[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20060153250A1 - Coding of data stream - Google Patents

Coding of data stream Download PDF

Info

Publication number
US20060153250A1
US20060153250A1 US11/336,686 US33668606A US2006153250A1 US 20060153250 A1 US20060153250 A1 US 20060153250A1 US 33668606 A US33668606 A US 33668606A US 2006153250 A1 US2006153250 A1 US 2006153250A1
Authority
US
United States
Prior art keywords
packet
data stream
partitions
length
error protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/336,686
Inventor
Maria Martini
Marco Chiani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/336,686 priority Critical patent/US20060153250A1/en
Publication of US20060153250A1 publication Critical patent/US20060153250A1/en
Priority to US12/423,873 priority patent/US8316282B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/356Unequal error protection [UEP]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6312Error control coding in combination with data compression
    • H03M13/6318Error control coding in combination with data compression using variable length codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/65Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using error resilience
    • H04N19/66Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using error resilience involving data partitioning, i.e. separation of data into packets or partitions according to importance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/65Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using error resilience
    • H04N19/67Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using error resilience involving unequal error protection [UEP], i.e. providing protection according to the importance of the data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/89Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving methods or arrangements for detection of transmission errors at the decoder

Definitions

  • the invention relates to coding of a data stream.
  • the invention further relates to transmission and reception of a data stream.
  • Multipath fading manifests itself in the form of long bursts of errors.
  • some form of interleaving and channel coding is required to improve the channel conditions.
  • Using a combination of source and channel coding it is possible to achieve acceptable visual quality over error-prone wireless channels with MPEG-4 simple-profile video compression.
  • the structure of an MPEG-4 compressed bit-stream also lends itself to using unequal error protection (UEP), a form of joint source-channel coding, to ensure fewer errors in the important portions of the bitstream.
  • UEP unequal error protection
  • An object of the invention is to provide an improved transmission of data.
  • the invention provides coding, decoding, transmission, reception, a data stream and a storage medium, as defined in the independent claims.
  • Advantageous embodiments are defined in the dependent claims.
  • the invention is especially advantageous in the field of wireless transmission of MPEG-4 video.
  • the inventors recognized that that MPEG-4 packets are not exactly of the same length and that partitions have different lengths in different packets, due to the variable length coding used and to the requirement of having an integer number of macro-blocks in each packet. This implies that a fixed UEP scheme cannot be used and, in order to perform decoding with the correct code rate, the bit-stream structure should be known at the receiver, at channel decoding level. Packets, like partitions, are not of the same length; thus the UEP scheme should be dynamically changed for each packet and the knowledge of the partition length is required.
  • the invention provides UEP for packets and partitions with variable length.
  • respective partitions of at least one packet in the data stream are coded with different error protection rates, wherein respective lengths of the respective partitions are determined by respective predetermined percentages of a length of the at least on packet or of a fraction of the packet length.
  • the lengths of all partitions within an entire packet are determined by a percentage of the packet length.
  • the length of some partitions may also be determined by taking a fixed, predetermined length.
  • the lengths of the remaining partitions are then determined by percentages of a fraction of the packet length.
  • This fraction usually being equal to the total of the lengths of the partitions of which the respective lengths are to be determined by a percentage (of the fraction). In practical embodiments this is equal to the packet length minus the sum of the fixed lengths. So a combination of fixed partition lengths and proportional partition lengths is possible.
  • the given packet length is determined as a distance between two markers in the data stream, wherein at least one of said two markers indicates a packet start.
  • a first partition of the packet comprises at least a first original packet partition.
  • the first original packet partition may be a header of the packet.
  • a data stream comprising at least one packet having a given packet length, wherein respective partitions of the at least one packet have been coded with different error protection rates, wherein respective lengths of the respective partitions are determined by respective predetermined percentages of the packet length, is received and the respective packet partitions are decoded with the different error protection rates.
  • FIG. 1 shows data partitioning in the MPEG-4 bit-stream
  • FIG. 2 shows a schematic representation of a protection scheme according to an embodiment of the invention
  • FIG. 3 shows start code substitution and (proportional) unequal error protection according to an embodiment of the invention
  • FIG. 4 shows a transmitter according to an embodiment of the invention, the transmitter comprising means for start code detection and substitution;
  • FIG. 5 shows a receiver according to an embodiment of the invention, the receiver comprising means for substituted start code detection and replacement;
  • FIG. 6 shows proportional unequal error protection according to an embodiment of the invention.
  • the MPEG-4 bit-stream results composed of packets, which are of almost the same length. Regardless of such tools, achievable received quality is still poor when MPEG-4 is transmitted over a wireless channel. Error resilience tools can, however, produce a further improvement of the received video quality if exploited at channel coding level.
  • the data partitioning tool can be usefully exploited with the purpose of performing Unequal Error Protection (UEP): information bits contained in each packet are separated in three partitions, each of which has a different sensitivity to channel errors. As shown in FIG.
  • UEP Unequal Error Protection
  • partitions consist of a header HI, and DC DCT coefficients and AC coefficients separated by a DC marker DCm.
  • partitions consist of a header HP, and a motion partition m and a texture partition tp separated by a motion marker mm.
  • UEP A suitable technique taking into account the characteristics of both the wireless channel and of the application is described. Specifically, information about the different sensitivity of source bits to channel errors should be exploited through UEP. This technique consists in performing error protection according to the perceived sensitivity of source bits to errors: more sensitive bits are protected with a higher protection (corresponding to a lower rate code), for less important bits a lower protection (i.e. a higher rate code) is used. Compared to classical Forward Error Correction (FEC), UEP allows achieving a higher perceived video quality given the same bit-rate, through the exploitation of the characteristics of the source.
  • FEC Forward Error Correction
  • the three partitions are protected with different code rates, according to the subjective importance of the relevant information.
  • Information contained in headers is crucial for the successive decoding of the packet, thus those should be strongly protected.
  • DC coefficients have a higher subjective importance than AC coefficients; thus the DC coefficients should be higher protected than the AC coefficients.
  • motion data should be more protected than texture data, as if motion information is correctly received texture information may be partially reconstructed.
  • the UEP implementation proposed takes also into account the different importance of different types of frames: in the MPEG-4 standard. Intra, Predicted and Backward predicted frames are considered, where Intra frames are coded independently from the others and Predicted frames exploit information from contiguous frames.
  • FIG. 2 shows a schematic representation of the described protection scheme.
  • UEP may be performed through Rate Compatible Punctured Convolutional (RCPC) codes, with rates chosen according to a perceived importance of bits.
  • RCPC Rate Compatible Punctured Convolutional
  • the codes considered are obtained by puncturing the same “mother” code. Only one coder and one decoder are then needed for performing coding and decoding of the whole bit-stream.
  • Rate Compatible Punctured Convolutional Codes as such are known from the article of J. Hagenauer, “Rate-Compatible Punctured Convolutional Codes (RCPC Codes) and their Applications”, IEEE Trans. Commun., vol. 36, no. 4, pp. 389-400, April 1988.
  • An MPEG-4 coded bit-stream is structured in Video Objects (VO), Video Object Layers (VOL), Groups of Video Object Planes (GOV), Video Object Planes (VOP), and Packets.
  • VO Video Objects
  • VOL Video Object Layers
  • GOV Video Object Planes
  • VOP Video Object Planes
  • Packets Packets.
  • Start codes are unique words, recognizable from any legal sequence of variable length coded words.
  • H 1 indicates the start code for VO, H 2 for the VOL, H 3 for the GOV, H 4 for the VOP and H 5 the packet start code (resync)
  • a main problem is that MPEG-4 packets are not exactly of the same length and partitions have different lengths in different packets, due to the variable length coding used and to the requirement of having an integer number of macro-blocks in each packet.
  • Proportional UEP Proportional UEP.
  • P-UEP Proportional Unequal Error Protection
  • FIG. 6 shows a scheme of Proportional Unequal Error Protection.
  • a proportional scheme is used, given the (variable) length of the packet.
  • Packet length is preferably determined through the reception of two proper start codes (at least one of which is a packet start).
  • a delay of one packet is introduced by such a scheme in order to fill the packet buffer.
  • a percentage length is chosen for each partition taking into account the characteristics of the bit-stream.
  • convolutional codes differ from block codes in that the encoder contains memory and the encoder outputs at any given time unit not only depend on the inputs at that time unit, but also on M previous input blocks, where M is the memory of the code.
  • a memory M convolutional encoder consists of an M-stage shift register with the output of selected stages being added modulo-2 to form the encoded symbols. Since a convolutional coder is a sequential circuit, its operation can be described by a state diagram. The state of the encoder is defined as its shift register contents; thus an encoder may assume 2 M states.
  • M tail bits should be added to the bit-stream in order to force the encoder to converge back to a known state (typically the “0” state).
  • a known state typically the “0” state.
  • the packet is terminated by shifting M “0” bits into the shift register in order to allow a proper termination of the trellis.
  • Tail bits are coded with the higher rate.
  • the average between I frames and P frames should be computed and the overhead introduced by the start codes substitutions should also be considered.
  • This aspect of the invention takes respective predetermined percentages of a variable packet length as respective packet partitions.
  • the percentages are preferably determined such that a first partition of the packet comprises at least a first original packet partition (e.g. a header) and a sum of the first and second partitions comprise at least the first original packet partition and a second original packet partition, and so on, taking into account the characteristics of the data stream.
  • a second main problem is that MPEG-4 start codes are not robust to errors: a single error in a start code may cause missed detection, resulting in a loss of synchronization.
  • the invention proposes some advantageous solutions. If errors occur, start codes emulation is possible, as well as a missed detection. In order to solve this problem, a start code substitution is proposed.
  • start codes are substituted after MPEG-4 coding (see FIG. 3 ) with pseudo-noise words, which are sequences with high correlation properties (e.g. Gold sequences). These new start codes are denoted by Wireless Start Codes.
  • a substitution is performed for VO, VOL, VOP, GOV start codes and for the Resync marker.
  • FIG. 3 shows a coded data stream S, comprising the markers H 1 . . . H 5 . These markers are substituted with markers WH 1 . . . WH 5 which have a higher robustness to channel errors, to obtain a data stream WS which is suitable for wireless transmission.
  • the data stream WS is received in a receiver as a data stream RS which is similar to WS but may have channel errors.
  • the markers WH 1 . . . WH 5 are received as WH 1 R . . . WH 5 R .
  • the markers (words) WH 1 R . . . WH 5 R are similar to WH 1 . . . WH 5 but may have channel errors. Because these markers have high correlation properties, they are recognized as being WH 1 . . . WH 5 which are thereafter substituted by markers similar to H 1 . . . H 5 respectively.
  • the data streams in FIG. 3 does not include the GOV start code (H 3 ), considering the MPEG-4 bit-stream. In the MPEG-4 bit-stream there is no GOV start code (H 3 ) after the VOL start code (H 2 ), because the VOL start code (H 2 ) also indicates the beginning of a GOV.
  • wireless start codes WH 1 . . . WH 5 are estimated through correlation before the channel decoding process; a trade-off should be achieved between the probability of missing a start code and the probability of start codes emulation, thus the choice of the wireless start codes length and of a proper threshold for the correlation is performed accordingly.
  • wireless start codes WH 1 . . . WH 5 are substituted with the corresponding start codes H 1 . . . H 5 from an original set of start codes.
  • the described substitution is herewith transparent to the MPEG-4 decoder (see FIG. 5 ).
  • FIG. 4 shows a transmitter according to the invention, the transmitter comprising a start code detector 12 for detection of the start codes H 1 . . . H 5 .
  • a detected start code is substituted by a corresponding pseudo-noise word WH 1 . . . WH 5 by a pseudo-noise word generator 13 .
  • the pseudo-noise word WH 1 . . . WH 5 is furnished to a multiplexer 14 that includes the pseudo-noise word in the data stream WS to be transmitted.
  • the data stream S is received in packet buffer 10 .
  • Packets of the data stream S present in between the markers H 1 . . . H 5 , are channel encoded in a channel encoder 11 to obtain channel coded packets.
  • These channel coded packets are furnished to the multiplexer and are included in the data stream WS to be transmitted.
  • the transmitted data stream is furnished to an antenna, e.g. for wireless transmission, or to a storage medium 15 .
  • Channel coding in FIG. 4 is advantageously performed using P-UEP as described above, but other channel coding mechanisms may alternatively be used.
  • FIG. 5 shows a receiver 3 for receiving a data stream WS transmitted by a transmitter according to FIG. 4 .
  • a start codes detector 32 e.g. fact a pseudo-noise word detector
  • correlation evaluations are performed between each allowed pseudo-noise word (i.e. from the predetermined set of pseudo-noise words, corresponding to the markers) and the relevant bit-stream portion in order to detect pseudo-noise words representing start codes. Correlations are compared with corresponding thresholds th.
  • the bit indicator in the bit-stream shifts the proper number of bits and the corresponding MPEG-4 start code H 1 . . .
  • H 5 is provided by start code generator 33 , which start code is inserted in a multiplexer 34 whose task is to arrange a bit-stream S′ to be fed to the MPEG-4 decoder. If either a GOV start code or a VOP start code is detected, a VOP indicator changes its status.
  • a packet buffer 30 is initialized and subsequent bits fill the buffer until the next start code is detected. No correlation evaluation is performed until the buffer contains N bits, where N is the minimum length of a packet.
  • the buffer 30 includes one packet; channel decoding is performed on the bits in the buffer in a channel decoder 31 , according to the VOP indicator information and to the percentages.
  • the rates used in the scheme are preferably fixed and the same as used in the channel encoder 11 . In the case of variable rates, the rates have to be received from the channel encoder 11 in the transmitter 1 .
  • the channel-decoded packets are inserted in the multiplexer 34 arranging the bit-stream to be fed to an MPEG-4 decoder. Note that if RCPC codes are used, de-puncturing is performed before decoding. In this case, the packet is then decoded at the mother code rate.
  • the data stream may be modulated before transmission by a modulator in the transmitter and consequently be demodulated in the receiver by a demodulator before decoding is performed.
  • coding a data stream comprises at least one packet having a given packet length and respective partitions of the at least one packet are coded with different error protection rates, the respective lengths of the respective partitions being determined by respective predetermined percentages of the packet length or of a fraction of the packet length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

