US20060030882A1 - Transvenous staples, assembly and method for mitral valve repair - Google Patents
Transvenous staples, assembly and method for mitral valve repair Download PDFInfo
- Publication number
- US20060030882A1 US20060030882A1 US11/245,535 US24553505A US2006030882A1 US 20060030882 A1 US20060030882 A1 US 20060030882A1 US 24553505 A US24553505 A US 24553505A US 2006030882 A1 US2006030882 A1 US 2006030882A1
- Authority
- US
- United States
- Prior art keywords
- mitral valve
- tissue piercing
- distance
- valve annulus
- leg portions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/0682—Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil
- A61B17/0684—Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil having a forming anvil staying above the tissue during stapling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00778—Operations on blood vessels
- A61B2017/00783—Valvuloplasty
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22052—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation eccentric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2451—Inserts in the coronary sinus for correcting the valve shape
Definitions
- the present invention generally relates to a device, assembly and method for treating dilated cardiomyopathy of a heart.
- the present invention more particularly relates to mitral valve annulus staple devices and an assembly and method for deploying such staple device to reshape the mitral valve annulus.
- the human heart generally includes four valves. Of these valves, a most critical one is known as the mitral valve.
- the mitral valve is located in the left atrial ventricular opening between the left atrium and left ventricle.
- the mitral valve is intended to prevent regurgitation of blood from the left ventricle into the left atrium when the left ventricle contracts. In preventing blood regurgitation the mitral valve must be able to withstand considerable back pressure as the left ventricle contracts.
- the valve cusps of the mitral valve are anchored to muscular wall of the heart by delicate but strong fibrous cords in order to support the cusps during left ventricular contraction.
- the geometry of the mitral valve ensures that the cusps overlie each other to preclude regurgitation of the blood during left ventricular contraction.
- the normal functioning of the mitral valve in preventing regurgitation can be impaired by dilated cardiomyopathy caused by disease or certain natural defects.
- certain diseases may cause dilation of the mitral valve annulus. This can result in deformation of the mitral valve geometry to cause ineffective closure of the mitral valve during left ventricular contraction. Such ineffective closure results in leakage through the mitral valve and regurgitation.
- Diseases such as bacterial inflammations of the heart or heart failure can cause the aforementioned distortion or dilation of the mitral valve annulus. Needless to say, mitral valve regurgitation must not go uncorrected.
- One method of repairing a mitral valve heaving impaired function is to completely replace the valve. This method has been found to be particularly suitable for replacing a mitral valve when one of the cusps has been severely damaged or deformed. While the replacement of the entire valve eliminates the immediate problem associated with a dilated mitral valve annulus, presently available prosthetic heart valves do not possess the same durability as natural heart valves.
- prostheses are annular or partially annular shaped members which fit about the base of the valve annulus.
- the annular or partially annular shaped members may be formed from a rigid material, such as a metal, or from a flexible material.
- coronary sinus of a heart is near to and at least partially encircles the mitral valve annulus and then extends into a venous system including the great cardiac vein.
- coronary sinus is meant to refer to not only the coronary sinus itself but in addition, the venous system associated with the coronary sinus including the great cardiac vein.
- the therapy contemplates the use of a device introduced into the coronary sinus to reshape and advantageously effect the geometry of the mitral valve annulus.
- the device includes a resilient member having a cross sectional dimension for being received within the coronary sinus of the heart and a longitudinal dimension having an unstressed arched configuration when placed in the coronary sinus.
- the device partially encircles and exerts an inward pressure on the mitral valve.
- the inward pressure constricts the mitral valve annulus, or at least a portion of it, to essentially restore the mitral valve geometry. This promotes effective valve sealing action and eliminates mitral regurgitation.
- the device may be implanted in the coronary sinus using only percutaneous techniques similar to the techniques used to implant cardiac leads such as pacemaker leads.
- One proposed system for implanting the device includes an elongated introducer configured for being releasably coupled to the device.
- the introducer is preferably flexible to permit it to advance the device into the heart and into the coronary sinus through the coronary sinus ostium.
- an elongated sheath is first advanced into the coronary sinus. Then, the device and introducer are moved through a lumen of the sheath until the device is in position within the coronary sinus. Because the device is formed of resilient material, it conforms to the curvatures of the lumen as it is advanced through the sheath.
- the sheath is then partially retracted to permit the device to assume its unstressed arched configuration.
- the introducer is then decoupled from the device and retracted through the sheath.
- the procedure is then completed by the retraction of the sheath.
- the device is left within the coronary sinus to exert the inward pressure on the mitral valve to restore mitral valve geometry.
- mitral valve regurgitation may be treated at an early stage in the mitral regurgitation progression. Further, the device may be placed with relative ease by any minimally invasive cardiologist. Still further, since the heart remains completely intact throughout the procedure, the effectiveness of the procedure may be readily determined. Moreover, should adjustments be deemed desirable, such adjustments may be made during the procedure and before the patient is sent to recovery.
- mitral regurgitation with a device in the coronary sinus is based upon the observation that the application of a localized force against a discrete portion of the mitral valve annulus can terminate mitral regurgitation. This suggests that mitral regurgitation may be localized and nonuniform.
- the device applies a force to one or more discrete portions of the atrial wall of the coronary sinus to provide localized mitral valve annulus reshaping instead of generalized reshaping of the mitral valve annulus.
- Such localized therapy would have all the benefits of the generalized therapy.
- a localized therapy device may be easier to implant and adjust.
- a still further approach to treat mitral regurgitation from the coronary sinus of the heart contemplates a device having a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent the mitral valve annulus within the heart, a cable fixed to the first anchor and extending proximally from the first anchor within the heart, a second anchor configured to be positioned in and fixed in the heart proximal to the first anchor and arranged to slidingly receive the cable, and a lock that locks the cable on the second anchor.
- the cable may be drawn proximally and locked on the second anchor.
- the geometry of the mitral valve is thereby effected.
- This approach provides flexibility in that the second anchor may be positioned and fixed in the coronary sinus or alternatively, the second anchor may be positioned and fixed in the right atrium. This approach further allows adjustments in the cable tension after implant.
- a still further alternative for treating mitral regurgitation contemplates a device having a first anchor configured to be positioned within and anchored to the coronary sinus of the heart adjacent the mitral valve annulus within the heart.
- a second anchor is configured to be positioned within the heart proximal to the first anchor and adjacent the mitral valve annulus within the heart.
- a connecting member having a fixed length, is permanently attached to the first and second anchors.
- the invention provides a device for effecting tissue geometry of an organ.
- the device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the tissue and a final unstressed and undistorted configuration after the tissue piercing ends pierce the tissue to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
- the present invention further provides a device for effecting mitral valve annulus geometry of a heart.
- the device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions.
- the connection portion has an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
- the initial configuration of the connection portion may be a first arched configuration and the final configuration of the connection portion may be a second arched configuration, wherein the second arched configuration is arched in a direction opposite the first arched configuration.
- the device may be configured such that when the connection portion is in the second arched configuration, the tissue piercing ends of the leg portions point toward each other.
- the leg portions and connection portion are preferably formed of the same material stock, as from Nitinol, for example.
- the invention further provides a device for effecting mitral valve annulus geometry of a heart.
- the device includes first and second tissue piercing portions, each tissue piercing portion terminating in a tissue piercing end, and a connection portion extending between the first and second tissue piercing portions, the connection portion having an initial stressed and distorted configuration to separate the first and second tissue piercing portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second tissue piercing portions by a second distance, the second distance being shorter than the first distance.
- the invention further provides an assembly for effecting mitral valve annulus geometry of a heart.
- the assembly includes an elongated catheter being placeable in the coronary sinus of the heart adjacent the mitral valve annulus.
- the assembly further includes at least one staple carried within the catheter, the at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
- the assembly further includes a tool that forces the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration.
- the at least one staple is preferably configured so that the tissue piercing ends of the first and second leg portions point away from each other when the connection portion is in the initial configuration and the tissue piercing ends of the first and second leg portions point toward each other when the connection portion is in the final configuration.
- the catheter preferably includes a tubular wall wherein the tool forces the at least one staple through the tubular wall of the catheter.
- the tubular wall may include a break-away slot adjacent the at least one staple that permits the at least one staple to be forced therethrough.
- the at least one staple may comprise a plurality of staples.
- the catheter tubular wall may in turn include a plurality of break-away slots, each slot being adjacent to a respective given one of the staples, the slots permitting the staples to be forced through the tubular wall of the catheter and into the mitral valve annulus.
- the tool is preferably configured to force the plurality of staples from the catheter substantially simultaneously.
- the assembly may further include an urging member that urges the catheter along and against a wall of the coronary sinus adjacent to the mitral valve annulus.
- the urging member may be an elongated balloon carried by the catheter.
- the invention still further provides a method of effecting mitral valve annulus geometry of a heart.
- the method includes the steps of providing at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance, placing the at least one staple into a catheter, and locating the catheter in the coronary sinus of the heart so that the at least one staple is adjacent the mitral valve annulus.
- the method includes the further step of releasing the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration and causing the connection portion to assume the final configuration.
- the invention still further provides an assembly for effecting mitral valve annulus geometry of a heart.
- the assembly includes
- FIG. 1 is a superior view of a human heart with the atria removed;
- FIG. 2 is a side plan view of a staple device embodying the present invention shown in an initial stressed and distorted configuration within a deployment catheter;
- FIG. 3 is a side plan view of the staple device of FIG. 2 shown in a final unstressed and undistorted configuration
- FIG. 4 is a side view of the deployment catheter illustrating a slot portion through which the staple device may be forced for deployment;
- FIG. 5 is a side view illustrating the staple after being forced through the slot portion of the catheter
- FIG. 6 is a side view of an assembly embodying the present invention shown within a coronary sinus and ready for deployment of a plurality of staple devices in accordance with the present invention
- FIG. 7 is a superior view of a human heart similar to FIG. 1 illustrating a first step in the deployment of mitral valve staple devices embodying the present invention
- FIG. 8 is a view similar to FIG. 7 illustrating a further step in the deployment of the staple devices.
- FIG. 9 is a superior view of a human heart similar to FIG. 7 illustrating the mitral valve staple devices deployed in the heart.
- FIG. 1 it is a superior view of a human heart 10 with the atria removed to expose the mitral valve 12 , the coronary sinus 14 , the coronary artery 15 , and the circumflex artery 17 of the heart 10 to lend a better understanding of the present invention. Also generally shown in FIG. 1 are the pulmonary valve 22 , the aortic valve 24 , and the tricuspid valve 26 of the heart 10 .
- the mitral valve 12 includes an anterior cusp 16 , a posterior cusp 18 and an annulus 20 .
- the annulus encircles the cusps 16 and 18 and maintains their spacing to provide a complete closure during a left ventricular contraction.
- the coronary sinus 14 partially encircles the mitral valve 12 adjacent to the mitral valve annulus 20 .
- the coronary sinus is part of the venus system of the heart and extends along the AV groove between the left atrium and the left ventricle. This places the coronary sinus essentially within the same plane as the mitral valve annulus making the coronary sinus available for placement of the mitral valve therapy staple devices of the present invention therein.
- FIG. 2 shows a mitral valve therapy staple device 30 embodying the present invention.
- the device 30 is shown confined within a deployment catheter 40 which will be described subsequently.
- the device 30 includes first and second tissue piercing leg portions 32 and 34 and a connection portion 36 between the leg portions 32 and 34 .
- the leg portions 32 and 34 terminate in tissue piercing ends 33 and 35 , respectively.
- the device 30 is confined within the catheter 40 in a first or initial configuration.
- the initial configuration is exhibited by the connecting member 36 having a first arcuate or arched configuration, as illustrated, with the tissue piercing ends 33 and 35 pointing away from each other.
- the device 30 is formed of a material having shape memory so that once deployed, the connection portion 36 assumes a second or final configuration to be described with respect to FIG. 3 wherein the connection portion assumes a second arched configuration which is arched in a direction opposite than the first arched configuration illustrated in FIG. 2 .
- the device 30 may be formed of, for example, Nitinol, a material well known for shape memory characteristics. Other suitable materials may include stainless steel or biocompatible plastic materials.
- the connection portion 36 and leg portions 32 and 34 are formed of the same material stock as, for example, from a strip of Nitinol.
- the device 30 When the staple device 30 is deployed in the heart, the device 30 assumes its final configuration illustrated in FIG. 3 .
- the connection member 36 has assumed an arched configuration opposite than that shown in FIG. 2 .
- the final configuration of the connection member 36 causes the leg portions 32 and 34 to be more closely spaced together.
- the tissue piercing ends 33 and 35 point towards each other.
- the deployment catheter 40 includes a tubular wall 42 in which a slot 44 is formed.
- the staple device 30 is positioned adjacent the slot 44 to permit the staple device 30 to be forced through the tubular sidewall 42 and more particularly through the slot 44 for deployment in the heart.
- the slot 44 preferably comprises a reduced thickness of the tubular wall 42 to provide an effective seal prior to deployment but permitting a relatively modest force to urge the device 30 through the slot 44 and into the mitral valve annulus as will be described hereinafter.
- the slot 44 is a break-away slot providing seal integrity prior to deployment but permitting the staple 30 to be forced through the tubular wall 42 of the catheter 40 into the heart.
- FIG. 6 is a side view showing the catheter 40 within the coronary sinus 14 . Also illustrated in FIG. 6 is a tool 50 which may be utilized for forcing the staples 30 through the tubular wall 42 of the catheter 40 . Also shown in FIG. 6 is an urging member 60 which urges the catheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus.
- the tool 50 includes a surface contour 52 which corresponds to the contour of the staple devices 30 when in the initial configuration. Displacement of the tool 50 in a proximal direction as indicated by the arrow 54 causes the tool 50 to urge or force the staple devices 30 through the tubular wall 42 of the catheter 40 . As noted in FIG. 6 , the plurality of staple devices 30 are urged or forced through the tubular wall 42 for deployment substantially simultaneously.
- the urging member 60 preferably takes the form of an inflatable balloon 62 .
- the inflatable balloon 62 is inflatable by a conduit 64 and is carried by the catheter 40 .
- the catheter 40 Prior to deployment of the staple devices 30 , the catheter 40 is placed in the coronary sinus adjacent the mitral valve annulus with the balloon 62 deflated. Thereafter, the balloon 62 is inflated so as to urge the catheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus as illustrated. Thereafter, the tool 50 may be displaced proximally to urge or force the staple devices 30 through the tubular wall 42 of the catheter 40 for deployment.
- FIGS. 7 and 8 The deployment of the staple devices 30 is shown more particularly in FIGS. 7 and 8 .
- FIG. 7 it can be seen that the catheter 40 is positioned within the coronary sinus 14 adjacent to the mitral valve annulus 20 .
- the balloon 62 has been inflated so as to urge the catheter 40 against the wall of the coronary sinus 14 which is adjacent the mitral valve annulus 20 .
- the assembly is now ready to deploy the mitral valve staple devices 30 .
- the tool 50 is being displaced proximally and is forcing the staple devices 30 through the tubular wall 42 of the catheter 40 .
- the leg portions are extending through the wall of the coronary sinus into the mitral valve annulus 20 or at least near to the annulus.
- connection portions 36 of the mitral valve staple devices 30 have assumed their final configuration.
- the tissue piercing leg portions have gathered-up mitral valve annulus tissue to tighten the mitral valve annulus. More specifically, as will be noted in FIG. 9 , the radius of curvature of the mitral valve annulus 20 in a portion designated 70 has been dramatically increased. This tightening up of the mitral valve annulus will promote more efficient mitral valve action and advantageously terminate mitral regurgitation.
- tissue piercing leg portions are illustrated as piercing entirely through the mitral valve annulus, it will be appreciated by those skilled in the art that the mitral valve annulus wall need not necessarily be pierced entirely through and that the tissue piercing leg portions need only pierce into the mitral valve annulus.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Abstract
A mitral valve staple device treats mitral regurgitation of a heart. The device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions. The connection portion has an initial stressed and distorted configuration to separate the first and second leg portion by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance which is shorter than the first distance. The device is deployed within the heart transvenously through a catheter positioned in the coronary sinus adjacent the mitral valve annulus. A tool forces the mitral valve staple device through the wall of the catheter for deployment in the heart.
Description
- This application is a continuation application of Ser. No. 10/093,323, filed Mar. 6, 2002, which is incorporated herein by reference in its entirety and to which application we claim priority under 35 USC § 120.
- The present invention generally relates to a device, assembly and method for treating dilated cardiomyopathy of a heart. The present invention more particularly relates to mitral valve annulus staple devices and an assembly and method for deploying such staple device to reshape the mitral valve annulus.
- The human heart generally includes four valves. Of these valves, a most critical one is known as the mitral valve. The mitral valve is located in the left atrial ventricular opening between the left atrium and left ventricle. The mitral valve is intended to prevent regurgitation of blood from the left ventricle into the left atrium when the left ventricle contracts. In preventing blood regurgitation the mitral valve must be able to withstand considerable back pressure as the left ventricle contracts.
- The valve cusps of the mitral valve are anchored to muscular wall of the heart by delicate but strong fibrous cords in order to support the cusps during left ventricular contraction. In a healthy mitral valve, the geometry of the mitral valve ensures that the cusps overlie each other to preclude regurgitation of the blood during left ventricular contraction.
- The normal functioning of the mitral valve in preventing regurgitation can be impaired by dilated cardiomyopathy caused by disease or certain natural defects. For example, certain diseases may cause dilation of the mitral valve annulus. This can result in deformation of the mitral valve geometry to cause ineffective closure of the mitral valve during left ventricular contraction. Such ineffective closure results in leakage through the mitral valve and regurgitation. Diseases such as bacterial inflammations of the heart or heart failure can cause the aforementioned distortion or dilation of the mitral valve annulus. Needless to say, mitral valve regurgitation must not go uncorrected.
- One method of repairing a mitral valve heaving impaired function is to completely replace the valve. This method has been found to be particularly suitable for replacing a mitral valve when one of the cusps has been severely damaged or deformed. While the replacement of the entire valve eliminates the immediate problem associated with a dilated mitral valve annulus, presently available prosthetic heart valves do not possess the same durability as natural heart valves.
- Various other surgical procedures have been developed to correct the deformation of the mitral valve annulus and thus retain the intact natural heart valve function. These surgical techniques involve repairing the shape of the dilated or deformed valve annulus. Such techniques, generally known as annuloplasty, require surgically restricting the valve annulus to minimize dilation. Here, a prosthesis is typically sutured about the base of the valve leaflets to reshape the valve annulus and restrict the movement of the valve annulus during the opening and closing of the mitral valve.
- Many different types of prostheses have been developed for use in such surgery. In general, prostheses are annular or partially annular shaped members which fit about the base of the valve annulus. The annular or partially annular shaped members may be formed from a rigid material, such as a metal, or from a flexible material.
- While the prior art methods mentioned above have been able to achieve some success in treating mitral regurgitation, they have not been without problems and potential adverse consequences. For example, these procedures require open heart surgery. Such procedures are expensive, are extremely invasive requiring considerable recovery time, and pose the concomitant mortality risks associated with such procedures. Moreover, such open heart procedures are particularly stressful on patients with a comprised cardiac condition. Given these factors, such procedures are often reserved as a last resort and hence are employed late in the mitral regurgitation progression. Further, the effectiveness of such procedures is difficult to assess during the procedure and may not be known until a much later time. Hence, the ability to make adjustments to or changes in the prostheses to obtain optimum effectiveness is extremely limited. Later corrections, if made at all, require still another open heart surgery.
- An improved therapy to treat mitral regurgitation without resorting to open heart surgery has recently been proposed. This is rendered possible by the realization that the coronary sinus of a heart is near to and at least partially encircles the mitral valve annulus and then extends into a venous system including the great cardiac vein. As used herein, the term “coronary sinus” is meant to refer to not only the coronary sinus itself but in addition, the venous system associated with the coronary sinus including the great cardiac vein. The therapy contemplates the use of a device introduced into the coronary sinus to reshape and advantageously effect the geometry of the mitral valve annulus.
- The device includes a resilient member having a cross sectional dimension for being received within the coronary sinus of the heart and a longitudinal dimension having an unstressed arched configuration when placed in the coronary sinus. The device partially encircles and exerts an inward pressure on the mitral valve. The inward pressure constricts the mitral valve annulus, or at least a portion of it, to essentially restore the mitral valve geometry. This promotes effective valve sealing action and eliminates mitral regurgitation.
- The device may be implanted in the coronary sinus using only percutaneous techniques similar to the techniques used to implant cardiac leads such as pacemaker leads. One proposed system for implanting the device includes an elongated introducer configured for being releasably coupled to the device. The introducer is preferably flexible to permit it to advance the device into the heart and into the coronary sinus through the coronary sinus ostium. To promote guidance, an elongated sheath is first advanced into the coronary sinus. Then, the device and introducer are moved through a lumen of the sheath until the device is in position within the coronary sinus. Because the device is formed of resilient material, it conforms to the curvatures of the lumen as it is advanced through the sheath. The sheath is then partially retracted to permit the device to assume its unstressed arched configuration. Once the device is properly positioned, the introducer is then decoupled from the device and retracted through the sheath. The procedure is then completed by the retraction of the sheath. As a result, the device is left within the coronary sinus to exert the inward pressure on the mitral valve to restore mitral valve geometry.
- The foregoing therapy has many advantages over the traditional open heart surgery approach. Since the device, system and method may be employed in a comparatively noninvasive procedure, mitral valve regurgitation may be treated at an early stage in the mitral regurgitation progression. Further, the device may be placed with relative ease by any minimally invasive cardiologist. Still further, since the heart remains completely intact throughout the procedure, the effectiveness of the procedure may be readily determined. Moreover, should adjustments be deemed desirable, such adjustments may be made during the procedure and before the patient is sent to recovery.
- Another approach to treat mitral regurgitation with a device in the coronary sinus is based upon the observation that the application of a localized force against a discrete portion of the mitral valve annulus can terminate mitral regurgitation. This suggests that mitral regurgitation may be localized and nonuniform. Hence, the device applies a force to one or more discrete portions of the atrial wall of the coronary sinus to provide localized mitral valve annulus reshaping instead of generalized reshaping of the mitral valve annulus. Such localized therapy would have all the benefits of the generalized therapy. In addition, a localized therapy device may be easier to implant and adjust.
- A still further approach to treat mitral regurgitation from the coronary sinus of the heart contemplates a device having a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent the mitral valve annulus within the heart, a cable fixed to the first anchor and extending proximally from the first anchor within the heart, a second anchor configured to be positioned in and fixed in the heart proximal to the first anchor and arranged to slidingly receive the cable, and a lock that locks the cable on the second anchor. When the first and second anchors are fixed within the heart, the cable may be drawn proximally and locked on the second anchor. The geometry of the mitral valve is thereby effected. This approach provides flexibility in that the second anchor may be positioned and fixed in the coronary sinus or alternatively, the second anchor may be positioned and fixed in the right atrium. This approach further allows adjustments in the cable tension after implant.
- A still further alternative for treating mitral regurgitation contemplates a device having a first anchor configured to be positioned within and anchored to the coronary sinus of the heart adjacent the mitral valve annulus within the heart. A second anchor is configured to be positioned within the heart proximal to the first anchor and adjacent the mitral valve annulus within the heart. A connecting member, having a fixed length, is permanently attached to the first and second anchors. As a result, when the first and second anchors are within the heart with the first anchor anchored in the coronary sinus, the second anchor may be displaced proximally to effect the geometry of the mitral valve annulus and released to maintain the effect on the mitral valve geometry. The second anchor may be configured, when deployed, to anchor against distal movement but be moveable proximally within the coronary sinus. The present invention provides a still further approach for treating mitral regurgitation.
- The invention provides a device for effecting tissue geometry of an organ. The device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the tissue and a final unstressed and undistorted configuration after the tissue piercing ends pierce the tissue to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
- The present invention further provides a device for effecting mitral valve annulus geometry of a heart. The device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions. The connection portion has an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
- The initial configuration of the connection portion may be a first arched configuration and the final configuration of the connection portion may be a second arched configuration, wherein the second arched configuration is arched in a direction opposite the first arched configuration. The device may be configured such that when the connection portion is in the second arched configuration, the tissue piercing ends of the leg portions point toward each other. The leg portions and connection portion are preferably formed of the same material stock, as from Nitinol, for example.
- The invention further provides a device for effecting mitral valve annulus geometry of a heart. The device includes first and second tissue piercing portions, each tissue piercing portion terminating in a tissue piercing end, and a connection portion extending between the first and second tissue piercing portions, the connection portion having an initial stressed and distorted configuration to separate the first and second tissue piercing portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second tissue piercing portions by a second distance, the second distance being shorter than the first distance.
- The invention further provides an assembly for effecting mitral valve annulus geometry of a heart. The assembly includes an elongated catheter being placeable in the coronary sinus of the heart adjacent the mitral valve annulus. The assembly further includes at least one staple carried within the catheter, the at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance. The assembly further includes a tool that forces the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration.
- The at least one staple is preferably configured so that the tissue piercing ends of the first and second leg portions point away from each other when the connection portion is in the initial configuration and the tissue piercing ends of the first and second leg portions point toward each other when the connection portion is in the final configuration.
- The catheter preferably includes a tubular wall wherein the tool forces the at least one staple through the tubular wall of the catheter. To that end, the tubular wall may include a break-away slot adjacent the at least one staple that permits the at least one staple to be forced therethrough.
- The at least one staple may comprise a plurality of staples. The catheter tubular wall may in turn include a plurality of break-away slots, each slot being adjacent to a respective given one of the staples, the slots permitting the staples to be forced through the tubular wall of the catheter and into the mitral valve annulus. The tool is preferably configured to force the plurality of staples from the catheter substantially simultaneously.
- The assembly may further include an urging member that urges the catheter along and against a wall of the coronary sinus adjacent to the mitral valve annulus. The urging member may be an elongated balloon carried by the catheter.
- The invention still further provides a method of effecting mitral valve annulus geometry of a heart. The method includes the steps of providing at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance, placing the at least one staple into a catheter, and locating the catheter in the coronary sinus of the heart so that the at least one staple is adjacent the mitral valve annulus. The method includes the further step of releasing the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration and causing the connection portion to assume the final configuration.
- The invention still further provides an assembly for effecting mitral valve annulus geometry of a heart. The assembly includes
- All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
- The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
- The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further aspects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify identical elements, and wherein:
-
FIG. 1 is a superior view of a human heart with the atria removed; -
FIG. 2 is a side plan view of a staple device embodying the present invention shown in an initial stressed and distorted configuration within a deployment catheter; -
FIG. 3 is a side plan view of the staple device ofFIG. 2 shown in a final unstressed and undistorted configuration; -
FIG. 4 is a side view of the deployment catheter illustrating a slot portion through which the staple device may be forced for deployment; -
FIG. 5 is a side view illustrating the staple after being forced through the slot portion of the catheter; -
FIG. 6 is a side view of an assembly embodying the present invention shown within a coronary sinus and ready for deployment of a plurality of staple devices in accordance with the present invention; -
FIG. 7 is a superior view of a human heart similar toFIG. 1 illustrating a first step in the deployment of mitral valve staple devices embodying the present invention; -
FIG. 8 is a view similar toFIG. 7 illustrating a further step in the deployment of the staple devices; and -
FIG. 9 is a superior view of a human heart similar toFIG. 7 illustrating the mitral valve staple devices deployed in the heart. - While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
- Referring now to
FIG. 1 , it is a superior view of ahuman heart 10 with the atria removed to expose themitral valve 12, thecoronary sinus 14, thecoronary artery 15, and thecircumflex artery 17 of theheart 10 to lend a better understanding of the present invention. Also generally shown inFIG. 1 are thepulmonary valve 22, theaortic valve 24, and thetricuspid valve 26 of theheart 10. - The
mitral valve 12 includes ananterior cusp 16, aposterior cusp 18 and anannulus 20. The annulus encircles thecusps coronary sinus 14 partially encircles themitral valve 12 adjacent to themitral valve annulus 20. As is also known, the coronary sinus is part of the venus system of the heart and extends along the AV groove between the left atrium and the left ventricle. This places the coronary sinus essentially within the same plane as the mitral valve annulus making the coronary sinus available for placement of the mitral valve therapy staple devices of the present invention therein. -
FIG. 2 shows a mitral valvetherapy staple device 30 embodying the present invention. Thedevice 30 is shown confined within adeployment catheter 40 which will be described subsequently. Thedevice 30 includes first and second tissue piercingleg portions connection portion 36 between theleg portions leg portions - The
device 30 is confined within thecatheter 40 in a first or initial configuration. The initial configuration is exhibited by the connectingmember 36 having a first arcuate or arched configuration, as illustrated, with the tissue piercing ends 33 and 35 pointing away from each other. - The
device 30 is formed of a material having shape memory so that once deployed, theconnection portion 36 assumes a second or final configuration to be described with respect toFIG. 3 wherein the connection portion assumes a second arched configuration which is arched in a direction opposite than the first arched configuration illustrated inFIG. 2 . To that end, thedevice 30 may be formed of, for example, Nitinol, a material well known for shape memory characteristics. Other suitable materials may include stainless steel or biocompatible plastic materials. Preferably, theconnection portion 36 andleg portions - When the
staple device 30 is deployed in the heart, thedevice 30 assumes its final configuration illustrated inFIG. 3 . Here it may be seen that theconnection member 36 has assumed an arched configuration opposite than that shown inFIG. 2 . The final configuration of theconnection member 36 causes theleg portions device 30 is in its final configuration, the tissue piercing ends 33 and 35 point towards each other. - Referring now to
FIGS. 4 and 5 , they illustrate thedeployment catheter 40 in greater detail. Here it may be seen that thedeployment catheter 40 includes atubular wall 42 in which aslot 44 is formed. Thestaple device 30 is positioned adjacent theslot 44 to permit thestaple device 30 to be forced through thetubular sidewall 42 and more particularly through theslot 44 for deployment in the heart. Theslot 44 preferably comprises a reduced thickness of thetubular wall 42 to provide an effective seal prior to deployment but permitting a relatively modest force to urge thedevice 30 through theslot 44 and into the mitral valve annulus as will be described hereinafter. Hence, theslot 44 is a break-away slot providing seal integrity prior to deployment but permitting the staple 30 to be forced through thetubular wall 42 of thecatheter 40 into the heart. -
FIG. 6 is a side view showing thecatheter 40 within thecoronary sinus 14. Also illustrated inFIG. 6 is atool 50 which may be utilized for forcing thestaples 30 through thetubular wall 42 of thecatheter 40. Also shown inFIG. 6 is an urgingmember 60 which urges thecatheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus. - More specifically, the
tool 50 includes asurface contour 52 which corresponds to the contour of thestaple devices 30 when in the initial configuration. Displacement of thetool 50 in a proximal direction as indicated by thearrow 54 causes thetool 50 to urge or force thestaple devices 30 through thetubular wall 42 of thecatheter 40. As noted inFIG. 6 , the plurality ofstaple devices 30 are urged or forced through thetubular wall 42 for deployment substantially simultaneously. - The urging
member 60 preferably takes the form of aninflatable balloon 62. Preferably, theinflatable balloon 62 is inflatable by aconduit 64 and is carried by thecatheter 40. Prior to deployment of thestaple devices 30, thecatheter 40 is placed in the coronary sinus adjacent the mitral valve annulus with theballoon 62 deflated. Thereafter, theballoon 62 is inflated so as to urge thecatheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus as illustrated. Thereafter, thetool 50 may be displaced proximally to urge or force thestaple devices 30 through thetubular wall 42 of thecatheter 40 for deployment. - The deployment of the
staple devices 30 is shown more particularly inFIGS. 7 and 8 . InFIG. 7 , it can be seen that thecatheter 40 is positioned within thecoronary sinus 14 adjacent to themitral valve annulus 20. Theballoon 62 has been inflated so as to urge thecatheter 40 against the wall of thecoronary sinus 14 which is adjacent themitral valve annulus 20. The assembly is now ready to deploy the mitral valvestaple devices 30. - Referring now to
FIG. 8 , it will be noted that thetool 50 is being displaced proximally and is forcing thestaple devices 30 through thetubular wall 42 of thecatheter 40. The leg portions are extending through the wall of the coronary sinus into themitral valve annulus 20 or at least near to the annulus. Once the mitral valvestaple devices 30 have been forced through the catheter sidewall with the leg portions piercing the mitral valve annulus, the staple devices will assume their final configuration. This is shown more particularly inFIG. 9 . - In
FIG. 9 , it can be seen that theconnection portions 36 of the mitral valvestaple devices 30 have assumed their final configuration. During the process of transitioning from the initial configuration to the final configuration, the tissue piercing leg portions have gathered-up mitral valve annulus tissue to tighten the mitral valve annulus. More specifically, as will be noted inFIG. 9 , the radius of curvature of themitral valve annulus 20 in a portion designated 70 has been dramatically increased. This tightening up of the mitral valve annulus will promote more efficient mitral valve action and advantageously terminate mitral regurgitation. While the tissue piercing leg portions are illustrated as piercing entirely through the mitral valve annulus, it will be appreciated by those skilled in the art that the mitral valve annulus wall need not necessarily be pierced entirely through and that the tissue piercing leg portions need only pierce into the mitral valve annulus. - While particular embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention as defined by the claims.
Claims (5)
1. A device for effecting mitral valve annulus geometry of a heart, the device comprising:
first and second leg portions, each leg portion terminating in a tissue piercing end; and
a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
2. The device of claim 1 wherein the leg portions and connection portion are formed of the same material stock.
3. The device of claim 2 wherein the leg portions and the connection portion are formed from Nitinol.
4. A device for effecting mitral valve annulus geometry of a heart, the device comprising:
first and second tissue piercing portions, each tissue piercing portion terminating in a tissue piercing end; and
a connection portion extending between the first and second tissue piercing portions, the connection portion having an initial stressed and distorted configuration to separate the first and second tissue piercing portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second tissue piercing portions by a second distance, the second distance being shorter than the first distance.
5. A device for effecting tissue geometry of an organ, the device comprising:
first and second leg portions, each leg portion terminating in a tissue piercing end; and
a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the tissue and a final unstressed and undistorted configuration after the tissue piercing ends pierce the tissue to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/245,535 US20060030882A1 (en) | 2002-03-06 | 2005-10-07 | Transvenous staples, assembly and method for mitral valve repair |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/093,323 US7004958B2 (en) | 2002-03-06 | 2002-03-06 | Transvenous staples, assembly and method for mitral valve repair |
US11/245,535 US20060030882A1 (en) | 2002-03-06 | 2005-10-07 | Transvenous staples, assembly and method for mitral valve repair |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/093,323 Continuation US7004958B2 (en) | 2002-03-06 | 2002-03-06 | Transvenous staples, assembly and method for mitral valve repair |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060030882A1 true US20060030882A1 (en) | 2006-02-09 |
Family
ID=27804207
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/093,323 Expired - Lifetime US7004958B2 (en) | 2002-03-06 | 2002-03-06 | Transvenous staples, assembly and method for mitral valve repair |
US11/245,535 Abandoned US20060030882A1 (en) | 2002-03-06 | 2005-10-07 | Transvenous staples, assembly and method for mitral valve repair |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/093,323 Expired - Lifetime US7004958B2 (en) | 2002-03-06 | 2002-03-06 | Transvenous staples, assembly and method for mitral valve repair |
Country Status (3)
Country | Link |
---|---|
US (2) | US7004958B2 (en) |
AU (1) | AU2003220087A1 (en) |
WO (1) | WO2003075748A2 (en) |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020161275A1 (en) * | 1997-01-02 | 2002-10-31 | Schweich Cyril J. | Heart wall tension reduction apparatus and method |
US20040111095A1 (en) * | 2002-12-05 | 2004-06-10 | Cardiac Dimensions, Inc. | Medical device delivery system |
US20040158321A1 (en) * | 2003-02-12 | 2004-08-12 | Cardiac Dimensions, Inc. | Method of implanting a mitral valve therapy device |
US20040215339A1 (en) * | 2002-10-24 | 2004-10-28 | Drasler William J. | Venous valve apparatus and method |
US20040220657A1 (en) * | 2003-05-02 | 2004-11-04 | Cardiac Dimensions, Inc., A Washington Corporation | Tissue shaping device with conformable anchors |
US20050010240A1 (en) * | 2003-06-05 | 2005-01-13 | Cardiac Dimensions Inc., A Washington Corporation | Device and method for modifying the shape of a body organ |
US20050021121A1 (en) * | 2001-11-01 | 2005-01-27 | Cardiac Dimensions, Inc., A Delaware Corporation | Adjustable height focal tissue deflector |
US20050027351A1 (en) * | 2001-05-14 | 2005-02-03 | Cardiac Dimensions, Inc. A Washington Corporation | Mitral valve regurgitation treatment device and method |
US20050065598A1 (en) * | 2002-03-11 | 2005-03-24 | Mathis Mark L. | Device, assembly and method for mitral valve repair |
US20050065594A1 (en) * | 1999-10-21 | 2005-03-24 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US20050137449A1 (en) * | 2003-12-19 | 2005-06-23 | Cardiac Dimensions, Inc. | Tissue shaping device with self-expanding anchors |
US20050137451A1 (en) * | 2003-12-19 | 2005-06-23 | Cardiac Dimensions, Inc. A Washington Corporation | Tissue shaping device with integral connector and crimp |
US20050137685A1 (en) * | 2003-12-19 | 2005-06-23 | Cardiac Dimensions, Inc., A Washington Corporation | Reduced length tissue shaping device |
US20050137450A1 (en) * | 2003-12-19 | 2005-06-23 | Cardiac Dimensions, Inc., A Washington Corporation | Tapered connector for tissue shaping device |
US20050149179A1 (en) * | 2002-05-08 | 2005-07-07 | Mathis Mark L. | Body lumen device anchor, device and assembly |
US20050149182A1 (en) * | 2001-12-05 | 2005-07-07 | Alferness Clifton A. | Anchor and pull mitral valve device and method |
US20050216077A1 (en) * | 2002-01-30 | 2005-09-29 | Mathis Mark L | Fixed length anchor and pull mitral valve device and method |
US20050272969A1 (en) * | 2001-12-05 | 2005-12-08 | Alferness Clifton A | Device and method for modifying the shape of a body organ |
US20060085066A1 (en) * | 2002-04-03 | 2006-04-20 | Boston Scientific Corporation | Body lumen closure |
US20060116758A1 (en) * | 2003-06-05 | 2006-06-01 | Gary Swinford | Device, System and Method to Affect the Mitral Valve Annulus of a Heart |
US20060161169A1 (en) * | 2003-05-02 | 2006-07-20 | Cardiac Dimensions, Inc., A Delaware Corporation | Device and method for modifying the shape of a body organ |
US20060167544A1 (en) * | 2005-01-20 | 2006-07-27 | Cardiac Dimensions, Inc. | Tissue Shaping Device |
US20060173490A1 (en) * | 2005-02-01 | 2006-08-03 | Boston Scientific Scimed, Inc. | Filter system and method |
US20060178729A1 (en) * | 2005-02-07 | 2006-08-10 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US20060178730A1 (en) * | 2005-02-07 | 2006-08-10 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US20060190074A1 (en) * | 2005-02-23 | 2006-08-24 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US20060235509A1 (en) * | 2005-04-15 | 2006-10-19 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US20060247672A1 (en) * | 2005-04-27 | 2006-11-02 | Vidlund Robert M | Devices and methods for pericardial access |
US20060253189A1 (en) * | 2002-04-03 | 2006-11-09 | Boston Scientific Corporation | Artificial valve |
US20060276891A1 (en) * | 2003-12-19 | 2006-12-07 | Gregory Nieminen | Mitral Valve Annuloplasty Device with Twisted Anchor |
US20060282157A1 (en) * | 2005-06-10 | 2006-12-14 | Hill Jason P | Venous valve, system, and method |
US20070055293A1 (en) * | 2001-12-05 | 2007-03-08 | Alferness Clifton A | Device and method for modifying the shape of a body organ |
US20070067021A1 (en) * | 2005-09-21 | 2007-03-22 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US20070066879A1 (en) * | 2002-01-30 | 2007-03-22 | Mathis Mark L | Body lumen shaping device with cardiac leads |
US20070135912A1 (en) * | 2003-02-03 | 2007-06-14 | Mathis Mark L | Mitral valve device using conditioned shape memory alloy |
US20070173930A1 (en) * | 2006-01-20 | 2007-07-26 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US20070239270A1 (en) * | 2006-04-11 | 2007-10-11 | Mathis Mark L | Mitral Valve Annuloplasty Device with Vena Cava Anchor |
US20080015407A1 (en) * | 2003-05-02 | 2008-01-17 | Mathis Mark L | Device and Method for Modifying the Shape of a Body Organ |
US20080021382A1 (en) * | 2002-12-30 | 2008-01-24 | Boston Scientific Scimed, Inc. | Valve treatment catheter and methods |
US20080087608A1 (en) * | 2006-10-10 | 2008-04-17 | Multiphase Systems Integration | Compact multiphase inline bulk water separation method and system for hydrocarbon production |
US20080126131A1 (en) * | 2006-07-17 | 2008-05-29 | Walgreen Co. | Predictive Modeling And Risk Stratification Of A Medication Therapy Regimen |
US20080269877A1 (en) * | 2007-02-05 | 2008-10-30 | Jenson Mark L | Systems and methods for valve delivery |
US20080300678A1 (en) * | 2007-02-05 | 2008-12-04 | Eidenschink Tracee E J | Percutaneous valve, system and method |
US20090030512A1 (en) * | 2007-07-26 | 2009-01-29 | Thielen Joseph M | Circulatory valve, system and method |
US20090164029A1 (en) * | 2007-12-21 | 2009-06-25 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US20090171456A1 (en) * | 2007-12-28 | 2009-07-02 | Kveen Graig L | Percutaneous heart valve, system, and method |
US20100031793A1 (en) * | 2008-08-11 | 2010-02-11 | Hayner Louis R | Catheter Cutting Tool |
US7666224B2 (en) | 2002-11-12 | 2010-02-23 | Edwards Lifesciences Llc | Devices and methods for heart valve treatment |
US7776053B2 (en) | 2000-10-26 | 2010-08-17 | Boston Scientific Scimed, Inc. | Implantable valve system |
US7837729B2 (en) | 2002-12-05 | 2010-11-23 | Cardiac Dimensions, Inc. | Percutaneous mitral valve annuloplasty delivery system |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US8002824B2 (en) | 2004-09-02 | 2011-08-23 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US9445899B2 (en) | 2012-08-22 | 2016-09-20 | Joseph M. Arcidi | Method and apparatus for mitral valve annuloplasty |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US10390953B2 (en) | 2017-03-08 | 2019-08-27 | Cardiac Dimensions Pty. Ltd. | Methods and devices for reducing paravalvular leakage |
US11285005B2 (en) | 2006-07-17 | 2022-03-29 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US11596771B2 (en) | 2020-12-14 | 2023-03-07 | Cardiac Dimensions Pty. Ltd. | Modular pre-loaded medical implants and delivery systems |
Families Citing this family (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6050936A (en) | 1997-01-02 | 2000-04-18 | Myocor, Inc. | Heart wall tension reduction apparatus |
FR2768324B1 (en) | 1997-09-12 | 1999-12-10 | Jacques Seguin | SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER |
US6332893B1 (en) | 1997-12-17 | 2001-12-25 | Myocor, Inc. | Valve to myocardium tension members device and method |
US6260552B1 (en) | 1998-07-29 | 2001-07-17 | Myocor, Inc. | Transventricular implant tools and devices |
US7811296B2 (en) | 1999-04-09 | 2010-10-12 | Evalve, Inc. | Fixation devices for variation in engagement of tissue |
US6752813B2 (en) | 1999-04-09 | 2004-06-22 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
US7666204B2 (en) | 1999-04-09 | 2010-02-23 | Evalve, Inc. | Multi-catheter steerable guiding system and methods of use |
US8216256B2 (en) | 1999-04-09 | 2012-07-10 | Evalve, Inc. | Detachment mechanism for implantable fixation devices |
US20040044350A1 (en) | 1999-04-09 | 2004-03-04 | Evalve, Inc. | Steerable access sheath and methods of use |
CA2369641C (en) | 1999-04-09 | 2009-02-10 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
US7192442B2 (en) * | 1999-06-30 | 2007-03-20 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
ATE381291T1 (en) * | 2000-06-23 | 2008-01-15 | Viacor Inc | AUTOMATIC ANNUAL FOLDING FOR MITRAL VALVE REPAIR |
US6602288B1 (en) * | 2000-10-05 | 2003-08-05 | Edwards Lifesciences Corporation | Minimally-invasive annuloplasty repair segment delivery template, system and method of use |
US6723038B1 (en) | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
US6913608B2 (en) * | 2000-10-23 | 2005-07-05 | Viacor, Inc. | Automated annular plication for mitral valve repair |
US7186264B2 (en) * | 2001-03-29 | 2007-03-06 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US8202315B2 (en) | 2001-04-24 | 2012-06-19 | Mitralign, Inc. | Catheter-based annuloplasty using ventricularly positioned catheter |
US20060069429A1 (en) * | 2001-04-24 | 2006-03-30 | Spence Paul A | Tissue fastening systems and methods utilizing magnetic guidance |
US6676702B2 (en) * | 2001-05-14 | 2004-01-13 | Cardiac Dimensions, Inc. | Mitral valve therapy assembly and method |
US20060020336A1 (en) * | 2001-10-23 | 2006-01-26 | Liddicoat John R | Automated annular plication for mitral valve repair |
US7311729B2 (en) * | 2002-01-30 | 2007-12-25 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US6949122B2 (en) * | 2001-11-01 | 2005-09-27 | Cardiac Dimensions, Inc. | Focused compression mitral valve device and method |
US6793673B2 (en) * | 2002-12-26 | 2004-09-21 | Cardiac Dimensions, Inc. | System and method to effect mitral valve annulus of a heart |
US6764510B2 (en) * | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
US6960229B2 (en) * | 2002-01-30 | 2005-11-01 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US7048754B2 (en) | 2002-03-01 | 2006-05-23 | Evalve, Inc. | Suture fasteners and methods of use |
US7004958B2 (en) | 2002-03-06 | 2006-02-28 | Cardiac Dimensions, Inc. | Transvenous staples, assembly and method for mitral valve repair |
US6790214B2 (en) * | 2002-05-17 | 2004-09-14 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US7753924B2 (en) | 2003-09-04 | 2010-07-13 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20060122633A1 (en) * | 2002-06-13 | 2006-06-08 | John To | Methods and devices for termination |
US8287555B2 (en) * | 2003-02-06 | 2012-10-16 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
AU2003245507A1 (en) * | 2002-06-13 | 2003-12-31 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US20040243227A1 (en) * | 2002-06-13 | 2004-12-02 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US7753858B2 (en) * | 2002-06-13 | 2010-07-13 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US7758637B2 (en) * | 2003-02-06 | 2010-07-20 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US9949829B2 (en) | 2002-06-13 | 2018-04-24 | Ancora Heart, Inc. | Delivery devices and methods for heart valve repair |
US7588582B2 (en) * | 2002-06-13 | 2009-09-15 | Guided Delivery Systems Inc. | Methods for remodeling cardiac tissue |
US7666193B2 (en) | 2002-06-13 | 2010-02-23 | Guided Delivery Sytems, Inc. | Delivery devices and methods for heart valve repair |
US20050216078A1 (en) * | 2002-06-13 | 2005-09-29 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US7753922B2 (en) * | 2003-09-04 | 2010-07-13 | Guided Delivery Systems, Inc. | Devices and methods for cardiac annulus stabilization and treatment |
US7883538B2 (en) * | 2002-06-13 | 2011-02-08 | Guided Delivery Systems Inc. | Methods and devices for termination |
US20060241656A1 (en) * | 2002-06-13 | 2006-10-26 | Starksen Niel F | Delivery devices and methods for heart valve repair |
US8641727B2 (en) | 2002-06-13 | 2014-02-04 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US7087064B1 (en) | 2002-10-15 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Apparatuses and methods for heart valve repair |
US20050119735A1 (en) * | 2002-10-21 | 2005-06-02 | Spence Paul A. | Tissue fastening systems and methods utilizing magnetic guidance |
CA2500512A1 (en) * | 2002-10-21 | 2004-05-06 | Mitralign Incorporated | Method and apparatus for performing catheter-based annuloplasty using local plications |
US8187324B2 (en) | 2002-11-15 | 2012-05-29 | Advanced Cardiovascular Systems, Inc. | Telescoping apparatus for delivering and adjusting a medical device in a vessel |
US7335213B1 (en) | 2002-11-15 | 2008-02-26 | Abbott Cardiovascular Systems Inc. | Apparatus and methods for heart valve repair |
US9149602B2 (en) | 2005-04-22 | 2015-10-06 | Advanced Cardiovascular Systems, Inc. | Dual needle delivery system |
US7485143B2 (en) | 2002-11-15 | 2009-02-03 | Abbott Cardiovascular Systems Inc. | Apparatuses and methods for heart valve repair |
US7981152B1 (en) | 2004-12-10 | 2011-07-19 | Advanced Cardiovascular Systems, Inc. | Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites |
US7404824B1 (en) | 2002-11-15 | 2008-07-29 | Advanced Cardiovascular Systems, Inc. | Valve aptation assist device |
EP1608297A2 (en) * | 2003-03-18 | 2005-12-28 | St. Jude Medical, Inc. | Body tissue remodeling apparatus |
US10667823B2 (en) | 2003-05-19 | 2020-06-02 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US20060136053A1 (en) * | 2003-05-27 | 2006-06-22 | Rourke Jonathan M | Method and apparatus for improving mitral valve function |
US7179291B2 (en) * | 2003-05-27 | 2007-02-20 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US7534204B2 (en) * | 2003-09-03 | 2009-05-19 | Guided Delivery Systems, Inc. | Cardiac visualization devices and methods |
US7998112B2 (en) | 2003-09-30 | 2011-08-16 | Abbott Cardiovascular Systems Inc. | Deflectable catheter assembly and method of making same |
US20050273138A1 (en) * | 2003-12-19 | 2005-12-08 | Guided Delivery Systems, Inc. | Devices and methods for anchoring tissue |
US8864822B2 (en) * | 2003-12-23 | 2014-10-21 | Mitralign, Inc. | Devices and methods for introducing elements into tissue |
US7431726B2 (en) * | 2003-12-23 | 2008-10-07 | Mitralign, Inc. | Tissue fastening systems and methods utilizing magnetic guidance |
WO2005087140A1 (en) | 2004-03-11 | 2005-09-22 | Percutaneous Cardiovascular Solutions Pty Limited | Percutaneous heart valve prosthesis |
EP3628239B1 (en) | 2004-05-14 | 2022-04-27 | Evalve, Inc. | Locking mechanisms for fixation devices for engaging tissue |
US7704277B2 (en) * | 2004-09-14 | 2010-04-27 | Edwards Lifesciences Ag | Device and method for treatment of heart valve regurgitation |
US8052592B2 (en) | 2005-09-27 | 2011-11-08 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
CA2581852C (en) | 2004-09-27 | 2012-11-13 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US7374530B2 (en) * | 2004-11-15 | 2008-05-20 | Benvenue Medical Inc. | Catheter-based tissue remodeling devices and methods |
SE531468C2 (en) * | 2005-04-21 | 2009-04-14 | Edwards Lifesciences Ag | An apparatus for controlling blood flow |
US8333777B2 (en) | 2005-04-22 | 2012-12-18 | Benvenue Medical, Inc. | Catheter-based tissue remodeling devices and methods |
US8951285B2 (en) | 2005-07-05 | 2015-02-10 | Mitralign, Inc. | Tissue anchor, anchoring system and methods of using the same |
US9492277B2 (en) | 2005-08-30 | 2016-11-15 | Mayo Foundation For Medical Education And Research | Soft body tissue remodeling methods and apparatus |
US9101338B2 (en) * | 2006-05-03 | 2015-08-11 | Mayo Foundation For Medical Education And Research | Soft body tissue remodeling methods and apparatus |
US8932348B2 (en) | 2006-05-18 | 2015-01-13 | Edwards Lifesciences Corporation | Device and method for improving heart valve function |
CN101484093B (en) | 2006-06-01 | 2011-09-07 | 爱德华兹生命科学公司 | Prosthetic insert for improving heart valve function |
US20080177380A1 (en) * | 2007-01-19 | 2008-07-24 | Starksen Niel F | Methods and devices for heart tissue repair |
US20080228266A1 (en) * | 2007-03-13 | 2008-09-18 | Mitralign, Inc. | Plication assistance devices and methods |
US11660190B2 (en) | 2007-03-13 | 2023-05-30 | Edwards Lifesciences Corporation | Tissue anchors, systems and methods, and devices |
US8911461B2 (en) * | 2007-03-13 | 2014-12-16 | Mitralign, Inc. | Suture cutter and method of cutting suture |
US8220689B2 (en) | 2007-05-02 | 2012-07-17 | Endogene Pty Ltd | Device and method for delivering shape-memory staples |
CA2715220C (en) * | 2007-05-02 | 2016-10-11 | Endogene Pty Ltd | Apparatus for delivering shape memory alloy staples |
US20080287989A1 (en) * | 2007-05-17 | 2008-11-20 | Arch Day Design, Llc | Tissue holding implants |
WO2009094585A2 (en) * | 2008-01-24 | 2009-07-30 | Coherex Medical, Inc. | Methods and apparatus for reducing valve prolaspe |
AU2009212393B2 (en) | 2008-02-06 | 2014-07-24 | Ancora Heart, Inc. | Multi-window guide tunnel |
US20090276040A1 (en) | 2008-05-01 | 2009-11-05 | Edwards Lifesciences Corporation | Device and method for replacing mitral valve |
US7954688B2 (en) * | 2008-08-22 | 2011-06-07 | Medtronic, Inc. | Endovascular stapling apparatus and methods of use |
US8945211B2 (en) * | 2008-09-12 | 2015-02-03 | Mitralign, Inc. | Tissue plication device and method for its use |
CN102245110A (en) | 2008-10-10 | 2011-11-16 | 导向传输系统股份有限公司 | Tether tensioning devices and related methods |
AU2009302169B2 (en) | 2008-10-10 | 2016-01-14 | Ancora Heart, Inc. | Termination devices and related methods |
AU2009317876B2 (en) | 2008-11-21 | 2014-01-16 | Percutaneous Cardiovascular Solutions Pty Limited | Heart valve prosthesis and method |
US20100198192A1 (en) | 2009-01-20 | 2010-08-05 | Eugene Serina | Anchor deployment devices and related methods |
US20100261662A1 (en) * | 2009-04-09 | 2010-10-14 | Endologix, Inc. | Utilization of mural thrombus for local drug delivery into vascular tissue |
WO2010150178A2 (en) | 2009-06-26 | 2010-12-29 | Simcha Milo | Surgical stapler and method of surgical stapling |
US20110077733A1 (en) * | 2009-09-25 | 2011-03-31 | Edwards Lifesciences Corporation | Leaflet contacting apparatus and method |
US8821538B2 (en) * | 2009-11-20 | 2014-09-02 | Peter Karl Johansson | Implantable tissue structure modifiers and methods for using the same |
WO2012031204A2 (en) | 2010-09-03 | 2012-03-08 | Guided Delivery Systems Inc. | Devices and methods for anchoring tissue |
US8747462B2 (en) | 2011-05-17 | 2014-06-10 | Boston Scientific Scimed, Inc. | Corkscrew annuloplasty device |
WO2012158186A1 (en) * | 2011-05-17 | 2012-11-22 | Boston Scientific Scimed, Inc. | Percutaneous mitral annulus mini-plication |
US8814932B2 (en) | 2011-05-17 | 2014-08-26 | Boston Scientific Scimed, Inc. | Annuloplasty ring with piercing wire and segmented wire lumen |
US8523940B2 (en) | 2011-05-17 | 2013-09-03 | Boston Scientific Scimed, Inc. | Annuloplasty ring with anchors fixed by curing polymer |
US8945177B2 (en) | 2011-09-13 | 2015-02-03 | Abbott Cardiovascular Systems Inc. | Gripper pusher mechanism for tissue apposition systems |
US10076414B2 (en) | 2012-02-13 | 2018-09-18 | Mitraspan, Inc. | Method and apparatus for repairing a mitral valve |
EP2814428A4 (en) | 2012-02-13 | 2016-05-25 | Mitraspan Inc | Method and apparatus for repairing a mitral valve |
US10070857B2 (en) | 2013-08-31 | 2018-09-11 | Mitralign, Inc. | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US9572666B2 (en) | 2014-03-17 | 2017-02-21 | Evalve, Inc. | Mitral valve fixation device removal devices and methods |
US10390943B2 (en) | 2014-03-17 | 2019-08-27 | Evalve, Inc. | Double orifice device for transcatheter mitral valve replacement |
US10188392B2 (en) | 2014-12-19 | 2019-01-29 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
US10058321B2 (en) | 2015-03-05 | 2018-08-28 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
US10524912B2 (en) | 2015-04-02 | 2020-01-07 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
AU2016260305B2 (en) | 2015-05-12 | 2022-01-06 | Ancora Heart, Inc. | Device and method for releasing catheters from cardiac structures |
US10376673B2 (en) | 2015-06-19 | 2019-08-13 | Evalve, Inc. | Catheter guiding system and methods |
US10238494B2 (en) | 2015-06-29 | 2019-03-26 | Evalve, Inc. | Self-aligning radiopaque ring |
US10667815B2 (en) | 2015-07-21 | 2020-06-02 | Evalve, Inc. | Tissue grasping devices and related methods |
US10413408B2 (en) | 2015-08-06 | 2019-09-17 | Evalve, Inc. | Delivery catheter systems, methods, and devices |
US10238495B2 (en) | 2015-10-09 | 2019-03-26 | Evalve, Inc. | Delivery catheter handle and methods of use |
US10736632B2 (en) | 2016-07-06 | 2020-08-11 | Evalve, Inc. | Methods and devices for valve clip excision |
US11071564B2 (en) | 2016-10-05 | 2021-07-27 | Evalve, Inc. | Cardiac valve cutting device |
US10363138B2 (en) | 2016-11-09 | 2019-07-30 | Evalve, Inc. | Devices for adjusting the curvature of cardiac valve structures |
US10398553B2 (en) | 2016-11-11 | 2019-09-03 | Evalve, Inc. | Opposing disk device for grasping cardiac valve tissue |
US10426616B2 (en) | 2016-11-17 | 2019-10-01 | Evalve, Inc. | Cardiac implant delivery system |
WO2018094258A1 (en) | 2016-11-18 | 2018-05-24 | Ancora Heart, Inc. | Myocardial implant load sharing device and methods to promote lv function |
US10779837B2 (en) | 2016-12-08 | 2020-09-22 | Evalve, Inc. | Adjustable arm device for grasping tissues |
US10314586B2 (en) | 2016-12-13 | 2019-06-11 | Evalve, Inc. | Rotatable device and method for fixing tricuspid valve tissue |
WO2018209313A1 (en) | 2017-05-12 | 2018-11-15 | Evalve, Inc. | Long arm valve repair clip |
US10842619B2 (en) | 2017-05-12 | 2020-11-24 | Edwards Lifesciences Corporation | Prosthetic heart valve docking assembly |
WO2019144121A1 (en) | 2018-01-22 | 2019-07-25 | Edwards Lifesciences Corporation | Heart shape preserving anchor |
US11285003B2 (en) | 2018-03-20 | 2022-03-29 | Medtronic Vascular, Inc. | Prolapse prevention device and methods of use thereof |
US11026791B2 (en) | 2018-03-20 | 2021-06-08 | Medtronic Vascular, Inc. | Flexible canopy valve repair systems and methods of use |
US11234818B2 (en) * | 2018-05-21 | 2022-02-01 | Medtentia International Ltd Oy | Annuloplasty device |
US12102531B2 (en) | 2018-10-22 | 2024-10-01 | Evalve, Inc. | Tissue cutting systems, devices and methods |
CN114449979A (en) | 2019-07-15 | 2022-05-06 | 埃瓦尔维公司 | Independent proximal element actuation method |
CA3147413A1 (en) | 2019-07-15 | 2021-01-21 | Ancora Heart, Inc. | Devices and methods for tether cutting |
US12048448B2 (en) | 2020-05-06 | 2024-07-30 | Evalve, Inc. | Leaflet grasping and cutting device |
Citations (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4055861A (en) * | 1975-04-11 | 1977-11-01 | Rhone-Poulenc Industries | Support for a natural human heart valve |
US4164046A (en) * | 1977-05-16 | 1979-08-14 | Cooley Denton | Valve prosthesis |
US4362413A (en) * | 1979-12-10 | 1982-12-07 | Exxon Production Research Co. | Retrievable connector assembly |
US4485816A (en) * | 1981-06-25 | 1984-12-04 | Alchemia | Shape-memory surgical staple apparatus and method for use in surgical suturing |
US4550870A (en) * | 1983-10-13 | 1985-11-05 | Alchemia Ltd. Partnership | Stapling device |
US4588395A (en) * | 1978-03-10 | 1986-05-13 | Lemelson Jerome H | Catheter and method |
US4830023A (en) * | 1987-11-27 | 1989-05-16 | Medi-Tech, Incorporated | Medical guidewire |
US5061277A (en) * | 1986-08-06 | 1991-10-29 | Baxter International Inc. | Flexible cardiac valvular support prosthesis |
US5250071A (en) * | 1992-09-22 | 1993-10-05 | Target Therapeutics, Inc. | Detachable embolic coil assembly using interlocking clasps and method of use |
US5261916A (en) * | 1991-12-12 | 1993-11-16 | Target Therapeutics | Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling |
US5265601A (en) * | 1992-05-01 | 1993-11-30 | Medtronic, Inc. | Dual chamber cardiac pacing from a single electrode |
US5350420A (en) * | 1989-07-31 | 1994-09-27 | Baxter International Inc. | Flexible annuloplasty ring and holder |
US5474557A (en) * | 1993-09-21 | 1995-12-12 | Mai; Christian | Multibranch osteosynthesis clip with dynamic compression and self-retention |
US5514161A (en) * | 1994-04-05 | 1996-05-07 | Ela Medical S.A. | Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker |
US5554177A (en) * | 1995-03-27 | 1996-09-10 | Medtronic, Inc. | Method and apparatus to optimize pacing based on intensity of acoustic signal |
US5562698A (en) * | 1994-03-09 | 1996-10-08 | Cook Incorporated | Intravascular treatment system |
US5601600A (en) * | 1995-09-08 | 1997-02-11 | Conceptus, Inc. | Endoluminal coil delivery system having a mechanical release mechanism |
US5676671A (en) * | 1995-04-12 | 1997-10-14 | Inoue; Kanji | Device for introducing an appliance to be implanted into a catheter |
US5733325A (en) * | 1993-11-04 | 1998-03-31 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system |
US5794701A (en) * | 1996-06-12 | 1998-08-18 | Oceaneering International, Inc. | Subsea connection |
US5824071A (en) * | 1996-09-16 | 1998-10-20 | Circulation, Inc. | Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion |
US5895391A (en) * | 1996-09-27 | 1999-04-20 | Target Therapeutics, Inc. | Ball lock joint and introducer for vaso-occlusive member |
US5899882A (en) * | 1994-10-27 | 1999-05-04 | Novoste Corporation | Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient |
US5908404A (en) * | 1996-05-13 | 1999-06-01 | Elliott; James B. | Methods for inserting an implant |
US5928258A (en) * | 1997-09-26 | 1999-07-27 | Corvita Corporation | Method and apparatus for loading a stent or stent-graft into a delivery sheath |
US5961545A (en) * | 1997-01-17 | 1999-10-05 | Meadox Medicals, Inc. | EPTFE graft-stent composite device |
US5984944A (en) * | 1997-09-12 | 1999-11-16 | B. Braun Medical, Inc. | Introducer for an expandable vascular occlusion device |
US6027517A (en) * | 1994-02-24 | 2000-02-22 | Radiance Medical Systems, Inc. | Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon |
US6077295A (en) * | 1996-07-15 | 2000-06-20 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system |
US6096064A (en) * | 1997-09-19 | 2000-08-01 | Intermedics Inc. | Four chamber pacer for dilated cardiomyopthy |
US6099552A (en) * | 1997-11-12 | 2000-08-08 | Boston Scientific Corporation | Gastrointestinal copression clips |
US6099549A (en) * | 1998-07-03 | 2000-08-08 | Cordis Corporation | Vascular filter for controlled release |
US6129755A (en) * | 1998-01-09 | 2000-10-10 | Nitinol Development Corporation | Intravascular stent having an improved strut configuration |
US6171320B1 (en) * | 1996-12-25 | 2001-01-09 | Niti Alloys Technologies Ltd. | Surgical clip |
US6190406B1 (en) * | 1998-01-09 | 2001-02-20 | Nitinal Development Corporation | Intravascular stent having tapered struts |
US6210432B1 (en) * | 1999-06-29 | 2001-04-03 | Jan Otto Solem | Device and method for treatment of mitral insufficiency |
US6254628B1 (en) * | 1996-12-09 | 2001-07-03 | Micro Therapeutics, Inc. | Intracranial stent |
US6275730B1 (en) * | 1997-03-14 | 2001-08-14 | Uab Research Foundation | Method and apparatus for treating cardiac arrythmia |
US20010018611A1 (en) * | 1999-06-30 | 2001-08-30 | Solem Jan Otto | Method and device for treatment of mitral insufficiency |
US6299613B1 (en) * | 1999-04-23 | 2001-10-09 | Sdgi Holdings, Inc. | Method for the correction of spinal deformities through vertebral body tethering without fusion |
US20010044568A1 (en) * | 2000-01-31 | 2001-11-22 | Langberg Jonathan J. | Endoluminal ventricular retention |
US6342067B1 (en) * | 1998-01-09 | 2002-01-29 | Nitinol Development Corporation | Intravascular stent having curved bridges for connecting adjacent hoops |
US6345198B1 (en) * | 1998-01-23 | 2002-02-05 | Pacesetter, Inc. | Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity |
US6352561B1 (en) * | 1996-12-23 | 2002-03-05 | W. L. Gore & Associates | Implant deployment apparatus |
US6352553B1 (en) * | 1995-12-14 | 2002-03-05 | Gore Enterprise Holdings, Inc. | Stent-graft deployment apparatus and method |
US6358195B1 (en) * | 2000-03-09 | 2002-03-19 | Neoseed Technology Llc | Method and apparatus for loading radioactive seeds into brachytherapy needles |
US20020042621A1 (en) * | 2000-06-23 | 2002-04-11 | Liddicoat John R. | Automated annular plication for mitral valve repair |
US20020042651A1 (en) * | 2000-06-30 | 2002-04-11 | Liddicoat John R. | Method and apparatus for performing a procedure on a cardiac valve |
US20020049468A1 (en) * | 2000-06-30 | 2002-04-25 | Streeter Richard B. | Intravascular filter with debris entrapment mechanism |
US20020055774A1 (en) * | 2000-09-07 | 2002-05-09 | Liddicoat John R. | Fixation band for affixing a prosthetic heart valve to tissue |
US6395017B1 (en) * | 1996-11-15 | 2002-05-28 | C. R. Bard, Inc. | Endoprosthesis delivery catheter with sequential stage control |
US20020065554A1 (en) * | 2000-10-25 | 2002-05-30 | Streeter Richard B. | Mitral shield |
US20020087173A1 (en) * | 2000-12-28 | 2002-07-04 | Alferness Clifton A. | Mitral valve constricting device, system and method |
US6419696B1 (en) * | 2000-07-06 | 2002-07-16 | Paul A. Spence | Annuloplasty devices and related heart valve repair methods |
US20020095167A1 (en) * | 2000-10-23 | 2002-07-18 | Liddicoat John R. | Automated annular plication for mitral valve repair |
US6442427B1 (en) * | 2000-04-27 | 2002-08-27 | Medtronic, Inc. | Method and system for stimulating a mammalian heart |
US20020138044A1 (en) * | 2000-10-27 | 2002-09-26 | Streeter Richard B. | Intracardiovascular access (ICVATM) system |
US20020151961A1 (en) * | 2000-01-31 | 2002-10-17 | Lashinski Randall T. | Medical system and method for remodeling an extravascular tissue structure |
US6503271B2 (en) * | 1998-01-09 | 2003-01-07 | Cordis Corporation | Intravascular device with improved radiopacity |
US20030018358A1 (en) * | 1999-06-25 | 2003-01-23 | Vahid Saadat | Apparatus and methods for treating tissue |
US20030078654A1 (en) * | 2001-08-14 | 2003-04-24 | Taylor Daniel C. | Method and apparatus for improving mitral valve function |
US20030078465A1 (en) * | 2001-10-16 | 2003-04-24 | Suresh Pai | Systems for heart treatment |
US20030083538A1 (en) * | 2001-11-01 | 2003-05-01 | Cardiac Dimensions, Inc. | Focused compression mitral valve device and method |
US20030088305A1 (en) * | 2001-10-26 | 2003-05-08 | Cook Incorporated | Prostheses for curved lumens |
US6569198B1 (en) * | 2000-03-31 | 2003-05-27 | Richard A. Wilson | Mitral or tricuspid valve annuloplasty prosthetic device |
US6589208B2 (en) * | 2000-06-20 | 2003-07-08 | Applied Medical Resources Corporation | Self-deploying catheter assembly |
US20030130730A1 (en) * | 2001-10-26 | 2003-07-10 | Cohn William E. | Method and apparatus for reducing mitral regurgitation |
US20030135267A1 (en) * | 2002-01-11 | 2003-07-17 | Solem Jan Otto | Delayed memory device |
US20030144697A1 (en) * | 2002-01-30 | 2003-07-31 | Cardiac Dimensions, Inc. | Fixed length anchor and pull mitral valve device and method |
US6602288B1 (en) * | 2000-10-05 | 2003-08-05 | Edwards Lifesciences Corporation | Minimally-invasive annuloplasty repair segment delivery template, system and method of use |
US6602289B1 (en) * | 1999-06-08 | 2003-08-05 | S&A Rings, Llc | Annuloplasty rings of particular use in surgery for the mitral valve |
US6623521B2 (en) * | 1998-02-17 | 2003-09-23 | Md3, Inc. | Expandable stent with sliding and locking radial elements |
US6676702B2 (en) * | 2001-05-14 | 2004-01-13 | Cardiac Dimensions, Inc. | Mitral valve therapy assembly and method |
US20040039443A1 (en) * | 1999-06-30 | 2004-02-26 | Solem Jan Otto | Method and device for treatment of mitral insufficiency |
US6716158B2 (en) * | 2001-09-07 | 2004-04-06 | Mardil, Inc. | Method and apparatus for external stabilization of the heart |
US6718985B2 (en) * | 2001-04-24 | 2004-04-13 | Edwin J. Hlavka | Method and apparatus for catheter-based annuloplasty using local plications |
US20040073302A1 (en) * | 2002-02-05 | 2004-04-15 | Jonathan Rourke | Method and apparatus for improving mitral valve function |
US6723038B1 (en) * | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
US6764510B2 (en) * | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
US6776784B2 (en) * | 2001-09-06 | 2004-08-17 | Core Medical, Inc. | Clip apparatus for closing septal defects and methods of use |
US6790231B2 (en) * | 2001-02-05 | 2004-09-14 | Viacor, Inc. | Apparatus and method for reducing mitral regurgitation |
US6800090B2 (en) * | 2001-05-14 | 2004-10-05 | Cardiac Dimensions, Inc. | Mitral valve therapy device, system and method |
US6810882B2 (en) * | 2001-01-30 | 2004-11-02 | Ev3 Santa Rosa, Inc. | Transluminal mitral annuloplasty |
US6908478B2 (en) * | 2001-12-05 | 2005-06-21 | Cardiac Dimensions, Inc. | Anchor and pull mitral valve device and method |
US7004958B2 (en) * | 2002-03-06 | 2006-02-28 | Cardiac Dimensions, Inc. | Transvenous staples, assembly and method for mitral valve repair |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US589882A (en) * | 1897-09-14 | Sheet-flue range | ||
FR2718035B1 (en) | 1994-04-05 | 1996-08-30 | Ela Medical Sa | Method for controlling a double atrial pacemaker of the triple chamber type programmable in fallback mode. |
US6391038B2 (en) * | 1999-07-28 | 2002-05-21 | Cardica, Inc. | Anastomosis system and method for controlling a tissue site |
WO2001050985A1 (en) | 2000-01-14 | 2001-07-19 | Viacor Incorporated | Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same |
DE60004959T2 (en) * | 2000-01-18 | 2004-03-11 | Société des Produits Nestlé S.A. | Process for the production of candy bars |
US7296577B2 (en) * | 2000-01-31 | 2007-11-20 | Edwards Lifescience Ag | Transluminal mitral annuloplasty with active anchoring |
CA2437387A1 (en) | 2001-02-05 | 2002-08-15 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
CA2668308A1 (en) | 2001-03-05 | 2002-12-05 | Viacor, Incorporated | Apparatus and method for reducing mitral regurgitation |
WO2002076284A2 (en) | 2001-03-23 | 2002-10-03 | Viacor, Inc. | Method and apparatus for reducing mitral regurgitation |
US7186264B2 (en) | 2001-03-29 | 2007-03-06 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US6824562B2 (en) | 2002-05-08 | 2004-11-30 | Cardiac Dimensions, Inc. | Body lumen device anchor, device and assembly |
US6793673B2 (en) | 2002-12-26 | 2004-09-21 | Cardiac Dimensions, Inc. | System and method to effect mitral valve annulus of a heart |
US6797001B2 (en) | 2002-03-11 | 2004-09-28 | Cardiac Dimensions, Inc. | Device, assembly and method for mitral valve repair |
US8287555B2 (en) * | 2003-02-06 | 2012-10-16 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
AU2003265852A1 (en) * | 2002-08-29 | 2004-03-19 | Mitralsolutions, Inc. | Implantable devices for controlling the internal circumference of an anatomic orifice or lumen |
ATE418938T1 (en) * | 2002-10-01 | 2009-01-15 | Ample Medical Inc | DEVICES AND SYSTEMS FOR REFORMING A HEART VALVE ANNULUS |
US7247134B2 (en) * | 2002-11-12 | 2007-07-24 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7112219B2 (en) * | 2002-11-12 | 2006-09-26 | Myocor, Inc. | Devices and methods for heart valve treatment |
US20040098116A1 (en) * | 2002-11-15 | 2004-05-20 | Callas Peter L. | Valve annulus constriction apparatus and method |
US7485143B2 (en) * | 2002-11-15 | 2009-02-03 | Abbott Cardiovascular Systems Inc. | Apparatuses and methods for heart valve repair |
US7316708B2 (en) * | 2002-12-05 | 2008-01-08 | Cardiac Dimensions, Inc. | Medical device delivery system |
US7107528B2 (en) * | 2002-12-20 | 2006-09-12 | International Business Machines Corporation | Automatic completion of dates |
US7314485B2 (en) * | 2003-02-03 | 2008-01-01 | Cardiac Dimensions, Inc. | Mitral valve device using conditioned shape memory alloy |
US20040158321A1 (en) * | 2003-02-12 | 2004-08-12 | Cardiac Dimensions, Inc. | Method of implanting a mitral valve therapy device |
-
2002
- 2002-03-06 US US10/093,323 patent/US7004958B2/en not_active Expired - Lifetime
-
2003
- 2003-03-06 WO PCT/US2003/007022 patent/WO2003075748A2/en not_active Application Discontinuation
- 2003-03-06 AU AU2003220087A patent/AU2003220087A1/en not_active Abandoned
-
2005
- 2005-10-07 US US11/245,535 patent/US20060030882A1/en not_active Abandoned
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4055861A (en) * | 1975-04-11 | 1977-11-01 | Rhone-Poulenc Industries | Support for a natural human heart valve |
US4164046A (en) * | 1977-05-16 | 1979-08-14 | Cooley Denton | Valve prosthesis |
US4588395A (en) * | 1978-03-10 | 1986-05-13 | Lemelson Jerome H | Catheter and method |
US4362413A (en) * | 1979-12-10 | 1982-12-07 | Exxon Production Research Co. | Retrievable connector assembly |
US4485816A (en) * | 1981-06-25 | 1984-12-04 | Alchemia | Shape-memory surgical staple apparatus and method for use in surgical suturing |
US4550870A (en) * | 1983-10-13 | 1985-11-05 | Alchemia Ltd. Partnership | Stapling device |
US5061277A (en) * | 1986-08-06 | 1991-10-29 | Baxter International Inc. | Flexible cardiac valvular support prosthesis |
US5061277B1 (en) * | 1986-08-06 | 2000-02-29 | Baxter Travenol Lab | Flexible cardiac valvular support prosthesis |
US4830023A (en) * | 1987-11-27 | 1989-05-16 | Medi-Tech, Incorporated | Medical guidewire |
US5350420A (en) * | 1989-07-31 | 1994-09-27 | Baxter International Inc. | Flexible annuloplasty ring and holder |
US5261916A (en) * | 1991-12-12 | 1993-11-16 | Target Therapeutics | Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling |
US5265601A (en) * | 1992-05-01 | 1993-11-30 | Medtronic, Inc. | Dual chamber cardiac pacing from a single electrode |
US5250071A (en) * | 1992-09-22 | 1993-10-05 | Target Therapeutics, Inc. | Detachable embolic coil assembly using interlocking clasps and method of use |
US5474557A (en) * | 1993-09-21 | 1995-12-12 | Mai; Christian | Multibranch osteosynthesis clip with dynamic compression and self-retention |
US6077297A (en) * | 1993-11-04 | 2000-06-20 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US5733325A (en) * | 1993-11-04 | 1998-03-31 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system |
US5935161A (en) * | 1993-11-04 | 1999-08-10 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US5891193A (en) * | 1993-11-04 | 1999-04-06 | C.R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US6027517A (en) * | 1994-02-24 | 2000-02-22 | Radiance Medical Systems, Inc. | Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon |
US5562698A (en) * | 1994-03-09 | 1996-10-08 | Cook Incorporated | Intravascular treatment system |
US5514161A (en) * | 1994-04-05 | 1996-05-07 | Ela Medical S.A. | Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker |
US5899882A (en) * | 1994-10-27 | 1999-05-04 | Novoste Corporation | Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient |
US5554177A (en) * | 1995-03-27 | 1996-09-10 | Medtronic, Inc. | Method and apparatus to optimize pacing based on intensity of acoustic signal |
US5676671A (en) * | 1995-04-12 | 1997-10-14 | Inoue; Kanji | Device for introducing an appliance to be implanted into a catheter |
US5601600A (en) * | 1995-09-08 | 1997-02-11 | Conceptus, Inc. | Endoluminal coil delivery system having a mechanical release mechanism |
US6352553B1 (en) * | 1995-12-14 | 2002-03-05 | Gore Enterprise Holdings, Inc. | Stent-graft deployment apparatus and method |
US5908404A (en) * | 1996-05-13 | 1999-06-01 | Elliott; James B. | Methods for inserting an implant |
US5794701A (en) * | 1996-06-12 | 1998-08-18 | Oceaneering International, Inc. | Subsea connection |
US6077295A (en) * | 1996-07-15 | 2000-06-20 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system |
US5824071A (en) * | 1996-09-16 | 1998-10-20 | Circulation, Inc. | Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion |
US5895391A (en) * | 1996-09-27 | 1999-04-20 | Target Therapeutics, Inc. | Ball lock joint and introducer for vaso-occlusive member |
US6395017B1 (en) * | 1996-11-15 | 2002-05-28 | C. R. Bard, Inc. | Endoprosthesis delivery catheter with sequential stage control |
US6254628B1 (en) * | 1996-12-09 | 2001-07-03 | Micro Therapeutics, Inc. | Intracranial stent |
US6352561B1 (en) * | 1996-12-23 | 2002-03-05 | W. L. Gore & Associates | Implant deployment apparatus |
US6171320B1 (en) * | 1996-12-25 | 2001-01-09 | Niti Alloys Technologies Ltd. | Surgical clip |
US5961545A (en) * | 1997-01-17 | 1999-10-05 | Meadox Medicals, Inc. | EPTFE graft-stent composite device |
US6275730B1 (en) * | 1997-03-14 | 2001-08-14 | Uab Research Foundation | Method and apparatus for treating cardiac arrythmia |
US5984944A (en) * | 1997-09-12 | 1999-11-16 | B. Braun Medical, Inc. | Introducer for an expandable vascular occlusion device |
US6096064A (en) * | 1997-09-19 | 2000-08-01 | Intermedics Inc. | Four chamber pacer for dilated cardiomyopthy |
US5928258A (en) * | 1997-09-26 | 1999-07-27 | Corvita Corporation | Method and apparatus for loading a stent or stent-graft into a delivery sheath |
US6099552A (en) * | 1997-11-12 | 2000-08-08 | Boston Scientific Corporation | Gastrointestinal copression clips |
US6129755A (en) * | 1998-01-09 | 2000-10-10 | Nitinol Development Corporation | Intravascular stent having an improved strut configuration |
US6190406B1 (en) * | 1998-01-09 | 2001-02-20 | Nitinal Development Corporation | Intravascular stent having tapered struts |
US6503271B2 (en) * | 1998-01-09 | 2003-01-07 | Cordis Corporation | Intravascular device with improved radiopacity |
US6342067B1 (en) * | 1998-01-09 | 2002-01-29 | Nitinol Development Corporation | Intravascular stent having curved bridges for connecting adjacent hoops |
US6345198B1 (en) * | 1998-01-23 | 2002-02-05 | Pacesetter, Inc. | Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity |
US6623521B2 (en) * | 1998-02-17 | 2003-09-23 | Md3, Inc. | Expandable stent with sliding and locking radial elements |
US6099549A (en) * | 1998-07-03 | 2000-08-08 | Cordis Corporation | Vascular filter for controlled release |
US6299613B1 (en) * | 1999-04-23 | 2001-10-09 | Sdgi Holdings, Inc. | Method for the correction of spinal deformities through vertebral body tethering without fusion |
US6602289B1 (en) * | 1999-06-08 | 2003-08-05 | S&A Rings, Llc | Annuloplasty rings of particular use in surgery for the mitral valve |
US6626899B2 (en) * | 1999-06-25 | 2003-09-30 | Nidus Medical, Llc | Apparatus and methods for treating tissue |
US20030018358A1 (en) * | 1999-06-25 | 2003-01-23 | Vahid Saadat | Apparatus and methods for treating tissue |
US6210432B1 (en) * | 1999-06-29 | 2001-04-03 | Jan Otto Solem | Device and method for treatment of mitral insufficiency |
US20010018611A1 (en) * | 1999-06-30 | 2001-08-30 | Solem Jan Otto | Method and device for treatment of mitral insufficiency |
US20040039443A1 (en) * | 1999-06-30 | 2004-02-26 | Solem Jan Otto | Method and device for treatment of mitral insufficiency |
US20030069636A1 (en) * | 1999-06-30 | 2003-04-10 | Solem Jan Otto | Method for treatment of mitral insufficiency |
US20010044568A1 (en) * | 2000-01-31 | 2001-11-22 | Langberg Jonathan J. | Endoluminal ventricular retention |
US20020016628A1 (en) * | 2000-01-31 | 2002-02-07 | Langberg Jonathan J. | Percutaneous mitral annuloplasty with hemodynamic monitoring |
US6402781B1 (en) * | 2000-01-31 | 2002-06-11 | Mitralife | Percutaneous mitral annuloplasty and cardiac reinforcement |
US6537314B2 (en) * | 2000-01-31 | 2003-03-25 | Ev3 Santa Rosa, Inc. | Percutaneous mitral annuloplasty and cardiac reinforcement |
US20040176840A1 (en) * | 2000-01-31 | 2004-09-09 | Langberg Jonathan J. | Percutaneous mitral annuloplasty with hemodynamic monitoring |
US20020103533A1 (en) * | 2000-01-31 | 2002-08-01 | Langberg Jonathan J. | Percutaneous mitral annuloplasty and cardiac reinforcement |
US20020151961A1 (en) * | 2000-01-31 | 2002-10-17 | Lashinski Randall T. | Medical system and method for remodeling an extravascular tissue structure |
US6358195B1 (en) * | 2000-03-09 | 2002-03-19 | Neoseed Technology Llc | Method and apparatus for loading radioactive seeds into brachytherapy needles |
US6569198B1 (en) * | 2000-03-31 | 2003-05-27 | Richard A. Wilson | Mitral or tricuspid valve annuloplasty prosthetic device |
US6442427B1 (en) * | 2000-04-27 | 2002-08-27 | Medtronic, Inc. | Method and system for stimulating a mammalian heart |
US6589208B2 (en) * | 2000-06-20 | 2003-07-08 | Applied Medical Resources Corporation | Self-deploying catheter assembly |
US20020042621A1 (en) * | 2000-06-23 | 2002-04-11 | Liddicoat John R. | Automated annular plication for mitral valve repair |
US20020042651A1 (en) * | 2000-06-30 | 2002-04-11 | Liddicoat John R. | Method and apparatus for performing a procedure on a cardiac valve |
US20020049468A1 (en) * | 2000-06-30 | 2002-04-25 | Streeter Richard B. | Intravascular filter with debris entrapment mechanism |
US6419696B1 (en) * | 2000-07-06 | 2002-07-16 | Paul A. Spence | Annuloplasty devices and related heart valve repair methods |
US20020055774A1 (en) * | 2000-09-07 | 2002-05-09 | Liddicoat John R. | Fixation band for affixing a prosthetic heart valve to tissue |
US6602288B1 (en) * | 2000-10-05 | 2003-08-05 | Edwards Lifesciences Corporation | Minimally-invasive annuloplasty repair segment delivery template, system and method of use |
US6723038B1 (en) * | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
US20020095167A1 (en) * | 2000-10-23 | 2002-07-18 | Liddicoat John R. | Automated annular plication for mitral valve repair |
US20020065554A1 (en) * | 2000-10-25 | 2002-05-30 | Streeter Richard B. | Mitral shield |
US20020138044A1 (en) * | 2000-10-27 | 2002-09-26 | Streeter Richard B. | Intracardiovascular access (ICVATM) system |
US20020087173A1 (en) * | 2000-12-28 | 2002-07-04 | Alferness Clifton A. | Mitral valve constricting device, system and method |
US6810882B2 (en) * | 2001-01-30 | 2004-11-02 | Ev3 Santa Rosa, Inc. | Transluminal mitral annuloplasty |
US6790231B2 (en) * | 2001-02-05 | 2004-09-14 | Viacor, Inc. | Apparatus and method for reducing mitral regurgitation |
US6718985B2 (en) * | 2001-04-24 | 2004-04-13 | Edwin J. Hlavka | Method and apparatus for catheter-based annuloplasty using local plications |
US6676702B2 (en) * | 2001-05-14 | 2004-01-13 | Cardiac Dimensions, Inc. | Mitral valve therapy assembly and method |
US6800090B2 (en) * | 2001-05-14 | 2004-10-05 | Cardiac Dimensions, Inc. | Mitral valve therapy device, system and method |
US20030078654A1 (en) * | 2001-08-14 | 2003-04-24 | Taylor Daniel C. | Method and apparatus for improving mitral valve function |
US6776784B2 (en) * | 2001-09-06 | 2004-08-17 | Core Medical, Inc. | Clip apparatus for closing septal defects and methods of use |
US6716158B2 (en) * | 2001-09-07 | 2004-04-06 | Mardil, Inc. | Method and apparatus for external stabilization of the heart |
US20050197694A1 (en) * | 2001-10-16 | 2005-09-08 | Extensia Medical, Inc. | Systems for heart treatment |
US20030078465A1 (en) * | 2001-10-16 | 2003-04-24 | Suresh Pai | Systems for heart treatment |
US20050197692A1 (en) * | 2001-10-16 | 2005-09-08 | Extensia Medical, Inc. | Systems for heart treatment |
US20050197693A1 (en) * | 2001-10-16 | 2005-09-08 | Extensia Medical, Inc. | Systems for heart treatment |
US20030130730A1 (en) * | 2001-10-26 | 2003-07-10 | Cohn William E. | Method and apparatus for reducing mitral regurgitation |
US20030088305A1 (en) * | 2001-10-26 | 2003-05-08 | Cook Incorporated | Prostheses for curved lumens |
US20030083538A1 (en) * | 2001-11-01 | 2003-05-01 | Cardiac Dimensions, Inc. | Focused compression mitral valve device and method |
US6908478B2 (en) * | 2001-12-05 | 2005-06-21 | Cardiac Dimensions, Inc. | Anchor and pull mitral valve device and method |
US6764510B2 (en) * | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
US20030135267A1 (en) * | 2002-01-11 | 2003-07-17 | Solem Jan Otto | Delayed memory device |
US20040019377A1 (en) * | 2002-01-14 | 2004-01-29 | Taylor Daniel C. | Method and apparatus for reducing mitral regurgitation |
US20030144697A1 (en) * | 2002-01-30 | 2003-07-31 | Cardiac Dimensions, Inc. | Fixed length anchor and pull mitral valve device and method |
US20040073302A1 (en) * | 2002-02-05 | 2004-04-15 | Jonathan Rourke | Method and apparatus for improving mitral valve function |
US7004958B2 (en) * | 2002-03-06 | 2006-02-28 | Cardiac Dimensions, Inc. | Transvenous staples, assembly and method for mitral valve repair |
Cited By (160)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100274076A1 (en) * | 1997-01-02 | 2010-10-28 | Edwards Lifesciences Llc | Heart Wall Tension Reduction Apparatus and Method |
US20020161275A1 (en) * | 1997-01-02 | 2002-10-31 | Schweich Cyril J. | Heart wall tension reduction apparatus and method |
US7883539B2 (en) | 1997-01-02 | 2011-02-08 | Edwards Lifesciences Llc | Heart wall tension reduction apparatus and method |
US8460173B2 (en) | 1997-01-02 | 2013-06-11 | Edwards Lifesciences, Llc | Heart wall tension reduction apparatus and method |
US8267852B2 (en) | 1997-01-02 | 2012-09-18 | Edwards Lifesciences, Llc | Heart wall tension reduction apparatus and method |
US20050065594A1 (en) * | 1999-10-21 | 2005-03-24 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US7776053B2 (en) | 2000-10-26 | 2010-08-17 | Boston Scientific Scimed, Inc. | Implantable valve system |
US7828843B2 (en) | 2001-05-14 | 2010-11-09 | Cardiac Dimensions, Inc. | Mitral valve therapy device, system and method |
US20050027351A1 (en) * | 2001-05-14 | 2005-02-03 | Cardiac Dimensions, Inc. A Washington Corporation | Mitral valve regurgitation treatment device and method |
US20100100175A1 (en) * | 2001-11-01 | 2010-04-22 | David Reuter | Adjustable Height Focal Tissue Deflector |
US8439971B2 (en) | 2001-11-01 | 2013-05-14 | Cardiac Dimensions, Inc. | Adjustable height focal tissue deflector |
US20050021121A1 (en) * | 2001-11-01 | 2005-01-27 | Cardiac Dimensions, Inc., A Delaware Corporation | Adjustable height focal tissue deflector |
US7674287B2 (en) | 2001-12-05 | 2010-03-09 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US8172898B2 (en) | 2001-12-05 | 2012-05-08 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US7857846B2 (en) | 2001-12-05 | 2010-12-28 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US20070055293A1 (en) * | 2001-12-05 | 2007-03-08 | Alferness Clifton A | Device and method for modifying the shape of a body organ |
US20050149182A1 (en) * | 2001-12-05 | 2005-07-07 | Alferness Clifton A. | Anchor and pull mitral valve device and method |
US20050272969A1 (en) * | 2001-12-05 | 2005-12-08 | Alferness Clifton A | Device and method for modifying the shape of a body organ |
US20060142854A1 (en) * | 2001-12-05 | 2006-06-29 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US10206778B2 (en) | 2002-01-30 | 2019-02-19 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US9320600B2 (en) | 2002-01-30 | 2016-04-26 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US9827098B2 (en) | 2002-01-30 | 2017-11-28 | Cardiac Dimensions Pty. Ltd. | Fixed anchor and pull mitral valve device and method |
US20050216077A1 (en) * | 2002-01-30 | 2005-09-29 | Mathis Mark L | Fixed length anchor and pull mitral valve device and method |
US7828842B2 (en) | 2002-01-30 | 2010-11-09 | Cardiac Dimensions, Inc. | Tissue shaping device |
US8974525B2 (en) | 2002-01-30 | 2015-03-10 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US20080140191A1 (en) * | 2002-01-30 | 2008-06-12 | Cardiac Dimensions, Inc. | Fixed Anchor and Pull Mitral Valve Device and Method |
US9827099B2 (en) | 2002-01-30 | 2017-11-28 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US10327900B2 (en) | 2002-01-30 | 2019-06-25 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US20070066879A1 (en) * | 2002-01-30 | 2007-03-22 | Mathis Mark L | Body lumen shaping device with cardiac leads |
US20080319542A1 (en) * | 2002-01-30 | 2008-12-25 | Gregory Nieminen | Tissue Shaping Device |
US9408695B2 (en) | 2002-01-30 | 2016-08-09 | Cardiac Dimensions Pty. Ltd. | Fixed anchor and pull mitral valve device and method |
US9827100B2 (en) | 2002-01-30 | 2017-11-28 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US9956076B2 (en) | 2002-01-30 | 2018-05-01 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US10052205B2 (en) | 2002-01-30 | 2018-08-21 | Cardiac Dimensions Pty. Ltd. | Fixed anchor and pull mitral valve device and method |
US9597186B2 (en) | 2002-01-30 | 2017-03-21 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US20050065598A1 (en) * | 2002-03-11 | 2005-03-24 | Mathis Mark L. | Device, assembly and method for mitral valve repair |
US20060253189A1 (en) * | 2002-04-03 | 2006-11-09 | Boston Scientific Corporation | Artificial valve |
US7682385B2 (en) | 2002-04-03 | 2010-03-23 | Boston Scientific Corporation | Artificial valve |
US20060085066A1 (en) * | 2002-04-03 | 2006-04-20 | Boston Scientific Corporation | Body lumen closure |
US8062358B2 (en) | 2002-05-08 | 2011-11-22 | Cardiac Dimensions, Inc. | Body lumen device anchor, device and assembly |
US20050149180A1 (en) * | 2002-05-08 | 2005-07-07 | Mathis Mark L. | Body lumen device anchor, device and assembly |
US20050149179A1 (en) * | 2002-05-08 | 2005-07-07 | Mathis Mark L. | Body lumen device anchor, device and assembly |
US10456257B2 (en) | 2002-05-08 | 2019-10-29 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US9474608B2 (en) | 2002-05-08 | 2016-10-25 | Cardiac Dimensions Pty. Ltd. | Body lumen device anchor, device and assembly |
US10456258B2 (en) | 2002-05-08 | 2019-10-29 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US20080097594A1 (en) * | 2002-05-08 | 2008-04-24 | Cardiac Dimensions, Inc. | Device and Method for Modifying the Shape of a Body Organ |
US20050187619A1 (en) * | 2002-05-08 | 2005-08-25 | Mathis Mark L. | Body lumen device anchor, device and assembly |
US7828841B2 (en) | 2002-05-08 | 2010-11-09 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US20060173536A1 (en) * | 2002-05-08 | 2006-08-03 | Mathis Mark L | Body lumen device anchor, device and assembly |
US20040215339A1 (en) * | 2002-10-24 | 2004-10-28 | Drasler William J. | Venous valve apparatus and method |
US7666224B2 (en) | 2002-11-12 | 2010-02-23 | Edwards Lifesciences Llc | Devices and methods for heart valve treatment |
US20110066234A1 (en) * | 2002-12-05 | 2011-03-17 | Gordon Lucas S | Percutaneous Mitral Valve Annuloplasty Delivery System |
US20080109059A1 (en) * | 2002-12-05 | 2008-05-08 | Cardiac Dimensions, Inc. | Medical Device Delivery System |
US8075608B2 (en) | 2002-12-05 | 2011-12-13 | Cardiac Dimensions, Inc. | Medical device delivery system |
US8182529B2 (en) | 2002-12-05 | 2012-05-22 | Cardiac Dimensions, Inc. | Percutaneous mitral valve annuloplasty device delivery method |
US20040111095A1 (en) * | 2002-12-05 | 2004-06-10 | Cardiac Dimensions, Inc. | Medical device delivery system |
US7837729B2 (en) | 2002-12-05 | 2010-11-23 | Cardiac Dimensions, Inc. | Percutaneous mitral valve annuloplasty delivery system |
US20080021382A1 (en) * | 2002-12-30 | 2008-01-24 | Boston Scientific Scimed, Inc. | Valve treatment catheter and methods |
US7780627B2 (en) | 2002-12-30 | 2010-08-24 | Boston Scientific Scimed, Inc. | Valve treatment catheter and methods |
US20070135912A1 (en) * | 2003-02-03 | 2007-06-14 | Mathis Mark L | Mitral valve device using conditioned shape memory alloy |
US7758639B2 (en) | 2003-02-03 | 2010-07-20 | Cardiac Dimensions, Inc. | Mitral valve device using conditioned shape memory alloy |
US20100280602A1 (en) * | 2003-02-03 | 2010-11-04 | Cardiac Dimensions, Inc. | Mitral Valve Device Using Conditioned Shape Memory Alloy |
US20040158321A1 (en) * | 2003-02-12 | 2004-08-12 | Cardiac Dimensions, Inc. | Method of implanting a mitral valve therapy device |
US20040220657A1 (en) * | 2003-05-02 | 2004-11-04 | Cardiac Dimensions, Inc., A Washington Corporation | Tissue shaping device with conformable anchors |
US11311380B2 (en) | 2003-05-02 | 2022-04-26 | Cardiac Dimensions Pty. Ltd. | Device and method for modifying the shape of a body organ |
US11452603B2 (en) | 2003-05-02 | 2022-09-27 | Cardiac Dimensions Pty. Ltd. | Device and method for modifying the shape of a body organ |
US20080015407A1 (en) * | 2003-05-02 | 2008-01-17 | Mathis Mark L | Device and Method for Modifying the Shape of a Body Organ |
US20060161169A1 (en) * | 2003-05-02 | 2006-07-20 | Cardiac Dimensions, Inc., A Delaware Corporation | Device and method for modifying the shape of a body organ |
US7887582B2 (en) | 2003-06-05 | 2011-02-15 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US20050010240A1 (en) * | 2003-06-05 | 2005-01-13 | Cardiac Dimensions Inc., A Washington Corporation | Device and method for modifying the shape of a body organ |
US20060116758A1 (en) * | 2003-06-05 | 2006-06-01 | Gary Swinford | Device, System and Method to Affect the Mitral Valve Annulus of a Heart |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US9526616B2 (en) | 2003-12-19 | 2016-12-27 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US7794496B2 (en) | 2003-12-19 | 2010-09-14 | Cardiac Dimensions, Inc. | Tissue shaping device with integral connector and crimp |
US20050137449A1 (en) * | 2003-12-19 | 2005-06-23 | Cardiac Dimensions, Inc. | Tissue shaping device with self-expanding anchors |
US20050137451A1 (en) * | 2003-12-19 | 2005-06-23 | Cardiac Dimensions, Inc. A Washington Corporation | Tissue shaping device with integral connector and crimp |
US7837728B2 (en) | 2003-12-19 | 2010-11-23 | Cardiac Dimensions, Inc. | Reduced length tissue shaping device |
US8721717B2 (en) | 2003-12-19 | 2014-05-13 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US20050137685A1 (en) * | 2003-12-19 | 2005-06-23 | Cardiac Dimensions, Inc., A Washington Corporation | Reduced length tissue shaping device |
US9956077B2 (en) | 2003-12-19 | 2018-05-01 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US10166102B2 (en) | 2003-12-19 | 2019-01-01 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US10449048B2 (en) | 2003-12-19 | 2019-10-22 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US10869764B2 (en) | 2003-12-19 | 2020-12-22 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US20050137450A1 (en) * | 2003-12-19 | 2005-06-23 | Cardiac Dimensions, Inc., A Washington Corporation | Tapered connector for tissue shaping device |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US20110060405A1 (en) * | 2003-12-19 | 2011-03-10 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US11109971B2 (en) | 2003-12-19 | 2021-09-07 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US20060276891A1 (en) * | 2003-12-19 | 2006-12-07 | Gregory Nieminen | Mitral Valve Annuloplasty Device with Twisted Anchor |
US7814635B2 (en) | 2003-12-19 | 2010-10-19 | Cardiac Dimensions, Inc. | Method of making a tissue shaping device |
US11318016B2 (en) | 2003-12-19 | 2022-05-03 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US20060191121A1 (en) * | 2003-12-19 | 2006-08-31 | Lucas Gordon | Tissue Shaping Device with Integral Connector and Crimp |
US9301843B2 (en) | 2003-12-19 | 2016-04-05 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US9918834B2 (en) | 2004-09-02 | 2018-03-20 | Boston Scientific Scimed, Inc. | Cardiac valve, system and method |
US8002824B2 (en) | 2004-09-02 | 2011-08-23 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US8932349B2 (en) | 2004-09-02 | 2015-01-13 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US20060167544A1 (en) * | 2005-01-20 | 2006-07-27 | Cardiac Dimensions, Inc. | Tissue Shaping Device |
US12016538B2 (en) | 2005-01-20 | 2024-06-25 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US11033257B2 (en) | 2005-01-20 | 2021-06-15 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US9622859B2 (en) | 2005-02-01 | 2017-04-18 | Boston Scientific Scimed, Inc. | Filter system and method |
US20060173490A1 (en) * | 2005-02-01 | 2006-08-03 | Boston Scientific Scimed, Inc. | Filter system and method |
US20060178729A1 (en) * | 2005-02-07 | 2006-08-10 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7670368B2 (en) | 2005-02-07 | 2010-03-02 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US20060178730A1 (en) * | 2005-02-07 | 2006-08-10 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7780722B2 (en) | 2005-02-07 | 2010-08-24 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US9370419B2 (en) | 2005-02-23 | 2016-06-21 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7867274B2 (en) | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US9808341B2 (en) | 2005-02-23 | 2017-11-07 | Boston Scientific Scimed Inc. | Valve apparatus, system and method |
US20060190074A1 (en) * | 2005-02-23 | 2006-08-24 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US20110071625A1 (en) * | 2005-02-23 | 2011-03-24 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US20060235509A1 (en) * | 2005-04-15 | 2006-10-19 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US8512399B2 (en) | 2005-04-15 | 2013-08-20 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US9861473B2 (en) | 2005-04-15 | 2018-01-09 | Boston Scientific Scimed Inc. | Valve apparatus, system and method |
US20100100173A1 (en) * | 2005-04-15 | 2010-04-22 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US20060247672A1 (en) * | 2005-04-27 | 2006-11-02 | Vidlund Robert M | Devices and methods for pericardial access |
US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US20060282157A1 (en) * | 2005-06-10 | 2006-12-14 | Hill Jason P | Venous valve, system, and method |
US9028542B2 (en) | 2005-06-10 | 2015-05-12 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US11337812B2 (en) | 2005-06-10 | 2022-05-24 | Boston Scientific Scimed, Inc. | Venous valve, system and method |
US9474609B2 (en) | 2005-09-21 | 2016-10-25 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US10548734B2 (en) | 2005-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US20110230949A1 (en) * | 2005-09-21 | 2011-09-22 | Boston Scientific Scimed, Inc. | Venous Valve, System, and Method With Sinus Pocket |
US7951189B2 (en) | 2005-09-21 | 2011-05-31 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US20070067021A1 (en) * | 2005-09-21 | 2007-03-22 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US20070129788A1 (en) * | 2005-09-21 | 2007-06-07 | Boston Scientific Scimed, Inc. | Venous valve with sinus |
US8672997B2 (en) | 2005-09-21 | 2014-03-18 | Boston Scientific Scimed, Inc. | Valve with sinus |
US8460365B2 (en) | 2005-09-21 | 2013-06-11 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US20070173930A1 (en) * | 2006-01-20 | 2007-07-26 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US7799038B2 (en) | 2006-01-20 | 2010-09-21 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US20070239270A1 (en) * | 2006-04-11 | 2007-10-11 | Mathis Mark L | Mitral Valve Annuloplasty Device with Vena Cava Anchor |
US20080126131A1 (en) * | 2006-07-17 | 2008-05-29 | Walgreen Co. | Predictive Modeling And Risk Stratification Of A Medication Therapy Regimen |
US11285005B2 (en) | 2006-07-17 | 2022-03-29 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US20080087608A1 (en) * | 2006-10-10 | 2008-04-17 | Multiphase Systems Integration | Compact multiphase inline bulk water separation method and system for hydrocarbon production |
US8348999B2 (en) | 2007-01-08 | 2013-01-08 | California Institute Of Technology | In-situ formation of a valve |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US11504239B2 (en) | 2007-02-05 | 2022-11-22 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US8470023B2 (en) | 2007-02-05 | 2013-06-25 | Boston Scientific Scimed, Inc. | Percutaneous valve, system, and method |
US7967853B2 (en) | 2007-02-05 | 2011-06-28 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US9421083B2 (en) | 2007-02-05 | 2016-08-23 | Boston Scientific Scimed Inc. | Percutaneous valve, system and method |
US20080300678A1 (en) * | 2007-02-05 | 2008-12-04 | Eidenschink Tracee E J | Percutaneous valve, system and method |
US10226344B2 (en) | 2007-02-05 | 2019-03-12 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US20080269877A1 (en) * | 2007-02-05 | 2008-10-30 | Jenson Mark L | Systems and methods for valve delivery |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
US20090030512A1 (en) * | 2007-07-26 | 2009-01-29 | Thielen Joseph M | Circulatory valve, system and method |
US8137394B2 (en) | 2007-12-21 | 2012-03-20 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US20110118831A1 (en) * | 2007-12-21 | 2011-05-19 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US20090164029A1 (en) * | 2007-12-21 | 2009-06-25 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US8414641B2 (en) | 2007-12-21 | 2013-04-09 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US7892276B2 (en) | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US20090171456A1 (en) * | 2007-12-28 | 2009-07-02 | Kveen Graig L | Percutaneous heart valve, system, and method |
US8006594B2 (en) | 2008-08-11 | 2011-08-30 | Cardiac Dimensions, Inc. | Catheter cutting tool |
US20100031793A1 (en) * | 2008-08-11 | 2010-02-11 | Hayner Louis R | Catheter Cutting Tool |
US8250960B2 (en) | 2008-08-11 | 2012-08-28 | Cardiac Dimensions, Inc. | Catheter cutting tool |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US9445899B2 (en) | 2012-08-22 | 2016-09-20 | Joseph M. Arcidi | Method and apparatus for mitral valve annuloplasty |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US11399939B2 (en) | 2017-03-08 | 2022-08-02 | Cardiac Dimensions Pty. Ltd. | Methods and devices for reducing paravalvular leakage |
US10390953B2 (en) | 2017-03-08 | 2019-08-27 | Cardiac Dimensions Pty. Ltd. | Methods and devices for reducing paravalvular leakage |
US11596771B2 (en) | 2020-12-14 | 2023-03-07 | Cardiac Dimensions Pty. Ltd. | Modular pre-loaded medical implants and delivery systems |
Also Published As
Publication number | Publication date |
---|---|
WO2003075748A2 (en) | 2003-09-18 |
WO2003075748A3 (en) | 2003-12-31 |
US20030171776A1 (en) | 2003-09-11 |
US7004958B2 (en) | 2006-02-28 |
AU2003220087A1 (en) | 2003-09-22 |
AU2003220087A8 (en) | 2003-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7004958B2 (en) | Transvenous staples, assembly and method for mitral valve repair | |
US7364588B2 (en) | Device, assembly and method for mitral valve repair | |
US20200008943A1 (en) | Tissue shaping device | |
US6908478B2 (en) | Anchor and pull mitral valve device and method | |
US9956076B2 (en) | Tissue shaping device | |
US7608102B2 (en) | Focused compression mitral valve device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |