US20050261774A1 - System and method for blocking and/or retaining a prosthetic spinal implant - Google Patents
System and method for blocking and/or retaining a prosthetic spinal implant Download PDFInfo
- Publication number
- US20050261774A1 US20050261774A1 US11/173,451 US17345105A US2005261774A1 US 20050261774 A1 US20050261774 A1 US 20050261774A1 US 17345105 A US17345105 A US 17345105A US 2005261774 A1 US2005261774 A1 US 2005261774A1
- Authority
- US
- United States
- Prior art keywords
- implant
- blocking
- anchoring
- annulus
- prosthetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000007943 implant Substances 0.000 title claims abstract description 115
- 230000000903 blocking effect Effects 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title abstract description 14
- 238000004873 anchoring Methods 0.000 claims abstract description 69
- 239000000463 material Substances 0.000 description 27
- -1 for example Substances 0.000 description 11
- 239000000017 hydrogel Substances 0.000 description 8
- 229920002635 polyurethane Polymers 0.000 description 8
- 239000004814 polyurethane Substances 0.000 description 8
- 102000008186 Collagen Human genes 0.000 description 6
- 108010035532 Collagen Proteins 0.000 description 6
- 229920001436 collagen Polymers 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 206010016654 Fibrosis Diseases 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000004761 fibrosis Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000000560 biocompatible material Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 210000002435 tendon Anatomy 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 2
- 208000028389 Nerve injury Diseases 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000010952 cobalt-chrome Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 210000003195 fascia Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 230000008764 nerve damage Effects 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 239000012781 shape memory material Substances 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000004636 vulcanized rubber Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- LUEWUZLMQUOBSB-FSKGGBMCSA-N (2s,3s,4s,5s,6r)-2-[(2r,3s,4r,5r,6s)-6-[(2r,3s,4r,5s,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5s,6r)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](OC3[C@H](O[C@@H](O)[C@@H](O)[C@H]3O)CO)[C@@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-FSKGGBMCSA-N 0.000 description 1
- VSQLAQKFRFTMNS-UHFFFAOYSA-N 5-methylhexa-1,4-diene Chemical compound CC(C)=CCC=C VSQLAQKFRFTMNS-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229920002581 Glucomannan Polymers 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 208000004044 Hypesthesia Diseases 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 210000001361 achilles tendon Anatomy 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 210000001264 anterior cruciate ligament Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000005313 bioactive glass Substances 0.000 description 1
- 210000002805 bone matrix Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- PRQRQKBNBXPISG-UHFFFAOYSA-N chromium cobalt molybdenum nickel Chemical compound [Cr].[Co].[Ni].[Mo] PRQRQKBNBXPISG-UHFFFAOYSA-N 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000000109 fascia lata Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229940046240 glucomannan Drugs 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 208000034783 hypoesthesia Diseases 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- 210000000426 patellar ligament Anatomy 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001692 polycarbonate urethane Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 210000002967 posterior cruciate ligament Anatomy 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- KUKFKAPJCRZILJ-UHFFFAOYSA-N prop-2-enenitrile;prop-2-enoic acid Chemical compound C=CC#N.OC(=O)C=C KUKFKAPJCRZILJ-UHFFFAOYSA-N 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 210000001032 spinal nerve Anatomy 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000000602 vitallium Substances 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7059—Cortical plates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30965—Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30062—(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30092—Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30576—Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
- A61F2002/30578—Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs having apertures, e.g. for receiving fixation screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2002/4435—Support means or repair of the natural disc wall, i.e. annulus, e.g. using plates, membranes or meshes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2002/444—Intervertebral or spinal discs, e.g. resilient for replacing the nucleus pulposus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2002/445—Intervertebral disc tissue harvest sites
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00017—Iron- or Fe-based alloys, e.g. stainless steel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00095—Niobium or Nb-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00125—Hafnium or Hf-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00131—Tantalum or Ta-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00137—Tungsten or W-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00161—Carbon; Graphite
- A61F2310/00167—Diamond or diamond-like carbon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00203—Ceramics or ceramic-like structures based on metal oxides containing alumina or aluminium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00239—Ceramics or ceramic-like structures based on metal oxides containing zirconia or zirconium oxide ZrO2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00329—Glasses, e.g. bioglass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00359—Bone or bony tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00365—Proteins; Polypeptides; Degradation products thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S606/00—Surgery
- Y10S606/907—Composed of particular material or coated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S606/00—Surgery
- Y10S606/907—Composed of particular material or coated
- Y10S606/91—Polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S606/00—Surgery
- Y10S606/907—Composed of particular material or coated
- Y10S606/911—Memory material
Definitions
- the present invention relates generally to spinal implants, and more particularly to devices for blocking and/or retaining implants in an intervertebral disc space.
- the intervertebral disc functions to stabilize the spine and to distribute forces between vertebral bodies.
- a normal disc includes a gelatinous nucleus pulposus, an annulus fibrosis and two vertebral end plates. The nucleus pulposus is surrounded and confined by the annulus fibrosis.
- Intervertebral discs may be displaced or damaged due to trauma or disease. Disruption of the annulus fibrosis allows the nucleus pulposus to protrude into the spinal canal, a condition commonly referred to as a herniated or ruptured disc. The extruded nucleus pulposus may press on the spinal nerve, which may result in nerve damage, pain, numbness, muscle weakness and paralysis. Intervertebral discs may also deteriorate due to the normal aging process. As a disc dehydrates and hardens, the disc space height will be reduced, leading to instability of the spine, decreased mobility and pain.
- One way to relieve the symptoms of these conditions is by surgical removal of a portion or all of the intervertebral disc.
- the removal of the damaged or unhealthy disc may allow the disc space to collapse, which could lead to instability of the spine, abnormal joint mechanics, nerve damage, as well as severe pain. Therefore, after removal of the disc, adjacent vertebrae are typically fused to preserve the disc space.
- the present invention addresses these needs.
- the device comprises a first blocking member having an anchoring end and a blocking end.
- the anchoring end is anchored to a vertebra
- the blocking end is free and unconnected to a prosthetic spinal implant, and is positioned to block a prosthetic spinal implant from being expelled from an intervertebral disc space.
- the device further includes a second blocking member having an anchoring end and a blocking end.
- the anchoring end of the second blocking member is anchored to a vertebra, and the blocking end of the second blocking member is free and unconnected to a prosthetic spinal implant, and is positioned to block a prosthetic spinal implant from being expelled from an intervertebral disc space.
- Methods for anchoring a spinal implant are also provided.
- the method comprises:
- One object of the present invention is to provide devices for anchoring spinal implants so they will be resistant to excessive migration in, and/or expulsion from, the intervertebral disc space. Further objects and advantages of the present invention will be apparent from the following description.
- FIGS. 1 a and 1 b show one embodiment of the present invention, wherein the device includes an L-shaped plate attached to the implant, and further wherein the implant fills the annular opening.
- FIGS. 2 a and 2 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to an annular plug, and further wherein the annular plug fills the annular opening.
- FIGS. 3 a and 3 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to the implant, and further wherein there is nothing in the annulus.
- FIGS. 4 a - 4 c show another embodiment of the present invention, wherein the device includes a flat plate blocks implant, and further wherein the implant fills the annulus.
- FIGS. 5 a - 5 c show another embodiment of the present invention, wherein the device includes a flat plate blocks plug, and further wherein the plug fills the annulus.
- FIGS. 6 a - 6 c show another embodiment of the present invention, wherein the device includes an L-shaped plate not attached to the implant, and further wherein there is nothing in the annulus opening.
- FIGS. 7 a - 7 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein the implant fills the annulus.
- FIGS. 8 a - 8 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein there is a separate annulus plug.
- FIGS. 9 a - 9 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein there is nothing in the annulus opening.
- FIGS. 10 a and 10 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the implant, and further wherein the implant fills the annulus.
- FIGS. 11 a and 11 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the annular plug, and further wherein the plug fills the annulus.
- FIGS. 12 a and 12 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the implant, and further wherein there is nothing in the annulus opening.
- FIGS. 13 a - 13 c show another embodiment of the present invention, wherein the device includes a double flat plates block implant, and further wherein the implant fills the annulus.
- FIGS. 14 a - 14 c show another embodiment of the present invention, wherein the device includes a double flat plates block plug, and further wherein the plug fills the annulus.
- FIGS. 15 a - 15 c show another embodiment of the present invention, wherein the device includes a double flat plates not attached to the implant, and further wherein there is nothing in the annulus opening.
- FIGS. 16 a and 16 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to the implant, and further wherein the implant fills the annulus.
- FIGS. 17 a and 17 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to the annular plug, and further wherein the plug fills the annulus.
- FIGS. 18 a and 18 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to the implant, and further wherein there is nothing in the annulus opening.
- FIGS. 19 a - 19 c show another embodiment of the present invention, wherein the device includes a flat plate blocks implant, and further wherein the implant fills the annulus.
- FIGS. 20 a - 20 c show another embodiment of the present invention, wherein the device includes a flat plate blocks plug, and further wherein the plug fills the annulus.
- FIGS. 21 a - 21 c show another embodiment of the present invention, wherein the device includes an L-shaped plate not attached to the implant, and further wherein there is nothing in the annulus opening.
- FIGS. 22 a - 22 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein the implant fills the annulus.
- FIGS. 23 a - 23 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein there is a separate annulus plug.
- FIGS. 24 a - 24 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein there is nothing in the annulus opening.
- FIGS. 25 a and 25 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the implant, and further wherein the implant fills the annulus.
- FIGS. 26 a and 26 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the annular plug, and further wherein the plug fills the annulus.
- FIGS. 27 a and 27 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the implant, and further wherein there is nothing in the annulus opening.
- FIGS. 28 a - 28 c show another embodiment of the present invention, wherein the device includes a double flat plates block implant, and further wherein the implant fills the annulus.
- FIGS. 29 a - 29 c show another embodiment of the present invention, wherein the device includes a double flat plates block plug, and further wherein the plug fills the annulus.
- FIGS. 30 a - 30 c show another embodiment of the present invention, wherein the device includes a double flat plates not attached to the implant, and further wherein there is nothing in the annulus opening.
- FIGS. 31 through 33 show steps in a preferred procedure for using the inventive implants.
- FIG. 34 shows an embodiment of the present invention where the securing member (in this case, a screw) is attached to the vertebral end plate.
- the securing member in this case, a screw
- the present invention relates to prosthetic spinal implants that are blocked and/or anchored to prevent excessive migration in and/or expulsion from the disc space. Methods of using such implants are also disclosed.
- the spinal implants described herein include those that may be useful as nucleus pulposus replacements, partial or complete disc replacements, and those that may be useful in other disc reconstruction or augmentation procedures.
- FIGS. 1 a and 1 b show one preferred embodiment of the present invention.
- Device 10 may include a first, rigid anchoring member 11 , having a first end 12 and a second end 13 .
- a prosthetic implant member 14 is attached to, and completely covers, first end 12 of anchoring member 11 .
- At least one securing member 15 is attached to the second end 13 of anchoring member 11 .
- Securing member 15 is securable to a vertebra 16 .
- implant member 14 extends into, and substantially fills, both the vacated nucleus space and opening 18 in annulus 17 .
- the vacated nucleus space and opening 18 are both formed during the discectomy procedure that removes the degenerated disc that is replaced by implant member 14 in the illustrated embodiment.
- Anchoring member 11 may be “L” shaped as shown in FIG. 1 a , or it may be another shape effective to position the prosthetic implant member 14 in a desired location when one end of the anchoring member is secured to a vertebra.
- Anchoring member 11 is preferably made of a rigid, biocompatible material, such as metals, ceramics, composites, etc.
- carbon fiber reinforced composites such as carbon fiber/epoxy composites or carbon fiber/polyaryletherketone composites may be used, as may a wide variety of metallic materials, such as, for example, shape memory materials, stainless steel, titanium, titanium alloys, cobalt chrome alloys, and combinations thereof.
- implant member 24 may extend into, and/or substantially fill, only opening 28 of annulus 27 .
- the nucleus space is filled with a separate prosthetic disc nucleus 29 .
- implant member 34 may extend into, and/or substantially fill, only the vacated nucleus space, leaving opening 38 of annulus 37 unplugged.
- alternative embodiments of the present invention comprise a rigid anchoring member that blocks, but is not attached to, a prosthetic spinal implant member.
- rigid anchoring member 41 may have a first end 42 and a second end 43 .
- At least one securing member 45 may be attached to the second end 43 of anchoring member 41 , but the first end 42 is left free and unconnected to prosthetic spinal implant 44 .
- Securing member 45 may be secured to a vertebra 46 .
- FIGS. 5 a - 5 c show another embodiment where a rigid anchoring member blocks, but is not attached to, a prosthetic spinal implant member.
- rigid anchoring member 51 has a first end 52 and a second end 53 , with at least one securing member 55 being attached to second end 53 .
- first end 52 is left free and unconnected to prosthetic spinal implant 54 , and securing member 55 may be secured to a vertebra 56 .
- rigid anchoring member 51 blocks an implant 54 which is separate and distinct from prosthetic nucleus 59 .
- rigid anchoring member 41 blocks a single prosthetic nucleus implant 44 .
- the single prosthetic implant 44 of FIGS. 4 a - 4 c extends into, and substantially fills, both the vacated nucleus space and opening 48 in annulus 47 .
- FIGS. 6 a - 6 c show a further embodiment of the present invention, corresponding to the embodiment shown in FIGS. 3 a - 3 b but with a rigid anchoring member that blocks, but is not attached to, a prosthetic spinal implant member.
- rigid anchoring member 61 has a first end 62 and a second end 63 , with at least one securing member 65 being attached to second end 63 .
- first end 62 is left free and unconnected to prosthetic spinal implant 64 , and securing member 65 may be secured to a vertebra.
- the anchoring member of the device may also, in other forms of the invention, include a flexible implant-blocking material.
- FIGS. 7 a - 7 c show one embodiment wherein anchoring member 70 comprises a flexible band 71 anchored at each end by one or more securing members 75 .
- anchoring member 70 retains implant 74 to keep the implant from being expelled from the intervertebral disc space.
- Implant 74 extends into, and substantially fills, both the vacated nucleus space and opening 78 in annulus 77 .
- FIGS. 8 a - 8 c show. a related embodiment where flexible band 81 blocks both an annular plug 84 , and a prosthetic nucleus 89 .
- Flexible band 81 is anchored at each end by one or more securing members 85 , in a manner similar to that used in the preceding embodiment.
- FIGS. 9 a - 9 c show an embodiment where flexible band 91 blocks a prosthetic nucleus 99 , leaving the annular opening 98 substantially implant-free.
- Flexible band 91 is anchored at each end by one or more securing members 95 , which are secured to vertebra 96 as previously described.
- FIGS. 10 a - 10 b through 15 a - 15 c show embodiments similar to those shown in FIGS. 1 a - 1 b through 6 a - 6 c , but with a second anchoring member being used and attached to the corresponding vertebra.
- FIGS. 10 a - 10 b show a device 100 that includes a two, rigid anchoring members 101 a and 101 b , each of said anchoring members having a first end 102 a and 102 b respectively, that completely covers second ends 103 a and 103 b .
- a prosthetic implant member 104 is attached to, and completely covers, first ends 102 a and 102 b of anchoring members 101 a and 101 b .
- At least one securing member (e.g., lO 5 a and 105 b ) is attached to the second end (e.g., 103 a and 103 b ) of each anchoring member.
- the securing members are securable to a vertebra .
- Implant member 104 extends into, and substantially fills, both the vacated nucleus space and opening 108 in annulus 107 .
- the implant member 114 fills only the annular opening, and a second, separate prosthetic nucleus 119 is used.
- implant members 124 a and 124 b may extend into, and/or substantially fill, only the vacated nucleus space, leaving opening 128 of annulus 127 unplugged.
- each rigid anchoring member 131 a and 131 b may have a first end 132 a and 132 b and a second end 133 a and 133 b .
- At least one securing member 135 may be attached to the second end 133 of each anchoring member 131 , but the first end 132 is left free and unconnected to prosthetic spinal implant 134 .
- Securing member 135 may be. secured to a vertebra 136 .
- FIGS. 14 a - 14 c show another embodiment where a rigid anchoring member blocks, but is not attached to, a prosthetic spinal implant member.
- each rigid anchoring member 141 a and 141 b has a first end 142 and a second end 143 , with at least one securing member 145 being attached to second end 143 .
- first end 142 is left free and unconnected to prosthetic spinal implant 144 , and securing member 145 may be secured to a vertebra 146 .
- rigid anchoring member 141 blocks an implant 144 which is separate and distinct from prosthetic nucleus 149 .
- rigid anchoring member 131 blocks a single prosthetic nucleus implant 134 .
- the single prosthetic implant 134 of FIGS. 13 a - 13 c extends into, and substantially fills, both the vacated nucleus space and opening 138 in annulus 137 .
- FIGS. 15 a - 15 c show a further embodiment of the present invention, corresponding to the embodiment shown in FIGS. 12 a - 12 b but with a rigid anchoring member that blocks, but is not attached to, a prosthetic spinal implant member.
- rigid anchoring member 151 has a first end 152 and a second end 153 , with at least one securing member 155 being attached to second end 153 .
- first end 152 is left free and unconnected to prosthetic spinal implant 154 , and securing member 155 may be secured to a vertebra.
- Blocking and/or retaining members such as those shown in FIGS. 1-15 may be secured to a vertebra as shown, or they may be “flush fit” as shown in FIGS. 16 a - 16 b through 30 a - 30 c .
- bone is cut away from the vertebra so that the anchoring/blocking member may be attached in a manner in which the outside surface of the anchoring/blocking member is substantially flush with the outer surface of the vertebra.
- the anchoring/blocking member is preferably mounted to contact the vertebral end plate, as shown in FIGS. 16 a - 16 b through 18 a - 18 b , FIGS. 21 a - 21 c , FIGS. 25 a - 25 b through 27 a - 27 b , and in FIGS. 30 a - 30 c . It is preferred that the lower portion of the anchoring/blocking member extend into the intervertebral space to effectively block the natural or prosthetic disc. When a prosthetic disc or annular plug is being blocked or retained, an adhesive may be used to secure the prosthetic disc or plug to the anchoring/blocking member. In such cases the need for extension into the intervertebral space is reduced or eliminated.
- FIGS. 16 a - 16 b differs from the embodiment shown in FIGS. 1 a - 1 b in that the first end 162 of anchoring member 161 is not completely covered by implant 164 .
- first end 172 of anchoring member 171 is not completely covered by implant 174 as was the case in the embodiment shown in FIGS. 2 a - 2 b .
- first end 182 of anchoring member 181 is not completely covered by implant 184 as was the case in the embodiment shown in FIGS. 3 a - 3 b .
- the procedure typically begins with a discectomy to remove the degenerated natural disc.
- An opening is provided in the annulus, and the degenerated disc material is removed.
- a prosthetic nucleus in delivered into the disc space, and the anchoring and/or blocking member(s) are installed and attached.
- anchoring/blocking members may be formed from rigid, semi-rigid, or flexible biocompatible materials including metals, polymers, ceramics, composites, natural or synthetic bone materials, etc.
- carbon fiber reinforced composites such as carbon fiber/epoxy composites or carbon fiber/polyaryletherketone composites may be used, as may a wide variety of metallic materials, such as, for example, stainless steel, titanium, titanium alloys, cobalt chrome alloys, tantalum, shape memory alloys, etc.
- polymeric materials include, but are not limited to, synthetic polymers such as polyurethanes, silicones, polyolefins, polyvinylalcohols, polyesters, polyacrylonitriles, polyetherketones, polycarbonates, polymethacrylates, polyamides, etc.
- synthetic polymers such as polyurethanes, silicones, polyolefins, polyvinylalcohols, polyesters, polyacrylonitriles, polyetherketones, polycarbonates, polymethacrylates, polyamides, etc.
- natural polymers such as cellulose, may be used.
- polystyrene polystyrene
- polypropylene polystyrene
- polystyrene polystyrene
- polypropylene polystyrene
- polymeric materials are braided in the form of a cord, cable, or may have some other appropriate configuration, and combinations thereof.
- Ceramic materials examples include alumina, zirconia, alumina-zirconia composites, pyrolytic carbon, and polycrystalline diamond compact materials.
- spinal implants for serving differing functions may be anchored or blocked with the anchoring/blocking devices described herein, including implants sized and configured for nucleus pulposus replacements, implants sized and configured for partial or full disc replacements, or other implants designed for other disc reconstruction or augmentation purposes, such as a fusion cage.
- Elastic, or otherwise resilient, implants are most preferred.
- implants may be formed from hydrophilic materials, such as hydrogels, or may be formed from biocompatible elastomeric materials known in the art, including silicone, polyurethane, polyolefins such as polyisobutylene and polyisoprene, copolymers of silicone and polyurethane, neoprene, nitrile, vulcanized rubber and combinations thereof.
- the vulcanized rubber is produced by a vulcanization process utilizing a copolymer produced, for example, as in U.S. Pat. No. 5,245,098 to Summers et al., from 1-hexene and 5-methyl-1,4-hexadiene.
- Preferred hydrophilic materials are hydrogels.
- Suitable hydrogels include natural hydrogels, and those formed from polyvinyl alcohol, acrylamides such as polyacrylic acid and poly (acrylonitrile-acrylic acid), polyurethanes, polyethylene glycol, poly(N-vinyl-2-pyrrolidone), acrylates such as poly(2-hydroxy ethyl methacrylate) and copolymers of acrylates with N-vinyl pyrolidone, N-vinyl lactams, acrylamide, polyurethanes and polyacrylonitrile or may be formed from other similar materials that form a hydrogel.
- the hydrogel materials may further be cross-linked to provide further strength to the implant.
- polyurethanes examples include thermoplastic or thermoset polyurethanes, aliphatic or aromatic polyurethanes, polyetherurethane, polycarbonate-urethane and silicone polyether-urethane.
- suitable hydrophilic polymers include naturally-occurring materials such as glucomannan gel, hyaluronic acid, polysaccharides, such as cross-linked carboxyl-containing polysaccharides, and combinations thereof.
- the nature of the materials employed to form the elastic body should be selected so the formed implants have sufficient load bearing capacity. In preferred embodiments, a compressive strength of at least about 0.1 MPa is desired, although compressive strengths in the range of about 1 MPa to about 20 MPa are more preferred.
- natural materials may be used to make the prosthetic implants disclosed in the present invention.
- natural collagen material such as allogenic or xenogenic disc nucleus material may be used.
- collagen-based material derived from natural, collagen-rich tissue, such as intervertebral disc, fascia, ligament, tendon, demineralized bone matrix, etc.
- the material may be autogenic, allogenic, or xenogenic, or it may be of human-recombinant origin.
- the collagen-based material may be a synthetic, collagen-based material.
- collagen-rich tissues examples include disc annulus, fascia lata, planar fascia, anterior or posterior cruciate ligaments, patella tendon, hamstring tendons, quadriceps tendons, Achilles tendons, skins, and other connective tissues.
- the implant material is an inelastic, semi-rigid material. Such materials stretch very little, if at all, but allow some compression. The compression typically occurs when air in the implant is pushed out, such as when a small roll of fabric is compressed.
- the implants can be shaped as desired.
- the nucleus pulposus implants may take the form of a cylinder, a rectangle, or other polygonal shape or may be substantially oval.
- the securing and/or blocking members may be made of any appropriate biocompatible material, such metals, ceramics, polymers and combinations thereof.
- Non-resorbable metallic materials include biocompatible stainless steel, titanium, titanium alloys, titanium-vanadium-aluminum alloy, cobalt alloys such as cobalt-chromium alloy, cobalt-chromium-molybdenum alloy, and cobalt-nickel-chromium-molybdenum alloy, tantalum, niobium, hafnium, tungsten, shape memory materials as described above, especially those exhibiting superelastic behavior and including metals, and alloys thereof.
- Resorbable materials include polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, bioactive glass, calcium phosphate, such as hydroxyapatite, and combinations thereof.
- the anchoring devices may also be anchored with other soft tissue anchors known in the art, including suture anchors commonly used in arthroscopy or sports medicine surgeries, for example.
- suture anchors commonly used in arthroscopy or sports medicine surgeries, for example.
- the end of the elongated body of the anchoring device is attached to the end of the anchor, which is embedded and anchored in an adjacent vertebral body.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Vascular Medicine (AREA)
- Prostheses (AREA)
Abstract
Devices for anchoring and/or blocking spinal implants in an intervertebral disc space are disclosed. In one aspect of the invention the device includes a rigid blocking member having one end unconnected and free to block a spinal implant, and another end attached to a securing member to secure the blocking member to the spine. Methods for using the inventive anchoring/blocking implants are also provided.
Description
- The present invention relates generally to spinal implants, and more particularly to devices for blocking and/or retaining implants in an intervertebral disc space.
- The intervertebral disc functions to stabilize the spine and to distribute forces between vertebral bodies. A normal disc includes a gelatinous nucleus pulposus, an annulus fibrosis and two vertebral end plates. The nucleus pulposus is surrounded and confined by the annulus fibrosis.
- Intervertebral discs may be displaced or damaged due to trauma or disease. Disruption of the annulus fibrosis allows the nucleus pulposus to protrude into the spinal canal, a condition commonly referred to as a herniated or ruptured disc. The extruded nucleus pulposus may press on the spinal nerve, which may result in nerve damage, pain, numbness, muscle weakness and paralysis. Intervertebral discs may also deteriorate due to the normal aging process. As a disc dehydrates and hardens, the disc space height will be reduced, leading to instability of the spine, decreased mobility and pain.
- One way to relieve the symptoms of these conditions is by surgical removal of a portion or all of the intervertebral disc. The removal of the damaged or unhealthy disc may allow the disc space to collapse, which could lead to instability of the spine, abnormal joint mechanics, nerve damage, as well as severe pain. Therefore, after removal of the disc, adjacent vertebrae are typically fused to preserve the disc space.
- Several devices exist to fill an intervertebral space following removal of all or part of the intervertebral disc in order to prevent disc space collapse and to promote fusion of adjacent vertebrae surrounding the disc space. Even though a certain degree of success with these devices has been achieved, full motion is typically never regained after such intervertebral fusions.
- Attempts to overcome these problems have led to the development of disc replacements. Many of these devices are complicated, bulky and made of a combination of metallic and elastomeric components and thus never fully return the full range of motion desired. More recently, efforts have been directed to replacing the nucleus pulposus of the disc with a similar gelatinous material, such as a hydrogel. However, once positioned in the disc space, many hydrogel implants may migrate in the disc space and/or may be expelled from the disc space through an annular defect. Closure of the annular defect, or other opening, using surgical sutures or staples following implantation is typically difficult and, in some cases, ineffective.
- A need therefore exists for a nucleus pulposus or other spinal implant that resists migration from the disc space, as well as for devices and methods that block or retain the implants so that the implants are more resistant to migration and/or expulsion through an opening in the annulus fibrosis. The present invention addresses these needs.
- Devices and methods for blocking and/or retaining a prosthetic spinal implant member in an intervertebral disc space are provided. In a first aspect of the invention the device comprises a first blocking member having an anchoring end and a blocking end. The anchoring end is anchored to a vertebra, and the blocking end is free and unconnected to a prosthetic spinal implant, and is positioned to block a prosthetic spinal implant from being expelled from an intervertebral disc space.
- In a second embodiment the device further includes a second blocking member having an anchoring end and a blocking end. The anchoring end of the second blocking member is anchored to a vertebra, and the blocking end of the second blocking member is free and unconnected to a prosthetic spinal implant, and is positioned to block a prosthetic spinal implant from being expelled from an intervertebral disc space.
- Methods for anchoring a spinal implant are also provided. In one aspect of the invention the method comprises:
-
- (a) implanting a prosthetic spinal implant member in an intervertebral disc space;
- (b) providing a first blocking member having an anchoring end and a blocking end, wherein said blocking end is free and unconnected to a prosthetic spinal implant;
- (c) positioning the blocking end of said first blocking member in a position effective to block said prosthetic spinal implant from being expelled from the intervertebral disc space; and
- (d) securing the anchoring end of said first blocking member to a vertebra in a manner in which the blocking end of said first blocking member is maintained in a position effective to block said prosthetic spinal implant from being expelled from the intervertebral disc space.
- In another embodiment the method additionally includes the steps of:
-
- (e) providing a second blocking member having an anchoring end and a blocking end, wherein said blocking end is free and unconnected to a prosthetic spinal implant; and
- (f) positioning the blocking end of said second blocking member in a position effective to block said prosthetic spinal implant from being expelled from the intervertebral disc space; and
- (g) securing the anchoring end of said second blocking member to a vertebra in a manner in which the blocking end of said second blocking member is maintained in a position effective to block said prosthetic spinal implant from being expelled from the intervertebral disc space.
- In a third embodiment the method comprises:
-
- (a) implanting a prosthetic spinal implant in an intervertebral disc space;
- (b) providing a flexible blocking member having a first anchoring end, a second anchoring end, and a blocking portion, wherein said flexible blocking member is unconnected to said prosthetic spinal implant; and
- (c) securing said first anchoring end to a vertebra; and
- (d) securing said second anchoring end to a vertebra;
- wherein said securing steps are accomplished in a manner effective to position said blocking portion in a position effective to block said prosthetic spinal implant from being expelled from the intervertebral disc space.
- One object of the present invention is to provide devices for anchoring spinal implants so they will be resistant to excessive migration in, and/or expulsion from, the intervertebral disc space. Further objects and advantages of the present invention will be apparent from the following description.
-
FIGS. 1 a and 1 b show one embodiment of the present invention, wherein the device includes an L-shaped plate attached to the implant, and further wherein the implant fills the annular opening. -
FIGS. 2 a and 2 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to an annular plug, and further wherein the annular plug fills the annular opening. -
FIGS. 3 a and 3 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to the implant, and further wherein there is nothing in the annulus. -
FIGS. 4 a-4 c show another embodiment of the present invention, wherein the device includes a flat plate blocks implant, and further wherein the implant fills the annulus. -
FIGS. 5 a-5 c show another embodiment of the present invention, wherein the device includes a flat plate blocks plug, and further wherein the plug fills the annulus. -
FIGS. 6 a-6 c show another embodiment of the present invention, wherein the device includes an L-shaped plate not attached to the implant, and further wherein there is nothing in the annulus opening. -
FIGS. 7 a-7 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein the implant fills the annulus. -
FIGS. 8 a-8 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein there is a separate annulus plug. -
FIGS. 9 a-9 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein there is nothing in the annulus opening. -
FIGS. 10 a and 10 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the implant, and further wherein the implant fills the annulus. -
FIGS. 11 a and 11 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the annular plug, and further wherein the plug fills the annulus. -
FIGS. 12 a and 12 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the implant, and further wherein there is nothing in the annulus opening. -
FIGS. 13 a-13 c show another embodiment of the present invention, wherein the device includes a double flat plates block implant, and further wherein the implant fills the annulus. -
FIGS. 14 a-14 c show another embodiment of the present invention, wherein the device includes a double flat plates block plug, and further wherein the plug fills the annulus. -
FIGS. 15 a-15 c show another embodiment of the present invention, wherein the device includes a double flat plates not attached to the implant, and further wherein there is nothing in the annulus opening. -
FIGS. 16 a and 16 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to the implant, and further wherein the implant fills the annulus. -
FIGS. 17 a and 17 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to the annular plug, and further wherein the plug fills the annulus. -
FIGS. 18 a and 18 b show another embodiment of the present invention, wherein the device includes an L-shaped plate attached to the implant, and further wherein there is nothing in the annulus opening. -
FIGS. 19 a-19 c show another embodiment of the present invention, wherein the device includes a flat plate blocks implant, and further wherein the implant fills the annulus. -
FIGS. 20 a-20 c show another embodiment of the present invention, wherein the device includes a flat plate blocks plug, and further wherein the plug fills the annulus. -
FIGS. 21 a-21 c show another embodiment of the present invention, wherein the device includes an L-shaped plate not attached to the implant, and further wherein there is nothing in the annulus opening. -
FIGS. 22 a-22 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein the implant fills the annulus. -
FIGS. 23 a-23 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein there is a separate annulus plug. -
FIGS. 24 a-24 c show another embodiment of the present invention, wherein the device includes a double plate with a flexible band between, and further wherein there is nothing in the annulus opening. -
FIGS. 25 a and 25 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the implant, and further wherein the implant fills the annulus. -
FIGS. 26 a and 26 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the annular plug, and further wherein the plug fills the annulus. -
FIGS. 27 a and 27 b show another embodiment of the present invention, wherein the device includes double L-shaped plates attached to the implant, and further wherein there is nothing in the annulus opening. -
FIGS. 28 a -28 c show another embodiment of the present invention, wherein the device includes a double flat plates block implant, and further wherein the implant fills the annulus. -
FIGS. 29 a-29 c show another embodiment of the present invention, wherein the device includes a double flat plates block plug, and further wherein the plug fills the annulus. -
FIGS. 30 a-30 c show another embodiment of the present invention, wherein the device includes a double flat plates not attached to the implant, and further wherein there is nothing in the annulus opening. -
FIGS. 31 through 33 show steps in a preferred procedure for using the inventive implants. -
FIG. 34 shows an embodiment of the present invention where the securing member (in this case, a screw) is attached to the vertebral end plate. - For the purposes of promoting an understanding of the principles of the invention, reference will now be made to certain preferred embodiments and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. All embodiments of the present invention, including those explicitly disclosed, those inherently disclosed, and those that would normally occur to persons skilled in the art, are desired to be protected.
- The present invention relates to prosthetic spinal implants that are blocked and/or anchored to prevent excessive migration in and/or expulsion from the disc space. Methods of using such implants are also disclosed. The spinal implants described herein include those that may be useful as nucleus pulposus replacements, partial or complete disc replacements, and those that may be useful in other disc reconstruction or augmentation procedures.
- Referring now to the drawings,
FIGS. 1 a and 1 b show one preferred embodiment of the present invention.Device 10 may include a first, rigid anchoringmember 11, having afirst end 12 and asecond end 13. Aprosthetic implant member 14 is attached to, and completely covers,first end 12 of anchoringmember 11. At least one securingmember 15 is attached to thesecond end 13 of anchoringmember 11. Securingmember 15 is securable to avertebra 16. - As shown in FIGS, 1 a and 1 b, in some embodiments of the
invention implant member 14 extends into, and substantially fills, both the vacated nucleus space andopening 18 inannulus 17. The vacated nucleus space andopening 18 are both formed during the discectomy procedure that removes the degenerated disc that is replaced byimplant member 14 in the illustrated embodiment. - Anchoring
member 11 may be “L” shaped as shown inFIG. 1 a, or it may be another shape effective to position theprosthetic implant member 14 in a desired location when one end of the anchoring member is secured to a vertebra. Anchoringmember 11 is preferably made of a rigid, biocompatible material, such as metals, ceramics, composites, etc. For example, carbon fiber reinforced composites such as carbon fiber/epoxy composites or carbon fiber/polyaryletherketone composites may be used, as may a wide variety of metallic materials, such as, for example, shape memory materials, stainless steel, titanium, titanium alloys, cobalt chrome alloys, and combinations thereof. - As shown in
FIGS. 2 a and 2 b, in other embodiments of the presentinvention implant member 24 may extend into, and/or substantially fill, only opening 28 ofannulus 27. In this embodiment the nucleus space is filled with a separateprosthetic disc nucleus 29. - As shown in
FIGS. 3 a and 3 b, in other embodiments implantmember 34. may extend into, and/or substantially fill, only the vacated nucleus space, leavingopening 38 ofannulus 37 unplugged. - As shown in
FIGS. 4 a-4 c, alternative embodiments of the present invention comprise a rigid anchoring member that blocks, but is not attached to, a prosthetic spinal implant member. As with the prior embodiments, rigid anchoringmember 41 may have afirst end 42 and asecond end 43. At least one securingmember 45 may be attached to thesecond end 43 of anchoringmember 41, but thefirst end 42 is left free and unconnected to prostheticspinal implant 44. Securingmember 45 may be secured to avertebra 46. -
FIGS. 5 a-5 c show another embodiment where a rigid anchoring member blocks, but is not attached to, a prosthetic spinal implant member. In this embodiment rigid anchoringmember 51 has afirst end 52 and asecond end 53, with at least one securingmember 55 being attached tosecond end 53. Here too,first end 52 is left free and unconnected to prostheticspinal implant 54, and securingmember 55 may be secured to avertebra 56. - In the embodiment shown in
FIGS. 5 a-5 c, rigid anchoringmember 51 blocks animplant 54 which is separate and distinct fromprosthetic nucleus 59. This is in contrast to the embodiment shown inFIGS. 4 a-4 c, where rigid anchoringmember 41 blocks a singleprosthetic nucleus implant 44. As with the embodiment shown inFIGS. 1 a-1 b, the singleprosthetic implant 44 ofFIGS. 4 a-4 c extends into, and substantially fills, both the vacated nucleus space andopening 48 inannulus 47. -
FIGS. 6 a-6 c show a further embodiment of the present invention, corresponding to the embodiment shown inFIGS. 3 a-3 b but with a rigid anchoring member that blocks, but is not attached to, a prosthetic spinal implant member. In this embodiment rigid anchoringmember 61 has afirst end 62 and asecond end 63, with at least one securingmember 65 being attached tosecond end 63. As with the embodiments shown inFIGS. 4 and 5 ,first end 62 is left free and unconnected to prostheticspinal implant 64, and securingmember 65 may be secured to a vertebra. - The anchoring member of the device may also, in other forms of the invention, include a flexible implant-blocking material. For example,
FIGS. 7 a-7 c show one embodiment wherein anchoring member 70 comprises a flexible band 71 anchored at each end by one ormore securing members 75. In the embodiment shown inFIGS. 7 a-7 c, anchoring member 70 retainsimplant 74 to keep the implant from being expelled from the intervertebral disc space.Implant 74 extends into, and substantially fills, both the vacated nucleus space andopening 78 inannulus 77. -
FIGS. 8 a-8 c show. a related embodiment whereflexible band 81 blocks both an annular plug 84, and aprosthetic nucleus 89.Flexible band 81 is anchored at each end by one ormore securing members 85, in a manner similar to that used in the preceding embodiment. -
FIGS. 9 a-9 c show an embodiment whereflexible band 91 blocks a prosthetic nucleus 99, leaving theannular opening 98 substantially implant-free.Flexible band 91 is anchored at each end by one ormore securing members 95, which are secured tovertebra 96 as previously described. -
FIGS. 10 a-10 b through 15 a-15 c show embodiments similar to those shown inFIGS. 1 a-1 b through 6 a-6 c, but with a second anchoring member being used and attached to the corresponding vertebra. Accordingly,FIGS. 10 a-10 b show a device 100 that includes a two,rigid anchoring members first end prosthetic implant member 104 is attached to, and completely covers, first ends 102 a and 102 b of anchoringmembers -
Implant member 104 extends into, and substantially fills, both the vacated nucleus space andopening 108 inannulus 107. In the embodiment shown inFIGS. 11 a-11 b, theimplant member 114 fills only the annular opening, and a second, separateprosthetic nucleus 119 is used. - As shown in
FIGS. 12 a and 12 b, in other embodiments implant members 124 a and 124 b may extend into, and/or substantially fill, only the vacated nucleus space, leavingopening 128 ofannulus 127 unplugged. - As shown in
FIGS. 13 a-13 c, alternative embodiments of the present invention comprise a rigid anchoring member that blocks, but is not attached to, a, prosthetic spinal implant member. As with the prior embodiments, eachrigid anchoring member 131 a and 131 b may have afirst end second end member 135 may be attached to the second end 133 of each anchoring member 131, but the first end 132 is left free and unconnected to prostheticspinal implant 134. Securingmember 135 may be. secured to avertebra 136. -
FIGS. 14 a-14 c show another embodiment where a rigid anchoring member blocks, but is not attached to, a prosthetic spinal implant member. In this embodiment eachrigid anchoring member member 145 being attached to second end 143. Here too, first end 142 is left free and unconnected to prostheticspinal implant 144, and securingmember 145 may be secured to avertebra 146. - In the embodiment shown in
FIGS. 14 a-14 c, rigid anchoring member 141 blocks animplant 144 which is separate and distinct fromprosthetic nucleus 149. This is in contrast to the embodiment shown inFIGS. 13 a-13 c, where rigid anchoring member 131 blocks a singleprosthetic nucleus implant 134. As with the embodiment shown inFIGS. 1 a-1 b andFIGS. 10 a-10 b, the singleprosthetic implant 134 ofFIGS. 13 a-13 c extends into, and substantially fills, both the vacated nucleus space and opening 138 inannulus 137. -
FIGS. 15 a-15 c show a further embodiment of the present invention, corresponding to the embodiment shown inFIGS. 12 a-12 b but with a rigid anchoring member that blocks, but is not attached to, a prosthetic spinal implant member. In this embodiment rigid anchoring member 151 has a first end 152 and a second end 153, with at least one securingmember 155 being attached to second end 153. As with the embodiments shown inFIGS. 4 and 5 andFIGS. 11 a-11 b, first end 152 is left free and unconnected to prostheticspinal implant 154, and securingmember 155 may be secured to a vertebra. - Blocking and/or retaining members such as those shown in
FIGS. 1-15 may be secured to a vertebra as shown, or they may be “flush fit” as shown inFIGS. 16 a-16 b through 30 a-30 c. In the flush fit embodiments, bone is cut away from the vertebra so that the anchoring/blocking member may be attached in a manner in which the outside surface of the anchoring/blocking member is substantially flush with the outer surface of the vertebra. - When an “L-shaped” anchoring/blocking member is used, the anchoring/blocking member is preferably mounted to contact the vertebral end plate, as shown in
FIGS. 16 a-16 b through 18 a-18 b,FIGS. 21 a-21 c,FIGS. 25 a-25 b through 27 a-27 b, and inFIGS. 30 a-30 c. It is preferred that the lower portion of the anchoring/blocking member extend into the intervertebral space to effectively block the natural or prosthetic disc. When a prosthetic disc or annular plug is being blocked or retained, an adhesive may be used to secure the prosthetic disc or plug to the anchoring/blocking member. In such cases the need for extension into the intervertebral space is reduced or eliminated. - It is also to be appreciated that in “flush fit” embodiments using an “L-shaped” anchoring member, the end connected to the implant need not be covered completely by the implant. Accordingly, the embodiment shown in
FIGS. 16 a-16 b differs from the embodiment shown inFIGS. 1 a-1 b in that thefirst end 162 of anchoringmember 161 is not completely covered byimplant 164. - Similarly, in
FIGS. 17 a-17 b,first end 172 of anchoringmember 171 is not completely covered byimplant 174 as was the case in the embodiment shown inFIGS. 2 a-2 b. In the same manner,first end 182 of anchoringmember 181 is not completely covered byimplant 184 as was the case in the embodiment shown inFIGS. 3 a-3 b. - In the “double anchor” embodiments of
FIGS. 25 a-25 b through 27 a-27 b the distal ends of the implants need not be completely covered by the corresponding implant. Accordingly, none of anchoring member ends 252, 262, and 272 are completely covered by implants 254, 264, and 274, respectively, as were anchoring member ends 102, 112, and 122. - As to methods of using the disclosed anchored implants, the procedure typically begins with a discectomy to remove the degenerated natural disc. An opening is provided in the annulus, and the degenerated disc material is removed. A prosthetic nucleus in delivered into the disc space, and the anchoring and/or blocking member(s) are installed and attached.
- As to the materials that may be used to make the various components of the preferred embodiments, anchoring/blocking members may be formed from rigid, semi-rigid, or flexible biocompatible materials including metals, polymers, ceramics, composites, natural or synthetic bone materials, etc. For example, carbon fiber reinforced composites such as carbon fiber/epoxy composites or carbon fiber/polyaryletherketone composites may be used, as may a wide variety of metallic materials, such as, for example, stainless steel, titanium, titanium alloys, cobalt chrome alloys, tantalum, shape memory alloys, etc.
- Examples of appropriate polymeric materials include, but are not limited to, synthetic polymers such as polyurethanes, silicones, polyolefins, polyvinylalcohols, polyesters, polyacrylonitriles, polyetherketones, polycarbonates, polymethacrylates, polyamides, etc. In other embodiments natural polymers, such as cellulose, may be used.
- Specific preferred polymers include polytetrafluoroethylene, polymethylmethacrylate, polymethyletherketone, polyacrylamide, polyparaphenylene terephthalamide, polyethylene, polystyrene, polypropylene, and combinations of these materials. In some embodiments the polymeric materials are braided in the form of a cord, cable, or may have some other appropriate configuration, and combinations thereof.
- Examples of ceramic materials that may be used for the various components of the present invention include alumina, zirconia, alumina-zirconia composites, pyrolytic carbon, and polycrystalline diamond compact materials.
- A wide variety of spinal implants for serving differing functions may be anchored or blocked with the anchoring/blocking devices described herein, including implants sized and configured for nucleus pulposus replacements, implants sized and configured for partial or full disc replacements, or other implants designed for other disc reconstruction or augmentation purposes, such as a fusion cage. Elastic, or otherwise resilient, implants are most preferred. For example, implants may be formed from hydrophilic materials, such as hydrogels, or may be formed from biocompatible elastomeric materials known in the art, including silicone, polyurethane, polyolefins such as polyisobutylene and polyisoprene, copolymers of silicone and polyurethane, neoprene, nitrile, vulcanized rubber and combinations thereof. In a preferred embodiment, the vulcanized rubber is produced by a vulcanization process utilizing a copolymer produced, for example, as in U.S. Pat. No. 5,245,098 to Summers et al., from 1-hexene and 5-methyl-1,4-hexadiene. Preferred hydrophilic materials are hydrogels. Suitable hydrogels include natural hydrogels, and those formed from polyvinyl alcohol, acrylamides such as polyacrylic acid and poly (acrylonitrile-acrylic acid), polyurethanes, polyethylene glycol, poly(N-vinyl-2-pyrrolidone), acrylates such as poly(2-hydroxy ethyl methacrylate) and copolymers of acrylates with N-vinyl pyrolidone, N-vinyl lactams, acrylamide, polyurethanes and polyacrylonitrile or may be formed from other similar materials that form a hydrogel. The hydrogel materials may further be cross-linked to provide further strength to the implant. Examples of different types of polyurethanes include thermoplastic or thermoset polyurethanes, aliphatic or aromatic polyurethanes, polyetherurethane, polycarbonate-urethane and silicone polyether-urethane. Other suitable hydrophilic polymers include naturally-occurring materials such as glucomannan gel, hyaluronic acid, polysaccharides, such as cross-linked carboxyl-containing polysaccharides, and combinations thereof. The nature of the materials employed to form the elastic body should be selected so the formed implants have sufficient load bearing capacity. In preferred embodiments, a compressive strength of at least about 0.1 MPa is desired, although compressive strengths in the range of about 1 MPa to about 20 MPa are more preferred.
- It is to be appreciated that natural materials may be used to make the prosthetic implants disclosed in the present invention. For example, natural collagen material such as allogenic or xenogenic disc nucleus material may be used. Alternatively, collagen-based material derived from natural, collagen-rich tissue, such as intervertebral disc, fascia, ligament, tendon, demineralized bone matrix, etc., may be used. The material may be autogenic, allogenic, or xenogenic, or it may be of human-recombinant origin. In alternative embodiments the collagen-based material may be a synthetic, collagen-based material. Examples of preferred collagen-rich tissues include disc annulus, fascia lata, planar fascia, anterior or posterior cruciate ligaments, patella tendon, hamstring tendons, quadriceps tendons, Achilles tendons, skins, and other connective tissues.
- In some embodiments the implant material is an inelastic, semi-rigid material. Such materials stretch very little, if at all, but allow some compression. The compression typically occurs when air in the implant is pushed out, such as when a small roll of fabric is compressed.
- The implants can be shaped as desired. For example, the nucleus pulposus implants may take the form of a cylinder, a rectangle, or other polygonal shape or may be substantially oval.
- The securing and/or blocking members may be made of any appropriate biocompatible material, such metals, ceramics, polymers and combinations thereof. Non-resorbable metallic materials include biocompatible stainless steel, titanium, titanium alloys, titanium-vanadium-aluminum alloy, cobalt alloys such as cobalt-chromium alloy, cobalt-chromium-molybdenum alloy, and cobalt-nickel-chromium-molybdenum alloy, tantalum, niobium, hafnium, tungsten, shape memory materials as described above, especially those exhibiting superelastic behavior and including metals, and alloys thereof. Resorbable materials include polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, bioactive glass, calcium phosphate, such as hydroxyapatite, and combinations thereof.
- The anchoring devices may also be anchored with other soft tissue anchors known in the art, including suture anchors commonly used in arthroscopy or sports medicine surgeries, for example. In the case of a soft tissue or suture anchor, the end of the elongated body of the anchoring device is attached to the end of the anchor, which is embedded and anchored in an adjacent vertebral body.
- While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Claims (4)
1-44. (canceled)
45. A device for blocking and retaining a spinal implant in an intervertebral disc space, said device comprising a first L-shaped blocking member having an anchoring end and a blocking end;
wherein said anchoring end is anchored to a vertebra; and
wherein said blocking end is free and unconnected to a prosthetic spinal implant, and is positioned to block a prosthetic spinal implant from being expelled from an intervertebral disc space.
46. The device of claim 45 , and further including a second blocking member having an anchoring end and a blocking end;
wherein said anchoring end of said second blocking member is anchored to a vertebra; and
wherein said blocking end of said second blocking member is free and unconnected to a prosthetic spinal implant, and is positioned to block a prosthetic spinal implant from being expelled from an intervertebral disc space.
47-54. (canceled)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/173,451 US20050261774A1 (en) | 2002-12-10 | 2005-07-01 | System and method for blocking and/or retaining a prosthetic spinal implant |
US12/363,061 US20090143862A1 (en) | 2002-12-10 | 2009-01-30 | System and method for blocking and/or retaining a prosthetic spinal implant |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43236802P | 2002-12-10 | 2002-12-10 | |
US10/419,364 US6974479B2 (en) | 2002-12-10 | 2003-04-21 | System and method for blocking and/or retaining a prosthetic spinal implant |
US11/173,451 US20050261774A1 (en) | 2002-12-10 | 2005-07-01 | System and method for blocking and/or retaining a prosthetic spinal implant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/419,364 Division US6974479B2 (en) | 2002-12-10 | 2003-04-21 | System and method for blocking and/or retaining a prosthetic spinal implant |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/363,061 Continuation US20090143862A1 (en) | 2002-12-10 | 2009-01-30 | System and method for blocking and/or retaining a prosthetic spinal implant |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050261774A1 true US20050261774A1 (en) | 2005-11-24 |
Family
ID=32507912
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/419,364 Expired - Fee Related US6974479B2 (en) | 2002-12-10 | 2003-04-21 | System and method for blocking and/or retaining a prosthetic spinal implant |
US11/173,451 Abandoned US20050261774A1 (en) | 2002-12-10 | 2005-07-01 | System and method for blocking and/or retaining a prosthetic spinal implant |
US12/363,061 Abandoned US20090143862A1 (en) | 2002-12-10 | 2009-01-30 | System and method for blocking and/or retaining a prosthetic spinal implant |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/419,364 Expired - Fee Related US6974479B2 (en) | 2002-12-10 | 2003-04-21 | System and method for blocking and/or retaining a prosthetic spinal implant |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/363,061 Abandoned US20090143862A1 (en) | 2002-12-10 | 2009-01-30 | System and method for blocking and/or retaining a prosthetic spinal implant |
Country Status (3)
Country | Link |
---|---|
US (3) | US6974479B2 (en) |
AU (1) | AU2003296331A1 (en) |
WO (1) | WO2004052247A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060085002A1 (en) * | 2004-10-14 | 2006-04-20 | Sdgi Holdings, Inc. | Implant system, method, and instrument for augmentation or reconstruction of intervertebral disc |
US20070225819A1 (en) * | 2006-03-24 | 2007-09-27 | Depuy Products, Inc. | Apparatus and method for the treatment of periprosthetic fractures |
US20080033438A1 (en) * | 2006-08-04 | 2008-02-07 | Roy Frizzell | Cervical Saddle Plate |
US20080077141A1 (en) * | 2006-09-26 | 2008-03-27 | Bray Robert S | Cervical dynamic stabilization system |
US20080249623A1 (en) * | 2006-12-22 | 2008-10-09 | Qi-Bin Bao | Implant Restraint Device and Methods |
US20080312699A1 (en) * | 2007-04-11 | 2008-12-18 | Jeffrey Johnson | Recessed plate system |
US7556651B2 (en) * | 2004-01-09 | 2009-07-07 | Warsaw Orthopedic, Inc. | Posterior spinal device and method |
US20090182384A1 (en) * | 2008-01-14 | 2009-07-16 | Warsaw Orthopedic, Inc. | Material combinations for medical device implants |
US20100036418A1 (en) * | 2008-08-05 | 2010-02-11 | The Cleveland Clinic Foundation | Facet augmentation |
US7674279B2 (en) | 2006-10-13 | 2010-03-09 | Spinal U.S.A. | Bone plate |
US20100160978A1 (en) * | 2008-12-23 | 2010-06-24 | John Carbone | Bone screw assembly with non-uniform material |
US7811326B2 (en) | 2006-01-30 | 2010-10-12 | Warsaw Orthopedic Inc. | Posterior joint replacement device |
US8372150B2 (en) | 2004-01-09 | 2013-02-12 | Warsaw Orthpedic, Inc. | Spinal device and method |
US8454694B2 (en) | 2011-03-03 | 2013-06-04 | Warsaw Orthopedic, Inc. | Interbody device and plate for spinal stabilization and instruments for positioning same |
US8480747B2 (en) | 2010-08-11 | 2013-07-09 | Warsaw Orthopedic, Inc. | Interbody spinal implants with extravertebral support plates |
US8864832B2 (en) | 2007-06-20 | 2014-10-21 | Hh Spinal Llc | Posterior total joint replacement |
US8888852B2 (en) | 2004-01-09 | 2014-11-18 | Hh Spinal Llc | Spinal athroplasty device and method |
US11890202B2 (en) | 2007-06-20 | 2024-02-06 | 3Spine, Inc. | Spinal osteotomy |
Families Citing this family (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7879095B2 (en) * | 1994-03-18 | 2011-02-01 | Madhavan Pisharodi | Method of inserting, rotating and releasing a spring-loaded artificial disk |
US7998213B2 (en) | 1999-08-18 | 2011-08-16 | Intrinsic Therapeutics, Inc. | Intervertebral disc herniation repair |
US7717961B2 (en) | 1999-08-18 | 2010-05-18 | Intrinsic Therapeutics, Inc. | Apparatus delivery in an intervertebral disc |
US8323341B2 (en) | 2007-09-07 | 2012-12-04 | Intrinsic Therapeutics, Inc. | Impaction grafting for vertebral fusion |
US7972337B2 (en) | 2005-12-28 | 2011-07-05 | Intrinsic Therapeutics, Inc. | Devices and methods for bone anchoring |
IL155494A0 (en) * | 1999-08-18 | 2003-11-23 | Intrinsic Therapeutics Inc | Devices and method for nucleus pulposus augmentation and retention |
WO2004100841A1 (en) | 1999-08-18 | 2004-11-25 | Intrinsic Therapeutics, Inc. | Devices and method for augmenting a vertebral disc nucleus |
US6883520B2 (en) | 1999-08-18 | 2005-04-26 | Intrinsic Therapeutics, Inc. | Methods and apparatus for dynamically stable spinal implant |
US20050256582A1 (en) * | 1999-10-08 | 2005-11-17 | Ferree Bret A | Spinal implants, including devices that reduce pressure on the annulus fibrosis |
US7004970B2 (en) | 1999-10-20 | 2006-02-28 | Anulex Technologies, Inc. | Methods and devices for spinal disc annulus reconstruction and repair |
US7935147B2 (en) | 1999-10-20 | 2011-05-03 | Anulex Technologies, Inc. | Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus |
US8632590B2 (en) | 1999-10-20 | 2014-01-21 | Anulex Technologies, Inc. | Apparatus and methods for the treatment of the intervertebral disc |
US8128698B2 (en) | 1999-10-20 | 2012-03-06 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US7052516B2 (en) | 1999-10-20 | 2006-05-30 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
US7951201B2 (en) | 1999-10-20 | 2011-05-31 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US7615076B2 (en) | 1999-10-20 | 2009-11-10 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US6592625B2 (en) | 1999-10-20 | 2003-07-15 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
US6805695B2 (en) | 2000-04-04 | 2004-10-19 | Spinalabs, Llc | Devices and methods for annular repair of intervertebral discs |
AR038680A1 (en) | 2002-02-19 | 2005-01-26 | Synthes Ag | INTERVERTEBRAL IMPLANT |
US20040210310A1 (en) * | 2002-12-10 | 2004-10-21 | Trieu Hai H. | Implant system and method for intervertebral disc augmentation |
ATE496593T1 (en) | 2003-02-06 | 2011-02-15 | Synthes Gmbh | INTERVERBARY IMPLANT |
EP1594423B1 (en) | 2003-02-14 | 2009-01-07 | DePuy Spine, Inc. | In-situ formed intervertebral fusion device |
US7819903B2 (en) | 2003-03-31 | 2010-10-26 | Depuy Spine, Inc. | Spinal fixation plate |
US7753958B2 (en) | 2003-08-05 | 2010-07-13 | Gordon Charles R | Expandable intervertebral implant |
US7909869B2 (en) | 2003-08-05 | 2011-03-22 | Flexuspine, Inc. | Artificial spinal unit assemblies |
US7785351B2 (en) | 2003-08-05 | 2010-08-31 | Flexuspine, Inc. | Artificial functional spinal implant unit system and method for use |
US7641701B2 (en) | 2003-09-30 | 2010-01-05 | X-Spine Systems, Inc. | Spinal fusion system and method for fusing spinal bones |
US20050116400A1 (en) * | 2003-11-14 | 2005-06-02 | White Moreno J. | Non-linear fiber/matrix architecture |
AU2011226832B2 (en) * | 2004-02-06 | 2013-07-11 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US7846183B2 (en) | 2004-02-06 | 2010-12-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US8480742B2 (en) * | 2005-08-02 | 2013-07-09 | Perumala Corporation | Total artificial disc |
US9504583B2 (en) | 2004-06-10 | 2016-11-29 | Spinal Elements, Inc. | Implant and method for facet immobilization |
WO2006015001A1 (en) | 2004-07-27 | 2006-02-09 | Synthes (U.S.A.) | Supplementation or replacement of a nucleus pulposus, of an intervertebral disc |
US7846184B2 (en) * | 2004-08-13 | 2010-12-07 | Sasso Ricardo C | Replacement facet joint and method |
US20060095134A1 (en) * | 2004-10-28 | 2006-05-04 | Sdgi Holdings, Inc. | Materials, devices and methods for implantation of transformable implants |
US7763050B2 (en) * | 2004-12-13 | 2010-07-27 | Warsaw Orthopedic, Inc. | Inter-cervical facet implant with locking screw and method |
WO2006109132A1 (en) * | 2005-04-12 | 2006-10-19 | Malan De Villiers | Spinal fusion device |
US20060247769A1 (en) * | 2005-04-28 | 2006-11-02 | Sdgi Holdings, Inc. | Polycrystalline diamond compact surfaces on facet arthroplasty devices |
US20060247776A1 (en) * | 2005-05-02 | 2006-11-02 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for augmenting intervertebral discs |
US7686806B2 (en) * | 2005-06-15 | 2010-03-30 | Stryker Spine | Anterior cervical plate |
US7670374B2 (en) | 2005-08-16 | 2010-03-02 | Benvenue Medical, Inc. | Methods of distracting tissue layers of the human spine |
US8591583B2 (en) | 2005-08-16 | 2013-11-26 | Benvenue Medical, Inc. | Devices for treating the spine |
US8366773B2 (en) | 2005-08-16 | 2013-02-05 | Benvenue Medical, Inc. | Apparatus and method for treating bone |
US20070049941A1 (en) * | 2005-08-25 | 2007-03-01 | Lanx, Llc | Plate with stabilization |
DE102005053819A1 (en) * | 2005-11-11 | 2007-05-16 | Khd Humboldt Wedag Gmbh | Rotary kiln burner |
US20070112427A1 (en) * | 2005-11-16 | 2007-05-17 | Aoi Medical, Inc. | Intervertebral Spacer |
US7635389B2 (en) * | 2006-01-30 | 2009-12-22 | Warsaw Orthopedic, Inc. | Posterior joint replacement device |
US20070191957A1 (en) * | 2006-02-07 | 2007-08-16 | Spinemedica Corporation | Spinal implants with cooperating suture anchors |
EP1988855A2 (en) | 2006-02-27 | 2008-11-12 | Synthes GmbH | Intervertebral implant with fixation geometry |
US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
WO2008005252A1 (en) * | 2006-06-29 | 2008-01-10 | Spinemedica Corporation | Spinal implants with cooperating anchoring sutures |
US7740659B2 (en) | 2006-06-29 | 2010-06-22 | Depuy Spine, Inc. | Insert for nucleus implant |
US8105382B2 (en) | 2006-12-07 | 2012-01-31 | Interventional Spine, Inc. | Intervertebral implant |
US9039768B2 (en) | 2006-12-22 | 2015-05-26 | Medos International Sarl | Composite vertebral spacers and instrument |
US8940022B2 (en) | 2007-01-19 | 2015-01-27 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8034081B2 (en) | 2007-02-06 | 2011-10-11 | CollabComl, LLC | Interspinous dynamic stabilization implant and method of implanting |
JP5371107B2 (en) | 2007-02-21 | 2013-12-18 | ベンベニュー メディカル, インコーポレイテッド | Spinal therapy device |
EP2129304B1 (en) | 2007-02-22 | 2014-09-03 | Spinal Elements, Inc. | Vertebral articular process drill |
US8992533B2 (en) | 2007-02-22 | 2015-03-31 | Spinal Elements, Inc. | Vertebral facet joint drill and method of use |
US8409258B2 (en) * | 2007-06-01 | 2013-04-02 | Polyvalor, Limited Partnership | Fusionless vertebral physeal device and method |
US8900307B2 (en) | 2007-06-26 | 2014-12-02 | DePuy Synthes Products, LLC | Highly lordosed fusion cage |
US20110196492A1 (en) * | 2007-09-07 | 2011-08-11 | Intrinsic Therapeutics, Inc. | Bone anchoring systems |
US20090088801A1 (en) * | 2007-09-27 | 2009-04-02 | K2M, Inc. | Spinal fixation device and method |
US20090088854A1 (en) * | 2007-09-27 | 2009-04-02 | K2M, Inc. | Spacing device and method |
US8157844B2 (en) | 2007-10-22 | 2012-04-17 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8267965B2 (en) | 2007-10-22 | 2012-09-18 | Flexuspine, Inc. | Spinal stabilization systems with dynamic interbody devices |
US8187330B2 (en) | 2007-10-22 | 2012-05-29 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8182514B2 (en) | 2007-10-22 | 2012-05-22 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a fixed length elongated member |
US8523912B2 (en) | 2007-10-22 | 2013-09-03 | Flexuspine, Inc. | Posterior stabilization systems with shared, dual dampener systems |
US8162994B2 (en) | 2007-10-22 | 2012-04-24 | Flexuspine, Inc. | Posterior stabilization system with isolated, dual dampener systems |
US8540774B2 (en) | 2007-11-16 | 2013-09-24 | DePuy Synthes Products, LLC | Low profile intervertebral implant |
EP2471493A1 (en) | 2008-01-17 | 2012-07-04 | Synthes GmbH | An expandable intervertebral implant and associated method of manufacturing the same |
EP3108834B1 (en) | 2008-03-26 | 2019-05-29 | Synthes GmbH | Universal anchor for attaching objects to bone tissue |
US20090248092A1 (en) | 2008-03-26 | 2009-10-01 | Jonathan Bellas | Posterior Intervertebral Disc Inserter and Expansion Techniques |
EP2262449B1 (en) | 2008-04-05 | 2020-03-11 | Synthes GmbH | Expandable intervertebral implant |
EP2282702A1 (en) * | 2008-05-05 | 2011-02-16 | Maurice Bertholet | Intervertebral prosthetic device |
US8882838B2 (en) * | 2008-06-05 | 2014-11-11 | DePuy Synthes Products, LLC | Articulating disc implant |
BRPI0911869A2 (en) * | 2008-06-05 | 2019-09-24 | Synthes Gmbh | joint disc implant |
US8187333B2 (en) * | 2008-09-18 | 2012-05-29 | Mayer Peter L | Intervertebral disc prosthesis and method for implanting and explanting |
US8814937B2 (en) | 2008-09-18 | 2014-08-26 | Peter L. Mayer | Intervertebral disc prosthesis, method for assembling, method for implanting prosthesis, and method for explanting |
US8163022B2 (en) | 2008-10-14 | 2012-04-24 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
RU2506930C2 (en) | 2008-11-07 | 2014-02-20 | Зинтес Гмбх | Intervertebral insert and coupled plate assembly |
US9060808B2 (en) | 2008-12-05 | 2015-06-23 | DePuy Synthes Products, Inc. | Anchor-in-anchor system for use in bone fixation |
EP2954862B1 (en) | 2008-12-05 | 2017-03-22 | Synthes GmbH | Anchor-in-anchor system for use in bone fixation |
US8535327B2 (en) | 2009-03-17 | 2013-09-17 | Benvenue Medical, Inc. | Delivery apparatus for use with implantable medical devices |
US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US20100292540A1 (en) * | 2009-05-12 | 2010-11-18 | Hess Christopher J | Surgical retractor and method |
US8945225B2 (en) | 2009-07-20 | 2015-02-03 | Warsaw, Orthopedic, Inc. | Prosthetic spinal disc system |
WO2011028306A1 (en) | 2009-09-06 | 2011-03-10 | Cowan Jr John A | Locking spinal fusion device |
US9393129B2 (en) | 2009-12-10 | 2016-07-19 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US8460319B2 (en) | 2010-01-11 | 2013-06-11 | Anulex Technologies, Inc. | Intervertebral disc annulus repair system and method |
US8142477B2 (en) * | 2010-01-21 | 2012-03-27 | Warsaw Orthopedic, Inc. | Retaining system |
US8221428B2 (en) * | 2010-01-26 | 2012-07-17 | Warsaw Orthopedic, Inc. | Sacro-iliac joint implant system, method and instrument |
US20110184520A1 (en) * | 2010-01-27 | 2011-07-28 | Warsaw Orthopedic, Inc. | Sacro-iliac joint implant, method and apparatus |
US8444699B2 (en) * | 2010-02-18 | 2013-05-21 | Biomet Manufacturing Corp. | Method and apparatus for augmenting bone defects |
US8945224B2 (en) * | 2010-03-18 | 2015-02-03 | Warsaw, Orthopedic, Inc. | Sacro-iliac implant system, method and apparatus |
US20110238181A1 (en) * | 2010-03-29 | 2011-09-29 | Warsaw Orthopedic, Inc., A Indiana Corporation | Sacro-iliac joint implant system and method |
WO2011155931A1 (en) * | 2010-06-09 | 2011-12-15 | Synthes Usa, Llc | Anchor-in-anchor system for use in bone fixation |
US9592063B2 (en) | 2010-06-24 | 2017-03-14 | DePuy Synthes Products, Inc. | Universal trial for lateral cages |
US8979860B2 (en) | 2010-06-24 | 2015-03-17 | DePuy Synthes Products. LLC | Enhanced cage insertion device |
AU2011271465B2 (en) | 2010-06-29 | 2015-03-19 | Synthes Gmbh | Distractible intervertebral implant |
US20120078372A1 (en) | 2010-09-23 | 2012-03-29 | Thomas Gamache | Novel implant inserter having a laterally-extending dovetail engagement feature |
US11529241B2 (en) | 2010-09-23 | 2022-12-20 | DePuy Synthes Products, Inc. | Fusion cage with in-line single piece fixation |
US20120078373A1 (en) | 2010-09-23 | 2012-03-29 | Thomas Gamache | Stand alone intervertebral fusion device |
EP2433580A1 (en) * | 2010-09-28 | 2012-03-28 | Zimmer GmbH | An anterior spinal stabilization system |
US9402732B2 (en) | 2010-10-11 | 2016-08-02 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US9241809B2 (en) | 2010-12-21 | 2016-01-26 | DePuy Synthes Products, Inc. | Intervertebral implants, systems, and methods of use |
EP2654626B1 (en) | 2010-12-21 | 2016-02-24 | Synthes GmbH | Intervertebral implants and systems |
US9039765B2 (en) | 2011-01-21 | 2015-05-26 | Warsaw Orhtopedic, Inc. | Implant system and method for stabilization of a sacro-iliac joint |
US8740949B2 (en) | 2011-02-24 | 2014-06-03 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
US9271765B2 (en) | 2011-02-24 | 2016-03-01 | Spinal Elements, Inc. | Vertebral facet joint fusion implant and method for fusion |
USD724733S1 (en) | 2011-02-24 | 2015-03-17 | Spinal Elements, Inc. | Interbody bone implant |
US8388687B2 (en) | 2011-03-25 | 2013-03-05 | Flexuspine, Inc. | Interbody device insertion systems and methods |
US9585697B2 (en) | 2011-04-01 | 2017-03-07 | Rebecca Elizabeth Stachniak | Posterior stabilization systems and methods |
FR2975582B1 (en) * | 2011-05-23 | 2013-06-07 | Ass Marie Lannelongue | OSTEOSYNTHESIS IMPLANT |
US8814873B2 (en) | 2011-06-24 | 2014-08-26 | Benvenue Medical, Inc. | Devices and methods for treating bone tissue |
US9248028B2 (en) | 2011-09-16 | 2016-02-02 | DePuy Synthes Products, Inc. | Removable, bone-securing cover plate for intervertebral fusion cage |
USD739935S1 (en) | 2011-10-26 | 2015-09-29 | Spinal Elements, Inc. | Interbody bone implant |
US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
US9198764B2 (en) | 2012-01-31 | 2015-12-01 | Blackstone Medical, Inc. | Intervertebral disc prosthesis and method |
US9271836B2 (en) | 2012-03-06 | 2016-03-01 | DePuy Synthes Products, Inc. | Nubbed plate |
US9393126B2 (en) | 2012-04-20 | 2016-07-19 | Peter L. Mayer | Bilaterally placed disc prosthesis for spinal implant and method of bilateral placement |
US9364339B2 (en) | 2012-04-30 | 2016-06-14 | Peter L. Mayer | Unilaterally placed expansile spinal prosthesis |
US8814912B2 (en) | 2012-07-27 | 2014-08-26 | Zimmer Spine, Inc. | Bone stabilization member with bone screw retention mechanism |
ES2733235T3 (en) * | 2012-10-01 | 2019-11-28 | Rebecca Elizabeth Stachniak | Post stabilization systems |
US10182921B2 (en) | 2012-11-09 | 2019-01-22 | DePuy Synthes Products, Inc. | Interbody device with opening to allow packing graft and other biologics |
WO2014117107A1 (en) | 2013-01-28 | 2014-07-31 | Cartiva, Inc. | Systems and methods for orthopedic repair |
US9737294B2 (en) | 2013-01-28 | 2017-08-22 | Cartiva, Inc. | Method and system for orthopedic repair |
US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
US9820784B2 (en) | 2013-03-14 | 2017-11-21 | Spinal Elements, Inc. | Apparatus for spinal fixation and methods of use |
USD765853S1 (en) | 2013-03-14 | 2016-09-06 | Spinal Elements, Inc. | Flexible elongate member with a portion configured to receive a bone anchor |
US10085783B2 (en) | 2013-03-14 | 2018-10-02 | Izi Medical Products, Llc | Devices and methods for treating bone tissue |
US9421044B2 (en) | 2013-03-14 | 2016-08-23 | Spinal Elements, Inc. | Apparatus for bone stabilization and distraction and methods of use |
US9456855B2 (en) | 2013-09-27 | 2016-10-04 | Spinal Elements, Inc. | Method of placing an implant between bone portions |
US9839450B2 (en) | 2013-09-27 | 2017-12-12 | Spinal Elements, Inc. | Device and method for reinforcement of a facet |
US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
WO2016044432A1 (en) | 2014-09-17 | 2016-03-24 | Spinal Elements, Inc. | Flexible fastening band connector |
US9763705B2 (en) * | 2014-10-03 | 2017-09-19 | Globus Medical, Inc. | Orthopedic stabilization devices and methods for installation thereof |
US9867718B2 (en) | 2014-10-22 | 2018-01-16 | DePuy Synthes Products, Inc. | Intervertebral implants, systems, and methods of use |
EP3250155A4 (en) | 2015-01-27 | 2018-08-22 | Spinal Elements Inc. | Facet joint implant |
US9987052B2 (en) | 2015-02-24 | 2018-06-05 | X-Spine Systems, Inc. | Modular interspinous fixation system with threaded component |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
DE102015112799A1 (en) * | 2015-08-04 | 2017-02-09 | Marcus Richter | Implant for closing a defect in the annulus fibrosus of an intervertebral disc |
EP3474783B1 (en) | 2016-06-28 | 2023-05-03 | Eit Emerging Implant Technologies GmbH | Expandable, angularly adjustable intervertebral cages |
JP7023877B2 (en) | 2016-06-28 | 2022-02-22 | イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー | Expandable and angle-adjustable range-of-motion intervertebral cage |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
EP3678602A4 (en) | 2017-09-08 | 2021-10-06 | Pioneer Surgical Technology, Inc. | Intervertebral implants, instruments, and methods |
USD907771S1 (en) | 2017-10-09 | 2021-01-12 | Pioneer Surgical Technology, Inc. | Intervertebral implant |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US10517651B1 (en) * | 2018-11-12 | 2019-12-31 | Medlastics Llc | Facet joint compression system for spinal stabilization |
EP3711687B1 (en) * | 2019-03-19 | 2023-01-11 | BioTissue SA | Set for endoscopic fixing of an implant in an intervertebral disc with a nail or pin |
US11464552B2 (en) | 2019-05-22 | 2022-10-11 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
US11457959B2 (en) | 2019-05-22 | 2022-10-04 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
WO2021163313A1 (en) | 2020-02-14 | 2021-08-19 | Spinal Elements, Inc. | Bone tie methods |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5544866A (en) * | 1994-11-29 | 1996-08-13 | Dye; Robert | Handrail assembly |
US5755796A (en) * | 1996-06-06 | 1998-05-26 | Ibo; Ivo | Prosthesis of the cervical intervertebralis disk |
US6190413B1 (en) * | 1998-04-16 | 2001-02-20 | Ulrich Gmbh & Co. Kg | Vertebral implant |
US20040049279A1 (en) * | 2000-05-25 | 2004-03-11 | Sevrain Lionel C. | Inter-vertebral disc prosthesis for rachis through anterior surgery thereof |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA992255A (en) * | 1971-01-25 | 1976-07-06 | Cutter Laboratories | Prosthesis for spinal repair |
US3875595A (en) * | 1974-04-15 | 1975-04-08 | Edward C Froning | Intervertebral disc prosthesis and instruments for locating same |
CA1146301A (en) * | 1980-06-13 | 1983-05-17 | J. David Kuntz | Intervertebral disc prosthesis |
US4309777A (en) * | 1980-11-13 | 1982-01-12 | Patil Arun A | Artificial intervertebral disc |
ATE44871T1 (en) * | 1984-09-04 | 1989-08-15 | Univ Berlin Humboldt | DISC PROSTHESIS. |
CH671691A5 (en) * | 1987-01-08 | 1989-09-29 | Sulzer Ag | |
CA1283501C (en) * | 1987-02-12 | 1991-04-30 | Thomas P. Hedman | Artificial spinal disc |
US4863477A (en) * | 1987-05-12 | 1989-09-05 | Monson Gary L | Synthetic intervertebral disc prosthesis |
CH672589A5 (en) * | 1987-07-09 | 1989-12-15 | Sulzer Ag | |
CH672588A5 (en) * | 1987-07-09 | 1989-12-15 | Sulzer Ag | |
US5108438A (en) * | 1989-03-02 | 1992-04-28 | Regen Corporation | Prosthetic intervertebral disc |
US4772287A (en) * | 1987-08-20 | 1988-09-20 | Cedar Surgical, Inc. | Prosthetic disc and method of implanting |
JPH01136655A (en) * | 1987-11-24 | 1989-05-29 | Asahi Optical Co Ltd | Movable type pyramid spacer |
US4874389A (en) * | 1987-12-07 | 1989-10-17 | Downey Ernest L | Replacement disc |
DE3809793A1 (en) * | 1988-03-23 | 1989-10-05 | Link Waldemar Gmbh Co | SURGICAL INSTRUMENT SET |
DE8807485U1 (en) * | 1988-06-06 | 1989-08-10 | Mecron Medizinische Produkte Gmbh, 1000 Berlin | Intervertebral disc endoprosthesis |
US4911718A (en) * | 1988-06-10 | 1990-03-27 | University Of Medicine & Dentistry Of N.J. | Functional and biocompatible intervertebral disc spacer |
US5545229A (en) * | 1988-08-18 | 1996-08-13 | University Of Medicine And Dentistry Of Nj | Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness |
CA1318469C (en) * | 1989-02-15 | 1993-06-01 | Acromed Corporation | Artificial disc |
DE3911610A1 (en) | 1989-04-08 | 1990-10-18 | Bosch Gmbh Robert | ARTIFICIAL DISC |
DE8912648U1 (en) | 1989-10-23 | 1990-11-22 | Mecron Medizinische Produkte Gmbh, 1000 Berlin | Vertebral body implant |
EP0453393B1 (en) * | 1990-04-20 | 1993-10-06 | SULZER Medizinaltechnik AG | Implant, particularly intervertebral prosthesis |
US5192326A (en) * | 1990-12-21 | 1993-03-09 | Pfizer Hospital Products Group, Inc. | Hydrogel bead intervertebral disc nucleus |
US5047055A (en) * | 1990-12-21 | 1991-09-10 | Pfizer Hospital Products Group, Inc. | Hydrogel intervertebral disc nucleus |
AU1454192A (en) * | 1991-02-22 | 1992-09-15 | Pisharodi Madhavan | Middle expandable intervertebral disk implant and method |
JP3007903B2 (en) | 1991-03-29 | 2000-02-14 | 京セラ株式会社 | Artificial disc |
US5306307A (en) * | 1991-07-22 | 1994-04-26 | Calcitek, Inc. | Spinal disk implant |
GB9125798D0 (en) * | 1991-12-04 | 1992-02-05 | Customflex Limited | Improvements in or relating to spinal vertebrae implants |
US5425773A (en) * | 1992-01-06 | 1995-06-20 | Danek Medical, Inc. | Intervertebral disk arthroplasty device |
DE4208115A1 (en) * | 1992-03-13 | 1993-09-16 | Link Waldemar Gmbh Co | DISC ENDOPROTHESIS |
DE4208116C2 (en) * | 1992-03-13 | 1995-08-03 | Link Waldemar Gmbh Co | Intervertebral disc prosthesis |
DE59206917D1 (en) * | 1992-04-21 | 1996-09-19 | Sulzer Medizinaltechnik Ag | Artificial intervertebral disc body |
US5306309A (en) * | 1992-05-04 | 1994-04-26 | Calcitek, Inc. | Spinal disk implant and implantation kit |
ES2161725T3 (en) | 1993-02-09 | 2001-12-16 | Depuy Acromed Inc | INTERVERTEBRAL DISC. |
US5534028A (en) * | 1993-04-20 | 1996-07-09 | Howmedica, Inc. | Hydrogel intervertebral disc nucleus with diminished lateral bulging |
EP0621020A1 (en) * | 1993-04-21 | 1994-10-26 | SULZER Medizinaltechnik AG | Intervertebral prosthesis and method of implanting such a prosthesis |
FR2707480B1 (en) * | 1993-06-28 | 1995-10-20 | Bisserie Michel | Intervertebral disc prosthesis. |
US5423816A (en) * | 1993-07-29 | 1995-06-13 | Lin; Chih I. | Intervertebral locking device |
FR2709949B1 (en) * | 1993-09-14 | 1995-10-13 | Commissariat Energie Atomique | Intervertebral disc prosthesis. |
US5458642A (en) * | 1994-01-18 | 1995-10-17 | Beer; John C. | Synthetic intervertebral disc |
CA2551185C (en) * | 1994-03-28 | 2007-10-30 | Sdgi Holdings, Inc. | Apparatus and method for anterior spinal stabilization |
US5888220A (en) | 1994-05-06 | 1999-03-30 | Advanced Bio Surfaces, Inc. | Articulating joint repair |
US5571189A (en) * | 1994-05-20 | 1996-11-05 | Kuslich; Stephen D. | Expandable fabric implant for stabilizing the spinal motion segment |
US6187048B1 (en) | 1994-05-24 | 2001-02-13 | Surgical Dynamics, Inc. | Intervertebral disc implant |
GB9413855D0 (en) | 1994-07-08 | 1994-08-24 | Smith & Nephew | Prosthetic devices |
ATE203885T1 (en) * | 1994-09-08 | 2001-08-15 | Stryker Technologies Corp | HYDROGEL DISC CORE |
US5824093A (en) * | 1994-10-17 | 1998-10-20 | Raymedica, Inc. | Prosthetic spinal disc nucleus |
EP0786963B1 (en) * | 1994-10-17 | 2004-04-07 | RayMedica, Inc. | Prosthetic spinal disc nucleus |
US5674296A (en) * | 1994-11-14 | 1997-10-07 | Spinal Dynamics Corporation | Human spinal disc prosthesis |
US5645597A (en) * | 1995-12-29 | 1997-07-08 | Krapiva; Pavel I. | Disc replacement method and apparatus |
US5683465A (en) * | 1996-03-18 | 1997-11-04 | Shinn; Gary Lee | Artificial intervertebral disk prosthesis |
FR2747034B1 (en) | 1996-04-03 | 1998-06-19 | Scient X | INTERSOMATIC CONTAINMENT AND MERGER SYSTEM |
DE19630256A1 (en) | 1996-07-26 | 1998-01-29 | Heinrich Ulrich | Implant for fusing two adjacent vertebrae of the spine |
US5716416A (en) * | 1996-09-10 | 1998-02-10 | Lin; Chih-I | Artificial intervertebral disk and method for implanting the same |
US5895428A (en) * | 1996-11-01 | 1999-04-20 | Berry; Don | Load bearing spinal joint implant |
US5827328A (en) * | 1996-11-22 | 1998-10-27 | Buttermann; Glenn R. | Intervertebral prosthetic device |
US5893889A (en) * | 1997-06-20 | 1999-04-13 | Harrington; Michael | Artificial disc |
GB9713330D0 (en) * | 1997-06-25 | 1997-08-27 | Bridport Gundry Plc | Surgical implant |
US6146421A (en) * | 1997-08-04 | 2000-11-14 | Gordon, Maya, Roberts And Thomas, Number 1, Llc | Multiple axis intervertebral prosthesis |
FR2769827B1 (en) | 1997-10-17 | 2000-05-19 | Sdm | IMPLANT FOR INTERSOMATIC SPINAL ARTHRODESIS |
US5824094A (en) * | 1997-10-17 | 1998-10-20 | Acromed Corporation | Spinal disc |
US5888226A (en) * | 1997-11-12 | 1999-03-30 | Rogozinski; Chaim | Intervertebral prosthetic disc |
US6063121A (en) * | 1998-07-29 | 2000-05-16 | Xavier; Ravi | Vertebral body prosthesis |
US6342074B1 (en) * | 1999-04-30 | 2002-01-29 | Nathan S. Simpson | Anterior lumbar interbody fusion implant and method for fusing adjacent vertebrae |
CN1192750C (en) | 2000-08-28 | 2005-03-16 | 迪斯科动力学公司 | Prosthesis of vertebral disc |
AU2001285351B2 (en) | 2000-08-30 | 2004-12-02 | Warsaw Orthopedic, Inc. | Intervertebral disc nucleus implants and methods |
WO2002045592A2 (en) | 2000-10-20 | 2002-06-13 | Osteotech, Inc. | Implant retaining device |
US6733531B1 (en) * | 2000-10-20 | 2004-05-11 | Sdgi Holdings, Inc. | Anchoring devices and implants for intervertebral disc augmentation |
US20030120274A1 (en) * | 2000-10-20 | 2003-06-26 | Morris John W. | Implant retaining device |
CA2426138A1 (en) | 2000-10-27 | 2002-08-01 | Sdgi Holdings, Inc. | Annulus repair systems and methods |
US6576017B2 (en) * | 2001-02-06 | 2003-06-10 | Sdgi Holdings, Inc. | Spinal implant with attached ligament and methods |
US7229441B2 (en) * | 2001-02-28 | 2007-06-12 | Warsaw Orthopedic, Inc. | Flexible systems for spinal stabilization and fixation |
US20030078579A1 (en) * | 2001-04-19 | 2003-04-24 | Ferree Bret A. | Annular repair devices and methods |
US7223289B2 (en) * | 2002-04-16 | 2007-05-29 | Warsaw Orthopedic, Inc. | Annulus repair systems and techniques |
-
2003
- 2003-04-21 US US10/419,364 patent/US6974479B2/en not_active Expired - Fee Related
- 2003-12-08 WO PCT/US2003/038953 patent/WO2004052247A1/en not_active Application Discontinuation
- 2003-12-08 AU AU2003296331A patent/AU2003296331A1/en not_active Abandoned
-
2005
- 2005-07-01 US US11/173,451 patent/US20050261774A1/en not_active Abandoned
-
2009
- 2009-01-30 US US12/363,061 patent/US20090143862A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5544866A (en) * | 1994-11-29 | 1996-08-13 | Dye; Robert | Handrail assembly |
US5755796A (en) * | 1996-06-06 | 1998-05-26 | Ibo; Ivo | Prosthesis of the cervical intervertebralis disk |
US6190413B1 (en) * | 1998-04-16 | 2001-02-20 | Ulrich Gmbh & Co. Kg | Vertebral implant |
US20040049279A1 (en) * | 2000-05-25 | 2004-03-11 | Sevrain Lionel C. | Inter-vertebral disc prosthesis for rachis through anterior surgery thereof |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8372150B2 (en) | 2004-01-09 | 2013-02-12 | Warsaw Orthpedic, Inc. | Spinal device and method |
US7556651B2 (en) * | 2004-01-09 | 2009-07-07 | Warsaw Orthopedic, Inc. | Posterior spinal device and method |
US8888852B2 (en) | 2004-01-09 | 2014-11-18 | Hh Spinal Llc | Spinal athroplasty device and method |
US20060085002A1 (en) * | 2004-10-14 | 2006-04-20 | Sdgi Holdings, Inc. | Implant system, method, and instrument for augmentation or reconstruction of intervertebral disc |
US7682393B2 (en) * | 2004-10-14 | 2010-03-23 | Warsaw Orthopedic, Inc. | Implant system, method, and instrument for augmentation or reconstruction of intervertebral disc |
US7811326B2 (en) | 2006-01-30 | 2010-10-12 | Warsaw Orthopedic Inc. | Posterior joint replacement device |
US20070225819A1 (en) * | 2006-03-24 | 2007-09-27 | Depuy Products, Inc. | Apparatus and method for the treatment of periprosthetic fractures |
US20080033438A1 (en) * | 2006-08-04 | 2008-02-07 | Roy Frizzell | Cervical Saddle Plate |
US20080077141A1 (en) * | 2006-09-26 | 2008-03-27 | Bray Robert S | Cervical dynamic stabilization system |
US8317841B2 (en) * | 2006-09-26 | 2012-11-27 | Bray Jr Robert S | Cervical dynamic stabilization system |
US7674279B2 (en) | 2006-10-13 | 2010-03-09 | Spinal U.S.A. | Bone plate |
US20080249623A1 (en) * | 2006-12-22 | 2008-10-09 | Qi-Bin Bao | Implant Restraint Device and Methods |
US8163019B2 (en) | 2006-12-22 | 2012-04-24 | Pioneer Surgical Technology, Inc. | Implant restraint device and methods |
US20080312699A1 (en) * | 2007-04-11 | 2008-12-18 | Jeffrey Johnson | Recessed plate system |
US8864832B2 (en) | 2007-06-20 | 2014-10-21 | Hh Spinal Llc | Posterior total joint replacement |
US11890202B2 (en) | 2007-06-20 | 2024-02-06 | 3Spine, Inc. | Spinal osteotomy |
US20090182384A1 (en) * | 2008-01-14 | 2009-07-16 | Warsaw Orthopedic, Inc. | Material combinations for medical device implants |
US8840647B2 (en) * | 2008-08-05 | 2014-09-23 | The Cleveland Clinic Foundation | Facet augmentation |
US20100036418A1 (en) * | 2008-08-05 | 2010-02-11 | The Cleveland Clinic Foundation | Facet augmentation |
US20100160978A1 (en) * | 2008-12-23 | 2010-06-24 | John Carbone | Bone screw assembly with non-uniform material |
US8480747B2 (en) | 2010-08-11 | 2013-07-09 | Warsaw Orthopedic, Inc. | Interbody spinal implants with extravertebral support plates |
US8845737B2 (en) | 2010-08-11 | 2014-09-30 | Warsaw Orthopedic, Inc. | Interbody spinal implants with extravertebral support plates |
US8690948B2 (en) | 2011-03-03 | 2014-04-08 | Warsaw Orthopedic, Inc. | Interbody device and plate for spinal stabilization and instruments for positioning same |
US9180019B2 (en) | 2011-03-03 | 2015-11-10 | Warsaw Orthopedic, Inc. | Interbody device and plate for spinal stabilization and instruments for positioning same |
US9526532B2 (en) | 2011-03-03 | 2016-12-27 | Warsaw Orthopedic, Inc. | Interbody device and plate for spinal stabilization and instruments for positioning same |
US9615940B2 (en) | 2011-03-03 | 2017-04-11 | Warsaw Orthopedic, Inc. | Interbody device and plate for spinal stabilization and instruments for positioning same |
US9925063B2 (en) | 2011-03-03 | 2018-03-27 | Warsaw Orthopedic, Inc. | Interbody device and plate for spinal stabilization and instruments for positioning same |
US8454694B2 (en) | 2011-03-03 | 2013-06-04 | Warsaw Orthopedic, Inc. | Interbody device and plate for spinal stabilization and instruments for positioning same |
Also Published As
Publication number | Publication date |
---|---|
US6974479B2 (en) | 2005-12-13 |
WO2004052247A1 (en) | 2004-06-24 |
AU2003296331A1 (en) | 2004-06-30 |
US20090143862A1 (en) | 2009-06-04 |
US20040111161A1 (en) | 2004-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6974479B2 (en) | System and method for blocking and/or retaining a prosthetic spinal implant | |
US20040210310A1 (en) | Implant system and method for intervertebral disc augmentation | |
US7066960B1 (en) | Intervertebral disk replacement | |
US6936070B1 (en) | Intervertebral disc prosthesis and methods of implantation | |
EP1304983B1 (en) | Packaged, partially hydrated prosthetic disc nucleus | |
US8353964B2 (en) | Anatomic total disc replacement | |
Bao et al. | Artificial disc technology | |
US7267690B2 (en) | Interlocked modular disc nucleus prosthesis | |
US7959683B2 (en) | Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation | |
US20050055099A1 (en) | Flexible spinal disc | |
US20070233259A1 (en) | Intervertebral disc prosthesis and methods of implantation | |
US20060241758A1 (en) | Facet spacers | |
EP1883378B1 (en) | Rail-based modular disc nucleus prosthesis | |
WO2010059495A2 (en) | Device & method for restoring joints with artificial cartilage | |
EP1906886A2 (en) | Multi-composite disc prosthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |