas.
- the exhaust treatment systems 10 , 100 may also be capable of purging the portions of the exhaust gas captured by components of the system through a regeneration process.
- the combustion process may produce a complex mixture of air pollutants. These pollutants may exist in solid, liquid, and/or gaseous form. In general, the solid and liquid pollutants may fall into the three categories of soot, soluble organic fraction, and sulfates.
- the soot produced during combustion may include carbonaceous materials, and the soluble organic fraction may include unburned hydrocarbons that are deposited on or otherwise chemically combined with the soot.
- the sulfates produced in the combustion process may be formed from sulfur molecules contained within the fuel and may be released in the form of SO 2 . This SO 2 may react with oxygen molecules contained within the exhaust flow to form SO 3 . As explained above, SO 2 may also be converted into SO 3 in the presence of, for example, platinum, palladium, and/or other rare earth metals used as catalyst materials in conventional catalysts. It is understood that the combustion process may also produce small amounts of SO 3 .
- a portion of the SO 3 produced may be released to the atmosphere through an outlet of the exhaust system.
- the exhaust treatment systems 10 , 100 of the present disclosure may substantially reduce the formation of sulfates by minimizing the amount of platinum, palladium, and/or other precious earth metals used.
- the operation of the exhaust treatment systems 10 , 100 will now be explained in detail. Unless otherwise noted, the exhaust treatment system 10 of FIG. 1 will be referred to for the duration of the disclosure.
- the power source 12 may combust a mixture of fuel, recirculated exhaust gas, and ambient air to produce mechanical work and an exhaust flow containing the gaseous compounds discussed above.
- the exhaust flow may be directed, via flow line 15 , from the power source 12 through the energy extraction assembly 22 .
- the hot exhaust flow may expand on the blades of the turbines 14 of the energy extraction assembly 22 , and this expansion may reduce the pressure of the exhaust flow while assisting in rotating the turbine blades.
- the reduced pressure exhaust flow may pass through the regeneration device 20 to the filter 16 .
- the regeneration device 20 may be deactivated during the normal operation of the power source 12 .
- a portion of the particulate matter entrained with the exhaust flow may be captured by the substrate, mesh, and/or other structures within the filter 16 .
- a portion of the filtered exhaust flow may be extracted downstream of the filter 16 and upstream of the catalyst 18 .
- the extracted portion of the exhaust flow may enter the recirculation line 24 and may be recirculated back to the power source 12 .
- the remainder of the filtered exhaust flow may pass through the catalyst 18 .
- the catalyst materials contained within the catalyst may assist in oxidizing the hydrocarbons and soluble organic fraction carried by the filtered flow.
- the remainder of the filtered exhaust flow may exit the exhaust treatment system 10 through an exhaust system outlet 17 .
- the embodiment of the exhaust treatment system 10 illustrated in FIG. 1 may be preferable to conventional systems since, although the exhaust treatment system 10 contains a separate catalyst 18 , the catalyst 18 is downstream of the recirculation line 24 . As a result, any of the SO 3 produced by the rare earth metals contained within the catalyst 18 exits through the outlet 17 and is not recirculated through the exhaust treatment system 10 . It is understood, however, that since the catalyst 18 is downstream of the recirculation line 24 , a portion of the hydrocarbons produced during the combustion process may be recirculated back to the power source 12 .
- the filter 36 may contain small amounts of catalyst materials such as platinum.
- the catalyst materials may be disposed on a substrate of the filter 36 and may substantially oxidize the hydrocarbons and soluble organic fraction contained within the exhaust flow. Such a configuration may result in the production of substantially less sulfate in the recirculated filtered exhaust flow than conventional exhaust treatment systems containing a separate catalyst upstream of a filter.
- the recirculated portion of the exhaust flow may pass through the flow cooler 26 .
- the flow cooler 26 may reduce the temperature of the portion of the exhaust flow before the portion enters the flow line 27 .
- the mixing valve 30 may be configured to regulate the ratio of recirculated exhaust flow to ambient inlet air passing through flow line 27 . As described above, the flow sensor 28 may assist in regulating this ratio.
- the mixing valve 30 may permit the ambient air/exhaust flow mixture to pass to the compression assembly 32 where the compressors 13 may increase the pressure of the flow, thereby increasing the temperature of the flow.
- the compressed flow may pass through the flow line 27 to the aftercooler 34 , which may reduce the temperature of the flow before the flow enters the inlet 21 of the power source 12 .
- soot produced by the combustion process may collect in the filter 16 and may begin to impair the ability of the filter 16 to store particulates.
- the flow sensor 28 and other sensors sense parameters of the power source 12 and/or the exhaust treatment system 10 . Such parameters may include, for example, engine speed, engine temperature, exhaust flow temperature, exhaust flow pressure, and particulate matter content.
- a controller (not shown) may use the information sent from the sensors in conjunction with an algorithm or other pre-set criteria to determine whether the filter 16 has become saturated and is in need of regeneration. Once this saturation point has been reached, the controller may send appropriate signals to components of the exhaust treatment system 10 to begin the regeneration process.
- a preset algorithm stored in the controller may assist in this determination and may use the sensed parameters as inputs. Alternatively, regeneration may commence according to a set schedule based on fuel consumption, hours of operation, and/or other variables.
- the signals sent by the controller may alter the position of the mixing valve 30 to desirably alter the ratio of the ambient air/exhaust flow mixture. These signals may also activate the regeneration device 20 .
- oxygen and a combustible substance such as, for example, fuel may be directed to the regeneration device 20 .
- the regeneration device 20 may ignite the fuel and may increase the temperature of the exhaust flow passing to the filter 16 to a desired temperature for regeneration. This temperature may be in excess of 700 degrees Celsius (approximately 1,292 degrees Fahrenheit) in some applications, depending on the type and size of the filter 16 . At these temperatures, soot contained within the filter 16 may be burned away to restore the storage capabilities of the filter 16 .
- the system 10 , 100 may include additional filters such as, for example, a sulfur trap disposed upstream of the filter 16 .
- the sulfur trap may be useful in capturing sulfur molecules carried by the exhaust flow. It is intended that the specification and examples be considered as exemplary only, with the true scope of the invention being indicated by the following claims.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
An exhaust treatment system of a power source includes a filter having a housing with an inlet and an outlet, and a regeneration device disposed outside of the housing of the filter. The regeneration device is fluidly connected to the inlet of the housing. The exhaust treatment system also includes an exhaust line configured to assist in directing a portion of a filtered flow of exhaust from the filter outlet to the power source.
Description
- The present disclosure relates generally to an exhaust treatment system and, more particularly, to an exhaust treatment system having a regeneration device.
- Internal combustion engines, including diesel engines, gasoline engines, natural gas engines, and other engines known in the art, may exhaust a complex mixture of air pollutants. The air pollutants may be composed of gaseous compounds, which may include nitrous oxides (NOx), and solid particulate matter, which may include unburned carbon particulates called soot.
- Due to increased attention on the environment, exhaust emission standards have become more stringent, and the amount of gaseous compounds emitted to the atmosphere from an engine may be regulated depending on the type of engine, size of engine, and/or class of engine. One method that has been implemented by engine manufacturers to comply with the regulation of these engine emissions is exhaust gas recirculation (EGR). EGR systems recirculate the exhaust gas byproducts into the intake air supply of the internal combustion engine. The exhaust gas directed to the engine cylinder reduces the concentration of oxygen within the cylinder and increases the specific heat of the air/fuel mixture, thereby lowering the maximum combustion temperature within the cylinder. The lowered maximum combustion temperature and reduced oxygen concentration can slow the chemical reaction of the combustion process and decrease the formation of NOx.
- In many EGR applications, the exhaust gas is passed through a particulate filter and catalyst containing precious metals. The particulate filter may capture a portion of the solid particulate matter carried by the exhaust. After a period of use, the particulate filter may become saturated and may require cleaning through a regeneration process wherein the particulate matter is purged from the filter. In addition, the catalyst may oxidize a portion of the unburned carbon particulates contained within the exhaust gas and may convert sulfur present in the exhaust to sulfate (SO3).
- As shown in U.S. Pat. No. 6,427,436 (the '436 patent), a filter system can be used to remove particulate matter from a flow of engine exhaust gas before a portion of the gas is fed back to an intake air stream of the engine. Specifically, the '436 patent discloses an engine exhaust filter containing a catalyst and a filter element. A portion of the filtered exhaust is extracted downstream of the filter and is directed to an intake of the engine through a recirculation loop.
- Although the filter system of the '436 patent may protect the engine from harmful particulate matter, the catalyst may convert sulfur present in the exhaust gas to sulfate. As mentioned above, the formation of sulfate may cause particulate emissions to exceed regulated levels.
- The disclosed exhaust treatment system is directed to overcoming one or more of the problems set forth above.
- In one embodiment of the present disclosure, an exhaust treatment system of a power source includes a filter having a housing with an inlet and an outlet, and a regeneration device disposed outside of the housing of the filter. The regeneration device is fluidly connected to the inlet of the housing. The exhaust treatment system also includes an exhaust line configured to assist in directing a portion of a filtered flow of exhaust from the filter outlet to the power source.
- In another embodiment of the present disclosure, an exhaust treatment system of a combustion engine includes a filter and a regeneration device fluidly connected to the filter. The regeneration device is configured to selectively assist in increasing the temperature of an entire exhaust flow of the combustion engine to a desired temperature. The exhaust treatment system further includes an exhaust line configured to direct a portion of a filtered flow of exhaust from the filter to the combustion engine.
- In yet another embodiment of the present disclosure, a method of removing matter from a filter of a combustion engine includes reducing the pressure of an exhaust flow of the engine and injecting a combustible substance into the exhaust flow upstream of the filter. The method also includes igniting the combustible substance, filtering the exhaust flow, and directing at least a portion of the filtered flow to an inlet of the engine.
-
FIG. 1 is a diagrammatic illustration of an engine having an exhaust treatment system according to an exemplary embodiment of the present disclosure. -
FIG. 2 is a diagrammatic illustration of an engine having an exhaust treatment system according to another exemplary embodiment of the present disclosure. -
FIG. 1 illustrates apower source 12 having an exemplaryexhaust treatment system 10. Thepower source 12 may include an engine such as, for example, a diesel engine, a gasoline engine, a natural gas engine, or any other engine apparent to one skilled in the art. Thepower source 12 may, alternately, include another source of power such as a furnace or any other source of power known in the art. - The
exhaust treatment system 10 may be configured to direct exhaust gases out of thepower source 12, treat the gases, and introduce a portion of the treated gases into anintake 21 of thepower source 12. Theexhaust treatment system 10 may include anenergy extraction assembly 22, aregeneration device 20, afilter 16, acatalyst 18, arecirculation line 24 fluidly connected between thefilter 16 and thecatalyst 18, and aflow cooler 26. Theexhaust treatment system 10 may further include aflow sensor 28, amixing valve 30, acompression assembly 32, and anaftercooler 34. - A flow of exhaust produced by the
power source 12 may be directed from thepower source 12 to components of theexhaust treatment system 10 byflow lines 15. Theflow lines 15 may include pipes, tubing, and/or other exhaust flow carrying means known in the art. Theflow lines 15 may be made of alloys of steel, aluminum, and/or other materials known in the art. Theflow lines 15 may be rigid or flexible, and may be capable of safely carrying high temperature exhaust flows, such as flows having temperatures in excess of 700 degrees Celsius (approximately 1,292 degrees Fahrenheit). - The
energy extraction assembly 22 may be configured to extract energy from, and reduce the pressure of, the exhaust gases produced by thepower source 12. Theenergy extraction assembly 22 may be fluidly connected to thepower source 12 by one ormore flow lines 15 and may reduce the pressure of the exhaust gases to any desired pressure. Theenergy extraction assembly 22 may include one ormore turbines 14, diffusers, or other energy extraction devices known in the art. In an exemplary embodiment wherein theenergy extraction assembly 22 includes more than oneturbine 14, themultiple turbines 14 may be disposed in parallel or in series relationship. It is also understood that in an embodiment of the present disclosure, theenergy extraction assembly 22 may, alternately, be omitted. In such an embodiment, thepower source 12 may include, for example, a naturally aspirated engine. As will be described in greater detail below, a component of theenergy extraction assembly 22 may be configured in certain embodiments to drive a component of thecompression assembly 32. - In an exemplary embodiment, the
regeneration device 20 may be fluidly connected to theenergy extraction assembly 22 viaflow line 15, and may be configured to increase the temperature of an entire flow of exhaust produced by thepower source 12 to a desired temperature. The desired temperature may be, for example, a regeneration temperature of thefilter 16. Accordingly, theregeneration device 20 may be configured to assist in regenerating thefilter 16. Alternatively, in another exemplary embodiment theregeneration device 20 may be configured to increase the temperature of only a portion of the entire flow of exhaust produced by thepower source 12. Theregeneration device 20 may include, for example, a fuel injector and an ignitor (not shown), heat coils (not shown), and/or other heat sources known in the art. Such heat sources may be disposed within theregeneration device 20 and may be configured to assist in increasing the temperature of the flow of exhaust through convection, combustion, and/or other methods. In an exemplary embodiment in which theregeneration device 20 includes a fuel injector and an ignitor, it is understood that theregeneration device 20 may receive a supply of a combustible substance and a supply of oxygen to facilitate combustion within theregeneration device 20. The combustible substance may be, for example, gasoline, diesel fuel, reformate, and/or any other combustible substance known in the art. The supply of oxygen may be provided in addition to the relatively low pressure flow of exhaust gas directed to theregeneration device 20 throughflow line 15. In an exemplary embodiment, the supply of oxygen may be carried by a flow of gas directed to theregeneration device 20 from downstream of thecompression assembly 32 via asupply line 40. In such an embodiment, the flow of gas may include, for example, recirculated exhaust gas and ambient air. It is understood that, in an exemplary embodiment of the present disclosure, thesupply line 40 may be fluidly connected to an outlet of thecompression assembly 32. In an exemplary embodiment, theregeneration device 20 may be dimensioned and/or otherwise configured to be housed within an engine compartment or other compartment of a work machine (not shown) to which thepower source 12 is attached. In such an embodiment, theregeneration device 20, may be desirably calibrated in conjunction with, for example, thefilter 16, theenergy extraction assembly 22, thecatalyst 18, and/or thepower source 12. Calibration of theregeneration device 20 may include, for example, among other things, adjusting the rate, angle, and/or atomization at which fuiel is injected into theregeneration device 20, adjusting the flow rate of the oxygen supplied, adjusting the intensity and/or firing pattern of the ignitor, and adjusting the length, diameter, mounting angle, and/or other configurations of a housing of theregeneration device 20. Such calibration may reduce the time required to regenerate thefilter 16 and the amount of fuiel or other combustible substances needed for regeneration. Either of these results may improve the overall efficiency of theexhaust treatment system 10. It is understood that the efficiency of theexhaust treatment systems - As shown in
FIG. 1 , thefilter 16 may be connected downstream of theregeneration device 20. Thefilter 16 may have ahousing 25 including aninlet 23 and anoutlet 31. In an exemplary embodiment, theregeneration device 20 may be disposed outside of thehousing 25 and may be fluidly connected to theinlet 23 of thehousing 25. In another exemplary embodiment, theregeneration device 20 may be disposed within thehousing 25 of thefilter 16. Thefilter 16 may be any type of filter known in the art capable of extracting matter from a flow of gas. In an embodiment of the present disclosure, thefilter 16 may be, for example, a particulate matter filter positioned to extract particulates from an exhaust flow of thepower source 12. Thefilter 16 may include, for example, a ceramic substrate, a metallic mesh, foam, or any other porous material known in the art. These materials may form, for example, a honeycomb structure within thehousing 25 of thefilter 16 to facilitate the removal of particulates. The particulates may be, for example, soot. - In an exemplary embodiment of the present disclosure, a portion of the exhaust produced by the combustion process may leak past piston rings within a crankcase (not shown) of the
power source 12. This portion of the exhaust may build up within the crankcase over time, thereby increasing the pressure within the crankcase. In such an embodiment, aventilation line 42 may be fluidly connected to the crankcase of thepower source 12. Theventilation line 42 may comprise piping, tubing, and/or other exhaust flow carrying means known in the art and may be structurally similar to theflow lines 15 described above. Theventilation line 42 may be configured to direct, for example, the portion of exhaust gas from the crankcase to aport 46 of theflow line 15. Theport 46 may be located in theflow line 15 anywhere upstream of thefilter 16. For example, theventilation line 42 may assist in directing the portion of exhaust gas from the crankcase to aport 46 disposed upstream of theregeneration device 20. Theventilation line 42 may include, for example, acheck valve 44 and/or any other valve assembly known in the art. Thecheck valve 44 may be configured to assist in controllably regulating a flow of fluid through theventilation line 42. - The
exhaust treatment system 10 may further include acatalyst 18 disposed downstream of thefilter 16. Thecatalyst 18 may contain catalyst materials useful in collecting, absorbing, adsorbing, and/or storing hydrocarbons, oxides of sulfur, and/or oxides of nitrogen contained in a flow. Such catalyst materials may include, for example, aluminum, platinum, palladium, rhodium, barium, cerium, and/or alkali metals, alkaline-earth metals, rare-earth metals, or combinations thereof. The catalyst materials may be situated within thecatalyst 18 so as to maximize the surface area available for the collection of, for example, hydrocarbons. Thecatalyst 18 may include, for example, a ceramic substrate, a metallic mesh, foam, or any other porous material known in the art, and the catalyst materials may be located on, for example, a substrate of thecatalyst 18. - As illustrated in
FIG. 2 , in an additional exemplary embodiment of the present disclosure, afilter 36 of theexhaust treatment system 100 may include catalyst materials useful in collecting, absorbing, adsorbing, and/or storing hydrocarbons, oxides of sulfur, and/or oxides of nitrogen contained in a flow. In such an embodiment, the catalyst 18 (FIG. 1 ) may be omitted. The catalyst materials may include, for example, any of the catalyst materials discussed above with respect to the catalyst 18 (FIG. 1 ). The catalyst materials may be situated within thefilter 36 so as to maximize the surface area available for absorption, adsorption, and or storage. The catalyst materials may be located on a substrate of thefilter 36. The catalyst materials may be added to thefilter 36 by any conventional means such as, for example, coating or spraying, and the substrate of thefilter 36 may be partially or completely coated with the materials. It is understood that the presence of catalyst materials, such as, for example, platinum and/or palladium, upstream of therecirculation line 24 may result in the formation of sulfate in theexhaust treatment system 100. Accordingly, to minimize the amount of sulfate formed in the exemplary embodiment ofFIG. 2 , only minimal amounts of catalyst materials may be incorporated into thefilter 36. - It is also understood that the catalyst materials described above with respect to
FIGS. 1 and 2 may be capable of oxidizing hydrocarbons in certain conditions. Thus, in the embodiment shown inFIG. 1 , a portion of the hydrocarbons contained within the exhaust flow may be permitted to travel back to thepower source 12 without being oxidized by the catalyst materials. It is further understood that although the catalyst materials discussed above may assist in the formation of sulfate, the presence of these catalyst materials, either on a substrate of the filter 36 (FIG. 2 ) or in the catalyst 18 (FIG. 1 ), may improve the overall emissions characteristics of theexhaust treatment system - Referring again to
FIG. 1 , theexhaust treatment system 10 may further include arecirculation line 24 fluidly connected downstream of thefilter 16. Therecirculation line 24 may be disposed between thefilter 16 and thecatalyst 18 and may be configured to assist in directing a portion of the exhaust flow from thefilter 16 to theinlet 21 of thepower source 12. Therecirculation line 24 may comprise piping, tubing, and/or other exhaust flow carrying means known in the art and may be structurally similar to theflow lines 15 described above. In an embodiment in which the exhaust treatment system 100 (FIG. 2 ) includes afilter 36 containing catalyst materials, therecirculation line 24 may be disposed downstream of thefilter 36 and upstream of anexhaust system outlet 17. - The flow cooler 26 may be fluidly connected to the
filter 16 via therecirculation line 24 and may be configured to cool the portion of the exhaust flow passing through therecirculation line 24. The flow cooler 26 may include a liquid-to-air heat exchanger, an air-to air heat exchanger, or any other type of heat exchanger known in the art for cooling an exhaust flow. In an alternative exemplary embodiment of the present disclosure, the flow cooler 26 may be omitted. - The mixing
valve 30 may be fluidly connected to the flow cooler 26 via therecirculation line 24 and may be configured to assist in regulating the flow of exhaust through therecirculation line 24. It is understood that in an exemplary embodiment, a check valve (not shown) may be fluidly connected upstream of the flow cooler 26 to further assist in regulating the flow of exhaust through therecirculation line 24. The mixingvalve 30 may be a spool valve, a shutter valve, a butterfly valve, a check valve, a diaphragm valve, a gate valve, a shuttle valve, a ball valve, a globe valve, or any other valve known in the art. - The mixing
valve 30 may be actuated manually, electrically, hydraulically, pneumatically, or in any other manner known in the art. The mixingvalve 30 may be in communication with a controller (not shown) and may be selectively actuated in response to one or more predetermined conditions. - The mixing
valve 30 may also be fluidly connected to anambient air intake 29 of theexhaust treatment system 10. Thus, the mixingvalve 30 may be configured to control the amount of exhaust flow entering aflow line 27 relative to the amount of ambient air flow entering theflow line 27. For example, as the amount of exhaust flow passing through the mixingvalve 30 is desirably increased, the amount of ambient air flow passing through the mixingvalve 30 may be proportionally decreased and vise versa. - As shown in
FIG. 1 , theflow sensor 28 may be fluidly connected to therecirculation line 24 downstream of theflow cooler 26. Theflow sensor 28 may be any type of mass air flow sensor such as, for example, a hot wire anemometer or a venturi-type sensor. Theflow sensor 28 may be configured to sense the amount of exhaust flow passing through therecirculation line 24. It is understood that the flow cooler 26 may assist in reducing fluctuations in the temperature of the portion of the exhaust flow passing through therecirculation line 24. Reducing temperature fluctuations may also assist in reducing fluctuations in the volume occupied by a flow of exhaust gas since a high temperature mass of gas occupies a greater volume than the same mass of gas at a low temperature gases. Thus, sensing the amount of exhaust flow through therecirculation line 24 at positions downstream of the flow cooler 26 (i.e. at a relatively controlled temperature) may result in more accurate flow measurements than measurements taken upstream of theflow cooler 26. It is further understood that theflow sensor 28 may also include, for example, a thermocouple (not shown) or other device configured to sense the temperature of the exhaust flow. - The
flow line 27 downstream of the mixingvalve 30 may direct the ambient air/exhaust flow mixture to thecompression assembly 32. Thecompression assembly 32 may include acompressor 13 configured to increase the pressure of a flow of gas a desired pressure. Thecompressor 13 may include a fixed geometry type compressor, a variable geometry type compressor, or any other type of compressor known in the art. In the exemplary embodiment shown inFIG. 1 , thecompression assembly 32 may include more than onecompressor 13 and themultiple compressors 13 may be disposed in parallel or in series relationship. Acompressor 13 of thecompression assembly 32 may be connected to aturbine 14 of theenergy extraction assembly 22 and theturbine 14 may be configured to drive thecompressor 13. In particular, as hot exhaust gases exit thepower source 12 and expand against the blades (not shown) of theturbine 14, components of theturbine 14 may rotate and drive the connectedcompressor 13. Alternatively, in an embodiment in which theturbine 14 is omitted, thecompressor 13 may be driven by, for example, thepower source 12, or by any other drive known in the art. It is also understood that in a non-pressurized air induction system, thecompression assembly 32 may be omitted. - The
aftercooler 34 may be fluidly connected to thepower source 12 via theflow line 27 and may be configured to cool a flow of gas passing through theflow line 27. In an exemplary embodiment, this flow of gas may be the ambient air/exhaust flow mixture discussed above. Theaftercooler 34 may include a liquid-to-air heat exchanger, an air-to air heat exchanger, or any other type of flow cooler or heat exchanger known in the art. In an exemplary embodiment of the present disclosure, theaftercooler 34 may be omitted if desired. - The
exhaust treatment system 10 may further include acondensate drain 38 fluidly connected to theaftercooler 34. Thecondensate drain 38 may be configured to collect a fluid, such as, for example, water or other condensate formed at theaftercooler 34. It is understood that such fluids may consist of, for example, condensed water vapor contained in recycled exhaust gas and/or ambient air. In such an exemplary embodiment, thecondensate drain 38 may include a removably attachable fluid tank (not shown) capable of safely storing the condensed fluid. The fluid tank may be configured to be removed, safely emptied, and reconnected to thecondensate drain 38. In another exemplary embodiment, thecondensate drain 38 may be configured to direct the condensed fluid to a fluid container (not shown) and/or other component or location on the work machine. Alternatively, thecondensate drain 38 may be configured to direct the fluid to the atmosphere or to the surface by which the work machine is supported. - The
exhaust treatment systems exhaust treatment systems exhaust treatment systems - As discussed above, the combustion process may produce a complex mixture of air pollutants. These pollutants may exist in solid, liquid, and/or gaseous form. In general, the solid and liquid pollutants may fall into the three categories of soot, soluble organic fraction, and sulfates. The soot produced during combustion may include carbonaceous materials, and the soluble organic fraction may include unburned hydrocarbons that are deposited on or otherwise chemically combined with the soot. The sulfates produced in the combustion process may be formed from sulfur molecules contained within the fuel and may be released in the form of SO2. This SO2 may react with oxygen molecules contained within the exhaust flow to form SO3. As explained above, SO2 may also be converted into SO3 in the presence of, for example, platinum, palladium, and/or other rare earth metals used as catalyst materials in conventional catalysts. It is understood that the combustion process may also produce small amounts of SO3.
- In a conventional exhaust treatment system, a portion of the SO3 produced may be released to the atmosphere through an outlet of the exhaust system. The
exhaust treatment systems exhaust treatment systems exhaust treatment system 10 ofFIG. 1 will be referred to for the duration of the disclosure. - The
power source 12 may combust a mixture of fuel, recirculated exhaust gas, and ambient air to produce mechanical work and an exhaust flow containing the gaseous compounds discussed above. The exhaust flow may be directed, viaflow line 15, from thepower source 12 through theenergy extraction assembly 22. The hot exhaust flow may expand on the blades of theturbines 14 of theenergy extraction assembly 22, and this expansion may reduce the pressure of the exhaust flow while assisting in rotating the turbine blades. - The reduced pressure exhaust flow may pass through the
regeneration device 20 to thefilter 16. Theregeneration device 20 may be deactivated during the normal operation of thepower source 12. As the exhaust flow passes through thefilter 16, a portion of the particulate matter entrained with the exhaust flow may be captured by the substrate, mesh, and/or other structures within thefilter 16. - A portion of the filtered exhaust flow may be extracted downstream of the
filter 16 and upstream of thecatalyst 18. The extracted portion of the exhaust flow may enter therecirculation line 24 and may be recirculated back to thepower source 12. The remainder of the filtered exhaust flow may pass through thecatalyst 18. The catalyst materials contained within the catalyst may assist in oxidizing the hydrocarbons and soluble organic fraction carried by the filtered flow. After passing through thecatalyst 18, the remainder of the filtered exhaust flow may exit theexhaust treatment system 10 through anexhaust system outlet 17. - The embodiment of the
exhaust treatment system 10 illustrated inFIG. 1 may be preferable to conventional systems since, although theexhaust treatment system 10 contains aseparate catalyst 18, thecatalyst 18 is downstream of therecirculation line 24. As a result, any of the SO3 produced by the rare earth metals contained within thecatalyst 18 exits through theoutlet 17 and is not recirculated through theexhaust treatment system 10. It is understood, however, that since thecatalyst 18 is downstream of therecirculation line 24, a portion of the hydrocarbons produced during the combustion process may be recirculated back to thepower source 12. - In the exemplary embodiment illustrated in
FIG. 2 , thefilter 36 may contain small amounts of catalyst materials such as platinum. The catalyst materials may be disposed on a substrate of thefilter 36 and may substantially oxidize the hydrocarbons and soluble organic fraction contained within the exhaust flow. Such a configuration may result in the production of substantially less sulfate in the recirculated filtered exhaust flow than conventional exhaust treatment systems containing a separate catalyst upstream of a filter. - Referring again to
FIG. 1 , the recirculated portion of the exhaust flow may pass through theflow cooler 26. The flow cooler 26 may reduce the temperature of the portion of the exhaust flow before the portion enters theflow line 27. The mixingvalve 30 may be configured to regulate the ratio of recirculated exhaust flow to ambient inlet air passing throughflow line 27. As described above, theflow sensor 28 may assist in regulating this ratio. - The mixing
valve 30 may permit the ambient air/exhaust flow mixture to pass to thecompression assembly 32 where thecompressors 13 may increase the pressure of the flow, thereby increasing the temperature of the flow. The compressed flow may pass through theflow line 27 to theaftercooler 34, which may reduce the temperature of the flow before the flow enters theinlet 21 of thepower source 12. - Over time, soot produced by the combustion process may collect in the
filter 16 and may begin to impair the ability of thefilter 16 to store particulates. Theflow sensor 28 and other sensors (not shown) sense parameters of thepower source 12 and/or theexhaust treatment system 10. Such parameters may include, for example, engine speed, engine temperature, exhaust flow temperature, exhaust flow pressure, and particulate matter content. A controller (not shown) may use the information sent from the sensors in conjunction with an algorithm or other pre-set criteria to determine whether thefilter 16 has become saturated and is in need of regeneration. Once this saturation point has been reached, the controller may send appropriate signals to components of theexhaust treatment system 10 to begin the regeneration process. A preset algorithm stored in the controller may assist in this determination and may use the sensed parameters as inputs. Alternatively, regeneration may commence according to a set schedule based on fuel consumption, hours of operation, and/or other variables. - The signals sent by the controller may alter the position of the mixing
valve 30 to desirably alter the ratio of the ambient air/exhaust flow mixture. These signals may also activate theregeneration device 20. Upon activation, oxygen and a combustible substance, such as, for example, fuel may be directed to theregeneration device 20. Theregeneration device 20 may ignite the fuel and may increase the temperature of the exhaust flow passing to thefilter 16 to a desired temperature for regeneration. This temperature may be in excess of 700 degrees Celsius (approximately 1,292 degrees Fahrenheit) in some applications, depending on the type and size of thefilter 16. At these temperatures, soot contained within thefilter 16 may be burned away to restore the storage capabilities of thefilter 16. - Other embodiments of the disclosed
exhaust treatment system system filter 16. The sulfur trap may be useful in capturing sulfur molecules carried by the exhaust flow. It is intended that the specification and examples be considered as exemplary only, with the true scope of the invention being indicated by the following claims.
Claims (50)
1-29. (canceled)
30. An exhaust system of a power source, comprising:
a filter;
a regeneration device fluidly connected to the filter and disposed upstream of the filter; and
a ventilation line configured to assist in directing a flow of built-up exhaust from a crankcase of the power source to a port disposed upstream of the regeneration device.
31. The system of claim 30 , further including a valve fluidly connected to the ventilation line and configured to assist in controllably regulating the flow of built-up exhaust.
32. The system of claim 31 , wherein the valve is configured to substantially restrict a flow of fluid from entering the crankcase.
33. The system of claim 30 , wherein the flow of built-up exhaust is separate from a main exhaust flow of the power source.
34. The system of claim 33 , wherein the regeneration device is configured to assist in increasing the temperature of a combined flow of exhaust, the combined flow of exhaust including the flow of built-up exhaust and the main exhaust flow.
35. The system of claim 33 , wherein the ventilation line is configured to assist in combining the flow of built-up exhaust with the main exhaust flow of the power source upstream of the regeneration device.
36. The system of claim 33 , further including an energy extraction assembly disposed upstream of the regeneration device and configured to reduce a pressure of the main exhaust flow of the power source.
37. The system of claim 36 , wherein the ventilation line is configured to assist in combining the flow of built-up exhaust with the reduced pressure main exhaust flow of the power source.
38. The system of claim 30 , further including a recirculation line configured to assist in directing a portion of a filtered flow of exhaust from an outlet of the filter to an inlet of the power source.
39. The system of claim 38 , wherein the portion of the filtered flow of exhaust includes a portion of a main exhaust flow of the power source and a portion of the flow of built-up exhaust.
40. The system of claim 30 , wherein the regeneration device is configured to ignite a combustible substance to assist in increasing a temperature of a main exhaust flow of the power source and the flow of built-up exhaust.
41. The system of claim 30 , further including a supply line configured to assist in directing a flow comprising recirculated exhaust and ambient air to the regeneration device.
42. The system of claim 30 , further including a catalyst disposed downstream of the filter.
43. The system of claim 42 , further including a recirculation line fluidly connected between the filter and the catalyst, the recirculation line being configured to assist in directing a portion of a filtered flow of exhaust from an outlet of the filter to an inlet of the power source.
44. The system of claim 30 , wherein the filter contains a catalyst material.
45. The system of claim 44 , wherein the catalyst material is a precious metal.
46. An exhaust system of a power source, comprising:
a filter configured to receive a first exhaust flow of the power source;
a substrate disposed within the filter, a catalyst material being disposed on a portion of the substrate; and
a ventilation line configured to assist in directing a second exhaust flow of the power source from a crankcase of the power source to a port disposed upstream of the filter.
47. The system of claim 46 , further including a valve fluidly connected to the ventilation line and configured to assist in controllably regulating the second exhaust flow.
48. The system of claim 47 , wherein the valve is configured to substantially restrict a flow of fluid from entering the crankcase.
49. The system of claim 46 , wherein the ventilation line is configured to assist in combining the first exhaust flow with the second exhaust flow upstream of the filter.
50. The system of claim 46 , further including an energy extraction assembly disposed upstream of the filter and configured to reduce a pressure of the first exhaust flow.
51. The system of claim 50 , wherein the ventilation line is configured to assist in combining the second exhaust flow with the first exhaust flow downstream of the energy extraction assembly.
52. The system of claim 46 , further including an exhaust line configured to assist in directing a portion of a filtered flow of exhaust from the filter to the power source.
53. The system of claim 52 , wherein the portion of the filtered flow of exhaust includes a portion of the first exhaust flow and a portion of the second exhaust flow.
54. The system of claim 46 , further including a regeneration device configured to assist in increasing a temperature of the first exhaust flow and the second exhaust flow.
55. The system of claim 54 , further including a supply line configured to assist in directing a flow comprising recirculated exhaust and ambient air to the regeneration device.
56. The system of claim 46 , wherein the catalyst material is a precious metal.
57. The system of claim 46 , wherein the catalyst material is configured to assist in at least one of collecting, absorbing, adsorbing, and storing at least one of hydrocarbons, oxides of sulfur, and oxides of nitrogen contained in the second exhaust flow.
58. A method of reducing pressure within a crankcase of a power source, comprising:
providing a filter fluidly connected to the power source;
providing a regeneration device fluidly connected to the filter and disposed upstream of the filter; and
directing a flow of built-up exhaust from the crankcase of the power source to a port disposed upstream of the regeneration device.
59. The method of claim 58 , further including substantially restricting a flow of fluid from entering the crankcase.
60. The method of claim 58 , further including increasing a temperature of a combined flow of exhaust, the combined flow of exhaust including the flow of built-up exhaust and a main exhaust flow of the power source.
61. The method of claim 58 , further including combining the flow of built-up exhaust with a main exhaust flow of the power source upstream of the regeneration device.
62. The method of claim 58 , further including reducing a pressure of a main exhaust flow of the power source.
63. The method of claim 62 , further including combining the flow of built-up exhaust with the reduced pressure main exhaust flow of the power source.
64. The method of claim 58 , further including directing a portion of a filtered flow of exhaust from the filter to the power source.
65. The method of claim 64 , wherein the portion of the filtered flow of exhaust includes a portion of a main exhaust flow of the power source and a portion of the flow of built-up exhaust.
66. The method of claim 58 , further including directing a flow comprising recirculated exhaust and ambient air to the regeneration device.
67. A method of reducing pressure within a crankcase of a power source, comprising:
capturing an exhaust gas of the power source within the crankcase;
releasing a portion of the captured exhaust gas; and
treating at least a portion of the released exhaust gas with a particulate filter and a regeneration device.
68. The method of claim 67 , wherein treating at least a portion of the released exhaust gas includes contacting the portion of the released exhaust gas with a catalyst material.
69. The method of claim 68 , wherein contacting the portion of the released exhaust gas with the catalyst material includes placing the portion of the released exhaust gas in contact with a substrate of the particulate filter.
70. The method of claim 68 , wherein contacting the portion of the released exhaust gas with the catalyst material includes placing the portion of the released exhaust gas in contact with a catalyst fluidly connected downstream of the particulate filter.
71. The method of claim 68 , wherein the catalyst material includes precious earth metals.
72. The method of claim 67 , further including combining the released exhaust gas with a separate exhaust flow of the power source to form a combined flow.
73. The method of claim 72 , further including directing the combined flow to a port disposed upstream of the particulate filter.
74. The method of claim 72 , further including directing a portion of the combined flow to an inlet of the power source.
75. The method of claim 72 , further including directing the combined flow to a port disposed upstream of the regeneration device.
76. The method of claim 67 , wherein treating at least a portion of the released exhaust gas includes removing particulates from the portion with the particulate filter.
77. The method of claim 67 , wherein treating at least a portion of the released exhaust gas includes at least one of collecting, absorbing, adsorbing, and storing at least one of hydrocarbons, oxides of sulfur, and oxides of nitrogen contained in the portion of the released exhaust gas.
78. The method of claim 67 , wherein treating at least a portion of the released exhaust gas includes increasing a temperature of the portion with the regeneration device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/511,393 US20060288692A1 (en) | 2005-06-15 | 2006-08-29 | Exhaust treatment system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/152,069 US7107764B1 (en) | 2005-06-15 | 2005-06-15 | Exhaust treatment system |
US11/511,393 US20060288692A1 (en) | 2005-06-15 | 2006-08-29 | Exhaust treatment system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/152,069 Continuation US7107764B1 (en) | 2005-06-15 | 2005-06-15 | Exhaust treatment system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060288692A1 true US20060288692A1 (en) | 2006-12-28 |
Family
ID=36974314
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/152,069 Expired - Fee Related US7107764B1 (en) | 2005-06-15 | 2005-06-15 | Exhaust treatment system |
US11/511,393 Abandoned US20060288692A1 (en) | 2005-06-15 | 2006-08-29 | Exhaust treatment system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/152,069 Expired - Fee Related US7107764B1 (en) | 2005-06-15 | 2005-06-15 | Exhaust treatment system |
Country Status (3)
Country | Link |
---|---|
US (2) | US7107764B1 (en) |
CN (1) | CN1880736A (en) |
DE (1) | DE102006021834A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090164085A1 (en) * | 2007-12-20 | 2009-06-25 | Detroit Diesel Corporation | Method to operate vehicle with internal combustion engine and exhaust aftertreatment system according to detected drive cycles |
US20100083638A1 (en) * | 2008-10-07 | 2010-04-08 | James Joshua Driscoll | Exhaust system having sulfur removing device |
US9689354B1 (en) * | 2016-01-19 | 2017-06-27 | Ford Global Technologies, Llc | Engine exhaust gas recirculation system with at least one exhaust recirculation treatment device |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070044472A1 (en) * | 2005-09-01 | 2007-03-01 | Guoqing Zhang | Oxygen sensor for an internal combustion engine |
US7490462B2 (en) * | 2006-02-21 | 2009-02-17 | Caterpillar Inc. | Turbocharged exhaust gas recirculation system |
JP2007231918A (en) * | 2006-03-03 | 2007-09-13 | Toyota Motor Corp | Exhaust emission control device for compression ignition type internal combustion engine |
US7536853B2 (en) * | 2006-06-19 | 2009-05-26 | International Truck Intellectual Property Company, Llc | Heating system for a vehicle having an exhaust system |
JP4265667B2 (en) * | 2007-02-23 | 2009-05-20 | トヨタ自動車株式会社 | Exhaust system for internal combustion engine |
US20100319323A1 (en) * | 2007-04-07 | 2010-12-23 | Mi Yan | Engine aftertreatment system with exhaust lambda control |
US8151558B2 (en) * | 2008-01-31 | 2012-04-10 | Caterpillar Inc. | Exhaust system implementing SCR and EGR |
US9291079B2 (en) | 2008-04-05 | 2016-03-22 | Mi Yan | Engine aftertreatment system with exhaust lambda control |
US8082730B2 (en) | 2008-05-20 | 2011-12-27 | Caterpillar Inc. | Engine system having particulate reduction device and method |
US8528323B2 (en) * | 2010-06-30 | 2013-09-10 | GM Global Technology Operations LLC | System and method for particulate matter filter regeneration using a catalytic converter as a combustor |
DE102010050413A1 (en) * | 2010-11-04 | 2012-05-10 | Daimler Ag | Motor vehicle internal combustion engine with exhaust gas recirculation |
WO2013055363A1 (en) * | 2011-10-14 | 2013-04-18 | International Engine Intellectual Property Company, Llc | Egr condensate drain mechanism and method |
DE102012004368A1 (en) * | 2012-03-02 | 2013-09-05 | Daimler Ag | Internal combustion engine, particularly diesel engine for motor vehicles, has fresh-air system, in which air intercooler is arranged for supplying fresh air to internal combustion engine and turbocharger with compressor and turbine |
US9266092B2 (en) | 2013-01-24 | 2016-02-23 | Basf Corporation | Automotive catalyst composites having a two-metal layer |
Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3050376A (en) * | 1958-02-06 | 1962-08-21 | Gen Motors Corp | Apparatus for disposal of carburetor and crankcase fumes |
US3470689A (en) * | 1967-08-29 | 1969-10-07 | Frank K Gurr | Exhaust gas burner and muffler |
US3647394A (en) * | 1970-02-20 | 1972-03-07 | North American Rockwell | Muffler device for removing impurities |
US3765386A (en) * | 1971-06-16 | 1973-10-16 | F Ottofy | Anti-pollution device for and method of removing oil from air vented from the crankcase of an internal combustion engine and returning the oil to the crankcase |
US3769798A (en) * | 1972-03-22 | 1973-11-06 | H Whittaker | Anti-pollution exhaust system for an internal combustion engine |
US3844260A (en) * | 1972-11-01 | 1974-10-29 | Stp Corp | Exhaust gas recirculating valve |
US3864980A (en) * | 1972-07-24 | 1975-02-11 | Cecil R Barnes | Apparatus for balancing tire and wheel assemblies |
US3903858A (en) * | 1973-04-23 | 1975-09-09 | Stearns C Wayne | Crankcase fumes treatment |
US4011846A (en) * | 1975-03-24 | 1977-03-15 | Did-Mor Engineering And Manufacturing Co. | Anti-pollution device |
US4092962A (en) * | 1974-09-23 | 1978-06-06 | Steven P. Corrigan | Precarburetor ignition system |
US4136650A (en) * | 1977-03-02 | 1979-01-30 | Manookian Jr Arman | Crankcase oil vapor recovery system |
US4211075A (en) * | 1978-10-19 | 1980-07-08 | General Motors Corporation | Diesel engine exhaust particulate filter with intake throttling incineration control |
US4270508A (en) * | 1979-10-12 | 1981-06-02 | U.S.A. 161 Developments Ltd. | Combustion control system |
US4363310A (en) * | 1980-07-03 | 1982-12-14 | General Motors Corporation | Diesel engine with blowby scavenging |
US4512325A (en) * | 1984-03-12 | 1985-04-23 | Depakh Stephan | Emission control device |
US4517951A (en) * | 1982-08-31 | 1985-05-21 | Honda Giken Kogyo Kabushiki Kaisha | Intake manifold apparatus in multi-cylinder engine |
US4535588A (en) * | 1979-06-12 | 1985-08-20 | Nippon Soken, Inc. | Carbon particulates cleaning device for diesel engine |
US4557226A (en) * | 1983-11-14 | 1985-12-10 | Bbc Brown, Boveri & Company, Limited | Device for returning the blow-by rate from the crankcase into the system of a supercharged internal combustion engine |
US4558681A (en) * | 1984-05-17 | 1985-12-17 | Caterpillar Tractor Co. | Exhaust gas and blow-by recirculation system for an internal combustion engine |
US4570603A (en) * | 1983-09-01 | 1986-02-18 | Roberto Piedrafita | Apparatus for improving gasoline consumption, power and reducing emission pollutants of internal combustion engines |
US4608640A (en) * | 1983-01-10 | 1986-08-26 | Nissan Motor Company, Limited | Trap regenerative device control apparatus |
US4616620A (en) * | 1983-11-14 | 1986-10-14 | Paoluccio John A | Contamination control apparatus |
US4811697A (en) * | 1985-09-24 | 1989-03-14 | Yamaha Hatsudoki Kabushiki Kaisha | Induction system with E.G.R. |
US5027783A (en) * | 1990-10-17 | 1991-07-02 | Von Riesen Clark W | Carburetor for an internal combustion engine |
US5085049A (en) * | 1990-07-09 | 1992-02-04 | Rim Julius J | Diesel engine exhaust filtration system and method |
US5205265A (en) * | 1991-03-28 | 1993-04-27 | Mazda Motor Corporation | Exhaust gas recirculation system |
US5251564A (en) * | 1990-04-26 | 1993-10-12 | Rim Julius J | Combustion box exhaust filtration system and method |
US5390492A (en) * | 1992-02-21 | 1995-02-21 | Northeastern University | Flow-through particulate incineration system coupled to an aerodynamically regenerated particulate trap for diesel engine exhaust gas |
US5417184A (en) * | 1992-09-21 | 1995-05-23 | Mcdowell; Alex R. | Oil/air separator and method thereof |
US5494020A (en) * | 1994-11-25 | 1996-02-27 | Meng; Frank | Apparatus for recycling the exhaust gas of an engine crankcase |
US5582145A (en) * | 1995-05-11 | 1996-12-10 | Ishikawajima-Shibaura Machinery Co., Ltd. | Four-stroke-cycle engine |
US5803025A (en) * | 1996-12-13 | 1998-09-08 | Caterpillar Inc. | Blowby disposal system |
US5806308A (en) * | 1997-07-07 | 1998-09-15 | Southwest Research Institute | Exhaust gas recirculation system for simultaneously reducing NOx and particulate matter |
US5826428A (en) * | 1995-02-09 | 1998-10-27 | J. Eberspacher Gmbh & Co. | Burner for the thermal regeneration of a particle filter in an exhaust gas aftertreatment system of an internal combustion engine, especially a diesel engine |
US5860396A (en) * | 1997-09-11 | 1999-01-19 | Muth; George R. | Engine blow-by oil reservoir |
US5927075A (en) * | 1997-06-06 | 1999-07-27 | Turbodyne Systems, Inc. | Method and apparatus for exhaust gas recirculation control and power augmentation in an internal combustion engine |
US5941219A (en) * | 1996-08-15 | 1999-08-24 | Takebe; Masayuki | Method and apparatus for cleaning exhaust gas by alpha-decay |
US5950420A (en) * | 1996-08-24 | 1999-09-14 | Volkswagen Ag | Method and arrangement for controlling exhaust emissions from an internal combustion engine |
US6129058A (en) * | 1997-09-11 | 2000-10-10 | Muth; George R. | Engine blow-by oil reservoir |
US6155213A (en) * | 1998-08-24 | 2000-12-05 | Tanis; Peter G. | Internal combustion engine ventilation apparatus and method |
US6247463B1 (en) * | 1999-09-01 | 2001-06-19 | Nelson Industries, Inc. | Diesel engine crankcase ventilation filter |
US6276130B1 (en) * | 1999-02-02 | 2001-08-21 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
US6304815B1 (en) * | 2000-03-29 | 2001-10-16 | Ford Global Technologies, Inc. | Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems |
US6314722B1 (en) * | 1999-10-06 | 2001-11-13 | Matros Technologies, Inc. | Method and apparatus for emission control |
US6338245B1 (en) * | 1999-09-17 | 2002-01-15 | Hino Motors, Ltd. | Internal combustion engine |
US6345614B1 (en) * | 2000-12-27 | 2002-02-12 | Detroit Diesel Corporation | Separator and oil trap for closed crankcase ventilator systems |
US6354283B1 (en) * | 2000-08-29 | 2002-03-12 | Fleetguard, Inc. | Diesel engine modular crankcase ventilation filter |
US6412276B1 (en) * | 1999-04-06 | 2002-07-02 | Peugeot Citroen Automobiles Sa | Regeneration system for a diesel engine exhaust gas particulate filter |
US6427436B1 (en) * | 1997-08-13 | 2002-08-06 | Johnson Matthey Public Limited Company | Emissions control |
US6439174B1 (en) * | 2001-02-02 | 2002-08-27 | General Electric Company | Crankcase ventilation system |
US6457462B2 (en) * | 2000-01-26 | 2002-10-01 | Volvo Personvagnar Ab | Combined crankcase and canister ventilation system |
US6478019B2 (en) * | 1999-09-01 | 2002-11-12 | Nelson Industries, Inc. | Flat low profile diesel engine crankcase ventilation filter |
US6527821B2 (en) * | 1998-11-25 | 2003-03-04 | Msp Corporation | Automatic condensed oil remover |
US6530366B2 (en) * | 2000-08-07 | 2003-03-11 | Filterwerk Mann & Hummel Gmbh | Apparatus for gas recirculation in an internal combustion engine |
US6553978B2 (en) * | 2000-06-30 | 2003-04-29 | Honda Giken Kogyo Kabushiki Kaisha | Air pollution preventing device in internal combustion engine |
US20030084661A1 (en) * | 2001-11-02 | 2003-05-08 | Ford Global Technologies, Inc. | Method to increase temperature in an exhaust aftertreatment device coupled to a camless engine |
US6574956B1 (en) * | 2000-11-03 | 2003-06-10 | Ford Global Technologies, Llc | Apparatus and method for interrupting regeneration of a particulate filter in a diesel engine |
US6588201B2 (en) * | 2000-07-05 | 2003-07-08 | Gillespie Gavin Mckinley | Crankcase ventilation system |
US6598396B2 (en) * | 2001-11-16 | 2003-07-29 | Caterpillar Inc | Internal combustion engine EGR system utilizing stationary regenerators in a piston pumped boost cooled arrangement |
US20030140622A1 (en) * | 2002-01-25 | 2003-07-31 | William Taylor | Combination emission abatement assembly and method of operating the same |
US20030140621A1 (en) * | 1999-06-23 | 2003-07-31 | Southwest Research Institute | Integrated method for controlling diesel engine emissions in CRT-LNT system |
US6625978B1 (en) * | 1998-12-07 | 2003-09-30 | Ingemar Eriksson | Filter for EGR system heated by an enclosing catalyst |
US6644020B2 (en) * | 2001-09-25 | 2003-11-11 | Ford Global Technologies, Llc | Device and method for regenerating an exhaust gas aftertreatment device |
US6647973B1 (en) * | 2002-06-11 | 2003-11-18 | General Motors Corporation | Two-stage filtration assembly for a diesel engine crankcase ventilation system |
US6651432B1 (en) * | 2002-08-08 | 2003-11-25 | The United States Of America As Represented By The Administrator Of The Environmental Protection Agency | Controlled temperature combustion engine |
US6691687B1 (en) * | 2002-12-19 | 2004-02-17 | Caterpillar Inc | Crankcase blow-by filtration system |
US6694957B2 (en) * | 2002-05-15 | 2004-02-24 | General Motors Corporation | Multi-orifice nozzle air evacuator assembly for a ventilation system of a diesel engine |
US20040050375A1 (en) * | 2002-08-21 | 2004-03-18 | Arnold Steven Don | Dual path EGR system and methods |
US6729316B1 (en) * | 2002-10-12 | 2004-05-04 | Vortex Automotive Corporation | Method and apparatus for treating crankcase emissions |
US6738702B2 (en) * | 2002-08-29 | 2004-05-18 | Ford Global Technologies, Llc | Method for particulate filter regeneration in vehicles having an automatically controlled transmission |
US6742335B2 (en) * | 2002-07-11 | 2004-06-01 | Clean Air Power, Inc. | EGR control system and method for an internal combustion engine |
US20040133335A1 (en) * | 2002-12-20 | 2004-07-08 | Isuzu Motors Limited | Fuel injection control device |
US20040139734A1 (en) * | 2002-08-23 | 2004-07-22 | Schmeichel Steve D. | Apparatus for emissions control, system, and methods |
US20040144087A1 (en) * | 2003-01-16 | 2004-07-29 | Nissan Motor Co., Ltd. | Regeneration of diesel particulate filter |
US20040144086A1 (en) * | 2003-01-28 | 2004-07-29 | Nissan Motor Co., Ltd. | Exhaust gas purifying system for internal combustion engine |
US20040204818A1 (en) * | 2003-04-11 | 2004-10-14 | Dominic Trudell | Computer algorithm to estimate particulate filter regeneration rates |
US6816771B2 (en) * | 2002-03-29 | 2004-11-09 | Nissan Motor Co., Ltd. | Intake air control system and method for an internal combustion engine |
US20040231328A1 (en) * | 2001-08-06 | 2004-11-25 | Otmar Reider | Method for adjusting an internal combustion engine with exhaust gas recirculation and device for carrying out said method |
US20040260452A1 (en) * | 2002-08-09 | 2004-12-23 | Toshihiro Hamahata | Filter control method and device |
US20050000497A1 (en) * | 2003-07-02 | 2005-01-06 | Mazda Motor Corporation | EGR control apparatus for engine |
US20050027431A1 (en) * | 2003-07-30 | 2005-02-03 | Nissan Motor Co., Ltd. | Combustion control system of internal combustion engine |
US6851415B2 (en) * | 2001-07-16 | 2005-02-08 | Budhadeb Mahakul | System for exhaust/crankcase gas recirculation |
US6857263B2 (en) * | 2002-08-08 | 2005-02-22 | The United States Of America As Represented By The Administrator Of The Environmental Protection Agency | Low emission diesel combustion system with low charge-air oxygen concentration levels and high fuel injection pressures |
US20050056017A1 (en) * | 2003-09-16 | 2005-03-17 | Detroit Diesel Corporation | Turbocharged internal combustion engine with EGR flow |
US20050102076A1 (en) * | 2003-11-10 | 2005-05-12 | Denso Corporation | Exhaust temperature sensor malfunction detection apparatus |
US6893715B2 (en) * | 2002-05-20 | 2005-05-17 | Mitsui Chemicals, Inc. | Resin compositions for sealants and films |
US20050109015A1 (en) * | 2003-11-25 | 2005-05-26 | Birkby Nicholas J. | Internal combustion engine exhaust system |
US20050120712A1 (en) * | 2003-12-08 | 2005-06-09 | Nissan Motor Co., Ltd. | Regeneration control of diesel particulate filter |
US6907869B2 (en) * | 2003-01-17 | 2005-06-21 | Parker-Hannifin Corporation | Filter element and assembly with continuous drain |
US6925994B2 (en) * | 2003-06-03 | 2005-08-09 | Richard G. Michel | Regulated engine crankcase gas filter |
US6966310B2 (en) * | 2000-05-05 | 2005-11-22 | Volvo Personvagnar Ab | Method and device for ventilation of gases in a combustion engine |
US6994078B2 (en) * | 2004-01-28 | 2006-02-07 | New Condensator, Inc. | Apparatus for removing contaminants from crankcase emissions |
US20060064966A1 (en) * | 2004-09-29 | 2006-03-30 | Caterpillar Inc. | Crankcase ventilation system |
US20060213187A1 (en) * | 2003-02-12 | 2006-09-28 | Joachim Kupe | System and method of nox abatement |
US20070084194A1 (en) * | 2005-10-13 | 2007-04-19 | Thomas Holm | Crankcase ventilation system |
US7213394B2 (en) * | 2005-01-27 | 2007-05-08 | Cummins Inc. | Engine blowby injector and injection system and method for injecting blowby |
US7260468B2 (en) * | 2005-07-29 | 2007-08-21 | Caterpillar Inc | Control strategy for an internal combustion engine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6981370B2 (en) * | 2002-12-03 | 2006-01-03 | Caterpillar Inc | Method and apparatus for PM filter regeneration |
-
2005
- 2005-06-15 US US11/152,069 patent/US7107764B1/en not_active Expired - Fee Related
-
2006
- 2006-05-10 DE DE102006021834A patent/DE102006021834A1/en not_active Withdrawn
- 2006-06-14 CN CNA2006100913797A patent/CN1880736A/en active Pending
- 2006-08-29 US US11/511,393 patent/US20060288692A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3050376A (en) * | 1958-02-06 | 1962-08-21 | Gen Motors Corp | Apparatus for disposal of carburetor and crankcase fumes |
US3470689A (en) * | 1967-08-29 | 1969-10-07 | Frank K Gurr | Exhaust gas burner and muffler |
US3647394A (en) * | 1970-02-20 | 1972-03-07 | North American Rockwell | Muffler device for removing impurities |
US3765386A (en) * | 1971-06-16 | 1973-10-16 | F Ottofy | Anti-pollution device for and method of removing oil from air vented from the crankcase of an internal combustion engine and returning the oil to the crankcase |
US3769798A (en) * | 1972-03-22 | 1973-11-06 | H Whittaker | Anti-pollution exhaust system for an internal combustion engine |
US3864980A (en) * | 1972-07-24 | 1975-02-11 | Cecil R Barnes | Apparatus for balancing tire and wheel assemblies |
US3844260A (en) * | 1972-11-01 | 1974-10-29 | Stp Corp | Exhaust gas recirculating valve |
US3903858A (en) * | 1973-04-23 | 1975-09-09 | Stearns C Wayne | Crankcase fumes treatment |
US4092962A (en) * | 1974-09-23 | 1978-06-06 | Steven P. Corrigan | Precarburetor ignition system |
US4011846A (en) * | 1975-03-24 | 1977-03-15 | Did-Mor Engineering And Manufacturing Co. | Anti-pollution device |
US4136650A (en) * | 1977-03-02 | 1979-01-30 | Manookian Jr Arman | Crankcase oil vapor recovery system |
US4211075A (en) * | 1978-10-19 | 1980-07-08 | General Motors Corporation | Diesel engine exhaust particulate filter with intake throttling incineration control |
US4535588A (en) * | 1979-06-12 | 1985-08-20 | Nippon Soken, Inc. | Carbon particulates cleaning device for diesel engine |
US4270508A (en) * | 1979-10-12 | 1981-06-02 | U.S.A. 161 Developments Ltd. | Combustion control system |
US4363310A (en) * | 1980-07-03 | 1982-12-14 | General Motors Corporation | Diesel engine with blowby scavenging |
US4517951A (en) * | 1982-08-31 | 1985-05-21 | Honda Giken Kogyo Kabushiki Kaisha | Intake manifold apparatus in multi-cylinder engine |
US4608640A (en) * | 1983-01-10 | 1986-08-26 | Nissan Motor Company, Limited | Trap regenerative device control apparatus |
US4570603A (en) * | 1983-09-01 | 1986-02-18 | Roberto Piedrafita | Apparatus for improving gasoline consumption, power and reducing emission pollutants of internal combustion engines |
US4557226A (en) * | 1983-11-14 | 1985-12-10 | Bbc Brown, Boveri & Company, Limited | Device for returning the blow-by rate from the crankcase into the system of a supercharged internal combustion engine |
US4616620A (en) * | 1983-11-14 | 1986-10-14 | Paoluccio John A | Contamination control apparatus |
US4512325A (en) * | 1984-03-12 | 1985-04-23 | Depakh Stephan | Emission control device |
US4558681A (en) * | 1984-05-17 | 1985-12-17 | Caterpillar Tractor Co. | Exhaust gas and blow-by recirculation system for an internal combustion engine |
US4811697A (en) * | 1985-09-24 | 1989-03-14 | Yamaha Hatsudoki Kabushiki Kaisha | Induction system with E.G.R. |
US5251564A (en) * | 1990-04-26 | 1993-10-12 | Rim Julius J | Combustion box exhaust filtration system and method |
US5085049A (en) * | 1990-07-09 | 1992-02-04 | Rim Julius J | Diesel engine exhaust filtration system and method |
US5027783A (en) * | 1990-10-17 | 1991-07-02 | Von Riesen Clark W | Carburetor for an internal combustion engine |
US5205265A (en) * | 1991-03-28 | 1993-04-27 | Mazda Motor Corporation | Exhaust gas recirculation system |
US5390492A (en) * | 1992-02-21 | 1995-02-21 | Northeastern University | Flow-through particulate incineration system coupled to an aerodynamically regenerated particulate trap for diesel engine exhaust gas |
US5417184A (en) * | 1992-09-21 | 1995-05-23 | Mcdowell; Alex R. | Oil/air separator and method thereof |
US5494020A (en) * | 1994-11-25 | 1996-02-27 | Meng; Frank | Apparatus for recycling the exhaust gas of an engine crankcase |
US5826428A (en) * | 1995-02-09 | 1998-10-27 | J. Eberspacher Gmbh & Co. | Burner for the thermal regeneration of a particle filter in an exhaust gas aftertreatment system of an internal combustion engine, especially a diesel engine |
US5582145A (en) * | 1995-05-11 | 1996-12-10 | Ishikawajima-Shibaura Machinery Co., Ltd. | Four-stroke-cycle engine |
US5941219A (en) * | 1996-08-15 | 1999-08-24 | Takebe; Masayuki | Method and apparatus for cleaning exhaust gas by alpha-decay |
US5950420A (en) * | 1996-08-24 | 1999-09-14 | Volkswagen Ag | Method and arrangement for controlling exhaust emissions from an internal combustion engine |
US5803025A (en) * | 1996-12-13 | 1998-09-08 | Caterpillar Inc. | Blowby disposal system |
US5927075A (en) * | 1997-06-06 | 1999-07-27 | Turbodyne Systems, Inc. | Method and apparatus for exhaust gas recirculation control and power augmentation in an internal combustion engine |
US5806308A (en) * | 1997-07-07 | 1998-09-15 | Southwest Research Institute | Exhaust gas recirculation system for simultaneously reducing NOx and particulate matter |
US6427436B1 (en) * | 1997-08-13 | 2002-08-06 | Johnson Matthey Public Limited Company | Emissions control |
US5860396A (en) * | 1997-09-11 | 1999-01-19 | Muth; George R. | Engine blow-by oil reservoir |
US6129058A (en) * | 1997-09-11 | 2000-10-10 | Muth; George R. | Engine blow-by oil reservoir |
US6155213A (en) * | 1998-08-24 | 2000-12-05 | Tanis; Peter G. | Internal combustion engine ventilation apparatus and method |
US6527821B2 (en) * | 1998-11-25 | 2003-03-04 | Msp Corporation | Automatic condensed oil remover |
US6625978B1 (en) * | 1998-12-07 | 2003-09-30 | Ingemar Eriksson | Filter for EGR system heated by an enclosing catalyst |
US6276130B1 (en) * | 1999-02-02 | 2001-08-21 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine |
US6412276B1 (en) * | 1999-04-06 | 2002-07-02 | Peugeot Citroen Automobiles Sa | Regeneration system for a diesel engine exhaust gas particulate filter |
US6718757B2 (en) * | 1999-06-23 | 2004-04-13 | Southwest Research Institute | Integrated method for controlling diesel engine emissions in CRT-LNT system |
US20030140621A1 (en) * | 1999-06-23 | 2003-07-31 | Southwest Research Institute | Integrated method for controlling diesel engine emissions in CRT-LNT system |
US6478019B2 (en) * | 1999-09-01 | 2002-11-12 | Nelson Industries, Inc. | Flat low profile diesel engine crankcase ventilation filter |
US6247463B1 (en) * | 1999-09-01 | 2001-06-19 | Nelson Industries, Inc. | Diesel engine crankcase ventilation filter |
US6338245B1 (en) * | 1999-09-17 | 2002-01-15 | Hino Motors, Ltd. | Internal combustion engine |
US6314722B1 (en) * | 1999-10-06 | 2001-11-13 | Matros Technologies, Inc. | Method and apparatus for emission control |
US6457462B2 (en) * | 2000-01-26 | 2002-10-01 | Volvo Personvagnar Ab | Combined crankcase and canister ventilation system |
US6304815B1 (en) * | 2000-03-29 | 2001-10-16 | Ford Global Technologies, Inc. | Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems |
US6966310B2 (en) * | 2000-05-05 | 2005-11-22 | Volvo Personvagnar Ab | Method and device for ventilation of gases in a combustion engine |
US6553978B2 (en) * | 2000-06-30 | 2003-04-29 | Honda Giken Kogyo Kabushiki Kaisha | Air pollution preventing device in internal combustion engine |
US6588201B2 (en) * | 2000-07-05 | 2003-07-08 | Gillespie Gavin Mckinley | Crankcase ventilation system |
US6530366B2 (en) * | 2000-08-07 | 2003-03-11 | Filterwerk Mann & Hummel Gmbh | Apparatus for gas recirculation in an internal combustion engine |
US6354283B1 (en) * | 2000-08-29 | 2002-03-12 | Fleetguard, Inc. | Diesel engine modular crankcase ventilation filter |
US6574956B1 (en) * | 2000-11-03 | 2003-06-10 | Ford Global Technologies, Llc | Apparatus and method for interrupting regeneration of a particulate filter in a diesel engine |
US6345614B1 (en) * | 2000-12-27 | 2002-02-12 | Detroit Diesel Corporation | Separator and oil trap for closed crankcase ventilator systems |
US6439174B1 (en) * | 2001-02-02 | 2002-08-27 | General Electric Company | Crankcase ventilation system |
US6851415B2 (en) * | 2001-07-16 | 2005-02-08 | Budhadeb Mahakul | System for exhaust/crankcase gas recirculation |
US20040231328A1 (en) * | 2001-08-06 | 2004-11-25 | Otmar Reider | Method for adjusting an internal combustion engine with exhaust gas recirculation and device for carrying out said method |
US6644020B2 (en) * | 2001-09-25 | 2003-11-11 | Ford Global Technologies, Llc | Device and method for regenerating an exhaust gas aftertreatment device |
US20030084661A1 (en) * | 2001-11-02 | 2003-05-08 | Ford Global Technologies, Inc. | Method to increase temperature in an exhaust aftertreatment device coupled to a camless engine |
US6598396B2 (en) * | 2001-11-16 | 2003-07-29 | Caterpillar Inc | Internal combustion engine EGR system utilizing stationary regenerators in a piston pumped boost cooled arrangement |
US20030140622A1 (en) * | 2002-01-25 | 2003-07-31 | William Taylor | Combination emission abatement assembly and method of operating the same |
US6816771B2 (en) * | 2002-03-29 | 2004-11-09 | Nissan Motor Co., Ltd. | Intake air control system and method for an internal combustion engine |
US6694957B2 (en) * | 2002-05-15 | 2004-02-24 | General Motors Corporation | Multi-orifice nozzle air evacuator assembly for a ventilation system of a diesel engine |
US6893715B2 (en) * | 2002-05-20 | 2005-05-17 | Mitsui Chemicals, Inc. | Resin compositions for sealants and films |
US6647973B1 (en) * | 2002-06-11 | 2003-11-18 | General Motors Corporation | Two-stage filtration assembly for a diesel engine crankcase ventilation system |
US6742335B2 (en) * | 2002-07-11 | 2004-06-01 | Clean Air Power, Inc. | EGR control system and method for an internal combustion engine |
US6857263B2 (en) * | 2002-08-08 | 2005-02-22 | The United States Of America As Represented By The Administrator Of The Environmental Protection Agency | Low emission diesel combustion system with low charge-air oxygen concentration levels and high fuel injection pressures |
US6651432B1 (en) * | 2002-08-08 | 2003-11-25 | The United States Of America As Represented By The Administrator Of The Environmental Protection Agency | Controlled temperature combustion engine |
US20040260452A1 (en) * | 2002-08-09 | 2004-12-23 | Toshihiro Hamahata | Filter control method and device |
US20040050375A1 (en) * | 2002-08-21 | 2004-03-18 | Arnold Steven Don | Dual path EGR system and methods |
US20040139734A1 (en) * | 2002-08-23 | 2004-07-22 | Schmeichel Steve D. | Apparatus for emissions control, system, and methods |
US6738702B2 (en) * | 2002-08-29 | 2004-05-18 | Ford Global Technologies, Llc | Method for particulate filter regeneration in vehicles having an automatically controlled transmission |
US6729316B1 (en) * | 2002-10-12 | 2004-05-04 | Vortex Automotive Corporation | Method and apparatus for treating crankcase emissions |
US6691687B1 (en) * | 2002-12-19 | 2004-02-17 | Caterpillar Inc | Crankcase blow-by filtration system |
US20040133335A1 (en) * | 2002-12-20 | 2004-07-08 | Isuzu Motors Limited | Fuel injection control device |
US6898508B2 (en) * | 2002-12-20 | 2005-05-24 | Isuzu Motors Limited | Fuel injection control device |
US20040144087A1 (en) * | 2003-01-16 | 2004-07-29 | Nissan Motor Co., Ltd. | Regeneration of diesel particulate filter |
US6907869B2 (en) * | 2003-01-17 | 2005-06-21 | Parker-Hannifin Corporation | Filter element and assembly with continuous drain |
US20040144086A1 (en) * | 2003-01-28 | 2004-07-29 | Nissan Motor Co., Ltd. | Exhaust gas purifying system for internal combustion engine |
US20060213187A1 (en) * | 2003-02-12 | 2006-09-28 | Joachim Kupe | System and method of nox abatement |
US20040204818A1 (en) * | 2003-04-11 | 2004-10-14 | Dominic Trudell | Computer algorithm to estimate particulate filter regeneration rates |
US6925994B2 (en) * | 2003-06-03 | 2005-08-09 | Richard G. Michel | Regulated engine crankcase gas filter |
US20050000497A1 (en) * | 2003-07-02 | 2005-01-06 | Mazda Motor Corporation | EGR control apparatus for engine |
US20050027431A1 (en) * | 2003-07-30 | 2005-02-03 | Nissan Motor Co., Ltd. | Combustion control system of internal combustion engine |
US20050056017A1 (en) * | 2003-09-16 | 2005-03-17 | Detroit Diesel Corporation | Turbocharged internal combustion engine with EGR flow |
US20050102076A1 (en) * | 2003-11-10 | 2005-05-12 | Denso Corporation | Exhaust temperature sensor malfunction detection apparatus |
US20050109015A1 (en) * | 2003-11-25 | 2005-05-26 | Birkby Nicholas J. | Internal combustion engine exhaust system |
US20050120712A1 (en) * | 2003-12-08 | 2005-06-09 | Nissan Motor Co., Ltd. | Regeneration control of diesel particulate filter |
US6994078B2 (en) * | 2004-01-28 | 2006-02-07 | New Condensator, Inc. | Apparatus for removing contaminants from crankcase emissions |
US20060064966A1 (en) * | 2004-09-29 | 2006-03-30 | Caterpillar Inc. | Crankcase ventilation system |
US7213394B2 (en) * | 2005-01-27 | 2007-05-08 | Cummins Inc. | Engine blowby injector and injection system and method for injecting blowby |
US7260468B2 (en) * | 2005-07-29 | 2007-08-21 | Caterpillar Inc | Control strategy for an internal combustion engine |
US20070084194A1 (en) * | 2005-10-13 | 2007-04-19 | Thomas Holm | Crankcase ventilation system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090164085A1 (en) * | 2007-12-20 | 2009-06-25 | Detroit Diesel Corporation | Method to operate vehicle with internal combustion engine and exhaust aftertreatment system according to detected drive cycles |
US7980067B2 (en) | 2007-12-20 | 2011-07-19 | Detroit Diesel Corporation | Method to operate vehicle with internal combustion engine and exhaust aftertreatment system according to detected drive cycles |
US20100083638A1 (en) * | 2008-10-07 | 2010-04-08 | James Joshua Driscoll | Exhaust system having sulfur removing device |
US9689354B1 (en) * | 2016-01-19 | 2017-06-27 | Ford Global Technologies, Llc | Engine exhaust gas recirculation system with at least one exhaust recirculation treatment device |
Also Published As
Publication number | Publication date |
---|---|
US7107764B1 (en) | 2006-09-19 |
CN1880736A (en) | 2006-12-20 |
DE102006021834A1 (en) | 2006-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060288692A1 (en) | Exhaust treatment system | |
US20080155972A1 (en) | Exhaust treatment system | |
US7278411B1 (en) | Flow sensor | |
US20080202101A1 (en) | Exhaust treatment system | |
US20070068141A1 (en) | Exhaust treatment system | |
RU2481478C2 (en) | Method and device for cold start of internal combustion engine | |
US5785030A (en) | Exhaust gas recirculation in internal combustion engines | |
US20080078170A1 (en) | Managing temperature in an exhaust treatment system | |
US7805926B2 (en) | Exhaust treatment system having an acidic debris filter | |
WO2007040833A2 (en) | Regeneration strategy for a filter | |
CN102144080A (en) | Exhaust gas control apparatus for internal combustion engine | |
US20060021335A1 (en) | Exhaust treatment system having particulate filters | |
WO2006109850A1 (en) | Exhaust purifier for internal combustion engine | |
US7007459B2 (en) | Exhaust gas control device for internal combustion engines | |
US20080155969A1 (en) | Filter regeneration using ultrasonic energy | |
CN1890465A (en) | Exhaust gas purification system for diesel engine | |
JP2007502385A (en) | Management of thermal fluctuation in lean NOx adsorbent aftertreatment system | |
US20070178025A1 (en) | Exhaust treatment system | |
US8745974B2 (en) | Exhaust system | |
US20080295486A1 (en) | Exhaust treatment system implementing temporary engine control | |
US8266897B2 (en) | Low temperature emission system having turbocharger bypass | |
US20030230250A1 (en) | Apparatus and method for reproducing energy | |
JP2004176636A (en) | Exhaust emission control device for internal combustion engine | |
US11905868B2 (en) | Reduce cold start internal combustion engine gaseous pollutants emissions using adsorbents in a cartridge in a bypass exhaust line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |