US20060105972A1 - Method to enhance delivery of glutathione and ATP levels in cells - Google Patents
Method to enhance delivery of glutathione and ATP levels in cells Download PDFInfo
- Publication number
- US20060105972A1 US20060105972A1 US10/990,933 US99093304A US2006105972A1 US 20060105972 A1 US20060105972 A1 US 20060105972A1 US 99093304 A US99093304 A US 99093304A US 2006105972 A1 US2006105972 A1 US 2006105972A1
- Authority
- US
- United States
- Prior art keywords
- ribcys
- tissue
- mammal
- gsh
- administered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 title claims abstract description 126
- 229960003180 glutathione Drugs 0.000 title claims abstract description 63
- 108010024636 Glutathione Proteins 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims description 29
- 206010021143 Hypoxia Diseases 0.000 claims abstract description 28
- 230000007954 hypoxia Effects 0.000 claims abstract description 17
- 241000124008 Mammalia Species 0.000 claims abstract description 12
- 150000003839 salts Chemical class 0.000 claims abstract description 10
- 238000002560 therapeutic procedure Methods 0.000 claims abstract 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 35
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 claims description 21
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 claims description 21
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 claims description 21
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 13
- 235000018417 cysteine Nutrition 0.000 claims description 13
- 208000028867 ischemia Diseases 0.000 claims description 12
- 230000001146 hypoxic effect Effects 0.000 claims description 11
- 210000000056 organ Anatomy 0.000 claims description 9
- 238000001356 surgical procedure Methods 0.000 claims description 9
- 208000017667 Chronic Disease Diseases 0.000 claims description 5
- 206010028980 Neoplasm Diseases 0.000 claims description 5
- 238000010494 dissociation reaction Methods 0.000 claims description 4
- 230000005593 dissociations Effects 0.000 claims description 4
- 230000000302 ischemic effect Effects 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 208000018262 Peripheral vascular disease Diseases 0.000 claims description 3
- 208000004210 Pressure Ulcer Diseases 0.000 claims description 3
- 208000036142 Viral infection Diseases 0.000 claims description 3
- 230000037396 body weight Effects 0.000 claims description 3
- 201000011510 cancer Diseases 0.000 claims description 3
- 208000035143 Bacterial infection Diseases 0.000 claims description 2
- 208000031229 Cardiomyopathies Diseases 0.000 claims description 2
- 206010022562 Intermittent claudication Diseases 0.000 claims description 2
- 238000002399 angioplasty Methods 0.000 claims description 2
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 2
- 238000000338 in vitro Methods 0.000 claims description 2
- 208000021156 intermittent vascular claudication Diseases 0.000 claims description 2
- 238000002054 transplantation Methods 0.000 claims description 2
- 230000009385 viral infection Effects 0.000 claims 2
- 208000024172 Cardiovascular disease Diseases 0.000 claims 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 claims 1
- 206010040047 Sepsis Diseases 0.000 claims 1
- 208000001871 Tachycardia Diseases 0.000 claims 1
- 230000002526 effect on cardiovascular system Effects 0.000 claims 1
- 230000005980 lung dysfunction Effects 0.000 claims 1
- 230000002107 myocardial effect Effects 0.000 claims 1
- 208000002089 myocardial stunning Diseases 0.000 claims 1
- 208000013223 septicemia Diseases 0.000 claims 1
- 230000006794 tachycardia Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 20
- 210000001519 tissue Anatomy 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 14
- 229940002612 prodrug Drugs 0.000 description 14
- 239000000651 prodrug Substances 0.000 description 14
- 239000004201 L-cysteine Substances 0.000 description 11
- 235000013878 L-cysteine Nutrition 0.000 description 11
- KJQFBVYMGADDTQ-CVSPRKDYSA-N L-buthionine-(S,R)-sulfoximine Chemical compound CCCCS(=N)(=O)CC[C@H](N)C(O)=O KJQFBVYMGADDTQ-CVSPRKDYSA-N 0.000 description 10
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 9
- LNQVTSROQXJCDD-UHFFFAOYSA-N adenosine monophosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(CO)C(OP(O)(O)=O)C1O LNQVTSROQXJCDD-UHFFFAOYSA-N 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 7
- 210000003494 hepatocyte Anatomy 0.000 description 7
- PQGCEDQWHSBAJP-TXICZTDVSA-N 5-O-phosphono-alpha-D-ribofuranosyl diphosphate Chemical compound O[C@H]1[C@@H](O)[C@@H](O[P@](O)(=O)OP(O)(O)=O)O[C@@H]1COP(O)(O)=O PQGCEDQWHSBAJP-TXICZTDVSA-N 0.000 description 6
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 101800000628 PDH precursor-related peptide Proteins 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 4
- 229930024421 Adenine Natural products 0.000 description 4
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 4
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 229960000643 adenine Drugs 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 229960005489 paracetamol Drugs 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 3
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 3
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229930010555 Inosine Natural products 0.000 description 3
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 229960003786 inosine Drugs 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000008733 trauma Effects 0.000 description 3
- BMLMGCPTLHPWPY-REOHCLBHSA-N (4R)-2-oxo-4-thiazolidinecarboxylic acid Chemical compound OC(=O)[C@@H]1CSC(=O)N1 BMLMGCPTLHPWPY-REOHCLBHSA-N 0.000 description 2
- OGYGFUAIIOPWQD-UHFFFAOYSA-N 1,3-thiazolidine Chemical compound C1CSCN1 OGYGFUAIIOPWQD-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- 108010081687 Glutamate-cysteine ligase Proteins 0.000 description 2
- 108010053070 Glutathione Disulfide Proteins 0.000 description 2
- 108010063907 Glutathione Reductase Proteins 0.000 description 2
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- -1 Lipid Peroxides Chemical class 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 229960005305 adenosine Drugs 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 208000031225 myocardial ischemia Diseases 0.000 description 2
- 231100000417 nephrotoxicity Toxicity 0.000 description 2
- 230000004145 nucleotide salvage Effects 0.000 description 2
- 230000004108 pentose phosphate pathway Effects 0.000 description 2
- 210000000664 rectum Anatomy 0.000 description 2
- 230000010410 reperfusion Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- QSZRHMZKUUXBNB-LOLRQIBTSA-N (2S)-2-amino-5-[[(2R)-1-(carboxymethylamino)-1-oxo-3-sulfanylpropan-2-yl]amino]-5-oxopentanoic acid 5-[(3-carboxy-4-nitrophenyl)disulfanyl]-2-nitrobenzoic acid Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O.C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 QSZRHMZKUUXBNB-LOLRQIBTSA-N 0.000 description 1
- 0 *C1N[C@H](C(=O)O)CS1 Chemical compound *C1N[C@H](C(=O)O)CS1 0.000 description 1
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- KIUMMUBSPKGMOY-UHFFFAOYSA-N 3,3'-Dithiobis(6-nitrobenzoic acid) Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 KIUMMUBSPKGMOY-UHFFFAOYSA-N 0.000 description 1
- 108090000900 5-oxoprolinase (ATP-hydrolyzing) Proteins 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 201000010053 Alcoholic Cardiomyopathy Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 101100005765 Arabidopsis thaliana CDF1 gene Proteins 0.000 description 1
- 101100007579 Arabidopsis thaliana CPP1 gene Proteins 0.000 description 1
- 206010003175 Arterial spasm Diseases 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 206010007637 Cardiomyopathy alcoholic Diseases 0.000 description 1
- 206010007733 Catabolic state Diseases 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 102100039696 Glutamate-cysteine ligase catalytic subunit Human genes 0.000 description 1
- 108010036164 Glutathione synthase Proteins 0.000 description 1
- 102100034294 Glutathione synthetase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- RITKHVBHSGLULN-WHFBIAKZSA-N L-gamma-glutamyl-L-cysteine Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(O)=O RITKHVBHSGLULN-WHFBIAKZSA-N 0.000 description 1
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 208000019155 Radiation injury Diseases 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 206010040943 Skin Ulcer Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- AGZXTDUDXXPCMJ-XCASYZLESA-N [H]C1(C(O)C(O)C(O)CO)N[C@H](C(=O)O)CS1 Chemical compound [H]C1(C(O)C(O)C(O)CO)N[C@H](C(=O)O)CS1 AGZXTDUDXXPCMJ-XCASYZLESA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000011833 dog model Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229940049906 glutamate Drugs 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 230000002650 habitual effect Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 208000012947 ischemia reperfusion injury Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- GWNVDXQDILPJIG-NXOLIXFESA-N leukotriene C4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@H]([C@@H](O)CCCC(O)=O)SC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O GWNVDXQDILPJIG-NXOLIXFESA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 231100000189 neurotoxic Toxicity 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000021590 normal diet Nutrition 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000000082 organ preservation Substances 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000008024 pharmaceutical diluent Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 231100000019 skin ulcer Toxicity 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/7056—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0271—Chimeric vertebrates, e.g. comprising exogenous cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/426—1,3-Thiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0331—Animal model for proliferative diseases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
Definitions
- GSH glutathione
- GSH glutathione
- nucleotide precursors that may be present in the tissue are converted to AMP and further phosphorylated to ATP.
- Adenosine is directly phosphorylated to AMP, while xanthine and inosine are first ribosylated by 5-phosphoribosyl-1-pyrophosphate (PRPP) and then converted to AMP.
- PRPP 5-phosphoribosyl-1-pyrophosphate
- Ribose is found in the normal diet only in very low amounts, and is synthesized within the body by the pentose phosphate pathway. In the de novo synthetic pathway, ribose is phosphorylated to PRPP, and condensed with adenine to form the intermediate adenosine monophosphate (AMP). AMP is further phosphorylated via high energy bonds to form adenosine diphosphate (ADP) and ATP.
- AMP adenosine diphosphate
- ATP ATP loses one high energy bond to form ADP, which can be hydrolyzed to AMP.
- AMP and its metabolites adenine, inosine and hypoxanthine are freely diffusible from the muscle cell and may not be available for resynthesis to ATP via the salvage pathway.
- PRPP The availability of PRPP appears to control the activity of both the salvage and de novo pathways, as well as the direct conversion of adenine to ATP.
- G6PDH glucose-6-phosphate dehydrogenase
- Glucose is converted by enzymes such as G6PDH to ribose-5-phosphate and further phosphorylated to PRPP, which augments the de novo and salvage pathways, as well as the utilization of adenine.
- hypoxia many conditions produce hypoxia. Such conditions include acute or chronic ischemia when blood flow to the tissue is reduced due to coronary artery disease or peripheral vascular disease where the artery is partially blocked by atherosclerotic plaques.
- U.S. Pat. No. 4,719,201 it is disclosed that when ATP is hydrolyzed to AMP in cardiac muscle during ischemia, the AMP is further metabolized to adenosine, inosine and hypoxanthine, which are lost from the cell upon reperfusion. In the absence of AMP, rephosphorylation to ADP and ATP cannot take place. Since the precursors were washed from the cell, the nucleotide salvage pathway is not available to replenish ATP levels. It is disclosed that when ribose is administered via intravenous perfusion into a heart recovering from ischemia, recovery of ATP levels is enhanced.
- Transient hypoxia frequency occurs in individuals undergoing anesthesia and/or surgical procedures in which blood flow to a tissue is temporarily interrupted. Peripheral vascular disease can be mimicked in intermittent claudication where temporary arterial spasm causes similar symptoms. Finally, persons undergoing intense physical exercise or encountering high altitudes may become hypoxic.
- U.S. Pat. No. 6,218,366 discloses that tolerance to hypoxia can be increased by the administration of ribose prior to the hypoxic event.
- GSH Hypoxia or ischemia can also deplete GSH.
- strenuous aerobic exercise can also deplete antioxidants from the skeletal muscles, and sometimes also from the other organs.
- Exercise increases the body's oxidative burden by calling on the tissues to generate more energy. Making more ATP requires using more oxygen, and this in turn results in greater production of oxygen free radicals.
- GSH is depleted by exercise, and that for the habitual exerciser supplementation with GSH precursors may be effective in maintaining performance levels. See L. L. Ji, Free Rad. Biol. Med., 18, 1079 (1995).
- Tissue injury as from burns, ischemia and reperfusion, surgery, septic shock, or trauma can also deplete tissue GSH.
- K. Yagi Lipid Peroxides in Biology and Medicine, Academic Press, N.Y. (1982) at pages 223-242; A. Blaustein et al., Circulation, 80, 1449 (1989); H. B. Demopoulos, Pathology of Oxygen, A. P. autor, ed., Academic Press, N.Y. (1982) at pages 127-128; J. Vina et al., Brit. J. Nutr., 68, 421 (1992); C. D. Spies et al., Crit. Care Med., 22, 1738 (1994); B. M. Lomaestro et al., Annals. Pharmacother., 29, 1263 (1995) and P. M. Kidd, Alt. Med. Res., 2, 155 (1992).
- L-2-Oxothiazolidine-4-carboxylate is converted to L-cysteine via the enzyme 5-oxo-L-prolinase.
- the dissociation to yield L-cysteine necessarily releases an equimolar amount of the aldehyde (3), RCHO.
- R is an aromatic or an alkyl residue
- U.S. Pat. No. 4,868,114 discloses a method comprising stimulating the biosynthesis of glutathione in mammalian cells by contacting the cells with an effective amount of a compound of the formula (1): wherein R is a (CHOH) n CH 2 OH and wherein n is 1-5.
- the compound wherein n is 3 is 2(R,S)-D-ribo-(1′, 2′, 3′, 4′-tetrahydroxybutyl)thiazolidone-4(R)-carboxylic acid (Ribose-Cysteine, RibCys).
- RibCys releases cysteine by non-enzymatic hydrolysis.
- RibCys has been demonstrated to be effective to protect against acetaminophen-induced hepatic and renal toxicity. A. M. Lucus, Toxicol. Pathol., 28, 697 (2000). RibCys can also protect the large and small bowel against radiation injury. See M. P. Caroll et al., Dis. Colon Rectum, 38, 716 (1995). These protective effects are believed to be due to the stimulation of GSH biosynthesis, which elevates intracellular GSH.
- the present invention provides a method to treat a mammal threatened by, or afflicted with a hypoxic condition (hypoxia) comprising administering an effective amount of a compound of formula (Ia): (RibCys) or a pharmaceutically acceptable salt thereof, effective to counteract the effects of said hypoxia in the tissue(s) of said mammal.
- a compound of formula (Ia): (RibCys) or a pharmaceutically acceptable salt thereof effective to counteract the effects of said hypoxia in the tissue(s) of said mammal.
- GSH precursor such as cysteine
- administration of effective amounts of RibCys can deliver amounts of ribose to ATP-depleted tissues that stimulate the in vivo synthesis of ATP and that also can stimulate the synthesis of NADPH (nicotinamide adenine dinucleotide phosphate, reduced).
- compound (Ia) can be administered with an additional amount of free ribose.
- administration will be by oral administration, particularly in prophylactic or pre-loading situations, but parenteral administration, as by injection or infusion, may be necessary in some situations.
- FIG. 1 depicts the metabolic synthesis of glutathione (GSH) from L-glutanic acid.
- FIG. 2 depicts the in vivo dissociation of a compound of formula I to yield cysteine and an aldehyde.
- RibCys refers to 2(R,S)-D-ribo-(1′, 2′, 3′, 4′-tetrahydroxybutyl)thiazolidine-4(R)-carboxylic acid, as well as the 2R or 2S enantiomers of (Ia), and its pharmaceutically acceptable salts.
- Such salts include alkali metal salts of the carboxylic acid moiety as well as stable acid addition salts of the NH moiety, including salts of both inorganic and organic acids, such as citrate, malate, gluconate, glutamate, hydrochloride, hydrosulfate and the like.
- hypoxia or “hypoxic condition” is defined to mean a condition in which oxygen in one or more tissues of a mammal is lowered below physiologic levels, e.g., to a less than optimal level.
- Hypoxia also includes conditions in which oxygen levels are lowered in tissues due to stress such as aerobic exercise, physical weight pressure, anesthesia, surgery, anemia, acute respiratory distress syndrome, chronic illness, chronic fatigue syndrome, trauma, burns, skin ulcers, cachexia due to cancer and other catabolic states and the like.
- Hypoxia also includes “ischemia” or “ischemic conditions” in which tissues are oxygen-deprived due to reduction in blood flow, as due to constriction in, or blockage of, a blood vessel.
- Ischemia and/or ischemic conditions include those caused by coronary artery disease, cardiomyopathy, including alcoholic cardiomyopathy, angioplasty, stenting, heart surgery such as bypass surgery or heart repair surgery (“open-heart surgery” ), organ transplantation, prolonged weight pressure on tissues (pressure ulcers or bedsores), ischemia-reperfusion injury which can cause damage to transplanted organs or tissue, and the like.
- the present invention is effective to treat the GSH and ATP depletion due to hypoxia and thus to increase a subject's energy level strength and well-being, even though the underlying cause of the hypoxic condition, such as viral or bacterial infection, exposure to bacterial or other toxins, low red-cell counts, aging, cancer or continued exercise, is not affected.
- treating includes the effects of RibCys administration to both healthy and patients afflicted with chronic or acute illness and includes inducing protective affects as well as decreasing at least one symptom of a past or ongoing hypoxic condition.
- RibCys Effective doses of RibCys will vary dependent upon the condition, age and weight of the patient to be treated, the condition to be treated and the mode of administration. Both cysteine, as released in vivo from RibCys in animal models, and ribose, as administered directly to human subjects, have been found to be essentially non-toxic over wide dosage ranges. For example, ribose has been reported to increase exercise capacity in healthy human subjects when taken orally at dosages of 8-10 g per day by an adult. See U.S. Pat. No. 6,534,480. RibCys administered to mice at 8 mmol/kg i.p., increased glutathione levels in numerous organs, including heart (1.5 ⁇ ) and muscle tissue (2.5 ⁇ ). See, J. C.
- RibCys at 8 mmol/kg has been found to deliver effective protective amounts of cysteine to mice exposed to cyclophosphamide. This dose can deliver about 70-80 g of ribose and about 60-70 g of cysteine to an adult human. See J. C. Roberts, Anticancer Res., 14, 383 (1994). Doses of 2 g/kg RibCys were reported to protect mice against acetaminophen hepatic and renal toxicity by A. M. Lucas et al., Toxicol. Pathol., 20, 697 (2000).
- these compounds, and the pharmaceutically acceptable salts thereof can be administered in the form of a pharmaceutical unit dosage form comprising the active ingredient in combination with a pharmaceutically acceptable carrier, which can be a solid, semi-solid, or liquid diluent.
- a pharmaceutically acceptable carrier which can be a solid, semi-solid, or liquid diluent.
- a unit dosage of the compound can also be administered without a carrier material.
- pharmaceutical preparations include, but are not limited to, tablets, powders, capsules, aqueous solutions, suspensions including concentrates, liposomes, and other slow-releasing formulations, as well as transdermal delivery forms.
- the unit dosage form includes about 0.001-99% of the active substance.
- the compounds can be delivered by any suitable means, e.g., topically, orally, parenterally.
- the delivery form is liquid or a solid such as a powder that can be stirred into an ingestible liquid.
- Standard pharmaceutical carriers for topical, oral, or parenteral compositions may be used, many of which are described in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa.
- suitable pharmaceutical carriers or diluents can include mannitol, lactose, starch, magnesium stearate, talcum, glucose, and magnesium carbonate.
- Oral compositions can be in the form of tablets, capsules, powders, solutions, suspensions, sustained release formulations, and the like.
- a typical tablet or capsule can contain 40-99% lactose, 1-2% magnesium stearate, and 10-20% cornstarch, along with the active substance (preferably about 0.001-20%).
- An aqueous solution can contain up to the saturation level of RibCys or its salt, preferably with an amount of ribose added that is effective to prevent or inhibit premature in vitro dissociation.
- suitable pharmaceutical carriers can include water, saline, dextrose, Hank's solution, Ringer's solution, glycerol, and the like.
- Parenteral compositions can be in the form of suspensions, solutions, emulsions, and the like. Parenteral administration is usually by injection or infusion which can be subcutaneous, intramuscular, or intravenous.
- Rat hepatocytes were isolated following the methods of P. O. Seglen, Exper. Cell Res., 74, 450 (1972). After final plating, the hepatocytes were maintained in culture for 24 hr prior to use. Only primary cultures were used throughout the studies. The hepatocytes were incubated with cysteine prodrugs NAC and (Ia) for a 4-hr period, and after removal of media by aspiration, the cells were rinsed with cold phosphate-buffered saline and deproteinized with 5% sulfosalicylic acid.
- Total GSH content was determined by a modification of the DTNB [5,5′-dithiobis(2-nitrobenzoic acid)] glutathione reductase recycling method of F. Tietze, Anal. Biochem., 27, 502 (1969).
- the GSH concentration in the sample was quantified by determining the cycling rate ( ⁇ OD at 412 nm/min) of the sample.
- the cells were pre-exposed to BSO (0.20 mM) before treatment with the L-cysteine prodrugs.
- N-Acetyl-L-cysteine the drug presently used for the clinical treatment of acetaminophen overdoses, also raised GSH levels by 30% in this system, but required 2.5 times the concentration of the thiazolidine prodrugs for comparable elevation.
- BSO buthionine sulfoxime
- GSH glutathione
- cysteine/ribose pro-drug RibCys is also expected to be applicable to any tissue or organ that has suffered hypoxia, such as an ischemic insult where antioxidant augmentation and ATP recovery would be helpful.
- these situations include but are not limited to: myocardial infarction, stroke, organ transplant with organ preservation, neonatal support, multi-organ system failures, shock and trauma resulting in compromised circulation, and the like.
- the present invention provides a method whereby hypoxic tissue can be treated so as to quickly regain and maintain normal ATP levels, both to improve tissue survival and to hasten general bodily recovery.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Husbandry (AREA)
- Zoology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Pulmonology (AREA)
- Vascular Medicine (AREA)
- Urology & Nephrology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Thiazole And Isothizaole Compounds (AREA)
Abstract
Description
- The protective mechanisms of mammalian cells against exogeneous and endogenous stressors that generate harmful free radicals employ the antioxidant co-enzyme, glutathione (GSH). GSH is important in maintaining the structural integrity of cell and organelle membranes and in the synthesis of microtubules and macromolecules. See C. D. Klassen et al. Fundamental and Applied Toxicology, 5, 806 (1985). Stimulation of GSH synthesis in rat renal epithelial cells and stomach cells has been found to protect the cells from the toxic effects of cyclophosphamide and serotonin, respectively. Conversely, inhibition of glutathione synthesis and glutathione depletion has been found to have the following effects: (a) decreased cell viability, (b) increased sensitivity of cells to the effects or irradiation, (c) increased sensitivity of tumor cells to peroxide cytolysis, (d) decreased synthesis of prostaglandin E and leukotriene C and (e) selective destruction of trypanosomes in mice.
- Biosynthesis of glutathione (GSH) involves two sequential reactions that utilize ATP and that are catalyzed by the enzymes γ-glutamylcysteine synthetase and glutathione synthetase (GSH-synthetase) using the three precursor amino acids L-glutamic acid, L-cysteine, and glycine, as shown in
FIG. 1 . - All substrate-level reactants occur at near enzyme-saturating concentrations in vivo with the exception of L-cysteine, whose cellular concentration is exceedingly low. Therefore, the first reaction in which L-cysteine is required, i.e., the synthesis of γ-L-glutamyl-L-cysteine, is the rate-limiting step of glutathione biosynthesis. Thus, the availability of intracellular L-cysteine is a critical factor in the overall biosynthesis of GSH, are sufficient stores of ATP.
- In the synthesis of ATP via the nucleotide salvage pathway, the nucleotide precursors that may be present in the tissue are converted to AMP and further phosphorylated to ATP. Adenosine is directly phosphorylated to AMP, while xanthine and inosine are first ribosylated by 5-phosphoribosyl-1-pyrophosphate (PRPP) and then converted to AMP.
- Ribose is found in the normal diet only in very low amounts, and is synthesized within the body by the pentose phosphate pathway. In the de novo synthetic pathway, ribose is phosphorylated to PRPP, and condensed with adenine to form the intermediate adenosine monophosphate (AMP). AMP is further phosphorylated via high energy bonds to form adenosine diphosphate (ADP) and ATP.
- During energy consumption, ATP loses one high energy bond to form ADP, which can be hydrolyzed to AMP. AMP and its metabolites adenine, inosine and hypoxanthine are freely diffusible from the muscle cell and may not be available for resynthesis to ATP via the salvage pathway.
- The availability of PRPP appears to control the activity of both the salvage and de novo pathways, as well as the direct conversion of adenine to ATP. Production of PRPP from glucose via the pentose phosphate pathway appears to be limited by the enzyme glucose-6-phosphate dehydrogenase (G6PDH). Glucose is converted by enzymes such as G6PDH to ribose-5-phosphate and further phosphorylated to PRPP, which augments the de novo and salvage pathways, as well as the utilization of adenine.
- Many conditions produce hypoxia. Such conditions include acute or chronic ischemia when blood flow to the tissue is reduced due to coronary artery disease or peripheral vascular disease where the artery is partially blocked by atherosclerotic plaques. In U.S. Pat. No. 4,719,201, it is disclosed that when ATP is hydrolyzed to AMP in cardiac muscle during ischemia, the AMP is further metabolized to adenosine, inosine and hypoxanthine, which are lost from the cell upon reperfusion. In the absence of AMP, rephosphorylation to ADP and ATP cannot take place. Since the precursors were washed from the cell, the nucleotide salvage pathway is not available to replenish ATP levels. It is disclosed that when ribose is administered via intravenous perfusion into a heart recovering from ischemia, recovery of ATP levels is enhanced.
- Transient hypoxia frequency occurs in individuals undergoing anesthesia and/or surgical procedures in which blood flow to a tissue is temporarily interrupted. Peripheral vascular disease can be mimicked in intermittent claudication where temporary arterial spasm causes similar symptoms. Finally, persons undergoing intense physical exercise or encountering high altitudes may become hypoxic. U.S. Pat. No. 6,218,366 discloses that tolerance to hypoxia can be increased by the administration of ribose prior to the hypoxic event.
- Hypoxia or ischemia can also deplete GSH. For example, strenuous aerobic exercise can also deplete antioxidants from the skeletal muscles, and sometimes also from the other organs. Exercise increases the body's oxidative burden by calling on the tissues to generate more energy. Making more ATP requires using more oxygen, and this in turn results in greater production of oxygen free radicals. Studies in humans and animals indicate GSH is depleted by exercise, and that for the habitual exerciser supplementation with GSH precursors may be effective in maintaining performance levels. See L. L. Ji, Free Rad. Biol. Med., 18, 1079 (1995).
- Tissue injury, as from burns, ischemia and reperfusion, surgery, septic shock, or trauma can also deplete tissue GSH. See, e.g., K. Yagi, Lipid Peroxides in Biology and Medicine, Academic Press, N.Y. (1982) at pages 223-242; A. Blaustein et al., Circulation, 80, 1449 (1989); H. B. Demopoulos, Pathology of Oxygen, A. P. Autor, ed., Academic Press, N.Y. (1982) at pages 127-128; J. Vina et al., Brit. J. Nutr., 68, 421 (1992); C. D. Spies et al., Crit. Care Med., 22, 1738 (1994); B. M. Lomaestro et al., Annals. Pharmacother., 29, 1263 (1995) and P. M. Kidd, Alt. Med. Res., 2, 155 (1992).
- It has been hypothesized that delivery of L-cysteine to mammalian cells can elevate GSH levels by supplying this biochemical GSH precursor to the cell. However, cysteine itself is neurotoxic when administered to mammals, and is rapidly degraded. In previous studies, it was shown that N-acetyl-L-cysteine, L-2-oxothiazolidine-4-carboxylate, as well as 2(R,S)-n-propyl-, 2(R,S)-n-pentyl and 2(R,S)-methyl-thiazolidine-4R-carboxylate can protect mice from heptatotoxic dosages of acetaminophen. See H. T. Nagasawa et al., J. Med. Chem., 27, 591 (1984) and A. Meister et al., U.S. Pat. No. 4,335,210. L-2-Oxothiazolidine-4-carboxylate is converted to L-cysteine via the enzyme 5-oxo-L-prolinase. As depicted in
FIG. 2 , compounds offormula 1, e.g., wherein R=CH3, function as prodrug forms of L-cysteine (2), liberating this sulfhydryl amino aciuc by nonenzymatic ring opening and hydrolysis. However, the dissociation to yield L-cysteine necessarily releases an equimolar amount of the aldehyde (3), RCHO. In prodrugs in which R is an aromatic or an alkyl residue, the potential for toxic effects is present. - U.S. Pat. No. 4,868,114 discloses a method comprising stimulating the biosynthesis of glutathione in mammalian cells by contacting the cells with an effective amount of a compound of the formula (1):
wherein R is a (CHOH)nCH2OH and wherein n is 1-5. The compound wherein n is 3 is 2(R,S)-D-ribo-(1′, 2′, 3′, 4′-tetrahydroxybutyl)thiazolidone-4(R)-carboxylic acid (Ribose-Cysteine, RibCys). Following in vivo administration, RibCys releases cysteine by non-enzymatic hydrolysis. RibCys has been demonstrated to be effective to protect against acetaminophen-induced hepatic and renal toxicity. A. M. Lucus, Toxicol. Pathol., 28, 697 (2000). RibCys can also protect the large and small bowel against radiation injury. See M. P. Caroll et al., Dis. Colon Rectum, 38, 716 (1995). These protective effects are believed to be due to the stimulation of GSH biosynthesis, which elevates intracellular GSH. However, a need exists for methods to restore or maintain intracellular GSH stores in mammalian tissues subjected to hypoxic conditions in which the ATP stores necessary to drive the biosynthesis of GSH and its precursors are depleted. - The present invention provides a method to treat a mammal threatened by, or afflicted with a hypoxic condition (hypoxia) comprising administering an effective amount of a compound of formula (Ia):
(RibCys) or a pharmaceutically acceptable salt thereof, effective to counteract the effects of said hypoxia in the tissue(s) of said mammal. Although depressed glutathione levels have been implicated in a number of hypoxic conditions, as discussed above, the use of RibCys or its salts to prevent, counteract or otherwise treat such conditions has not been reported. It is believed that simply administering a GSH precursor such as cysteine will not be as effective in many instances of hypoxia, when the depletion of ATP stores contributes to inhibition to the biosynthesis of GSH. As well as functioning as a prodrug for cysteine, administration of effective amounts of RibCys can deliver amounts of ribose to ATP-depleted tissues that stimulate the in vivo synthesis of ATP and that also can stimulate the synthesis of NADPH (nicotinamide adenine dinucleotide phosphate, reduced). This coenzyme supplies the electrons to glutathione reductase, which in turn recycles oxidized GSH via GSSG, to free GSH, which resumes its protective role as a cofactor for antioxidant enzymes in the cell. Optionally, compound (Ia) can be administered with an additional amount of free ribose. Preferably, administration will be by oral administration, particularly in prophylactic or pre-loading situations, but parenteral administration, as by injection or infusion, may be necessary in some situations. -
FIG. 1 depicts the metabolic synthesis of glutathione (GSH) from L-glutanic acid. -
FIG. 2 depicts the in vivo dissociation of a compound of formula I to yield cysteine and an aldehyde. - As used herein, the term RibCys refers to 2(R,S)-D-ribo-(1′, 2′, 3′, 4′-tetrahydroxybutyl)thiazolidine-4(R)-carboxylic acid, as well as the 2R or 2S enantiomers of (Ia), and its pharmaceutically acceptable salts. Such salts include alkali metal salts of the carboxylic acid moiety as well as stable acid addition salts of the NH moiety, including salts of both inorganic and organic acids, such as citrate, malate, gluconate, glutamate, hydrochloride, hydrosulfate and the like.
- As used herein, the term “hypoxia” or “hypoxic condition” is defined to mean a condition in which oxygen in one or more tissues of a mammal is lowered below physiologic levels, e.g., to a less than optimal level. Hypoxia also includes conditions in which oxygen levels are lowered in tissues due to stress such as aerobic exercise, physical weight pressure, anesthesia, surgery, anemia, acute respiratory distress syndrome, chronic illness, chronic fatigue syndrome, trauma, burns, skin ulcers, cachexia due to cancer and other catabolic states and the like. Hypoxia also includes “ischemia” or “ischemic conditions” in which tissues are oxygen-deprived due to reduction in blood flow, as due to constriction in, or blockage of, a blood vessel. Ischemia and/or ischemic conditions include those caused by coronary artery disease, cardiomyopathy, including alcoholic cardiomyopathy, angioplasty, stenting, heart surgery such as bypass surgery or heart repair surgery (“open-heart surgery” ), organ transplantation, prolonged weight pressure on tissues (pressure ulcers or bedsores), ischemia-reperfusion injury which can cause damage to transplanted organs or tissue, and the like. The present invention is effective to treat the GSH and ATP depletion due to hypoxia and thus to increase a subject's energy level strength and well-being, even though the underlying cause of the hypoxic condition, such as viral or bacterial infection, exposure to bacterial or other toxins, low red-cell counts, aging, cancer or continued exercise, is not affected.
- The term “treating” or “treatment” as used herein includes the effects of RibCys administration to both healthy and patients afflicted with chronic or acute illness and includes inducing protective affects as well as decreasing at least one symptom of a past or ongoing hypoxic condition.
- Effective doses of RibCys will vary dependent upon the condition, age and weight of the patient to be treated, the condition to be treated and the mode of administration. Both cysteine, as released in vivo from RibCys in animal models, and ribose, as administered directly to human subjects, have been found to be essentially non-toxic over wide dosage ranges. For example, ribose has been reported to increase exercise capacity in healthy human subjects when taken orally at dosages of 8-10 g per day by an adult. See U.S. Pat. No. 6,534,480. RibCys administered to mice at 8 mmol/kg i.p., increased glutathione levels in numerous organs, including heart (1.5×) and muscle tissue (2.5×). See, J. C. Roberts, Toxicol. Lett., 59, 245 (1991). Likewise, RibCys at 8 mmol/kg has been found to deliver effective protective amounts of cysteine to mice exposed to cyclophosphamide. This dose can deliver about 70-80 g of ribose and about 60-70 g of cysteine to an adult human. See J. C. Roberts, Anticancer Res., 14, 383 (1994). Doses of 2 g/kg RibCys were reported to protect mice against acetaminophen hepatic and renal toxicity by A. M. Lucas et al., Toxicol. Pathol., 20, 697 (2000). Doses of 1 g/kg RibCys were reported to protect mice against irradiation-induced bowel injury (see J. K. Rowe et al., Dis. Colon Rectum, 36, 681 (1993). J. E. Fuher (U.S. Pat. No. 4,719,201) reported that doses of ribose of about 3 g/day for at least 5 days effectively restored and maintained ATP levels in dogs subjected to ischemia (heart attack model), doses that delivered about 550-700 mg/kg of ribose to an 30 kg dog.
- In clinical practice, these compounds, and the pharmaceutically acceptable salts thereof, can be administered in the form of a pharmaceutical unit dosage form comprising the active ingredient in combination with a pharmaceutically acceptable carrier, which can be a solid, semi-solid, or liquid diluent. A unit dosage of the compound can also be administered without a carrier material. Examples of pharmaceutical preparations include, but are not limited to, tablets, powders, capsules, aqueous solutions, suspensions including concentrates, liposomes, and other slow-releasing formulations, as well as transdermal delivery forms. Typically, the unit dosage form includes about 0.001-99% of the active substance.
- The compounds can be delivered by any suitable means, e.g., topically, orally, parenterally. Preferably, the delivery form is liquid or a solid such as a powder that can be stirred into an ingestible liquid. Standard pharmaceutical carriers for topical, oral, or parenteral compositions may be used, many of which are described in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa.
- For example, for oral administration, suitable pharmaceutical carriers or diluents can include mannitol, lactose, starch, magnesium stearate, talcum, glucose, and magnesium carbonate. Oral compositions can be in the form of tablets, capsules, powders, solutions, suspensions, sustained release formulations, and the like. A typical tablet or capsule can contain 40-99% lactose, 1-2% magnesium stearate, and 10-20% cornstarch, along with the active substance (preferably about 0.001-20%). An aqueous solution can contain up to the saturation level of RibCys or its salt, preferably with an amount of ribose added that is effective to prevent or inhibit premature in vitro dissociation.
- For parenteral administration, suitable pharmaceutical carriers can include water, saline, dextrose, Hank's solution, Ringer's solution, glycerol, and the like. Parenteral compositions can be in the form of suspensions, solutions, emulsions, and the like. Parenteral administration is usually by injection or infusion which can be subcutaneous, intramuscular, or intravenous.
- This compound was synthesized using ribose (Rib) as described by R. Bognar et al., Z. Liebigs Ann. Chem., 738, 68 (1970), the disclosure of which is incorporated by reference herein. The product was collected to give 4.71 g (92.2% yield) of pale yellow material, mp 149°-151° C. dec. [α]D 25 −103.1° (c=0.52, H2O); IR (KBr) ν3220 (br, OH, COO−), 1610 cm−1 (COO−).
- Rat hepatocytes were isolated following the methods of P. O. Seglen, Exper. Cell Res., 74, 450 (1972). After final plating, the hepatocytes were maintained in culture for 24 hr prior to use. Only primary cultures were used throughout the studies. The hepatocytes were incubated with cysteine prodrugs NAC and (Ia) for a 4-hr period, and after removal of media by aspiration, the cells were rinsed with cold phosphate-buffered saline and deproteinized with 5% sulfosalicylic acid. Total GSH content (GSH+GSSG) was determined by a modification of the DTNB [5,5′-dithiobis(2-nitrobenzoic acid)] glutathione reductase recycling method of F. Tietze, Anal. Biochem., 27, 502 (1969). The GSH concentration in the sample was quantified by determining the cycling rate (ΔOD at 412 nm/min) of the sample. For the inhibition studies with BSO, the cells were pre-exposed to BSO (0.20 mM) before treatment with the L-cysteine prodrugs.
- The results are shown in Table 1, below:
TABLE 1 Increased Glutathione [GSH] Content of Rat Hepatocytes after Incubation with L-Cysteine Prodrugs [GSH] ± SE [GSH] Rel. to Cysteine Prodrug Conc. (mM) (nmol/106 cells) Controls Control (none) — 35.4 ± 0.75 1 RibCys (Ia) 1.0 61.2 ± 1.52 1.7 N-Acetyl-L- 2.5 45.8 ± 1.27 1.3 cysteine (NAC) - As can be seen from Table 1, RibCys elevated GSH levels about 1.7-fold relative to controls in these hepatocytes. N-Acetyl-L-cysteine (NAC), the drug presently used for the clinical treatment of acetaminophen overdoses, also raised GSH levels by 30% in this system, but required 2.5 times the concentration of the thiazolidine prodrugs for comparable elevation. (See L. F. Prescott et al., Brit. Med. J., 2, 1097 (1979); B. J. Lautenburg et al., J. Clin. Invest., 71, 980 (1983) and G. B. Corcoran et al., J. Pharmacol. Exp. Ther., 232, 864 (1985)).
- That GSH biosynthesis was stimulated by liberation of its biochemical precursor, L-cysteine, from the prodrugs, was indicated by experiments conducted in the presence of 0.20 mM buthionine sulfoxime (BSO). O. W. Griffith et al., J. Biol. Chem., 254, 7558 (1979), have demonstrated that BSO is a specific inhibitor of gamma-glutamyl cysteine synthetase, the enzyme responsible for catalyzing the first step in GSH biosynthesis. The data summarized on Table 2, below, demonstrate that GSH levels were decreased by this inhibitor even in the presence of RibCys, thus providing evidence that the increased levels of GSH observed were indeed due to de novo GSH biosynthesis from the L-cysteine provided by the thiazolidine prodrugs.
TABLE 2 Inhibitory Effect of Buthionine Sulfoxime (BSO) on GSH Elevation Elicited by L-Cysteine Prodrugs in Rat Hepatocytes Prodrug BSO [GSH] ± SE [GSH] (1.0 mM) (0.2 mM) (nmol/106 cells) Rel. to Controls. None (Control) − 35.4 ± 0.78 1.0 None + 18.4 ± 2.08 0.5 RibCys (1a) + 16.2 ± 3.60 0.5 N-Acetyl-L-cysteine + 25.5 ± 1.59 0.7 - As reported by J. C. Roberts et al., Toxicol. Lett., 59, 245 (1991), RibCys successfully elevated glutathione (GSH) levels in numerous organs of tumor-bearing CDF1 mice. GSH content was assayed 1, 2, 4, 8 and 16 h after RibCys administration (8 mmol/kg, i.p.); various organs achieved maximal GSH content at different time points. GSH in the liver was elevated 1.5-fold compared to untreated controls at the 16-h time point. Kidney GSH also was maximal at 16 h and achieved 1.6-times control values. GSH in muscle achieved 2.5 times the levels in control animals, while the bladder was elevated 2.1-fold, and the heart 1.8-fold. Other tissues tested (spleen, pancreas, lung) showed a 1.1 - to 1.2-fold increase in GSH content. GSH in implanted L1210 tumors was also elevated only 1.2-fold.
- As reported in Examples 1-2 of J. E. Foker (U.S. Pat. No. 4,605,644), dilute solutions of ribose in normal (0.9%) saline were found effective to decrease the ATP recovery time following myocardial ischemia in the canine model. For example, infusion of a normal saline solution which is 80 mM in ribose at a rate of about 1 ml/min for about 24.0 hours afforded an eight-fold decrease in the ATP recovery time. During this treatment period, about 17.0 g of ribose were introduced into the circulatory system; a total dose of about 550-700 mg ribose/kg of body weight. The appropriate dose for the optimal recovery of ATP levels and cardiac function in a given human subject can be readily established via empirical studies including known assays for ATP levels, cardiac function and the like.
- Although the studies of the examples of U.S. Pat. No. 4,605,644 were directed at enhancing the energetic recovery following ischemia of the heart with solutions containing free ribose, the present method employing the cysteine/ribose pro-drug RibCys is also expected to be applicable to any tissue or organ that has suffered hypoxia, such as an ischemic insult where antioxidant augmentation and ATP recovery would be helpful. These situations include but are not limited to: myocardial infarction, stroke, organ transplant with organ preservation, neonatal support, multi-organ system failures, shock and trauma resulting in compromised circulation, and the like. Often, even uncomplicated general anesthesia can result in some degree of hypoxia and the accompanying invasive medical procedure can lead to the build-up of free radicals in the traumatized tissue. Likewise, aerobic exercise in convalescent or healthy individuals can lead to ATP depletion and the build-up of free radicals from environmental oxidants. Therefore, the present invention provides a method whereby hypoxic tissue can be treated so as to quickly regain and maintain normal ATP levels, both to improve tissue survival and to hasten general bodily recovery.
- All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention.
Claims (22)
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/990,933 US20060105972A1 (en) | 2004-11-17 | 2004-11-17 | Method to enhance delivery of glutathione and ATP levels in cells |
CNA2005800393226A CN101060840A (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cysteine to treat hypoxia by enhancing delivery of glutathione and ATP levels in cells |
BRPI0516814-7A BRPI0516814A (en) | 2004-11-17 | 2005-11-16 | 2 (r, s) -d-ribo- (1 ', 2', 3 ', 4'-tetrahydroxybutyl) thiazolidine-4 (r) -carboxylic acid (ribcys) uses and therapeutic methods |
AU2005307885A AU2005307885B2 (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cysteine to treat hypoxia by enhancing delivery of glutathione and ATP levels in cells |
JP2007543186A JP2008520681A (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cysteine to treat hypoxia by enhancing glutathione delivery and ATP levels in cells |
CA2587616A CA2587616C (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cysteine to treat hypoxia by enhancing delivery of glutathione and atp levels in cells |
PCT/US2005/041458 WO2006055597A1 (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cysteine to treat hypoxia by enhancing delivery of glutathione and atp levels in cells |
KR1020077013535A KR20070095900A (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cysteine to treat hypoxia by enhancing delivery of glutathione and atp levels in cells |
MX2007005835A MX2007005835A (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cysteine to treat hypoxia by enhancing delivery of glutathione and atp levels in cells. |
EP05823154A EP1824481B1 (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cysteine to treat hypoxia by enhancing delivery of glutathione and atp levels in cells |
DK05823154.9T DK1824481T3 (en) | 2004-11-17 | 2005-11-16 | APPLICATION OF RIBOSE-CYSTEIN TO TREAT HYPOXIA BY INCREASING SUPPLY OF GLUTATHION AND ATP CONCENTRATIONS IN CELLS |
PL05823154T PL1824481T3 (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cysteine to treat hypoxia by enhancing delivery of glutathione and atp levels in cells |
ES05823154T ES2390228T3 (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cesteine to treat hypoxia by improving glutathione intake and ATP levels in cells |
EA200701017A EA014076B1 (en) | 2004-11-17 | 2005-11-16 | Use of ribose-cystein to treat hypoxia |
US12/182,354 US8501700B2 (en) | 2004-11-17 | 2008-07-30 | Method to enhance delivery of glutathione and ATP levels in cells |
US13/958,530 US9144570B2 (en) | 2004-11-17 | 2013-08-02 | Method to enhance delivery of glutathione and ATP levels in cells |
US14/838,274 US20160082029A1 (en) | 2004-11-17 | 2015-08-27 | Method to enhance delivery of glutathione and atp levels in cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/990,933 US20060105972A1 (en) | 2004-11-17 | 2004-11-17 | Method to enhance delivery of glutathione and ATP levels in cells |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/182,354 Continuation US8501700B2 (en) | 2004-11-17 | 2008-07-30 | Method to enhance delivery of glutathione and ATP levels in cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060105972A1 true US20060105972A1 (en) | 2006-05-18 |
Family
ID=35759146
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/990,933 Abandoned US20060105972A1 (en) | 2004-11-17 | 2004-11-17 | Method to enhance delivery of glutathione and ATP levels in cells |
US12/182,354 Active 2027-03-03 US8501700B2 (en) | 2004-11-17 | 2008-07-30 | Method to enhance delivery of glutathione and ATP levels in cells |
US13/958,530 Expired - Lifetime US9144570B2 (en) | 2004-11-17 | 2013-08-02 | Method to enhance delivery of glutathione and ATP levels in cells |
US14/838,274 Abandoned US20160082029A1 (en) | 2004-11-17 | 2015-08-27 | Method to enhance delivery of glutathione and atp levels in cells |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/182,354 Active 2027-03-03 US8501700B2 (en) | 2004-11-17 | 2008-07-30 | Method to enhance delivery of glutathione and ATP levels in cells |
US13/958,530 Expired - Lifetime US9144570B2 (en) | 2004-11-17 | 2013-08-02 | Method to enhance delivery of glutathione and ATP levels in cells |
US14/838,274 Abandoned US20160082029A1 (en) | 2004-11-17 | 2015-08-27 | Method to enhance delivery of glutathione and atp levels in cells |
Country Status (14)
Country | Link |
---|---|
US (4) | US20060105972A1 (en) |
EP (1) | EP1824481B1 (en) |
JP (1) | JP2008520681A (en) |
KR (1) | KR20070095900A (en) |
CN (1) | CN101060840A (en) |
AU (1) | AU2005307885B2 (en) |
BR (1) | BRPI0516814A (en) |
CA (1) | CA2587616C (en) |
DK (1) | DK1824481T3 (en) |
EA (1) | EA014076B1 (en) |
ES (1) | ES2390228T3 (en) |
MX (1) | MX2007005835A (en) |
PL (1) | PL1824481T3 (en) |
WO (1) | WO2006055597A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090042822A1 (en) * | 2004-11-17 | 2009-02-12 | Bioceuticals, Inc. | Method to enhance delivery of glutathione and atp levels in cells |
US20090042850A1 (en) * | 2007-03-27 | 2009-02-12 | Board Of Trustees Of The University Of Arkansas | Compositions and methods for cytoprotection |
WO2009123742A1 (en) * | 2008-04-02 | 2009-10-08 | St Cyr John A | Use of ribose in first response to acute myocardial infarction |
US20110184185A1 (en) * | 2010-01-28 | 2011-07-28 | Max International, Llc | Methods Of Preparing Thiazolidines |
US20110183927A1 (en) * | 2010-01-28 | 2011-07-28 | Max International, Llc | Compositions Comprising Sugar-Cysteine Products |
US20110287109A1 (en) * | 2010-05-24 | 2011-11-24 | Max International, Llc | Compositions And Beverages Comprising Nutrients, Vitamins, Sugars, Cysteine, And/Or Sugar-Cysteine Products |
US9901611B2 (en) | 2015-06-19 | 2018-02-27 | Molecular Defenses Corporation | Glutathione formulation and method of use |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4982755B2 (en) * | 2006-06-27 | 2012-07-25 | 国立大学法人 長崎大学 | Determination of absolute configurations of sugars and related aldehyde compounds by high-performance liquid chromatography. |
CA2843388A1 (en) * | 2011-07-27 | 2013-01-31 | Max International, Llc | Compositions comprising sugar-cysteine products |
EP3297643A4 (en) * | 2015-05-22 | 2019-02-06 | The A2 Milk Company Limited | Beta-casein a2 and antioxidant capacity |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4335210A (en) * | 1981-02-11 | 1982-06-15 | Cornell Research Foundation | Method of producing L-cysteine |
US4605644A (en) * | 1985-02-07 | 1986-08-12 | Regents Of The University Of Minnesota | Method for stimulating recovery from ischemia employing ribose and adenine |
US4719201A (en) * | 1985-02-07 | 1988-01-12 | Regents Of The University Of Minnesota | Method for stimulating recovery from ischemia |
US4868114A (en) * | 1987-08-05 | 1989-09-19 | Regents Of The University Of Minnesota | Method for elevating glutathione levels |
US5631234A (en) * | 1991-04-15 | 1997-05-20 | Teijin Limited | Method for treating ischemia-reperfusion tissue injury |
US6218366B1 (en) * | 1998-06-19 | 2001-04-17 | Bioenergy, Inc. | Method for raising the hypoxic threshold |
US6534480B2 (en) * | 1999-06-17 | 2003-03-18 | Bioenergy Inc. | Compositions for increasing energy in vivo |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1120033B (en) | 1979-10-05 | 1986-03-19 | Sigma Tau Ind Farmaceuti | INCLUDING PHARMACEUTICAL COMPOSITION-CARNITINE SUITABLE FOR PARENTERAL FEEDING |
US4647571A (en) | 1981-02-11 | 1987-03-03 | Cornell Research Foundation | Cysteine delivery composition |
US4736060A (en) | 1985-08-06 | 1988-04-05 | Nippon Rikagakuyakuhin Co., Ltd. | Method for optical resolution of DL-cysteine and (R,S)-1-(1-naphthyl) ethylamine |
JPS63152325A (en) * | 1986-08-20 | 1988-06-24 | Yamanouchi Pharmaceut Co Ltd | Preventive and remedy for cerebral ischemia |
US5095027A (en) * | 1991-02-28 | 1992-03-10 | Clintec Nutrition Co. | Method for treating reperfusion injury employing L-2-oxothiazolidine-4-carboxylic acid |
AU655814B2 (en) * | 1991-04-15 | 1995-01-12 | Teijin Limited | Preventive or remedy for ischemia, reperfusion-induced tissue disorder and arrhythmia as well as pulmonary disorder caused by activated oxygen free radical |
US5292538A (en) | 1992-07-22 | 1994-03-08 | Metagenics, Inc. | Improved sustained energy and anabolic composition and method of making |
JPH10139665A (en) * | 1996-09-12 | 1998-05-26 | Sankyo Co Ltd | Glutathione reductase activity-enhancing agent containing troglitazone |
WO1998033494A1 (en) | 1997-02-04 | 1998-08-06 | Kosbab John V | Compositions and methods for prevention and treatment of vascular degenerative diseases |
US6730336B2 (en) | 1998-01-30 | 2004-05-04 | The Procter & Gamble Co. | Fortified beverages with improved texture and flavor impact at lower dosage of solids |
US7153503B1 (en) | 1998-12-19 | 2006-12-26 | Janeel Henderson | Comprehensive dietary supplement |
US20040043013A1 (en) | 2000-12-28 | 2004-03-04 | Mccleary Edward Larry | Metabolic uncoupling therapy |
US6964969B2 (en) | 2001-04-19 | 2005-11-15 | Mccleary Edward Larry | Composition and method for treating impaired or deteriorating neurological function |
US6881425B2 (en) | 2001-08-31 | 2005-04-19 | Council Of Scientific And Industrial Research | Custom made herbal health promotive formulation for females/expectant mothers |
US6572899B1 (en) | 2002-07-03 | 2003-06-03 | Vitacost.Com, Inc. | Memory loss treatment formulation |
US7455857B2 (en) | 2003-04-08 | 2008-11-25 | Janeel Henderson | Energy generating composition |
GB0319463D0 (en) | 2003-08-20 | 2003-09-17 | Givaudan Sa | Compounds |
US20050100537A1 (en) | 2003-11-10 | 2005-05-12 | Evans Gregory S. | Methods and kits for reducing cellular damage, inhibiting free radical production, and scavenging free radicals in mammals |
US20060105972A1 (en) | 2004-11-17 | 2006-05-18 | Nagasawa Herbert T | Method to enhance delivery of glutathione and ATP levels in cells |
US8962058B2 (en) | 2005-11-23 | 2015-02-24 | The Coca-Cola Company | High-potency sweetener composition with antioxidant and compositions sweetened therewith |
WO2007094827A2 (en) | 2006-02-10 | 2007-08-23 | Mannatech, Inc. | All natural multivitamin and multimineral dietary supplement formulations for enhanced absorption and biological utilization |
US8685951B2 (en) | 2007-03-27 | 2014-04-01 | The Board Of Trustees Of The University Of Arkansas | Compositions and methods for cytoprotection |
US20100074969A1 (en) | 2008-09-19 | 2010-03-25 | Unicity International, Inc. | Method of controlling blood sugar levels, insulin levels, cholesterol levels, body fat levels, and body weight by administering a nutrient fiber matrix |
TW201201712A (en) | 2010-01-28 | 2012-01-16 | Max International Llc | Compositions comprising sugar-cysteine products |
TW201204267A (en) | 2010-05-24 | 2012-02-01 | Max International Llc | Compositions and beverages comprising nutrients, vitamins, sugars, cysteine, and/or sugar-cysteine products |
-
2004
- 2004-11-17 US US10/990,933 patent/US20060105972A1/en not_active Abandoned
-
2005
- 2005-11-16 EP EP05823154A patent/EP1824481B1/en active Active
- 2005-11-16 DK DK05823154.9T patent/DK1824481T3/en active
- 2005-11-16 AU AU2005307885A patent/AU2005307885B2/en not_active Ceased
- 2005-11-16 JP JP2007543186A patent/JP2008520681A/en active Pending
- 2005-11-16 EA EA200701017A patent/EA014076B1/en not_active IP Right Cessation
- 2005-11-16 CA CA2587616A patent/CA2587616C/en not_active Expired - Fee Related
- 2005-11-16 BR BRPI0516814-7A patent/BRPI0516814A/en not_active IP Right Cessation
- 2005-11-16 KR KR1020077013535A patent/KR20070095900A/en not_active Application Discontinuation
- 2005-11-16 WO PCT/US2005/041458 patent/WO2006055597A1/en active Application Filing
- 2005-11-16 ES ES05823154T patent/ES2390228T3/en active Active
- 2005-11-16 PL PL05823154T patent/PL1824481T3/en unknown
- 2005-11-16 MX MX2007005835A patent/MX2007005835A/en unknown
- 2005-11-16 CN CNA2005800393226A patent/CN101060840A/en active Pending
-
2008
- 2008-07-30 US US12/182,354 patent/US8501700B2/en active Active
-
2013
- 2013-08-02 US US13/958,530 patent/US9144570B2/en not_active Expired - Lifetime
-
2015
- 2015-08-27 US US14/838,274 patent/US20160082029A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4335210A (en) * | 1981-02-11 | 1982-06-15 | Cornell Research Foundation | Method of producing L-cysteine |
US4605644A (en) * | 1985-02-07 | 1986-08-12 | Regents Of The University Of Minnesota | Method for stimulating recovery from ischemia employing ribose and adenine |
US4719201A (en) * | 1985-02-07 | 1988-01-12 | Regents Of The University Of Minnesota | Method for stimulating recovery from ischemia |
US4868114A (en) * | 1987-08-05 | 1989-09-19 | Regents Of The University Of Minnesota | Method for elevating glutathione levels |
US5631234A (en) * | 1991-04-15 | 1997-05-20 | Teijin Limited | Method for treating ischemia-reperfusion tissue injury |
US6218366B1 (en) * | 1998-06-19 | 2001-04-17 | Bioenergy, Inc. | Method for raising the hypoxic threshold |
US6534480B2 (en) * | 1999-06-17 | 2003-03-18 | Bioenergy Inc. | Compositions for increasing energy in vivo |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8501700B2 (en) | 2004-11-17 | 2013-08-06 | Max International Llc | Method to enhance delivery of glutathione and ATP levels in cells |
US9144570B2 (en) | 2004-11-17 | 2015-09-29 | Max International, Llc | Method to enhance delivery of glutathione and ATP levels in cells |
US20090042822A1 (en) * | 2004-11-17 | 2009-02-12 | Bioceuticals, Inc. | Method to enhance delivery of glutathione and atp levels in cells |
US20090042850A1 (en) * | 2007-03-27 | 2009-02-12 | Board Of Trustees Of The University Of Arkansas | Compositions and methods for cytoprotection |
US8916712B2 (en) | 2007-03-27 | 2014-12-23 | The Board Of Trustees Of The University Of Arkansas | Compositions and methods for cytoprotection |
US8685951B2 (en) | 2007-03-27 | 2014-04-01 | The Board Of Trustees Of The University Of Arkansas | Compositions and methods for cytoprotection |
US20100055206A1 (en) * | 2008-04-02 | 2010-03-04 | St Cyr John A | Use of ribose in first response to acute myocardial infarction |
WO2009123742A1 (en) * | 2008-04-02 | 2009-10-08 | St Cyr John A | Use of ribose in first response to acute myocardial infarction |
WO2011094491A1 (en) * | 2010-01-28 | 2011-08-04 | Max International, Llc | Compositions comprising sugar-cysteine products |
US20110183927A1 (en) * | 2010-01-28 | 2011-07-28 | Max International, Llc | Compositions Comprising Sugar-Cysteine Products |
US8853170B2 (en) * | 2010-01-28 | 2014-10-07 | Max International, Llc | Compositions comprising sugar-cysteine products |
US20110184185A1 (en) * | 2010-01-28 | 2011-07-28 | Max International, Llc | Methods Of Preparing Thiazolidines |
US20150023941A1 (en) * | 2010-01-28 | 2015-01-22 | Max International, Llc | Compositions Comprising Sugar-Cysteine Products |
US20110287109A1 (en) * | 2010-05-24 | 2011-11-24 | Max International, Llc | Compositions And Beverages Comprising Nutrients, Vitamins, Sugars, Cysteine, And/Or Sugar-Cysteine Products |
US9901611B2 (en) | 2015-06-19 | 2018-02-27 | Molecular Defenses Corporation | Glutathione formulation and method of use |
Also Published As
Publication number | Publication date |
---|---|
US8501700B2 (en) | 2013-08-06 |
PL1824481T3 (en) | 2012-11-30 |
KR20070095900A (en) | 2007-10-01 |
CN101060840A (en) | 2007-10-24 |
US20160082029A1 (en) | 2016-03-24 |
AU2005307885A1 (en) | 2006-05-26 |
WO2006055597A1 (en) | 2006-05-26 |
EA014076B1 (en) | 2010-08-30 |
US9144570B2 (en) | 2015-09-29 |
ES2390228T3 (en) | 2012-11-07 |
JP2008520681A (en) | 2008-06-19 |
US20090042822A1 (en) | 2009-02-12 |
EP1824481B1 (en) | 2012-08-29 |
US20130317072A1 (en) | 2013-11-28 |
CA2587616A1 (en) | 2006-05-26 |
BRPI0516814A (en) | 2008-09-23 |
AU2005307885B2 (en) | 2010-12-23 |
MX2007005835A (en) | 2007-10-08 |
DK1824481T3 (en) | 2012-09-24 |
AU2005307885A2 (en) | 2006-05-26 |
CA2587616C (en) | 2015-03-17 |
EA200701017A1 (en) | 2007-10-26 |
EP1824481A1 (en) | 2007-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9144570B2 (en) | Method to enhance delivery of glutathione and ATP levels in cells | |
O'Connell et al. | Cardiac and pulmonary effects of high doses of cyclophosphamide and isophosphamide | |
US4438124A (en) | Cysteine delivery system | |
US4335210A (en) | Method of producing L-cysteine | |
US4665082A (en) | Cysteine delivery system | |
US4434158A (en) | Cysteine delivery system | |
EP0549660A1 (en) | Enhancement of glutathione levels with glutamine | |
US20180125805A1 (en) | Prophylactic/therapeutic agent for virus infections which comprises ala compound | |
JP2001526628A (en) | Novel pyruvate compounds and methods of use | |
CN104415023A (en) | Composition for preventing or/and treating insulin resistance and related diseases | |
US4898886A (en) | Urea against adenocarcinoma | |
Pardridge et al. | Branched chain amino acid oxidation in cultured rat skeletal muscle cells: selective inhibition by clofibric acid | |
JP2873089B2 (en) | Agent for preventing or treating ischemia / reperfusion tissue injury and arrhythmia, and lung injury due to active oxygen / free radicals | |
US11253495B2 (en) | Pharmaceutical composition for treating excessive lactate production and acidemia | |
Fürst et al. | Reappraisal of indispensable amino acids | |
RU2169568C2 (en) | Agent for correction of energy metabolism | |
Usami et al. | Effect of a parenteral nucleoside-nucleotide mixture on hepatic metabolism in partially hepatectomized cirrhotic rats | |
Plante | Excretion of uric acid in man and the dog. | |
Thölen et al. | Effect of coenzyme-A, NAD, alpha lipoic-acid and cocarboxylase on survival of rats with galactosamine-induced severe hepatitis | |
Grishina et al. | Accelerated utilization of lactate under the effect of hypoxen after intensive exercise | |
UA139441U (en) | METHOD OF CORRECTION OF NON-ALCOHOLIC FATTY LIVER DISEASE | |
UA120212U (en) | METHOD OF TREATMENT OF PATIENTS WITH NON-ALCOHOLIC STEATOGEPATITIS AND TYPE 2 DIABETES | |
UA126122U (en) | METHOD OF TREATMENT OF INSULIN RESISTANCE IN PATIENTS WITH TYPE 2 DIABETES WITH SUB-ALCOHOLIC STEATOGEPATITIS | |
Shefer et al. | Metabolic correction of gas exchange disturbances in rats with barbiturate coma | |
Mateos et al. | 85 ERYTHROCYTE ATP (iATP) AS AN INDICATOR OF NEONATAL HYPOXIA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BIOCEUTICALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAGASAWA, HERBERT T.;REEL/FRAME:015937/0753 Effective date: 20050208 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: MAX INTERNATIONAL, INC., UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELLGEVITY, INC.;REEL/FRAME:023047/0374 Effective date: 20090204 Owner name: CELLGEVITY, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:BIOCEUTICALS, INC.;REEL/FRAME:023047/0328 Effective date: 20070522 |
|
AS | Assignment |
Owner name: EAST WEST BANK, CALIFORNIA Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:MAX INTERNATIONAL, LLC;REEL/FRAME:058809/0733 Effective date: 20211029 |