Coding a data stream is provided, wherein the data stream comprises at least one packet having a given packet length and respective partitions of the at least one packet are coded with different error protection rates, the respective lengths of the respective partitions being determined by respective predetermined percentages of the packet length or a fraction of the packet length.

Description

  • The invention relates to coding of a data stream.
  • The invention further relates to transmission and reception of a data stream.
  • Reference is made to the article of M. Budagavi, W. Rabiner Heinzelman, J. Webb, R. Talluri, “Wireless MPEG-4 Video Communication on DSP Chips”, IEEE Signal Processing Magazine, January 2000. This article discloses that, to make the compressed bit-stream more robust, the MPEG-4 video compression standard incorporates several error resilience tools in its simple profile to enable detection, containment, and concealment of errors. These are powerful source-coding techniques for combating bit errors when they occur at rates less than 10−3; however, present-day wireless channels can have much higher bit error rates (BERs). The harsh conditions on mobile wireless channels result from multipath fading due to motion between the transmitter and the receiver, and changes in the surrounding terrain. Multipath fading manifests itself in the form of long bursts of errors. Hence, some form of interleaving and channel coding is required to improve the channel conditions. Using a combination of source and channel coding, it is possible to achieve acceptable visual quality over error-prone wireless channels with MPEG-4 simple-profile video compression. The structure of an MPEG-4 compressed bit-stream also lends itself to using unequal error protection (UEP), a form of joint source-channel coding, to ensure fewer errors in the important portions of the bitstream.
  • An object of the invention is to provide an improved transmission of data. To this end, the invention provides coding, decoding, transmission, reception, a data stream and a storage medium, as defined in the independent claims. Advantageous embodiments are defined in the dependent claims.
  • The invention is especially advantageous in the field of wireless transmission of MPEG-4 video. The inventors recognized that that MPEG-4 packets are not exactly of the same length and that partitions have different lengths in different packets, due to the variable length coding used and to the requirement of having an integer number of macro-blocks in each packet. This implies that a fixed UEP scheme cannot be used and, in order to perform decoding with the correct code rate, the bit-stream structure should be known at the receiver, at channel decoding level. Packets, like partitions, are not of the same length; thus the UEP scheme should be dynamically changed for each packet and the knowledge of the partition length is required. The invention provides UEP for packets and partitions with variable length.
  • According to a first aspect of the invention, respective partitions of at least one packet in the data stream are coded with different error protection rates, wherein respective lengths of the respective partitions are determined by respective predetermined percentages of a length of the at least on packet or of a fraction of the packet length. By providing partitioning according to fixed percentages, UEP for packets with variable length is made possible.
  • In a practical embodiment, the lengths of all partitions within an entire packet are determined by a percentage of the packet length. However, the length of some partitions may also be determined by taking a fixed, predetermined length. Preferably, the lengths of the remaining partitions are then determined by percentages of a fraction of the packet length.
  • This fraction usually being equal to the total of the lengths of the partitions of which the respective lengths are to be determined by a percentage (of the fraction). In practical embodiments this is equal to the packet length minus the sum of the fixed lengths. So a combination of fixed partition lengths and proportional partition lengths is possible. Advantageously, the given packet length is determined as a distance between two markers in the data stream, wherein at least one of said two markers indicates a packet start.
  • Advantageously, wherein the respective predetermined percentages are determined such that a first partition of the packet comprises at least a first original packet partition. The first original packet partition may be a header of the packet. By choosing the first percentage such that in normal conditions, the header is always included in the first partition, the entire header can be protected with a same protection rate, which is preferably higher than for subsequent partitions. Further percentages are preferably determined such that a sum of the given partition and previous partitions include a same number of original partitions.
  • In a decoder according to an embodiment of the invention, a data stream comprising at least one packet having a given packet length, wherein respective partitions of the at least one packet have been coded with different error protection rates, wherein respective lengths of the respective partitions are determined by respective predetermined percentages of the packet length, is received and the respective packet partitions are decoded with the different error protection rates.
  • The aforementioned and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
  • In the drawings:
  • FIG. 1 shows data partitioning in the MPEG-4 bit-stream;
  • FIG. 2 shows a schematic representation of a protection scheme according to an embodiment of the invention;
  • FIG. 3 shows start code substitution and (proportional) unequal error protection according to an embodiment of the invention;
  • FIG. 4 shows a transmitter according to an embodiment of the invention, the transmitter comprising means for start code detection and substitution;
  • FIG. 5 shows a receiver according to an embodiment of the invention, the receiver comprising means for substituted start code detection and replacement;
  • FIG. 6 shows proportional unequal error protection according to an embodiment of the invention.
  • The drawings only show those elements that are necessary to understand the invention.
  • Due to compression and in particular to the use of predictive coding and Variable Length Coding (VLC), an MPEG-4 bit-stream is very sensitive to errors. The article of R. Talluri, “Error-resilient video coding in the ISO MPEG-4 standard”, IEEE Communication Magazine, vol. 36, no. 6, June 1988 describes error resilience aspects of the video coding techniques that are standardized in the ISO MPEG-4 standard. The specific tools adopted into the ISO MPEG-4 standard to enable the communication of compressed video data over noisy wireless channels are presented in detail. These techniques include resynchronization strategies, data partitioning, reversible Variable Length Codes, and header extension codes.
  • These tools help adding robustness to the MPEG-4 bit-stream. With the use of Resync markers, the MPEG-4 bit-stream results composed of packets, which are of almost the same length. Regardless of such tools, achievable received quality is still poor when MPEG-4 is transmitted over a wireless channel. Error resilience tools can, however, produce a further improvement of the received video quality if exploited at channel coding level. In particular, the data partitioning tool can be usefully exploited with the purpose of performing Unequal Error Protection (UEP): information bits contained in each packet are separated in three partitions, each of which has a different sensitivity to channel errors. As shown in FIG. 1 for 1 frames, partitions consist of a header HI, and DC DCT coefficients and AC coefficients separated by a DC marker DCm. As far as P frames are concerned, partitions consist of a header HP, and a motion partition m and a texture partition tp separated by a motion marker mm.
  • A suitable technique taking into account the characteristics of both the wireless channel and of the application is described. Specifically, information about the different sensitivity of source bits to channel errors should be exploited through UEP. This technique consists in performing error protection according to the perceived sensitivity of source bits to errors: more sensitive bits are protected with a higher protection (corresponding to a lower rate code), for less important bits a lower protection (i.e. a higher rate code) is used. Compared to classical Forward Error Correction (FEC), UEP allows achieving a higher perceived video quality given the same bit-rate, through the exploitation of the characteristics of the source.
  • In the proposed scheme, the three partitions are protected with different code rates, according to the subjective importance of the relevant information. Information contained in headers is crucial for the successive decoding of the packet, thus those should be strongly protected. For intra frames, DC coefficients have a higher subjective importance than AC coefficients; thus the DC coefficients should be higher protected than the AC coefficients. As far as predicted frames are concerned, motion data should be more protected than texture data, as if motion information is correctly received texture information may be partially reconstructed.
  • The UEP implementation proposed takes also into account the different importance of different types of frames: in the MPEG-4 standard. Intra, Predicted and Backward predicted frames are considered, where Intra frames are coded independently from the others and Predicted frames exploit information from contiguous frames.
  • A correct reception of Intra frames is crucial to perform motion compensation of the subsequent Predicted frames, thus a lower average channel coding rate (i.e. a higher protection) should be associated to Intra frames, while Predicted frames can be coded with a higher average rate (i.e. a lower protection). FIG. 2 shows a schematic representation of the described protection scheme.
  • UEP may be performed through Rate Compatible Punctured Convolutional (RCPC) codes, with rates chosen according to a perceived importance of bits. In this case the codes considered are obtained by puncturing the same “mother” code. Only one coder and one decoder are then needed for performing coding and decoding of the whole bit-stream. Rate Compatible Punctured Convolutional Codes as such are known from the article of J. Hagenauer, “Rate-Compatible Punctured Convolutional Codes (RCPC Codes) and their Applications”, IEEE Trans. Commun., vol. 36, no. 4, pp. 389-400, April 1988.
  • Different average code rates are taken into consideration for the protection of different frames (I frames are coded with a higher protection/lower rate, a lower protection/higher average rate is taken into consideration for P frames), and for each frame the data partitioning tool added to the MPEG-4 standard is exploited, in order to provide a stronger protection for the most significant partitions. A frame may be retransmitted if not correctly received.
  • An MPEG-4 coded bit-stream is structured in Video Objects (VO), Video Object Layers (VOL), Groups of Video Object Planes (GOV), Video Object Planes (VOP), and Packets. In order to allow synchronization, a start of each part of the bit-stream is indicated by a relevant start code. Start codes are unique words, recognizable from any legal sequence of variable length coded words. H1 indicates the start code for VO, H2 for the VOL, H3 for the GOV, H4 for the VOP and H5 the packet start code (resync)
  • A main problem is that MPEG-4 packets are not exactly of the same length and partitions have different lengths in different packets, due to the variable length coding used and to the requirement of having an integer number of macro-blocks in each packet. This implies that a fixed UEP scheme cannot be used and, in order to perform decoding with the correct code rate, the bit-stream structure should be known at the receiver, at channel decoding level. Packets, like partitions, are not of the same length; thus the UEP scheme should be dynamically changed for each packet and the knowledge of the partition length is required. As far as this problem is concerned, a solution for performing UEP is proposed: Proportional UEP.
  • Proportional Unequal Error Protection (P-UEP)
  • FIG. 6 shows a scheme of Proportional Unequal Error Protection. As the length of each field is not known at the receiver, a proportional scheme is used, given the (variable) length of the packet. Packet length is preferably determined through the reception of two proper start codes (at least one of which is a packet start). A delay of one packet is introduced by such a scheme in order to fill the packet buffer. A percentage length is chosen for each partition taking into account the characteristics of the bit-stream. Given three partitions of percentage length P1, P2, P3, protected with rates R1, R2, R3, the average rate for 1 packets is given by: R avg = R 1 R 2 R 3 P 1 R 2 R 3 + P 2 R 1 R 3 + P 3 R 1 R 2
    Similarly, for P packets: R avg = R 1 R 2 R 3 P 1 R 2 R 3 + P 2 R 1 R 3 + P 3 R 1 R 2
    Consequently, the length of the coded packet is: L coded_packet _I = L packet R avg + M R 3 for I frames and L coded_packet _P = L packet R avg + M R 3 for P frames
    where M is the memory of the code, in the case convolutional codes are considered. As for the memory M of the code: convolutional codes differ from block codes in that the encoder contains memory and the encoder outputs at any given time unit not only depend on the inputs at that time unit, but also on M previous input blocks, where M is the memory of the code. A memory M convolutional encoder consists of an M-stage shift register with the output of selected stages being added modulo-2 to form the encoded symbols. Since a convolutional coder is a sequential circuit, its operation can be described by a state diagram. The state of the encoder is defined as its shift register contents; thus an encoder may assume 2M states. In order to protect the last bits of the bit-stream with the same strength of the others, M tail bits should be added to the bit-stream in order to force the encoder to converge back to a known state (typically the “0” state). In fact, if convolutional codes are considered, the packet is terminated by shifting M “0” bits into the shift register in order to allow a proper termination of the trellis. Tail bits are coded with the higher rate. In order to compute the total average rate, the average between I frames and P frames should be computed and the overhead introduced by the start codes substitutions should also be considered.
  • This aspect of the invention takes respective predetermined percentages of a variable packet length as respective packet partitions. The percentages are preferably determined such that a first partition of the packet comprises at least a first original packet partition (e.g. a header) and a sum of the first and second partitions comprise at least the first original packet partition and a second original packet partition, and so on, taking into account the characteristics of the data stream.
  • A second main problem is that MPEG-4 start codes are not robust to errors: a single error in a start code may cause missed detection, resulting in a loss of synchronization. In order to cope with these problems, the invention proposes some advantageous solutions. If errors occur, start codes emulation is possible, as well as a missed detection. In order to solve this problem, a start code substitution is proposed.
  • Start Code Substitution
  • In a further embodiment start codes are substituted after MPEG-4 coding (see FIG. 3) with pseudo-noise words, which are sequences with high correlation properties (e.g. Gold sequences). These new start codes are denoted by Wireless Start Codes. In particular, a substitution is performed for VO, VOL, VOP, GOV start codes and for the Resync marker. FIG. 3 shows a coded data stream S, comprising the markers H1 . . . H5. These markers are substituted with markers WH1 . . . WH5 which have a higher robustness to channel errors, to obtain a data stream WS which is suitable for wireless transmission. The data stream WS is received in a receiver as a data stream RS which is similar to WS but may have channel errors. The markers WH1 . . . WH5 are received as WH1 R . . . WH5 R. The markers (words) WH1 R . . . WH5 R are similar to WH1 . . . WH5 but may have channel errors. Because these markers have high correlation properties, they are recognized as being WH1 . . . WH5 which are thereafter substituted by markers similar to H1 . . . H5 respectively. The data streams in FIG. 3 does not include the GOV start code (H3), considering the MPEG-4 bit-stream. In the MPEG-4 bit-stream there is no GOV start code (H3) after the VOL start code (H2), because the VOL start code (H2) also indicates the beginning of a GOV.
  • At the receiver side, the position of these wireless start codes WH1 . . . WH5 are estimated through correlation before the channel decoding process; a trade-off should be achieved between the probability of missing a start code and the probability of start codes emulation, thus the choice of the wireless start codes length and of a proper threshold for the correlation is performed accordingly. As the detection is performed, wireless start codes WH1 . . . WH5 are substituted with the corresponding start codes H1 . . . H5 from an original set of start codes. The described substitution is herewith transparent to the MPEG-4 decoder (see FIG. 5).
  • At channel coding level, an advantageous embodiment according to the invention is proposed:
  • Start Codes Substitution Combined with Proportional Unequal Error Protection (P-UEP).
  • The description of the advantageous embodiment is given for the simplified case of VOP's coincident with frames. In FIGS. 4 and 5 dashed lines indicate control lines.
  • FIG. 4 shows a transmitter according to the invention, the transmitter comprising a start code detector 12 for detection of the start codes H1 . . . H5. A detected start code is substituted by a corresponding pseudo-noise word WH1 . . . WH5 by a pseudo-noise word generator 13. The pseudo-noise word WH1 . . . WH5 is furnished to a multiplexer 14 that includes the pseudo-noise word in the data stream WS to be transmitted.
  • The data stream S is received in packet buffer 10. Packets of the data stream S, present in between the markers H1 . . . H5, are channel encoded in a channel encoder 11 to obtain channel coded packets. These channel coded packets are furnished to the multiplexer and are included in the data stream WS to be transmitted. The transmitted data stream is furnished to an antenna, e.g. for wireless transmission, or to a storage medium 15.
  • Channel coding in FIG. 4 is advantageously performed using P-UEP as described above, but other channel coding mechanisms may alternatively be used.
  • FIG. 5 shows a receiver 3 for receiving a data stream WS transmitted by a transmitter according to FIG. 4. In a start codes detector 32 (e.g. fact a pseudo-noise word detector), correlation evaluations are performed between each allowed pseudo-noise word (i.e. from the predetermined set of pseudo-noise words, corresponding to the markers) and the relevant bit-stream portion in order to detect pseudo-noise words representing start codes. Correlations are compared with corresponding thresholds th. When a pseudo-noise word is detected, the bit indicator in the bit-stream shifts the proper number of bits and the corresponding MPEG-4 start code H1 . . . H5 is provided by start code generator 33, which start code is inserted in a multiplexer 34 whose task is to arrange a bit-stream S′ to be fed to the MPEG-4 decoder. If either a GOV start code or a VOP start code is detected, a VOP indicator changes its status.
  • If a resync marker is detected, a packet buffer 30 is initialized and subsequent bits fill the buffer until the next start code is detected. No correlation evaluation is performed until the buffer contains N bits, where N is the minimum length of a packet. When the next start code is detected, the buffer 30 includes one packet; channel decoding is performed on the bits in the buffer in a channel decoder 31, according to the VOP indicator information and to the percentages. The rates used in the scheme are preferably fixed and the same as used in the channel encoder 11. In the case of variable rates, the rates have to be received from the channel encoder 11 in the transmitter 1. The channel-decoded packets are inserted in the multiplexer 34 arranging the bit-stream to be fed to an MPEG-4 decoder. Note that if RCPC codes are used, de-puncturing is performed before decoding. In this case, the packet is then decoded at the mother code rate.
  • Although not shown in FIGS. 4 and 5, the data stream may be modulated before transmission by a modulator in the transmitter and consequently be demodulated in the receiver by a demodulator before decoding is performed.
  • It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps than those listed in a claim. The invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a device claim enumerating several means, several of these means can be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
  • In summary, coding a data stream is provided, wherein the data stream comprises at least one packet having a given packet length and respective partitions of the at least one packet are coded with different error protection rates, the respective lengths of the respective partitions being determined by respective predetermined percentages of the packet length or of a fraction of the packet length.

Claims (11)

1. A method of coding a data stream, the data stream comprising at least one packet having a given packet length, the method comprising:
coding respective partitions of the at least one packet with different error protection rates, wherein respective lengths of the respective partitions are determined by respective predetermined percentages of the packet length or of a fraction of the packet length; and
outputting the data stream with the respective partitions of the at least one packet coded with the different error protection rates.
2. A method as claimed in claim 1, wherein the given packet length is determined as a distance between two markers in the data stream, wherein at least one of said two markers indicates a packet start.
3. A method as claimed in claim 1, wherein the respective predetermined percentages are determined such that a first partition of the packet comprises at least a first original packet partition.
4. A method as claimed in claim 3, wherein the respective predetermined percentages are determined such that a sum of the first partition of the packet and a second partition of the packet comprises at least the first original partition and a second original partition of the packet.
5. A method of decoding a data stream, the received data stream comprising at least one packet having a given packet length, wherein respective partitions of the at least one packet have been coded with different error protection rates, wherein respective lengths of the respective partitions are determined by respective predetermined percentages of the packet length, the method comprising:
decoding the respective packet partitions with the different error protection rates; and
outputting the data stream having the respective packet partitions decoded with the different error protection rates.
6. An encoder for coding a data stream, the data stream comprising at least one packet having a given packet length, the encoder comprising:
means for coding respective partitions of the at least one packet with different error protection rates, wherein respective lengths of the respective partitions are determined by respective predetermined percentages of the packet length or of a fraction of the packet length; and
means for outputting the data stream with the respective partitions of the at least one packet coded with the different error protection rates.
7. A decoder for decoding a data stream, the received data stream comprising at least one packet having a given packet length, wherein respective partitions of the at least one packet have been coded with different error protection rates, wherein respective lengths of the respective partitions are determined by respective predetermined percentages of the packet length or a fraction of the packet length, the decoder comprising:
means for decoding the respective packet partitions with the different error protection rates; and
means for outputting the data stream having the respective packet partitions decoded with the different error protection rates.
8. A transmitter for transmitting a data stream, the transmitter comprising:
an encoder according to claim 6; and
antenna means for transmitting the data stream.
9. A receiver for receiving a data stream, the receiver comprising:
antenna means for receiving the data stream; and
a decoder as claimed in claim 7.
10. A data stream comprising at least one packet having a given packet length, wherein respective partitions of the at least one packet have been coded with different error protection rates, wherein respective lengths of the respective partitions are determined by respective predetermined percentages of the packet length or a fraction of the packet length.
11. A storage medium on which a data stream as claimed in claim 10 has been stored.
US11/336,686 2000-07-17 2006-01-20 Coding of data stream Abandoned US20060153250A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/336,686 US20060153250A1 (en) 2000-07-17 2006-01-20 Coding of data stream
US12/423,873 US8316282B2 (en) 2000-07-17 2009-04-15 Coding of data stream

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00202531 2000-07-17
EP00202531.0 2000-07-17
US09/906,608 US7031350B2 (en) 2000-07-17 2001-07-17 Coding of data stream
US11/336,686 US20060153250A1 (en) 2000-07-17 2006-01-20 Coding of data stream

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/906,608 Continuation US7031350B2 (en) 2000-07-17 2001-07-17 Coding of data stream

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/423,873 Continuation US8316282B2 (en) 2000-07-17 2009-04-15 Coding of data stream

Publications (1)

Publication Number Publication Date
US20060153250A1 true US20060153250A1 (en) 2006-07-13

Family

ID=8171812

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/906,608 Expired - Fee Related US7031350B2 (en) 2000-07-17 2001-07-17 Coding of data stream
US11/336,686 Abandoned US20060153250A1 (en) 2000-07-17 2006-01-20 Coding of data stream
US12/423,873 Expired - Fee Related US8316282B2 (en) 2000-07-17 2009-04-15 Coding of data stream

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/906,608 Expired - Fee Related US7031350B2 (en) 2000-07-17 2001-07-17 Coding of data stream

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/423,873 Expired - Fee Related US8316282B2 (en) 2000-07-17 2009-04-15 Coding of data stream

Country Status (9)

Country Link
US (3) US7031350B2 (en)
EP (1) EP1303917B1 (en)
JP (1) JP4659331B2 (en)
KR (1) KR100834019B1 (en)
CN (1) CN1218493C (en)
AT (1) ATE536002T1 (en)
AU (1) AU2001270623A1 (en)
TW (1) TW583842B (en)
WO (1) WO2002007327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258651A1 (en) * 2006-05-03 2007-11-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving uncompressed audio/video data and transmission frame structure

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2283536C2 (en) * 2000-07-17 2006-09-10 Конинклейке Филипс Электроникс Н.В. Signal encoding method
AU2001270623A1 (en) * 2000-07-17 2002-01-30 Koninklijke Philips Electronics N.V. Coding of data stream
US7778242B1 (en) * 2001-11-27 2010-08-17 Alcatel Lucent Protecting content of a packet containing speech data using unequal error protection
FR2837332A1 (en) * 2002-03-15 2003-09-19 Thomson Licensing Sa DEVICE AND METHOD FOR INSERTING ERROR CORRECTION AND RECONSTITUTION CODES OF DATA STREAMS, AND CORRESPONDING PRODUCTS
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8204079B2 (en) * 2002-10-28 2012-06-19 Qualcomm Incorporated Joint transmission of multiple multimedia streams
US20040083417A1 (en) * 2002-10-29 2004-04-29 Lane Richard D. Multimedia transmission using variable error coding rate based on data importance
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7672285B2 (en) 2004-06-28 2010-03-02 Dtvg Licensing, Inc. Method and apparatus for minimizing co-channel interference by scrambling
US7161988B2 (en) * 2004-04-12 2007-01-09 The Directv Group, Inc. Method and apparatus for minimizing co-channel interference
US7551736B2 (en) 2004-04-12 2009-06-23 The Directv Group, Inc. Physical layer header scrambling in satellite broadcast systems
US8213553B2 (en) * 2004-04-12 2012-07-03 The Directv Group, Inc. Method and apparatus for identifying co-channel interference
JP2006049983A (en) * 2004-07-30 2006-02-16 National Institute Of Information & Communication Technology Method and apparatus of transmitting image using uneven error protecting method
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
JP5080470B2 (en) * 2005-08-26 2012-11-21 ザ・ディレクティービー・グループ・インコーポレイテッド Method and apparatus for determining a scrambling code for signal transmission
US7653055B2 (en) * 2006-03-31 2010-01-26 Alcatel-Lucent Usa Inc. Method and apparatus for improved multicast streaming in wireless networks
US8416779B2 (en) * 2006-06-08 2013-04-09 Samsung Electronics Co., Ltd. Stored transmission packet intended for use in new link-adaptaton mechanism, and apparatus and method for transmitting and receiving transmission packet using the same
KR100984811B1 (en) * 2007-03-27 2010-10-01 삼성전자주식회사 Apparatus and method for transmitting/receiving data
US8676115B2 (en) 2007-03-29 2014-03-18 Qualcomm Incorporated Apparatus and methods for testing using modulation error ratio
WO2009020288A1 (en) 2007-08-09 2009-02-12 Samsung Electronics Co., Ltd. Apparatus and method for searching for erroneous data
KR101187766B1 (en) 2008-08-08 2012-10-05 주식회사 엘지화학 Apparatus and Method for cell balancing based on battery's voltage variation pattern
WO2015024062A1 (en) * 2013-08-23 2015-02-26 University Of South Australia Enhanced automatic identification system
US9270403B2 (en) 2014-02-03 2016-02-23 Valens Semiconductor Ltd. Indicating end of idle sequence by replacing expected code words while maintaining running disparity
US9407394B2 (en) 2014-02-03 2016-08-02 Valens Semiconductor Ltd. Frequent flow control by replacing certain idle words with bitwise complement words
US9270415B2 (en) 2014-02-03 2016-02-23 Valens Semiconductor Ltd. Encoding payloads according to data types while maintaining running disparity
US9401729B2 (en) 2014-02-03 2016-07-26 Valens Semiconductor Ltd. Maintaining running disparity while utilizing different line-codes
US9270411B2 (en) 2014-02-03 2016-02-23 Valens Semiconductor Ltd. Indicating end of idle sequence by replacing certain code words with alternative code words
US9594719B2 (en) 2014-02-03 2017-03-14 Valens Semiconductor Ltd. Seamless addition of high bandwidth lanes
US9348525B2 (en) * 2014-02-21 2016-05-24 Netapp, Inc. Systems and methods for a storage array-managed initiator cache
US12021548B2 (en) 2022-05-10 2024-06-25 Samsung Display Co., Ltd. System and method for efficient transition encoding for decimation CDR

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895613A (en) * 1988-06-16 1990-01-23 Kenneth Carrico Film linear stripper
US5671156A (en) * 1995-03-31 1997-09-23 Lucent Technologies Inc. Transmission method and system for JPEG images
US5729526A (en) * 1995-10-31 1998-03-17 Fujitsu Limited Asynchronous transfer mode type multimedia radiocommunication system
US5822372A (en) * 1996-08-02 1998-10-13 Motorola, Inc. Multicarrier system using subchannel characteristics to implement different error rates within a data stream
US5886364A (en) * 1993-06-24 1999-03-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US5948702A (en) * 1996-12-19 1999-09-07 Texas Instruments Incorporated Selective removal of TixNy
US6028896A (en) * 1996-10-11 2000-02-22 Korea Telecommunication Authority Method for controlling data bit rate of a video encoder
US6711182B1 (en) * 1997-05-02 2004-03-23 Motorola, Inc. Method and apparatus for processing data from multiple sources
US6873629B2 (en) * 1999-12-30 2005-03-29 Koninklijke Philips Electronics N.V. Method and apparatus for converting data streams
US7031350B2 (en) * 2000-07-17 2006-04-18 Koninklijke Philips Electronics N.V. Coding of data stream

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US573629A (en) * 1896-12-22 Electric heater
ZA832557B (en) 1982-04-26 1983-12-28 Goodyear Tire & Rubber Molecular weight control of polybutadiene
EP0312986A1 (en) 1987-10-22 1989-04-26 Siemens Aktiengesellschaft Etchback process for tungsten-filled integrated-circuit contact holes, with a titanium nitride underlayer
US5544328A (en) * 1991-10-31 1996-08-06 At&T Bell Laboratories Coded modulation with unequal error protection
US5289501A (en) * 1991-11-26 1994-02-22 At&T Bell Laboratories Coded modulation with unequal error protection for fading channels
US5377194A (en) * 1991-12-16 1994-12-27 At&T Corp. Multiplexed coded modulation with unequal error protection
US5751739A (en) * 1994-04-29 1998-05-12 Lucent Technologies, Inc. Methods of and devices for enhancing communications that use spread spectrum technology
US5689439A (en) * 1995-03-31 1997-11-18 Lucent Technologies, Inc. Switched antenna diversity transmission method and system
FI112894B (en) * 1997-04-10 2004-01-30 Nokia Corp Procedure for reducing the likelihood of frame errors in data transfer in the form of data frames
US6347122B1 (en) * 1998-01-13 2002-02-12 Agere Systems Guardian Corp. Optimal complement punctured convolutional codes for use in digital audio broadcasting and other applications
US6405338B1 (en) * 1998-02-11 2002-06-11 Lucent Technologies Inc. Unequal error protection for perceptual audio coders
KR100331332B1 (en) 1998-11-02 2002-06-20 윤종용 Video data transmitter and receiver and method
US6223324B1 (en) * 1999-01-05 2001-04-24 Agere Systems Guardian Corp. Multiple program unequal error protection for digital audio broadcasting and other applications
US6470469B1 (en) * 1999-03-26 2002-10-22 Microsoft Corp. Reconstruction of missing coefficients of overcomplete linear transforms using projections onto convex sets
JP3728578B2 (en) * 1999-03-31 2005-12-21 富士通株式会社 Non-uniform error protection method in multi-carrier transmission and its encoder and decoder
US6996097B1 (en) * 1999-05-21 2006-02-07 Microsoft Corporation Receiver-driven layered error correction multicast over heterogeneous packet networks

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895613A (en) * 1988-06-16 1990-01-23 Kenneth Carrico Film linear stripper
US5886364A (en) * 1993-06-24 1999-03-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US5671156A (en) * 1995-03-31 1997-09-23 Lucent Technologies Inc. Transmission method and system for JPEG images
US5729526A (en) * 1995-10-31 1998-03-17 Fujitsu Limited Asynchronous transfer mode type multimedia radiocommunication system
US5822372A (en) * 1996-08-02 1998-10-13 Motorola, Inc. Multicarrier system using subchannel characteristics to implement different error rates within a data stream
US6028896A (en) * 1996-10-11 2000-02-22 Korea Telecommunication Authority Method for controlling data bit rate of a video encoder
US5948702A (en) * 1996-12-19 1999-09-07 Texas Instruments Incorporated Selective removal of TixNy
US6711182B1 (en) * 1997-05-02 2004-03-23 Motorola, Inc. Method and apparatus for processing data from multiple sources
US6873629B2 (en) * 1999-12-30 2005-03-29 Koninklijke Philips Electronics N.V. Method and apparatus for converting data streams
US7031350B2 (en) * 2000-07-17 2006-04-18 Koninklijke Philips Electronics N.V. Coding of data stream

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258651A1 (en) * 2006-05-03 2007-11-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving uncompressed audio/video data and transmission frame structure
US8422549B2 (en) * 2006-05-03 2013-04-16 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving uncompressed audio/video data and transmission frame structure

Also Published As

Publication number Publication date
EP1303917A1 (en) 2003-04-23
ATE536002T1 (en) 2011-12-15
AU2001270623A1 (en) 2002-01-30
KR100834019B1 (en) 2008-06-02
TW583842B (en) 2004-04-11
US7031350B2 (en) 2006-04-18
KR20020064779A (en) 2002-08-09
WO2002007327A1 (en) 2002-01-24
CN1218493C (en) 2005-09-07
US20100211848A1 (en) 2010-08-19
US8316282B2 (en) 2012-11-20
US20020031122A1 (en) 2002-03-14
JP2004504757A (en) 2004-02-12
EP1303917B1 (en) 2011-11-30
CN1386331A (en) 2002-12-18
JP4659331B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US8316282B2 (en) Coding of data stream
KR100560712B1 (en) Information data multiplexing transmission system, multiplexer and demultiplexer used therefor, and error correcting encoder and decoder
KR100331332B1 (en) Video data transmitter and receiver and method
US7039837B2 (en) Signal coding
US20020034225A1 (en) Coding of a data stream
EP1842380B1 (en) Video error detection technique using a crc parity code
Cai et al. An FEC-based error control scheme for wireless MPEG-4 video transmission
EP1303918B1 (en) Signalling of signal significance information between an application layer and a channel encoder
Martini et al. Proportional unequal error protection for MPEG-4 video transmission
CA2298221C (en) Encoder for multiplexing blocks error protected bits with blocks of unprotected bits
Martini et al. Joint source-channel error detection with standard compatibility for wireless video transmission
Cai et al. Use of pre-interleaving for video streaming over wireless access networks
Cai et al. Video streaming: an FEC-based novel approach
Wu et al. Error resilient decoding of JPEG2000
JP2002217741A (en) Data transmission method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION