US20050273339A1 - Method and apparatus for remote command, control and diagnostics of systems using conversational or audio interface - Google Patents
Method and apparatus for remote command, control and diagnostics of systems using conversational or audio interface Download PDFInfo
- Publication number
- US20050273339A1 US20050273339A1 US10/858,083 US85808304A US2005273339A1 US 20050273339 A1 US20050273339 A1 US 20050273339A1 US 85808304 A US85808304 A US 85808304A US 2005273339 A1 US2005273339 A1 US 2005273339A1
- Authority
- US
- United States
- Prior art keywords
- ivr
- speech
- target application
- administrator
- system administrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004891 communication Methods 0.000 claims abstract description 18
- 230000004044 response Effects 0.000 claims abstract description 14
- 230000002452 interceptive effect Effects 0.000 claims abstract description 13
- 230000008451 emotion Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 2
- 238000013475 authorization Methods 0.000 claims 1
- 238000012423 maintenance Methods 0.000 description 21
- 238000012544 monitoring process Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 230000002996 emotional effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 206010035148 Plague Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- ZXQYGBMAQZUVMI-GCMPRSNUSA-N gamma-cyhalothrin Chemical compound CC1(C)[C@@H](\C=C(/Cl)C(F)(F)F)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-GCMPRSNUSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000004092 self-diagnosis Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/26—Speech to text systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
Definitions
- the present invention generally relates to the remote administration, diagnostics, maintenance, command and control of a target system.
- the system administrator accesses the system from a remote location by gaining access to the network.
- the network is a computer network compatible with a TCP/IP infrastructure. Accessing the network involves various authentication measures including public key inscription (“PKI”), access control (i.e., limiting access to various network resources) and other means required to insure network integrity.
- PKI public key inscription
- access control i.e., limiting access to various network resources
- other means required to insure network integrity By providing the network administrator high level of access to the system, the administrator is enabled to diagnose, modify or conduct routine maintenance to the system from a remote location.
- a disadvantage of the conventional systems is its limited ability to prevent unintended intrusions. While firewalls and other security measures may substantially reduce the problem, a breach in security and unauthorized intrusions can be fatal to the target application system.
- the target application may be infected with a virus, a worm or a Trojan horse causing system shutdown.
- the target application may be flooded by bogus traffic to one or more of its nodes rendering it inoperable. Regardless of whether the administrator's key has been compromised or whether access to the target application was gained through other means, any of the above-mentioned scenarios will render it difficult if not impossible for the system administrator to effectively diagnose and maintain the target application from a remote location.
- a network administrator may sidestep denial of access or other impediments by gaining physical access to the network and conducting on-site reparations, in some situation this approach may not be possible. For example, if target application is a satellite or an otherwise out-of-reach application, the administrator will not have access to the system and revitalization will not be possible.
- a method and apparatus is disclosed to enable remote or local system administration through voice access.
- Voice access may be implemented using a personalized and conversational Interactive Voice Response (“IVR”) system adapted to interface with a system administrator and the target application.
- the IVR may enable system administrator to use speech (including natural language and voice) to perform system maintenance, system tuning and fault location.
- Conversational speech interface may also be used to interactively report the remote system's status or to execute different system configurations.
- the voice communication is conventionally implemented through a telephony network (e.g., PSTN), direct microphone input, cellular communication or an internet based voice communication.
- PSTN public switched telephone network
- the speech-based interface provides a number of advantages over a data-based network interface. For example, the speech-based interface is not exposed to port attacks, calculated memory leak, buffer overflow and denial of access which plague conventional data-based network control systems.
- the network access may be configured to receive a voice access request, authenticate the voice access request against a database and permit/deny network access based on the authentication results.
- the system administrator Upon granting access to the network, the system administrator is enabled to perform local diagnostics, system maintenance and system configuration by voice access.
- an interactive voice request is used by a remote computer to interface with the target application and conduct system maintenance, system tuning and fault location.
- the system uses IVR to self-tune its communication parameters.
- the system may enable the IVR to communicate with itself over the communication channel to perform self diagnostics and assess communication channel threshold for future reference.
- a system may include a computer system capable of voice interface (e.g. telephony interface) and a conversational interface involving one or more of the following functionalities: automatic speech recognition, text/data to speech conversion, speech to text/data conversion, speaker recognition, natural language processing, language identification and emotion detection.
- the WR computer may optionally be co-located with, and interfaced to, the remote system running the core functions of interest.
- the IVR may include a software package running on the same hardware as the remote system. When access to the remote system is requested, a dialog may be established with the IVR to authenticate and verify the caller's access. Once authenticated, the caller may be provided with access to the remote system.
- FIG. 1 shows a diagnostics and self-tuning system according to one exemplary embodiment of the disclosure.
- FIG. 2 shows an exemplary IVR according to one exemplary embodiment of the disclosure.
- the invention generally relates to the problem of limited administrative and diagnostics access to systems where no network is available or when limited external access is available for accessing a secure network.
- the limited access may be due to non-existent network infrastructure or due to security settings that are aimed at preventing unauthorized access.
- some systems may be installed in unmanned locations where even local technicians are not available.
- the exemplary embodiments of the disclosure may provide an alternative method of accessing devices in remote locations using a conversational interface. Data-based connections require using a remote device such as a computer or a hand held device which typically run on a software platform. In contrast, remote device control and diagnostics via voice can be implemented using a telephone line to converse directly with a maintenance and diagnostics application.
- a voice mechanism may provide an alternative or a backup mechanism for maintenance and control when data networks are compromised or corrupted.
- FIG. 1 shows a diagnostics and self-tuning system according to one exemplary embodiment of the disclosure.
- the interactive voice response and system control 110 acts as a gatekeeper to target application system 100 .
- IVR 110 also provides an interface between target application 100 and remote devices seeking communication with the target application.
- FIG. 1 shows remote devices including maintenance system 120 , system administrator 130 , remote tuning system 140 and self diagnostic and self-tuning system 150 .
- Target application 100 may be any of a number of various application or services including credit card verification service, banking and trading applications, customer self service, automated shopping, etc.
- IVR 110 may be an automatic interactive voice response software adapted to receive, authenticate and recognize speech data from any of outside devices shown in FIG. 1 or any other devices capable of providing, either directly or indirectly, speech or simulated speech.
- system administrator 130 may directly interact with target application 100 vis-a-vis IVR 100
- each of maintenance system 120 and remote tuning 140 are coupled to speech database 160 .
- each of maintenance system 120 and remote tuning 140 may convert data-based information to speech-based information for communication with WR 100 .
- Software applications directed to converting data to speech may be used in conjunction with speech database 160 .
- FIG. 2 shows an exemplary IVR according to one exemplary embodiment of the disclosure.
- IVR 200 may be customized to include the desired functionalities.
- various modules are added to furnish IVR 200 with speaker recognition system 201 , speech recognition system 202 , speech synthesizer 203 , natural language understanding 204 , language recognition software 205 , emotion detection software 206 and speech recording playback system 207 .
- these modules enable IVR 200 to act as a true interface by interacting with the caller in real time.
- Speech synthesizer 203 is provided to enable IVR 200 to respond to the calling party in spoken language. Alternatively, pre-recorded audio files containing spoken messages may be played by the IVR 200 . Speaker recognition module 201 may be added to expedite the authentication process using conventional biometrics criteria to identify the caller's voice. Speech recognition module 202 may include conventional speech recognition software adapted to convert text data into recognizable human speech. Speech recognition module 202 may also implement knowledge match measures to authenticate the caller. Natural language understanding 204 may be used to extract meaningful user messages from the recognized text. In addition, a language recognizer 205 may be used to identify the spoken language and an emotion detector 206 may be used to estimate the emotional state from the speech data.
- speech recording/playback module enables recording and playback of certain segmented speech. This module is particularly helpful for performing routine operations and reporting thereon.
- system administrator 130 may use existing PSTN infrastructure (or wireless system) to conduct remote maintenance or system modification to target application.
- System administrator 130 telephonically connects to IVR 110 .
- IVR 110 Prior to providing direct access to target system 100 , IVR 110 may be programmed to authenticate system administrator 130 .
- a customized user interface FIG. 2 , interface 210 ) may be implemented to achieve this goal.
- a speaker recognition software may identify the system administrator and grant immediate access to target application system. In the absence of a speaker recognition software, various authentication measures may be implemented to authenticate the caller.
- IVR may act as an interface between target application 100 and system administrator 130 by brokering a simplex (not shown) or a full duplex communication 131 between the caller (i.e., remote device) and target application
- a simplex not shown
- a full duplex communication 131 between the caller (i.e., remote device) and target application
- backdoor entry enables an administrator to call the same application that any another user may call (e.g. a credit card activation service).
- the administrator By speaking a secret phrase or by having the system identify the user's voice biometric characteristics, the administrator is switched to administration mode, is authenticated, and is allowed to perform administrator functions.
- Such functions may include, for example, re-programming the application, obtaining diagnostics, and performing system maintenance.
- the system may be configured to act in duplex; that is, calls may be made by IVR 110 to administrator when there's a problem.
- IVR 110 may be programmed to progress through a contingency plan of calling a list of destinations and leaving messages.
- Still another exemplary implementation of the exemplary embodiment described above is the so-called artificial passenger.
- a mechanic may call the vehicle (or the vehicle may call the driver) if a problem arises. Examples include the vehicle calling or messaging the driver to inform the driver of a flat tire, a wheel imbalance or engine-related problems exist.
- the car may automatically call emergency road-side service in the event of a detected collision or in a situation where the driver is unable to place such a call.
- the user specific style of interaction with a remote device may be governed by the type of request made, the remote devices current system privileges, the current status of the system, and for human system administrators, the personality or the emotional state of the caller.
- IVR 110 may be configured such that if target application is in a critical error state, the system administrator will be interactively prompted to address the critical error before proceeding to other maintenance tasks.
- control criteria are directly communicated between WR 110 and system administrator 130 .
- An advantage of this method resides in that such interactions may be tailored specifically to the type of administrator.
- this method may use voice communication between human and machine to perform administrative functions.
- An example includes providing the administrator with the ability to hear what is occurring in the local environment. If an audible machine is running in the area, the user would be able to determine immediately over the phone if there is perhaps a mechanical problem by listening to the machine itself.
- the exemplary embodiments of the invention are not limited to human administrators.
- the system is configured to respond to a machine/computer administrator.
- Automated robot or computer based systems may be designed to interact with the automated speech interaction system and to change remote (or local) device operating parameters, to maintain, tune and diagnose such speech or non-speech based devices in accordance with the principles of the disclosure.
- maintenance system 120 in FIG. 1 may be a machine/computer system adapted to maintain and control target application 100 vis-à-vis IVR 110 .
- To communicate with IVR 110 maintenance system 120 implements speech data 160 to translate machine data into speech.
- pre-recorded commands may be provided to WR 110 through channels 121 .
- system control may be implemented by IVR 110 and another computer system.
- external IVR systems e.g., remote tuning system 140
- remote tuning systems 140 may use speech database 160 to communicate in a form acceptable to IVR 110 .
- the target application system 110 knowing the exact utterances may compare the qualitative factors relating to the received speech signal (effected by the transmission channel) with the original speech content, and extract degradations and distortions inherent in communication medium 141 . Using these irregularities as a baseline, IVR 110 may further diagnose any system problems and tune parameters in the speech engines, ensuring that the system is running at its optimal performance. This process also enables operating thresholds to be adjusted and the known error rates to be confirmed. Because there are multiple systems calling from different locations, there will be different telephony channel properties. Hence, after a new system installation, this type of setup may be used to rapidly determine the true running error rate of the system and confirm that the incoming line is of high quality and related audio hardware is properly configured and is not defective.
- remote IVR and/or remote tuning machines may be configured to periodically contact each other to ensure that each system in a network is operationally performing.
- a computer calling IVR 110 may, for example, be used to perform routine maintenance and monitoring of the target system using voice or other audio based communication means.
- System tuning may also be achieved by a computer dialing the host system and providing a set of key speech utterances to the host system allowing it to analyze, adjust or update the appropriate maintenance parameters.
- the system diagnosis may be implemented by configuring IVR 110 to contact itself and perform self-diagnosis analysis on target system 100 .
- This may be achieved in a similar manner to the exemplary embodiment where multiple systems contact a target IVR except the target IVR is transmitting and receiving the calls over its own channel (i.e., channel 151 in FIG. 1 ).
- This solution is a self contained version of the previously-discussed exemplary embodiment in that routine system maintenance and monitoring may be self-regulated.
- IVR 110 may be configured to call itself (self-monitoring) to determine whether target application 100 is operating according to a pre-defined specification. There are a number of relevant applications for such an apparatus. Examples may include self tuning of conversational systems, and also functional testing where the system calls itself to verify that it operates correctly end to end.
- IVR 110 may be used to pass a number of speech utterances or audio content over communication lines 151 / 152 and receive the call once it has passed through the channel. By monitoring the quality of the received speech signals, IVR 110 may determine whether the channel provides sufficient quality. In addition, operating thresholds may be changed according to the channel performance. A current measurement of the system error rates for speech recognition and speaker authentication may also be provided using such tools.
- IVR 110 reports a detected problem (for example with target application 100 ) to a repository.
- a central monitoring service accesses the repository.
- the central monitoring service may be programmed to access the repository on regular intervals or upon receiving an indication.
- the entries in the repository may be set by the monitoring process as “commands”.
- the monitoring system then starts/stops/resets system parameters. Alternatively, the monitoring system may act as a watchdog and report the problem to another entity vested with authority to access and remedy the problem.
- the telephony voice system interfaces with the central monitoring process and the monitoring process may initiate an outbound call using the telephony voice system for reporting the critical events.
- the overall performance may be monitored by a third party on a regular basis or as an audit.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- Telephonic Communication Services (AREA)
Abstract
Description
- The present invention generally relates to the remote administration, diagnostics, maintenance, command and control of a target system.
- Conventional target application systems often require remote diagnostics and administration. In such systems the system administrator accesses the system from a remote location by gaining access to the network. Conventionally, the network is a computer network compatible with a TCP/IP infrastructure. Accessing the network involves various authentication measures including public key inscription (“PKI”), access control (i.e., limiting access to various network resources) and other means required to insure network integrity. By providing the network administrator high level of access to the system, the administrator is enabled to diagnose, modify or conduct routine maintenance to the system from a remote location.
- There is a need to provide the system administrator access to the system without relying on the pre-existing computer network including networks having TCP/IP protocol with various security means.
- A disadvantage of the conventional systems is its limited ability to prevent unintended intrusions. While firewalls and other security measures may substantially reduce the problem, a breach in security and unauthorized intrusions can be fatal to the target application system. For example, the target application may be infected with a virus, a worm or a Trojan horse causing system shutdown. In addition, the target application may be flooded by bogus traffic to one or more of its nodes rendering it inoperable. Regardless of whether the administrator's key has been compromised or whether access to the target application was gained through other means, any of the above-mentioned scenarios will render it difficult if not impossible for the system administrator to effectively diagnose and maintain the target application from a remote location.
- Another disadvantage of such systems is the potential for unintended denial of access. Should the target system or the underlying network be corrupted to deny remote access requests, the administrator will not be able to remedy the problem and maintain operability. Thus, denial of access is typically rather costly.
- Finally, while a network administrator may sidestep denial of access or other impediments by gaining physical access to the network and conducting on-site reparations, in some situation this approach may not be possible. For example, if target application is a satellite or an otherwise out-of-reach application, the administrator will not have access to the system and revitalization will not be possible.
- In one exemplary embodiment, a method and apparatus is disclosed to enable remote or local system administration through voice access. Voice access may be implemented using a personalized and conversational Interactive Voice Response (“IVR”) system adapted to interface with a system administrator and the target application. The IVR may enable system administrator to use speech (including natural language and voice) to perform system maintenance, system tuning and fault location. Conversational speech interface may also be used to interactively report the remote system's status or to execute different system configurations. The voice communication is conventionally implemented through a telephony network (e.g., PSTN), direct microphone input, cellular communication or an internet based voice communication. The speech-based interface provides a number of advantages over a data-based network interface. For example, the speech-based interface is not exposed to port attacks, calculated memory leak, buffer overflow and denial of access which plague conventional data-based network control systems.
- In a speech-based application, the network access may be configured to receive a voice access request, authenticate the voice access request against a database and permit/deny network access based on the authentication results. Upon granting access to the network, the system administrator is enabled to perform local diagnostics, system maintenance and system configuration by voice access.
- According to another exemplary embodiment, an interactive voice request is used by a remote computer to interface with the target application and conduct system maintenance, system tuning and fault location.
- Accordingly to still another aspect of the disclosure, the system uses IVR to self-tune its communication parameters. For example, the system may enable the IVR to communicate with itself over the communication channel to perform self diagnostics and assess communication channel threshold for future reference.
- A system according to one exemplary embodiment of the disclosure may include a computer system capable of voice interface (e.g. telephony interface) and a conversational interface involving one or more of the following functionalities: automatic speech recognition, text/data to speech conversion, speech to text/data conversion, speaker recognition, natural language processing, language identification and emotion detection. The WR computer may optionally be co-located with, and interfaced to, the remote system running the core functions of interest. The IVR may include a software package running on the same hardware as the remote system. When access to the remote system is requested, a dialog may be established with the IVR to authenticate and verify the caller's access. Once authenticated, the caller may be provided with access to the remote system.
-
FIG. 1 shows a diagnostics and self-tuning system according to one exemplary embodiment of the disclosure; and -
FIG. 2 shows an exemplary IVR according to one exemplary embodiment of the disclosure. - The invention generally relates to the problem of limited administrative and diagnostics access to systems where no network is available or when limited external access is available for accessing a secure network. The limited access may be due to non-existent network infrastructure or due to security settings that are aimed at preventing unauthorized access. In addition, some systems may be installed in unmanned locations where even local technicians are not available.
- For preventative maintenance and for correcting malfunctions, it is important to check the status of the remote system and gather diagnostics information. It is also useful to gather operational information that is not related to maintenance, such as usage patterns and system logs. Although a network connection may be unavailable, a voice connection (such as a telephone line) is likely to be available. In addition, a voice connection is much less likely to be blocked to outside access; that is, it is always possible to call the target application directly through PSTN. Hence, the exemplary embodiments of the disclosure may provide an alternative method of accessing devices in remote locations using a conversational interface. Data-based connections require using a remote device such as a computer or a hand held device which typically run on a software platform. In contrast, remote device control and diagnostics via voice can be implemented using a telephone line to converse directly with a maintenance and diagnostics application. Thus, a voice mechanism may provide an alternative or a backup mechanism for maintenance and control when data networks are compromised or corrupted.
-
FIG. 1 shows a diagnostics and self-tuning system according to one exemplary embodiment of the disclosure. In the exemplary embodiment ofFIG. 1 , the interactive voice response andsystem control 110 acts as a gatekeeper to targetapplication system 100. IVR 110 also provides an interface betweentarget application 100 and remote devices seeking communication with the target application.FIG. 1 shows remote devices includingmaintenance system 120,system administrator 130,remote tuning system 140 and self diagnostic and self-tuning system 150. -
Target application 100 may be any of a number of various application or services including credit card verification service, banking and trading applications, customer self service, automated shopping, etc. - IVR 110 may be an automatic interactive voice response software adapted to receive, authenticate and recognize speech data from any of outside devices shown in
FIG. 1 or any other devices capable of providing, either directly or indirectly, speech or simulated speech. For Example, whilesystem administrator 130 may directly interact withtarget application 100 vis-a-vis IVR 100, each ofmaintenance system 120 andremote tuning 140 are coupled tospeech database 160. In this manner, each ofmaintenance system 120 andremote tuning 140 may convert data-based information to speech-based information for communication withWR 100. Software applications directed to converting data to speech may be used in conjunction withspeech database 160. -
FIG. 2 shows an exemplary IVR according to one exemplary embodiment of the disclosure. In order to provide additional security measures, IVR 200 may be customized to include the desired functionalities. In the exemplary embodiment ofFIG. 2 , for example, various modules are added to furnish IVR 200 withspeaker recognition system 201,speech recognition system 202,speech synthesizer 203,natural language understanding 204,language recognition software 205,emotion detection software 206 and speechrecording playback system 207. In addition to authenticating the caller, these modules enable IVR 200 to act as a true interface by interacting with the caller in real time. -
Speech synthesizer 203 is provided to enableIVR 200 to respond to the calling party in spoken language. Alternatively, pre-recorded audio files containing spoken messages may be played by theIVR 200.Speaker recognition module 201 may be added to expedite the authentication process using conventional biometrics criteria to identify the caller's voice.Speech recognition module 202 may include conventional speech recognition software adapted to convert text data into recognizable human speech.Speech recognition module 202 may also implement knowledge match measures to authenticate the caller. Natural language understanding 204 may be used to extract meaningful user messages from the recognized text. In addition, alanguage recognizer 205 may be used to identify the spoken language and anemotion detector 206 may be used to estimate the emotional state from the speech data. - Finally, speech recording/playback module enables recording and playback of certain segmented speech. This module is particularly helpful for performing routine operations and reporting thereon.
- Referring to
FIG. 1 ,system administrator 130 may use existing PSTN infrastructure (or wireless system) to conduct remote maintenance or system modification to target application.System administrator 130 telephonically connects toIVR 110. Prior to providing direct access totarget system 100,IVR 110 may be programmed to authenticatesystem administrator 130. A customized user interface (FIG. 2 , interface 210) may be implemented to achieve this goal. For example, a speaker recognition software may identify the system administrator and grant immediate access to target application system. In the absence of a speaker recognition software, various authentication measures may be implemented to authenticate the caller. Once authenticated, IVR may act as an interface betweentarget application 100 andsystem administrator 130 by brokering a simplex (not shown) or afull duplex communication 131 between the caller (i.e., remote device) and target application The integrated approach enables conversational interface to be further personalized to the user according to the user's profile. - One such application includes the so-called backdoor entry for existing conversational telephony systems. In one exemplary embodiment, backdoor entry enables an administrator to call the same application that any another user may call (e.g. a credit card activation service). By speaking a secret phrase or by having the system identify the user's voice biometric characteristics, the administrator is switched to administration mode, is authenticated, and is allowed to perform administrator functions. Such functions may include, for example, re-programming the application, obtaining diagnostics, and performing system maintenance. The system may be configured to act in duplex; that is, calls may be made by
IVR 110 to administrator when there's a problem. In addition,IVR 110 may be programmed to progress through a contingency plan of calling a list of destinations and leaving messages. - Still another exemplary implementation of the exemplary embodiment described above is the so-called artificial passenger. Here, a mechanic may call the vehicle (or the vehicle may call the driver) if a problem arises. Examples include the vehicle calling or messaging the driver to inform the driver of a flat tire, a wheel imbalance or engine-related problems exist. In addition, the car may automatically call emergency road-side service in the event of a detected collision or in a situation where the driver is unable to place such a call.
- The user specific style of interaction with a remote device may be governed by the type of request made, the remote devices current system privileges, the current status of the system, and for human system administrators, the personality or the emotional state of the caller. For example,
IVR 110 may be configured such that if target application is in a critical error state, the system administrator will be interactively prompted to address the critical error before proceeding to other maintenance tasks. - In one exemplary embodiment of the disclosure, control criteria are directly communicated between
WR 110 andsystem administrator 130. An advantage of this method resides in that such interactions may be tailored specifically to the type of administrator. In contrast to accessing digital networks using remote machine connection (i.e., data-based communication), this method may use voice communication between human and machine to perform administrative functions. An example includes providing the administrator with the ability to hear what is occurring in the local environment. If an audible machine is running in the area, the user would be able to determine immediately over the phone if there is perhaps a mechanical problem by listening to the machine itself. - The exemplary embodiments of the invention are not limited to human administrators. In one exemplary embodiment, the system is configured to respond to a machine/computer administrator. Automated robot or computer based systems may be designed to interact with the automated speech interaction system and to change remote (or local) device operating parameters, to maintain, tune and diagnose such speech or non-speech based devices in accordance with the principles of the disclosure. For example,
maintenance system 120 inFIG. 1 may be a machine/computer system adapted to maintain and controltarget application 100 vis-à-visIVR 110. To communicate withIVR 110maintenance system 120 implementsspeech data 160 to translate machine data into speech. Thus, pre-recorded commands may be provided toWR 110 throughchannels 121. - In still another exemplary embodiment, system control may be implemented by
IVR 110 and another computer system. For example, external IVR systems (e.g., remote tuning system 140) may call a target application system and send pre-recorded speech utterances overtelephone line 141. As inmaintenance systems 120,remote tuning systems 140 may usespeech database 160 to communicate in a form acceptable toIVR 110. - The
target application system 110, knowing the exact utterances may compare the qualitative factors relating to the received speech signal (effected by the transmission channel) with the original speech content, and extract degradations and distortions inherent incommunication medium 141. Using these irregularities as a baseline,IVR 110 may further diagnose any system problems and tune parameters in the speech engines, ensuring that the system is running at its optimal performance. This process also enables operating thresholds to be adjusted and the known error rates to be confirmed. Because there are multiple systems calling from different locations, there will be different telephony channel properties. Hence, after a new system installation, this type of setup may be used to rapidly determine the true running error rate of the system and confirm that the incoming line is of high quality and related audio hardware is properly configured and is not defective. - In addition, remote IVR and/or remote tuning machines may be configured to periodically contact each other to ensure that each system in a network is operationally performing. A
computer calling IVR 110 may, for example, be used to perform routine maintenance and monitoring of the target system using voice or other audio based communication means. System tuning may also be achieved by a computer dialing the host system and providing a set of key speech utterances to the host system allowing it to analyze, adjust or update the appropriate maintenance parameters. - In one exemplary embodiment, the system diagnosis may be implemented by configuring
IVR 110 to contact itself and perform self-diagnosis analysis ontarget system 100. This may be achieved in a similar manner to the exemplary embodiment where multiple systems contact a target IVR except the target IVR is transmitting and receiving the calls over its own channel (i.e.,channel 151 inFIG. 1 ). This solution is a self contained version of the previously-discussed exemplary embodiment in that routine system maintenance and monitoring may be self-regulated. One advantage of this exemplary embodiment is thatIVR 110 may be configured to call itself (self-monitoring) to determine whethertarget application 100 is operating according to a pre-defined specification. There are a number of relevant applications for such an apparatus. Examples may include self tuning of conversational systems, and also functional testing where the system calls itself to verify that it operates correctly end to end. - For example,
IVR 110 may be used to pass a number of speech utterances or audio content overcommunication lines 151/152 and receive the call once it has passed through the channel. By monitoring the quality of the received speech signals,IVR 110 may determine whether the channel provides sufficient quality. In addition, operating thresholds may be changed according to the channel performance. A current measurement of the system error rates for speech recognition and speaker authentication may also be provided using such tools. - In an exemplary
deployment process IVR 110 reports a detected problem (for example with target application 100) to a repository. A central monitoring service accesses the repository. The central monitoring service may be programmed to access the repository on regular intervals or upon receiving an indication. The entries in the repository may be set by the monitoring process as “commands”. The monitoring system then starts/stops/resets system parameters. Alternatively, the monitoring system may act as a watchdog and report the problem to another entity vested with authority to access and remedy the problem. The telephony voice system interfaces with the central monitoring process and the monitoring process may initiate an outbound call using the telephony voice system for reporting the critical events. The overall performance may be monitored by a third party on a regular basis or as an audit. - While the invention is described in relation to specific exemplary embodiments, it should be understood that the principles of the invention are not limited thereto and encompass variations and permutations thereof.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/858,083 US8224649B2 (en) | 2004-06-02 | 2004-06-02 | Method and apparatus for remote command, control and diagnostics of systems using conversational or audio interface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/858,083 US8224649B2 (en) | 2004-06-02 | 2004-06-02 | Method and apparatus for remote command, control and diagnostics of systems using conversational or audio interface |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050273339A1 true US20050273339A1 (en) | 2005-12-08 |
US8224649B2 US8224649B2 (en) | 2012-07-17 |
Family
ID=35450138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/858,083 Active 2027-08-25 US8224649B2 (en) | 2004-06-02 | 2004-06-02 | Method and apparatus for remote command, control and diagnostics of systems using conversational or audio interface |
Country Status (1)
Country | Link |
---|---|
US (1) | US8224649B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060047511A1 (en) * | 2004-09-01 | 2006-03-02 | Electronic Data Systems Corporation | System, method, and computer program product for content delivery in a push-to-talk communication system |
WO2007082427A1 (en) * | 2006-01-20 | 2007-07-26 | Huawei Technologies Co., Ltd. | A method, system and apparatus for optimizing route in mobile ipv6 |
US7877500B2 (en) | 2002-09-30 | 2011-01-25 | Avaya Inc. | Packet prioritization and associated bandwidth and buffer management techniques for audio over IP |
US7978827B1 (en) | 2004-06-30 | 2011-07-12 | Avaya Inc. | Automatic configuration of call handling based on end-user needs and characteristics |
US20120109648A1 (en) * | 2010-10-31 | 2012-05-03 | Fathy Yassa | Speech Morphing Communication System |
US8218751B2 (en) | 2008-09-29 | 2012-07-10 | Avaya Inc. | Method and apparatus for identifying and eliminating the source of background noise in multi-party teleconferences |
US8593959B2 (en) | 2002-09-30 | 2013-11-26 | Avaya Inc. | VoIP endpoint call admission |
US20150082404A1 (en) * | 2013-08-31 | 2015-03-19 | Steven Goldstein | Methods and systems for voice authentication service leveraging networking |
US20160071510A1 (en) * | 2014-09-08 | 2016-03-10 | Microsoft Corporation | Voice generation with predetermined emotion type |
US20190392126A1 (en) * | 2017-03-17 | 2019-12-26 | Jin Hyuk Lee | Variable Biometric Information-Based Complex Authentication System and Complex Authentication Method Using the Same |
CN111145755A (en) * | 2019-12-24 | 2020-05-12 | 北京摩拜科技有限公司 | Method and device for calling unlocking interface of shared bicycle application by voice and terminal equipment |
US11361168B2 (en) * | 2018-10-16 | 2022-06-14 | Rovi Guides, Inc. | Systems and methods for replaying content dialogue in an alternate language |
Families Citing this family (187)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8645137B2 (en) | 2000-03-16 | 2014-02-04 | Apple Inc. | Fast, language-independent method for user authentication by voice |
US8677377B2 (en) | 2005-09-08 | 2014-03-18 | Apple Inc. | Method and apparatus for building an intelligent automated assistant |
US9318108B2 (en) | 2010-01-18 | 2016-04-19 | Apple Inc. | Intelligent automated assistant |
US8977255B2 (en) | 2007-04-03 | 2015-03-10 | Apple Inc. | Method and system for operating a multi-function portable electronic device using voice-activation |
US10002189B2 (en) | 2007-12-20 | 2018-06-19 | Apple Inc. | Method and apparatus for searching using an active ontology |
US9330720B2 (en) | 2008-01-03 | 2016-05-03 | Apple Inc. | Methods and apparatus for altering audio output signals |
US8996376B2 (en) | 2008-04-05 | 2015-03-31 | Apple Inc. | Intelligent text-to-speech conversion |
US10496753B2 (en) | 2010-01-18 | 2019-12-03 | Apple Inc. | Automatically adapting user interfaces for hands-free interaction |
US20100030549A1 (en) | 2008-07-31 | 2010-02-04 | Lee Michael M | Mobile device having human language translation capability with positional feedback |
US8676904B2 (en) | 2008-10-02 | 2014-03-18 | Apple Inc. | Electronic devices with voice command and contextual data processing capabilities |
WO2010067118A1 (en) | 2008-12-11 | 2010-06-17 | Novauris Technologies Limited | Speech recognition involving a mobile device |
US20120309363A1 (en) | 2011-06-03 | 2012-12-06 | Apple Inc. | Triggering notifications associated with tasks items that represent tasks to perform |
US10241644B2 (en) | 2011-06-03 | 2019-03-26 | Apple Inc. | Actionable reminder entries |
US10241752B2 (en) | 2011-09-30 | 2019-03-26 | Apple Inc. | Interface for a virtual digital assistant |
US9858925B2 (en) | 2009-06-05 | 2018-01-02 | Apple Inc. | Using context information to facilitate processing of commands in a virtual assistant |
US9431006B2 (en) | 2009-07-02 | 2016-08-30 | Apple Inc. | Methods and apparatuses for automatic speech recognition |
US10705794B2 (en) | 2010-01-18 | 2020-07-07 | Apple Inc. | Automatically adapting user interfaces for hands-free interaction |
US10553209B2 (en) | 2010-01-18 | 2020-02-04 | Apple Inc. | Systems and methods for hands-free notification summaries |
US10679605B2 (en) | 2010-01-18 | 2020-06-09 | Apple Inc. | Hands-free list-reading by intelligent automated assistant |
US10276170B2 (en) | 2010-01-18 | 2019-04-30 | Apple Inc. | Intelligent automated assistant |
DE112011100329T5 (en) | 2010-01-25 | 2012-10-31 | Andrew Peter Nelson Jerram | Apparatus, methods and systems for a digital conversation management platform |
US8682667B2 (en) | 2010-02-25 | 2014-03-25 | Apple Inc. | User profiling for selecting user specific voice input processing information |
US10762293B2 (en) | 2010-12-22 | 2020-09-01 | Apple Inc. | Using parts-of-speech tagging and named entity recognition for spelling correction |
US9262612B2 (en) | 2011-03-21 | 2016-02-16 | Apple Inc. | Device access using voice authentication |
US10057736B2 (en) | 2011-06-03 | 2018-08-21 | Apple Inc. | Active transport based notifications |
US8994660B2 (en) | 2011-08-29 | 2015-03-31 | Apple Inc. | Text correction processing |
US10134385B2 (en) | 2012-03-02 | 2018-11-20 | Apple Inc. | Systems and methods for name pronunciation |
US9483461B2 (en) | 2012-03-06 | 2016-11-01 | Apple Inc. | Handling speech synthesis of content for multiple languages |
US9280610B2 (en) | 2012-05-14 | 2016-03-08 | Apple Inc. | Crowd sourcing information to fulfill user requests |
US10417037B2 (en) | 2012-05-15 | 2019-09-17 | Apple Inc. | Systems and methods for integrating third party services with a digital assistant |
US9721563B2 (en) | 2012-06-08 | 2017-08-01 | Apple Inc. | Name recognition system |
US9495129B2 (en) | 2012-06-29 | 2016-11-15 | Apple Inc. | Device, method, and user interface for voice-activated navigation and browsing of a document |
US9576574B2 (en) | 2012-09-10 | 2017-02-21 | Apple Inc. | Context-sensitive handling of interruptions by intelligent digital assistant |
US9547647B2 (en) | 2012-09-19 | 2017-01-17 | Apple Inc. | Voice-based media searching |
CN113744733B (en) | 2013-02-07 | 2022-10-25 | 苹果公司 | Voice trigger of digital assistant |
US9368114B2 (en) | 2013-03-14 | 2016-06-14 | Apple Inc. | Context-sensitive handling of interruptions |
US10652394B2 (en) | 2013-03-14 | 2020-05-12 | Apple Inc. | System and method for processing voicemail |
WO2014144579A1 (en) | 2013-03-15 | 2014-09-18 | Apple Inc. | System and method for updating an adaptive speech recognition model |
AU2014233517B2 (en) | 2013-03-15 | 2017-05-25 | Apple Inc. | Training an at least partial voice command system |
US10748529B1 (en) | 2013-03-15 | 2020-08-18 | Apple Inc. | Voice activated device for use with a voice-based digital assistant |
WO2014197336A1 (en) | 2013-06-07 | 2014-12-11 | Apple Inc. | System and method for detecting errors in interactions with a voice-based digital assistant |
WO2014197334A2 (en) | 2013-06-07 | 2014-12-11 | Apple Inc. | System and method for user-specified pronunciation of words for speech synthesis and recognition |
US9582608B2 (en) | 2013-06-07 | 2017-02-28 | Apple Inc. | Unified ranking with entropy-weighted information for phrase-based semantic auto-completion |
WO2014197335A1 (en) | 2013-06-08 | 2014-12-11 | Apple Inc. | Interpreting and acting upon commands that involve sharing information with remote devices |
US10176167B2 (en) | 2013-06-09 | 2019-01-08 | Apple Inc. | System and method for inferring user intent from speech inputs |
AU2014278592B2 (en) | 2013-06-09 | 2017-09-07 | Apple Inc. | Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant |
JP2016521948A (en) | 2013-06-13 | 2016-07-25 | アップル インコーポレイテッド | System and method for emergency calls initiated by voice command |
CN105453026A (en) | 2013-08-06 | 2016-03-30 | 苹果公司 | Auto-activating smart responses based on activities from remote devices |
US10296160B2 (en) | 2013-12-06 | 2019-05-21 | Apple Inc. | Method for extracting salient dialog usage from live data |
US9607608B2 (en) * | 2013-12-09 | 2017-03-28 | Honeywell International Inc. | Voice based diagnostic systems and methods |
US9620105B2 (en) | 2014-05-15 | 2017-04-11 | Apple Inc. | Analyzing audio input for efficient speech and music recognition |
US10592095B2 (en) | 2014-05-23 | 2020-03-17 | Apple Inc. | Instantaneous speaking of content on touch devices |
US9502031B2 (en) | 2014-05-27 | 2016-11-22 | Apple Inc. | Method for supporting dynamic grammars in WFST-based ASR |
US9715875B2 (en) | 2014-05-30 | 2017-07-25 | Apple Inc. | Reducing the need for manual start/end-pointing and trigger phrases |
CN110797019B (en) | 2014-05-30 | 2023-08-29 | 苹果公司 | Multi-command single speech input method |
US9430463B2 (en) | 2014-05-30 | 2016-08-30 | Apple Inc. | Exemplar-based natural language processing |
US10170123B2 (en) | 2014-05-30 | 2019-01-01 | Apple Inc. | Intelligent assistant for home automation |
US10078631B2 (en) | 2014-05-30 | 2018-09-18 | Apple Inc. | Entropy-guided text prediction using combined word and character n-gram language models |
US9785630B2 (en) | 2014-05-30 | 2017-10-10 | Apple Inc. | Text prediction using combined word N-gram and unigram language models |
US9633004B2 (en) | 2014-05-30 | 2017-04-25 | Apple Inc. | Better resolution when referencing to concepts |
US10289433B2 (en) | 2014-05-30 | 2019-05-14 | Apple Inc. | Domain specific language for encoding assistant dialog |
US9842101B2 (en) | 2014-05-30 | 2017-12-12 | Apple Inc. | Predictive conversion of language input |
US9734193B2 (en) | 2014-05-30 | 2017-08-15 | Apple Inc. | Determining domain salience ranking from ambiguous words in natural speech |
US9760559B2 (en) | 2014-05-30 | 2017-09-12 | Apple Inc. | Predictive text input |
US9338493B2 (en) | 2014-06-30 | 2016-05-10 | Apple Inc. | Intelligent automated assistant for TV user interactions |
US10659851B2 (en) | 2014-06-30 | 2020-05-19 | Apple Inc. | Real-time digital assistant knowledge updates |
US10446141B2 (en) | 2014-08-28 | 2019-10-15 | Apple Inc. | Automatic speech recognition based on user feedback |
US9818400B2 (en) | 2014-09-11 | 2017-11-14 | Apple Inc. | Method and apparatus for discovering trending terms in speech requests |
US10789041B2 (en) | 2014-09-12 | 2020-09-29 | Apple Inc. | Dynamic thresholds for always listening speech trigger |
US9668121B2 (en) | 2014-09-30 | 2017-05-30 | Apple Inc. | Social reminders |
US9646609B2 (en) | 2014-09-30 | 2017-05-09 | Apple Inc. | Caching apparatus for serving phonetic pronunciations |
US10127911B2 (en) | 2014-09-30 | 2018-11-13 | Apple Inc. | Speaker identification and unsupervised speaker adaptation techniques |
US10074360B2 (en) | 2014-09-30 | 2018-09-11 | Apple Inc. | Providing an indication of the suitability of speech recognition |
US9886432B2 (en) | 2014-09-30 | 2018-02-06 | Apple Inc. | Parsimonious handling of word inflection via categorical stem + suffix N-gram language models |
US10552013B2 (en) | 2014-12-02 | 2020-02-04 | Apple Inc. | Data detection |
US9711141B2 (en) | 2014-12-09 | 2017-07-18 | Apple Inc. | Disambiguating heteronyms in speech synthesis |
US10152299B2 (en) | 2015-03-06 | 2018-12-11 | Apple Inc. | Reducing response latency of intelligent automated assistants |
US9865280B2 (en) | 2015-03-06 | 2018-01-09 | Apple Inc. | Structured dictation using intelligent automated assistants |
US9886953B2 (en) | 2015-03-08 | 2018-02-06 | Apple Inc. | Virtual assistant activation |
US10567477B2 (en) | 2015-03-08 | 2020-02-18 | Apple Inc. | Virtual assistant continuity |
US9721566B2 (en) | 2015-03-08 | 2017-08-01 | Apple Inc. | Competing devices responding to voice triggers |
US9899019B2 (en) | 2015-03-18 | 2018-02-20 | Apple Inc. | Systems and methods for structured stem and suffix language models |
US9842105B2 (en) | 2015-04-16 | 2017-12-12 | Apple Inc. | Parsimonious continuous-space phrase representations for natural language processing |
US10460227B2 (en) | 2015-05-15 | 2019-10-29 | Apple Inc. | Virtual assistant in a communication session |
US10200824B2 (en) | 2015-05-27 | 2019-02-05 | Apple Inc. | Systems and methods for proactively identifying and surfacing relevant content on a touch-sensitive device |
US10083688B2 (en) | 2015-05-27 | 2018-09-25 | Apple Inc. | Device voice control for selecting a displayed affordance |
US10127220B2 (en) | 2015-06-04 | 2018-11-13 | Apple Inc. | Language identification from short strings |
US9578173B2 (en) | 2015-06-05 | 2017-02-21 | Apple Inc. | Virtual assistant aided communication with 3rd party service in a communication session |
US10101822B2 (en) | 2015-06-05 | 2018-10-16 | Apple Inc. | Language input correction |
US10186254B2 (en) | 2015-06-07 | 2019-01-22 | Apple Inc. | Context-based endpoint detection |
US11025565B2 (en) | 2015-06-07 | 2021-06-01 | Apple Inc. | Personalized prediction of responses for instant messaging |
US10255907B2 (en) | 2015-06-07 | 2019-04-09 | Apple Inc. | Automatic accent detection using acoustic models |
US20160378747A1 (en) | 2015-06-29 | 2016-12-29 | Apple Inc. | Virtual assistant for media playback |
US10671428B2 (en) | 2015-09-08 | 2020-06-02 | Apple Inc. | Distributed personal assistant |
US10740384B2 (en) | 2015-09-08 | 2020-08-11 | Apple Inc. | Intelligent automated assistant for media search and playback |
US10331312B2 (en) | 2015-09-08 | 2019-06-25 | Apple Inc. | Intelligent automated assistant in a media environment |
US10747498B2 (en) | 2015-09-08 | 2020-08-18 | Apple Inc. | Zero latency digital assistant |
US9697820B2 (en) | 2015-09-24 | 2017-07-04 | Apple Inc. | Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks |
US10366158B2 (en) | 2015-09-29 | 2019-07-30 | Apple Inc. | Efficient word encoding for recurrent neural network language models |
US11010550B2 (en) | 2015-09-29 | 2021-05-18 | Apple Inc. | Unified language modeling framework for word prediction, auto-completion and auto-correction |
US11587559B2 (en) | 2015-09-30 | 2023-02-21 | Apple Inc. | Intelligent device identification |
US10691473B2 (en) | 2015-11-06 | 2020-06-23 | Apple Inc. | Intelligent automated assistant in a messaging environment |
US10956666B2 (en) | 2015-11-09 | 2021-03-23 | Apple Inc. | Unconventional virtual assistant interactions |
US10049668B2 (en) | 2015-12-02 | 2018-08-14 | Apple Inc. | Applying neural network language models to weighted finite state transducers for automatic speech recognition |
US10223066B2 (en) | 2015-12-23 | 2019-03-05 | Apple Inc. | Proactive assistance based on dialog communication between devices |
US10446143B2 (en) | 2016-03-14 | 2019-10-15 | Apple Inc. | Identification of voice inputs providing credentials |
US9934775B2 (en) | 2016-05-26 | 2018-04-03 | Apple Inc. | Unit-selection text-to-speech synthesis based on predicted concatenation parameters |
US9972304B2 (en) | 2016-06-03 | 2018-05-15 | Apple Inc. | Privacy preserving distributed evaluation framework for embedded personalized systems |
US10249300B2 (en) | 2016-06-06 | 2019-04-02 | Apple Inc. | Intelligent list reading |
US11227589B2 (en) | 2016-06-06 | 2022-01-18 | Apple Inc. | Intelligent list reading |
US10049663B2 (en) | 2016-06-08 | 2018-08-14 | Apple, Inc. | Intelligent automated assistant for media exploration |
DK179309B1 (en) | 2016-06-09 | 2018-04-23 | Apple Inc | Intelligent automated assistant in a home environment |
US10509862B2 (en) | 2016-06-10 | 2019-12-17 | Apple Inc. | Dynamic phrase expansion of language input |
US10586535B2 (en) | 2016-06-10 | 2020-03-10 | Apple Inc. | Intelligent digital assistant in a multi-tasking environment |
US10067938B2 (en) | 2016-06-10 | 2018-09-04 | Apple Inc. | Multilingual word prediction |
US10192552B2 (en) | 2016-06-10 | 2019-01-29 | Apple Inc. | Digital assistant providing whispered speech |
US10490187B2 (en) | 2016-06-10 | 2019-11-26 | Apple Inc. | Digital assistant providing automated status report |
DK179049B1 (en) | 2016-06-11 | 2017-09-18 | Apple Inc | Data driven natural language event detection and classification |
DK201670540A1 (en) | 2016-06-11 | 2018-01-08 | Apple Inc | Application integration with a digital assistant |
DK179343B1 (en) | 2016-06-11 | 2018-05-14 | Apple Inc | Intelligent task discovery |
DK179415B1 (en) | 2016-06-11 | 2018-06-14 | Apple Inc | Intelligent device arbitration and control |
US10474753B2 (en) | 2016-09-07 | 2019-11-12 | Apple Inc. | Language identification using recurrent neural networks |
US10043516B2 (en) | 2016-09-23 | 2018-08-07 | Apple Inc. | Intelligent automated assistant |
US11281993B2 (en) | 2016-12-05 | 2022-03-22 | Apple Inc. | Model and ensemble compression for metric learning |
US10593346B2 (en) | 2016-12-22 | 2020-03-17 | Apple Inc. | Rank-reduced token representation for automatic speech recognition |
US11204787B2 (en) | 2017-01-09 | 2021-12-21 | Apple Inc. | Application integration with a digital assistant |
DK201770383A1 (en) | 2017-05-09 | 2018-12-14 | Apple Inc. | User interface for correcting recognition errors |
US10417266B2 (en) | 2017-05-09 | 2019-09-17 | Apple Inc. | Context-aware ranking of intelligent response suggestions |
US10726832B2 (en) | 2017-05-11 | 2020-07-28 | Apple Inc. | Maintaining privacy of personal information |
DK180048B1 (en) | 2017-05-11 | 2020-02-04 | Apple Inc. | MAINTAINING THE DATA PROTECTION OF PERSONAL INFORMATION |
US10395654B2 (en) | 2017-05-11 | 2019-08-27 | Apple Inc. | Text normalization based on a data-driven learning network |
DK201770439A1 (en) | 2017-05-11 | 2018-12-13 | Apple Inc. | Offline personal assistant |
DK179496B1 (en) | 2017-05-12 | 2019-01-15 | Apple Inc. | USER-SPECIFIC Acoustic Models |
US11301477B2 (en) | 2017-05-12 | 2022-04-12 | Apple Inc. | Feedback analysis of a digital assistant |
DK179745B1 (en) | 2017-05-12 | 2019-05-01 | Apple Inc. | SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT |
DK201770429A1 (en) | 2017-05-12 | 2018-12-14 | Apple Inc. | Low-latency intelligent automated assistant |
DK201770431A1 (en) | 2017-05-15 | 2018-12-20 | Apple Inc. | Optimizing dialogue policy decisions for digital assistants using implicit feedback |
DK201770411A1 (en) | 2017-05-15 | 2018-12-20 | Apple Inc. | Multi-modal interfaces |
DK201770432A1 (en) | 2017-05-15 | 2018-12-21 | Apple Inc. | Hierarchical belief states for digital assistants |
US20180336892A1 (en) | 2017-05-16 | 2018-11-22 | Apple Inc. | Detecting a trigger of a digital assistant |
DK179549B1 (en) | 2017-05-16 | 2019-02-12 | Apple Inc. | Far-field extension for digital assistant services |
US10403278B2 (en) | 2017-05-16 | 2019-09-03 | Apple Inc. | Methods and systems for phonetic matching in digital assistant services |
US10303715B2 (en) | 2017-05-16 | 2019-05-28 | Apple Inc. | Intelligent automated assistant for media exploration |
US10311144B2 (en) | 2017-05-16 | 2019-06-04 | Apple Inc. | Emoji word sense disambiguation |
US10657328B2 (en) | 2017-06-02 | 2020-05-19 | Apple Inc. | Multi-task recurrent neural network architecture for efficient morphology handling in neural language modeling |
US10445429B2 (en) | 2017-09-21 | 2019-10-15 | Apple Inc. | Natural language understanding using vocabularies with compressed serialized tries |
US10755051B2 (en) | 2017-09-29 | 2020-08-25 | Apple Inc. | Rule-based natural language processing |
US10636424B2 (en) | 2017-11-30 | 2020-04-28 | Apple Inc. | Multi-turn canned dialog |
US10733982B2 (en) | 2018-01-08 | 2020-08-04 | Apple Inc. | Multi-directional dialog |
US10733375B2 (en) | 2018-01-31 | 2020-08-04 | Apple Inc. | Knowledge-based framework for improving natural language understanding |
US10789959B2 (en) | 2018-03-02 | 2020-09-29 | Apple Inc. | Training speaker recognition models for digital assistants |
US10592604B2 (en) | 2018-03-12 | 2020-03-17 | Apple Inc. | Inverse text normalization for automatic speech recognition |
US10818288B2 (en) | 2018-03-26 | 2020-10-27 | Apple Inc. | Natural assistant interaction |
US10909331B2 (en) | 2018-03-30 | 2021-02-02 | Apple Inc. | Implicit identification of translation payload with neural machine translation |
US10928918B2 (en) | 2018-05-07 | 2021-02-23 | Apple Inc. | Raise to speak |
US11145294B2 (en) | 2018-05-07 | 2021-10-12 | Apple Inc. | Intelligent automated assistant for delivering content from user experiences |
US10984780B2 (en) | 2018-05-21 | 2021-04-20 | Apple Inc. | Global semantic word embeddings using bi-directional recurrent neural networks |
DK201870355A1 (en) | 2018-06-01 | 2019-12-16 | Apple Inc. | Virtual assistant operation in multi-device environments |
DK179822B1 (en) | 2018-06-01 | 2019-07-12 | Apple Inc. | Voice interaction at a primary device to access call functionality of a companion device |
US11386266B2 (en) | 2018-06-01 | 2022-07-12 | Apple Inc. | Text correction |
US10892996B2 (en) | 2018-06-01 | 2021-01-12 | Apple Inc. | Variable latency device coordination |
DK180639B1 (en) | 2018-06-01 | 2021-11-04 | Apple Inc | DISABILITY OF ATTENTION-ATTENTIVE VIRTUAL ASSISTANT |
US10504518B1 (en) | 2018-06-03 | 2019-12-10 | Apple Inc. | Accelerated task performance |
US11010561B2 (en) | 2018-09-27 | 2021-05-18 | Apple Inc. | Sentiment prediction from textual data |
US11462215B2 (en) | 2018-09-28 | 2022-10-04 | Apple Inc. | Multi-modal inputs for voice commands |
US10839159B2 (en) | 2018-09-28 | 2020-11-17 | Apple Inc. | Named entity normalization in a spoken dialog system |
US11170166B2 (en) | 2018-09-28 | 2021-11-09 | Apple Inc. | Neural typographical error modeling via generative adversarial networks |
US11475898B2 (en) | 2018-10-26 | 2022-10-18 | Apple Inc. | Low-latency multi-speaker speech recognition |
US11638059B2 (en) | 2019-01-04 | 2023-04-25 | Apple Inc. | Content playback on multiple devices |
US11348573B2 (en) | 2019-03-18 | 2022-05-31 | Apple Inc. | Multimodality in digital assistant systems |
US11423908B2 (en) | 2019-05-06 | 2022-08-23 | Apple Inc. | Interpreting spoken requests |
US11307752B2 (en) | 2019-05-06 | 2022-04-19 | Apple Inc. | User configurable task triggers |
DK201970509A1 (en) | 2019-05-06 | 2021-01-15 | Apple Inc | Spoken notifications |
US11475884B2 (en) | 2019-05-06 | 2022-10-18 | Apple Inc. | Reducing digital assistant latency when a language is incorrectly determined |
US11140099B2 (en) | 2019-05-21 | 2021-10-05 | Apple Inc. | Providing message response suggestions |
DK180129B1 (en) | 2019-05-31 | 2020-06-02 | Apple Inc. | User activity shortcut suggestions |
US11289073B2 (en) | 2019-05-31 | 2022-03-29 | Apple Inc. | Device text to speech |
DK201970510A1 (en) | 2019-05-31 | 2021-02-11 | Apple Inc | Voice identification in digital assistant systems |
US11496600B2 (en) | 2019-05-31 | 2022-11-08 | Apple Inc. | Remote execution of machine-learned models |
US11360641B2 (en) | 2019-06-01 | 2022-06-14 | Apple Inc. | Increasing the relevance of new available information |
US11468890B2 (en) | 2019-06-01 | 2022-10-11 | Apple Inc. | Methods and user interfaces for voice-based control of electronic devices |
US11488406B2 (en) | 2019-09-25 | 2022-11-01 | Apple Inc. | Text detection using global geometry estimators |
US11038934B1 (en) | 2020-05-11 | 2021-06-15 | Apple Inc. | Digital assistant hardware abstraction |
US11061543B1 (en) | 2020-05-11 | 2021-07-13 | Apple Inc. | Providing relevant data items based on context |
US11490204B2 (en) | 2020-07-20 | 2022-11-01 | Apple Inc. | Multi-device audio adjustment coordination |
US11438683B2 (en) | 2020-07-21 | 2022-09-06 | Apple Inc. | User identification using headphones |
US11637927B2 (en) | 2021-07-15 | 2023-04-25 | International Business Machines Corporation | Automated chatbot generation from an interactive voice response tree |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5119483A (en) * | 1988-07-20 | 1992-06-02 | Digital Equipment Corporation | Application of state silos for recovery from memory management exceptions |
US5519853A (en) * | 1993-03-11 | 1996-05-21 | Legato Systems, Inc. | Method and apparatus for enhancing synchronous I/O in a computer system with a non-volatile memory and using an acceleration device driver in a computer operating system |
US5581464A (en) * | 1992-08-14 | 1996-12-03 | Vorad Safety Systems, Inc. | Recording of operational events in an automotive vehicle |
US5680570A (en) * | 1991-06-12 | 1997-10-21 | Quantum Corporation | Memory system with dynamically allocatable non-volatile storage capability |
US5696917A (en) * | 1994-06-03 | 1997-12-09 | Intel Corporation | Method and apparatus for performing burst read operations in an asynchronous nonvolatile memory |
US6021470A (en) * | 1997-03-17 | 2000-02-01 | Oracle Corporation | Method and apparatus for selective data caching implemented with noncacheable and cacheable data for improved cache performance in a computer networking system |
US6058366A (en) * | 1998-02-25 | 2000-05-02 | Lernout & Hauspie Speech Products N.V. | Generic run-time engine for interfacing between applications and speech engines |
US6092172A (en) * | 1996-10-16 | 2000-07-18 | Hitachi, Ltd. | Data processor and data processing system having two translation lookaside buffers |
US6161090A (en) * | 1997-06-11 | 2000-12-12 | International Business Machines Corporation | Apparatus and methods for speaker verification/identification/classification employing non-acoustic and/or acoustic models and databases |
US6173441B1 (en) * | 1998-10-16 | 2001-01-09 | Peter A. Klein | Method and system for compiling source code containing natural language instructions |
US6418199B1 (en) * | 1997-12-05 | 2002-07-09 | Jeffrey Perrone | Voice control of a server |
US20030093334A1 (en) * | 2001-11-09 | 2003-05-15 | Ziv Barzilay | System and a method for transacting E-commerce utilizing voice-recognition and analysis |
US20030110040A1 (en) * | 2001-12-07 | 2003-06-12 | Creative Logic Solutions Inc. | System and method for dynamically changing software programs by voice commands |
US6718043B1 (en) * | 1999-05-10 | 2004-04-06 | Peter V. Boesen | Voice sound transmitting apparatus and system including expansion port |
US6721705B2 (en) * | 2000-02-04 | 2004-04-13 | Webley Systems, Inc. | Robust voice browser system and voice activated device controller |
US6832196B2 (en) * | 2001-03-30 | 2004-12-14 | International Business Machines Corporation | Speech driven data selection in a voice-enabled program |
US7054811B2 (en) * | 2002-11-06 | 2006-05-30 | Cellmax Systems Ltd. | Method and system for verifying and enabling user access based on voice parameters |
US7242752B2 (en) * | 2001-07-03 | 2007-07-10 | Apptera, Inc. | Behavioral adaptation engine for discerning behavioral characteristics of callers interacting with an VXML-compliant voice application |
-
2004
- 2004-06-02 US US10/858,083 patent/US8224649B2/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5119483A (en) * | 1988-07-20 | 1992-06-02 | Digital Equipment Corporation | Application of state silos for recovery from memory management exceptions |
US5680570A (en) * | 1991-06-12 | 1997-10-21 | Quantum Corporation | Memory system with dynamically allocatable non-volatile storage capability |
US5581464A (en) * | 1992-08-14 | 1996-12-03 | Vorad Safety Systems, Inc. | Recording of operational events in an automotive vehicle |
US5581464B1 (en) * | 1992-08-14 | 1999-02-09 | Vorad Safety Systems Inc | Recording of operational events in an automotive vehicle |
US5519853A (en) * | 1993-03-11 | 1996-05-21 | Legato Systems, Inc. | Method and apparatus for enhancing synchronous I/O in a computer system with a non-volatile memory and using an acceleration device driver in a computer operating system |
US5696917A (en) * | 1994-06-03 | 1997-12-09 | Intel Corporation | Method and apparatus for performing burst read operations in an asynchronous nonvolatile memory |
US6092172A (en) * | 1996-10-16 | 2000-07-18 | Hitachi, Ltd. | Data processor and data processing system having two translation lookaside buffers |
US6021470A (en) * | 1997-03-17 | 2000-02-01 | Oracle Corporation | Method and apparatus for selective data caching implemented with noncacheable and cacheable data for improved cache performance in a computer networking system |
US6161090A (en) * | 1997-06-11 | 2000-12-12 | International Business Machines Corporation | Apparatus and methods for speaker verification/identification/classification employing non-acoustic and/or acoustic models and databases |
US6418199B1 (en) * | 1997-12-05 | 2002-07-09 | Jeffrey Perrone | Voice control of a server |
US6058366A (en) * | 1998-02-25 | 2000-05-02 | Lernout & Hauspie Speech Products N.V. | Generic run-time engine for interfacing between applications and speech engines |
US6173441B1 (en) * | 1998-10-16 | 2001-01-09 | Peter A. Klein | Method and system for compiling source code containing natural language instructions |
US6718043B1 (en) * | 1999-05-10 | 2004-04-06 | Peter V. Boesen | Voice sound transmitting apparatus and system including expansion port |
US6721705B2 (en) * | 2000-02-04 | 2004-04-13 | Webley Systems, Inc. | Robust voice browser system and voice activated device controller |
US6832196B2 (en) * | 2001-03-30 | 2004-12-14 | International Business Machines Corporation | Speech driven data selection in a voice-enabled program |
US7242752B2 (en) * | 2001-07-03 | 2007-07-10 | Apptera, Inc. | Behavioral adaptation engine for discerning behavioral characteristics of callers interacting with an VXML-compliant voice application |
US20030093334A1 (en) * | 2001-11-09 | 2003-05-15 | Ziv Barzilay | System and a method for transacting E-commerce utilizing voice-recognition and analysis |
US20030110040A1 (en) * | 2001-12-07 | 2003-06-12 | Creative Logic Solutions Inc. | System and method for dynamically changing software programs by voice commands |
US7054811B2 (en) * | 2002-11-06 | 2006-05-30 | Cellmax Systems Ltd. | Method and system for verifying and enabling user access based on voice parameters |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8593959B2 (en) | 2002-09-30 | 2013-11-26 | Avaya Inc. | VoIP endpoint call admission |
US8370515B2 (en) | 2002-09-30 | 2013-02-05 | Avaya Inc. | Packet prioritization and associated bandwidth and buffer management techniques for audio over IP |
US7877500B2 (en) | 2002-09-30 | 2011-01-25 | Avaya Inc. | Packet prioritization and associated bandwidth and buffer management techniques for audio over IP |
US7877501B2 (en) | 2002-09-30 | 2011-01-25 | Avaya Inc. | Packet prioritization and associated bandwidth and buffer management techniques for audio over IP |
US8015309B2 (en) | 2002-09-30 | 2011-09-06 | Avaya Inc. | Packet prioritization and associated bandwidth and buffer management techniques for audio over IP |
US7978827B1 (en) | 2004-06-30 | 2011-07-12 | Avaya Inc. | Automatic configuration of call handling based on end-user needs and characteristics |
US20060047511A1 (en) * | 2004-09-01 | 2006-03-02 | Electronic Data Systems Corporation | System, method, and computer program product for content delivery in a push-to-talk communication system |
US8149805B2 (en) | 2006-01-20 | 2012-04-03 | Huawei Technologies Co., Ltd. | Method, system and device for optimizing routing in mobile IPv6 |
WO2007082427A1 (en) * | 2006-01-20 | 2007-07-26 | Huawei Technologies Co., Ltd. | A method, system and apparatus for optimizing route in mobile ipv6 |
US20080273509A1 (en) * | 2006-01-20 | 2008-11-06 | Huawei Technologies Co., Ltd. | Method, System And Device For Optimizing Routing In Mobile IPv6 |
US8218751B2 (en) | 2008-09-29 | 2012-07-10 | Avaya Inc. | Method and apparatus for identifying and eliminating the source of background noise in multi-party teleconferences |
US9053095B2 (en) * | 2010-10-31 | 2015-06-09 | Speech Morphing, Inc. | Speech morphing communication system |
US10467348B2 (en) * | 2010-10-31 | 2019-11-05 | Speech Morphing Systems, Inc. | Speech morphing communication system |
US20120109626A1 (en) * | 2010-10-31 | 2012-05-03 | Fathy Yassa | Speech Morphing Communication System |
US20120109628A1 (en) * | 2010-10-31 | 2012-05-03 | Fathy Yassa | Speech Morphing Communication System |
US20120109627A1 (en) * | 2010-10-31 | 2012-05-03 | Fathy Yassa | Speech Morphing Communication System |
US10747963B2 (en) * | 2010-10-31 | 2020-08-18 | Speech Morphing Systems, Inc. | Speech morphing communication system |
US9053094B2 (en) * | 2010-10-31 | 2015-06-09 | Speech Morphing, Inc. | Speech morphing communication system |
US20120109648A1 (en) * | 2010-10-31 | 2012-05-03 | Fathy Yassa | Speech Morphing Communication System |
US9069757B2 (en) * | 2010-10-31 | 2015-06-30 | Speech Morphing, Inc. | Speech morphing communication system |
US20120109629A1 (en) * | 2010-10-31 | 2012-05-03 | Fathy Yassa | Speech Morphing Communication System |
US9282096B2 (en) * | 2013-08-31 | 2016-03-08 | Steven Goldstein | Methods and systems for voice authentication service leveraging networking |
US20150082404A1 (en) * | 2013-08-31 | 2015-03-19 | Steven Goldstein | Methods and systems for voice authentication service leveraging networking |
US20160071510A1 (en) * | 2014-09-08 | 2016-03-10 | Microsoft Corporation | Voice generation with predetermined emotion type |
US10803850B2 (en) * | 2014-09-08 | 2020-10-13 | Microsoft Technology Licensing, Llc | Voice generation with predetermined emotion type |
US20190392126A1 (en) * | 2017-03-17 | 2019-12-26 | Jin Hyuk Lee | Variable Biometric Information-Based Complex Authentication System and Complex Authentication Method Using the Same |
US10769257B2 (en) * | 2017-03-17 | 2020-09-08 | Jin Hyuk Lee | Variable biometric information-based complex authentication system and complex authentication method using the same |
US11361168B2 (en) * | 2018-10-16 | 2022-06-14 | Rovi Guides, Inc. | Systems and methods for replaying content dialogue in an alternate language |
US11714973B2 (en) | 2018-10-16 | 2023-08-01 | Rovi Guides, Inc. | Methods and systems for control of content in an alternate language or accent |
US12026476B2 (en) | 2018-10-16 | 2024-07-02 | Rovi Guides, Inc. | Methods and systems for control of content in an alternate language or accent |
CN111145755A (en) * | 2019-12-24 | 2020-05-12 | 北京摩拜科技有限公司 | Method and device for calling unlocking interface of shared bicycle application by voice and terminal equipment |
Also Published As
Publication number | Publication date |
---|---|
US8224649B2 (en) | 2012-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8224649B2 (en) | Method and apparatus for remote command, control and diagnostics of systems using conversational or audio interface | |
US10515638B1 (en) | System, method, and computer-readable medium that facilitate voice biometrics user authentication | |
US7340042B2 (en) | System and method of subscription identity authentication utilizing multiple factors | |
JP4272429B2 (en) | System and method for providing authentication and identification services in an extended media gateway | |
EP1012830B1 (en) | System and method for securing speech transactions | |
AU2012231142B2 (en) | Device access using voice authentication | |
CA2566900C (en) | Remote access system and method and intelligent agent therefor | |
US7870599B2 (en) | Multichannel device utilizing a centralized out-of-band authentication system (COBAS) | |
US9009785B2 (en) | System and method for implementing adaptive security zones | |
EP2191448B1 (en) | Process and arrangement for authenticating a user of facilities, a service, a database or a data network | |
US20140350932A1 (en) | Voice print identification portal | |
US20100107222A1 (en) | Method and apparatus for implementing secure and adaptive proxies | |
US20080075239A1 (en) | Automated Passcode Recovery in an Interactive Voice Response System | |
US20080169903A1 (en) | System and Method for Radio Frequency Identifier Voice Signature | |
US20160292408A1 (en) | Continuously authenticating a user of voice recognition services | |
WO2003075540A2 (en) | Robust multi-factor authentication for secure application environments | |
CN107483398B (en) | A kind of silence verification method and device, electronic equipment | |
US20100328035A1 (en) | Security with speaker verification | |
US7627472B2 (en) | Method and system for person/speaker verification via communications systems | |
US20140095169A1 (en) | Voice authentication system and methods | |
KR20130113103A (en) | System and method for examining the failure of the call center system using an automated response service for voice recognition | |
US7310521B2 (en) | Method to reduce modem call establishment time to a telematics unit | |
WO2006076347A2 (en) | System and method for recording network based voice and video media | |
US7020249B1 (en) | Voice interface unit for line conditioner control | |
CN114039797A (en) | Multi-factor authentication escape method and cloud platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAUDHARI, UPENDRA V.;OSBORN, RYAN L.;PELECANOS, JASON W.;AND OTHERS;REEL/FRAME:016288/0992 Effective date: 20040520 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
AS | Assignment |
Owner name: ECOBEE INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:048489/0900 Effective date: 20190110 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: STRUCTURED ALPHA LP, CANADA Free format text: SECURITY INTEREST;ASSIGNOR:INC., ECOBEE;REEL/FRAME:052678/0864 Effective date: 20200504 |
|
AS | Assignment |
Owner name: AST TRUST COMPANY (CANADA), CANADA Free format text: SECURITY INTEREST;ASSIGNOR:ECOBEE INC.;REEL/FRAME:052704/0656 Effective date: 20200505 |
|
AS | Assignment |
Owner name: ECOBEE, INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:AMERICAN STOCK TRANSFER & TRUST COMPANY, LLC D/B/A AST TRUST COMPANY (CANADA);REEL/FRAME:058568/0001 Effective date: 20211201 Owner name: ECOBEE, INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:STRUCTURED ALPHA LP, BY ITS GENERAL PARTNER THOMVEST ASSET MANAGEMENT LTD.;REEL/FRAME:058521/0001 Effective date: 20211129 |
|
AS | Assignment |
Owner name: 1339416 B.C. LTD., CANADA Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:1339416 B.C. LTD.;ECOBEE TECHNOLOGIES INC.;REEL/FRAME:061001/0949 Effective date: 20211231 Owner name: GENERAC POWER SYSTEMS, INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAC HOLDINGS INC.;REEL/FRAME:058917/0161 Effective date: 20220101 Owner name: GENERAC HOLDINGS INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ECOBEE TECHNOLOGIES ULC;REEL/FRAME:058917/0069 Effective date: 20220101 Owner name: ECOBEE TECHNOLOGIES ULC, CANADA Free format text: CHANGE OF NAME;ASSIGNOR:1339416 B.C. LTD.;REEL/FRAME:058907/0363 Effective date: 20211231 Owner name: ECOBEE TECHNOLOGIES INC., CANADA Free format text: CHANGE OF NAME;ASSIGNOR:ECOBEE INC.;REEL/FRAME:058905/0211 Effective date: 20211222 |
|
AS | Assignment |
Owner name: ECOBEE INC., CANADA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME FROM ECOBEE, INC. TO ECOBEE INC. PREVIOUSLY RECORDED AT REEL: 058521 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST;ASSIGNOR:STRUCTURED ALPHA LP, BY ITS GENERAL PARTNER THOMVEST ASSET MANAGEMENT LTD.;REEL/FRAME:059205/0822 Effective date: 20211129 |
|
AS | Assignment |
Owner name: ECOBEE INC., CANADA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY FROM ECOBEE, INC. TO ECOBEE INC. PREVIOUSLY RECORDED AT REEL: 058568 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:AMERICAN STOCK TRANSFER & TRUST COMPANY, LLC D/B/A AST TRUST COMPANY (CANADA);REEL/FRAME:058965/0106 Effective date: 20211201 |
|
AS | Assignment |
Owner name: GENERAC POWER SYSTEMS, INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAC HOLDINGS INC.;REEL/FRAME:059713/0799 Effective date: 20220101 Owner name: GENERAC HOLDINGS INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ECOBEE TECHNOLOGIES ULC;REEL/FRAME:059713/0780 Effective date: 20220101 |
|
AS | Assignment |
Owner name: ECOBEE TECHNOLOGIES INC., CANADA Free format text: CONTINUED - CHANGE OF JURISDICTION;ASSIGNOR:ECOBEE INC.;REEL/FRAME:059805/0101 Effective date: 20211222 Owner name: 1339416 B.C. LTD., CANADA Free format text: AMALGAMATION;ASSIGNORS:1339416 B.C. LTD.;ECOBEE TECHNOLOGIES INC.;REEL/FRAME:059825/0888 Effective date: 20211231 Owner name: ECOBEE TECHNOLOGIES ULC, CANADA Free format text: CHANGE OF NAME;ASSIGNOR:1339416 B.C. LTD.;REEL/FRAME:059825/0668 Effective date: 20211231 |
|
AS | Assignment |
Owner name: 1339416 B.C. LTD., CANADA Free format text: AMALGAMATION;ASSIGNORS:1339416 B.C. LTD.;ECOBEE TECHNOLOGIES INC.;REEL/FRAME:060907/0090 Effective date: 20211231 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:GENERAC POWER SYSTEMS, INC.;REEL/FRAME:061476/0745 Effective date: 20220629 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |