US20050263283A1 - Methods for stabilizing and stimulating wells in unconsolidated subterranean formations - Google Patents
Methods for stabilizing and stimulating wells in unconsolidated subterranean formations Download PDFInfo
- Publication number
- US20050263283A1 US20050263283A1 US10/852,811 US85281104A US2005263283A1 US 20050263283 A1 US20050263283 A1 US 20050263283A1 US 85281104 A US85281104 A US 85281104A US 2005263283 A1 US2005263283 A1 US 2005263283A1
- Authority
- US
- United States
- Prior art keywords
- resin
- composition
- well bore
- aqueous
- silicate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 134
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 107
- 230000000087 stabilizing effect Effects 0.000 title claims abstract description 42
- 230000004936 stimulating effect Effects 0.000 title claims abstract description 31
- 238000005755 formation reaction Methods 0.000 title description 88
- 239000000203 mixture Substances 0.000 claims abstract description 152
- 239000012530 fluid Substances 0.000 claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 claims abstract description 22
- 238000004891 communication Methods 0.000 claims abstract description 14
- 229920005989 resin Polymers 0.000 claims description 94
- 239000011347 resin Substances 0.000 claims description 94
- 239000000178 monomer Substances 0.000 claims description 65
- 229920000642 polymer Polymers 0.000 claims description 58
- 239000011342 resin composition Substances 0.000 claims description 46
- 239000003795 chemical substances by application Substances 0.000 claims description 39
- 239000003054 catalyst Substances 0.000 claims description 28
- -1 2-dimethylacrylamide Chemical compound 0.000 claims description 25
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000003431 cross linking reagent Substances 0.000 claims description 22
- 239000003999 initiator Substances 0.000 claims description 22
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 20
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 claims description 19
- 239000000654 additive Substances 0.000 claims description 17
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 16
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 15
- 238000004132 cross linking Methods 0.000 claims description 15
- 239000003085 diluting agent Substances 0.000 claims description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 14
- 239000003125 aqueous solvent Substances 0.000 claims description 14
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- 230000000996 additive effect Effects 0.000 claims description 12
- 229920000647 polyepoxide Polymers 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 9
- 229940123973 Oxygen scavenger Drugs 0.000 claims description 9
- 229920002401 polyacrylamide Polymers 0.000 claims description 9
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000004115 Sodium Silicate Substances 0.000 claims description 8
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 8
- 239000012267 brine Substances 0.000 claims description 8
- 150000007942 carboxylates Chemical class 0.000 claims description 8
- 239000013505 freshwater Substances 0.000 claims description 8
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 claims description 8
- 229920001225 polyester resin Polymers 0.000 claims description 8
- 239000004645 polyester resin Substances 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 239000013535 sea water Substances 0.000 claims description 8
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 8
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 8
- 239000001119 stannous chloride Substances 0.000 claims description 8
- 235000011150 stannous chloride Nutrition 0.000 claims description 8
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 8
- 239000004952 Polyamide Substances 0.000 claims description 7
- 239000002585 base Substances 0.000 claims description 7
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 claims description 7
- 229920001568 phenolic resin Polymers 0.000 claims description 7
- 229920002647 polyamide Polymers 0.000 claims description 7
- 229920000768 polyamine Polymers 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 5
- 239000012190 activator Substances 0.000 claims description 5
- 230000002411 adverse Effects 0.000 claims description 5
- 150000001408 amides Chemical class 0.000 claims description 5
- 239000007869 azo polymerization initiator Substances 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 239000007849 furan resin Substances 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 claims description 4
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims description 4
- PSMAFHYZQLOGMG-MDZDMXLPSA-N 2-[(e)-2-aminopropan-2-yldiazenyl]propan-2-amine Chemical compound CC(C)(N)\N=N\C(C)(C)N PSMAFHYZQLOGMG-MDZDMXLPSA-N 0.000 claims description 4
- CCJAYIGMMRQRAO-UHFFFAOYSA-N 2-[4-[(2-hydroxyphenyl)methylideneamino]butyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCCN=CC1=CC=CC=C1O CCJAYIGMMRQRAO-UHFFFAOYSA-N 0.000 claims description 4
- VSSGDAWBDKMCMI-UHFFFAOYSA-N 2-methyl-2-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)NC(C)(C)CS(O)(=O)=O VSSGDAWBDKMCMI-UHFFFAOYSA-N 0.000 claims description 4
- JNDVNJWCRZQGFQ-UHFFFAOYSA-N 2-methyl-N,N-bis(methylamino)hex-2-enamide Chemical compound CCCC=C(C)C(=O)N(NC)NC JNDVNJWCRZQGFQ-UHFFFAOYSA-N 0.000 claims description 4
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 claims description 4
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 claims description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 4
- 239000004111 Potassium silicate Substances 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 4
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 4
- 239000003849 aromatic solvent Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 235000019820 disodium diphosphate Nutrition 0.000 claims description 4
- GYQBBRRVRKFJRG-UHFFFAOYSA-L disodium pyrophosphate Chemical compound [Na+].[Na+].OP([O-])(=O)OP(O)([O-])=O GYQBBRRVRKFJRG-UHFFFAOYSA-L 0.000 claims description 4
- GJIDOLBZYSCZRX-UHFFFAOYSA-N hydroxymethyl prop-2-enoate Chemical compound OCOC(=O)C=C GJIDOLBZYSCZRX-UHFFFAOYSA-N 0.000 claims description 4
- 239000004816 latex Substances 0.000 claims description 4
- 229920000126 latex Polymers 0.000 claims description 4
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052912 lithium silicate Inorganic materials 0.000 claims description 4
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 4
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 4
- WTNTZFRNCHEDOS-UHFFFAOYSA-N n-(2-hydroxyethyl)-2-methylpropanamide Chemical compound CC(C)C(=O)NCCO WTNTZFRNCHEDOS-UHFFFAOYSA-N 0.000 claims description 4
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 claims description 4
- 229920003986 novolac Polymers 0.000 claims description 4
- 150000002895 organic esters Chemical class 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 230000033116 oxidation-reduction process Effects 0.000 claims description 4
- 150000002978 peroxides Chemical class 0.000 claims description 4
- 239000005011 phenolic resin Substances 0.000 claims description 4
- 229920005749 polyurethane resin Polymers 0.000 claims description 4
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 4
- 235000019353 potassium silicate Nutrition 0.000 claims description 4
- 239000001294 propane Substances 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 4
- 229920001897 terpolymer Polymers 0.000 claims description 4
- 229920006029 tetra-polymer Polymers 0.000 claims description 4
- GXQFALJDHPPWKR-UHFFFAOYSA-L trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;sulfate Chemical compound [O-]S([O-])(=O)=O.CC(=C)C(=O)OCC[N+](C)(C)C.CC(=C)C(=O)OCC[N+](C)(C)C GXQFALJDHPPWKR-UHFFFAOYSA-L 0.000 claims description 4
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 claims description 4
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 claims description 4
- 150000001450 anions Chemical group 0.000 claims description 3
- 150000004676 glycans Chemical class 0.000 claims description 3
- 229920001282 polysaccharide Polymers 0.000 claims description 3
- 239000005017 polysaccharide Substances 0.000 claims description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 6
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims 3
- 239000004925 Acrylic resin Substances 0.000 claims 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 3
- 239000000126 substance Substances 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 20
- 206010017076 Fracture Diseases 0.000 description 17
- 238000011282 treatment Methods 0.000 description 17
- 208000010392 Bone Fractures Diseases 0.000 description 11
- 230000000638 stimulation Effects 0.000 description 11
- 238000006116 polymerization reaction Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000005086 pumping Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000007777 multifunctional material Substances 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- FQHYQCXMFZHLAE-UHFFFAOYSA-N 25405-85-0 Chemical compound CC1(C)C2(OC(=O)C=3C=CC=CC=3)C1C1C=C(CO)CC(C(C(C)=C3)=O)(O)C3C1(O)C(C)C2OC(=O)C1=CC=CC=C1 FQHYQCXMFZHLAE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 244000303965 Cyamopsis psoralioides Species 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 208000013201 Stress fracture Diseases 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229960000359 chromic chloride Drugs 0.000 description 2
- LJAOOBNHPFKCDR-UHFFFAOYSA-K chromium(3+) trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Cl-].[Cr+3] LJAOOBNHPFKCDR-UHFFFAOYSA-K 0.000 description 2
- 235000007831 chromium(III) chloride Nutrition 0.000 description 2
- 239000011636 chromium(III) chloride Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 1
- 235000017399 Caesalpinia tinctoria Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical class O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920002752 Konjac Polymers 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000015125 Sterculia urens Nutrition 0.000 description 1
- 240000001058 Sterculia urens Species 0.000 description 1
- 235000004298 Tamarindus indica Nutrition 0.000 description 1
- 240000004584 Tamarindus indica Species 0.000 description 1
- 241000388430 Tara Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical group OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001191 butyl (2R)-2-hydroxypropanoate Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000008131 glucosides Chemical class 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 150000002373 hemiacetals Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 235000010485 konjac Nutrition 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002772 monosaccharides Chemical group 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/80—Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
- C09K8/805—Coated proppants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/56—Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
- C09K8/57—Compositions based on water or polar solvents
- C09K8/575—Compositions based on water or polar solvents containing organic compounds
- C09K8/5751—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/56—Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
- C09K8/57—Compositions based on water or polar solvents
- C09K8/575—Compositions based on water or polar solvents containing organic compounds
- C09K8/5751—Macromolecular compounds
- C09K8/5756—Macromolecular compounds containing cross-linking agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/80—Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/11—Perforators; Permeators
- E21B43/114—Perforators using direct fluid action on the wall to be perforated, e.g. abrasive jets
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
Definitions
- the present invention relates to methods of stabilizing an unconsolidated portion in a subterranean formation and stimulating fluid production from the stabilized portion.
- hydrajetting One method of stimulating fluid production from a portion of a subterranean formation along a producing zone of a well bore, known as hydrajetting, involves the use of hydraulic jets, inter alia, that increases the permeability and production capabilities of a formation.
- a hydrajetting tool having at least one fluid jet forming nozzle is positioned adjacent to a formation to be fractured, and proppant slurry is then jetted through the nozzle against the formation at a pressure sufficient to form a cavity, or slot therein to fracture the formation, e.g., by stagnation pressure in the cavity.
- Hydrajetting provides the ability to selectively form a desired number of fractures at desired intervals.
- Another method of stimulating fluid production from a subterranean formation is hydraulic fracturing, wherein a formation is treated to increase its permeability by hydraulically fracturing the formation to create or enhance one or more cracks or “fractures.”
- a hydraulic fracturing treatment involves pumping a proppant-free, viscous fluid (known as a pad fluid) into a subterranean formation faster than the fluid can escape into the formation so that the pressure in the formation rises, creating artificial fractures or enlarging natural fractures. Thereafter, proppant slurry oftentimes is pumped into the formation to place proppant inside the created fractures to keep them opened even after the hydraulic pressure has been released.
- Stimulation techniques such as fracturing and hydrajetting, are most successfully performed on portions of a subterranean formation that are substantially consolidated.
- hydrocarbon wells are often located in unconsolidated portions, that is, portions having loose particulates or particulates bonded together with insufficient strength to remain bonded when a fluid (such as produced oil) flows through the portion.
- a fluid such as produced oil
- the presence of particulates, such as formation sand, in produced fluids may be disadvantageous and undesirable in that the particulates may abrade pumping and other producing equipment and reduce the fluid production capabilities of the producing zones.
- One method of stabilizing particulates in unconsolidated subterranean portions has been to produce fluids from such formations at low flow rates, whereby the near well stability of sand bridges and the like may be preserved.
- the collapse of such sand bridges may occur due to unintentionally high production rates and/or pressure cycling (as may occur from frequent shut-ins and start ups of a well).
- the frequency of pressure cycling is very critical to the longevity of the near well formation, especially during the depletion stage of the well when the pore pressure of the formation has been significantly reduced.
- Gravel packing involves placing a filtration bed containing gravel near the well bore in order to present a physical barrier to the transport of unconsolidated formation fines with the production of hydrocarbons.
- gravel packing operations involve the pumping and placement of a quantity of a desired particulate into the unconsolidated formation in an area adjacent to a well bore.
- Such packs are often time consuming and expensive to install.
- the processes of fracturing and gravel packing are combined into a single treatment to provide a stimulated production and an annular gravel pack to prevent formation sand production. Such treatments are often referred to as “frac pack” operations.
- Another method used to stabilize particulates in unconsolidated formations involves consolidating unconsolidated subterranean producing zones by applying a resin followed by a spacer fluid and then a catalyst.
- Such resin application may be problematic when, for example, an insufficient amount of spacer fluid is used between the application of the resin and the application of the external catalyst.
- the resin may come into contact with the external catalyst in the well bore itself rather than in the unconsolidated subterranean producing zone.
- an exothermic reaction occurs that may result in rapid polymerization, potentially damaging the formation by plugging the pore channels, halting pumping when the well bore is plugged with solid material, or resulting in a down hole explosion as a result of the heat of polymerization.
- the present invention relates to methods of stabilizing an unconsolidated portion in a subterranean formation and stimulating fluid production from the stabilized portion.
- One embodiment of the present invention provides a method of substantially stabilizing a portion of a subterranean formation penetrated by a well bore and stimulating fluid production therefrom comprising placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and, stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
- inventions of the present invention provide methods of controlling formation sands in a portion of a formation penetrated by a well bore and stimulating fluid production therefrom comprising placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and, stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
- inventions of the present invention provide systems for stabilizing and stimulating a portion of a subterranean formation penetrated by a well bore comprising placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and, stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
- FIG. 1 illustrates near-well bore and far-well bore areas and how fluid communication may be established.
- the present invention relates to methods of stabilizing an unconsolidated portion in a subterranean formation and stimulating fluid production from the stabilized portion.
- Some embodiments of the present invention provide methods of stabilizing subterranean formations and stimulating fluid production comprising the steps of: injecting a stabilizing composition into a near well bore area of a portion in a subterranean formation; allowing the stabilizing composition to substantially cure to form a stabilized portion; stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
- near well bore area refers to a distance up to about three well bore diameters from the surface of the well bore into the formation.
- far well bore area refers to distances beyond the near well bore area.
- Stabilizing compositions suitable for use in the present invention include curable resin compositions that are capable of curing to form hardened substances and gelable substances that cure to form a semi-solid, gel-like substance. Regardless of whether a curable resin composition that cures to form hardened substance is chosen or a gelable substance that cures to form a semi-solid, gel-like substance is chosen, generally, a desirable depth of penetration of the stabilizing composition into the formation surrounding the well bore is from about a few inches in some embodiments to about three well bore diameters in other embodiments.
- Stabilizing Compositions Curable Resin Compositions.
- Suitable curable resin compositions include those resins that are capable of forming a hardened, consolidated mass. Such resins include, but are not limited to, novolak resins, polyepoxide resins, phenol-aldehyde resins, urea-aldehyde resins, urethane resins, phenolic resins, furan/furfuryl alcohol resins, phenolic/latex resins, phenol formaldehyde resins, polyester resins, polyurethane resins and hybrids and copolymers thereof, acrylate resins, and hybrids and copolymers thereof, and mixtures thereof.
- suitable resins such as epoxy resins
- suitable resins such as furan resins generally require a time-delayed catalyst or an external catalyst to help activate the polymerization of the resins if the cure temperature is low (i.e., less than 250° F.), but will cure under the effect of time and temperature if the formation temperature is above about 250° F., preferably above about 300° F. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin for use in embodiments of the present invention and to determine whether a catalyst is required to trigger curing.
- Stabilizing Compositions Gelable Compositions.
- Gelable compositions suitable for use in the present invention include those compositions that cure to form a semi-solid, gel-like substance.
- the gelable composition may be any gelable liquid composition capable of converting into a gelled substance capable of substantially plugging the permeability of the formation while allowing the formation to remain flexible.
- the term “flexible” refers to a state wherein the treated portion of the formation is relatively malleable and elastic and able to withstand substantial pressure cycling without substantial breakdown of the formation.
- the resultant gelled substance stabilizes the treated portion of the formation while allowing the formation to absorb the stresses created during pressure cycling.
- the gelled substance may aid in preventing breakdown of the formation both by stabilizing and by adding flexibility to the treated portion.
- suitable gelable liquid compositions include, but are not limited to, (1) gelable resin compositions, (2) gelable aqueous silicate compositions, (3) crosslinkable aqueous polymer compositions, and (4) polymerizable organic monomer compositions.
- Stabilizing Compositions Gelable Compositions—Gelable Resin Compositions.
- Certain embodiments of the gelable liquid compositions of the present invention comprise gelable resin compositions that cure to form flexible gels. Unlike the curable resin compositions described above, which cure into hardened masses, the gelable resin compositions cure into flexible, gelled substances that form resilient gelled substances between the particulates of the treated zone of the unconsolidated formation. Gelable resin compositions allow the treated portion of the formation to remain flexible and resist breakdown.
- the gelable resin compositions useful in accordance with this invention comprise a curable resin, a diluent, and a resin curing agent.
- resin curing agents such as polyamides
- the compositions form the semi-solid, gelled substances described above.
- the resin curing agent used may cause the organic resin compositions to form hard, brittle material rather than a desired gelled substance
- the curable resin compositions may further comprise one or more “flexibilizer additives” (described in more detail below) to provide flexibility to the cured compositions.
- gelable resins examples include, but are not limited to, organic resins such as polyepoxide resins (e.g., Bisphenol a-epichlorihydrin resins), polyester resins, urea-aldehyde resins, furan resins, urethane resins, and mixtures thereof. Of these, polyepoxide resins are preferred.
- organic resins such as polyepoxide resins (e.g., Bisphenol a-epichlorihydrin resins), polyester resins, urea-aldehyde resins, furan resins, urethane resins, and mixtures thereof. Of these, polyepoxide resins are preferred.
- any diluent that is compatible with the gelable resin and achieves the desired viscosity effect is suitable for use in the present invention.
- diluents that may be used in the gelable resin compositions of the present invention include, but are not limited to, phenols; formaldehydes; furfuryl alcohols; furfurals; alcohols; ethers such as butyl glycidyl ether and cresyl glycidyl etherphenyl glycidyl ether; and mixtures thereof.
- the diluent comprises butyl lactate.
- the diluent may be used to reduce the viscosity of the gelable resin composition from about 3 to about 3,000 centipoises (“cP”) at 80° F. Among other things, the diluent acts to provide flexibility to the cured composition.
- the diluent may be included in the gelable resin composition in an amount sufficient to provide the desired viscosity effect. Generally, the diluent used is included in the gelable resin composition in amount in the range of from about 5% to about 75% by weight of the curable resin.
- any resin curing agent that may be used to cure an organic resin is suitable for use in the present invention.
- the resin curing agent chosen is an amide or a polyamide
- no flexibilizer additive will be required because, inter alia, such curing agents cause the gelable resin composition to convert into a semi-solid, gelled substance.
- Other suitable resin curing agents such as an amine, a polyamine, methylene dianiline, and other curing agents known in the art
- the resin curing agent used is included in the gelable resin composition, whether a flexibilizer additive is included or not, in an amount in the range of from about 5% to about 75% by weight of the curable resin. In some embodiments of the present invention, the resin curing agent used is included in the gelable resin composition in an amount in the range of from about 20% to about 75% by weight of the curable resin.
- flexibilizer additives may be used, inter alia, to provide flexibility to the gelled substances formed from the curable resin compositions. Flexibilizer additives may be used where the resin curing agent chosen would cause the gelable resin composition to cure into a hard and brittle material—rather than a desired gelled substance. For example, flexibilizer additives may be used where the resin curing agent chosen is not an amide or polyamide. Examples of suitable flexibilizer additives include, but are not limited to, an organic ester, an oxygenated organic solvent, an aromatic solvent, and combinations thereof. Of these, ethers, such as dibutyl phthalate, are preferred.
- the flexibilizer additive may be included in the gelable resin composition in an amount in the range of from about 5% to about 80% by weight of the gelable resin. In some embodiments of the present invention, the flexibilizer additive may be included in the curable resin composition in an amount in the range of from about 20% to about 45% by weight of the curable resin.
- Stabilizing Compositions Gelable Compositions—Gelable Aqueous Silicate Compositions.
- the gelable liquid compositions of the present invention may comprise a gelable aqueous silicate composition.
- the gelable aqueous silicate compositions that are useful in accordance with the present invention generally comprise an aqueous alkali metal silicate solution and a temperature activated catalyst for gelling the aqueous alkali metal silicate solution.
- the aqueous alkali metal silicate solution component of the gelable aqueous silicate compositions generally comprise an aqueous liquid and an alkali metal silicate.
- the aqueous liquid component of the aqueous alkali metal silicate solution generally may be fresh water, salt water (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated salt water), seawater, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention or with the subterranean formation.
- suitable alkali metal silicates include, but are not limited to, one or more of sodium silicate, potassium silicate, lithium silicate, rubidium silicate, or cesium silicate.
- sodium silicate is preferred. While sodium silicate exists in many forms, the sodium silicate used in the aqueous alkali metal silicate solution preferably has a Na 2 O-to-SiO 2 weight ratio in the range of from about 1:2 to about 1:4. Most preferably, the sodium silicate used has a Na 2 O-to-SiO 2 weight ratio in the range of about 1:3.2. Generally, the alkali metal silicate is present in the aqueous alkali metal silicate solution component in an amount in the range of from about 0.1% to about 10% by weight of the aqueous alkali metal silicate solution component.
- the temperature-activated catalyst component of the gelable aqueous silicate compositions is used, inter alia, to convert the gelable aqueous silicate compositions into the desired semi-solid, gel-like substance described above. Selection of a temperature-activated catalyst is related, at least in part, to the temperature of the subterranean formation to which the gelable aqueous silicate composition will be introduced.
- the temperature-activated catalysts that can be used in the gelable aqueous silicate compositions of the present invention include, but are not limited to, ammonium sulfate (which is most suitable in the range of from about 60° F. to about 240° F.); sodium acid pyrophosphate (which is most suitable in the range of from about 60° F.
- the temperature-activated catalyst is present in the gelable aqueous silicate composition in the range of from about 0.1% to about 5% by weight of the gelable aqueous silicate composition.
- Stabilizing Compositions Gelable Compositions—Crosslinkable Aqueous Polymer Compositions.
- the gelable liquid compositions of the present invention comprise crosslinkable aqueous polymer compositions.
- suitable crosslinkable aqueous polymer compositions comprise an aqueous solvent, a crosslinkable polymer, and a crosslinking agent.
- Such compositions are similar to those used to form gelled treatment fluids, such as fracturing fluids, but, according to the methods of the present invention, they are not exposed to breakers or de-linkers and so they retain their viscous nature over time.
- the aqueous solvent may be any aqueous solvent in which the crosslinkable composition and the crosslinking agent may be dissolved, mixed, suspended, or dispersed therein to facilitate gel formation.
- the aqueous solvent used may be fresh water, salt water, brine, seawater, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention or with the subterranean formation.
- Preferred acrylamide-containing polymers include polyacrylamide, partially hydrolyzed polyacrylamide, copolymers of acrylamide and acrylate, and carboxylate-containing terpolymers and tetrapolymers of acrylate.
- Suitable crosslinkable polymers include hydratable polymers comprising polysaccharides and derivatives thereof and that contain one or more of the monosaccharide units galactose, mannose, glucoside, glucose, xylose, arabinose, fructose, glucuronic acid, or pyranosyl sulfate.
- Suitable natural hydratable polymers include, but are not limited to, guar gum, locust bean gum, tara, konjak, tamarind, starch, cellulose, karaya, xanthan, tragacanth, and carrageenan, and derivatives of all of the above.
- Suitable hydratable synthetic polymers and copolymers that may be used in the crosslinkable aqueous polymer compositions include, but are not limited to, polyacrylates, polymethacrylates, polyacrylamides, maleic anhydride, methylvinyl ether polymers, polyvinyl alcohols, and polyvinylpyrrolidone.
- the crosslinkable polymer used should be included in the crosslinkable aqueous polymer composition in an amount sufficient to form the desired gelled substance in the subterranean formation.
- the crosslinkable polymer is included in the crosslinkable aqueous polymer composition in an amount in the range of from about 1% to about 30% by weight of the aqueous solvent.
- the crosslinkable polymer is included in the crosslinkable aqueous polymer composition in an amount in the range of from about 1% to about 20% by weight of the aqueous solvent.
- the crosslinkable aqueous polymer compositions of the present invention further comprise a crosslinking agent for crosslinking the crosslinkable polymers to form the desired gelled substance.
- the crosslinking agent is a molecule or complex containing a reactive transition metal cation.
- a most preferred crosslinking agent comprises trivalent chromium cations complexed or bonded to anions, atomic oxygen, or water.
- suitable crosslinking agents include, but are not limited to, compounds or complexes containing chromic acetate and/or chromic chloride.
- Other suitable transition metal cations include chromium VI within a redox system, aluminum III, iron II, iron III, and zirconium IV.
- the crosslinking agent should be present in the crosslinkable aqueous polymer compositions of the present invention in an amount sufficient to provide, inter alia, the desired degree of crosslinking.
- the crosslinking agent is present in the crosslinkable aqueous polymer compositions of the present invention in an amount in the range of from about 0.01% to about 5% by weight of the crosslinkable aqueous polymer composition.
- the exact type and amount of crosslinking agent or agents used depends upon the specific crosslinkable polymer to be crosslinked, formation temperature conditions, and other factors known to those individuals skilled in the art.
- the crosslinkable aqueous polymer compositions may further comprise a crosslinking delaying agent, such as a polysaccharide crosslinking delaying agent derived from guar, guar derivatives, or cellulose derivatives.
- the crosslinking delaying agent may be included in the crosslinkable aqueous polymer compositions, inter alia, to delay crosslinking of the crosslinkable aqueous polymer compositions until desired.
- a crosslinking delaying agent such as a polysaccharide crosslinking delaying agent derived from guar, guar derivatives, or cellulose derivatives.
- the crosslinking delaying agent may be included in the crosslinkable aqueous polymer compositions, inter alia, to delay crosslinking of the crosslinkable aqueous polymer compositions until desired.
- One of ordinary skill in the art, with the benefit of this disclosure will know the appropriate amount of the crosslinking delaying agent to include in the crosslinkable aqueous polymer compositions for a desired application.
- Stabilizing Compositions Gelable Compositions—Polymerization Organic Monomer Compositions.
- the gelled liquid compositions of the present invention comprise polymerizable organic monomer compositions.
- suitable polymerizable organic monomer compositions comprise an aqueous-base fluid, a water-soluble polymerizable organic monomer, an oxygen scavenger, and a primary initiator.
- the aqueous-based fluid component of the polymerizable organic monomer composition generally may be fresh water, salt water, brine, seawater, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention or with the subterranean formation.
- a variety of monomers are suitable for use as the water-soluble polymerizable organic monomers in the present invention.
- suitable monomers include, but are not limited to, acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-methacrylamido-2-methylpropane sulfonic acid, 2-dimethylacrylamide, vinyl sulfonic acid, N,N-dimethylaminoethylmethacrylate, 2-triethylammoniumethylmethacrylate chloride, N,N-dimethyl-aminopropylmethacryl-amide, methacrylamidepropyltriethylammonium chloride, N-vinyl pyrrolidone, vinyl-phosphonic acid, and methacryloyloxyethyl trimethylammonium sulfate, and mixtures thereof.
- the water-soluble polymerizable organic monomer should be self-crosslinking.
- suitable monomers which are self crosslinking include, but are not limited to, hydroxyethylacrylate, hydroxymethylacrylate, hydroxyethylmethacrylate, N-hydroxymethylacrylamide, N-hydroxymethyl-methacrylamide, polyethylene glycol acrylate, polyethylene glycol methacrylate, polypropylene gylcol acrylate, polypropylene glycol methacrylate, and mixtures thereof. Of these, hydroxyethylacrylate is preferred.
- An example of a particularly preferable monomer is hydroxyethylcellulose-vinyl phosphoric acid.
- the water-soluble polymerizable organic monomer (or monomers where a mixture thereof is used) should be included in the polymerizable organic monomer composition in an amount sufficient to form the desired gelled substance after placement of the polymerizable organic monomer composition into the subterranean formation.
- the water-soluble polymerizable organic monomer is included in the polymerizable organic monomer composition in an amount in the range of from about 1% to about 30% by weight of the aqueous-base fluid.
- the water-soluble polymerizable organic monomer is included in the polymerizable organic monomer composition in an amount in the range of from about 1% to about 20% by weight of the aqueous-base fluid.
- an oxygen scavenger such as stannous chloride
- the stannous chloride may be pre-dissolved in a hydrochloric acid solution.
- the stannous chloride may be dissolved in a 0.1% by weight aqueous hydrochloric acid solution in an amount of about 10% by weight of the resulting solution.
- the resulting stannous chloride-hydrochloric acid solution may be included in the polymerizable organic monomer composition in an amount in the range of from about 0.1% to about 10% by weight of the polymerizable organic monomer composition.
- the stannous chloride may be included in the polymerizable organic monomer composition of the present invention in an amount in the range of from about 0.005% to about 0.1% by weight of the polymerizable organic monomer composition.
- the primary initiator is used, inter alia, to initiate polymerization of the water-soluble polymerizable organic monomer(s) used in the present invention. Any compound or compounds that form free radicals in aqueous solution may be used as the primary initiator.
- the free radicals act, inter alia, to initiate polymerization of the water-soluble polymerizable organic monomer present in the polymerizable organic monomer composition.
- Compounds suitable for use as the primary initiator include, but are not limited to, alkali metal persulfates; peroxides; oxidation-reduction systems employing reducing agents, such as sulfites in combination with oxidizers; and azo polymerization initiators.
- Preferred azo polymerization initiators include 2,2′-azobis(2-imidazole-2-hydroxyethyl)propane, 2,2′-azobis(2-aminopropane), 4,4′-azobis(4-cyanovaleric acid), and 2,2′-azobis(2-methyl-N-(2-hydroxyethyl)propionamide.
- the primary initiator should be present in the polymerizable organic monomer composition in an amount sufficient to initiate polymerization of the water-soluble polymerizable organic monomer(s).
- the primary initiator is present in the polymerizable organic monomer composition in an amount in the range of from about 0.1% to about 5% by weight of the water-soluble polymerizable organic monomer(s).
- the polymerizable organic monomer compositions further may comprise a secondary initiator.
- a secondary initiator may be used, for example, where the immature aqueous gel is placed into a subterranean formation that is relatively cool as compared to the surface mixing, such as when placed below the mud line in offshore operations.
- the secondary initiator may be any suitable water-soluble compound or compounds that may react with the primary initiator to provide free radicals at a lower temperature.
- An example of a suitable secondary initiator is triethanolamine.
- the secondary initiator is present in the polymerizable organic monomer composition in an amount in the range of from about 0.1% to about 5% by weight of the water-soluble polymerizable organic monomer(s).
- the polymerizable organic monomer compositions of the present invention further may comprise a crosslinking agent for crosslinking the polymerizable organic monomer compositions in the desired gelled substance.
- the crosslinking agent is a molecule or complex containing a reactive transition metal cation.
- a most preferred crosslinking agent comprises trivalent chromium cations complexed or bonded to anions, atomic oxygen, or water.
- suitable crosslinking agents include, but are not limited to, compounds or complexes containing chromic acetate and/or chromic chloride.
- Other suitable transition metal cations include chromium VI within a redox system, aluminum III, iron II, iron III, and zirconium IV.
- the crosslinking agent may be present in polymerizable organic monomer compositions in an amount in the range of from 0.01% to about 5% by weight of the polymerizable organic monomer composition.
- the stabilizing composition is placed into the formation, it is allowed to substantially cure and stabilize the treated portion of the formation. Once the treated portion of the formation is so stabilized, a stimulation treatment is performed.
- the stimulating step of the methods of the present invention may involve perforating, hydrajetting, fracturing, or some other stimulating method known in the art.
- One object of the stimulation treatment is to place the well bore in fluid communication with the treated portion of the formation surrounding the well bore and with an untreated portion. This concept is illustrated in FIG. 1 to show how fluid communication may be established where the chosen stimulation treatment is fracturing.
- FIG. 1 shows a top view of well bore 10 with a stylized fracture 20 .
- Well bore 10 has been stabilized in the near well bore region ( 30 ) to a distance of approximately one-half of a well bore diameter, as shown by stabilizing treatment penetration 30 .
- Hydrajetting refers to a treatment in which a hydrajetting tool having at least one fluid jet forming nozzle is positioned adjacent to a formation to be fractured, and fluid is then jetted through the nozzle against the formation at a pressure sufficient to form a cavity, or slot therein to fracture the formation by stagnation pressure in the cavity.
- the hydrajetting tool is used to create slots substantially uniformly around the well bore circumference.
- jetted fluids would have to flow out of the slot in a direction generally opposite to the direction of the incoming jetted fluid, they are trapped in the slot and create a relatively high stagnation pressure at the tip of a cavity.
- This high stagnation pressure often causes a microfracture to be formed that extends a short distance into the formation. That microfracture may be further extended by pumping a fluid into the well bore to raise the ambient fluid pressure exerted on the formation while the formation is being hydrajetted.
- Such a fluid in the well bore will flow into the slot and fracture produced by the fluid jet and, if introduced into the well bore at a sufficient rate and pressure, may be used to extend the fracture an additional distance from the well bore into the formation.
- a proppant is generally added to the fluid to form a slurry that is pumped into the fracture to prevent the fracture from closing when the pumping pressure is released.
- a portion of the proppant may be coated with a tackifying agent, inter alia, to control fines from migrating into the proppant pack.
- a portion of the proppant may also be coated with curable resin so that, once cured, the placed proppant forms a consolidated mass and prevents the proppant from flowing back during production of the well.
- Another stimulation treatment suitable for use in some embodiments of the methods of the present invention is hydraulic fracturing, wherein a formation is treated to increase its permeability by hydraulically fracturing the formation to create or enhance one or more cracks or “fractures.”
- a hydraulic fracturing treatment involves pumping a proppant-free, viscous fluid (known as a pad fluid) into a subterranean formation faster than the fluid can escape into the formation so that the pressure in the formation rises and the formation breaks, creating an artificial fracture or enlarging a natural fracture. Similar to hydrajetting, a proppant is then generally added to the fluid to form a slurry that is pumped into the fracture to prevent the fracture from closing when the pumping pressure is released.
- a portion of the proppant may be coated with a tackifying agent, inter alia, to control fines from migrating into the proppant pack.
- a portion of the proppant may also be coated with curable resin so that, once cured, the placed proppant forms a consolidated mass and prevents the proppant from flowing back during production of the well.
- Proppants that may be used in the embodiments of the stimulation treatments of the present invention include a wide variety of particulate materials suitable for use in subterranean applications. Examples include, but are not limited to, man-made proppant; sand; bauxite; ceramic materials; glass materials; polymer materials; plastic materials; “TEFLONTM” materials; lightweight particulates; ground or crushed nut shells; ground or crushed seed shells; ground or crushed fruit pits; processed wood; composite particulates prepared from a binder with filler particulate including silica, alumina, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, and solid glass; or mixtures thereof.
- the proppant used may have a particle size in the range of from about 2 to about 400 mesh, U.S. Sieve Series.
- the proppant is graded sand having a particle size in the range of from about 10 to about 70 mesh, U.S. Sieve Series.
- the proppant used is coated with either a resin that is capable of consolidating the proppant particles into a hardened, permeable mass; a tackifying agent capable of controlling particulate production from the unstabilized portion of the formation; or a combination thereof. It is well within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin or tackifying agent to coat the proppant used in the present invention.
- Resins suitable for use in coating proppant used in the present invention include, but are not limited to, two-component epoxy-based resins, furan-based resins, phenolic-based resins, high-temperature (HT) epoxy-based resins, and phenol/phenol formaldehyde/furfuryl alcohol resins. Selection of a suitable resin coating material may be affected by the temperature of the subterranean formation to which the fluid will be introduced. By way of example, for subterranean formations having a bottom hole static temperature (“BHST”) ranging from about 60° F. to about 250° F., two-component epoxy-based resins comprising a hardenable resin component and a hardening agent component containing specific hardening agents may be preferred.
- BHST bottom hole static temperature
- a furan-based resin may be preferred for subterranean formations having a BHST ranging from about 300° F. to about 600° F.
- a furan-based resin may be preferred for subterranean formations having a BHST ranging from about 200° F. to about 400° F.
- either a phenolic-based resin or a one-component HT epoxy-based resin may be suitable for subterranean formations having a BHST of at least about 175° F.
- a phenol/phenol formaldehyde/furfuryl alcohol resin also may be suitable for subterranean formations having a BHST of at least about 175° F.
- Tackifying agents suitable for use in coating proppant used in the present invention comprise any compound that, when in liquid form or in a solvent solution, will form a non-hardening coating upon a particulate.
- a particularly preferred group of tackifying agents comprise polyamides that are liquids or in solution at the temperature of the subterranean formation such that they are, by themselves, non-hardening when introduced into the subterranean formation.
- a particularly preferred product is a condensation reaction product comprised of commercially available polyacids and a polyamine. Such commercial products include compounds such as mixtures of C 36 dibasic acids containing some trimer and higher oligomers and also small amounts of monomer acids that are reacted with polyamines.
- polyacids include trimer acids, synthetic acids produced from fatty acids, maleic anhydride, acrylic acid, and the like. Such acid compounds are commercially available from companies such as Witco Corporation, Union Camp, Chemtall, and Emery Industries. The reaction products are available from, for example, Champion Technologies, Inc. and Witco Corporation. Additional compounds which may be used as tackifying compounds include liquids and solutions of, for example, polyesters, polycarbonates and polycarbamates, natural resins such as shellac and the like. Other suitable tackifying agents are described in U.S. Pat. No. 5,853,048 issued to Weaver, et al. and U.S. Pat. No. 5,833,000 issued to Weaver, et al., the relevant disclosures of which are herein incorporated by reference.
- Tackifying agents suitable for use in the present invention may be either used such that they form non-hardening coating or they may be combined with a multifunctional material capable of reacting with the tackifying compound to form a hardened coating.
- a “hardened coating” as used herein means that the reaction of the tackifying compound with the multifunctional material will result in a substantially non-flowable reaction product that exhibits a higher compressive strength in a consolidated agglomerate than the tackifying compound alone with the particulates.
- the tackifying agent may function similarly to a hardenable resin.
- Multifunctional materials suitable for use in the present invention include, but are not limited to, aldehydes such as formaldehyde, dialdehydes such as glutaraldehyde, hemiacetals or aldehyde releasing compounds, diacid halides, dihalides such as dichlorides and dibromides, polyacid anhydrides such as citric acid, epoxides, furfuraldehyde, glutaraldehyde or aldehyde condensates and the like, and combinations thereof.
- the multifunctional material may be mixed with the tackifying compound in an amount of from about 0.01 to about 50 percent by weight of the tackifying compound to effect formation of the reaction product.
- the compound is present in an amount of from about 0.5 to about 1 percent by weight of the tackifying compound.
- Suitable multifunctional materials are described in U.S. Pat. No. 5,839,510 issued to Weaver, et al., the relevant disclosure of which is herein incorporated by reference.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Percussion Or Vibration Massage (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention relates to methods of stabilizing an unconsolidated portion in a subterranean formation and stimulating fluid production from the stabilized portion. Some embodiments of the present invention provide methods of substantially stabilizing a portion of a subterranean formation penetrated by a well bore and stimulating fluid production therefrom comprising placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and, stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
Description
- The present invention relates to methods of stabilizing an unconsolidated portion in a subterranean formation and stimulating fluid production from the stabilized portion.
- One method of stimulating fluid production from a portion of a subterranean formation along a producing zone of a well bore, known as hydrajetting, involves the use of hydraulic jets, inter alia, that increases the permeability and production capabilities of a formation. In an example of a common hydrajetting operation, a hydrajetting tool having at least one fluid jet forming nozzle is positioned adjacent to a formation to be fractured, and proppant slurry is then jetted through the nozzle against the formation at a pressure sufficient to form a cavity, or slot therein to fracture the formation, e.g., by stagnation pressure in the cavity. U.S. Pat. Nos. 5,765,642, 5,494,103, and 5,361,856, the relevant portions of which are herein incorporated by reference, describe suitable hydrajetting tools known in the art. Hydrajetting provides the ability to selectively form a desired number of fractures at desired intervals.
- Another method of stimulating fluid production from a subterranean formation is hydraulic fracturing, wherein a formation is treated to increase its permeability by hydraulically fracturing the formation to create or enhance one or more cracks or “fractures.” In most cases, a hydraulic fracturing treatment involves pumping a proppant-free, viscous fluid (known as a pad fluid) into a subterranean formation faster than the fluid can escape into the formation so that the pressure in the formation rises, creating artificial fractures or enlarging natural fractures. Thereafter, proppant slurry oftentimes is pumped into the formation to place proppant inside the created fractures to keep them opened even after the hydraulic pressure has been released.
- Stimulation techniques, such as fracturing and hydrajetting, are most successfully performed on portions of a subterranean formation that are substantially consolidated. However, hydrocarbon wells are often located in unconsolidated portions, that is, portions having loose particulates or particulates bonded together with insufficient strength to remain bonded when a fluid (such as produced oil) flows through the portion. The presence of particulates, such as formation sand, in produced fluids may be disadvantageous and undesirable in that the particulates may abrade pumping and other producing equipment and reduce the fluid production capabilities of the producing zones. Thus, it is often desirable to control, or “stabilize,” particulates in relatively unconsolidated areas in a subterranean formation before performing a stimulation treatment.
- One method of stabilizing particulates in unconsolidated subterranean portions has been to produce fluids from such formations at low flow rates, whereby the near well stability of sand bridges and the like may be preserved. However, the collapse of such sand bridges may occur due to unintentionally high production rates and/or pressure cycling (as may occur from frequent shut-ins and start ups of a well). The frequency of pressure cycling is very critical to the longevity of the near well formation, especially during the depletion stage of the well when the pore pressure of the formation has been significantly reduced.
- Another method of controlling the migration of particulates so that they are not produced along with the produced fluids is gravel packing. Gravel packing involves placing a filtration bed containing gravel near the well bore in order to present a physical barrier to the transport of unconsolidated formation fines with the production of hydrocarbons. Typically, gravel packing operations involve the pumping and placement of a quantity of a desired particulate into the unconsolidated formation in an area adjacent to a well bore. Such packs are often time consuming and expensive to install. In some situations, the processes of fracturing and gravel packing are combined into a single treatment to provide a stimulated production and an annular gravel pack to prevent formation sand production. Such treatments are often referred to as “frac pack” operations.
- Another method used to stabilize particulates in unconsolidated formations involves consolidating unconsolidated subterranean producing zones by applying a resin followed by a spacer fluid and then a catalyst. Such resin application may be problematic when, for example, an insufficient amount of spacer fluid is used between the application of the resin and the application of the external catalyst. The resin may come into contact with the external catalyst in the well bore itself rather than in the unconsolidated subterranean producing zone. When resin is contacted with an external catalyst an exothermic reaction occurs that may result in rapid polymerization, potentially damaging the formation by plugging the pore channels, halting pumping when the well bore is plugged with solid material, or resulting in a down hole explosion as a result of the heat of polymerization.
- The present invention relates to methods of stabilizing an unconsolidated portion in a subterranean formation and stimulating fluid production from the stabilized portion.
- One embodiment of the present invention provides a method of substantially stabilizing a portion of a subterranean formation penetrated by a well bore and stimulating fluid production therefrom comprising placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and, stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
- Other embodiments of the present invention provide methods of controlling formation sands in a portion of a formation penetrated by a well bore and stimulating fluid production therefrom comprising placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and, stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
- Other embodiments of the present invention provide systems for stabilizing and stimulating a portion of a subterranean formation penetrated by a well bore comprising placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and, stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
- Other and further features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.
-
FIG. 1 illustrates near-well bore and far-well bore areas and how fluid communication may be established. - The present invention relates to methods of stabilizing an unconsolidated portion in a subterranean formation and stimulating fluid production from the stabilized portion.
- Some embodiments of the present invention provide methods of stabilizing subterranean formations and stimulating fluid production comprising the steps of: injecting a stabilizing composition into a near well bore area of a portion in a subterranean formation; allowing the stabilizing composition to substantially cure to form a stabilized portion; stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area. As used herein the term “near well bore area” refers to a distance up to about three well bore diameters from the surface of the well bore into the formation. The term “far well bore area” refers to distances beyond the near well bore area. The methods of the present invention may result in hydrocarbon production at a higher rate with less risk of producing particulates from the formation that may be problematic.
- Stabilizing Compositions
- Stabilizing compositions suitable for use in the present invention include curable resin compositions that are capable of curing to form hardened substances and gelable substances that cure to form a semi-solid, gel-like substance. Regardless of whether a curable resin composition that cures to form hardened substance is chosen or a gelable substance that cures to form a semi-solid, gel-like substance is chosen, generally, a desirable depth of penetration of the stabilizing composition into the formation surrounding the well bore is from about a few inches in some embodiments to about three well bore diameters in other embodiments.
- Stabilizing Compositions: Curable Resin Compositions.
- Suitable curable resin compositions include those resins that are capable of forming a hardened, consolidated mass. Such resins include, but are not limited to, novolak resins, polyepoxide resins, phenol-aldehyde resins, urea-aldehyde resins, urethane resins, phenolic resins, furan/furfuryl alcohol resins, phenolic/latex resins, phenol formaldehyde resins, polyester resins, polyurethane resins and hybrids and copolymers thereof, acrylate resins, and hybrids and copolymers thereof, and mixtures thereof. Some suitable resins, such as epoxy resins, may be cured with an internal catalyst or activator so that when pumped down hole, they may be cured using only time and temperature. Other suitable resins, such as furan resins generally require a time-delayed catalyst or an external catalyst to help activate the polymerization of the resins if the cure temperature is low (i.e., less than 250° F.), but will cure under the effect of time and temperature if the formation temperature is above about 250° F., preferably above about 300° F. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin for use in embodiments of the present invention and to determine whether a catalyst is required to trigger curing.
- Stabilizing Compositions: Gelable Compositions.
- Gelable compositions suitable for use in the present invention include those compositions that cure to form a semi-solid, gel-like substance. The gelable composition may be any gelable liquid composition capable of converting into a gelled substance capable of substantially plugging the permeability of the formation while allowing the formation to remain flexible. As referred to herein, the term “flexible” refers to a state wherein the treated portion of the formation is relatively malleable and elastic and able to withstand substantial pressure cycling without substantial breakdown of the formation. Thus, the resultant gelled substance stabilizes the treated portion of the formation while allowing the formation to absorb the stresses created during pressure cycling. As a result, the gelled substance may aid in preventing breakdown of the formation both by stabilizing and by adding flexibility to the treated portion. Examples of suitable gelable liquid compositions include, but are not limited to, (1) gelable resin compositions, (2) gelable aqueous silicate compositions, (3) crosslinkable aqueous polymer compositions, and (4) polymerizable organic monomer compositions.
- Stabilizing Compositions: Gelable Compositions—Gelable Resin Compositions.
- Certain embodiments of the gelable liquid compositions of the present invention comprise gelable resin compositions that cure to form flexible gels. Unlike the curable resin compositions described above, which cure into hardened masses, the gelable resin compositions cure into flexible, gelled substances that form resilient gelled substances between the particulates of the treated zone of the unconsolidated formation. Gelable resin compositions allow the treated portion of the formation to remain flexible and resist breakdown.
- Generally, the gelable resin compositions useful in accordance with this invention comprise a curable resin, a diluent, and a resin curing agent. When certain resin curing agents, such as polyamides, are used in the curable resin compositions, the compositions form the semi-solid, gelled substances described above. Where the resin curing agent used may cause the organic resin compositions to form hard, brittle material rather than a desired gelled substance, the curable resin compositions may further comprise one or more “flexibilizer additives” (described in more detail below) to provide flexibility to the cured compositions.
- Examples of gelable resins that can be used in the present invention include, but are not limited to, organic resins such as polyepoxide resins (e.g., Bisphenol a-epichlorihydrin resins), polyester resins, urea-aldehyde resins, furan resins, urethane resins, and mixtures thereof. Of these, polyepoxide resins are preferred.
- Any diluent that is compatible with the gelable resin and achieves the desired viscosity effect is suitable for use in the present invention. Examples of diluents that may be used in the gelable resin compositions of the present invention include, but are not limited to, phenols; formaldehydes; furfuryl alcohols; furfurals; alcohols; ethers such as butyl glycidyl ether and cresyl glycidyl etherphenyl glycidyl ether; and mixtures thereof. In some embodiments of the present invention, the diluent comprises butyl lactate. The diluent may be used to reduce the viscosity of the gelable resin composition from about 3 to about 3,000 centipoises (“cP”) at 80° F. Among other things, the diluent acts to provide flexibility to the cured composition. The diluent may be included in the gelable resin composition in an amount sufficient to provide the desired viscosity effect. Generally, the diluent used is included in the gelable resin composition in amount in the range of from about 5% to about 75% by weight of the curable resin.
- Generally, any resin curing agent that may be used to cure an organic resin is suitable for use in the present invention. When the resin curing agent chosen is an amide or a polyamide, generally no flexibilizer additive will be required because, inter alia, such curing agents cause the gelable resin composition to convert into a semi-solid, gelled substance. Other suitable resin curing agents (such as an amine, a polyamine, methylene dianiline, and other curing agents known in the art) will tend to cure into a hard, brittle material and will thus benefit from the addition of a flexibilizer additive. Generally, the resin curing agent used is included in the gelable resin composition, whether a flexibilizer additive is included or not, in an amount in the range of from about 5% to about 75% by weight of the curable resin. In some embodiments of the present invention, the resin curing agent used is included in the gelable resin composition in an amount in the range of from about 20% to about 75% by weight of the curable resin.
- As noted above, flexibilizer additives may be used, inter alia, to provide flexibility to the gelled substances formed from the curable resin compositions. Flexibilizer additives may be used where the resin curing agent chosen would cause the gelable resin composition to cure into a hard and brittle material—rather than a desired gelled substance. For example, flexibilizer additives may be used where the resin curing agent chosen is not an amide or polyamide. Examples of suitable flexibilizer additives include, but are not limited to, an organic ester, an oxygenated organic solvent, an aromatic solvent, and combinations thereof. Of these, ethers, such as dibutyl phthalate, are preferred. Where used, the flexibilizer additive may be included in the gelable resin composition in an amount in the range of from about 5% to about 80% by weight of the gelable resin. In some embodiments of the present invention, the flexibilizer additive may be included in the curable resin composition in an amount in the range of from about 20% to about 45% by weight of the curable resin.
- Stabilizing Compositions: Gelable Compositions—Gelable Aqueous Silicate Compositions.
- In other embodiments, the gelable liquid compositions of the present invention may comprise a gelable aqueous silicate composition. Generally, the gelable aqueous silicate compositions that are useful in accordance with the present invention generally comprise an aqueous alkali metal silicate solution and a temperature activated catalyst for gelling the aqueous alkali metal silicate solution.
- The aqueous alkali metal silicate solution component of the gelable aqueous silicate compositions generally comprise an aqueous liquid and an alkali metal silicate. The aqueous liquid component of the aqueous alkali metal silicate solution generally may be fresh water, salt water (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated salt water), seawater, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention or with the subterranean formation. Examples of suitable alkali metal silicates include, but are not limited to, one or more of sodium silicate, potassium silicate, lithium silicate, rubidium silicate, or cesium silicate. Of these, sodium silicate is preferred. While sodium silicate exists in many forms, the sodium silicate used in the aqueous alkali metal silicate solution preferably has a Na2O-to-SiO2 weight ratio in the range of from about 1:2 to about 1:4. Most preferably, the sodium silicate used has a Na2O-to-SiO2 weight ratio in the range of about 1:3.2. Generally, the alkali metal silicate is present in the aqueous alkali metal silicate solution component in an amount in the range of from about 0.1% to about 10% by weight of the aqueous alkali metal silicate solution component.
- The temperature-activated catalyst component of the gelable aqueous silicate compositions is used, inter alia, to convert the gelable aqueous silicate compositions into the desired semi-solid, gel-like substance described above. Selection of a temperature-activated catalyst is related, at least in part, to the temperature of the subterranean formation to which the gelable aqueous silicate composition will be introduced. The temperature-activated catalysts that can be used in the gelable aqueous silicate compositions of the present invention include, but are not limited to, ammonium sulfate (which is most suitable in the range of from about 60° F. to about 240° F.); sodium acid pyrophosphate (which is most suitable in the range of from about 60° F. to about 240° F.); citric acid (which is most suitable in the range of from about 60° F. to about 120° F.); and ethyl acetate (which is most suitable in the range of from about 60° F. to about 120° F.). Generally, the temperature-activated catalyst is present in the gelable aqueous silicate composition in the range of from about 0.1% to about 5% by weight of the gelable aqueous silicate composition.
- Stabilizing Compositions: Gelable Compositions—Crosslinkable Aqueous Polymer Compositions.
- In other embodiments, the gelable liquid compositions of the present invention comprise crosslinkable aqueous polymer compositions. Generally, suitable crosslinkable aqueous polymer compositions comprise an aqueous solvent, a crosslinkable polymer, and a crosslinking agent. Such compositions are similar to those used to form gelled treatment fluids, such as fracturing fluids, but, according to the methods of the present invention, they are not exposed to breakers or de-linkers and so they retain their viscous nature over time.
- The aqueous solvent may be any aqueous solvent in which the crosslinkable composition and the crosslinking agent may be dissolved, mixed, suspended, or dispersed therein to facilitate gel formation. For example, the aqueous solvent used may be fresh water, salt water, brine, seawater, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention or with the subterranean formation.
- Examples of crosslinkable polymers that can be used in the crosslinkable aqueous polymer compositions include, but are not limited to, carboxylate-containing polymers and acrylamide-containing polymers. Preferred acrylamide-containing polymers include polyacrylamide, partially hydrolyzed polyacrylamide, copolymers of acrylamide and acrylate, and carboxylate-containing terpolymers and tetrapolymers of acrylate. Additional examples of suitable crosslinkable polymers include hydratable polymers comprising polysaccharides and derivatives thereof and that contain one or more of the monosaccharide units galactose, mannose, glucoside, glucose, xylose, arabinose, fructose, glucuronic acid, or pyranosyl sulfate. Suitable natural hydratable polymers include, but are not limited to, guar gum, locust bean gum, tara, konjak, tamarind, starch, cellulose, karaya, xanthan, tragacanth, and carrageenan, and derivatives of all of the above. Suitable hydratable synthetic polymers and copolymers that may be used in the crosslinkable aqueous polymer compositions include, but are not limited to, polyacrylates, polymethacrylates, polyacrylamides, maleic anhydride, methylvinyl ether polymers, polyvinyl alcohols, and polyvinylpyrrolidone. The crosslinkable polymer used should be included in the crosslinkable aqueous polymer composition in an amount sufficient to form the desired gelled substance in the subterranean formation. In some embodiments of the present invention, the crosslinkable polymer is included in the crosslinkable aqueous polymer composition in an amount in the range of from about 1% to about 30% by weight of the aqueous solvent. In another embodiment of the present invention, the crosslinkable polymer is included in the crosslinkable aqueous polymer composition in an amount in the range of from about 1% to about 20% by weight of the aqueous solvent.
- The crosslinkable aqueous polymer compositions of the present invention further comprise a crosslinking agent for crosslinking the crosslinkable polymers to form the desired gelled substance. In some embodiments, the crosslinking agent is a molecule or complex containing a reactive transition metal cation. A most preferred crosslinking agent comprises trivalent chromium cations complexed or bonded to anions, atomic oxygen, or water. Examples of suitable crosslinking agents include, but are not limited to, compounds or complexes containing chromic acetate and/or chromic chloride. Other suitable transition metal cations include chromium VI within a redox system, aluminum III, iron II, iron III, and zirconium IV.
- The crosslinking agent should be present in the crosslinkable aqueous polymer compositions of the present invention in an amount sufficient to provide, inter alia, the desired degree of crosslinking. In some embodiments of the present invention, the crosslinking agent is present in the crosslinkable aqueous polymer compositions of the present invention in an amount in the range of from about 0.01% to about 5% by weight of the crosslinkable aqueous polymer composition. The exact type and amount of crosslinking agent or agents used depends upon the specific crosslinkable polymer to be crosslinked, formation temperature conditions, and other factors known to those individuals skilled in the art.
- Optionally, the crosslinkable aqueous polymer compositions may further comprise a crosslinking delaying agent, such as a polysaccharide crosslinking delaying agent derived from guar, guar derivatives, or cellulose derivatives. The crosslinking delaying agent may be included in the crosslinkable aqueous polymer compositions, inter alia, to delay crosslinking of the crosslinkable aqueous polymer compositions until desired. One of ordinary skill in the art, with the benefit of this disclosure, will know the appropriate amount of the crosslinking delaying agent to include in the crosslinkable aqueous polymer compositions for a desired application.
- Stabilizing Compositions: Gelable Compositions—Polymerization Organic Monomer Compositions.
- In other embodiments, the gelled liquid compositions of the present invention comprise polymerizable organic monomer compositions. Generally, suitable polymerizable organic monomer compositions comprise an aqueous-base fluid, a water-soluble polymerizable organic monomer, an oxygen scavenger, and a primary initiator.
- The aqueous-based fluid component of the polymerizable organic monomer composition generally may be fresh water, salt water, brine, seawater, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention or with the subterranean formation.
- A variety of monomers are suitable for use as the water-soluble polymerizable organic monomers in the present invention. Examples of suitable monomers include, but are not limited to, acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-methacrylamido-2-methylpropane sulfonic acid, 2-dimethylacrylamide, vinyl sulfonic acid, N,N-dimethylaminoethylmethacrylate, 2-triethylammoniumethylmethacrylate chloride, N,N-dimethyl-aminopropylmethacryl-amide, methacrylamidepropyltriethylammonium chloride, N-vinyl pyrrolidone, vinyl-phosphonic acid, and methacryloyloxyethyl trimethylammonium sulfate, and mixtures thereof. Preferably, the water-soluble polymerizable organic monomer should be self-crosslinking. Examples of suitable monomers which are self crosslinking include, but are not limited to, hydroxyethylacrylate, hydroxymethylacrylate, hydroxyethylmethacrylate, N-hydroxymethylacrylamide, N-hydroxymethyl-methacrylamide, polyethylene glycol acrylate, polyethylene glycol methacrylate, polypropylene gylcol acrylate, polypropylene glycol methacrylate, and mixtures thereof. Of these, hydroxyethylacrylate is preferred. An example of a particularly preferable monomer is hydroxyethylcellulose-vinyl phosphoric acid.
- The water-soluble polymerizable organic monomer (or monomers where a mixture thereof is used) should be included in the polymerizable organic monomer composition in an amount sufficient to form the desired gelled substance after placement of the polymerizable organic monomer composition into the subterranean formation. In some embodiments of the present invention, the water-soluble polymerizable organic monomer is included in the polymerizable organic monomer composition in an amount in the range of from about 1% to about 30% by weight of the aqueous-base fluid. In another embodiment of the present invention, the water-soluble polymerizable organic monomer is included in the polymerizable organic monomer composition in an amount in the range of from about 1% to about 20% by weight of the aqueous-base fluid.
- The presence of oxygen in the polymerizable organic monomer composition may inhibit the polymerization process of the water-soluble polymerizable organic monomer or monomers. Therefore, an oxygen scavenger, such as stannous chloride, may be included in the polymerizable monomer composition. In order to improve the solubility of stannous chloride so that it may be readily combined with the polymerizable organic monomer composition on the fly, the stannous chloride may be pre-dissolved in a hydrochloric acid solution. For example, the stannous chloride may be dissolved in a 0.1% by weight aqueous hydrochloric acid solution in an amount of about 10% by weight of the resulting solution. The resulting stannous chloride-hydrochloric acid solution may be included in the polymerizable organic monomer composition in an amount in the range of from about 0.1% to about 10% by weight of the polymerizable organic monomer composition. Generally, the stannous chloride may be included in the polymerizable organic monomer composition of the present invention in an amount in the range of from about 0.005% to about 0.1% by weight of the polymerizable organic monomer composition.
- The primary initiator is used, inter alia, to initiate polymerization of the water-soluble polymerizable organic monomer(s) used in the present invention. Any compound or compounds that form free radicals in aqueous solution may be used as the primary initiator. The free radicals act, inter alia, to initiate polymerization of the water-soluble polymerizable organic monomer present in the polymerizable organic monomer composition. Compounds suitable for use as the primary initiator include, but are not limited to, alkali metal persulfates; peroxides; oxidation-reduction systems employing reducing agents, such as sulfites in combination with oxidizers; and azo polymerization initiators. Preferred azo polymerization initiators include 2,2′-azobis(2-imidazole-2-hydroxyethyl)propane, 2,2′-azobis(2-aminopropane), 4,4′-azobis(4-cyanovaleric acid), and 2,2′-azobis(2-methyl-N-(2-hydroxyethyl)propionamide. Generally, the primary initiator should be present in the polymerizable organic monomer composition in an amount sufficient to initiate polymerization of the water-soluble polymerizable organic monomer(s). In certain embodiments of the present invention, the primary initiator is present in the polymerizable organic monomer composition in an amount in the range of from about 0.1% to about 5% by weight of the water-soluble polymerizable organic monomer(s). One skilled in the art will recognize that as the polymerization temperature increases, the required level of activator decreases.
- Optionally, the polymerizable organic monomer compositions further may comprise a secondary initiator. A secondary initiator may be used, for example, where the immature aqueous gel is placed into a subterranean formation that is relatively cool as compared to the surface mixing, such as when placed below the mud line in offshore operations. The secondary initiator may be any suitable water-soluble compound or compounds that may react with the primary initiator to provide free radicals at a lower temperature. An example of a suitable secondary initiator is triethanolamine. In some embodiments of the present invention, the secondary initiator is present in the polymerizable organic monomer composition in an amount in the range of from about 0.1% to about 5% by weight of the water-soluble polymerizable organic monomer(s).
- Also optionally, the polymerizable organic monomer compositions of the present invention further may comprise a crosslinking agent for crosslinking the polymerizable organic monomer compositions in the desired gelled substance. In some embodiments, the crosslinking agent is a molecule or complex containing a reactive transition metal cation. A most preferred crosslinking agent comprises trivalent chromium cations complexed or bonded to anions, atomic oxygen, or water. Examples of suitable crosslinking agents include, but are not limited to, compounds or complexes containing chromic acetate and/or chromic chloride. Other suitable transition metal cations include chromium VI within a redox system, aluminum III, iron II, iron III, and zirconium IV. Generally, the crosslinking agent may be present in polymerizable organic monomer compositions in an amount in the range of from 0.01% to about 5% by weight of the polymerizable organic monomer composition.
- Stimulation Treatments.
- Once the stabilizing composition is placed into the formation, it is allowed to substantially cure and stabilize the treated portion of the formation. Once the treated portion of the formation is so stabilized, a stimulation treatment is performed.
- In certain embodiments, the stimulating step of the methods of the present invention may involve perforating, hydrajetting, fracturing, or some other stimulating method known in the art. One object of the stimulation treatment is to place the well bore in fluid communication with the treated portion of the formation surrounding the well bore and with an untreated portion. This concept is illustrated in
FIG. 1 to show how fluid communication may be established where the chosen stimulation treatment is fracturing.FIG. 1 shows a top view of well bore 10 with astylized fracture 20. Well bore 10 has been stabilized in the near well bore region (30) to a distance of approximately one-half of a well bore diameter, as shown by stabilizingtreatment penetration 30. - Stimulation Treatments: Hydrajetting.
- One stimulation treatment suitable for use in the methods of the present invention is hydrajetting. Hydrajetting, as described above, refers to a treatment in which a hydrajetting tool having at least one fluid jet forming nozzle is positioned adjacent to a formation to be fractured, and fluid is then jetted through the nozzle against the formation at a pressure sufficient to form a cavity, or slot therein to fracture the formation by stagnation pressure in the cavity. In some embodiments of the present invention, the hydrajetting tool is used to create slots substantially uniformly around the well bore circumference. Because the jetted fluids would have to flow out of the slot in a direction generally opposite to the direction of the incoming jetted fluid, they are trapped in the slot and create a relatively high stagnation pressure at the tip of a cavity. This high stagnation pressure often causes a microfracture to be formed that extends a short distance into the formation. That microfracture may be further extended by pumping a fluid into the well bore to raise the ambient fluid pressure exerted on the formation while the formation is being hydrajetted. Such a fluid in the well bore will flow into the slot and fracture produced by the fluid jet and, if introduced into the well bore at a sufficient rate and pressure, may be used to extend the fracture an additional distance from the well bore into the formation. Then a proppant is generally added to the fluid to form a slurry that is pumped into the fracture to prevent the fracture from closing when the pumping pressure is released. A portion of the proppant may be coated with a tackifying agent, inter alia, to control fines from migrating into the proppant pack. A portion of the proppant may also be coated with curable resin so that, once cured, the placed proppant forms a consolidated mass and prevents the proppant from flowing back during production of the well.
- Stimulation Treatments: Hydraulic Fracturing.
- Another stimulation treatment suitable for use in some embodiments of the methods of the present invention is hydraulic fracturing, wherein a formation is treated to increase its permeability by hydraulically fracturing the formation to create or enhance one or more cracks or “fractures.” In most cases, a hydraulic fracturing treatment involves pumping a proppant-free, viscous fluid (known as a pad fluid) into a subterranean formation faster than the fluid can escape into the formation so that the pressure in the formation rises and the formation breaks, creating an artificial fracture or enlarging a natural fracture. Similar to hydrajetting, a proppant is then generally added to the fluid to form a slurry that is pumped into the fracture to prevent the fracture from closing when the pumping pressure is released. A portion of the proppant may be coated with a tackifying agent, inter alia, to control fines from migrating into the proppant pack. A portion of the proppant may also be coated with curable resin so that, once cured, the placed proppant forms a consolidated mass and prevents the proppant from flowing back during production of the well.
- Suitable Proppants.
- Proppants that may be used in the embodiments of the stimulation treatments of the present invention include a wide variety of particulate materials suitable for use in subterranean applications. Examples include, but are not limited to, man-made proppant; sand; bauxite; ceramic materials; glass materials; polymer materials; plastic materials; “TEFLON™” materials; lightweight particulates; ground or crushed nut shells; ground or crushed seed shells; ground or crushed fruit pits; processed wood; composite particulates prepared from a binder with filler particulate including silica, alumina, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, and solid glass; or mixtures thereof. The proppant used may have a particle size in the range of from about 2 to about 400 mesh, U.S. Sieve Series. Preferably, the proppant is graded sand having a particle size in the range of from about 10 to about 70 mesh, U.S. Sieve Series.
- In certain preferred embodiments, the proppant used is coated with either a resin that is capable of consolidating the proppant particles into a hardened, permeable mass; a tackifying agent capable of controlling particulate production from the unstabilized portion of the formation; or a combination thereof. It is well within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin or tackifying agent to coat the proppant used in the present invention.
- Resins suitable for use in coating proppant used in the present invention include, but are not limited to, two-component epoxy-based resins, furan-based resins, phenolic-based resins, high-temperature (HT) epoxy-based resins, and phenol/phenol formaldehyde/furfuryl alcohol resins. Selection of a suitable resin coating material may be affected by the temperature of the subterranean formation to which the fluid will be introduced. By way of example, for subterranean formations having a bottom hole static temperature (“BHST”) ranging from about 60° F. to about 250° F., two-component epoxy-based resins comprising a hardenable resin component and a hardening agent component containing specific hardening agents may be preferred. For subterranean formations having a BHST ranging from about 300° F. to about 600° F., a furan-based resin may be preferred. For subterranean formations having a BHST ranging from about 200° F. to about 400° F., either a phenolic-based resin or a one-component HT epoxy-based resin may be suitable. For subterranean formations having a BHST of at least about 175° F., a phenol/phenol formaldehyde/furfuryl alcohol resin also may be suitable.
- Tackifying agents suitable for use in coating proppant used in the present invention comprise any compound that, when in liquid form or in a solvent solution, will form a non-hardening coating upon a particulate. A particularly preferred group of tackifying agents comprise polyamides that are liquids or in solution at the temperature of the subterranean formation such that they are, by themselves, non-hardening when introduced into the subterranean formation. A particularly preferred product is a condensation reaction product comprised of commercially available polyacids and a polyamine. Such commercial products include compounds such as mixtures of C36 dibasic acids containing some trimer and higher oligomers and also small amounts of monomer acids that are reacted with polyamines. Other polyacids include trimer acids, synthetic acids produced from fatty acids, maleic anhydride, acrylic acid, and the like. Such acid compounds are commercially available from companies such as Witco Corporation, Union Camp, Chemtall, and Emery Industries. The reaction products are available from, for example, Champion Technologies, Inc. and Witco Corporation. Additional compounds which may be used as tackifying compounds include liquids and solutions of, for example, polyesters, polycarbonates and polycarbamates, natural resins such as shellac and the like. Other suitable tackifying agents are described in U.S. Pat. No. 5,853,048 issued to Weaver, et al. and U.S. Pat. No. 5,833,000 issued to Weaver, et al., the relevant disclosures of which are herein incorporated by reference.
- Tackifying agents suitable for use in the present invention may be either used such that they form non-hardening coating or they may be combined with a multifunctional material capable of reacting with the tackifying compound to form a hardened coating. A “hardened coating” as used herein means that the reaction of the tackifying compound with the multifunctional material will result in a substantially non-flowable reaction product that exhibits a higher compressive strength in a consolidated agglomerate than the tackifying compound alone with the particulates. In this instance, the tackifying agent may function similarly to a hardenable resin. Multifunctional materials suitable for use in the present invention include, but are not limited to, aldehydes such as formaldehyde, dialdehydes such as glutaraldehyde, hemiacetals or aldehyde releasing compounds, diacid halides, dihalides such as dichlorides and dibromides, polyacid anhydrides such as citric acid, epoxides, furfuraldehyde, glutaraldehyde or aldehyde condensates and the like, and combinations thereof. In some embodiments of the present invention, the multifunctional material may be mixed with the tackifying compound in an amount of from about 0.01 to about 50 percent by weight of the tackifying compound to effect formation of the reaction product. In some preferable embodiments, the compound is present in an amount of from about 0.5 to about 1 percent by weight of the tackifying compound. Suitable multifunctional materials are described in U.S. Pat. No. 5,839,510 issued to Weaver, et al., the relevant disclosure of which is herein incorporated by reference.
- Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims.
Claims (113)
1. A method of substantially stabilizing a portion of a subterranean formation penetrated by a well bore and stimulating fluid production therefrom comprising:
placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and,
stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
2. The method of claim 1 wherein the stabilizing composition comprises a curable resin composition.
3. The method of claim 2 wherein the curable resin composition comprises a novolak resin, a polyepoxide resin, a phenol-aldehyde resin, a urea-aldehyde resin, a urethane resin, a phenolic resin, a furan/furfuryl alcohol resin, a phenolic/latex resin, a phenol formaldeyhe resin, a polyester resin, including hybrids and copolymers thereof, a polyurethane resin and hybrids and copolymers thereof, an acrylate resin, or a mixture thereof.
4. The method of claim 2 further comprising an internal catalyst or activator.
5. The method of claim 2 further comprising a time-delayed catalyst or an external catalyst.
6. The method of claim 1 wherein the stabilizing composition comprises a gelable composition.
7. The method of claim 6 wherein the gelable composition comprises a gelable resin composition, a gelable aqueous silicate composition, a polymerizable organic monomer composition, or a crosslinkable aqueous polymer composition.
8. The method of claim 7 wherein the gelable resin composition comprises a curable resin composition that comprises a curable resin, a diluent, and a resin curing agent.
9. The method of claim 8 wherein the curable resin comprises an organic resin that comprises a polyepoxide resin, a polyester resin, a urea-aldehyde resin, a furan resin, a urethane resin, or a mixture thereof.
10. The method of claim 8 wherein the diluent comprises a phenol, a formaldehyde, a furfuryl alcohol, a furfural, an alcohol, an ether, or a mixture thereof.
11. The method of claim 8 wherein the diluent is present in the curable resin composition in an amount in the range of from about 5% to about 75% by weight of the curable resin.
12. The method of claim 8 wherein the resin curing agent comprises an amine, a polyamine, an amide, a polyamide, or a methylene dianiline.
13. The method of claim 8 wherein the resin curing agent is present in the curable resin composition in an amount in the range of from about 5% to about 75% by weight of the curable resin.
14. The method of claim 8 wherein the curable resin composition further comprises a flexibilizer additive.
15. The method of claim 14 wherein the flexibilizer additive comprises an organic ester, an oxygenated organic solvent, an aromatic solvent, or combinations thereof.
16. The method of claim 14 wherein the flexibilizer additive is present in the curable resin composition in an amount in the range of from about 5% to about 80% by weight of the curable resin.
17. The method of claim 7 wherein the gelable aqueous silicate composition comprises an aqueous alkali metal silicate solution and a temperature activated catalyst.
18. The method of claim 17 wherein the aqueous alkali metal silicate solution generally comprises an alkali metal silicate and an aqueous liquid.
19. The method of claim 18 wherein the alkali metal silicate comprises sodium silicate, potassium silicate, lithium silicate, rubidium silicate, or cesium silicate.
20. The method of claim 18 wherein the aqueous liquid comprises fresh water, salt water, brine, or seawater.
21. The method of claim 17 wherein the temperature activated catalyst comprises an ammonium sulfate, a sodium acid pyrophosphate, a citric acid, or an ethyl acetate.
22. The method of claim 7 wherein the polymerizable organic monomer composition comprises an aqueous-base fluid, a water soluble polymerizable organic monomer, an oxygen scavenger, and a primary initiator.
23. The method of claim 22 wherein the aqueous solvent comprises fresh water, salt water, brine, seawater, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention or with the subterranean formation.
24. The method of claim 22 wherein the water soluble polymerizable organic monomer comprises acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-methacrylamido-2-methylpropane sulfonic acid, 2-dimethylacrylamide, vinyl sulfonic acid, N,N-dimethylaminoethylmethacrylate, 2-triethylammoniumethylmethacrylate chloride, N,N-dimethyl-aminopropylmethacryl-amide, methacrylamidepropyltriethylammonium chloride, N-vinyl pyrrolidone, vinyl-phosphonic acid, methacryloyloxyethyl trimethylammonium sulfate, or a mixture thereof.
25. The method of claim 22 wherein the water soluble polymerizable organic monomer comprises hydroxyethylacrylate, hydroxymethylacrylate, hydroxyethylmethacrylate, N-hydroxymethylacrylamide, N-hydroxy-methylmethacrylamide, polyethylene acrylate, polyethylene methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, hydroxyethylcellulose-vinyl phosphoric acid, or a mixture thereof.
26. The method of claim 22 wherein the water soluble polymerizable organic monomer is present in the polymerizable organic monomer composition in an amount in the range of from about 1% to about 20% by weight of the aqueous-base fluid.
27. The method of claim 22 wherein the oxygen scavenger comprises stannous chloride.
28. The method of claim 22 wherein the oxygen scavenger is present in the polymerizable organic monomer composition in an amount in the range of from about 0.005% to about 0.1 % by weight of the polymerizable organic monomer composition.
29. The method of claim 22 wherein the primary initiator comprises an alkali metal persulfate, a peroxide, an oxidation-reduction system employing reducing agents, or an azo polymerization initiator.
30. The method of claim 22 wherein the primary initiator comprises 2,2′-azobis(2-imidazole-2-hydroxyethyl)propane, 2,2′-azobis(2-aminopropane), 4,4′-azobis(4-cyanovaleric acid), or 2,2′-azobis(2-methyl-N-(2-hydroxyethyl)propionamide.
31. The method of claim 22 wherein the polymerizable organic monomer composition further comprises a secondary initiator.
32. The method of claim 22 wherein the polymerizable organic monomer composition further comprises a crosslinking agent.
33. The method of claim 7 wherein the crosslinkable aqueous polymer comprises an aqueous solvent, a crosslinkable polymer, and a crosslinking agent.
34. The method of claim 33 wherein the aqueous solvent comprises fresh water, salt water, brine, seawater, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention or with the subterranean formation.
35. The method of claim 33 wherein the crosslinkable polymer composition is present in the crosslinkable aqueous polymer composition in an amount in the range of from about 1% to about 30% by weight of the aqueous solvent.
36. The method of claim 33 wherein the crosslinkable polymer comprises a carboxylate-containing polymer or an acrylamide-containing polymer.
37. The method of claim 33 wherein the crosslinkable polymer is a polyacrylamide, a partially hydrolyzed polyacrylamide, a copolymer of acrylamide and acrylate, or a carboxylate-containing terpolymers and tetrapolymers of acrylate.
38. The method of claim 33 wherein the crosslinking agent comprises a molecule or complex containing a reactive transition metal cation.
39. The method of claim 33 wherein the crosslinking agent comprises trivalent chromium cations complexed or bonded to anions, atomic oxygen, or water.
40. The method of claim 33 wherein the crosslinking agent is present in the aqueous crosslinkable polymer composition in an amount in the range of from about 0.001% to about 5% by weight of the crosslinkable polymer composition.
41. The method of claim 32 wherein the crosslinkable aqueous polymer further comprises a crosslinking delaying agent.
42. The method of claim 41 wherein the crosslinking delaying agent comprises a polysaccharide crosslinking delaying agent.
43. The method of claim 1 wherein the stabilizing composition penetrates into the near well bore area of a portion in a formation to a depth of from about a few inches to about three well bore diameters.
44. The method of claim 1 wherein the stimulating step comprises hydrajetting, puncturing, fracturing, or a combinations thereof.
45. The method of claim 1 further comprising the step of, after stimulating the stabilized portion, placing proppant into the area or fluid communication.
46. The method of claim 45 wherein the proppant comprises a hardenable resin coating.
47. The method of claim 45 wherein the proppant comprises a tackyfier coating.
48. The method of claim 1 wherein the well bore comprises an open hole well bore.
49. The method of claim 1 wherein the well bore comprises a cased well bore.
50. A method of controlling formation sands in a portion of a formation penetrated by a well bore and stimulating fluid production therefrom comprising:
placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and,
stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
51. The method of claim 50 wherein the stabilizing composition comprises a curable resin composition.
52. The method of claim 51 wherein the curable resin composition comprises a novolak resin, a polyepoxide resin, a phenol-aldehyde resin, a urea-aldehyde resin, a urethane resin, a phenolic resin, a furan/furfuryl alcohol resin, a phenolic/latex resin, a phenol formaldeyhe resin, a polyester resin, including hybrids and copolymers thereof, a polyurethane resin and hybrids and copolymers thereof, an acrylate resin, or mixtures thereof.
53. The method of claim 51 further comprising an internal catalyst, an activator, a time-delayed catalyst, or an external catalyst.
54. The method of claim 50 wherein the stabilizing composition comprises a gelable composition.
55. The method of claim 54 wherein the gelable composition comprises a gelable resin composition, a gelable aqueous silicate composition, a polymerizable organic monomer composition, or a crosslinkable aqueous polymer composition.
56. The method of claim 55 wherein the gelable resin composition comprises a curable resin composition that comprises a curable resin, a diluent, and a resin curing agent.
57. The method of claim 56 wherein the curable resin comprises an organic resin that comprises a polyepoxide resin, a polyester resin, a urea-aldehyde resin, a furan resin, a urethane resin, or a mixture thereof.
58. The method of claim 56 wherein the diluent comprises a phenol, a formaldehyde, a furfuryl alcohol, a furfural, an alcohol, an ether, or a mixture thereof.
59. The method of claim 56 wherein the resin curing agent comprises an amine, a polyamine, an amide, a polyamide, or a methylene dianiline.
60. The method of claim 56 wherein the curable resin composition further comprises a flexibilizer additive, wherein the flexibilizer additive comprises an organic ester, an oxygenated organic solvent, an aromatic solvent, or combinations thereof.
61. The method of claim 55 wherein the gelable aqueous silicate composition comprises an aqueous alkali metal silicate solution and a temperature activated catalyst.
62. The method of claim 61 wherein the aqueous alkali metal silicate solution generally comprises an aqueous liquid and an alkali metal silicate selected from the group consisting of sodium silicate, potassium silicate, lithium silicate, rubidium silicate, and cesium silicate.
63. The method of claim 61 wherein the temperature activated catalyst comprises an ammonium sulfate, a sodium acid pyrophosphate, a citric acid, or an ethyl acetate.
64. The method of claim 55 wherein the polymerizable organic monomer composition comprises an aqueous-base fluid, a water soluble polymerizable organic monomer, an oxygen scavenger, and a primary initiator.
65. The method of claim 64 wherein the water soluble polymerizable organic monomer comprises acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-methacrylamido-2-methylpropane sulfonic acid, 2-dimethylacrylamide, vinyl sulfonic acid, N,N-dimethylaminoethylmethacrylate, 2-triethylammoniumethylmethacrylate chloride, N,N-dimethyl-aminopropylmethacryl-amide, methacrylamidepropyltriethylammonium chloride, N-vinyl pyrrolidone, vinyl-phosphonic acid, methacryloyloxyethyl trimethylammonium sulfate, or a mixture thereof.
66. The method of claim 64 wherein the water soluble polymerizable organic monomer comprises hydroxyethylacrylate, hydroxymethylacrylate, hydroxyethylmethacrylate, N-hydroxymethylacrylamide, N-hydroxy-methylmethacrylamide, polyethylene acrylate, polyethylene methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, hydroxyethylcellulose-vinyl phosphoric acid, or a mixture thereof.
67. The method of claim 64 wherein the oxygen scavenger comprises stannous chloride.
68. The method of claim 64 wherein the primary initiator comprises an alkali metal persulfate, a peroxide, an oxidation-reduction system employing reducing agents, or an azo polymerization initiator.
69. The method of claim 64 wherein the primary initiator comprises 2,2′-azobis(2-imidazole-2-hydroxyethyl)propane, 2,2′-azobis(2-aminopropane), 4,4′-azobis(4-cyanovaleric acid), or 2,2′-azobis(2-methyl-N-(2-hydroxyethyl)propionamide.
70. The method of claim 55 wherein the crosslinkable aqueous polymer composition comprises an aqueous solvent, a crosslinkable polymer, and a crosslinking agent.
71. The method of claim 70 wherein the aqueous solvent comprises fresh water, salt water, brine, or seawater.
72. The method of claim 70 wherein the crosslinkable polymer comprises a carboxylate-containing polymer or an acrylamide-containing polymer.
73. The method of claim 70 wherein the crosslinkable polymer is a polyacrylamide, a partially hydrolyzed polyacrylamide, a copolymer of acrylamide and acrylate, or a carboxylate-containing terpolymers and tetrapolymers of acrylate.
74. The method of claim 70 wherein the crosslinkable aqueous polymer further comprises a crosslinking delaying agent.
76. The method of claim 50 wherein the stabilizing composition penetrates into the near well bore area of a portion in a formation to a depth of from about a few inches to about three well bore diameters.
77. The method of claim 50 wherein the stimulating step comprises hydrajetting, puncturing, fracturing, or a combinations thereof.
78. The method of claim 50 further comprising the step of, after stimulating the stabilized portion, placing proppant into the area or fluid communication.
79. The method of claim 78 wherein the proppant comprises a hardenable resin coating.
80. The method of claim 78 wherein the proppant comprises a tackyfier coating.
81. The method of claim 50 wherein the well bore comprises an open hole well bore.
82. The method of claim 50 wherein the well bore comprises a cased well bore.
83. A system for stabilizing and stimulating a portion of a subterranean formation penetrated by a well bore comprising:
placing a stabilizing composition into a near well bore area of a portion in a formation to create a stabilized portion; and,
stimulating the stabilized portion so as to place the well bore in fluid communication with both the stabilized portion in the near-well bore area and an unstabilized portion of the formation in the far-well bore area.
84. The method of claim 83 wherein the stabilizing composition comprises a curable resin composition.
85. The method of claim 84 wherein the curable resin composition comprises a novolak resin, a polyepoxide resin, a phenol-aldehyde resin, a urea-aldehyde resin, a urethane resin, a phenolic resin, a furan/furfuryl alcohol resin, a phenolic/latex resin, a phenol formaldeyhe resin, a polyester resin, including hybrids and copolymers thereof, a polyurethane resin and hybrids and copolymers thereof, an acrylate resin, or mixtures thereof.
86. The method of claim 84 further comprising an internal catalyst, an activator, a time-delayed catalyst, or an external catalyst.
87. The method of claim 83 wherein the stabilizing composition comprises a gelable composition.
88. The method of claim 87 wherein the gelable composition comprises a gelable resin composition, a gelable aqueous silicate composition, a polymerizable organic monomer composition, or a crosslinkable aqueous polymer composition.
89. The method of claim 88 wherein the gelable resin composition comprises a curable resin composition that comprises a curable resin, a diluent, and a resin curing agent.
90. The method of claim 89 wherein the curable resin comprises an organic resin that comprises a polyepoxide resin, a polyester resin, a urea-aldehyde resin, a furan resin, a urethane resin, or a mixture thereof.
91. The method of claim 89 wherein the diluent comprises a phenol, a formaldehyde, a furfuryl alcohol, a furfural, an alcohol, an ether, or a mixture thereof.
92. The method of claim 89 wherein the resin curing agent comprises an amine, a polyamine, an amide, a polyamide, or a methylene dianiline.
93. The method of claim 89 wherein the curable resin composition further comprises a flexibilizer additive wherein the flexibilizer additive comprises an organic ester, an oxygenated organic solvent, an aromatic solvent, or combinations thereof.
94. The method of claim 88 wherein the gelable aqueous silicate composition comprises an aqueous alkali metal silicate solution and a temperature activated catalyst.
95. The method of claim 94 wherein the aqueous alkali metal silicate solution comprises an aqueous liquid and an alkali metal silicate selected from the group consisting of sodium silicate, potassium silicate, lithium silicate, rubidium silicate, and cesium silicate.
96. The method of claim 94 wherein the temperature activated catalyst comprises an ammonium sulfate, a sodium acid pyrophosphate, a citric acid, or an ethyl acetate.
97. The method of claim 88 wherein the polymerizable organic monomer composition comprises an aqueous-base fluid, a water soluble polymerizable organic monomer, an oxygen scavenger, and a primary initiator.
98. The method of claim 97 wherein the water soluble polymerizable organic monomer comprises acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-methacrylamido-2-methylpropane sulfonic acid, 2-dimethylacrylamide, vinyl sulfonic acid, N,N-dimethylaminoethylmethacrylate, 2-triethylammoniumethylmethacrylate chloride, N,N-dimethyl-aminopropylmethacryl-amide, methacrylamidepropyltriethylammonium chloride, N-vinyl pyrrolidone, vinyl-phosphonic acid, methacryloyloxyethyl trimethylammonium sulfate, or a mixture thereof.
99. The method of claim 97 wherein the water soluble polymerizable organic monomer comprises hydroxyethylacrylate, hydroxymethylacrylate, hydroxyethylmethacrylate, N-hydroxymethylacrylamide, N-hydroxy-methylmethacrylamide, polyethylene acrylate, polyethylene methacrylate, polyethylene glycol acrylate, polyethylene glycol methacrylate, hydroxyethylcellulose-vinyl phosphoric acid, or a mixture thereof.
100. The method of claim 97 wherein the oxygen scavenger comprises stannous chloride.
101. The method of claim 97 wherein the primary initiator comprises an alkali metal persulfate, a peroxide, an oxidation-reduction system employing reducing agents, or an azo polymerization initiator.
102. The method of claim 97 wherein the primary initiator comprises 2,2′-azobis(2-imidazole-2-hydroxyethyl)propane, 2,2′-azobis(2-aminopropane), 4,4′-azobis(4-cyanovaleric acid), or 2,2′-azobis(2-methyl-N-(2-hydroxyethyl)propionamide.
103. The method of claim 88 wherein the crosslinkable aqueous polymer composition comprises an aqueous solvent, a crosslinkable polymer, and a crosslinking agent.
104. The method of claim 103 wherein the aqueous solvent comprises fresh water, salt water, brine, or seawater.
105. The method of claim 103 wherein the crosslinkable polymer comprises a carboxylate-containing polymer or an acrylamide-containing polymer.
106. The method of claim 103 wherein the crosslinkable polymer is a polyacrylamide, a partially hydrolyzed polyacrylamide, a copolymer of acrylamide and acrylate, or a carboxylate-containing terpolymers and tetrapolymers of acrylate.
107. The method of claim 103 wherein the aqueous crosslinkable polymer composition further comprises a crosslinking delaying agent.
108. The method of claim 83 wherein the stabilizing composition penetrates into the near well bore area of a portion in a formation to a depth of from about a few inches to about three well bore diameters.
109. The method of claim 83 wherein the stimulating step comprises hydrajetting, puncturing, fracturing, or a combinations thereof.
110. The method of claim 83 further comprising the step of, after stimulating the stabilized portion, placing proppant into the area or fluid communication.
111. The method of claim 110 wherein the proppant comprises a hardenable resin coating.
112. The method of claim 110 wherein the proppant comprises a tackyfier coating.
113. The method of claim 83 wherein the well bore comprises an open hole well bore.
114. The method of claim 83 wherein the well bore comprises a cased well bore.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/852,811 US20050263283A1 (en) | 2004-05-25 | 2004-05-25 | Methods for stabilizing and stimulating wells in unconsolidated subterranean formations |
ARP050102062A AR050662A1 (en) | 2004-05-25 | 2005-05-19 | METHODS FOR THE STABILIZATION AND STIMULATION OF WELLS IN UNCONSOLIDATED UNDERGROUND FORMATIONS |
US11/271,377 US20080060810A9 (en) | 2004-05-25 | 2005-11-10 | Methods for treating a subterranean formation with a curable composition using a jetting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/852,811 US20050263283A1 (en) | 2004-05-25 | 2004-05-25 | Methods for stabilizing and stimulating wells in unconsolidated subterranean formations |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/271,377 Continuation-In-Part US20080060810A9 (en) | 2004-05-25 | 2005-11-10 | Methods for treating a subterranean formation with a curable composition using a jetting tool |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050263283A1 true US20050263283A1 (en) | 2005-12-01 |
Family
ID=35423940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/852,811 Abandoned US20050263283A1 (en) | 2004-05-25 | 2004-05-25 | Methods for stabilizing and stimulating wells in unconsolidated subterranean formations |
Country Status (2)
Country | Link |
---|---|
US (1) | US20050263283A1 (en) |
AR (1) | AR050662A1 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007007039A1 (en) * | 2005-07-11 | 2007-01-18 | Halliburton Energy Services, Inc. | Methods and compositions for controlling formation fines and reducing proppant flow-back |
US20070102156A1 (en) * | 2004-05-25 | 2007-05-10 | Halliburton Energy Services, Inc. | Methods for treating a subterranean formation with a curable composition using a jetting tool |
US7216711B2 (en) * | 2002-01-08 | 2007-05-15 | Halliburton Eenrgy Services, Inc. | Methods of coating resin and blending resin-coated proppant |
NO20071223L (en) * | 2006-03-08 | 2007-09-10 | Bj Services Co | Repairable resin-coated pellets with apparently low weight and methods of using them. |
DE102006050761A1 (en) * | 2006-10-27 | 2008-05-08 | Construction Research & Technology Gmbh | Hydrophobically modified cationic copolymers |
US7673686B2 (en) | 2005-03-29 | 2010-03-09 | Halliburton Energy Services, Inc. | Method of stabilizing unconsolidated formation for sand control |
US7712531B2 (en) | 2004-06-08 | 2010-05-11 | Halliburton Energy Services, Inc. | Methods for controlling particulate migration |
US7757768B2 (en) | 2004-10-08 | 2010-07-20 | Halliburton Energy Services, Inc. | Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations |
US7762329B1 (en) | 2009-01-27 | 2010-07-27 | Halliburton Energy Services, Inc. | Methods for servicing well bores with hardenable resin compositions |
US7819192B2 (en) | 2006-02-10 | 2010-10-26 | Halliburton Energy Services, Inc. | Consolidating agent emulsions and associated methods |
US7883740B2 (en) | 2004-12-12 | 2011-02-08 | Halliburton Energy Services, Inc. | Low-quality particulates and methods of making and using improved low-quality particulates |
US7926591B2 (en) | 2006-02-10 | 2011-04-19 | Halliburton Energy Services, Inc. | Aqueous-based emulsified consolidating agents suitable for use in drill-in applications |
US7934557B2 (en) * | 2007-02-15 | 2011-05-03 | Halliburton Energy Services, Inc. | Methods of completing wells for controlling water and particulate production |
US7963330B2 (en) | 2004-02-10 | 2011-06-21 | Halliburton Energy Services, Inc. | Resin compositions and methods of using resin compositions to control proppant flow-back |
US8017561B2 (en) | 2004-03-03 | 2011-09-13 | Halliburton Energy Services, Inc. | Resin compositions and methods of using such resin compositions in subterranean applications |
WO2011070453A3 (en) * | 2009-12-09 | 2011-10-27 | Schlumberger Canada Limited | Method for increasing fracture area |
US8354279B2 (en) | 2002-04-18 | 2013-01-15 | Halliburton Energy Services, Inc. | Methods of tracking fluids produced from various zones in a subterranean well |
CN102924674A (en) * | 2012-11-15 | 2013-02-13 | 黄石市汇波防腐技术有限公司 | Catalyst composition used for producing furfural furfuryl alcohol type furan resin |
US8613320B2 (en) | 2006-02-10 | 2013-12-24 | Halliburton Energy Services, Inc. | Compositions and applications of resins in treating subterranean formations |
NL2014133A (en) * | 2015-01-14 | 2016-09-26 | High Five Solutions B V | Slurry composition comprising solid particles for use in construction. |
CN109423263A (en) * | 2017-08-30 | 2019-03-05 | 中国石油化工股份有限公司 | A kind of felted borehole wall strengthening agent and preparation method |
US20190249068A1 (en) * | 2018-02-09 | 2019-08-15 | China University Of Petroleum (East China) | Colloidal nano-graphite-strengthened bulk gel system for dispersed particle gel and composition thereof |
US10385261B2 (en) | 2017-08-22 | 2019-08-20 | Covestro Llc | Coated particles, methods for their manufacture and for their use as proppants |
CN113969153A (en) * | 2020-07-22 | 2022-01-25 | 中石化石油工程技术服务有限公司 | Micro-crosslinked emulsion wall-fixing agent based on lithium silicate-ultrafine particles and preparation method thereof |
CN117567999A (en) * | 2024-01-15 | 2024-02-20 | 中国石油集团川庆钻探工程有限公司 | Adhesive plugging agent and preparation method thereof |
Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2703316A (en) * | 1951-06-05 | 1955-03-01 | Du Pont | Polymers of high melting lactide |
US2869642A (en) * | 1954-09-14 | 1959-01-20 | Texas Co | Method of treating subsurface formations |
US3123138A (en) * | 1964-03-03 | robichaux | ||
US3297086A (en) * | 1962-03-30 | 1967-01-10 | Exxon Production Research Co | Sand consolidation method |
US3308885A (en) * | 1965-12-28 | 1967-03-14 | Union Oil Co | Treatment of subsurface hydrocarbon fluid-bearing formations to reduce water production therefrom |
US3492147A (en) * | 1964-10-22 | 1970-01-27 | Halliburton Co | Method of coating particulate solids with an infusible resin |
US3784585A (en) * | 1971-10-21 | 1974-01-08 | American Cyanamid Co | Water-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same |
US3863709A (en) * | 1973-12-20 | 1975-02-04 | Mobil Oil Corp | Method of recovering geothermal energy |
US3868998A (en) * | 1974-05-15 | 1975-03-04 | Shell Oil Co | Self-acidifying treating fluid positioning process |
US4008763A (en) * | 1976-05-20 | 1977-02-22 | Atlantic Richfield Company | Well treatment method |
US4070865A (en) * | 1976-03-10 | 1978-01-31 | Halliburton Company | Method of consolidating porous formations using vinyl polymer sealer with divinylbenzene crosslinker |
US4074760A (en) * | 1976-11-01 | 1978-02-21 | The Dow Chemical Company | Method for forming a consolidated gravel pack |
US4245702A (en) * | 1978-05-22 | 1981-01-20 | Shell Internationale Research Maatschappij B.V. | Method for forming channels of high fluid conductivity in hard acid-soluble formations |
US4439489A (en) * | 1982-02-16 | 1984-03-27 | Acme Resin Corporation | Particles covered with a cured infusible thermoset film and process for their production |
US4493875A (en) * | 1983-12-09 | 1985-01-15 | Minnesota Mining And Manufacturing Company | Proppant for well fractures and method of making same |
US4494605A (en) * | 1981-12-11 | 1985-01-22 | Texaco Inc. | Sand control employing halogenated, oil soluble hydrocarbons |
US4498995A (en) * | 1981-08-10 | 1985-02-12 | Judith Gockel | Lost circulation drilling fluid |
US4501328A (en) * | 1983-03-14 | 1985-02-26 | Mobil Oil Corporation | Method of consolidation of oil bearing sands |
US4564459A (en) * | 1981-12-03 | 1986-01-14 | Baker Oil Tools, Inc. | Proppant charge and method |
US4572803A (en) * | 1979-08-31 | 1986-02-25 | Asahi Dow Limited | Organic rare-earth salt phosphor |
US4649998A (en) * | 1986-07-02 | 1987-03-17 | Texaco Inc. | Sand consolidation method employing latex |
US4716964A (en) * | 1981-08-10 | 1988-01-05 | Exxon Production Research Company | Use of degradable ball sealers to seal casing perforations in well treatment fluid diversion |
US4733729A (en) * | 1986-09-08 | 1988-03-29 | Dowell Schlumberger Incorporated | Matched particle/liquid density well packing technique |
US4797262A (en) * | 1986-06-16 | 1989-01-10 | Shell Oil Company | Downflow fluidized catalytic cracking system |
US4796701A (en) * | 1987-07-30 | 1989-01-10 | Dowell Schlumberger Incorporated | Pyrolytic carbon coating of media improves gravel packing and fracturing capabilities |
US4800960A (en) * | 1987-12-18 | 1989-01-31 | Texaco Inc. | Consolidatable gravel pack method |
US4809783A (en) * | 1988-01-14 | 1989-03-07 | Halliburton Services | Method of dissolving organic filter cake |
US4895207A (en) * | 1988-12-19 | 1990-01-23 | Texaco, Inc. | Method and fluid for placing resin coated gravel or sand in a producing oil well |
US4903770A (en) * | 1988-09-01 | 1990-02-27 | Texaco Inc. | Sand consolidation methods |
US4986355A (en) * | 1989-05-18 | 1991-01-22 | Conoco Inc. | Process for the preparation of fluid loss additive and gel breaker |
US4986353A (en) * | 1988-09-14 | 1991-01-22 | Conoco Inc. | Placement process for oil field chemicals |
US4986354A (en) * | 1988-09-14 | 1991-01-22 | Conoco Inc. | Composition and placement process for oil field chemicals |
US5082056A (en) * | 1990-10-16 | 1992-01-21 | Marathon Oil Company | In situ reversible crosslinked polymer gel used in hydrocarbon recovery applications |
US5177484A (en) * | 1990-06-12 | 1993-01-05 | Siemens Aktiengesellschaft | Switched capacitor oversampling analog/digital converter with noise filtering |
US5178218A (en) * | 1991-06-19 | 1993-01-12 | Oryx Energy Company | Method of sand consolidation with resin |
US5182051A (en) * | 1990-01-17 | 1993-01-26 | Protechnics International, Inc. | Raioactive tracing with particles |
US5285849A (en) * | 1991-06-21 | 1994-02-15 | Texaco Inc. | Formation treating methods |
US5293939A (en) * | 1992-07-31 | 1994-03-15 | Texaco Chemical Company | Formation treating methods |
US5295542A (en) * | 1992-10-05 | 1994-03-22 | Halliburton Company | Well gravel packing methods |
US5377759A (en) * | 1993-05-20 | 1995-01-03 | Texaco Inc. | Formation treating methods |
US5381864A (en) * | 1993-11-12 | 1995-01-17 | Halliburton Company | Well treating methods using particulate blends |
US5386874A (en) * | 1993-11-08 | 1995-02-07 | Halliburton Company | Perphosphate viscosity breakers in well fracture fluids |
US5388648A (en) * | 1993-10-08 | 1995-02-14 | Baker Hughes Incorporated | Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means |
US5393810A (en) * | 1993-12-30 | 1995-02-28 | Halliburton Company | Method and composition for breaking crosslinked gels |
US5396957A (en) * | 1992-09-29 | 1995-03-14 | Halliburton Company | Well completions with expandable casing portions |
US5484881A (en) * | 1992-10-02 | 1996-01-16 | Cargill, Inc. | Melt-stable amorphous lactide polymer film and process for manufacturing thereof |
US5494103A (en) * | 1992-09-29 | 1996-02-27 | Halliburton Company | Well jetting apparatus |
US5494178A (en) * | 1994-07-25 | 1996-02-27 | Alu Inc. | Display and decorative fixture apparatus |
US5497830A (en) * | 1995-04-06 | 1996-03-12 | Bj Services Company | Coated breaker for crosslinked acid |
US5498280A (en) * | 1994-11-14 | 1996-03-12 | Binney & Smith Inc. | Phosphorescent and fluorescent marking composition |
US5499678A (en) * | 1994-08-02 | 1996-03-19 | Halliburton Company | Coplanar angular jetting head for well perforating |
US5501275A (en) * | 1993-04-05 | 1996-03-26 | Dowell, A Division Of Schlumberger Technology Corporation | Control of particulate flowback in subterranean wells |
US5591700A (en) * | 1994-12-22 | 1997-01-07 | Halliburton Company | Fracturing fluid with encapsulated breaker |
US5594095A (en) * | 1993-07-30 | 1997-01-14 | Cargill, Incorporated | Viscosity-modified lactide polymer composition and process for manufacture thereof |
US5595245A (en) * | 1995-08-04 | 1997-01-21 | Scott, Iii; George L. | Systems of injecting phenolic resin activator during subsurface fracture stimulation for enhanced oil recovery |
US5597784A (en) * | 1993-06-01 | 1997-01-28 | Santrol, Inc. | Composite and reinforced coatings on proppants and particles |
US5604186A (en) * | 1995-02-15 | 1997-02-18 | Halliburton Company | Encapsulated enzyme breaker and method for use in treating subterranean formations |
US5604184A (en) * | 1995-04-10 | 1997-02-18 | Texaco, Inc. | Chemically inert resin coated proppant system for control of proppant flowback in hydraulically fractured wells |
US5609207A (en) * | 1993-12-13 | 1997-03-11 | Halliburton Company | Epoxy resin composition and well treatment method |
US5712314A (en) * | 1996-08-09 | 1998-01-27 | Texaco Inc. | Formulation for creating a pliable resin plug |
US5732364A (en) * | 1995-01-17 | 1998-03-24 | Associated Universities, Inc. | Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes |
US5864003A (en) * | 1996-07-23 | 1999-01-26 | Georgia-Pacific Resins, Inc. | Thermosetting phenolic resin composition |
US5865936A (en) * | 1997-03-28 | 1999-02-02 | National Starch And Chemical Investment Holding Corporation | Rapid curing structural acrylic adhesive |
US5871049A (en) * | 1995-03-29 | 1999-02-16 | Halliburton Energy Services, Inc. | Control of fine particulate flowback in subterranean wells |
US5873413A (en) * | 1997-08-18 | 1999-02-23 | Halliburton Energy Services, Inc. | Methods of modifying subterranean strata properties |
US6012524A (en) * | 1998-04-14 | 2000-01-11 | Halliburton Energy Services, Inc. | Remedial well bore sealing methods and compositions |
US6016870A (en) * | 1998-06-11 | 2000-01-25 | Halliburton Energy Services, Inc. | Compositions and methods for consolidating unconsolidated subterranean zones |
US6024170A (en) * | 1998-06-03 | 2000-02-15 | Halliburton Energy Services, Inc. | Methods of treating subterranean formation using borate cross-linking compositions |
US6028113A (en) * | 1995-09-27 | 2000-02-22 | Sunburst Chemicals, Inc. | Solid sanitizers and cleaner disinfectants |
US6028534A (en) * | 1997-06-02 | 2000-02-22 | Schlumberger Technology Corporation | Formation data sensing with deployed remote sensors during well drilling |
US6040398A (en) * | 1995-07-12 | 2000-03-21 | Sanyo Chemical Industries Ltd. | Epoxy curing agent and one-component (type) epoxy resin composition |
US6169058B1 (en) * | 1997-06-05 | 2001-01-02 | Bj Services Company | Compositions and methods for hydraulic fracturing |
US6172077B1 (en) * | 1997-04-25 | 2001-01-09 | Merck Sharp & Dohme Ltd. | Spiro-azacyclic derivatives and their use as therapeutic agents |
US6176315B1 (en) * | 1998-12-04 | 2001-01-23 | Halliburton Energy Services, Inc. | Preventing flow through subterranean zones |
US6177484B1 (en) * | 1997-11-03 | 2001-01-23 | Texaco Inc. | Combination catalyst/coupling agent for furan resin |
US6184311B1 (en) * | 1990-03-26 | 2001-02-06 | Courtaulds Coatings (Holdings) Limited | Powder coating composition of semi-crystalline polyester and curing agent |
US6187834B1 (en) * | 1999-09-08 | 2001-02-13 | Dow Corning Corporation | Radiation curable silicone compositions |
US6187839B1 (en) * | 1999-03-03 | 2001-02-13 | Halliburton Energy Services, Inc. | Methods of sealing compositions and methods |
US6189615B1 (en) * | 1998-12-15 | 2001-02-20 | Marathon Oil Company | Application of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery |
US6192986B1 (en) * | 1996-09-18 | 2001-02-27 | Halliburton Energy Services, Inc. | Blocking composition for use in subterranean formation |
US6192985B1 (en) * | 1998-12-19 | 2001-02-27 | Schlumberger Technology Corporation | Fluids and techniques for maximizing fracture fluid clean-up |
US6350309B2 (en) * | 1999-02-09 | 2002-02-26 | Halliburton Energy Services, Inc. | Methods and compositions for cementing pipe strings in well bores |
US6503870B2 (en) * | 1999-02-04 | 2003-01-07 | Halliburton Energy Services, Inc. | Sealing subterranean zones |
US20030006036A1 (en) * | 2001-05-23 | 2003-01-09 | Core Laboratories Global N.V. | Method for determining the extent of recovery of materials injected into oil wells during oil and gas exploration and production |
US6508305B1 (en) * | 1999-09-16 | 2003-01-21 | Bj Services Company | Compositions and methods for cementing using elastic particles |
US20040000402A1 (en) * | 2002-06-26 | 2004-01-01 | Nguyen Philip D. | Methods of consolidating proppant and controlling fines in wells |
US20040014608A1 (en) * | 2002-07-19 | 2004-01-22 | Nguyen Philip D. | Methods of preventing the flow-back of particulates deposited in subterranean formations |
US20040014607A1 (en) * | 2002-07-16 | 2004-01-22 | Sinclair A. Richard | Downhole chemical delivery system for oil and gas wells |
US6681856B1 (en) * | 2003-05-16 | 2004-01-27 | Halliburton Energy Services, Inc. | Methods of cementing in subterranean zones penetrated by well bores using biodegradable dispersants |
US6686328B1 (en) * | 1998-07-17 | 2004-02-03 | The Procter & Gamble Company | Detergent tablet |
US20050000731A1 (en) * | 2003-07-03 | 2005-01-06 | Nguyen Philip D. | Method and apparatus for treating a productive zone while drilling |
US20050006093A1 (en) * | 2003-07-07 | 2005-01-13 | Nguyen Philip D. | Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures |
US20050006095A1 (en) * | 2003-07-08 | 2005-01-13 | Donald Justus | Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures |
US20050006096A1 (en) * | 2003-07-09 | 2005-01-13 | Nguyen Philip D. | Methods of consolidating subterranean zones and compositions therefor |
US6851474B2 (en) * | 2003-02-06 | 2005-02-08 | Halliburton Energy Services, Inc. | Methods of preventing gravel loss in through-tubing vent-screen well completions |
US20050034862A1 (en) * | 2003-08-14 | 2005-02-17 | Nguyen Phillip D. | Methods for fracturing stimulation |
-
2004
- 2004-05-25 US US10/852,811 patent/US20050263283A1/en not_active Abandoned
-
2005
- 2005-05-19 AR ARP050102062A patent/AR050662A1/en unknown
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123138A (en) * | 1964-03-03 | robichaux | ||
US2703316A (en) * | 1951-06-05 | 1955-03-01 | Du Pont | Polymers of high melting lactide |
US2869642A (en) * | 1954-09-14 | 1959-01-20 | Texas Co | Method of treating subsurface formations |
US3297086A (en) * | 1962-03-30 | 1967-01-10 | Exxon Production Research Co | Sand consolidation method |
US3492147A (en) * | 1964-10-22 | 1970-01-27 | Halliburton Co | Method of coating particulate solids with an infusible resin |
US3308885A (en) * | 1965-12-28 | 1967-03-14 | Union Oil Co | Treatment of subsurface hydrocarbon fluid-bearing formations to reduce water production therefrom |
US3784585A (en) * | 1971-10-21 | 1974-01-08 | American Cyanamid Co | Water-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same |
US3863709A (en) * | 1973-12-20 | 1975-02-04 | Mobil Oil Corp | Method of recovering geothermal energy |
US3868998A (en) * | 1974-05-15 | 1975-03-04 | Shell Oil Co | Self-acidifying treating fluid positioning process |
US4070865A (en) * | 1976-03-10 | 1978-01-31 | Halliburton Company | Method of consolidating porous formations using vinyl polymer sealer with divinylbenzene crosslinker |
US4008763A (en) * | 1976-05-20 | 1977-02-22 | Atlantic Richfield Company | Well treatment method |
US4074760A (en) * | 1976-11-01 | 1978-02-21 | The Dow Chemical Company | Method for forming a consolidated gravel pack |
US4245702A (en) * | 1978-05-22 | 1981-01-20 | Shell Internationale Research Maatschappij B.V. | Method for forming channels of high fluid conductivity in hard acid-soluble formations |
US4572803A (en) * | 1979-08-31 | 1986-02-25 | Asahi Dow Limited | Organic rare-earth salt phosphor |
US4498995A (en) * | 1981-08-10 | 1985-02-12 | Judith Gockel | Lost circulation drilling fluid |
US4716964A (en) * | 1981-08-10 | 1988-01-05 | Exxon Production Research Company | Use of degradable ball sealers to seal casing perforations in well treatment fluid diversion |
US4564459A (en) * | 1981-12-03 | 1986-01-14 | Baker Oil Tools, Inc. | Proppant charge and method |
US4494605A (en) * | 1981-12-11 | 1985-01-22 | Texaco Inc. | Sand control employing halogenated, oil soluble hydrocarbons |
US4439489A (en) * | 1982-02-16 | 1984-03-27 | Acme Resin Corporation | Particles covered with a cured infusible thermoset film and process for their production |
US4501328A (en) * | 1983-03-14 | 1985-02-26 | Mobil Oil Corporation | Method of consolidation of oil bearing sands |
US4493875A (en) * | 1983-12-09 | 1985-01-15 | Minnesota Mining And Manufacturing Company | Proppant for well fractures and method of making same |
US4797262A (en) * | 1986-06-16 | 1989-01-10 | Shell Oil Company | Downflow fluidized catalytic cracking system |
US4649998A (en) * | 1986-07-02 | 1987-03-17 | Texaco Inc. | Sand consolidation method employing latex |
US4733729A (en) * | 1986-09-08 | 1988-03-29 | Dowell Schlumberger Incorporated | Matched particle/liquid density well packing technique |
US4796701A (en) * | 1987-07-30 | 1989-01-10 | Dowell Schlumberger Incorporated | Pyrolytic carbon coating of media improves gravel packing and fracturing capabilities |
US4800960A (en) * | 1987-12-18 | 1989-01-31 | Texaco Inc. | Consolidatable gravel pack method |
US4809783A (en) * | 1988-01-14 | 1989-03-07 | Halliburton Services | Method of dissolving organic filter cake |
US4903770A (en) * | 1988-09-01 | 1990-02-27 | Texaco Inc. | Sand consolidation methods |
US4986353A (en) * | 1988-09-14 | 1991-01-22 | Conoco Inc. | Placement process for oil field chemicals |
US4986354A (en) * | 1988-09-14 | 1991-01-22 | Conoco Inc. | Composition and placement process for oil field chemicals |
US4895207A (en) * | 1988-12-19 | 1990-01-23 | Texaco, Inc. | Method and fluid for placing resin coated gravel or sand in a producing oil well |
US4986355A (en) * | 1989-05-18 | 1991-01-22 | Conoco Inc. | Process for the preparation of fluid loss additive and gel breaker |
US5182051A (en) * | 1990-01-17 | 1993-01-26 | Protechnics International, Inc. | Raioactive tracing with particles |
US6184311B1 (en) * | 1990-03-26 | 2001-02-06 | Courtaulds Coatings (Holdings) Limited | Powder coating composition of semi-crystalline polyester and curing agent |
US5177484A (en) * | 1990-06-12 | 1993-01-05 | Siemens Aktiengesellschaft | Switched capacitor oversampling analog/digital converter with noise filtering |
US5082056A (en) * | 1990-10-16 | 1992-01-21 | Marathon Oil Company | In situ reversible crosslinked polymer gel used in hydrocarbon recovery applications |
US5178218A (en) * | 1991-06-19 | 1993-01-12 | Oryx Energy Company | Method of sand consolidation with resin |
US5285849A (en) * | 1991-06-21 | 1994-02-15 | Texaco Inc. | Formation treating methods |
US5293939A (en) * | 1992-07-31 | 1994-03-15 | Texaco Chemical Company | Formation treating methods |
US5494103A (en) * | 1992-09-29 | 1996-02-27 | Halliburton Company | Well jetting apparatus |
US5396957A (en) * | 1992-09-29 | 1995-03-14 | Halliburton Company | Well completions with expandable casing portions |
US5484881A (en) * | 1992-10-02 | 1996-01-16 | Cargill, Inc. | Melt-stable amorphous lactide polymer film and process for manufacturing thereof |
US5295542A (en) * | 1992-10-05 | 1994-03-22 | Halliburton Company | Well gravel packing methods |
US6172011B1 (en) * | 1993-04-05 | 2001-01-09 | Schlumberger Technolgy Corporation | Control of particulate flowback in subterranean wells |
US5501275A (en) * | 1993-04-05 | 1996-03-26 | Dowell, A Division Of Schlumberger Technology Corporation | Control of particulate flowback in subterranean wells |
US5377759A (en) * | 1993-05-20 | 1995-01-03 | Texaco Inc. | Formation treating methods |
US5597784A (en) * | 1993-06-01 | 1997-01-28 | Santrol, Inc. | Composite and reinforced coatings on proppants and particles |
US5594095A (en) * | 1993-07-30 | 1997-01-14 | Cargill, Incorporated | Viscosity-modified lactide polymer composition and process for manufacture thereof |
US5388648A (en) * | 1993-10-08 | 1995-02-14 | Baker Hughes Incorporated | Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means |
US5386874A (en) * | 1993-11-08 | 1995-02-07 | Halliburton Company | Perphosphate viscosity breakers in well fracture fluids |
US5381864A (en) * | 1993-11-12 | 1995-01-17 | Halliburton Company | Well treating methods using particulate blends |
US5609207A (en) * | 1993-12-13 | 1997-03-11 | Halliburton Company | Epoxy resin composition and well treatment method |
US5393810A (en) * | 1993-12-30 | 1995-02-28 | Halliburton Company | Method and composition for breaking crosslinked gels |
US5494178A (en) * | 1994-07-25 | 1996-02-27 | Alu Inc. | Display and decorative fixture apparatus |
US5499678A (en) * | 1994-08-02 | 1996-03-19 | Halliburton Company | Coplanar angular jetting head for well perforating |
US5498280A (en) * | 1994-11-14 | 1996-03-12 | Binney & Smith Inc. | Phosphorescent and fluorescent marking composition |
US5591700A (en) * | 1994-12-22 | 1997-01-07 | Halliburton Company | Fracturing fluid with encapsulated breaker |
US5732364A (en) * | 1995-01-17 | 1998-03-24 | Associated Universities, Inc. | Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes |
US5604186A (en) * | 1995-02-15 | 1997-02-18 | Halliburton Company | Encapsulated enzyme breaker and method for use in treating subterranean formations |
US5871049A (en) * | 1995-03-29 | 1999-02-16 | Halliburton Energy Services, Inc. | Control of fine particulate flowback in subterranean wells |
US5497830A (en) * | 1995-04-06 | 1996-03-12 | Bj Services Company | Coated breaker for crosslinked acid |
US5604184A (en) * | 1995-04-10 | 1997-02-18 | Texaco, Inc. | Chemically inert resin coated proppant system for control of proppant flowback in hydraulically fractured wells |
US6040398A (en) * | 1995-07-12 | 2000-03-21 | Sanyo Chemical Industries Ltd. | Epoxy curing agent and one-component (type) epoxy resin composition |
US5595245A (en) * | 1995-08-04 | 1997-01-21 | Scott, Iii; George L. | Systems of injecting phenolic resin activator during subsurface fracture stimulation for enhanced oil recovery |
US6028113A (en) * | 1995-09-27 | 2000-02-22 | Sunburst Chemicals, Inc. | Solid sanitizers and cleaner disinfectants |
US5864003A (en) * | 1996-07-23 | 1999-01-26 | Georgia-Pacific Resins, Inc. | Thermosetting phenolic resin composition |
US5712314A (en) * | 1996-08-09 | 1998-01-27 | Texaco Inc. | Formulation for creating a pliable resin plug |
US6192986B1 (en) * | 1996-09-18 | 2001-02-27 | Halliburton Energy Services, Inc. | Blocking composition for use in subterranean formation |
US5865936A (en) * | 1997-03-28 | 1999-02-02 | National Starch And Chemical Investment Holding Corporation | Rapid curing structural acrylic adhesive |
US6172077B1 (en) * | 1997-04-25 | 2001-01-09 | Merck Sharp & Dohme Ltd. | Spiro-azacyclic derivatives and their use as therapeutic agents |
US6028534A (en) * | 1997-06-02 | 2000-02-22 | Schlumberger Technology Corporation | Formation data sensing with deployed remote sensors during well drilling |
US6169058B1 (en) * | 1997-06-05 | 2001-01-02 | Bj Services Company | Compositions and methods for hydraulic fracturing |
US5875844A (en) * | 1997-08-18 | 1999-03-02 | Halliburton Energy Services, Inc. | Methods of sealing pipe strings in well bores |
US5875846A (en) * | 1997-08-18 | 1999-03-02 | Halliburton Energy Services, Inc. | Methods of modifying subterranean strata properties |
US5873413A (en) * | 1997-08-18 | 1999-02-23 | Halliburton Energy Services, Inc. | Methods of modifying subterranean strata properties |
US6177484B1 (en) * | 1997-11-03 | 2001-01-23 | Texaco Inc. | Combination catalyst/coupling agent for furan resin |
US6012524A (en) * | 1998-04-14 | 2000-01-11 | Halliburton Energy Services, Inc. | Remedial well bore sealing methods and compositions |
US6024170A (en) * | 1998-06-03 | 2000-02-15 | Halliburton Energy Services, Inc. | Methods of treating subterranean formation using borate cross-linking compositions |
US6016870A (en) * | 1998-06-11 | 2000-01-25 | Halliburton Energy Services, Inc. | Compositions and methods for consolidating unconsolidated subterranean zones |
US6686328B1 (en) * | 1998-07-17 | 2004-02-03 | The Procter & Gamble Company | Detergent tablet |
US6176315B1 (en) * | 1998-12-04 | 2001-01-23 | Halliburton Energy Services, Inc. | Preventing flow through subterranean zones |
US6189615B1 (en) * | 1998-12-15 | 2001-02-20 | Marathon Oil Company | Application of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery |
US6192985B1 (en) * | 1998-12-19 | 2001-02-27 | Schlumberger Technology Corporation | Fluids and techniques for maximizing fracture fluid clean-up |
US6503870B2 (en) * | 1999-02-04 | 2003-01-07 | Halliburton Energy Services, Inc. | Sealing subterranean zones |
US6350309B2 (en) * | 1999-02-09 | 2002-02-26 | Halliburton Energy Services, Inc. | Methods and compositions for cementing pipe strings in well bores |
US6187839B1 (en) * | 1999-03-03 | 2001-02-13 | Halliburton Energy Services, Inc. | Methods of sealing compositions and methods |
US6187834B1 (en) * | 1999-09-08 | 2001-02-13 | Dow Corning Corporation | Radiation curable silicone compositions |
US6508305B1 (en) * | 1999-09-16 | 2003-01-21 | Bj Services Company | Compositions and methods for cementing using elastic particles |
US20030006036A1 (en) * | 2001-05-23 | 2003-01-09 | Core Laboratories Global N.V. | Method for determining the extent of recovery of materials injected into oil wells during oil and gas exploration and production |
US20040000402A1 (en) * | 2002-06-26 | 2004-01-01 | Nguyen Philip D. | Methods of consolidating proppant and controlling fines in wells |
US20040014607A1 (en) * | 2002-07-16 | 2004-01-22 | Sinclair A. Richard | Downhole chemical delivery system for oil and gas wells |
US20040014608A1 (en) * | 2002-07-19 | 2004-01-22 | Nguyen Philip D. | Methods of preventing the flow-back of particulates deposited in subterranean formations |
US6851474B2 (en) * | 2003-02-06 | 2005-02-08 | Halliburton Energy Services, Inc. | Methods of preventing gravel loss in through-tubing vent-screen well completions |
US6681856B1 (en) * | 2003-05-16 | 2004-01-27 | Halliburton Energy Services, Inc. | Methods of cementing in subterranean zones penetrated by well bores using biodegradable dispersants |
US20050000731A1 (en) * | 2003-07-03 | 2005-01-06 | Nguyen Philip D. | Method and apparatus for treating a productive zone while drilling |
US20050006093A1 (en) * | 2003-07-07 | 2005-01-13 | Nguyen Philip D. | Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures |
US20050006095A1 (en) * | 2003-07-08 | 2005-01-13 | Donald Justus | Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures |
US20050006096A1 (en) * | 2003-07-09 | 2005-01-13 | Nguyen Philip D. | Methods of consolidating subterranean zones and compositions therefor |
US20050034862A1 (en) * | 2003-08-14 | 2005-02-17 | Nguyen Phillip D. | Methods for fracturing stimulation |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7216711B2 (en) * | 2002-01-08 | 2007-05-15 | Halliburton Eenrgy Services, Inc. | Methods of coating resin and blending resin-coated proppant |
US8354279B2 (en) | 2002-04-18 | 2013-01-15 | Halliburton Energy Services, Inc. | Methods of tracking fluids produced from various zones in a subterranean well |
US7963330B2 (en) | 2004-02-10 | 2011-06-21 | Halliburton Energy Services, Inc. | Resin compositions and methods of using resin compositions to control proppant flow-back |
US8017561B2 (en) | 2004-03-03 | 2011-09-13 | Halliburton Energy Services, Inc. | Resin compositions and methods of using such resin compositions in subterranean applications |
US20070102156A1 (en) * | 2004-05-25 | 2007-05-10 | Halliburton Energy Services, Inc. | Methods for treating a subterranean formation with a curable composition using a jetting tool |
US20080060810A9 (en) * | 2004-05-25 | 2008-03-13 | Halliburton Energy Services, Inc. | Methods for treating a subterranean formation with a curable composition using a jetting tool |
US7712531B2 (en) | 2004-06-08 | 2010-05-11 | Halliburton Energy Services, Inc. | Methods for controlling particulate migration |
US7757768B2 (en) | 2004-10-08 | 2010-07-20 | Halliburton Energy Services, Inc. | Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations |
US7883740B2 (en) | 2004-12-12 | 2011-02-08 | Halliburton Energy Services, Inc. | Low-quality particulates and methods of making and using improved low-quality particulates |
US7673686B2 (en) | 2005-03-29 | 2010-03-09 | Halliburton Energy Services, Inc. | Method of stabilizing unconsolidated formation for sand control |
WO2007007039A1 (en) * | 2005-07-11 | 2007-01-18 | Halliburton Energy Services, Inc. | Methods and compositions for controlling formation fines and reducing proppant flow-back |
US8689872B2 (en) | 2005-07-11 | 2014-04-08 | Halliburton Energy Services, Inc. | Methods and compositions for controlling formation fines and reducing proppant flow-back |
US7926591B2 (en) | 2006-02-10 | 2011-04-19 | Halliburton Energy Services, Inc. | Aqueous-based emulsified consolidating agents suitable for use in drill-in applications |
US8613320B2 (en) | 2006-02-10 | 2013-12-24 | Halliburton Energy Services, Inc. | Compositions and applications of resins in treating subterranean formations |
US7819192B2 (en) | 2006-02-10 | 2010-10-26 | Halliburton Energy Services, Inc. | Consolidating agent emulsions and associated methods |
US8443885B2 (en) | 2006-02-10 | 2013-05-21 | Halliburton Energy Services, Inc. | Consolidating agent emulsions and associated methods |
US20070209794A1 (en) * | 2006-03-08 | 2007-09-13 | Bj Services Company | Curable resin coated low apparent specific gravity beads and method of using the same |
NO345235B1 (en) * | 2006-03-08 | 2020-11-16 | Baker Hughes Holdings Llc | Coated plastic pellet for treating a wellbore, proppant or sand control particles comprising a plastic pellet and method for treating a well |
GB2435891A (en) * | 2006-03-08 | 2007-09-12 | Bj Services Co | Curable resin coated plastic bead |
NO20071223L (en) * | 2006-03-08 | 2007-09-10 | Bj Services Co | Repairable resin-coated pellets with apparently low weight and methods of using them. |
GB2435891B (en) * | 2006-03-08 | 2010-04-14 | Bj Services Co | Curable resin coated low apparent specific gravity beads and method of using same |
US7494711B2 (en) | 2006-03-08 | 2009-02-24 | Bj Services Company | Coated plastic beads and methods of using same to treat a wellbore or subterranean formation |
DE102006050761A1 (en) * | 2006-10-27 | 2008-05-08 | Construction Research & Technology Gmbh | Hydrophobically modified cationic copolymers |
US7934557B2 (en) * | 2007-02-15 | 2011-05-03 | Halliburton Energy Services, Inc. | Methods of completing wells for controlling water and particulate production |
US7762329B1 (en) | 2009-01-27 | 2010-07-27 | Halliburton Energy Services, Inc. | Methods for servicing well bores with hardenable resin compositions |
WO2011070453A3 (en) * | 2009-12-09 | 2011-10-27 | Schlumberger Canada Limited | Method for increasing fracture area |
US9140109B2 (en) | 2009-12-09 | 2015-09-22 | Schlumberger Technology Corporation | Method for increasing fracture area |
CN102924674A (en) * | 2012-11-15 | 2013-02-13 | 黄石市汇波防腐技术有限公司 | Catalyst composition used for producing furfural furfuryl alcohol type furan resin |
NL2014133A (en) * | 2015-01-14 | 2016-09-26 | High Five Solutions B V | Slurry composition comprising solid particles for use in construction. |
US10385261B2 (en) | 2017-08-22 | 2019-08-20 | Covestro Llc | Coated particles, methods for their manufacture and for their use as proppants |
US10647911B2 (en) | 2017-08-22 | 2020-05-12 | Covestro Llc | Coated particles, methods for their manufacture and for their use as proppants |
US10851291B2 (en) | 2017-08-22 | 2020-12-01 | Covestro Llc | Coated particles, methods for their manufacture and for their use as proppants |
CN109423263A (en) * | 2017-08-30 | 2019-03-05 | 中国石油化工股份有限公司 | A kind of felted borehole wall strengthening agent and preparation method |
US20190249068A1 (en) * | 2018-02-09 | 2019-08-15 | China University Of Petroleum (East China) | Colloidal nano-graphite-strengthened bulk gel system for dispersed particle gel and composition thereof |
US10414969B2 (en) * | 2018-02-09 | 2019-09-17 | China University Of Petroleum (East China) | Colloidal nano-graphite-strengthened bulk gel system for dispersed particle gel and composition thereof |
CN113969153A (en) * | 2020-07-22 | 2022-01-25 | 中石化石油工程技术服务有限公司 | Micro-crosslinked emulsion wall-fixing agent based on lithium silicate-ultrafine particles and preparation method thereof |
CN117567999A (en) * | 2024-01-15 | 2024-02-20 | 中国石油集团川庆钻探工程有限公司 | Adhesive plugging agent and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
AR050662A1 (en) | 2006-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050263283A1 (en) | Methods for stabilizing and stimulating wells in unconsolidated subterranean formations | |
US7934557B2 (en) | Methods of completing wells for controlling water and particulate production | |
EP1957047B1 (en) | Methods of stabilizing unconsolidated subterranean formations | |
AU2006318933B2 (en) | Methods of consolidating unconsolidated particulates in subterranean formations | |
US7413010B2 (en) | Remediation of subterranean formations using vibrational waves and consolidating agents | |
US7398825B2 (en) | Methods of controlling sand and water production in subterranean zones | |
CA2336439C (en) | Stimulating fluid production from unconsolidated formations | |
US7730950B2 (en) | Methods for treating intervals of a subterranean formation having variable permeability | |
US7690431B2 (en) | Methods for controlling migration of particulates in a subterranean formation | |
US20050194142A1 (en) | Compositions and methods for controlling unconsolidated particulates | |
US20100101773A1 (en) | Methods of Cleaning Sand Control Screens and Gravel Packs | |
US8936087B2 (en) | Methods and compositions for sand control in injection wells | |
US20090308599A1 (en) | Method of enhancing treatment fluid placement in shale, clay, and/or coal bed formations | |
WO1998012416A1 (en) | Control of proppant flowback in hydraulically fractured wells | |
WO2007007039A1 (en) | Methods and compositions for controlling formation fines and reducing proppant flow-back | |
WO2009087349A1 (en) | Methods for controlling water and particulate production in subterranean wells | |
AU2011231415B2 (en) | Methods and compositions for sand control in injection wells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NGUYEN, PHILIP D.;REEL/FRAME:015379/0710 Effective date: 20040524 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |