[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20050277616A1 - Thymine nucleosides with anti-hepatitis B virus activity - Google Patents

Thymine nucleosides with anti-hepatitis B virus activity Download PDF

Info

Publication number
US20050277616A1
US20050277616A1 US11/180,964 US18096405A US2005277616A1 US 20050277616 A1 US20050277616 A1 US 20050277616A1 US 18096405 A US18096405 A US 18096405A US 2005277616 A1 US2005277616 A1 US 2005277616A1
Authority
US
United States
Prior art keywords
compounds
pharmaceutically acceptable
acceptable salt
administered
hbv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/180,964
Inventor
Raymond Schinazi
Jean-Pierre Sommadossi
Gilles Gosselin
Jean-Louis Imbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/180,964 priority Critical patent/US20050277616A1/en
Publication of US20050277616A1 publication Critical patent/US20050277616A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • A61K47/544Phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • This invention is in the area of methods for the treatment of hepatitis B virus (also referred to as “HBV”) that includes administering an effective amount of one or more of the active compounds disclosed herein, or a pharmaceutically acceptable derivative or prodrug of one of these compounds.
  • HBV hepatitis B virus
  • HBV is second only to tobacco as a cause of human cancer.
  • the mechanism by which HBV induces cancer is unknown, although it is postulated that it may directly trigger tumor development, or indirectly trigger tumor development through chronic inflammation, cirrhosis, and cell regeneration associated with the infection.
  • Hepatitis B virus has reached epidemic levels worldwide. After a two to six month incubation period in which the host is unaware of the infection, HBV infection can lead to acute hepatitis and liver damage, that causes abdominal pain, jaundice, and elevated blood levels of certain enzymes. HBV can cause fulminant hepatitis, a rapidly progressive, often fatal form of the disease in which massive sections of the liver are destroyed. Patients typically recover from acute viral hepatitis. In some patients, however, high levels of viral antigen persist in the blood for an extended, or indefinite, period, causing a chronic infection. Chronic infections can lead to chronic persistent hepatitis. Patients infected with chronic persistent HBV are most common in developing countries.
  • HBV chronic hepatitis
  • cirrhosis of the liver cirrhosis of the liver
  • hepatocellular carcinoma a primary liver cancer.
  • high risk groups for HBV infection include those in contact with HBV carriers or their blood samples.
  • the epidemiology of HBV is in fact very similar to that of acquired immunodeficiency syndrome, which accounts for why HBV infection is common among patients with AIDS or HIV-associated infections.
  • HBV is more contagious than HIV.
  • a human serum-derived vaccine has also been developed to immunize patients against HBV.
  • Vaccines have been produced through genetic engineering. While the vaccine has been found effective, production of the vaccine is troublesome because the supply of human serum from chronic carriers is limited, and the purification procedure is long and expensive. Further, each batch of vaccine prepared from different serum must be tested in chimpanzees to ensure safety. In addition, the vaccine does not help the patients already infected with the virus.
  • European Patent Application No. 92304530.6 discloses that a group of 1,2-oxathiolane nucleosides are useful in the treatment of hepatitis B infections. It has been reported that the 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane has anti-hepatitis B activity. Doong, et al., Proc. of Natl. Acad. Sci. USA, 88, 8495-8499 (1991); Chang, et al., J. of Biological Chem., Vol 267(20), 13938-13942.
  • PCT/US92/03144 International Publication No. WO 92/18517) filed by Yale University discloses a number of ⁇ -L-nucleosides for the treatment of both HBV and HIV.
  • Other drugs exlored for the treatment of HBV include adenosine arabinoside, thymosin, acyclovir, phosphonoformate, zidovudine, (+)-cyanidanol, quinacrine, and 2′-fluoroarabinosyl-5-iodouracil.
  • the biologically active species of many nucleosides is the triphospahte form, which inhibits DNA polymerase or reverse transcriptase, or causes chain termination.
  • nucleoside derivatives that have been developed for the treatment of HBV and HIV to date have been presented for administration to the host in unphosphorylated form, notwithstanding the fact that the nucleoside must be phosphorylated in the cell prior to exhibiting, its antiviral effect, because the triphosphate form has typically either been dephosphorylated prior to reaching the cell or is poorly absorbed by the cell.
  • a method for the treatment of a host, and in particular, a human, infected with HBV includes administering an HBV-treatment amount of a nucleoside of the formula: wherein:
  • R 1 is hydrogen, fluoro, bromo, chloro, iodo, methyl or ethyl; and R 2 is OH, Cl, NH 2 , or H; or a pharmaceutically acceptable salt of the compound, optionally in a pharmaceutically acceptable carrier or diluent.
  • the ⁇ -L-enantiomer of a compound of the formula: wherein R 5 is adenine, xanthine, hypoxanthine, or other purine, including an alkylated or halogenated purine is administered to a host in an HBV-treatment amount as described more fully herein.
  • nucleoside is of the formula:
  • B is a purine or pyrimidine base
  • Y 1 , Y 2 , Y 3 , and Y 4 are independently H, OH, N 3 , NR 1 R 2 , NO 2 , NOR 3 , —O-alkyl, —O-aryl, halo (including F, Cl, Br, or I), —CN, —C(O)NH 2 , SH, —S-alkyl, or —S-aryl, and wherein typically three of Y 1 , Y 2 , Y 3 , and Y 4 are either H or OH.
  • the —OH substituent, when present, is typically a Y 1 or Y 3 group.
  • Y 2 and Y 4 are in the arabino (erythro) configuration, and Y 1 and Y 3 are in the threo (ribose) configuration.
  • R is H, monophosphate, diphosphate, triphosphate, alkyl, acyl or a phosphate derivative, as described in more detail below.
  • R 1 , R 2 , and R 3 are independently alkyl (and in particular lower alkyl), aryl, aralkyl, alkaryl, acyl, or hydrogen.
  • the nucleoside is provided as the indicated enantiomer and substantially in the absence of its corresponding enantiomer (i.e., in enantiomerically enriched form).
  • the invention includes a method for the treatment of humans infected with HBV that includes administering an HBV treatment amount of a prodrug of the specifically disclosed nucleosides.
  • a prodrug refers to a pharmaceutically acceptable derivative of the specifically disclosed nucleoside, that is converted into the nucleoside on administration in vivo, or that has activity in itself.
  • Nonlimiting examples are the 5′ and N 4 -pyrimidine or N 6 -purine acylated or alkylated derivatives of the active compound.
  • the nucleoside is provided as the monophosphate, diphosphate or triphosphate in a formulation that protects the compound from dephosphorylation.
  • Formulations include liposomes, lipospheres, microspheres or nanospheres (of which the latter three can be targeted to infected cells).
  • the nucleoside is provided as a monophosphate, diphosphate or triphosphate derivative (i.e., a nucleotide prodrug), for example an ester, that stabilizes the phosphate in vivo.
  • the disclosed nucleosides, or their pharmaceutically acceptable prodrugs or salts or pharmaceutically acceptable formulations containing these compounds are useful in the prevention and treatment of HBV infections and other related conditions such as anti-HBV antibody positive and HBV-positive conditions, chronic liver inflammation caused by HBV, cirrhosis, acute hepatitis, fulminant hepatitis, chronic persistent hepatitis, and fatigue.
  • These compounds or formulations can also be used prophylactically to prevent or retard the progression of clinical illness in individuals who are anti-HBV antibody or HBV-antigen positive or who have been exposed to HBV.
  • one or more of the active compounds is administered in alternation or combination with one or more other anti-HBV agents, to provide effective anti-HBV treatment.
  • anti-HBV agents that can be used in alternation or combination therapy include but are not limited to the ( ⁇ )-enantiomer or racemic mixture of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (“FTC”, see WO 92/14743), its physiologically acceptable derivative, or physiologically acceptable salt; the ( ⁇ )-enantiomer or racemic mixture of 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane, its physiologically acceptable derivative, or physiologically acceptable salt; an enantiomer or racemic mixture of 2′-fluoro-5-iodo-arabinosyluracil (FIAU); an enantiomer or racemic mixture of 2′-fluoro-5-ethyl-arabinosyluracil (FEAU), a en
  • alternation patterns include 1-6 weeks of administration of an effective amount of one agent followed by 1-6 weeks of administration of an effective amount of a second anti-HBV agent.
  • the alternation schedule can include periods of no treatment.
  • Combination therapy generally includes the simultaneous administration of an effective ratio of dosages of two or more anti-HBV agents.
  • the active anti-HBV compounds disclosed herein or their derivatives or prodrugs can be administered in the appropriate circumstance in combination or alternation with anti-HIV medications, including but not limited to 3′-azido-3′-deoxythymidine (AZT), 2′,3′-dideoxyinosine (DDI), 2′,3 ′-dideoxycytidine (DDC), 2′,3′-dideoxy-2′,3′-didehydrothymidine (D4T), 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (FTC), or 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane (BCH-189), in racemic or enantiomeric form.
  • Non-nucleoside RT-inhibitors such as the Tibo class of
  • the active anti-HBV agents can also be administered in combination with antibiotics, other antiviral compounds, antifungal agents, or other pharmaceutical agents administered for the treatment of secondary infections.
  • FIG. 1 is an illustration of the chemical structures of ⁇ -L-2′,3′-dideoxycytidine ( ⁇ -L-FddC), ⁇ -D-2′,3′-dideoxycytidine ( ⁇ -D-ddC), ⁇ -L-2′,3′-dideoxy-5-fluorocytidine ( ⁇ -L-ddC), ( ⁇ )- ⁇ -L-2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (( ⁇ )- ⁇ -L-FTC), (+)- ⁇ -D-2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-dioxolane ((+)- ⁇ -D-FDOC), and ⁇ -L-2-amino-6-(R 4 )-9-[(4-hydroxymethyl)-tetrahydrofuran-1-yl]purine.
  • ⁇ -L-FddC ⁇ -D-2′,3′-
  • FIG. 2 is an illustration of the numbering scheme used in the chemical nomenclature for nucleosides in this text.
  • enantiomerically pure refers to a nucleoside composition that includes at least approximately 95%, and preferably approximately 97%, 98%, 99%, or 100% of a single enantiomer ofthat nucleoside.
  • alkyl refers to a saturated straight, branched, or cyclic, primary, secondary, or tertiary hydrocarbon of C 1 to C 10 , and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3dimethylbutyl.
  • the alkyl group can be optionally substituted with one or more moieties selected from the group consisting of hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., “Protective Groups in Organic Synthesis,” John Wiley and Sons, Second Edition, 1991.
  • lower alkyl refers to a C 1 to C 4 ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, or t-butyl group.
  • acyl specifically includes but is not limited to acetyl, propionyl, butyryl, pentanoyl, 3-methylbutyryl, hydrogen succinate, 3-chlorobenzoate, benzoyl, acetyl, pivaloyl, mesylate, propionyl, valeryl, caproic, caprylic, capric, lauric, myristic, palmitic, stearic, and oleic.
  • aryl refers to phenyl, biphenyl, or naphthyl, and preferably phenyl.
  • the aryl group can be optionally substituted with one or more moieties selected from the group consisting of hydroxyl, amino, alkylamino, arylanino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., “Protective Groups in Organic Synthesis,” John Wiley and Sons, Second Edition, 1991.
  • purine or pyrimidine base includes, but is not limited to, adenine, N 6 -alkylpurines, N 6 -acylpurines (wherein acyl is C(O)(alkyl, aryl, alkylaryl, or arylalkyl), N 6 -benzylpurine, N 6 -halopurine, N 6 -vinylpurine, N 6 -acetylenic purine, N 6 -acyl purine, N 6 -hydroxyaklyl purine, N 6 -thioalkyl purine, N 2 -akylpurines, N 2 -alkyl-6-thiopurines, thymine, cytosine, 6-azapyrimidine, 2- and/or 4-mercaptopyrmidine, uracil, C 5 -alkylpyrimidines, C 5 -benzylpyrimidines, C 5 -halopyrimidines, C 5 -vinylpyrimidine, C 5 -ace
  • Suitable protecting groups are well known to those skilled in the art, and include trimethylsilyl, dimethylhexylsilyl, t-butyldimethylsilyl, and t-butyldiphenylsilyl, trityl, alkyl groups, acyl groups such as acetyl and propionyl, methylsulfonyl, and p-toluylsulfonyl.
  • natural amino acid includes but is not limited to alanyl, valinyl, leucinyl, isoleucinyl, prolinyl, phenylalaninyl, tryptophanyl, methioninyl, glycinyl, serinyl, threoninyl, cysteinyl, tyrosinyl, asparaginyl, glutaminyl, aspartoyl, glutaoyl, lysinyl, argininyl, and histidinyl.
  • the invention as disclosed herein is a method and composition for the treatment of HBV infection and other viruses replicating in a like manner, in humans or other host animals, that includes administering an effective amount of one or more of the above-identified compounds, or a physiologically acceptable derivative, or a physiologically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier.
  • the compounds of this invention either possess anti-HBV activity, or are metabolized to a compound or compounds that exhibit anti-HBV activity.
  • the compounds used in the methods disclosed herein are enantiomers of 2′,3′-dideoxycytidine, 2′,3′-dideoxy-5-(halo or methyl)cytidine, 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-dioxolane, or 2-amino-6-(OH, Cl, NH 2 , or H)-9-[(4-hydroxymethyl)-tetrahydrofuran-1-yl]purine.
  • the 1′ and 4′ carbons of the sugar or dioxolanyl moiety (referred to below generically as the sugar moiety) of the nucleosides are chiral, their nonhydrogen substituents (CH 2 OR and the pyrimidine or purine base, respectively) can be either cis (on the same side) or trans (on opposite sides) with respect to the sugar ring system.
  • the four optical isomers therefore are represented by the following configurations (when orienting the sugar moiety in a horizontal plane such that the “primary” oxygen (that between the C1′ and C4′-atoms; see FIG.
  • cis (with both groups “up”, which corresponds to the configuration of naturally occurring nucleosides), cis (with both groups “down”, which is a nonnaturally occurring configuration), trans (with the C2 substituent “up” and the C5 substituent “down”), and trans (with the C2 substituent “down” and the C5 substituent “up”).
  • the “D-nucleosides” are cis nucleosides in a natural configuration
  • the “L-nucleosides” are cis nucleosides in the nonnaturally occurring configuration.
  • nucleosides useful in the disclosed method to treat HBV infection are ⁇ -L-enantiomers, with the exception of FDOC, which is used in its ⁇ -D-enantiomeric form, because it has been discovered that the ⁇ -D-enantiomer of FDOC is surprisingly less toxic than the ⁇ -L-enantiomer of FDOC.
  • the nucleosides disclosed herein can be administered as any derivative that upon administration to the recipient, is capable of providing directly or indirectly, the parent active compound, or that exhibits activity in itself.
  • the hydrogen of the 5′-OH group is replaced by a C 1 -C 20 alkyl; acyl in which the non-carbonyl moiety of the ester group is selected from straight, branched, or cyclic C 1 -C 20 alkyl, phenyl, or benzyl; a naturally occurring or nonnaturally occurring amino acid; alkoxyalkyl including methoxymethyl; aralkyl including benzyl; aryloxyalkyl such as phenoxymethyl; aryl including phenyl optionally substituted with halogen, C 1 to C 4 alkyl or C 1 to C 4 alkoxy; a dicarboxylic acid such as succinic acid; sulfonate esters such as alkyl or aralkyl sulphonyl including methanesulfon
  • One or both hydrogens of the amino groups on the purine or pyrimidine base can be replaced by a C 1 -C 20 alkyl; acyl in which the non-carbonyl moiety of the ester group is selected from straight, branched, or cyclic C 1 -C 20 alkyl, phenyl, or benzyl; alkoxyalkyl including methoxymethyl; aralkyl including benzyl; aryloxyalkyl such as phenoxymethyl; aryl including phenyl optionally substituted with halogen, C 1 to C 4 alkyl or C 1 to C 4 alkoxy.
  • the active nucleoside can also be provided as a 5′-ether lipid, as disclosed in the following references, which are incorporated by reference herein: Kucera, L. S., N. Iyer, E. Lenake, A. Raben, Modest E. J., D. L. W., and C. Piantadosi. 1990. Novel membrane-interactive ether lipid analogs that inhibit infectious HIV-1 production and induce defective virus formation. AIDS Res Hum Retroviruses. 6:491-501; Piantadosi, C., J. Marasco C. J., S. L. Morris-Natschke, K. L. Meyer, F. Gumus, J. R. Surles, K. S. Ishaq, L. S. Kucera, N.
  • nucleosides described herein can be administered as a nucleotide prodrug to increase the activity, bioavalability, stability or otherwise alter the properties of the nucleoside.
  • a number of nucleotide prodrug ligands are known. In general, alkylation, acylation or other lipophilic modification of the mono, di or triphosphoate of the nucleoside will increase the stability of the nucleotide.
  • substituent groups that can replace one or more hydrogens on the the phosphate moiety are alkyl, aryl, steroids, carbohydrates, including sugars, 1,2-diacylglycerol and alcohols. Many are described in R. Jones and N. Bischofberger, Antiviral Research, 27 (1995) 1-17. Any of these can be used in combination with the disclosed nucleosides to achieve a desired effect.
  • Nonlimiting examples of nucleotide prodrugs are described in the following references.
  • Alky hydrogen phosphonate derivatives of the anti-HIV agent AZT may be less toxic than the parent nucleoside analogue.
  • Antiviral Res. 20 (Suppl. I). 84; Piantadosi, C., Marasco, C. J., Jr., Morris-Natschke, S. L., Meyer, K. L., Gumus, F., Surles, J. R., Ishaq, K. S., Kucera, L. S. Iyer, N., Wallen, C. A., Piantadosi, S. and Modest, E. J. (1991) Synthesis and evaluation of novel ether lipid nucleoside conjugates for anti-HIV-1 activity. J. Med. Chem. 34, 1408-1414; Pompon, A., Lefebvre, I., Imbach, J. L., Kahn, S.
  • a preferred phosphate prodrug group is the S-acyl-2-thioethyl group, also referred to as “SATE”.
  • nucleosides used in the disclosed method to treat HBV infections in a host organism can be prepared according to published methods.
  • ⁇ -L-Nucleosides can be prepared from methods disclosed in, or standard modifications of methods disclosed in, for example, the following publications: Jeong, et al., J. of Med. Chem., 36, 182-195, 1993; European Patent Application Publication No. 0 285 884; Génu-Dellac, C., G. Gosselin, A.-M. Aubertin, G. Obert, A. Kim, and J.-L. Imbach. 3-Substituted thymine ⁇ -L-nucleoside derivatives as potential antiviral agents; synthesis and biological evaluation, Antiviral Chem. Chemother.
  • DDC 2′,3′-Dideoxycytidine
  • the D-enantiomer of DDC is currently being marketed by Hoffman-LaRoche under the name Zalcitabine for use in the treatment of persons infected with HIV. See U.S. Pat. Nos. 4,879,277 and 4,900,828.
  • Enantiomerically pure ⁇ -D-dioxolane-nucleosides such as ⁇ -D-FDOC can be prepared as disclosed in detail in PCT/US91/09124.
  • the process involves the initial preparation of (2R,4R)— and (2R,4S)-4acetoxy-2-(protected-oxymethyl)-dioxolane from 1,6-anhydromannose, a sugar that contains all of the necessary stereochemistry for the enantiomerically pure final product, including the correct diastereomeric configuration about the 1 position of the sugar (that becomes the 4′-position in the later formed nucleoside).
  • the (2R,4R)— and (2R,4S)-4-acetoxy-2-protected-oxymethyl)-dioxolane is condensed with a desired heterocyclic base in the presence of SnCl 4 , other Lewis acid, or trimethylsilyl triflate in an organic solvent such as dichloroethane, acetonitrile, or methylene chloride, to provide the stereochemically pure dioxolane-nucleoside.
  • Enzymatic methods for the separation of D and L enantiomers of cis-nucleosides are disclosed in, for example, Nucleosides and Nucleotides, 12(2), 225-236 (1993); European Patent Application Nos. 92304551.2 and 92304552.0 filed by Biochem Pharma, Inc.; and PCT Publication Nos. WO 91/11186, WO 92/14729, and WO 92/14743 filed by Emory University.
  • Mono, di, and triphosphate derivative of the active nucleosides can be prepared as described according to published methods.
  • the monophosphate can be prepared according to the procedure of Imai et al., J. Org. Chem., 34(6), 1547-1550 (June 1969).
  • the diphosphate can be prepared according to the procedure of Davisson et al., J. Org. Chem., 52(9), 1794-1801 (1987).
  • the triphosphate can be prepared according to the procedure of Hoard et al., J. Am. Chem. Soc., 87(8), 1785-1788 (1965).
  • Y 1 , Y 2 , Y 3 , Y 4 ⁇ H, F, N 3 , NR 1 R 2 , NO 2 , NOR, O-alkyl, O-aryl . . . .
  • R 1 ⁇ CH 3 , (CH 3 ) 2 CH, (CH 3 ) 3 C, C 6 H 5 . . . .
  • EXAMPLE 1-(2-Fluoro-2,3-dideoxy- ⁇ -L-threo-pentofuranosyl)-5-fluorocytosine[2′-F- ⁇ -L ⁇ -L-FddC]
  • the ability of the active compounds to inhibit HBV can be measured by various experimental techniques.
  • the assay used herein to evaluate the ability of the disclosed compounds to inhibit the replication of HBV is described in detail in Korba and Gerin, Antiviral Res. 19: 55-70(1992).
  • ⁇ -L-2′,3′-dideoxycytidine ⁇ -L-FddC
  • ⁇ -L-2′,3′-dideoxy-5-fluorocytidine ⁇ -L-ddC
  • (+)- ⁇ -D-2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-dioxolane (+)- ⁇ -D-FDOC
  • the antiviral evaluations were performed on two separate passages of cells, two cultures per passage (4 cultures total). All wells, in all plates, were seeded at the same density and at the same time.
  • Typical values for extracellular HBV virion DNA in untreated cells range from 50 to 150 pg/ml culture medium (average of approximately 76 pg/ml).
  • Intracellular HBV DNA replication intermediates in untreated cells range from 50 to 100 pg/ug cell DNA (average approximately 74 pg/ug cell DNA).
  • depressions in the levels of intracellular HBV DNA due to treatment with antiviral compounds are less pronounced, and occur more slowly, than depressions in the levels of HBV virion DNA.
  • the manner in which the hybridization analyses were performed for these experiments results in an equivalence of approximately 1.0 pg intracellular HMV DNA/ug cellular DNA to 2-3 genomic copies per cell and 1.0 pg of extracellular HBV DNA/ml culture medium to 3 ⁇ 10 5 viral particles/ml.
  • Toxicity analyses were performed in order to assess whether any observed antiviral effects were due to a general effect on cell viability.
  • the method used was based on the uptake of neutral red dye, a standard and widely used assay for cell viability in a variety of virus-host systems, including HSV herpes simplex virus) and HIV.
  • test compounds were used in the form of 40 mM stock solutions in DMSO (frozen on dry ice). Daily aliquots of the test samples were made and frozen at ⁇ 20° C. so that each individual aliquot would be subjected to a single freeze-thaw cycle. The daily test aliquots were thawed, suspended into culture medium at room temperature and immediately added to the cell cultures. The compounds were tested at 0.01 to 10 ⁇ M for antiviral activity. The compounds were tested for toxicity at concentrations from 1 to 300 ⁇ M. The results are provided in Table 1.
  • Toxicity analyses were performed in 96-well flat bottomed tissue culture plates. Cells for the toxicity analyses were cultured and treated with test compounds with the same schedule as used for the antiviral evaluations. Each compound was tested at 4 concentrations, each in triplicate cultures. Uptake of neutral red dye was used to determine the relative level of toxicity. The absorbance of internalized dye at 510 nM (A 510 ) was used for the quantitative analysis. Values are presented as a percentage of the average A 510 values ( ⁇ standard deviations) in 9 separate cultures of untreated cells maintained on the same 96-well plate as the test compounds. The percentage of dye uptake in the 9 control cultures on plate 40 was 100 ⁇ 3.
  • Table 1 The data presented in Table 1 indicates that all three test compounds (( ⁇ -L-FddC), ( ⁇ -L-ddC), and ⁇ -D-FDOC)), were potent inhibitors of HBV replication, causing depression of HBV virion DNA and HBV RI to a degree comparable to, or greater than, that observed following treatment with ⁇ -D-ddC.
  • HBV HBV Selectivity Index Virion a RI b Cytotoxicity IC 50 /EC 50 Compound EC 50 EC 50 IC 50 Virion RI ⁇ -L-ddA 5.0 C 5.0 250 50 50 Bis (Sale) 0.45 0.35 200 445 571 ⁇ -L-ddAMP ⁇ -L-AZT >10 >10 1000 NA NA Bis (Sale) 7.5 8 200 27 25 ⁇ -L-AZTMP 2′-F- ⁇ -L-5FDDC 1.7 5.0 210 124 42 a Extracellular DNA b Replicative intermediates (Intracellular DNA) C ⁇ M
  • the compounds disclosed herein and their pharmaceutically acceptable salts, prodrugs, and derivatives are useful in the prevention and treatment of HBV infections and other related conditions such as anti-HBV antibody positive and HBV-positive conditions, chronic liver inflammation caused by HBV, cirrhosis, acute hepatitis, fulminant hepatitis, chronic persistent hepatitis, and fatigue.
  • HBV infections and other related conditions such as anti-HBV antibody positive and HBV-positive conditions, chronic liver inflammation caused by HBV, cirrhosis, acute hepatitis, fulminant hepatitis, chronic persistent hepatitis, and fatigue.
  • These compounds or formulations can also be used prophylactically to prevent or retard the progression of clinical illness in individuals who are anti-HBV antibody or HBV-antigen positive or who have been exposed to HBV.
  • Humans suffering from any of these conditions can be treated by administering to the patient an effective HBV-treatment amount of one or a mixture of the active compounds described herein or a pharmaceutically acceptable derivative or salt thereof, optionally in a pharmaceutically acceptable carrier or diluent.
  • the active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid or solid form.
  • the active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount without causing serious toxic effects in the patient treated.
  • a preferred dose of the active compound for all of the above-mentioned conditions will be in the range from about 1 to 60 mg/kg, preferably 1 to 20 mg/kg, of body weight per day, more generally 0.1 to about 100 mg per kilogram body weight of the recipient per day.
  • the effective dosage range of the pharmaceutically acceptable derivatives can be calculated based on the weight of the parent nucleoside to be delivered. If the derivative exhibits activity in itself, the effective dosaze can be estimated as above using the weight of the derivative, or by other means known to those skilled in the art.
  • the active compound is administered as described in the product insert or Physician's Desk Reference for 3′-azido-3′-deoxythymidine (AZT), 2′,3′-dideoxyinosine (DDI), 2′,3′-dideoxycytidine (DDC), or 2′,3′-dideoxy-2′,3′-didehydrothymidine (D4T) for HIV indication.
  • AZT 3′-azido-3′-deoxythymidine
  • DI 2′,3′-dideoxyinosine
  • DDC 2′,3′-dideoxycytidine
  • D4T 2′,3′-dideoxy-2′,3′-didehydrothymidine
  • the compound is conveniently administered in unit any suitable dosage form, including but not limited to one containing 7 to 3000 mg, preferably 70 to 1400 mg of active ingredient per unit dosage form.
  • a oral dosage of 50-1000 mg is usually convenient.
  • the active ingredient should be administered to achieve peak plasma concentrations of the active compound of from about 0.2 to 70 ⁇ M, preferably about 1.0 to 10 ⁇ M. This may be achieved, for example, by the intravenous injection of a 0.1 to 5% solution of the active ingredient, optionally in saline, or administered as a bolus of the active ingredient.
  • the active compound can be provided in the form of pharmaceutically acceptable salts.
  • pharmaceutically acceptable salts or complexes refers to salts or complexes of the nucleosides that retain the desired biological activity of the parent compound and exhibit minimal, if any, undesired toxicological effects.
  • Nonlimiting examples of such salts are (a) acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acids, naphthalenedisulfonic acids, and polygalacturonic acid; (b) base addition salts formed with cations such as sodium, potassium, zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or with an organic cation formed from N,N-dibenzylethylene-diamine, ammonium, or ethylenediamine; or (c) combinations of (a) and (
  • Modifications of the active compound can affect the bioavailability and rate of metabolism of the active species, thus providing control over the delivery of the active species.
  • the concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
  • the active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
  • Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets.
  • the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
  • the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a binder such as microcrystalline cellulose, gum tragacanth or gelatin
  • an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
  • a lubricant such as magnesium stearate or Sterotes
  • a glidant such as colloidal silicon dioxide
  • the active compound or pharmaceutically acceptable salt or derivative thereof can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like.
  • a syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
  • the active compound, or pharmaceutically acceptable derivative or salt thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, antiinflammatories, or other antivirals, including anti-HBV, anti-cytomegalovirus, or anti-HIV agents.
  • Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • preferred carriers are physiological saline or phosphate buffered saline (PBS).
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc.
  • Liposomal suspensions are also preferred as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamnine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container.
  • appropriate lipid(s) such as stearoyl phosphatidyl ethanolamnine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol
  • aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives are then introduced into the container.
  • the container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biotechnology (AREA)
  • AIDS & HIV (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A method for the treatment of a host, and in particular, a human, infected with hepatitis B virus (HBV) is provided that includes administering an effective amount of a β-L-thymine nucleotide, or a phosphate prodrug thereof, optionally in combination therapy with other drugs for the treatment of HBV.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 09/879,854, filed Jun. 12, 2001, which was a continuation of U.S. patent application Ser. No. 09/112,878, filed Jul. 9, 1998 and now issued as U.S. Pat. No. 6,245,749, which was a continuation of U.S. patent application Ser. No. 08/485,716, filed Jun. 7, 1995, all of which three patent applications are hereby incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • This invention is in the area of methods for the treatment of hepatitis B virus (also referred to as “HBV”) that includes administering an effective amount of one or more of the active compounds disclosed herein, or a pharmaceutically acceptable derivative or prodrug of one of these compounds.
  • HBV is second only to tobacco as a cause of human cancer. The mechanism by which HBV induces cancer is unknown, although it is postulated that it may directly trigger tumor development, or indirectly trigger tumor development through chronic inflammation, cirrhosis, and cell regeneration associated with the infection.
  • Hepatitis B virus has reached epidemic levels worldwide. After a two to six month incubation period in which the host is unaware of the infection, HBV infection can lead to acute hepatitis and liver damage, that causes abdominal pain, jaundice, and elevated blood levels of certain enzymes. HBV can cause fulminant hepatitis, a rapidly progressive, often fatal form of the disease in which massive sections of the liver are destroyed. Patients typically recover from acute viral hepatitis. In some patients, however, high levels of viral antigen persist in the blood for an extended, or indefinite, period, causing a chronic infection. Chronic infections can lead to chronic persistent hepatitis. Patients infected with chronic persistent HBV are most common in developing countries. By mid-1991, there were approximately 225 million chronic carriers of HBV in Asia alone, and worldwide, almost 300 million carriers. Chronic persistent hepatitis can cause fatigue, cirrhosis of the liver, and hepatocellular carcinoma, a primary liver cancer. In western industrialized countries, high risk groups for HBV infection include those in contact with HBV carriers or their blood samples. The epidemiology of HBV is in fact very similar to that of acquired immunodeficiency syndrome, which accounts for why HBV infection is common among patients with AIDS or HIV-associated infections. However, HBV is more contagious than HIV.
  • Daily treatments with α-interferon, a genetically engineered protein, has shown promise. A human serum-derived vaccine has also been developed to immunize patients against HBV. Vaccines have been produced through genetic engineering. While the vaccine has been found effective, production of the vaccine is troublesome because the supply of human serum from chronic carriers is limited, and the purification procedure is long and expensive. Further, each batch of vaccine prepared from different serum must be tested in chimpanzees to ensure safety. In addition, the vaccine does not help the patients already infected with the virus.
  • European Patent Application No. 92304530.6 discloses that a group of 1,2-oxathiolane nucleosides are useful in the treatment of hepatitis B infections. It has been reported that the 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane has anti-hepatitis B activity. Doong, et al., Proc. of Natl. Acad. Sci. USA, 88, 8495-8499 (1991); Chang, et al., J. of Biological Chem., Vol 267(20), 13938-13942. The anti-hepatitis B activity of the (−) and (+)-enantiomers of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane has been published by Furman, et al., in Antimicrobial Agents and Chemotherapy, December 1992, pages 2686-2692.
  • PCT/US92/03144 (International Publication No. WO 92/18517) filed by Yale University discloses a number of β-L-nucleosides for the treatment of both HBV and HIV. Other drugs exlored for the treatment of HBV include adenosine arabinoside, thymosin, acyclovir, phosphonoformate, zidovudine, (+)-cyanidanol, quinacrine, and 2′-fluoroarabinosyl-5-iodouracil.
  • An essential step in the mode of action of purine and pyrimidine nucleosides against viral diseases, and in particular, HBV and HIV, is their metabolic activation by cellular and viral kinases, to yield the mono-, di-, and triphosphate derivatives. The biologically active species of many nucleosides is the triphospahte form, which inhibits DNA polymerase or reverse transcriptase, or causes chain termination. The nucleoside derivatives that have been developed for the treatment of HBV and HIV to date have been presented for administration to the host in unphosphorylated form, notwithstanding the fact that the nucleoside must be phosphorylated in the cell prior to exhibiting, its antiviral effect, because the triphosphate form has typically either been dephosphorylated prior to reaching the cell or is poorly absorbed by the cell. Nucleotides in general cross cell membranes very inefficiently and are generally not very not very potent in vitro. Attempts at modifying nucleotides to increase the absorption and potency of nucleotides have been described by R. Jones and N. Bischofberger, Antiviral Research, 27 (1995) 1-17, the contents of which are incorporated herein by reference.
  • In light of the fact that hepatitis B virus has reached epidemic levels worldwide, and has severe and often tragic effects on the infected patient, there remains a strong need to provide new effective pharmaceutical agents to treat humans infected with the virus that have low toxicity to the host.
  • Therefore, it is another object of the present invention to provide a method and composition for the treatment of human patients or other hosts infected with HBV.
  • SUMMARY OF THE INVENTION
  • A method for the treatment of a host, and in particular, a human, infected with HBV is provided that includes administering an HBV-treatment amount of a nucleoside of the formula:
    Figure US20050277616A1-20051215-C00001

    wherein:
  • R1 is hydrogen, fluoro, bromo, chloro, iodo, methyl or ethyl; and R2 is OH, Cl, NH2, or H; or a pharmaceutically acceptable salt of the compound, optionally in a pharmaceutically acceptable carrier or diluent.
  • In an alternative embodiment, the β-L-enantiomer of a compound of the formula:
    Figure US20050277616A1-20051215-C00002

    wherein R5 is adenine, xanthine, hypoxanthine, or other purine, including an alkylated or halogenated purine is administered to a host in an HBV-treatment amount as described more fully herein.
  • In another alternative embodiment, the nucleoside is of the formula:
    Figure US20050277616A1-20051215-C00003
  • wherein B is a purine or pyrimidine base;
  • Y1, Y2, Y3, and Y4 are independently H, OH, N3, NR1R2, NO2, NOR3, —O-alkyl, —O-aryl, halo (including F, Cl, Br, or I), —CN, —C(O)NH2, SH, —S-alkyl, or —S-aryl, and wherein typically three of Y1, Y2, Y3, and Y4 are either H or OH. The —OH substituent, when present, is typically a Y1 or Y3 group. As illustrated in the structure, Y2 and Y4 are in the arabino (erythro) configuration, and Y1 and Y3 are in the threo (ribose) configuration. R is H, monophosphate, diphosphate, triphosphate, alkyl, acyl or a phosphate derivative, as described in more detail below. R1, R2, and R3 are independently alkyl (and in particular lower alkyl), aryl, aralkyl, alkaryl, acyl, or hydrogen.
  • In a preferred embodiment, the nucleoside is provided as the indicated enantiomer and substantially in the absence of its corresponding enantiomer (i.e., in enantiomerically enriched form).
  • In another embodiment, the invention includes a method for the treatment of humans infected with HBV that includes administering an HBV treatment amount of a prodrug of the specifically disclosed nucleosides. A prodrug, as used herein, refers to a pharmaceutically acceptable derivative of the specifically disclosed nucleoside, that is converted into the nucleoside on administration in vivo, or that has activity in itself. Nonlimiting examples are the 5′ and N4-pyrimidine or N6-purine acylated or alkylated derivatives of the active compound.
  • In a preferred embodiment of the invention, the nucleoside is provided as the monophosphate, diphosphate or triphosphate in a formulation that protects the compound from dephosphorylation. Formulations include liposomes, lipospheres, microspheres or nanospheres (of which the latter three can be targeted to infected cells). In an alternative preferred embodiment, the nucleoside is provided as a monophosphate, diphosphate or triphosphate derivative (i.e., a nucleotide prodrug), for example an ester, that stabilizes the phosphate in vivo.
  • The disclosed nucleosides, or their pharmaceutically acceptable prodrugs or salts or pharmaceutically acceptable formulations containing these compounds are useful in the prevention and treatment of HBV infections and other related conditions such as anti-HBV antibody positive and HBV-positive conditions, chronic liver inflammation caused by HBV, cirrhosis, acute hepatitis, fulminant hepatitis, chronic persistent hepatitis, and fatigue. These compounds or formulations can also be used prophylactically to prevent or retard the progression of clinical illness in individuals who are anti-HBV antibody or HBV-antigen positive or who have been exposed to HBV.
  • In one embodiment of the invention, one or more of the active compounds is administered in alternation or combination with one or more other anti-HBV agents, to provide effective anti-HBV treatment. Examples of anti-HBV agents that can be used in alternation or combination therapy include but are not limited to the (−)-enantiomer or racemic mixture of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (“FTC”, see WO 92/14743), its physiologically acceptable derivative, or physiologically acceptable salt; the (−)-enantiomer or racemic mixture of 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane, its physiologically acceptable derivative, or physiologically acceptable salt; an enantiomer or racemic mixture of 2′-fluoro-5-iodo-arabinosyluracil (FIAU); an enantiomer or racemic mixture of 2′-fluoro-5-ethyl-arabinosyluracil (FEAU); carbovir, or interferon.
  • Any method of alternation can be used that provides treatment to the patient. Nonlimiting examples of alternation patterns include 1-6 weeks of administration of an effective amount of one agent followed by 1-6 weeks of administration of an effective amount of a second anti-HBV agent. The alternation schedule can include periods of no treatment. Combination therapy generally includes the simultaneous administration of an effective ratio of dosages of two or more anti-HBV agents.
  • In light of the fact that HBV is often found in patients who are also anti-HIV antibody or HIV-antigen positive or who have been exposed to HIV, the active anti-HBV compounds disclosed herein or their derivatives or prodrugs can be administered in the appropriate circumstance in combination or alternation with anti-HIV medications, including but not limited to 3′-azido-3′-deoxythymidine (AZT), 2′,3′-dideoxyinosine (DDI), 2′,3 ′-dideoxycytidine (DDC), 2′,3′-dideoxy-2′,3′-didehydrothymidine (D4T), 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (FTC), or 2-hydroxymethyl-5-(cytosin-1-yl)-1,3-oxathiolane (BCH-189), in racemic or enantiomeric form. Non-nucleoside RT-inhibitors such as the Tibo class of compounds, nevirapine, or pyrimidinone can also be administered in combination with the claimed compounds.
  • The active anti-HBV agents can also be administered in combination with antibiotics, other antiviral compounds, antifungal agents, or other pharmaceutical agents administered for the treatment of secondary infections.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an illustration of the chemical structures of β-L-2′,3′-dideoxycytidine (β-L-FddC), β-D-2′,3′-dideoxycytidine (β-D-ddC), β-L-2′,3′-dideoxy-5-fluorocytidine (β-L-ddC), (−)-β-L-2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane ((−)-β-L-FTC), (+)-β-D-2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-dioxolane ((+)-β-D-FDOC), and β-L-2-amino-6-(R4)-9-[(4-hydroxymethyl)-tetrahydrofuran-1-yl]purine.
  • FIG. 2 is an illustration of the numbering scheme used in the chemical nomenclature for nucleosides in this text.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, the term “enantiomerically pure” refers to a nucleoside composition that includes at least approximately 95%, and preferably approximately 97%, 98%, 99%, or 100% of a single enantiomer ofthat nucleoside.
  • The term alkyl, as used herein, unless otherwise specified, refers to a saturated straight, branched, or cyclic, primary, secondary, or tertiary hydrocarbon of C1 to C10, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3dimethylbutyl. The alkyl group can be optionally substituted with one or more moieties selected from the group consisting of hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., “Protective Groups in Organic Synthesis,” John Wiley and Sons, Second Edition, 1991. The term lower alkyl, as used herein, and unless otherwise specified, refers to a C1 to C4 ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, or t-butyl group.
  • As used herein, the term acyl specifically includes but is not limited to acetyl, propionyl, butyryl, pentanoyl, 3-methylbutyryl, hydrogen succinate, 3-chlorobenzoate, benzoyl, acetyl, pivaloyl, mesylate, propionyl, valeryl, caproic, caprylic, capric, lauric, myristic, palmitic, stearic, and oleic.
  • The term aryl, as used herein, and unless otherwise specified, refers to phenyl, biphenyl, or naphthyl, and preferably phenyl. The aryl group can be optionally substituted with one or more moieties selected from the group consisting of hydroxyl, amino, alkylamino, arylanino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., “Protective Groups in Organic Synthesis,” John Wiley and Sons, Second Edition, 1991.
  • The term purine or pyrimidine base includes, but is not limited to, adenine, N6-alkylpurines, N6-acylpurines (wherein acyl is C(O)(alkyl, aryl, alkylaryl, or arylalkyl), N6-benzylpurine, N6-halopurine, N6-vinylpurine, N6-acetylenic purine, N6-acyl purine, N6-hydroxyaklyl purine, N6-thioalkyl purine, N2-akylpurines, N2-alkyl-6-thiopurines, thymine, cytosine, 6-azapyrimidine, 2- and/or 4-mercaptopyrmidine, uracil, C5-alkylpyrimidines, C5-benzylpyrimidines, C5-halopyrimidines, C5-vinylpyrimidine, C5-acetylenic pyrimidine, C5-acyl pyrimidine, C5-hydroxyalkyl purine, C5-amidopyrimidine, C5-cyanopyrimidine, C5-nitropyrimidine, C5-aminopyrimidine, N2-alkylpurines, N2-alkyl-6-thiopurines, 5-azacytidinyl, 5-azauracilyl, triazolopyridinyl, imidazolopyridinyl, pyrrolopyrimidinyl, pyrazolopyrimidinyl. Functional oxygen and nitrogen groups on the base can be protected as necessary or desired. Suitable protecting groups are well known to those skilled in the art, and include trimethylsilyl, dimethylhexylsilyl, t-butyldimethylsilyl, and t-butyldiphenylsilyl, trityl, alkyl groups, acyl groups such as acetyl and propionyl, methylsulfonyl, and p-toluylsulfonyl.
  • As used herein, the term natural amino acid includes but is not limited to alanyl, valinyl, leucinyl, isoleucinyl, prolinyl, phenylalaninyl, tryptophanyl, methioninyl, glycinyl, serinyl, threoninyl, cysteinyl, tyrosinyl, asparaginyl, glutaminyl, aspartoyl, glutaoyl, lysinyl, argininyl, and histidinyl.
  • The invention as disclosed herein is a method and composition for the treatment of HBV infection and other viruses replicating in a like manner, in humans or other host animals, that includes administering an effective amount of one or more of the above-identified compounds, or a physiologically acceptable derivative, or a physiologically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier. The compounds of this invention either possess anti-HBV activity, or are metabolized to a compound or compounds that exhibit anti-HBV activity.
  • I. Structure and Preparation of Active Nucleosides
  • Stereochemistry
  • The compounds used in the methods disclosed herein are enantiomers of 2′,3′-dideoxycytidine, 2′,3′-dideoxy-5-(halo or methyl)cytidine, 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-dioxolane, or 2-amino-6-(OH, Cl, NH2, or H)-9-[(4-hydroxymethyl)-tetrahydrofuran-1-yl]purine.
  • Since the 1′ and 4′ carbons of the sugar or dioxolanyl moiety (referred to below generically as the sugar moiety) of the nucleosides are chiral, their nonhydrogen substituents (CH2OR and the pyrimidine or purine base, respectively) can be either cis (on the same side) or trans (on opposite sides) with respect to the sugar ring system. The four optical isomers therefore are represented by the following configurations (when orienting the sugar moiety in a horizontal plane such that the “primary” oxygen (that between the C1′ and C4′-atoms; see FIG. 2) is in back): cis (with both groups “up”, which corresponds to the configuration of naturally occurring nucleosides), cis (with both groups “down”, which is a nonnaturally occurring configuration), trans (with the C2 substituent “up” and the C5 substituent “down”), and trans (with the C2 substituent “down” and the C5 substituent “up”). As indicated schematically in FIG. 1, the “D-nucleosides” are cis nucleosides in a natural configuration and the “L-nucleosides” are cis nucleosides in the nonnaturally occurring configuration.
  • The nucleosides useful in the disclosed method to treat HBV infection are β-L-enantiomers, with the exception of FDOC, which is used in its β-D-enantiomeric form, because it has been discovered that the β-D-enantiomer of FDOC is surprisingly less toxic than the β-L-enantiomer of FDOC.
  • Prodrug Formulations
  • The nucleosides disclosed herein can be administered as any derivative that upon administration to the recipient, is capable of providing directly or indirectly, the parent active compound, or that exhibits activity in itself. In one embodiment, the hydrogen of the 5′-OH group is replaced by a C1-C20 alkyl; acyl in which the non-carbonyl moiety of the ester group is selected from straight, branched, or cyclic C1-C20 alkyl, phenyl, or benzyl; a naturally occurring or nonnaturally occurring amino acid; alkoxyalkyl including methoxymethyl; aralkyl including benzyl; aryloxyalkyl such as phenoxymethyl; aryl including phenyl optionally substituted with halogen, C1 to C4 alkyl or C1 to C4 alkoxy; a dicarboxylic acid such as succinic acid; sulfonate esters such as alkyl or aralkyl sulphonyl including methanesulfonyl; or a mono, di or triphosphate ester.
  • One or both hydrogens of the amino groups on the purine or pyrimidine base can be replaced by a C1-C20 alkyl; acyl in which the non-carbonyl moiety of the ester group is selected from straight, branched, or cyclic C1-C20 alkyl, phenyl, or benzyl; alkoxyalkyl including methoxymethyl; aralkyl including benzyl; aryloxyalkyl such as phenoxymethyl; aryl including phenyl optionally substituted with halogen, C1 to C4 alkyl or C1 to C4 alkoxy.
  • The active nucleoside can also be provided as a 5′-ether lipid, as disclosed in the following references, which are incorporated by reference herein: Kucera, L. S., N. Iyer, E. Lenake, A. Raben, Modest E. J., D. L. W., and C. Piantadosi. 1990. Novel membrane-interactive ether lipid analogs that inhibit infectious HIV-1 production and induce defective virus formation. AIDS Res Hum Retroviruses. 6:491-501; Piantadosi, C., J. Marasco C. J., S. L. Morris-Natschke, K. L. Meyer, F. Gumus, J. R. Surles, K. S. Ishaq, L. S. Kucera, N. Iyer, C. A. Wallen, S. Piantadosi, and E. J. Modest. 1991. Synthesis and evaluation of novel ether lipid nucleoside conjugates for anti-HIV activity. J Med Chem. 34:1408.1414; Hostetler, K. Y., D. D. Richman, D. A. Carson, L. M. Stuhmiller, G. M. T. van Wijk, and H. van den Bosch. 1992. Greatly enhanced inhibition of human immunodeficiency virus type I replication in CEM and HT4-6C cells by 3′-deoxythymidine diphosphate dimyristoylglycerol, a lipid prodrug of 3,-deoxythymidine. Antimicrob Aaents Chemother. 36:2025.2029; Hostetler. K. Y., L. M. Stuhmiller, H. B. Lenting, H. van den Bosch, and D. D. Richman, 1990. Synthesis and antiretroviral activity of phospholipid analogs of azidothymidine and other antiviral nucleosides. J. Biol Chem. 265:6112.7.
  • Nucleotide Prodrugs
  • Any of the nucleosides described herein can be administered as a nucleotide prodrug to increase the activity, bioavalability, stability or otherwise alter the properties of the nucleoside. A number of nucleotide prodrug ligands are known. In general, alkylation, acylation or other lipophilic modification of the mono, di or triphosphoate of the nucleoside will increase the stability of the nucleotide. Examples of substituent groups that can replace one or more hydrogens on the the phosphate moiety are alkyl, aryl, steroids, carbohydrates, including sugars, 1,2-diacylglycerol and alcohols. Many are described in R. Jones and N. Bischofberger, Antiviral Research, 27 (1995) 1-17. Any of these can be used in combination with the disclosed nucleosides to achieve a desired effect. Nonlimiting examples of nucleotide prodrugs are described in the following references.
  • Ho, D. H. W. (1973) Distribution of Kinase and deaminase of 1β-D-arabinofuranosylcytosine in tissues of man and muse. Cancer Res. 33, 2816-2820; Holy, A. (1993) Isopolar phosphorous-modified nucleotide analogues. In: De Clercq (Ed.), Advances in Antiviral Drug Design, Vol. I, JAI Press, pp. 179-231; Hong, C. I., Nechaev, A., and West, C. R. (1979a) Synthesis and antitumor activity of 1β-D-arabinofuranosylcytosine conjugates of cortisol and cortisone. Biochem. Biophys. Rs. Commun. 88, 1223-1229; Hong, C. I., Nechaev, A., Kirisits, A. J. Buchheit, D. J. and West, C. R. (1980) Nucleoside conjugates as potential antitumor agents. 3. Synthesis and antitumor activity of 1-(β-D-arabinofuranosyl)cytosine conjugates of corticosteroids and selected lipophilic alcohols. J. Med. Chem. 28, 171-177; Hostetler, K. Y., Stuhmiller, L. M., Lenting, H. B. M. van den Bosch, H. and Richman, D. D. (1990) Synthesis and antiretrioviral activity of phospholipid analogs of azidothymidine and other antiviral nucleosides. J. Biol. Chem. 265, 6112-6117; Hostetler, K. Y., Carson, D. A. and Richman, D. D. (1991); Phosphatidylazidothymidine: mechanism of antiretroviral action in CEM cells. J. Biol. Chem. 266, 11714-11717; Hostetler, K. Y., Korba, B. Sridhar, C., Gardener, M. (1994a) Antiviral activity of phosphatidyl-dideoxycytidine in hepatitis B-infected cells and enhanced hepatic uptake in mice. Antiviral Res. 24, 59-67; Hostetler, K. Y., Richmnan, D. D., Sridhar, C. N. Felgner, P. L, Felgner, J., Ricci, J., Gardener, M. F. Selleseth, D. W. and Ellis, M. N. (1994b) Phosphatidylazidothymidine and phosphatidyl-ddC: Assessment of uptake in mouse lymphoid tissues and antiviral activities in human immunodeficiency virus-infected cells and in rauscher leukemia virus-infected mice. Antimicrobial Agents Chemother. 38, 2792-2797; Hunston, R. N., Jones, A. A. McGuigan, C., Walker, R. T., Balzarini, J., and De Clercq, E. (1984) Synthesis and biological properties of some cyclic phosphotriesters derived from 2′-deoxy-5-fluorouridine. J. Med. Chem. 27, 440-444; Ji, Y. H., Moog, C., Schmitt, G., Bischoff, P. and Luu, B. (1990); Monophosphoric acid diesters of 7β-hydroxycholesterol and of pyrimidine nucleosides as potential antitumor agents: synthesis and preliminary evaluation of antitumor activity. J. Med. Chem. 33, 2264-2270; Jones, A. S., McGuigan, C., Walker, R. T., Balzarini, J. and DeClercq, E. (1984) Synthesis, properties, and biological activity of some nucleoside cyclic phosphoramidates. J. Chem. Soc. Perkin Trans. I, 1471-1474; Juodka, B. A. and Smrt, J. (1974) Synthesis of ditribonucleoside phosph(P→N) amino acid derivatives. Coll. Czech. Chem. Comm. 39, 363-968; Kataoka, S., Imai, J., Yamaji, N., Kato, M., Saito, M., Kawada, T. and Imai, S. (1989) Alkylacted cAMP derivatives; selective synthesis and biological activities. Nucleic Acids Res. Sym. Ser., 21, 1-2; Kataoka, S., Uchida, R. and Yamaji, N. (1991) A convenient synthesis of adenosine 3′,5′cyclic phosphate (cAMP) benzyl and methyl triesters. Heterocycles 32, 1351-1356; Kinchington, D., Harvey, J. J., O'Connor, T. J., Jones, B. C. N. M., Devine, K. G., Taylor-Robinson, D., Jeffries, D. J. and McGuigan, C. (1992) Comparison of antiviral effects of zidovudine phosphoramidate and phosphorodiamidate derivatives against HIV and ULV in vitro. Antiviral Chem. Chemother. 3, 107-112; Kodama, K., Morozumi, M., Saitoh, K. I., Kuninaka. H., Yoshino, H. and Saneyoshi, M. (1989) Antitumor activity and pharmacology of 1-β-D-arabinofuranosylcytosine-5′-stearylphosphate; an orally active derivative of 1-β-D-arabinofaranosylcytosine. Jpn. J. Cancer Res. 80, 679-685; Korty, M. and Engels, J. (1979) The effects of adenosine- and guanosine 3′,5′phosphoric and acid benzyl esters on guinea-pig ventricular myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol. 310, 103-111; Kumar, A., Goe, P. L., Jones, A. S. Walker, R. T. Balzarini, J. and De Clercq, E. (1990) Synthesis and biological evaluation of some cyclic phosphoramidate nucleoside derivatives. J. Med. Chem. 33, 2368-2375; LeBec, C., and Huynh-Dinh, T. (1991) Synthesis of lipophilic phosphate triester derivatives of 5-fluorouridine and arabinocytidine as anticancer prodrugs. Tetrahedron Lett. 32,6553-6556; Lichtenstein, J., Barner, H. D. and Cohen, S. S. (1960) The metabolism of exogenously supplied nucleotides by Escherichia coli., J. Biol. Chem. 235, 457-465; Lucthy, J., Von Daeniken, A., Friederich, J. Manthey, B., Zweifel, J., Schiatter, C. and Benn, M. H. (1981) Synthesis and toxicological properties of three naturally occurring cyanoepithioalkanes. Mitt. Geg. Lebensmittelunters. Hyg. 72, 131-133 (Chem. Abstr. 95, 127093); McGuigan, C. Tollerfield, S. M. and Riley, P. A. (1989) Synthesis and biological evaluation of some phosphate triester derivatives of the anti-viral drug Ara. Nucleic Acids Res. 17, 6065-6075; McGuigan, C., Devine, K. G., O'Connor, T. J., Galpin, S. A., Jeffries, D. J. and Kinchington, D. (1990a) Synthesis and evaluation of some novel phosphoramidate derivatives of 3′-azido-3′-deoxythymidine (AZT) as anti-HIV compounds. Antiviral Chem. Chemother. 1, 107-113; McGuigan, C., O'Connor, T. J., Nicholls, S. R. Nickson, C. and Kinchington, D. (1990b) Synthesis and anti-HIV activity of some novel substituted dialky phosphate derivatives of AZT and ddCyd. Antiviral Chem. Chemother. 1, 355-360; McGuigan, C., Nicholls, S. R., O'Connor, T. J., and Kinchington, D. (1990c) Synthesis of some novel dialkyl phosphate derivative of 3′-modified nucleosides as potential anti-AIDS drugs. Antiviral Chem. Chemother. 1, 25-33; McGuigan, C., Devine, K. G., O'Connor, T. J., and Kinchington, D. (1991) Synthesis and anti-HIV activity of some haloalky phosphoramidate derivatives of 3′-azido-3′deoxythylmidine (AZT); potent activity of the trichloroethyl methoxyalaninyl compound. Antiviral Res. 15, 255-263; McGuigan, C., Pathirana, R. N., Mahmood, N., Devine, K. G. and Hay, A. J. (1992) Aryl phosphate derivatives of AZT retain activity against HIV1 in cell lines which are resistant to the action of AZT. Antiviral Res. 17, 311-321; McGuigan, C., Pathirana, R. N., Choi, S. M., Kinchington, D. and O'Connor, T. J. (1993a) Phosphoramidate derivatives of AZT as inhibitors of HIV; studies on the carboxyl terminus. Antiviral Chem. Chemother. 4, 97-101; McGuigan, C., Pathirana, R. N., Balzarini, J. and De Clercq, E. (1993b) Intracellular delivery of bioactive AZT nucleotides by aryl phosphate derivatives of AZT. J. Med. Chem. 36, 1048-1052.
  • Alky hydrogen phosphonate derivatives of the anti-HIV agent AZT may be less toxic than the parent nucleoside analogue. Antiviral Chem. Chemother. 5, 271-277; Meyer, R. B., Jr., Shuman, D. A. and Robins, R. K. (1973) Synthesis of purine nucleoside 3′,5′-cyclic phosphotamidates. Tetrahedron Lett. 269-272; Nagyvary, J. Gohil, R. N., Kirchner, C. R. and Stevens, J. D. (1973) Studies on neutral esters of cyclic AMP, Biochem. Biophys. Res. Commun. 55, 1072-1077; Namane, A. Gouyette, C., Fillion, M. P., Fillion, G. and Huynh-Dinh, T. (1992) Improved brain delivery of AZT using a glycosyl phosphotriester prodrug. J. Med. Chem. 35, 3039-3044; Nargeot, J. Nerbonne, J. M. Engels, J. and Leser, H. A. (1983) Natl. Acad. Sci. U.S.A. 80, 2395-2399; Nelson, K. A., Bentrude, W. G., Stser, W. N. and Hutchinson, J. P. (1987) The question of chair-twist equilibria for the phosphate rings of nucleoside cyclic 3′,5′monophosphates. 1HNMR and x-ray crystallographic study of the diasteromers of thymidine phenyl cyclic 3′,5′-monophosphate. J. Am. Chem. Soc. 109, 4058-4064; Nerbonne, J. M., Richard, S., Nargeot, J. and Lester, H. A. (1984) New photoactivatable cyclic nucleotides produce intracellular jumps in cyclic AMP and cyclic GMP concentrations. Nature 301, 74-76; Neumann, J. M., Hervé, M., Debouzy, J. C., Guerra, F. I., Gouyette, C., Dupraz, B. and Huynh-Dinh, T. (1989) Synthesis and transmembrane transport studies by NMR of a glucosyl phospholipid of thymidine. J. Am. Chem. Soc. 111, 4270-4277; Ohno, R., Tatsumi, N., Hirano, M., Imai, K. Mizoguchi, H., Nakamura, T., Kosaka, M., Takatuski, K., Yamaya, T., Toyama, K., Yoshida, T., Masaoka, T., Hashimoto, S., Ohshima, T., Kimura, I., Yamada, K. and Kimura, J. (1991) Treatment of myelodysplastic syndromes with orally administered 1-β-D-rabinofuranosylcytosine-5′stearylphosphate. Oncology 48, 451-455. Palomino, E., Kessle, D. and Horwitz, J. P. (1989) A dihydropyridine carrier system for sustained delivery of 2′,3′dideoxynucleosides to the brain. J. Med. Chem. 32, 622-625; Perkins, R. M., Barney, S., Wittrock, R., Clark, P. H., Levin, R. Lambert, D. M., Petteway, S. R., Serafinowska, H. T., Bailey, S. M., Jackson, S., Hamden, M. R. Ashton, R., Sutton, D., Harvey, J. J. and Brown, A. G. (1993) Activity of BRL47923 and its oral prodrug, SB203657A against a rauscher murine leukemia virus infection in mice. Antiviral Res. 20 (Suppl. I). 84; Piantadosi, C., Marasco, C. J., Jr., Morris-Natschke, S. L., Meyer, K. L., Gumus, F., Surles, J. R., Ishaq, K. S., Kucera, L. S. Iyer, N., Wallen, C. A., Piantadosi, S. and Modest, E. J. (1991) Synthesis and evaluation of novel ether lipid nucleoside conjugates for anti-HIV-1 activity. J. Med. Chem. 34, 1408-1414; Pompon, A., Lefebvre, I., Imbach, J. L., Kahn, S. and Farquhar, D. (1994) Decomposition pathways of the mono- and bis(pivaloyloxymethyl)esters of azidothymidine-5′-monophosphate in cell extract and in tissue culture medium; an application of the ‘on-line ISRP-cleaning’ HPLC technique. Antiviral Chem. Chemother. 5, 91-98; Postemark, T. (1974) Cyclic AMP and cyclic GMP. Annu. Rev. Pharmacol. 14, 23-33; Prisbe, E. J., Martin, J. C. M., McGee, D. P. C., Barker, M. F., Smee, D. F. Duke, A. E., Matthews, T. R. and Verheyden, J. P. J. (1986) Synthesis and antiherpes virus activity of phosphate an phosphonate derivatives of 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine. J. Med. Chem. 29, 671-675; Pucch, F., Gosselin, G., Lefebvre, I., Pompon, A., Aubertin, A. M. Dirn, A. and Imbach, J. L. (1993) Intracellular delivery of nucleoside monophosphate through a reductase-mediated activation process. Antiviral Res. 22, 155-174; Pugaeva, V. P., Klochkeva, S. I., Mashbits, F. D. and Eizengart, R. S. (1969). Toxicological assessment and health standard ratings for ethylene sulfide in the industrial atmosphere. Gig. Trf. Prof. Zabol. 13, 47-48 (Chem. Abstr. 72, 212); Robins, R. K. (1984) The potential of nucleotide analogs as inhibitors of retroviruses and tumors. Pharm. Res. 11-18; Rosowsky, A., Kim. S. H., Ross and J. Wick, M. M. (1982) Lipophilic 5′-(alkylphosphate) esters of 1-β-D-arabinofuranosylcytosine and its N4-acyl and 2,2′-anhydro-3′0-acyl derivatives as potential prodrugs. J. Med. Chem. 25, 171-178; Ross, W. (1961) Increased sensitivity of the walker turnout towards aromatic nitrogen mustards carrying basic side chains following glucose pretreatment. Biochem. Pharm. 8, 235-240; Ryu, e.K., Ross, R. J. Matsushita, T., MacCoss, M., Hong, C. I. and West, C. R. (1982). Phospholipid-nucleoside conjugates. 3. Synthesis and preliminary biological evaluation of 1-β-D-arabinofuranosylcytosine 5′diphosphate[−], 2-diacylglycerols. J. Med. Chem. 25, 1322-1329; Saffhill, R. and Hume, W. J. (1986) The degradation of 5-iododeoxyurindine and 5-bromoeoxyuridine by serum from different sources and its consequences for the use of these compounds for incorporation into DNA. Chem. Biol. Interact. 57, 347-355; Saneyoshi, M., Morozumi, M., Kodama, K., Machida, J., Kuninaka, A. and Yoshino, H. (1980) Synthetic nucleosides and nucleotides. XVI. Synthesis and biological evaluations of a series of 1-β-D-arabinofuranosylcytosine 5′-alky or arylphosphates. Chem. Pharm. Bull. 28, 2915-2923; Sastry, J. K., Nehete, P. N., Khan, S., Nowak, B. J., Plunkett, W., Arlinghaus, R. B. and Farquhar, D. (1992) Membrane-permeable dideoxyuridine 5′-monophosphate analogue inhibits human immunodeficiency virus infection. Mol. Pharmacol. 41, 441-445; Shaw, J. P., Jones, R. J. Arimilli, M. N., Louie, M. S., Lee, W. A. and Cundy, K. C. (1994) Oral bioavailability of PMEA from PMEA prodrugs in male Sprague-Dawley rats. 9th Annual AAPS Meeting. San Diego, Calif. (Abstract). Shuto, S., Ueda, S., Imamura, S., Fukukawa, K. Matsuda, A. and Ueda, T. (1987) A facile one-step synthesis of 5′phosphatidylnucleosides by an enzymatic two-phase reaction. Tetrahedron Lett. 28, 199-202; Shuto, S., Itoh, H., Ueda, S., Imamura, S., Kukukawa, K., Tsujino, M., Matsuda, A. and Ueda, T. (1988) A facile enzymatic synthesis of 5′-(3-sn-phosphatidyl)nucleosides and their antileukemic activities. Chem. Pharm. Bull. 36, 209-217. A preferred phosphate prodrug group is the S-acyl-2-thioethyl group, also referred to as “SATE”.
  • Preparation of the Active Compounds
  • The nucleosides used in the disclosed method to treat HBV infections in a host organism can be prepared according to published methods. β-L-Nucleosides can be prepared from methods disclosed in, or standard modifications of methods disclosed in, for example, the following publications: Jeong, et al., J. of Med. Chem., 36, 182-195, 1993; European Patent Application Publication No. 0 285 884; Génu-Dellac, C., G. Gosselin, A.-M. Aubertin, G. Obert, A. Kim, and J.-L. Imbach. 3-Substituted thymine α-L-nucleoside derivatives as potential antiviral agents; synthesis and biological evaluation, Antiviral Chem. Chemother. 2:83-92 (1991); Johansson, K. N. G., B. G. Lindborg, and R. Noreen, European Patent Application 352 248; Mansuri, M. M., V. Farina, J. E. Starrett, D. A. Benigni, V. Brankovan, and J. C. Martin, Preparation of the geometric isomers of DDC, DDA, D4C and D4T as potential anti-HIV agents, Bioorg. Med. Chem. Lett. 1:65-68 (1991); Fujimori, S., N. Iwanami, Y. Hashimoto, and K. Shudo, A convenient and stereoselective synthesis of 2′-deoxy-β-L-ribonucleosides, Nucleosides & Nucleotides 11:341-349 (1992); Génu-Dellac, C., G. Gosselin, A.-M. Aubertin, G. Obert, A. Kim, and J.-L. Imbach, 3-Substituted thymine α-L-nucleoside derivatives as potential antiviral agents; synthesis and biological evaluation, Antiviral Chem. Chemother. 2:83-92 (1991); Holy, A, Synthesis of 2′-deoxy-L-uridine, Tetrahedron Lett. 2:189-192 (1992); Holy, A., Nucleic acid components and their analogs. CLIII. Preparation of 2′-deoxy-L-ribonucleosides of the pyrimidine series. Collect Czech Chem Commun. 37:4072-4087 (1992); Holy, A, 2′-deoxy-L-uridine: Total synthesis of a uracil 2′-deoxynucleoside from a sugar 2-aminooxazoline through a 2,2′-anhydronucleoside intermediate. In: Townsend L B, Tipson R S, ed. Nucleic Acid Chem. New York: Wiley, 1992: 347-353. vol 1) (1992); Okabe, M., R.-C. Sun, S. Tan, L. Todaro, and D. L. Coffen, Synthesis of the dideoxynucleosides ddC and CNT from glutamic acid, ribonolactone, and pyrimidine bases. J. Org Chem. 53:4780-4786 (1988); Robins, M. J., T. A. Khwja, and R. K. Robins. Purine nucleosides. XXIX. Synthesis of 21-deoxy-L-adenosine and 21-deoxy-L-guanosine and their alpha anomers. J Org Chem. 35:363-639 (1992); Génu-Dellac, C., Gosselin G., Aubertin A-M, Obert G., Kirn A., and Imbach J-L, 3′-Substituted thymine α-L-nucleoside derivatives as potential antiviral agents; synthesis and biological evaluation. Antiviral Chem. Chemother. 2(2):83-92 (1991); Génu-Dellac, C., Gosselin G., Imbach J-L; Synthesis of new 2′-deoxy-3′-substituted-α-L-threo-pentofuranonucleosides of thymine as a potential antiviral agents. Tet Lett 32(1):79-82 (1991); Génu-Dellac, C., Gosselin G., Imbach J-L. Preparation of new acylated derivatives of L-arabino-furanose and 2-deoxy-1-erythro-pentofuranose as precursors for the synthesis of 1-pentofuranosyl nucleosides. 216:240-255 (1991); and Génu-Dellac, C., Gosselin G., Puech F, et al. Systematic synthesis and antiviral evaluation of α-L-arabinofuranosyl and 2′-deoxy-α-L-erythro-pento-furanosyl nucleosides of the five naturally occurring nuclei acid bases. 10(b):1345-1376 (1991).
  • 2′,3′-Dideoxycytidine (DDC) is a known compound. The D-enantiomer of DDC is currently being marketed by Hoffman-LaRoche under the name Zalcitabine for use in the treatment of persons infected with HIV. See U.S. Pat. Nos. 4,879,277 and 4,900,828.
  • Enantiomerically pure β-D-dioxolane-nucleosides such as β-D-FDOC can be prepared as disclosed in detail in PCT/US91/09124. The process involves the initial preparation of (2R,4R)— and (2R,4S)-4acetoxy-2-(protected-oxymethyl)-dioxolane from 1,6-anhydromannose, a sugar that contains all of the necessary stereochemistry for the enantiomerically pure final product, including the correct diastereomeric configuration about the 1 position of the sugar (that becomes the 4′-position in the later formed nucleoside). The (2R,4R)— and (2R,4S)-4-acetoxy-2-protected-oxymethyl)-dioxolane is condensed with a desired heterocyclic base in the presence of SnCl4, other Lewis acid, or trimethylsilyl triflate in an organic solvent such as dichloroethane, acetonitrile, or methylene chloride, to provide the stereochemically pure dioxolane-nucleoside.
  • Enzymatic methods for the separation of D and L enantiomers of cis-nucleosides are disclosed in, for example, Nucleosides and Nucleotides, 12(2), 225-236 (1993); European Patent Application Nos. 92304551.2 and 92304552.0 filed by Biochem Pharma, Inc.; and PCT Publication Nos. WO 91/11186, WO 92/14729, and WO 92/14743 filed by Emory University.
  • Separation of the acylated or alkylated racemic mixture of D and L enantiomers of cis-nucleosides can be accomplished by high performance liquid chromatography with chiral stationary phases, as disclosed in PCT Publication No. WO 92/14729.
  • Mono, di, and triphosphate derivative of the active nucleosides can be prepared as described according to published methods. The monophosphate can be prepared according to the procedure of Imai et al., J. Org. Chem., 34(6), 1547-1550 (June 1969). The diphosphate can be prepared according to the procedure of Davisson et al., J. Org. Chem., 52(9), 1794-1801 (1987). The triphosphate can be prepared according to the procedure of Hoard et al., J. Am. Chem. Soc., 87(8), 1785-1788 (1965).
  • General Procedures for the Preparation of Bis(S-acyl-2-thioethyl)Phosphoester of β-L-dideoxynucleosides[Bis(SATE)β-L ddx MP]
  • Figure US20050277616A1-20051215-C00004
  • Y1, Y2, Y3, Y4═H, F, N3, NR1R2, NO2, NOR, O-alkyl, O-aryl . . . .
  • R1═CH3, (CH3)2 CH, (CH3)3C, C6H5 . . . .
  • (i) ICH2CH2OH, DBU/C6H5CH3; (ii) Cl2PN(iPr)2, NEt3/THF; (iii) β-L-dideoxynucleoside, 1H-tetrazole/THF, then ClC6H4CO3H/CH2Cl2
  • 1H-Tetrazole (0.21 g, 3.0 mmol) was added to a stirred solution of β-L-dideoxynucleoside (1.0 mmol) and the appropriate phosphoramidite C (1.2 mmol) in tetrahydrofuran (2 mL) at room temperature. After 30 minutes, the reaction mixture was cooled to −40° C. and a solution of 3-chloroperoxybenzoic acid (0.23 g, 1.3 in mol) in dichloromethane (2.5 mL) was added; the mixture was then allowed to warm to room temperature over 1 h. Sodium sulfite (10% solution, 1.3 nmL) was added to the mixture to destroy the excess 3-chloroperoxybenzoic acid, after which the organic layer was separated and the aqueous layer washed with dichloromethane (2×10 mL). The combined organic layers were washed with saturated aqueous sodium hydrogen carbonate (5 mL), then water (3×5 mL), dried over sodium sulfate, filtered and evaporated to dryness under reduced pressure. Column chromatography of the residue on silica gel afforded the title Bis(SATE) β-L-ddxmP.
  • EXAMPLE=β-L-2′,3′-Dideoxyadenosin-5′-yl bis(2-pivaloylthioethyl)phosphate[Bis(SATE)β-L-ddAMP]
  • Figure US20050277616A1-20051215-C00005
  • Following the above general procedure, pure Bis(SATE)β-L-ddAMP was obtained as a colorless oil in 72% yield after silica gel column chromatography [eluent: stepwise gradient of methanol (0-3%) in dichloromethane]; 1NMR (DMSO-d6) δ ppm: 8.26 and 8.13 (2s, 2H each, H-2 and H-8), 7.20 (br s, 2H, NH2), 6.24 (t, 1H, H-1′; J=6.0 Hz), 4.35-4.25 (m, 1H, H-4′), 4.25-4.00 (m, 2H, H-5′,5″), 3.96 (m, 4H, 2 SCH2CH2O), 3.04 (t, 4H, 2 SCH2CH2O; J=6.3 Hz), 2.5-2.4 (m, 2H, H-2′,2″) 2.22-2.0 (m, 2H, H-3′,3″), 1.15 [s, 18H, 2(CH3)3C]; 31P NMR (DMSO-d6) δ ppm=−0.76 (s); UV (EtOH), λmax=259 nm (ε 15400); mass spectrum (performed in: glycerol, thioglycerol, 1:1, υ/υ), FAB>O 604 (M+H)+, 136 (BH2)+.
  • General Scheme for the Sterospecific Synthesis of 3′-substituted β-L-dideoxynucleosides
  • Figure US20050277616A1-20051215-C00006
  • EXAMPLE=1-(3-Azido-2-3-dideoxy-β-L-erythro-pentofuranosyl)thymine (β-L-AZT]
  • Figure US20050277616A1-20051215-C00007
  • A mixture of diethyl azodicarboxylate (0.46 mL; 2.9 mmol) and diphenyl phosphorazidate (0.62 ml; 2.9 mmol) in ThF (2.9 ml) was added dropwise over 30 min. to a solution of 1-(2-deoxy-5-O-monomethoxytrityl-β-L-threo-pentofuranosyl)thymine 8[0.5 g, 0.97 mmol] and triphenylphosphine (0.76 g, 2.9 mmol) in THF 11.6 ml) at 0° C. The mixture was stirred for 3.5 h at room temperature, and ethanol was added. After concentration to dryness in vacuo, the residue was dissolved in a mixture of acidic acid (240 ml) and water (60 ml) in order to remove the mMTr protecting group. The mixture was stirred for 5 hours at room temperature and was diluted with toluene. The separated aqueous phase was concentrated to dryness in vacuo. The residue was purified over a silica gel column eluted with ethyl acetate to afford β-L-AZT (105 mg, 40%, crystallized from ethyl acetate). The physicochemical data of β-L-AZT were in accordance with literature data [J. Wengel, J-Lau, E. B. Ledersen, C. N. Nielsen, J. Org. Chem. 56 (11), 3591-3594 (1991)].
  • General Scheme for the Stereospecific Synthesis of 2′-substituted β-L-dideoxynucleosides
  • Figure US20050277616A1-20051215-C00008
  • EXAMPLE=1-(2-Fluoro-2,3-dideoxy-β-L-threo-pentofuranosyl)-5-fluorocytosine[2′-F-β-L β-L-FddC]
  • Figure US20050277616A1-20051215-C00009
  • Hitherto unknown 2′-F-β-L-FddC was synthesized in five steps from 1-(5-O-benzoyl-3-deoxy-β-L-erythro-pentofuranosyl)-5-fluorouracil 17 with an overall yield of 28% m.p. 209-210° C. (crystalized arom absolute ethanol); UV (Et OH) λmax 276 nm (ε, 9000), λmin 226nm (ε, 4000); 19F-NMR (DMSO-d6) δ ppm: −179.7 (m, F2′), −167.2 (dd, F5; JF.6=7.3 Hz, JF.1=1.5 Hz); 1H-NMR (DMSO-d6) δppm: 8.30 (d, 1H, H-6; J6,F=7.3 Hz), 7.8-7.5 (br s, 2H, NH2), 5.80 (d, 1H, H-1′ J1′,F=17.4 Hz), 5.34 (t, 1H, OH-5′; J=4.8 Hz), 5.10 (dd, 1H, H-2′; J2′,F=51.2 Hz; J2′,3′=3.4 Hz), 4.3 (m, 1H, H-4′), 3.8-3.6 (m, 2H, H-5′,5″), 2.2-2.0 (m, 2H, H-3′, H-3″); mass spectra (performed in: glycerol-thioglycerol, 1:1 υ/υ), FAB>O:248 (M+H)+, 130 (BH2)+; FAB<0:246 (M−H); [α]20 D=−16.5 (−c 0.85, DMSO). Anal. Calc. for C9H11N3O3F2: C, 43.73; H, 9.49; N, 17.00; F, 15.37. Found: C, 43.56; H, 4.78; N, 16.75; F, 14.96.
    Figure US20050277616A1-20051215-C00010
    Figure US20050277616A1-20051215-C00011

    II. Anti-HBV Activity of Nucleosides
  • The ability of the active compounds to inhibit HBV can be measured by various experimental techniques. The assay used herein to evaluate the ability of the disclosed compounds to inhibit the replication of HBV is described in detail in Korba and Gerin, Antiviral Res. 19: 55-70(1992). For purposes of illustration only, and without limiting the invention, the results of the evaluation of toxicity and anti-HBV activity are provided below for β-L-2′,3′-dideoxycytidine (β-L-FddC), β-L-2′,3′-dideoxy-5-fluorocytidine (β-L-ddC), and (+)-β-D-2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-dioxolane ((+)-β-D-FDOC). The toxicity and anti-HBV activity of (−)-β-L-2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane ((−)-β-L-FTC) and β-D-2′,3′-dideoxycytidine (β-D-ddC) are included as controls. The other compounds disclosed herein can be evaluated similarly.
  • The samples of β-L-ddC and β-L-5-FddC used in the anti-HBV assays were characterized as follows.
  • 2′,3′-Dideoxy-β-L-cytidine (β-L-DDC). m.p.=220-220° C.; UV (EtOH 95) max 273 nm, λmin 252 nm; NMR-1H (DMSO-d6) δppm=7.89 (d. 1H. H-6; J=7.4 Hz). 7.15-6.95 (d large, 2H, NH2), 5.91 (dd. 1H, H-1′; J=3.0 et 6.5 Hz), 5.66 (d, 1H, H-5; J=7.4 Hz), 4.99 [t. 1H, OH-5′; J-5.2 Hz]. 4.05-3.95 (m, 1H, H-4′), 3.60-3.70 (m, 1H, H-5′; after D2O exchange: dd, 3.64 ppm, J=3.6 et 12.O Hz). 3.60-3.50 (m. 1H, H-5″; after D2O exchange: dd, 3.50 ppm, J=4.1 et 12.0 Hz), 2.30-2.15 (m. 1H, H-2′), 1.9-1.65 (m. 3H, H-2″, 3′ et 3″); [α]D 20−103.6 (c 0.8 MeOH); mass spectrum (performed in: glycerol-thioglycerol, 50:50. v/v); FAB>0 423 [2M+H]+, 304 M+glycerol+H]+. 212 [M+H]+, 112 [BH2]+, 101 [s]+; FAB<O 210 [M−H]. Anal. Calc. for C9H13N3O3 (M=211.21); C, 51.18; H, 6.20; N, 19.89. found; C, 51.34; H, 6.25; N, 20.12.
  • 2′,3′-Dideoxy-β-L-5-fluorocytidine (β-L-5-FDDC). m.p.=158-160° C.; UV (EtOH 95) λmax 281 nm (ε, 8100) et 237 nm (ε, 8500); min 260 nm (ε, 5700) et 225 nm (ε, 7800); NMR-1H (DMSO-d6) δppm 8.28 (d. 1H, H-6; J-7.4 Hz), 7.7-7.4 (d large, 2H, NH2), 5.83 (dd poorly resolved, 1H, H-1′), 5.16(t. 1H, OH-5′; J=5.1 Hz), 4.05-3.95 (m, 1H, H-4′), 3.8-3.70 [m,1H, H5′; after D20 exchange: dd, 3.71 ppm. J=2.7 et 12.3 Hz], 3.60-3.50 [m. 1H, H-5″; after D20 exchange: dd, 3.52 ppm; J=3.3 et 12.3 Hz], 2.35-2.15 (m, 1H, H-2′). 1.95-1.75 (m, 3H, H-2″,3′ et 3″): [α]D 20−80.0 (−c 1.0, DMSO); Mass spectrum [performed in: 3-nitrobenzyl alcohol] FAB>0 230 [M+H]+ et 101 [s]+; FAB<O 228 [M−H]. Anal. Calculated for C9H12N3FO3(M=229.21); C, 47.16; H, 5.28; N, 18.33, F, 8.29. Found. C, 16.90; H, 5.28; N, 18.07; F, 8.17.
  • The antiviral evaluations were performed on two separate passages of cells, two cultures per passage (4 cultures total). All wells, in all plates, were seeded at the same density and at the same time.
  • Due to the inherent variations in the levels of both intracellular and extracellular HBV DNA, only depressions greater than 3.0-fold (for HBV virion DNA) or 2.5-fold (for HBV DNA replication intermediates) from the average levels for these HBV DNA forms in untreated cells are generally considered to be statistically significant [P<0.05] (Zorba and Gerin, Antiviral Res. 19: 55-70, 1992). The levels of integrated HBV DNA in each cellular DNA preparation (which remain constant on a per cell basis in these experiments) were used to calculate the levels of intracellular HBV DNA forms, thereby eliminating technical variations inherent in the blot hybridization assays.
  • Typical values for extracellular HBV virion DNA in untreated cells range from 50 to 150 pg/ml culture medium (average of approximately 76 pg/ml). Intracellular HBV DNA replication intermediates in untreated cells range from 50 to 100 pg/ug cell DNA (average approximately 74 pg/ug cell DNA). In general, depressions in the levels of intracellular HBV DNA due to treatment with antiviral compounds are less pronounced, and occur more slowly, than depressions in the levels of HBV virion DNA.
  • For reference, the manner in which the hybridization analyses were performed for these experiments results in an equivalence of approximately 1.0 pg intracellular HMV DNA/ug cellular DNA to 2-3 genomic copies per cell and 1.0 pg of extracellular HBV DNA/ml culture medium to 3×105 viral particles/ml.
  • Toxicity analyses were performed in order to assess whether any observed antiviral effects were due to a general effect on cell viability. The method used was based on the uptake of neutral red dye, a standard and widely used assay for cell viability in a variety of virus-host systems, including HSV herpes simplex virus) and HIV.
  • The test compounds were used in the form of 40 mM stock solutions in DMSO (frozen on dry ice). Daily aliquots of the test samples were made and frozen at −20° C. so that each individual aliquot would be subjected to a single freeze-thaw cycle. The daily test aliquots were thawed, suspended into culture medium at room temperature and immediately added to the cell cultures. The compounds were tested at 0.01 to 10 μM for antiviral activity. The compounds were tested for toxicity at concentrations from 1 to 300 μM. The results are provided in Table 1.
    TABLE 1
    EFFECT OF D-DDC, L-DDC, L-FDDC, FDOC and (−)-FTC AGAINST HEPATITIS B VIRUS
    IN TRANSFECTED HEPG-2 (2.2.15) CELLS
    Selectivity Index
    HBV virona HBV RIb Cytotoxicity IC50/EC90
    Compound EC50 ± SD EC90 ± SD EC50 ± SD EC90 ± SD IC50 ± SD Virion RI
    β-D-DDC   1.3 ± 0.2C 2.1 ± 0.3 8.1 ± 1.7 12.0 ± 2.4    219 ± 28C 104 18
    1.5 ± 0.7 9.4 ± 2.5 3.2 ± 0.6 11.0 ± 2.0  216 ± 22 23 20
    β-L-DDC 0.033 ± 0.003 1.1 ± 0.2 0.107 ± 0.012 1.8 ± 0.2 493 ± 64 448 274
    β-L-FDDC 0.12 ± 0.01 0.30 ± 0.03 2.8 ± 0.4 4.8 ± 0.6 438 ± 57 1,460 91
    (+)-β-D-FDOC 0.020 ± 0.003 0.195 ± 0.027 0.062 ± 0.012 0.23 ± 0.02 251 ± 23 1,287 1,091
    (−)-β-L-FTC 0.017 ± 0.005 0.15 ± 0.02 0.049 ± 0.008 0.18 ± 0.03 292 ± 13 1,947 1,622

    aExtracellular DNA

    bReplicative intermediates (Intracellular DNA)

    CμM
  • EXAMPLE 2 Toxicity of Compounds
  • The ability of the active compounds to inhibit the growth of virus in 2.2.15 cell cultures (HepG2 cells transformed with hepatitis virion) was evaluated. As illustrated in Table 1, no significant toxicity (greater than 50% depression of the dye untake levels observed in untreated cells) was observed for any of the test compounds at the concentrations 100 μM. The compounds were moderately toxic at 300 μM, however, all three compounds exhibited less toxicity at this concentration than β-D-ddC. It appears that the IC50 of β-L-ddC and β-L-FddC is approximately twice that of β-D-ddC.
  • Toxicity analyses were performed in 96-well flat bottomed tissue culture plates. Cells for the toxicity analyses were cultured and treated with test compounds with the same schedule as used for the antiviral evaluations. Each compound was tested at 4 concentrations, each in triplicate cultures. Uptake of neutral red dye was used to determine the relative level of toxicity. The absorbance of internalized dye at 510 nM (A510) was used for the quantitative analysis. Values are presented as a percentage of the average A510 values (±standard deviations) in 9 separate cultures of untreated cells maintained on the same 96-well plate as the test compounds. The percentage of dye uptake in the 9 control cultures on plate 40 was 100±3. At 150-190 μM β-D-ddC, a 2-fold reduction in dye uptake (versus the levels observed in untreated cultures) is typically observed in these assays (Korba and Gerin; Antiviral Res. 19: 55-70, 1992).
  • EXAMPLE 3 Anti-Hepatitis B Virus Activity
  • The positive treatment control, β-D-2′,3′-dideoxycytosine [β-D-ddC], induced significant depressions of HBV DNA replication at the concentration used. Previous studies have indicated that at 9-12 μM of β-D-ddC, a 90% depression of HBV RI (relative to average levels in untreated cells) is typically observed in this assay system (Korba and Gerin, Antiviral Res. 19: 55-70, 1992). This is consistent with the data presented in Table 1.
  • The data presented in Table 1 indicates that all three test compounds ((β-L-FddC), (β-L-ddC), and β-D-FDOC)), were potent inhibitors of HBV replication, causing depression of HBV virion DNA and HBV RI to a degree comparable to, or greater than, that observed following treatment with β-D-ddC.
  • EXAMPLE 4
  • The effect of selected β-L-derivatives against Hepatitis B virus replication in transfected Hep G-2 cells is described in Table 4.
    TABLE 1
    Effect of L-derivatives against Hepatitis B virus
    replicaTion in transfected Hep G-2 (2.2.15) cells.
    HBV HBV Selectivity Index
    Viriona RIb Cytotoxicity IC50/EC50
    Compound EC50 EC50 IC50 Virion RI
    β-L-ddA 5.0C 5.0 250 50 50
    Bis (Sale) 0.45 0.35 200 445 571 
    β-L-ddAMP
    β-L-AZT >10 >10 1000 NA NA
    Bis (Sale) 7.5 8 200 27 25
    β-L-AZTMP
    2′-F-β-L-5FDDC 1.7 5.0 210 124 42

    aExtracellular DNA

    bReplicative intermediates (Intracellular DNA)

    CμM
  • EXAMPLE 5
  • The Comparative inhibitory effect of selected triphospahtes on woodchuck hepatitis virus DNA polymerase is set out in Table 5.
    TABLE 2
    Comparative inhibitory activities of L-nucleoside
    triphosphates on woochuck hepatitis virus DNA polymerase
    and human DNA polymerase α and β.
    WHB DNA Pol DNA Pol α DNA Pol β
    Inhibitor IC50 (μM) Ki (μM) Ki (μM)
    β-L-AZTPP 0.2 >100 >100
    β-L-ddATP 2.1 >100 >100
    3-TC-TP 1.0 >100 >100
    β-L-5FDDCTP 2.0 >100 >100

    III. Preparation of Pharmaceutical Compositions
  • The compounds disclosed herein and their pharmaceutically acceptable salts, prodrugs, and derivatives, are useful in the prevention and treatment of HBV infections and other related conditions such as anti-HBV antibody positive and HBV-positive conditions, chronic liver inflammation caused by HBV, cirrhosis, acute hepatitis, fulminant hepatitis, chronic persistent hepatitis, and fatigue. These compounds or formulations can also be used prophylactically to prevent or retard the progression of clinical illness in individuals who are anti-HBV antibody or HBV-antigen positive or who have been exposed to HBV.
  • Humans suffering from any of these conditions can be treated by administering to the patient an effective HBV-treatment amount of one or a mixture of the active compounds described herein or a pharmaceutically acceptable derivative or salt thereof, optionally in a pharmaceutically acceptable carrier or diluent. The active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid or solid form.
  • The active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount without causing serious toxic effects in the patient treated.
  • A preferred dose of the active compound for all of the above-mentioned conditions will be in the range from about 1 to 60 mg/kg, preferably 1 to 20 mg/kg, of body weight per day, more generally 0.1 to about 100 mg per kilogram body weight of the recipient per day. The effective dosage range of the pharmaceutically acceptable derivatives can be calculated based on the weight of the parent nucleoside to be delivered. If the derivative exhibits activity in itself, the effective dosaze can be estimated as above using the weight of the derivative, or by other means known to those skilled in the art. In one embodiment, the active compound is administered as described in the product insert or Physician's Desk Reference for 3′-azido-3′-deoxythymidine (AZT), 2′,3′-dideoxyinosine (DDI), 2′,3′-dideoxycytidine (DDC), or 2′,3′-dideoxy-2′,3′-didehydrothymidine (D4T) for HIV indication.
  • The compound is conveniently administered in unit any suitable dosage form, including but not limited to one containing 7 to 3000 mg, preferably 70 to 1400 mg of active ingredient per unit dosage form. A oral dosage of 50-1000 mg is usually convenient.
  • Ideally the active ingredient should be administered to achieve peak plasma concentrations of the active compound of from about 0.2 to 70 μM, preferably about 1.0 to 10 μM. This may be achieved, for example, by the intravenous injection of a 0.1 to 5% solution of the active ingredient, optionally in saline, or administered as a bolus of the active ingredient.
  • The active compound can be provided in the form of pharmaceutically acceptable salts. As used herein, the term pharmaceutically acceptable salts or complexes refers to salts or complexes of the nucleosides that retain the desired biological activity of the parent compound and exhibit minimal, if any, undesired toxicological effects. Nonlimiting examples of such salts are (a) acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acids, naphthalenedisulfonic acids, and polygalacturonic acid; (b) base addition salts formed with cations such as sodium, potassium, zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or with an organic cation formed from N,N-dibenzylethylene-diamine, ammonium, or ethylenediamine; or (c) combinations of (a) and (b); e.g., a zinc tannate salt or the like.
  • Modifications of the active compound, specifically at the N6 or N4 and 5′-O positions, can affect the bioavailability and rate of metabolism of the active species, thus providing control over the delivery of the active species.
  • The concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
  • A preferred mode of administration of the active compound is oral. Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
  • The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or other enteric agents.
  • The active compound or pharmaceutically acceptable salt or derivative thereof can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
  • The active compound, or pharmaceutically acceptable derivative or salt thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, antiinflammatories, or other antivirals, including anti-HBV, anti-cytomegalovirus, or anti-HIV agents.
  • Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • If administered intravenously, preferred carriers are physiological saline or phosphate buffered saline (PBS). In a preferred embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc.
  • Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) are also preferred as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamnine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives are then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
  • This invention has been described with reference to its preferred embodiments. Variations and modifications of the invention, will be obvious to those skilled in the art from the foregoing detailed description of the invention. It is intended that all of these variations and modifications be included within the scope of the appended claims.

Claims (83)

1. A method comprising administering to a human infected with hepatitis B virus, in an amount effective to treat Hepatitis B, a β-L enantiomer of one or more compounds of the formula,
Figure US20050277616A1-20051215-C00012
wherein
Base is thymine;
Y2 is OH, N3, NR1R2, NO2, NOR3, —O-alkyl, —O-aryl, halo, —CN, —C(O)NH2, SH, —S-alkyl, or —S-aryl;
Y1, Y3, and Y4 are H;
wherein R1, R2, and R3, are independently alkyl, aryl, aralkyl, alkaryl, acyl, or hydrogen; and
R is H, monophosphate, diphosphate, triphosphate, alkyl, acyl, or a phosphate derivative;
or a pharmaceutically acceptable salt thereof; and
wherein the compounds either possess anti-HBV activity or are metabolized to a compound or compounds that exhibit anti-HBV activity:
2. The method of claim 1 wherein R1, R2, and R3 are lower alkyl.
3. The method of claim 2 wherein aryl is phenyl.
4. The method of claim 3 wherein R is H or a phosphate derivative.
5. The method of claim 4 wherein the phosphate derivative is a mono, di, or triphosphate ester that stabilizes the phosphate in vivo.
6. The method of claim 5 wherein the mono, di, or triphosphate ester is a phospholipid.
7. The method of claim 5 wherein the mono, di, or triphosphate ester comprises one or more alkyl, acyl, aryl, steroid, carbohydrate, 1,2-diacylglycerol, or alcohol substitutents.
8. The method of claim 3 wherein R is a phosphate derivative.
9. The method of claim 8 wherein the phosphate derivative is a mono, di, or triphosphate ester that stabilizes the phosphate in vivo.
10. The method of claim 9 wherein the mono, di, or triphosphate ester is a phospholipid.
11. The method of claim 9 wherein the mono, di, or triphosphate ester comprises one or more alkyl, acyl, aryl, steroid, carbohydrate, 1,2-diacylglycerol, or alcohol substitutents.
12. The method of claim 3 wherein three of Y1, Y2, Y3, and Y4 are either H or OH.
13. The method of claim 1 wherein the one or more compounds has the structure
Figure US20050277616A1-20051215-C00013
14. The method of claim 13 wherein R1, R2, and R3 are lower alkyl.
15. The method of claim 14 wherein aryl is phenyl.
16. The method of claim 15 wherein the β-L enantiomer of the one or more compounds or the pharmaceutically acceptable salt thereof is provided in enantiomerically enriched form.
17. The method of claim 15 wherein the β-L enantiomer of the one or more compounds or the pharmaceutically acceptable salt thereof has an enantiomeric purity of at least 95% of the illustrated enantiomer.
18. The method of claim 1 wherein the β-L enantiomer of the one or more compounds or the pharmaceutically acceptable salt thereof has an enantiomeric purity of at least 97% of the illustrated enantiomer.
19. The method of claim 3 wherein the β-L enantiomer of the one or more compounds or the pharmaceutically acceptable salt thereof has an enantiomeric purity of at least 98% of the illustrated enantiomer.
20. The method of claim 3 wherein the β-L enantiomer of the one or more compounds or the pharmaceutically acceptable salt thereof has an enantiomeric purity of at least 99% of the illustrated enantiomer.
21. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in a pharmaceutically acceptable carrier or diluent.
22. The method of claim 21, wherein the pharmaceutically acceptable carrier or diluent comprises water.
23. The method of claim 21, wherein the pharmaceutically acceptable carrier or diluent is physiological saline, or phosphate buffered saline.
24. The method of claim 3, one or more compounds or the pharmaceutically acceptable salt thereof is administered in a liposome, microsphere, or nanosphere.
25. The method of claim 3 wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered to the human orally, intraveneously, intradermally, subcutaneously, or topically.
26. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered to the human orally.
27. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in the form of capsules, tablets, or troches.
28. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in the form of an elixir, suspension, syrup, wafer, or chewing gum.
29. The method of claim 3, wherein the amount of one or more compounds or the pharmaceutically acceptable salt thereof administered to the human is from 0.1 to 100 mg per kilogram body weight of the human per day.
30. The method of claim 3, wherein the amount of the one or more compounds or the pharmaceutically acceptable salt thereof administered to the human is from 1 to 60 mg per kilogram body weight of the human per day.
31. The method of claim 3, wherein the amount of the one or more compounds or the pharmaceutically acceptable salt thereof administered to the human is from 1 to 20 mg per kilogram body weight of the human per day.
32. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered at a dosage of from 7 mg to 3,000 mg.
33. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered at a dosage of from 7 mg to 1,400 mg.
34. The method of claim 3, wherein when the one or more compounds or the pharmaceutically acceptable salt thereof is administered orally, the dosage of the compound is from 50 mg to 1,000 mg.
35. The method of claim 1, wherein the one or more compounds or the pharmaceutically acceptable salt thereof are administered in alternation or combination with one or more other anti-HBV agents.
36. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof are administered in alternation or combination with one or more other anti-HBV agents.
37. The method of claim 15, wherein the one or more compounds or the pharmaceutically acceptable salt thereof are administered in alternation or combination with one or more other anti-HBV agents.
38. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in combination with an antibiotic, an antiviral compound, an antifungal agent, or a pharmaceutical agent used for the treatment of a secondary infection.
39. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in combination with anti-HIV medications to a patient who has been exposed to HIV or is anti-HIV antibody or HIV antigen positive.
40. The method of claim 3, wherein the pharmaceutically acceptable salt comprises an acid addition salt formed from an inorganic acid, a salt formed from an organic acid, a base addition salt formed from a cation, or a combination thereof
41. The method of claim 3, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is capable of providing directly or indirectly the parent active compound upon administration to the human.
42. The method of claim 1, wherein when the one or more compounds or a salt thereof is administered to HBV virion infected cell cultures at a concentration of 0.01 to 10 μM, the levels of both intracellular and extracellular HBV DNA are depressed at least 3.0 fold as compared to the average levels in untreated cell cultures.
43. The method of claim 42 wherein the HBV virion infected cell cultures are HepG2 cells transformed with hepatitis virion.
44. The method of claim 42 wherein wherein the HBV virion infected cell cultures are 2.2.15 cell cultures.
45. A method comprising administering to a human infected with hepatitis B virus, in an amount effective to treat Hepatitis B, one or more compounds of the formula,
Figure US20050277616A1-20051215-C00014
wherein
Base is thymine; and
Y2 is OH, N3, NR1R2, NO2, N—OR3, —O-alkyl, —O-aryl, halo, —CN, —C(O)NH2, SH, —S-alkyl, or —S-aryl, wherein R1, R2, and R3 are independently alkyl, aryl, aralkyl, alkaryl, acyl, or hydrogen; and
wherein the hydrogen of the 5′-OH group can be optionally replaced by a lipophilicly modified mono-, di -or tri-phosphate;
or a pharmaceutically acceptable salt thereof.
46. The method of claim 45 wherein the compounds either possess anti-HBV activity or are metabolized to a compound or compounds that exhibit anti-HBV activity.
47. The method of claim 45 wherein R1, R2, and R3 are lower alkyl.
48. The method of claim 47 wherein aryl is phenyl.
49. The method of claim 48 wherein the hydrogen of the 5′-OH group is optionally replaced by a mono, di, or triphosphate ester.
50. The method of claim 49 wherein the mono, di, or triphosphate ester is a phospholipid.
51. The method of claim 49 wherein the mono, di, or triphosphate ester comprises one or more alkyl, acyl, aryl, steroid, carbohydrate, 1,2-diacylglycerol, or alcohol substitutents.
52. The method of claim 48 wherein the hydrogen of the 5′-OH group is replaced by a mono, di, or triphosphate ester.
53. The method of claim 48 wherein the hydrogen of the 5′-OH group is replaced by mono, di, or triphosphate ester that stabilizes the phosphate in vivo.
54. The method of claim 52 wherein the mono, di, or triphosphate ester is a phospholipid.
55. The method of claim 52 wherein the mono, di, or triphosphate ester comprises one or more alkyl, acyl, aryl, steroid, carbohydrate, 1,2-diacylglycerol, or alcohol substitutents.
56. The method of claim 45 wherein the one or more compounds or the pharmaceutically acceptable salt thereof is provided in enantiomerically enriched form.
57. The method of claim 46 wherein the one or more compounds or the pharmaceutically acceptable salt thereof has an enantiomeric purity of at least 95% of the illustrated enantiomer.
58. The method of claim 48 wherein the one or more compounds or the pharmaceutically acceptable salt thereof has an enantiomeric purity of at least 97% of the illustrated enantiomer.
59. The method of claim 48 wherein the one or more compounds or the pharmaceutically acceptable salt thereof has an enantiomeric purity of at least 98% of the illustrated enantiomer.
60. The method of claim 48 wherein the one or more compounds or the pharmaceutically acceptable salt thereof has an enantiomeric purity of at least 99% of the illustrated enantiomer.
61. The method of claim 48 wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in a pharmaceutically acceptable carrier or diluent.
62. The method of claim 61, wherein the pharmaceutically acceptable carrier or diluent comprises water.
63. The method of claim 61, wherein the pharmaceutically acceptable carrier or diluent is physiological saline, or phosphate buffered saline.
64. The method of claim 48, one or more compounds or the pharmaceutically acceptable salt thereof is administered in a liposome, microsphere, or nanosphere.
65. The method of claim 48 wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered to the human orally, intraveneously, intradermally, subcutaneously, or topically.
66. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered to the human orally.
67. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in the form of capsules, tablets, or troches.
68. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in the form of an elixir, suspension, syrup, wafer, or chewing gum.
69. The method of claim 48, wherein the amount of one or more compounds or the pharmaceutically acceptable salt thereof administered to the human is from 0.1 to 100 mg per kilogram body weight of the human per day.
70. The method of claim 48, wherein the amount of the one or more compounds or the pharmaceutically acceptable salt thereof administered to the human is from 1 to 60 mg per kilogram body weight of the human per day.
71. The method of claim 48, wherein the amount of the one or more compounds or the pharmaceutically acceptable salt thereof administered to the human is from 1 to 20 mg per kilogram body weight of the human per day.
72. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered at a dosage of from 7 mg to 3,000 mg.
73. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered at a dosage of from 7 mg to 1,400 mg.
74. The method of claim 48, wherein when the one or more compounds or the pharmaceutically acceptable salt thereof is administered orally, the dosage of the compound is from 50 mg to 1,000 mg.
75. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof are administered in alternation or combination with one or more other anti-HBV agents.
76. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof are administered in alternation or combination with one or more other anti-HBV agents.
77. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in combination with an antibiotic, an antiviral compound, an antifungal agent, or a pharmaceutical agent used for the treatment of a secondary infection.
78. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is administered in combination with anti-HIV medications to a patient who has been exposed to HIV or is anti-HIV antibody or HIV antigen positive.
79. The method of claim 48, wherein the pharmaceutically acceptable salt comprises an acid addition salt formed from an inorganic acid, a salt formed from an organic acid, a base addition salt formed from a cation, or a combination thereof
80. The method of claim 48, wherein the one or more compounds or the pharmaceutically acceptable salt thereof is capable of providing directly or indirectly the parent active compound upon administration to the human.
81. The method of claim 45, wherein when the one or more compounds or a salt thereof is administered to HBV virion infected cell cultures at a concentration of 0.01 to 10 μM, the levels of both intracellular and extracellular HBV DNA are depressed at least 3.0 fold as compared to the average levels in untreated cell cultures.
82. The method of claim 81 wherein the HBV virion infected cell cultures are HepG2 cells transformed with hepatitis virion.
83. The method of claim 82 wherein wherein the HBV virion infected cell cultures are 2.2.15 cell cultures.
US11/180,964 1995-06-07 2005-07-12 Thymine nucleosides with anti-hepatitis B virus activity Abandoned US20050277616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/180,964 US20050277616A1 (en) 1995-06-07 2005-07-12 Thymine nucleosides with anti-hepatitis B virus activity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US48571695A 1995-06-07 1995-06-07
US09/112,878 US6245749B1 (en) 1994-10-07 1998-07-09 Nucleosides with anti-hepatitis B virus activity
US09/879,854 US7468357B2 (en) 1994-10-07 2001-06-12 Nucleosides with anti-hepatitis B virus activity
US11/180,964 US20050277616A1 (en) 1995-06-07 2005-07-12 Thymine nucleosides with anti-hepatitis B virus activity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/879,854 Continuation US7468357B2 (en) 1993-09-10 2001-06-12 Nucleosides with anti-hepatitis B virus activity

Publications (1)

Publication Number Publication Date
US20050277616A1 true US20050277616A1 (en) 2005-12-15

Family

ID=23929192

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/112,878 Expired - Lifetime US6245749B1 (en) 1993-09-10 1998-07-09 Nucleosides with anti-hepatitis B virus activity
US09/879,854 Expired - Fee Related US7468357B2 (en) 1993-09-10 2001-06-12 Nucleosides with anti-hepatitis B virus activity
US11/180,964 Abandoned US20050277616A1 (en) 1995-06-07 2005-07-12 Thymine nucleosides with anti-hepatitis B virus activity
US12/316,627 Abandoned US20090105185A1 (en) 1993-09-10 2008-12-15 Nucleosides with anti-hepatitis B Virus activity

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/112,878 Expired - Lifetime US6245749B1 (en) 1993-09-10 1998-07-09 Nucleosides with anti-hepatitis B virus activity
US09/879,854 Expired - Fee Related US7468357B2 (en) 1993-09-10 2001-06-12 Nucleosides with anti-hepatitis B virus activity

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/316,627 Abandoned US20090105185A1 (en) 1993-09-10 2008-12-15 Nucleosides with anti-hepatitis B Virus activity

Country Status (11)

Country Link
US (4) US6245749B1 (en)
EP (2) EP0831852B1 (en)
JP (2) JP4413996B2 (en)
AT (1) ATE346651T1 (en)
AU (1) AU722214B2 (en)
CA (1) CA2219132C (en)
DE (1) DE69636734T2 (en)
DK (1) DK0831852T3 (en)
ES (1) ES2276404T3 (en)
PT (1) PT831852E (en)
WO (1) WO1996040164A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697727A (en) * 2016-02-12 2018-10-23 默沙东公司 Methods for treating and preventing HIV and AIDS
WO2022204014A1 (en) * 2021-03-25 2022-09-29 Per Os Biosciences, Llc. Compositions and methods for treating coronavirus

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069252A (en) * 1990-02-01 2000-05-30 Emory University Method of resolution and antiviral activity of 1,3-oxathiolane nucleoside enantiomers
AU7954694A (en) 1993-09-10 1995-03-27 Centre National De La Recherche Scientifique (Cnrs) Nucleosides with anti-hepatitis b virus activity
US20020120130A1 (en) 1993-09-10 2002-08-29 Gilles Gosselin 2' or 3' -deoxy and 2', 3' -dideoxy-beta-L-pentofuranonucleo-side compounds, method of preparation and application in therapy, especially as anti- viral agents
JP4413996B2 (en) * 1995-06-07 2010-02-10 エモリー・ユニバーシティ Nucleoside having anti-hepatitis B virus activity
US20030100532A1 (en) * 1997-02-14 2003-05-29 Gary S. Jacob Use of n-substituted-1,5-dideoxy-1,5-imino-d-glucitol compounds in combination therapy for treating hepatitis virus infections
EP1754710A3 (en) * 1998-02-25 2007-12-19 Emory University 2'-Fluoroncucleosides
KR100886653B1 (en) 1998-02-25 2009-03-04 에모리 유니버시티 2'-Fluoronucleosides
JP2002504558A (en) * 1998-02-25 2002-02-12 エモリー ユニバーシテイ 2'-fluoronucleoside
US6531590B1 (en) * 1998-04-24 2003-03-11 Isis Pharmaceuticals, Inc. Processes for the synthesis of oligonucleotide compounds
US6444652B1 (en) 1998-08-10 2002-09-03 Novirio Pharmaceuticals Limited β-L-2'-deoxy-nucleosides for the treatment of hepatitis B
WO2000009531A2 (en) 1998-08-10 2000-02-24 Novirio Pharmaceuticals Limited β-L-2'-DEOXY-NUCLEOSIDES FOR THE TREATMENT OF HEPATITIS B
US6407077B1 (en) 1998-11-05 2002-06-18 Emory University β-L nucleosides for the treatment of HIV infection
ATE315574T1 (en) * 1998-11-05 2006-02-15 Centre Nat Rech Scient NUCLEOSIDES WITH ANTI-HEPATITIS B VIRUS EFFECT
US6545021B1 (en) * 1999-02-12 2003-04-08 G.D. Searle & Co. Use of substituted-1,5-dideoxy-1,5-imino-D-glucitol compounds for treating hepatitis virus infections
US6121437A (en) * 1999-03-16 2000-09-19 Isis Pharmaceuticals, Inc. Phosphate and thiophosphate protecting groups
US6787526B1 (en) 2000-05-26 2004-09-07 Idenix Pharmaceuticals, Inc. Methods of treating hepatitis delta virus infection with β-L-2′-deoxy-nucleosides
US6875751B2 (en) 2000-06-15 2005-04-05 Idenix Pharmaceuticals, Inc. 3′-prodrugs of 2′-deoxy-β-L-nucleosides
AU2002228749B2 (en) 2000-10-18 2008-04-24 Pharmasset Inc Modified nucleosides for treatment of viral infections and abnormal cellular proliferation
AU2002257446A1 (en) * 2001-05-18 2002-12-03 Rakesh Kumar Antiviral nucleosides
US7049303B2 (en) 2001-11-07 2006-05-23 Medical Research Council Inhibition of viruses
AU2002360697B2 (en) 2001-12-20 2009-04-23 Beth Israel Deaconess Medical Center Treatment of EBV and KHSV infection and associated abnormal cellular proliferation
SE521676C2 (en) * 2002-01-02 2003-11-25 Dilafor Ab Use of glycosaminoglycans for the prevention and treatment of pain in full-term pregnancy
TWI244393B (en) 2002-08-06 2005-12-01 Idenix Pharmaceuticals Inc Crystalline and amorphous forms of beta-L-2'-deoxythymidine
WO2004024095A2 (en) 2002-09-13 2004-03-25 Idenix (Cayman) Limited ß-L-2'-DEOXYNUCLEOSIDES FOR THE TREATMENT OF RESISTANT HBV STRAINS AND COMBINATION THERAPIES
CN1293884C (en) * 2002-10-29 2007-01-10 南京长澳医药科技有限公司 Application of 6-methocy bideoxy bideoxy guanosine in preparation of antihepatitis B medicine
PL376474A1 (en) * 2002-10-31 2005-12-27 Metabasis Therapeutics, Inc. Novel cyclic phosphate diesters of 1,3-propane-1-aryl diols and their use in preparing prodrugs
EP1745573A4 (en) 2003-03-20 2010-05-26 Microbiol Quimica Farmaceutica Methods of manufacture of 2 -deoxy- beta-l-nucleosides
US20040200730A1 (en) * 2003-04-14 2004-10-14 Kyo Jibiki Hydrometallurgical copper recovery process
KR20060015542A (en) 2003-04-28 2006-02-17 이데닉스 (케이만) 리미티드 Industrially scalable nucleoside synthesis
JP2007527396A (en) 2003-06-30 2007-09-27 イデニクス(ケイマン)リミテツド Synthesis of β-L-2'-deoxynucleoside
NO324263B1 (en) * 2005-12-08 2007-09-17 Clavis Pharma Asa Chemical compounds, their use in the treatment of cancer, and pharmaceutical compositions comprising such compounds
GB0625283D0 (en) * 2006-12-19 2007-01-24 Cyclacel Ltd Combination
US20080261913A1 (en) 2006-12-28 2008-10-23 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of liver disorders
AR094621A1 (en) 2010-04-01 2015-08-19 Idenix Pharmaceuticals Inc PHARMACEUTICAL COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT OF VIRAL INFECTIONS
WO2012154321A1 (en) 2011-03-31 2012-11-15 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US9487534B2 (en) 2011-08-02 2016-11-08 Scripps Research Institute, A Not-For-Profit Public Benefit Corporation Of California Modulators of virus assembly as antiviral agents
SI3043803T1 (en) 2013-09-11 2022-09-30 Emory University Nucleotide and nucleoside compositions and their uses
CA2937548C (en) 2014-02-13 2022-10-25 Ligand Pharmaceuticals, Inc. Prodrug compounds and their uses
JP2017520545A (en) 2014-07-02 2017-07-27 リガンド・ファーマシューティカルズ・インコーポレイテッド Prodrug compounds and their use
CN111788196A (en) 2018-01-09 2020-10-16 配体药物公司 Acetal compounds and their therapeutic use
KR20220152483A (en) * 2021-05-07 2022-11-16 삼성디스플레이 주식회사 Display panel and display apparatus including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395716B1 (en) * 1998-08-10 2002-05-28 Novirio Pharmaceuticals Limited β-L-2′-deoxy-nucleosides for the treatment of hepatitis B
US6444652B1 (en) * 1998-08-10 2002-09-03 Novirio Pharmaceuticals Limited β-L-2'-deoxy-nucleosides for the treatment of hepatitis B

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000137A (en) 1975-06-10 1976-12-28 American Home Products Corporation Antitumor derivatives of periodate-oxidized nucleosides
US4140761A (en) 1977-04-11 1979-02-20 The United States Of America As Represented By The Department Of Health, Education & Welfare Modification of hepatitis B virus infection in chronic carriers of hepatitis B surface antigen
JPS5668674A (en) 1979-11-08 1981-06-09 Shionogi & Co Ltd 5-fluorouracil derivative
US5223263A (en) 1988-07-07 1993-06-29 Vical, Inc. Liponucleotide-containing liposomes
US4724232A (en) * 1985-03-16 1988-02-09 Burroughs Wellcome Co. Treatment of human viral infections
US4879277A (en) 1985-08-26 1989-11-07 The United States Of America As Represented By The Department Of Health And Human Services Antiviral compositions and methods
JPS62501712A (en) 1985-08-26 1987-07-09 アメリカ合衆国 Anti-HTLV-3/LAV agent containing 2',3'-dideoxyinosine, 2',3'-dideoxyguanosine or 2',3'-dideoxyadenosine
ATE190064T1 (en) 1985-09-17 2000-03-15 Wellcome Found COMBINATION THERAPEUTIC NUCLEOSIDES WITH OTHER THERAPEUTICALLY EFFECTIVE COMPONENTS.
US4916122A (en) 1987-01-28 1990-04-10 University Of Georgia Research Foundation, Inc. 3'-Azido-2',3'-dideoxyuridine anti-retroviral composition
US4788181A (en) * 1986-09-29 1988-11-29 The United States Of America As Represented By The Department Of Health And Human Services 5-substituted-2',3'-dideoxycytidine compounds with anti-HTLV-III activity
US4963533A (en) 1986-10-24 1990-10-16 Stichting Rega Vzw (Rega) Therapeutic application of dideoxycytidinene
AU613026B2 (en) 1987-03-24 1991-07-25 Nycomed As 2',3' dideoxyribofuranoxide derivatives
US5185437A (en) 1987-04-09 1993-02-09 Burroughs Wellcome Co. Therapeutic nucleosides
SE8701605D0 (en) 1987-04-16 1987-04-16 Astra Ab NOVEL MEDICINAL COMPOUNDS
WO1989002733A1 (en) 1987-09-22 1989-04-06 The Regents Of The University Of California Liposomal nucleoside analogues for treating aids
US5466806A (en) 1989-02-08 1995-11-14 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US5041449A (en) 1988-04-11 1991-08-20 Iaf Biochem International, Inc. 4-(nucleoside base)-substituted-1,3-dioxolanes useful for treatment of retroviral infections
US5270315A (en) 1988-04-11 1993-12-14 Biochem Pharma Inc. 4-(purinyl bases)-substituted-1,3-dioxlanes
NZ228645A (en) 1988-04-11 1991-09-25 Iaf Biochem Int 1,3-dioxolane derivatives substituted in the 5th position by a purine or pyrimidine radical; treatment of viral infections
US5047407A (en) 1989-02-08 1991-09-10 Iaf Biochem International, Inc. 2-substituted-5-substituted-1,3-oxathiolanes with antiviral properties
US4900828A (en) 1988-05-12 1990-02-13 Hoffmann-Laroche Inc. Intermediate compounds and an improved procedure for the synthesis of 2',3'-dideoxycytidine
GB8815265D0 (en) 1988-06-27 1988-08-03 Wellcome Found Therapeutic nucleosides
SE8802687D0 (en) 1988-07-20 1988-07-20 Astra Ab NUCLEOSIDE DERIVATIVES
US5043339A (en) 1988-12-19 1991-08-27 Burroughs Wellcome Co. Antiviral compounds
UA45942A (en) 1989-02-08 2002-05-15 Біокем Фарма, Інк. 1,3-OXATHYOLANE, ITS DERIVATIVES, METHOD (OPTIONS) OF ITS PREPARATION AND PHARMACEUTICAL COMPOSITION
DE69233014T2 (en) 1989-02-08 2004-01-08 Biochem Pharma Inc., Laval METHOD FOR THE PRODUCTION OF ANTIVIRAL SUBSTITUTED 1, 3-OXATHIOLANS
NZ233197A (en) 1989-04-13 1991-11-26 Richard Thomas Walker Aromatically substituted nucleotide derivatives, intermediates therefor and pharmaceutical compositions
US5059690A (en) 1990-03-01 1991-10-22 E. R. Squibb & Sons, Inc. Purinyl tetrahydrofurans
US5411947A (en) 1989-06-28 1995-05-02 Vestar, Inc. Method of converting a drug to an orally available form by covalently bonding a lipid to the drug
US5194654A (en) 1989-11-22 1993-03-16 Vical, Inc. Lipid derivatives of phosphonoacids for liposomal incorporation and method of use
US5463092A (en) 1989-11-22 1995-10-31 Vestar, Inc. Lipid derivatives of phosphonacids for liposomal incorporation and method of use
IE904378A1 (en) 1989-12-20 1991-07-03 Abbott Lab Analogs of oxetanyl purines and pyrimidines
US5204466A (en) 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
US5276151A (en) 1990-02-01 1994-01-04 Emory University Method of synthesis of 1,3-dioxolane nucleosides
GB9009861D0 (en) 1990-05-02 1990-06-27 Glaxo Group Ltd Chemical compounds
AU7872491A (en) 1990-05-07 1991-11-27 Vical, Inc. Lipid prodrugs of salicylate and nonsteroidal anti-inflammatory drugs
WO1991018914A1 (en) 1990-05-29 1991-12-12 Vical, Inc. Synthesis of glycerol di- and triphosphate derivatives
CA2083386C (en) 1990-06-13 1999-02-16 Arnold Glazier Phosphorous prodrugs
FR2663636B1 (en) 1990-06-26 1992-10-09 Centre Nat Rech Scient PROCESS FOR THE FUNCTIONALIZATION OF AN OLIGONUCLEOTIDE.
SE9003151D0 (en) 1990-10-02 1990-10-02 Medivir Ab NUCLEOSIDE DERIVATIVES
US5149794A (en) 1990-11-01 1992-09-22 State Of Oregon Covalent lipid-drug conjugates for drug targeting
US5543390A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
US5256641A (en) 1990-11-01 1993-10-26 State Of Oregon Covalent polar lipid-peptide conjugates for immunological targeting
US5543389A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University, A Non Profit Organization Covalent polar lipid-peptide conjugates for use in salves
US5587480A (en) 1990-11-13 1996-12-24 Biochem Pharma, Inc. Substituted 1,3-oxathiolanes and substituted 1,3-dithiolanes with antiviral properties
ES2091948T3 (en) 1990-11-13 1996-11-16 Iaf Biochem Int 1,3-OXATIOLANES SUBSTITUTED WITH ANTIVIRIC PROPERTIES.
US5444063A (en) 1990-12-05 1995-08-22 Emory University Enantiomerically pure β-D-dioxolane nucleosides with selective anti-Hepatitis B virus activity
AU9125991A (en) 1990-12-05 1992-07-08 University Of Georgia Research Foundation, Inc., The Enantiomerically pure beta -l-(-)-1,3-oxathiolane nucleosides
US5248776A (en) 1990-12-05 1993-09-28 University Of Georgia Research Foundation, Inc. Process for enantiomerically pure β-L-1,3-oxathiolane nucleosides
US5925643A (en) 1990-12-05 1999-07-20 Emory University Enantiomerically pure β-D-dioxolane-nucleosides
US5179104A (en) 1990-12-05 1993-01-12 University Of Georgia Research Foundation, Inc. Process for the preparation of enantiomerically pure β-D-(-)-dioxolane-nucleosides
IL100502A (en) 1991-01-03 1995-12-08 Iaf Biochem Int Pharmaceutical compositions containing cis-4-amino-1(hydroxymethyl-1,3-oxathiolan-5-yl)-1H-pyrimid-2-one nucleoside or its derivatives
IL100965A (en) * 1991-02-22 1999-12-31 Univ Emory 2-Hydroxymethyl-5-(5-fluorocytosin-l-yl)-1,3-oxathiolane its resolution and pharmaceutical compositions containing it
GB9104740D0 (en) 1991-03-06 1991-04-17 Wellcome Found Antiviral nucleoside combination
DK0574487T3 (en) 1991-03-06 2002-10-14 Univ Emory Use of 5-fluoro-2'-deoxy-thiacytidine in the treatment of hepatitis B
WO1992018517A1 (en) 1991-04-17 1992-10-29 Yale University Method of treating or preventing hepatitis b virus
GB9110874D0 (en) 1991-05-20 1991-07-10 Iaf Biochem Int Medicaments
ZA923640B (en) * 1991-05-21 1993-02-24 Iaf Biochem Int Processes for the diastereoselective synthesis of nucleosides
GB9111902D0 (en) 1991-06-03 1991-07-24 Glaxo Group Ltd Chemical compounds
WO1993000910A1 (en) * 1991-07-12 1993-01-21 Vical, Inc. Antiviral liponucleosides: treatment of hepatitis b
US5554728A (en) 1991-07-23 1996-09-10 Nexstar Pharmaceuticals, Inc. Lipid conjugates of therapeutic peptides and protease inhibitors
GB9116601D0 (en) 1991-08-01 1991-09-18 Iaf Biochem Int 1,3-oxathiolane nucleoside analogues
FR2684996A1 (en) 1991-12-12 1993-06-18 Centre Nat Rech Scient 2 ', 3'-DIDESOXY-3'-AMINOTHYMIDINE DERIVATIVES, THEIR PREPARATION AND THEIR APPLICATION IN THERAPEUTICS.
FR2685331A1 (en) 1991-12-12 1993-06-25 Centre Nat Rech Scient PHOSPHOTRIESTERS OF DDU, THEIR PREPARATION AND THEIR THERAPEUTIC USE.
FR2684997A1 (en) 1991-12-12 1993-06-18 Centre Nat Rech Scient DERIVATIVES OF 9- (BETA-D-XYLOFURANNOSYL) ADENINE AND 1- (BETA-D-XYLOFURANNOSYL) CYTOSINE, THEIR PREPARATION AND THEIR THERAPEUTIC USE.
US5849905A (en) 1994-11-23 1998-12-15 Centre National De La Recherche Scientifique Biologically active phosphotriester-type nucleosides and methods for preparing same
US5770725A (en) 1992-05-25 1998-06-23 Gosselin; Gilles Phosphotriester type biologically active compounds
FR2692265B1 (en) 1992-05-25 1996-11-08 Centre Nat Rech Scient BIOLOGICALLY ACTIVE COMPOUNDS OF THE PHOSPHOTRIESTER TYPE.
AU4812393A (en) 1992-09-03 1994-03-29 Biochem Pharma Inc. Use of rapamycin in the treatment of aids
GB9226927D0 (en) * 1992-12-24 1993-02-17 Iaf Biochem Int Dideoxy nucleoside analogues
WO1994026273A1 (en) 1993-05-12 1994-11-24 Hostetler Karl Y Acyclovir derivatives for topical use
FR2705099B1 (en) 1993-05-12 1995-08-04 Centre Nat Rech Scient Phosphorothioate triester oligonucleotides and process for their preparation.
US5627160A (en) * 1993-05-25 1997-05-06 Yale University L-2',3'-dideoxy nucleoside analogs as anti-hepatitis B (HBV) and anti-HIV agents
TW374087B (en) * 1993-05-25 1999-11-11 Univ Yale L-2',3'-dideoxy nucleotide analogs as anti-hepatitis B(HBV) and anti-HIV agents
EP0631783A1 (en) * 1993-06-03 1995-01-04 Mitsubishi Chemical Corporation Antiviral combinations of 2',3'-di-deoxyribonucleosides with 6-benzyl-1-ethoxymethyl-5-substituted uracil derivatives
AU7954694A (en) * 1993-09-10 1995-03-27 Centre National De La Recherche Scientifique (Cnrs) Nucleosides with anti-hepatitis b virus activity
FR2709754B1 (en) 1993-09-10 1995-12-01 Centre Nat Rech Scient Compounds 2 'or 3'-deoxy- and 2', 3'-dideoxy-beta-L-pentofuranonucleosides, preparation process and therapeutic application, in particular anti-viral.
FR2711655A1 (en) 1993-10-21 1995-05-05 Centre Nat Rech Scient 3'-phosphononucleoside compounds and method of preparation
US5587362A (en) 1994-01-28 1996-12-24 Univ. Of Ga Research Foundation L-nucleosides
US5696277A (en) 1994-11-15 1997-12-09 Karl Y. Hostetler Antiviral prodrugs
JP4413996B2 (en) 1995-06-07 2010-02-10 エモリー・ユニバーシティ Nucleoside having anti-hepatitis B virus activity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395716B1 (en) * 1998-08-10 2002-05-28 Novirio Pharmaceuticals Limited β-L-2′-deoxy-nucleosides for the treatment of hepatitis B
US6444652B1 (en) * 1998-08-10 2002-09-03 Novirio Pharmaceuticals Limited β-L-2'-deoxy-nucleosides for the treatment of hepatitis B
US6566344B1 (en) * 1998-08-10 2003-05-20 Idenix Pharmaceuticals, Inc. β-L-2′-deoxy-nucleosides for the treatment of hepatitis B
US6569837B1 (en) * 1998-08-10 2003-05-27 Idenix Pharmaceuticals Inc. β-L-2′-deoxy pyrimidine nucleosides for the treatment of hepatitis B
US6946450B2 (en) * 1998-08-10 2005-09-20 Idenix Pharmaceuticals, Inc. β-L-2′-deoxy-nucleosides for the treatment of hepatitis B

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697727A (en) * 2016-02-12 2018-10-23 默沙东公司 Methods for treating and preventing HIV and AIDS
US11337991B2 (en) 2016-02-12 2022-05-24 Merck Sharp & Dohme Corp. Methods for the treatment and prophylaxis of HIV and AIDS
WO2022204014A1 (en) * 2021-03-25 2022-09-29 Per Os Biosciences, Llc. Compositions and methods for treating coronavirus

Also Published As

Publication number Publication date
JP4413996B2 (en) 2010-02-10
DE69636734T2 (en) 2007-10-18
US7468357B2 (en) 2008-12-23
ES2276404T3 (en) 2007-06-16
US6245749B1 (en) 2001-06-12
JP2007204485A (en) 2007-08-16
AU722214B2 (en) 2000-07-27
EP0831852B1 (en) 2006-11-29
CA2219132C (en) 2007-03-06
EP0831852A1 (en) 1998-04-01
PT831852E (en) 2007-02-28
AU6170796A (en) 1996-12-30
JPH11507381A (en) 1999-06-29
US20090105185A1 (en) 2009-04-23
ATE346651T1 (en) 2006-12-15
CA2219132A1 (en) 1996-12-19
DE69636734D1 (en) 2007-01-11
US20020107221A1 (en) 2002-08-08
EP1655033A1 (en) 2006-05-10
WO1996040164A1 (en) 1996-12-19
DK0831852T3 (en) 2007-03-19
EP0831852A4 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
US7468357B2 (en) Nucleosides with anti-hepatitis B virus activity
US7795238B2 (en) β-L-2′-deoxy-nucleosides for the treatment of hepatitis B
US6395716B1 (en) β-L-2′-deoxy-nucleosides for the treatment of hepatitis B
US5990093A (en) Treating HBV with phospholipid prodrugs of β-L-2&#39;,3&#39;-dideoxyadenosine 5&#39;-monophosphate
US6458773B1 (en) Nucleoside with anti-hepatitis B virus activity
AU2006246473B2 (en) Nucleosides with anti-hepatitus B virus activity
CA2538205C (en) Nucleosides with anti-hepatitis b virus activity

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION