US20060144809A1 - Shelving connector - Google Patents
Shelving connector Download PDFInfo
- Publication number
- US20060144809A1 US20060144809A1 US11/262,856 US26285605A US2006144809A1 US 20060144809 A1 US20060144809 A1 US 20060144809A1 US 26285605 A US26285605 A US 26285605A US 2006144809 A1 US2006144809 A1 US 2006144809A1
- Authority
- US
- United States
- Prior art keywords
- tabs
- tab
- members
- openings
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47B—TABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
- A47B57/00—Cabinets, racks or shelf units, characterised by features for adjusting shelves or partitions
- A47B57/30—Cabinets, racks or shelf units, characterised by features for adjusting shelves or partitions with means for adjusting the height of detachable shelf supports
- A47B57/40—Cabinets, racks or shelf units, characterised by features for adjusting shelves or partitions with means for adjusting the height of detachable shelf supports consisting of hooks coacting with openings
- A47B57/406—Hooks attached to uprights
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47B—TABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
- A47B47/00—Cabinets, racks or shelf units, characterised by features related to dismountability or building-up from elements
- A47B47/02—Cabinets, racks or shelf units, characterised by features related to dismountability or building-up from elements made of metal only
- A47B47/021—Racks or shelf units
- A47B47/028—Racks or shelf units with crossbars
Definitions
- This invention relates to the assembly of metal parts and more particularly to apparatus facilitating assembly of parts such as in sheet metal shelving or cabinets. Other applications are contemplated.
- Metal shelving is usually packaged in component pieces which are assembled to form shelving.
- Discrete fasteners are typically used in this process, as well as a variety of tab/slot arrangements as is well known. The use of discrete fasteners can increase cost and are the source of aggravation where quantities are mishandled or the like.
- tab and slot configurations can lack permanency and rigidity, especially when the shelving units are handled or manipulated.
- “bayonet-type” tab and slot configurations are known in the art and typically include a male tab protruding through an oversized slot so that movement of the tab within the slot is possible.
- the slot may be oriented in a substantially vertical direction, with the bottom surface of the tab resting against the bottom of the slot via gravity.
- the vertical dimension of the slot may be oversized relative to the vertical height of the tab, the tab and the member attached to the tab may move upwardly in response to the application of sufficient force, which can cause the assembled structure to wobble or to be otherwise undesirable.
- one aspect of the present invention is directed to a connector for securing two members together.
- the connector includes an opening or aperture formed in one member and a tab extending from the other member. At least one of the opening and the tab is tapered for frictional engagement with the other when the members are joined.
- a generally rectangular portion of a tab integral with one member is frictionally and securely engaged within a trapezoid shaped opening formed in the other member when the two members are joined.
- other shapes of openings and tabs are considered to be within the scope of the present invention provided the tab is frictionally and securely engaged with the opening when the two members are joined.
- a second aspect of the present invention is directed to a method for securing two members together without the use of discrete fasteners.
- a plurality of openings are formed in one member and a plurality of tabs are formed in the other member so they extend from the other member.
- the members are aligned so the openings and tabs are in register with one another and the tabs are inserted through aligned ones of the openings.
- One of the members is moved relative to the other thereby wedging the tabs into frictional engagement with the openings to securely join the members together.
- trapezoid shaped openings are formed in one member with tabs being formed in the other member.
- the tabs include a substantially rectangular portion.
- Each male tab is inserted into the larger end of the female trapezoid shaped opening and then slid to the narrower end of the female trapezoid shaped opening “wedging” the substantially rectangular portion of the tab securely into the female part.
- the tab also makes contact with the flat surface adjacent the female part opening also gripping it to insure a tight fit.
- Assembly of the two components or members of a shelving unit wedges them together and the combination of the wedged components and the flat surface engagement provides a strong, rigid, secure interconnection between the components.
- Use of discrete fasteners for this joint is eliminated and the female and male elements can be provided by stamping in the forming of the components or members, reducing the cost.
- FIG. 1 is a perspective view of a cross-brace or shelf support member of a shelving unit provided with a plurality of tapered female connecting elements according to one embodiment of the invention
- FIG. 2 is a cross-sectional view taken generally along lines 2 - 2 of FIG. 1 ;
- FIG. 3 is a plan, or flat pattern view of the developed member of FIG. 1 ;
- FIG. 4 is a perspective view of another shelving member, such as a support column, showing a plurality of the male tab connecting elements according to one embodiment of the invention
- FIG. 5 is a developed view of the member of FIG. 4 ;
- FIG. 6 is an enlarged view of the encircled area of FIG. 5 showing the male tab connecting element of FIGS. 4 and 5 ;
- FIG. 7 is a cross-sectional view taken along lines 7 - 7 of FIG. 4 ;
- FIG. 8 is a cross-sectional view taken along lines 8 - 8 of FIG. 4 ;
- FIG. 9 is a perspective view illustrating cooperation of members like those of FIG. 1 with that of FIG. 4 ;
- FIG. 10 is a cross-section showing members of FIGS. 1, 4 and 9 in interconnected configuration
- FIG. 11 is a perspective view illustrating members of FIGS. 1 and 4 in interconnected configuration.
- FIG. 12 is a perspective view similar to FIG. 11 , illustrating another embodiment of the invention.
- FIG. 1 depicts a brace or cross member 10 of a shelving unit 40 ( FIG. 11 ).
- Shelving member 10 preferably has top and bottom flanges 11 , 13 and a web 15 and generally comprises, for example only, a sheet metal formed cross-brace or shelf support for a shelving unit 40 ( FIG. 11 ).
- the top and bottom flanges 11 , 13 are angled relative to web 15 .
- flanges 11 and 13 are formed at substantially the same angle, i.e., about 90°, relative to web 15 as flanges 11 and 13 are both substantially perpendicular relative to web 15 .
- flanges 11 and 13 can be formed at different angles relative to web 15 within the scope of the present invention.
- member 10 is provided with a plurality of female connecting elements or components 12 comprising inwardly tapered apertures or openings, from bottom to top.
- Each opening has a top edge 20 , bottom edge 21 and tapered sides 18 , 19 .
- the taper in one embodiment is slight, on the order of 0.010′′ so bottom edge 21 is about 0.010′′ longer than the top edge 20 .
- top edge 20 is 0.370′′ long and bottom edge is 0.380′′ long. Any suitable taper can be used.
- the lower female openings 12 may extend into lower flange 13 as best shown in FIGS. 1 and 9 . However, the lower female openings 12 may also be disposed entirely within web 15 .
- FIG. 12 illustrates a shelving unit 140 according to an alternate embodiment of the present invention.
- Shelving unit 140 is the same as shelving unit 40 , except that member 10 is replaced with member 110 .
- Member 110 does not include the bottom flange 13 of member 10 but can be otherwise the same as member 10 .
- the web 15 of member 110 includes a bottom or lower edge 112 .
- a plurality of the openings 12 are formed in web 15 , and the bottom openings 12 (only one is shown in FIG. 12 , with the other being obscured) open onto the bottom edge 112 of web 15 .
- the utilization of shelving unit 40 having members 10 with lower flanges 13 or the use of shelving unit 140 having members 110 without lower flanges, can be based on one or more of the following considerations: cost, strength and spacing.
- FIGS. 4-12 Another shelving member such as a formed column 14 is shown in FIGS. 4-12 and is included in shelving unit 40 and shelving unit 140 .
- This member in one embodiment comprises a formed sheet metal angle provided with a plurality of male tabs 16 .
- Tabs 16 are integrally formed of the same material as the remainder of column 14 , using any suitable stamping or other process. As shown in FIGS. 6-8 , each tab 16 includes a proximal portion 33 integral with an adjacent, substantially planar portion 17 of column 14 .
- the proximal portion 33 of tabs 16 includes first and second bend portions 35 , 36 .
- Tabs 16 further include an upwardly extending portion 24 integral with proximal portion 33 and an outwardly bent portion 26 integral with portion 24 .
- the upwardly extending portion 24 has generally parallel edges 25 , 27 and a substantially rectangular shape, as best seen in FIG. 6 .
- the outwardly bent portion 26 of tab 16 has inwardly tapered sides 22 , 23 to facilitate the insertion of tabs 16 into apertures 12 .
- the width of the tab portion 24 from edge 25 to edge 27 is about equal to or slightly greater than a length 29 of edge 20 , that extends between sides 18 and 19 ( FIG. 3 ) of aperture 12 .
- the apertures 12 and tabs 16 are oriented in their respective components or members 10 , 14 (or 110 , 14 ) so they are in register when the members are joined.
- the members 10 , 14 (or 110 , 14 ) are joined by inserting the tabs 16 into apertures 12 , and the members moved relative to one another so the tabs 16 move upwardly in apertures 12 . This wedges the tabs 16 frictionally in the tapered apertures 12 , holding the members 10 , 14 (or 110 , 14 ) rigidly together.
- bend portions 35 , 36 In a relaxed, free state condition, the configuration of bend portions 35 , 36 causes a substantially flat, planar surface 28 of the upwardly extending portion 24 of tab 16 to be displaced from a surface 30 of the substantially planar portion 17 of column 14 by a distance 32 ( FIG. 8 ).
- bend portions 35 and 36 are configured so that distance 32 is less than a width 34 ( FIG. 10 ) of the web 15 of member 10 . Accordingly, when members 10 and 14 or 110 and 14 are assembled, as subsequently discussed further, a clamping force is applied between a substantially planar surface 38 of web 15 of member 10 or member 110 and the substantially planar surface 28 of portion 24 of tab 16 .
- the magnitude of the clamping force can be varied by changing the configuration of bends portions 35 , 36 to change distance 32 as may be appreciated.
- the combination of the wedged tab and the flat surface engagement provides a strong, rigid, secure interconnection between the members 10 , 14 or 110 , 14 .
- Tab width and aperture taper can be selected to provide more gentle or more aggressive wedging action. Also, as discussed previously, tab bends can be selected so the joining process clamps one component against another, the “springiness” of the tabs holding or biasing the members together.
- members 10 or 110 are assembled, for example, to frame members such as column 14 for either bracing or support if shelves or items are to be stored directly thereon.
- This interconnection is produced merely by juxtaposing elements 10 , 14 or by juxtaposing elements 110 , 14 and moving them relative to each other so that tabs 16 are introduced into openings 12 . Further motion securely couples the elements together without the need for discrete fasteners.
- sheet metal members other than those illustrated herein can be so joined by the connectors and methodology of the present invention, and the openings and tabs of the connector of the present invention can be used in other materials and other configurations, such as cabinets, furniture, buildings, togs and the like.
- tabs 16 include a generally rectangular portion 24 wedged into a trapezoid shaped opening 12
- the rectangular portion 24 may be replaced with a portion having tapered sides for fitting in a rectangular opening, thus still attaining the frictionally wedging action.
- the previously described wedging action may be accomplished with openings and tabs having other shapes that are considered to be within the scope of the present invention.
Landscapes
- Assembled Shelves (AREA)
Abstract
A connector is provided for securing two members together. The connector includes an opening formed in one member and a tab extending from the other member. Either the opening or the tab is tapered for frictional engagement with the other when the members are joined.
Description
- This application claims the priority benefit of U.S. Patent Application Ser. No. 60/640,791, “Shelving Connector”, filed Dec. 30, 2004, which is expressly incorporated by reference herein in its entirety.
- This invention relates to the assembly of metal parts and more particularly to apparatus facilitating assembly of parts such as in sheet metal shelving or cabinets. Other applications are contemplated.
- Metal shelving is usually packaged in component pieces which are assembled to form shelving. Discrete fasteners are typically used in this process, as well as a variety of tab/slot arrangements as is well known. The use of discrete fasteners can increase cost and are the source of aggravation where quantities are mishandled or the like.
- Known tab and slot configurations can lack permanency and rigidity, especially when the shelving units are handled or manipulated. For instance, “bayonet-type” tab and slot configurations are known in the art and typically include a male tab protruding through an oversized slot so that movement of the tab within the slot is possible. In some instances, the slot may be oriented in a substantially vertical direction, with the bottom surface of the tab resting against the bottom of the slot via gravity. However, since the vertical dimension of the slot may be oversized relative to the vertical height of the tab, the tab and the member attached to the tab may move upwardly in response to the application of sufficient force, which can cause the assembled structure to wobble or to be otherwise undesirable.
- It is thus desired to provide improved connecting structure which produces position and rigid interconnection between elements of a structure such as a metal shelving or cabinet.
- To these ends, one aspect of the present invention is directed to a connector for securing two members together. The connector includes an opening or aperture formed in one member and a tab extending from the other member. At least one of the opening and the tab is tapered for frictional engagement with the other when the members are joined.
- In one illustrative embodiment, a generally rectangular portion of a tab integral with one member is frictionally and securely engaged within a trapezoid shaped opening formed in the other member when the two members are joined. However, other shapes of openings and tabs are considered to be within the scope of the present invention provided the tab is frictionally and securely engaged with the opening when the two members are joined.
- A second aspect of the present invention is directed to a method for securing two members together without the use of discrete fasteners. With the method of the present invention, a plurality of openings are formed in one member and a plurality of tabs are formed in the other member so they extend from the other member. The members are aligned so the openings and tabs are in register with one another and the tabs are inserted through aligned ones of the openings. One of the members is moved relative to the other thereby wedging the tabs into frictional engagement with the openings to securely join the members together.
- In one illustrative embodiment, trapezoid shaped openings are formed in one member with tabs being formed in the other member. The tabs include a substantially rectangular portion. Each male tab is inserted into the larger end of the female trapezoid shaped opening and then slid to the narrower end of the female trapezoid shaped opening “wedging” the substantially rectangular portion of the tab securely into the female part. The tab also makes contact with the flat surface adjacent the female part opening also gripping it to insure a tight fit.
- Assembly of the two components or members of a shelving unit wedges them together and the combination of the wedged components and the flat surface engagement provides a strong, rigid, secure interconnection between the components. Use of discrete fasteners for this joint is eliminated and the female and male elements can be provided by stamping in the forming of the components or members, reducing the cost.
- These and other advantages will be appreciated from the following written description and from the drawings in which:
-
FIG. 1 is a perspective view of a cross-brace or shelf support member of a shelving unit provided with a plurality of tapered female connecting elements according to one embodiment of the invention; -
FIG. 2 is a cross-sectional view taken generally along lines 2-2 ofFIG. 1 ; -
FIG. 3 is a plan, or flat pattern view of the developed member ofFIG. 1 ; -
FIG. 4 is a perspective view of another shelving member, such as a support column, showing a plurality of the male tab connecting elements according to one embodiment of the invention; -
FIG. 5 is a developed view of the member ofFIG. 4 ; -
FIG. 6 is an enlarged view of the encircled area ofFIG. 5 showing the male tab connecting element ofFIGS. 4 and 5 ; -
FIG. 7 is a cross-sectional view taken along lines 7-7 ofFIG. 4 ; -
FIG. 8 is a cross-sectional view taken along lines 8-8 ofFIG. 4 ; -
FIG. 9 is a perspective view illustrating cooperation of members like those ofFIG. 1 with that ofFIG. 4 ; -
FIG. 10 is a cross-section showing members ofFIGS. 1, 4 and 9 in interconnected configuration; -
FIG. 11 is a perspective view illustrating members ofFIGS. 1 and 4 in interconnected configuration; and -
FIG. 12 is a perspective view similar toFIG. 11 , illustrating another embodiment of the invention. -
FIG. 1 depicts a brace orcross member 10 of a shelving unit 40 (FIG. 11 ). Shelvingmember 10 preferably has top andbottom flanges web 15 and generally comprises, for example only, a sheet metal formed cross-brace or shelf support for a shelving unit 40 (FIG. 11 ). The top andbottom flanges web 15. In the embodiment illustrated inFIGS. 1-11 ,flanges web 15 asflanges web 15. However,flanges web 15 within the scope of the present invention. - In the illustrative embodiment shown in
FIGS. 1-11 ,member 10 is provided with a plurality of female connecting elements orcomponents 12 comprising inwardly tapered apertures or openings, from bottom to top. Each opening has atop edge 20,bottom edge 21 and taperedsides bottom edge 21 is about 0.010″ longer than thetop edge 20. In one embodiment,top edge 20 is 0.370″ long and bottom edge is 0.380″ long. Any suitable taper can be used. - The lower
female openings 12 may extend intolower flange 13 as best shown inFIGS. 1 and 9 . However, the lowerfemale openings 12 may also be disposed entirely withinweb 15. -
FIG. 12 illustrates ashelving unit 140 according to an alternate embodiment of the present invention. Shelvingunit 140 is the same asshelving unit 40, except thatmember 10 is replaced withmember 110.Member 110 does not include thebottom flange 13 ofmember 10 but can be otherwise the same asmember 10. Theweb 15 ofmember 110 includes a bottom orlower edge 112. A plurality of theopenings 12 are formed inweb 15, and the bottom openings 12 (only one is shown inFIG. 12 , with the other being obscured) open onto thebottom edge 112 ofweb 15. The utilization ofshelving unit 40 havingmembers 10 withlower flanges 13, or the use ofshelving unit 140 havingmembers 110 without lower flanges, can be based on one or more of the following considerations: cost, strength and spacing. - Another shelving member such as a formed
column 14 is shown inFIGS. 4-12 and is included inshelving unit 40 andshelving unit 140. This member in one embodiment comprises a formed sheet metal angle provided with a plurality ofmale tabs 16.Tabs 16 are integrally formed of the same material as the remainder ofcolumn 14, using any suitable stamping or other process. As shown inFIGS. 6-8 , eachtab 16 includes aproximal portion 33 integral with an adjacent, substantiallyplanar portion 17 ofcolumn 14. Theproximal portion 33 oftabs 16 includes first andsecond bend portions Tabs 16 further include an upwardly extendingportion 24 integral withproximal portion 33 and an outwardlybent portion 26 integral withportion 24. - In the illustrative embodiment, the upwardly extending
portion 24 has generallyparallel edges FIG. 6 . As also shown inFIG. 6 , the outwardlybent portion 26 oftab 16 has inwardly taperedsides tabs 16 intoapertures 12. - The width of the
tab portion 24 fromedge 25 to edge 27 is about equal to or slightly greater than alength 29 ofedge 20, that extends betweensides 18 and 19 (FIG. 3 ) ofaperture 12. - The
apertures 12 andtabs 16 are oriented in their respective components ormembers 10, 14 (or 110, 14) so they are in register when the members are joined. Themembers 10, 14 (or 110, 14) are joined by inserting thetabs 16 intoapertures 12, and the members moved relative to one another so thetabs 16 move upwardly inapertures 12. This wedges thetabs 16 frictionally in the taperedapertures 12, holding themembers 10, 14 (or 110, 14) rigidly together. - Note also in
FIG. 10 that rearflat surfaces 28 ofportions 24 oftabs 16 engageweb 15 ofmember 10, thus holding themembers web 15 is held againstcolumn 14 in each illustrated embodiment. This also applies totabs 16 engagingweb 15 ofmember 110, thus holding themembers - In a relaxed, free state condition, the configuration of
bend portions planar surface 28 of the upwardly extendingportion 24 oftab 16 to be displaced from asurface 30 of the substantiallyplanar portion 17 ofcolumn 14 by a distance 32 (FIG. 8 ). Preferably, bendportions distance 32 is less than a width 34 (FIG. 10 ) of theweb 15 ofmember 10. Accordingly, whenmembers planar surface 38 ofweb 15 ofmember 10 ormember 110 and the substantiallyplanar surface 28 ofportion 24 oftab 16. The magnitude of the clamping force can be varied by changing the configuration ofbends portions distance 32 as may be appreciated. - The combination of the wedged tab and the flat surface engagement provides a strong, rigid, secure interconnection between the
members - Tab width and aperture taper can be selected to provide more gentle or more aggressive wedging action. Also, as discussed previously, tab bends can be selected so the joining process clamps one component against another, the “springiness” of the tabs holding or biasing the members together.
- Due to the absence of fasteners, no tools are required for the connection of unit members. Instead, only joining, juxtapositioning and manipulation of the unit members are needed to provide secure interconnection.
- In use, then,
members column 14 for either bracing or support if shelves or items are to be stored directly thereon. This interconnection is produced merely by juxtaposingelements elements tabs 16 are introduced intoopenings 12. Further motion securely couples the elements together without the need for discrete fasteners. - It will be appreciated that sheet metal members other than those illustrated herein can be so joined by the connectors and methodology of the present invention, and the openings and tabs of the connector of the present invention can be used in other materials and other configurations, such as cabinets, furniture, buildings, togs and the like.
- Additionally, although the illustrated
tabs 16 include a generallyrectangular portion 24 wedged into a trapezoid shapedopening 12, alternately, therectangular portion 24 may be replaced with a portion having tapered sides for fitting in a rectangular opening, thus still attaining the frictionally wedging action. Also, the previously described wedging action may be accomplished with openings and tabs having other shapes that are considered to be within the scope of the present invention. - While the foregoing description has set forth preferred embodiments of the present invention in particular detail, numerous modifications, substitutions and changes will be appreciated without departing from the true spirit and scope of the present invention and applicant intends to be bound only by the claims appended hereto.
Claims (14)
1. A connector apparatus for securing two members together and comprising:
an opening formed in one member;
a tab extending from the other member;
one of said opening and said tab being tapered for frictional engagement with the other when the members are joined.
2. A connector apparatus as recited in claim 1 , wherein:
said tab includes a substantially flat surface; and
said substantially flat surface is in clamping engagement with the one member when the members are joined.
3. A connector apparatus as recited in claim 1 , wherein:
said one of said opening and said tab includes first and second sides, said first and second sides being tapered.
4. A connector apparatus as recited in claim 3 , wherein:
said one of said opening and said tab further includes a top edge and a bottom edge, said first and second sides being tapered inwardly from said bottom edge to said top edge.
5. A connector apparatus as recited in claim 4 , wherein:
said one of said opening and said tab is a trapezoid shaped opening, said tab being wedged into said trapezoid shaped opening when the members are joined.
6. A connector apparatus as recited in claim 1 , wherein:
said tab includes a proximal portion integral with an adjacent, substantially planar portion of the other member;
said tab further includes an upwardly extending portion integral with said proximal portion;
said proximal portion includes at least one bend portion, said bend portion being configured to cause said upwardly extending portion of said tab to be in clamping engagement with the one member when the members are joined.
7. A method of securing two members together without using discrete fasteners, wherein one member includes a plurality of openings, and another member includes a plurality of extending tabs, said method comprising the steps of:
aligning the members so the openings and the tabs are in register with one another;
inserting the tabs through aligned ones of the holes; and
moving at least one member relative to another and thereby wedging the tabs into frictional engagement with the openings so as to join the members to one another.
8. A method as recited in claim 7 , further comprising the step of:
clamping the two members together when moving them relative to one another when the tabs are disposed within the openings.
9. A method as recited in claim 8 , wherein the tabs have a flat surface and wherein the step of clamping includes the step of:
engaging said flat surface with the member having an opening therein.
10. A method as recited in claim 7 , wherein the opposing sides of the opening are tapered and the opening has substantially parallel top and bottom edges thereby creating substantially trapezoid shaped openings; and
wherein said step of securing said two members includes wedging said tabs into the opening between said tapered opposing sides.
11. A shelving unit comprising:
at least two columns disposed in spaced apart relationship with one another;
at least one shelf support, each said shelf support extending between and connected to each one of a pair of said columns;
each of said columns having one of a plurality of openings formed therein and a plurality of tabs extending therefrom;
each said shelf support having the other of said plurality of openings formed therein and said plurality of tabs extending therefrom;
one of said openings and said tabs being tapered for frictional engagement with aligned ones of the other of said tabs and said openings when each said shelf support is joined with each one of said pair of said columns.
12. A shelving unit as recited in claim 12 , wherein:
each said shelf support includes a top flange.
13. A shelving unit as recited in claim 13 , wherein:
each said shelf support further includes a bottom flange and a web, said top and bottom flanges being angled relative to said web.
14. A shelving unit as recited in claim 12 , wherein:
each said shelf support further includes a web having a bottom edge;
said openings are formed in said web and at least one of said openings in each said shelf support open onto to said bottom edge.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/262,856 US20060144809A1 (en) | 2004-12-30 | 2005-10-31 | Shelving connector |
US12/336,623 US20090090686A1 (en) | 2004-12-30 | 2008-12-17 | Shelving connector |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64079104P | 2004-12-30 | 2004-12-30 | |
US11/262,856 US20060144809A1 (en) | 2004-12-30 | 2005-10-31 | Shelving connector |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/336,623 Continuation US20090090686A1 (en) | 2004-12-30 | 2008-12-17 | Shelving connector |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060144809A1 true US20060144809A1 (en) | 2006-07-06 |
Family
ID=36639164
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/262,856 Abandoned US20060144809A1 (en) | 2004-12-30 | 2005-10-31 | Shelving connector |
US12/336,623 Abandoned US20090090686A1 (en) | 2004-12-30 | 2008-12-17 | Shelving connector |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/336,623 Abandoned US20090090686A1 (en) | 2004-12-30 | 2008-12-17 | Shelving connector |
Country Status (1)
Country | Link |
---|---|
US (2) | US20060144809A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060196842A1 (en) * | 2005-03-04 | 2006-09-07 | Taylor Harry R | Storage rack |
US20070011984A1 (en) * | 2003-04-17 | 2007-01-18 | National Oilwell, L.P. | Structural connector for a drilling rig substructure |
US20080145197A1 (en) * | 2006-12-15 | 2008-06-19 | Harry Randall Taylor | Roller rack |
US20080296243A1 (en) * | 2007-05-31 | 2008-12-04 | The Regents Of The University Of California | Seismic shelf restraint |
FR2946238A1 (en) * | 2009-06-03 | 2010-12-10 | Frambourg | Conveying display for shelves of stores to display clothes, has upper transversal angle bar rigidifying upper part and lower part of rigid vertical frame, and side angle bars receiving pin ramps |
GB2482708A (en) * | 2010-08-11 | 2012-02-15 | Peter Sully | Horizontal support beam for a shelving assembly |
US20150157144A1 (en) * | 2013-04-08 | 2015-06-11 | Presentoirs One Way Inc. | Modular shelving system |
US9167896B1 (en) * | 2014-10-21 | 2015-10-27 | Shuter Enterprise Co., Ltd. | Supporting rack assembly |
US9351567B2 (en) * | 2014-08-04 | 2016-05-31 | Jin Hee GO | Prefabricated shelf |
US9924797B2 (en) | 2015-01-29 | 2018-03-27 | Js Products, Inc. | Utility rack having end supports with folding cross-members |
US11553791B2 (en) * | 2017-10-05 | 2023-01-17 | Metalsistem S.P.A. | Modular structure for shelving |
US11647833B2 (en) | 2020-09-16 | 2023-05-16 | Perfect Site LLC | Utility rack |
US20230263300A1 (en) * | 2022-02-22 | 2023-08-24 | Qingdao Fuyou Tools Co., Ltd | Detachable shelf |
US11799275B2 (en) * | 2017-10-10 | 2023-10-24 | Vergokan, NV | Clickable cable trays |
US12144421B2 (en) * | 2023-05-15 | 2024-11-19 | Perfect Site LLC | Utility rack |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110042336A1 (en) * | 2009-08-20 | 2011-02-24 | Cheng Yang-Chiang | Combination shelf structure |
JP6305234B2 (en) * | 2014-06-16 | 2018-04-04 | 日野自動車株式会社 | Fixture |
TWM581428U (en) * | 2019-04-19 | 2019-08-01 | 邱武旭 | Laminate shelf structure of display rack |
US11700937B2 (en) * | 2020-09-08 | 2023-07-18 | Grillnetics LLC | Enclosure assembly system |
US11771015B1 (en) * | 2022-10-17 | 2023-10-03 | Josh Sale | Nursery shipping rack with removable shelving |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4158998A (en) * | 1976-05-12 | 1979-06-26 | The Mead Corporation | Shelf support structure |
US4729484A (en) * | 1983-10-14 | 1988-03-08 | Interlake, Corporation | Pallet rack construction |
US4967916A (en) * | 1989-04-17 | 1990-11-06 | Hirsh Company | Post and joint construction |
US5749482A (en) * | 1992-08-07 | 1998-05-12 | Unarco Material Handling, Inc. | Storage rack beam having surface enabling indicia at low elevation to be easily read |
US6123402A (en) * | 1996-06-21 | 2000-09-26 | Herman Miller, Inc. | Cabinet having a support for a slide mechanism |
US20020195410A1 (en) * | 2000-07-17 | 2002-12-26 | Lin Jin Shy | Screwless angle bar rack |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US918039A (en) * | 1907-12-04 | 1909-04-13 | August Grundmann | Shelf or case. |
US2948409A (en) * | 1958-07-11 | 1960-08-09 | Equipment Mfg Inc | Rack construction |
US3102641A (en) * | 1961-12-04 | 1963-09-03 | Speedrack Inc | Storage rack |
US3339750A (en) * | 1965-08-09 | 1967-09-05 | Hana Corp | Structural connector |
US4142638A (en) * | 1977-05-31 | 1979-03-06 | Husky Storage Systems, Inc. | Prefabricated storage shelves |
US4287994A (en) * | 1979-11-02 | 1981-09-08 | Unarco Industries, Inc. | Wedgable storage rack |
US4342397A (en) * | 1980-09-08 | 1982-08-03 | Halstrick Robert T | Fastenings for storage racks |
US4549665A (en) * | 1982-09-03 | 1985-10-29 | Republic Steel Corporation | Shelf assembly |
US4778067A (en) * | 1987-06-25 | 1988-10-18 | White Consolidated Industries, Inc. | Knock-down support structure for shelving units and method of assembly |
US5749481A (en) * | 1994-01-03 | 1998-05-12 | Miller; Myron W. | Storage rack and structural beam therefor |
US5485932A (en) * | 1994-05-03 | 1996-01-23 | Digital Equipment Corporation | Wall mountable modular component mounting system |
US5845794A (en) * | 1997-04-21 | 1998-12-08 | Unarco Material Handling, Inc. | Storage rack having snap-on beams |
TW539063U (en) * | 2002-07-01 | 2003-06-21 | Chi-Yi Lin | Improved parts rack structure |
US7252202B2 (en) * | 2003-11-17 | 2007-08-07 | Edsal Manufacturing Co., Inc. | Cargo rack |
-
2005
- 2005-10-31 US US11/262,856 patent/US20060144809A1/en not_active Abandoned
-
2008
- 2008-12-17 US US12/336,623 patent/US20090090686A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4158998A (en) * | 1976-05-12 | 1979-06-26 | The Mead Corporation | Shelf support structure |
US4729484A (en) * | 1983-10-14 | 1988-03-08 | Interlake, Corporation | Pallet rack construction |
US4967916A (en) * | 1989-04-17 | 1990-11-06 | Hirsh Company | Post and joint construction |
US5749482A (en) * | 1992-08-07 | 1998-05-12 | Unarco Material Handling, Inc. | Storage rack beam having surface enabling indicia at low elevation to be easily read |
US6123402A (en) * | 1996-06-21 | 2000-09-26 | Herman Miller, Inc. | Cabinet having a support for a slide mechanism |
US20020195410A1 (en) * | 2000-07-17 | 2002-12-26 | Lin Jin Shy | Screwless angle bar rack |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070011984A1 (en) * | 2003-04-17 | 2007-01-18 | National Oilwell, L.P. | Structural connector for a drilling rig substructure |
US20060196842A1 (en) * | 2005-03-04 | 2006-09-07 | Taylor Harry R | Storage rack |
US20080145197A1 (en) * | 2006-12-15 | 2008-06-19 | Harry Randall Taylor | Roller rack |
US20080296243A1 (en) * | 2007-05-31 | 2008-12-04 | The Regents Of The University Of California | Seismic shelf restraint |
FR2946238A1 (en) * | 2009-06-03 | 2010-12-10 | Frambourg | Conveying display for shelves of stores to display clothes, has upper transversal angle bar rigidifying upper part and lower part of rigid vertical frame, and side angle bars receiving pin ramps |
GB2482708A (en) * | 2010-08-11 | 2012-02-15 | Peter Sully | Horizontal support beam for a shelving assembly |
GB2482708B (en) * | 2010-08-11 | 2014-04-09 | Peter Sully | Horizontal support bean for a shelving unit |
US9204737B2 (en) * | 2013-04-08 | 2015-12-08 | Presentoirs One Way Inc. | Modular shelving system |
US20150157144A1 (en) * | 2013-04-08 | 2015-06-11 | Presentoirs One Way Inc. | Modular shelving system |
US9351567B2 (en) * | 2014-08-04 | 2016-05-31 | Jin Hee GO | Prefabricated shelf |
US9167896B1 (en) * | 2014-10-21 | 2015-10-27 | Shuter Enterprise Co., Ltd. | Supporting rack assembly |
US9924797B2 (en) | 2015-01-29 | 2018-03-27 | Js Products, Inc. | Utility rack having end supports with folding cross-members |
US10506880B2 (en) | 2015-01-29 | 2019-12-17 | Js Products, Inc. | Utility rack having end supports with folding cross-members |
US10806258B2 (en) | 2015-01-29 | 2020-10-20 | Js Products, Inc. | Utility rack having end supports with folding cross-members |
US11553791B2 (en) * | 2017-10-05 | 2023-01-17 | Metalsistem S.P.A. | Modular structure for shelving |
US11799275B2 (en) * | 2017-10-10 | 2023-10-24 | Vergokan, NV | Clickable cable trays |
US11647833B2 (en) | 2020-09-16 | 2023-05-16 | Perfect Site LLC | Utility rack |
US20230276941A1 (en) * | 2020-09-16 | 2023-09-07 | Perfect Site LLC | Utility rack |
US20230263300A1 (en) * | 2022-02-22 | 2023-08-24 | Qingdao Fuyou Tools Co., Ltd | Detachable shelf |
US12144421B2 (en) * | 2023-05-15 | 2024-11-19 | Perfect Site LLC | Utility rack |
Also Published As
Publication number | Publication date |
---|---|
US20090090686A1 (en) | 2009-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090090686A1 (en) | Shelving connector | |
US8585313B2 (en) | Post coupler | |
US5463966A (en) | Framework for shelving unit | |
US10612577B2 (en) | Table bracket | |
US20050246870A1 (en) | Spring fastener with highly improved removal to insertion ratio | |
JPH03117707A (en) | Flange fastening clip | |
US3465898A (en) | Connections for tiered storage rack units | |
KR100271081B1 (en) | Framework for shelving unit | |
CA2559322C (en) | Post coupler | |
KR200366190Y1 (en) | Apparatus for combining assembly frame | |
JPS61266808A (en) | System of mutually connecting panel of carton | |
JP5270386B2 (en) | furniture | |
KR200320244Y1 (en) | Prefabricating rack frame | |
JP7170313B2 (en) | Support structure for structures on steel floors | |
JPH0731714Y2 (en) | Joining bracket for frame material for assembly | |
JP2655394B2 (en) | Angle support joints | |
JPH03308A (en) | Connecting device for tabular object | |
JP3229948U (en) | Connecting bracket | |
JP4131373B2 (en) | Shelf board | |
JP4538700B2 (en) | Steel assembly bracket and C-shaped steel assembly | |
KR0133083Y1 (en) | Shelf-frame for a shelf | |
JP3886410B2 (en) | Horizontal material joining device | |
JP2896045B2 (en) | Aluminum hollow cross section chip joining device | |
WO2001065973A1 (en) | A shelf system and methods for assembling said shelf system | |
JP2005127039A (en) | Floor plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EDSAL MANUFACTURING CO., INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLLINS, JAMES E.;WOJOTOWICZ, DAVID J.;TROYNER, ANTHONY J.;REEL/FRAME:017316/0537 Effective date: 20051026 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |