[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20050260114A1 - Method for flue-gas reduction of pollutants in combustion processes - Google Patents

Method for flue-gas reduction of pollutants in combustion processes Download PDF

Info

Publication number
US20050260114A1
US20050260114A1 US10/848,231 US84823104A US2005260114A1 US 20050260114 A1 US20050260114 A1 US 20050260114A1 US 84823104 A US84823104 A US 84823104A US 2005260114 A1 US2005260114 A1 US 2005260114A1
Authority
US
United States
Prior art keywords
stage
rofa
fsi
injection
combustion system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/848,231
Inventor
Brian Higgins
Mark Shilling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mobotec USA Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/848,231 priority Critical patent/US20050260114A1/en
Priority to CNB2005800229113A priority patent/CN100518888C/en
Priority to KR1020067026473A priority patent/KR20070048654A/en
Priority to PCT/US2005/015707 priority patent/WO2005115592A2/en
Priority to PL381880A priority patent/PL210547B1/en
Publication of US20050260114A1 publication Critical patent/US20050260114A1/en
Priority to US11/520,083 priority patent/US7404940B2/en
Assigned to MOBOTEC USA, INC. reassignment MOBOTEC USA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIGGINS, BRIAN S., SHILLING, MARK
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof

Definitions

  • the present invention relates generally to a method for reducing byproducts emissions from combustion reactions, and, more particularly, to a method for regulating flue gas pollutants in reactors and combustion furnaces.
  • SO 2 sulfur dioxide
  • Sulfur dioxide is a colorless gas that is moderately soluble in water and aqueous liquids. It is formed primarily during the combustion of sulfur-containing fuel or waste. Once released to the atmosphere, sulfur dioxide reacts slowly to form sulfuric acid (H 2 SO 4 ), inorganic sulfate compounds, and organic sulfate compounds.
  • Air pollution control systems for sulfur dioxide removal are large and sophisticated, and rely on two main techniques for sulfur dioxide removal: absorption and adsorption. Both methods rely on neutralization of the absorbed sulfur dioxide to an inorganic salt by alkali to prevent the sulfur from being emitted into the environment.
  • the alkali for the reaction most frequently used include: limestone—either calcitic or dolomitic; quick and hydrated lime—slurry or dry; and magnesium hydroxide—commercial and byproduct from Thiosorbic lime; and trona.
  • Absorption processes use the solubility of sulfur dioxide in aqueous solutions to remove it from the gas stream. Once sulfur dioxide has dissolved in solution to form sulfurous acid (H 2 SO 3 ), it reacts with oxidizers to form inorganic sulfites (SO3 ⁇ ) and sulfates (SO4 ⁇ ). This process prevents the dissolved sulfur dioxide from diffusing out of solution and being re-emitted. The solution is then processed to remove the sulfur
  • Limestone is the alkali most often used to react with the dissolved sulfur dioxide. Limestone slurry is sprayed into the sulfur dioxide-containing gas stream. The chemical reactions in the recirculating limestone slurry and reaction products must be carefully controlled in order to maintain the desired sulfur dioxide removal efficiency and to prevent operating problems.
  • Wet scrubbers used for sulfur dioxide control usually operate at liquid pH levels between 5 to 9 to maintain high efficiency removal. Typical removal efficiencies of sulfur dioxide in wet scrubbers range from 80 to 95%.
  • a spray atomizer dry scrubber which belongs to a group of scrubbers called spray-dryer-type dry scrubbers.
  • an alkaline slurry is sprayed into the hot gas stream at a point upstream from the particulate control device.
  • sulfur dioxide absorbs into the droplet and reacts with the dissolved and suspended alkaline material.
  • Dry scrubber refers to the condition of the dried particles approaching the particulate control system.
  • Fabric filters or electrostatic precipitators are often used for high efficiency particulate control.
  • Spray-dryer-type absorption systems have efficiencies that are similar to those for wet-scrubber-type absorption systems. These generate a waste stream that is dry and, therefore, easier to handle than the sludge generated in a wet scrubber. However, the equipment used to atomize the alkaline slurry is complicated and can require considerably more maintenance than the wet scrubber systems. Spray-dryer-type absorption systems operate at higher gas temperatures than wet scrubbers do and are less effective for the removal of other pollutants in the gas stream such as condensable particulate matter.
  • a dry alkaline powder is injected into the gas stream. Sulfur dioxide adsorbs to the surface of the alkaline particles and reacts to form compounds that can be precipitated out of the gas stream.
  • Hydrated lime calcium hydroxide
  • a dry-injection-type dry scrubber can be used on smaller systems as opposed to using the larger, more complicated spray-dryer-type dry scrubber.
  • the dry injection system is slightly less efficient, and requires more alkali per unit of sulfur dioxide (or other acid gas) collected. Accordingly, the waste disposal requirements and costs are higher for adsorption systems than absorption systems.
  • the prior art adsorption methods are more expensive because they require expensive equipment, including a bag house and electrostatic precipitator, are inefficient in the utilization of alkali and reduction of sulfur, and require extra maintenance because the injectors are prone to plugging.
  • Rotating opposed-fired air utilizes the co-ordinated, reinforcing, tangential injection of high-velocity secondary air to produce turbulent mixing, resulting in a greater combustion efficiency for greater NOx reduction, such as taught in U.S. Pat. No. 5,809,910 issued Sep. 22, 1998 to Svendssen, which describes a ROFA system that provides for the asymmetrical injection of overfired air (OFA) in order to create a rotation and high turbulence in the furnace, thus more thoroughly mixing the secondary air and the combustion gases.
  • ROFA has been applied to combustion furnaces solely for the reduction of NOx and SO 3 in the prior art.
  • the present invention is directed towards systems and methods for the reduction of pollutants, including but not limited to SO 2 , SO 3 , Hg, HCl, NOx, PM, and equivalents, and combinations thereof, in flue gas concentration in a combustion process burning sulfurous fossil fuel and utilizing a high-turbulence over fired air system.
  • pollutants including but not limited to SO 2 , SO 3 , Hg, HCl, NOx, PM, and equivalents, and combinations thereof
  • flue gas concentration in a combustion process burning sulfurous fossil fuel and utilizing a high-turbulence over fired air system.
  • the increased velocity and turbulence in the upper furnace from ROFA, combined with FSI greatly increases the reaction and stability of the FSI system in the upper furnace.
  • This synergistic, combined effect is the purpose of the invention.
  • FIG. 1 is a schematic drawing of a system according to the present invention.
  • FIG. 2 is a schematic drawing of another system according to the present invention.
  • reducible acid refers to acids in which the acidity can be reduced or eliminated by the electrochemical reduction of the acid.
  • duct is used to describe a reagent injection passageway without any constriction on the end.
  • injector is used to describe a reagent injection passageway with a constrictive orifice on the end.
  • the orifice can be a hole or a nozzle.
  • An injection device is a device that incorporates ducts or injectors or both.
  • Combustion staging is being defined as the process of burning a fuel, i.e., coal, in two or more stages.
  • a fuel-rich stage, or simply, rich stage is one in which not enough air is available to fully burn the fuel.
  • a fuel-lean stage is one in which there is sufficient or extra air to fully burn the fuel.
  • Staging is used in the prior art to reduce NOx by a) reducing peak temperatures (thermal NOx) and b) providing a reducing environment (NOx reduction). Macro-staging is the dividing of whole sections of a furnace into rich and lean stages and is accomplished through the use of such techniques as Over-Fired Air (OFA).
  • OFA Over-Fired Air
  • Micro-staging is the creation of proximal microenvironments with functionally different characteristics, such as reduction potential, temperature, and the like. Micro-staging in a furnace can be achieved, for example, in the first stage of the furnace through the use of Low-NOx Burners (LNB) with adjustment of spin-vane settings and registers. Increased staging increases the residence time in a reducing atmosphere and increases the effect of the reducing atmosphere.
  • LNB Low-NOx Burners
  • Macro-staging is used to reduce emissions in combustion furnaces. Macro-staging consists of highly mixed fuel and air in the lower furnace, mixed to a stoichiometric ratio below unity for a large part of the flow. Excess oxygen is ultimately required to assure that all of the fuel has burned and to reduce explosion risks. In a macro-staged furnace, excess air is introduced downstream of the burners. Increased staging is achieved by increasing the residence time, temperature, or reducing-potential of the combustion products in the absence of oxygen.
  • LNB micro-staging
  • OFA macro-staging
  • High turbulence ROFA is used to reduce the reactor space required for burn-out, thereby freeing more reactor space from the rich stage and thereby increase the residence time and/or reducing potential in the rich stage.
  • High-turbulence ROFA air is understood to travel across the column of combustion gases and is deflected by the opposing wall. This forceful injection induces turbulent mixing in at least three ways: (1) by the generation of swirl in the gas column, (2) the generation of turbulence in proximity of the opposing wall after deflection of the advected air by the wall, and (3) by the turbulence caused by the rotation of the column of combustion gases in a non-circular furnace.
  • the present invention advantageously uses ROFA in combination with FSI to reduce pollutants, including but not limited to the gas SO 2 , SO 3 , Hg, HCl, NOx, PM, and equivalents and combinations thereof, emissions in a combustion furnace.
  • pollutants including but not limited to the gas SO 2 , SO 3 , Hg, HCl, NOx, PM, and equivalents and combinations thereof, emissions in a combustion furnace.
  • the ROFA and FSI combination according to the present invention provides a vigorous mixing of the combustion space, resulting in greater reaction efficiencies for the injected sorbent or sorbents and greater removal of the noxious species.
  • the ROFA is constructed, configured, and implemented upstream of the FSI injection (upstream ROFA) and also simultaneously with the FSI (co-injected ROFA).
  • upstream ROFA induces mixing that then turbulently interacts with the FSI.
  • co-injected ROFA/FSI the simultaneous, proximal injection of ROFA and FSI enhances the dispersion and mixing of the at least one sorbent into the combustion gases.
  • the mixing provided by the systems and methods of the present invention provides for sorbent injection that is more efficient, effective, and complete than prior art systems and methods using either furnace sorbent injection (FSI) alone or ROFA alone to achieve better burn out and pollutant reduction.
  • the present invention provides for systems and methods wherein a furnace sorbent injection is combined with a ROFA system upstream rotation and high turbulence.
  • the systems and methods of the present invention combining ROFA with FSI as set forth herein produce synergistic effects greater than either ROFA or FSI separately and also greater than what may have been predicted for combining them.
  • the combined ROFA and FSI according to the systems and methods of the present invention provide for pollutant reduction across a greater range of chemical species, i.e., not just for reducing SOx, but also Hg, HCl, NOx, PM, and equivalents and combinations thereof.
  • the systems and methods of the present invention were understood to produce significantly greater reduction of pollutants due to the synergistic effect of mixing, fluid dynamics, and turbulence of ROFA to produce surprising chemical effects.
  • the chemical effects were proven to result from improved chemical reaction and more advantageous chemistry in the zone of the furnace where reduction of pollutants is desired to occur, i.e., more complete and more effective reactions resulting in more reduction of pollutants and more utilization of injected chemicals than with either simple mixing or injection of reagents as in the prior art, due to both an increase in the overall mixing area wherein the chemical reactions occur, but also, significantly, more effective reactions within the same area.
  • the systems and methods of the present invention as set forth herein provide for even better than expected reduction within the same area, as well as improved reduction over a larger area, all of which result in improved reactions for reduction of pollutants.
  • the present invention provides not merely increased area of application for reaction for reduction of pollutants, but also more effective mixing within a given area that provides for surprising results in improved chemistry within any given space or area of the combustion unit. Therefore, synergies are created by improved mixing, component availability, and component reactions within a given time and temperature based upon the combinations of upstream ROFA and FSI according to the present invention.
  • the ROFA is injected prior to the FSI injection, the UPSTREAM ROFA inducing the mixing of the at least one sorbent when it is injected later.
  • the ROFA system includes a series of secondary air introduction ducts with nozzles advecting the secondary air into a moving column of combustion gases, wherein the ducts are positioned in a predetermined, spaced-apart manner to create rotational flow of the combustion zone, as described in U.S. Pat. No. 5,809,910, incorporated herein by reference in its entirety.
  • the reagent injection ducts are preferably arranged to act at mutually separate levels or stages on the mutually opposing walls of the reactor.
  • the ducts may further include nozzles, which are preferably positioned at distances along the axis of flow of the furnace away from the furnace that result in the rotation being maintained by the co-ordinated, reinforcing, tangential injection of high-velocity secondary air into the combustion gas column.
  • nozzles which are preferably positioned at distances along the axis of flow of the furnace away from the furnace that result in the rotation being maintained by the co-ordinated, reinforcing, tangential injection of high-velocity secondary air into the combustion gas column.
  • the vigorous mixing in the combustion area produced by the present invention also prevents the laminar flow and consequential lower residence time of higher inertia sorbent particles in the reactor, thereby allowing them more time to react in the reactor and further increasing the reaction efficiency.
  • the FSI can be achieved with a variety of methods and devices known in the prior art.
  • the sorbents are selected based on their chemical and physical properties to maximize their utilization and the reduction of SO2.
  • the sorbent types used include alkali that convert the SO2 to an inorganic salt to prevent the sulfur from being emitted into the environment.
  • the alkali for the reaction most frequently used include: limestone—either calcitic or dolomitic; quick and hydrated lime—slurry or dry; and magnesium hydroxide—commercial and byproduct from Thiosorbic lime; and trona.
  • the sorbent particulate have size and shape characteristics that increase reaction efficiency, provide increased catalytic surface for NOx reactions, produce microturbulence, and result in their complete consumption prior to exiting the furnace and/or impinging on furnace surfaces such as catalysts, heat exchangers, and the like.
  • the particles sizes are those currently used in standard FSI injections.
  • the particle sizes can range from about 5 microns to about 100 microns.
  • a majority of the particles are desired to pass through 325 mesh, which limits the diameter to 35.6 microns.
  • the fine particles provide more surface area per unit mass and therefore favor surface reactions over larger particles.
  • the vigorous mixing in the combustion area produced by the present invention also prevents the laminar flow and consequential lower residence time of higher inertia sorbent particles in the reactor, thereby allowing them more time to react in the reactor and further increasing the reaction efficiency.
  • the high-turbulence generated by the ROFA system produced surprising results regarding the low concentration species, such as Hg, HCl, and even SO2, SO3, NOx, and PM, and equivalents and combinations thereof, where the pollutants have been reduced and/or are in low concentrations but where further reduction is desired. As shown in Table 1, concentrations of these pollutants are reduced even further than expected with the systems and methods of the present invention.
  • the increased mixing provided by the ROFA systems increased the probability of sorbent contacting Hg and the other low concentration species, resulting in reaction of these low concentration species with the sorbent, and in higher utilization of the sorbent.
  • ROFA and FSI injections can be performed simultaneously in the approximate same location, herein described as co-injected ROFA/FSI. This proximal, simultaneous injection of ROFA and FSI enhances the dispersion and mixing of the sorbent.
  • the combustion system includes a series of ROFA ducts in the proximity of FSI nozzles advecting the at least one sorbent into a moving column of combustion gases, wherein the ROFA ducts are positioned in a predetermined, spaced-apart manner to create rotational flow of the combustion zone, as described in U.S. Pat. No. 5,809,910, incorporated herein by reference in its entirety.
  • the reagent injection ducts are preferably arranged to act at mutually separate levels or stages on the mutually opposing walls of the reactor.
  • other configurations are possible that achieve adequate mixing, as described in co-pending U.S. Application 1340-005 Ser. No. 10/461,735 confirmed filing date Jun. 13, 2003, incorporated herein by reference in its entirety.
  • the ducts are preferably positioned at distances along the axis of flow of the furnace away from the furnace that result in the rotation being maintained by the co-ordinated, reinforcing, tangential injection of high-velocity secondary air into the combustion gas column. This system provides a vigorous mixing of the combustion space, resulting in greater sorbent reaction efficiencies.
  • a combustion furnace is equipped with a series of ROFA ducts 14 that inject high-velocity air into the furnace and sorbent injectors 16 that inject sorbent downstream from the ROFA ducts.
  • the ROFA ducts produce high-turbulence, resulting in increased dispersion and mixing of the injected sorbent.
  • one embodiment provides for reducing pollutant flue gas concentration in a combustion process utilizing a sulfurous fuel, including the steps of:
  • the FSI stage and the ROFA stage are separate, such as ROFA being upstream from the FSI stage, co-injected, either co-axially co-injected or otherwise, and combinations thereof.
  • ROFA/FSI co-axial injection device for sorbent injection is set forth in a preferred embodiment, as described in U.S. Patent Application 1340-005 Ser. No. 10/461,735 confirmed filing date Jun. 13, 2003 incorporated herein by reference in its entirety, can disperse heterogenously-sized particle populations that would plug a conventional atomizing nozzle. This capability reduces the requirement for highly-controlled particle size populations and allows the use of larger-sized particles, thus reducing sorbent expenses.
  • the present invention also eliminates the need for atomization nozzles to disperse the at least one sorbent and also eliminates the need for wet-scrubber apparatus.
  • the use of larger-sized particles also takes advantage of the greater momentum of these particles to create microswirls in the combustion gases. These microswirls enhance mixing, thus favoring reactions in the combustion space.
  • a combustion furnace is equipped with a series of ROFA ducts 14 that inject high-velocity air into the furnace and co-axial ROFA sorbent injectors 18 .
  • the upstream and coaxial ROFA ducts produce high-turbulence, resulting in increased dispersion and mixing of the injected sorbent.
  • the present invention can also include the injection of other materials to affect the physical and chemical properties of the combustion space, and thereby the reactions.
  • water can be injected into the combustion space, as described in U.S. application Ser. No. 10/757,056 filed Jan. 14, 2004 1340-007, incorporated herein by reference in its entirety. This water simultaneously cools the combustion space, thereby allowing control of the sorbent reaction space, and also provides more density to the injected air and materials, thereby providing better mixing.
  • the mixing provided by ROFA and FSI combinations as set forth herein increases the probability of encounter for all chemical species, resulting in greater efficiency of reaction for relatively high concentration species, such as SO2, and especially for low concentration species, such as Hg, and also results in better utilization of the sorbent. It is noted that other pollutant species are also reacted more efficiently, effectively and completely, including but not limited to SO 2 , SO 3 , Hg, HCl, NOx, PM, and equivalents, and combinations thereof.
  • Furnace sorbent injection (FSI) using limestone and trona was examined in combination with ROFA on a 154 MW unit at a power generation facilty to examine sustainable pollutant reduction while combining both ROFA and FSI together.
  • Trona injection provided better SO2, HCl, NOx, and particulate matter (PM) reduction, while limestone provided better mercury (Hg) reduction. Both chemicals provided the same SO3 reduction.
  • Past FSI demonstrations have produced SO2 reductions from 25-50%. When combined with ROFA, FSI produced 65% SO2 reduction at the 154 MW unit and 90% SO2 reduction at a 78 MW coal-fired unit in Sweden owned by Danisco Sugar.
  • Trona and limestone were chosen for injection.
  • the sorbent In the furnace, the sorbent first undergoes calcination to form highly reactive oxides that readily react with the SO2 in the combustion gas. Depending on the injected sorbent the reaction produces either sodium or calcium sulfate which is picked up by particulate control devices.
  • the “popcorn-like” decomposition or calcination of the sorbent creates a large and reactive surface by bringing unreacted sodium or calcium carbonate to the particle surface for Hg, HCl, and SO2 neutralization.
  • Trona was supplied by Solvay Minerals and limestone was supplied by Chemical Lime.
  • the sorbent injection trials were conducted on a unit of a power generation facility in the U.S.
  • the unit conditions were as follows:
  • Test data was collected manually and by a distributed control system.
  • the test program for analysis included the following:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Incineration Of Waste (AREA)

Abstract

Systems and methods for reduction of pollutants in combustion processes using combined rotating opposed fired air (ROFA) and fuel injection sorbents (FSI) for increased chemical reactivity.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to a method for reducing byproducts emissions from combustion reactions, and, more particularly, to a method for regulating flue gas pollutants in reactors and combustion furnaces.
  • 2. Description of the Prior Art
  • The combustion of sulfur-containing carbonaceous compounds, especially coal, results in a combustion product gas containing unacceptably high levels of sulfur dioxide.
  • SO2 Reduction Methods
  • The reduction of sulfur dioxide (SO2) is of primary concern to the power and industrial boiler industries since acid rain is a product of gaseous SO2 release into the environment. To combat acid rain, federal regulations are increasingly more stringent and companies are increasingly more exposed to federal penalties for over emitting SO2.
  • Sulfur dioxide is a colorless gas that is moderately soluble in water and aqueous liquids. It is formed primarily during the combustion of sulfur-containing fuel or waste. Once released to the atmosphere, sulfur dioxide reacts slowly to form sulfuric acid (H2SO4), inorganic sulfate compounds, and organic sulfate compounds.
  • Air pollution control systems for sulfur dioxide removal are large and sophisticated, and rely on two main techniques for sulfur dioxide removal: absorption and adsorption. Both methods rely on neutralization of the absorbed sulfur dioxide to an inorganic salt by alkali to prevent the sulfur from being emitted into the environment. The alkali for the reaction most frequently used include: limestone—either calcitic or dolomitic; quick and hydrated lime—slurry or dry; and magnesium hydroxide—commercial and byproduct from Thiosorbic lime; and trona.
  • Absorption—Absorption processes use the solubility of sulfur dioxide in aqueous solutions to remove it from the gas stream. Once sulfur dioxide has dissolved in solution to form sulfurous acid (H2SO3), it reacts with oxidizers to form inorganic sulfites (SO3−−) and sulfates (SO4−−). This process prevents the dissolved sulfur dioxide from diffusing out of solution and being re-emitted. The solution is then processed to remove the sulfur
  • Limestone is the alkali most often used to react with the dissolved sulfur dioxide. Limestone slurry is sprayed into the sulfur dioxide-containing gas stream. The chemical reactions in the recirculating limestone slurry and reaction products must be carefully controlled in order to maintain the desired sulfur dioxide removal efficiency and to prevent operating problems. Wet scrubbers used for sulfur dioxide control usually operate at liquid pH levels between 5 to 9 to maintain high efficiency removal. Typical removal efficiencies of sulfur dioxide in wet scrubbers range from 80 to 95%.
  • Another type of absorption system is called a spray atomizer dry scrubber, which belongs to a group of scrubbers called spray-dryer-type dry scrubbers. In this case, an alkaline slurry is sprayed into the hot gas stream at a point upstream from the particulate control device. As the slurry droplets are evaporating, sulfur dioxide absorbs into the droplet and reacts with the dissolved and suspended alkaline material.
  • Large spray dryer chambers are used to ensure that all of the slurry droplets evaporate to dryness prior to going to a high efficiency particulate control system. The term “dry scrubber” refers to the condition of the dried particles approaching the particulate control system. Fabric filters or electrostatic precipitators are often used for high efficiency particulate control.
  • Spray-dryer-type absorption systems have efficiencies that are similar to those for wet-scrubber-type absorption systems. These generate a waste stream that is dry and, therefore, easier to handle than the sludge generated in a wet scrubber. However, the equipment used to atomize the alkaline slurry is complicated and can require considerably more maintenance than the wet scrubber systems. Spray-dryer-type absorption systems operate at higher gas temperatures than wet scrubbers do and are less effective for the removal of other pollutants in the gas stream such as condensable particulate matter.
  • The choice between a wet-scrubber absorption system and a spray-dryer absorption system depends primarily on site-specific costs. The options available for environmentally sound disposal of the waste products are also an important consideration in selecting the type of system for a specific application. Both types of systems are capable of providing high efficiency sulfur dioxide removal. Both types of systems are also very expensive to install, operate, and maintain.
  • Adsorption—Sulfur dioxide can also be collected by adsorption systems. In this type of control system, a dry alkaline powder is injected into the gas stream. Sulfur dioxide adsorbs to the surface of the alkaline particles and reacts to form compounds that can be precipitated out of the gas stream. Hydrated lime (calcium hydroxide) is the most commonly used alkali; however, a variety of alkalis can be used effectively. A dry-injection-type dry scrubber can be used on smaller systems as opposed to using the larger, more complicated spray-dryer-type dry scrubber. However, the dry injection system is slightly less efficient, and requires more alkali per unit of sulfur dioxide (or other acid gas) collected. Accordingly, the waste disposal requirements and costs are higher for adsorption systems than absorption systems.
  • In general, the prior art adsorption methods are more expensive because they require expensive equipment, including a bag house and electrostatic precipitator, are inefficient in the utilization of alkali and reduction of sulfur, and require extra maintenance because the injectors are prone to plugging.
  • Thus, prior art SO2 absorption and adsorption systems and methods have drawbacks that make them expensive and/or inefficient. A need exists, therefore, for a SO2-removal system and method that produces an easily-handled by-product, achieves greater than 70% sulfur removal from the flue gas with high sorbent utilization, and reduces the equipment requirements (and costs).
  • Furnace Sorbent Injection (FSI) to Reduce SOx
  • Other pollutants, such as SO3, Hg, HCl, NOx, and PM have also been removed from combustion effluent by furnace sorbent injection (FSI). However, the prior art methods for the removal of these pollutants are also relatively inefficient and expensive to perform.
  • ROFA
  • Rotating opposed-fired air (ROFA) utilizes the co-ordinated, reinforcing, tangential injection of high-velocity secondary air to produce turbulent mixing, resulting in a greater combustion efficiency for greater NOx reduction, such as taught in U.S. Pat. No. 5,809,910 issued Sep. 22, 1998 to Svendssen, which describes a ROFA system that provides for the asymmetrical injection of overfired air (OFA) in order to create a rotation and high turbulence in the furnace, thus more thoroughly mixing the secondary air and the combustion gases. ROFA has been applied to combustion furnaces solely for the reduction of NOx and SO3 in the prior art.
  • Overall, while the use of boosted over fire air is known in the art, its use in combination with fuel sorbent injection for efficient, cost-effective, and highly effective reduction of pollutants has not been taught or disclosed in the prior art. Thus, a need exists for systems and methods providing for the reduction of pollutants in flue gas concentration in a combustion process burning sulfurous fossil fuel and utilizing a high-turbulence over fired air system.
  • SUMMARY OF THE INVENTION
  • The present invention is directed towards systems and methods for the reduction of pollutants, including but not limited to SO2, SO3, Hg, HCl, NOx, PM, and equivalents, and combinations thereof, in flue gas concentration in a combustion process burning sulfurous fossil fuel and utilizing a high-turbulence over fired air system. Specifically, the increased velocity and turbulence in the upper furnace from ROFA, combined with FSI, greatly increases the reaction and stability of the FSI system in the upper furnace. Not only are the benefits of FSI augmented, but so are the benefits of ROFA. This synergistic, combined effect is the purpose of the invention.
  • It is one aspect of the present invention to provide systems and methods for reducing pollutant flue gas concentration in a combustion process utilizing a sulfurous fuel, including the steps of:
      • providing a staged combustion system for application in a reactor, the staged combustion system having asymmetrical injection devices for introducing at least one sorbent to the reactor by asymmetrical injection at predetermined, spaced apart locations;
      • injecting the fuel with a primary air through a first stage prior to injection of a secondary air;
      • injecting the secondary air and at least one sorbent through the plurality of injection devices; and
      • controlling the asymmetrical injection of the secondary air to produce a turbulence resulting in dispersion of the at least one chemical agent into the reaction system, thereby providing increased reaction and reactor efficiency and reduced pollutants in the reaction process;
      • wherein the staged combustion system includes ROFA and FSI in combination for providing increased reactivity within a predetermined zone of the reactor, thereby producing more complete, more effective, and more efficient reduction of pollutants therein.
  • It is another aspect of the present invention to provide systems and methods for reducing pollutants in effluents within combustion systems using ROFA and FSI combinations wherein the ROFA and FSI are provided: at spaced apart locations with the ROFA being upstream of the FSI, co-axially, and combinations thereof.
  • These and other aspects of the present invention will become apparent to those skilled in the art after a reading of the following description of preferred embodiment(s) when considered with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic drawing of a system according to the present invention.
  • FIG. 2 is a schematic drawing of another system according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the following description, like reference characters designate like or corresponding parts throughout the several views. Also in the following description, it is to be understood that such terms as “forward,” “rearward,” “front,” “back,” “right,” “left,” “upwardly,” “downwardly,” and the like are words of convenience and are not to be construed as limiting terms. In the present invention, “reducible acid” refers to acids in which the acidity can be reduced or eliminated by the electrochemical reduction of the acid. In this description of the embodiment, the term “duct” is used to describe a reagent injection passageway without any constriction on the end. The term “injector” is used to describe a reagent injection passageway with a constrictive orifice on the end. The orifice can be a hole or a nozzle. An injection device is a device that incorporates ducts or injectors or both.
  • As they relate to the present invention, the following terms are used herein as defined by the following. Combustion staging is being defined as the process of burning a fuel, i.e., coal, in two or more stages. A fuel-rich stage, or simply, rich stage, is one in which not enough air is available to fully burn the fuel. A fuel-lean stage is one in which there is sufficient or extra air to fully burn the fuel. Staging is used in the prior art to reduce NOx by a) reducing peak temperatures (thermal NOx) and b) providing a reducing environment (NOx reduction). Macro-staging is the dividing of whole sections of a furnace into rich and lean stages and is accomplished through the use of such techniques as Over-Fired Air (OFA). Micro-staging is the creation of proximal microenvironments with functionally different characteristics, such as reduction potential, temperature, and the like. Micro-staging in a furnace can be achieved, for example, in the first stage of the furnace through the use of Low-NOx Burners (LNB) with adjustment of spin-vane settings and registers. Increased staging increases the residence time in a reducing atmosphere and increases the effect of the reducing atmosphere.
  • Macro-staging is used to reduce emissions in combustion furnaces. Macro-staging consists of highly mixed fuel and air in the lower furnace, mixed to a stoichiometric ratio below unity for a large part of the flow. Excess oxygen is ultimately required to assure that all of the fuel has burned and to reduce explosion risks. In a macro-staged furnace, excess air is introduced downstream of the burners. Increased staging is achieved by increasing the residence time, temperature, or reducing-potential of the combustion products in the absence of oxygen.
  • Either/both micro-staging (LNB) and macro-staging (OFA) may be used to reduce NOx emissions in combustion furnaces. In the case of both micro-staging and macro-staging, components of each of the above are used and adjusted to achieve NOx emissions reduction.
  • High turbulence ROFA is used to reduce the reactor space required for burn-out, thereby freeing more reactor space from the rich stage and thereby increase the residence time and/or reducing potential in the rich stage.
  • High-turbulence ROFA air is understood to travel across the column of combustion gases and is deflected by the opposing wall. This forceful injection induces turbulent mixing in at least three ways: (1) by the generation of swirl in the gas column, (2) the generation of turbulence in proximity of the opposing wall after deflection of the advected air by the wall, and (3) by the turbulence caused by the rotation of the column of combustion gases in a non-circular furnace.
  • Increased turbulence afforded by high-velocity over-fired air systems like ROFA results in far better burnout of incomplete combustion products produced in the fuel-rich macro-staging lower in the furnace, i.e., the increased velocity and turbulence in the upper furnace from ROFA greatly increases the reaction and combustion stability in the upper furnace.
  • Method of Reducing SOx in Combustion Furnace
  • The present invention advantageously uses ROFA in combination with FSI to reduce pollutants, including but not limited to the gas SO2, SO3, Hg, HCl, NOx, PM, and equivalents and combinations thereof, emissions in a combustion furnace. The ROFA and FSI combination according to the present invention provides a vigorous mixing of the combustion space, resulting in greater reaction efficiencies for the injected sorbent or sorbents and greater removal of the noxious species.
  • According to embodiments of the present invention, the ROFA is constructed, configured, and implemented upstream of the FSI injection (upstream ROFA) and also simultaneously with the FSI (co-injected ROFA). In the first case according to the systems and methods of the present invention, the upstream ROFA induces mixing that then turbulently interacts with the FSI. With co-injected ROFA/FSI, the simultaneous, proximal injection of ROFA and FSI enhances the dispersion and mixing of the at least one sorbent into the combustion gases. The mixing provided by the systems and methods of the present invention provides for sorbent injection that is more efficient, effective, and complete than prior art systems and methods using either furnace sorbent injection (FSI) alone or ROFA alone to achieve better burn out and pollutant reduction.
  • The present invention provides for systems and methods wherein a furnace sorbent injection is combined with a ROFA system upstream rotation and high turbulence. Surprisingly, the systems and methods of the present invention combining ROFA with FSI as set forth herein produce synergistic effects greater than either ROFA or FSI separately and also greater than what may have been predicted for combining them. Also, surprisingly, the combined ROFA and FSI according to the systems and methods of the present invention provide for pollutant reduction across a greater range of chemical species, i.e., not just for reducing SOx, but also Hg, HCl, NOx, PM, and equivalents and combinations thereof. Based upon extensive experimentation (independently verified), the systems and methods of the present invention were understood to produce significantly greater reduction of pollutants due to the synergistic effect of mixing, fluid dynamics, and turbulence of ROFA to produce surprising chemical effects. The chemical effects were proven to result from improved chemical reaction and more advantageous chemistry in the zone of the furnace where reduction of pollutants is desired to occur, i.e., more complete and more effective reactions resulting in more reduction of pollutants and more utilization of injected chemicals than with either simple mixing or injection of reagents as in the prior art, due to both an increase in the overall mixing area wherein the chemical reactions occur, but also, significantly, more effective reactions within the same area. Thus, surprisingly, the systems and methods of the present invention as set forth herein provide for even better than expected reduction within the same area, as well as improved reduction over a larger area, all of which result in improved reactions for reduction of pollutants. Thus, the present invention provides not merely increased area of application for reaction for reduction of pollutants, but also more effective mixing within a given area that provides for surprising results in improved chemistry within any given space or area of the combustion unit. Therefore, synergies are created by improved mixing, component availability, and component reactions within a given time and temperature based upon the combinations of upstream ROFA and FSI according to the present invention.
  • Referring now to the drawings in general, the illustrations are for the purpose of describing a preferred embodiment of the invention and are not intended to limit the invention thereto.
  • UPSTREAM ROFA
  • In this embodiment, the ROFA is injected prior to the FSI injection, the UPSTREAM ROFA inducing the mixing of the at least one sorbent when it is injected later. The ROFA system includes a series of secondary air introduction ducts with nozzles advecting the secondary air into a moving column of combustion gases, wherein the ducts are positioned in a predetermined, spaced-apart manner to create rotational flow of the combustion zone, as described in U.S. Pat. No. 5,809,910, incorporated herein by reference in its entirety. The reagent injection ducts are preferably arranged to act at mutually separate levels or stages on the mutually opposing walls of the reactor. Additionally, the ducts may further include nozzles, which are preferably positioned at distances along the axis of flow of the furnace away from the furnace that result in the rotation being maintained by the co-ordinated, reinforcing, tangential injection of high-velocity secondary air into the combustion gas column. This system provides a vigorous mixing of the combustion space, resulting in greater combustion and reaction efficiencies.
  • Similarly, the vigorous mixing in the combustion area produced by the present invention also prevents the laminar flow and consequential lower residence time of higher inertia sorbent particles in the reactor, thereby allowing them more time to react in the reactor and further increasing the reaction efficiency.
  • Furnace Sorbent Injection—FSI
  • The FSI can be achieved with a variety of methods and devices known in the prior art.
  • Sorbent Properties
  • The sorbents are selected based on their chemical and physical properties to maximize their utilization and the reduction of SO2.
  • Chemical Properties
  • The sorbent types used include alkali that convert the SO2 to an inorganic salt to prevent the sulfur from being emitted into the environment. The alkali for the reaction most frequently used include: limestone—either calcitic or dolomitic; quick and hydrated lime—slurry or dry; and magnesium hydroxide—commercial and byproduct from Thiosorbic lime; and trona.
  • Particulate Size/Shape Distribution
  • The sorbent particulate have size and shape characteristics that increase reaction efficiency, provide increased catalytic surface for NOx reactions, produce microturbulence, and result in their complete consumption prior to exiting the furnace and/or impinging on furnace surfaces such as catalysts, heat exchangers, and the like.
  • Surface Area, Surface Shape
  • The particles sizes are those currently used in standard FSI injections. For example, the particle sizes can range from about 5 microns to about 100 microns. Alternatively, a majority of the particles are desired to pass through 325 mesh, which limits the diameter to 35.6 microns. The fine particles provide more surface area per unit mass and therefore favor surface reactions over larger particles.
  • Momentum/Inertia Factors
  • The vigorous mixing in the combustion area produced by the present invention also prevents the laminar flow and consequential lower residence time of higher inertia sorbent particles in the reactor, thereby allowing them more time to react in the reactor and further increasing the reaction efficiency.
  • Turbulence and Low-Concentration Species, Including Hg
  • The high-turbulence generated by the ROFA system produced surprising results regarding the low concentration species, such as Hg, HCl, and even SO2, SO3, NOx, and PM, and equivalents and combinations thereof, where the pollutants have been reduced and/or are in low concentrations but where further reduction is desired. As shown in Table 1, concentrations of these pollutants are reduced even further than expected with the systems and methods of the present invention. In the system equipped with upstream ROFA and co-injected ROFA, as shown in FIG. 1, the increased mixing provided by the ROFA systems increased the probability of sorbent contacting Hg and the other low concentration species, resulting in reaction of these low concentration species with the sorbent, and in higher utilization of the sorbent. Because the efficiency of reaction is increased, special sorbents targeted at low-concentration species can now be used efficiently and effectively to remove these species from the flue gas or otherwise render them innocuous.
    TABLE 1
    FSI with ROFA Pollutant Reduction Percentage Test Results
    Pollutant Limestone Trona
    % Reduction Injection Injection
    SO2 64% 69%
    SO3 90% 90%
    HCL  0% 75%
    Mercury 89% 67%
    NOx  4% 11%
    PM
    18% 80%

    Co-Injected ROFA/FSI
  • The ROFA and FSI injections can be performed simultaneously in the approximate same location, herein described as co-injected ROFA/FSI. This proximal, simultaneous injection of ROFA and FSI enhances the dispersion and mixing of the sorbent.
  • Thus, in another embodiment, the combustion system includes a series of ROFA ducts in the proximity of FSI nozzles advecting the at least one sorbent into a moving column of combustion gases, wherein the ROFA ducts are positioned in a predetermined, spaced-apart manner to create rotational flow of the combustion zone, as described in U.S. Pat. No. 5,809,910, incorporated herein by reference in its entirety. The reagent injection ducts are preferably arranged to act at mutually separate levels or stages on the mutually opposing walls of the reactor. However, other configurations are possible that achieve adequate mixing, as described in co-pending U.S. Application 1340-005 Ser. No. 10/461,735 confirmed filing date Jun. 13, 2003, incorporated herein by reference in its entirety.
  • The ducts are preferably positioned at distances along the axis of flow of the furnace away from the furnace that result in the rotation being maintained by the co-ordinated, reinforcing, tangential injection of high-velocity secondary air into the combustion gas column. This system provides a vigorous mixing of the combustion space, resulting in greater sorbent reaction efficiencies.
  • In a preferred embodiment, shown in FIG. 1, a combustion furnace, generally described as 10, is equipped with a series of ROFA ducts 14 that inject high-velocity air into the furnace and sorbent injectors 16 that inject sorbent downstream from the ROFA ducts. The ROFA ducts produce high-turbulence, resulting in increased dispersion and mixing of the injected sorbent.
  • According to the systems and methods of the present invention, one embodiment provides for reducing pollutant flue gas concentration in a combustion process utilizing a sulfurous fuel, including the steps of:
      • providing a staged combustion system for application in a reactor, the staged combustion system having asymmetrical injection devices for introducing at least one sorbent to the reactor by asymmetrical injection at predetermined, spaced apart locations; injecting the fuel with a primary air through a first stage prior to injection of a secondary air; injecting the secondary air and at least one sorbent through the plurality of injection devices; and controlling the asymmetrical injection of the secondary air to produce a turbulence resulting in dispersion of the at least one chemical agent into the reaction system, thereby providing increased reaction and reactor efficiency and reduced SO2 in the reaction process; wherein the staged combustion system includes ROFA and FSI in combination for providing increased reactivity within a predetermined zone of the reactor, thereby producing more complete, more effective, and more efficient reduction of pollutants therein.
  • In various alternative preferred embodiments, the selection and application of which depends upon the configuration of the combustion furnace or reactor, temperature, fuel, and various other factors, the FSI stage and the ROFA stage are separate, such as ROFA being upstream from the FSI stage, co-injected, either co-axially co-injected or otherwise, and combinations thereof.
  • Co-Axial Injection Device
  • ROFA/FSI co-axial injection device for sorbent injection is set forth in a preferred embodiment, as described in U.S. Patent Application 1340-005 Ser. No. 10/461,735 confirmed filing date Jun. 13, 2003 incorporated herein by reference in its entirety, can disperse heterogenously-sized particle populations that would plug a conventional atomizing nozzle. This capability reduces the requirement for highly-controlled particle size populations and allows the use of larger-sized particles, thus reducing sorbent expenses.
  • The present invention also eliminates the need for atomization nozzles to disperse the at least one sorbent and also eliminates the need for wet-scrubber apparatus. The use of larger-sized particles also takes advantage of the greater momentum of these particles to create microswirls in the combustion gases. These microswirls enhance mixing, thus favoring reactions in the combustion space.
  • Thus, in a preferred embodiment, shown in FIG. 2, a combustion furnace is equipped with a series of ROFA ducts 14 that inject high-velocity air into the furnace and co-axial ROFA sorbent injectors 18. The upstream and coaxial ROFA ducts produce high-turbulence, resulting in increased dispersion and mixing of the injected sorbent.
  • Cooling Water
  • The present invention can also include the injection of other materials to affect the physical and chemical properties of the combustion space, and thereby the reactions. For example, water can be injected into the combustion space, as described in U.S. application Ser. No. 10/757,056 filed Jan. 14, 2004 1340-007, incorporated herein by reference in its entirety. This water simultaneously cools the combustion space, thereby allowing control of the sorbent reaction space, and also provides more density to the injected air and materials, thereby providing better mixing.
  • Method of Reducing SOx and NOx in Combustion Furnace
  • Injection of a sorbent into a ROFA-equipped combustion burner produced a reduction in SO2, but also, surprisingly, an additional reduction in NOx versus the ROFA-alone system. This surprising and unexpected reduction in NOx, due to the catalytic surface provided by the sorbent particles, was maximized in the tests.
  • Thus, the mixing provided by ROFA and FSI combinations as set forth herein increases the probability of encounter for all chemical species, resulting in greater efficiency of reaction for relatively high concentration species, such as SO2, and especially for low concentration species, such as Hg, and also results in better utilization of the sorbent. It is noted that other pollutant species are also reacted more efficiently, effectively and completely, including but not limited to SO2, SO3, Hg, HCl, NOx, PM, and equivalents, and combinations thereof.
  • EXAMPLES
  • The following example illustrates the results that can be achieved using methods according to the present invention, but are not intended to limit the invention thereto.
  • Methods according to the present invention were used to control SO2, as shown in the following:
  • Furnace sorbent injection (FSI) using limestone and trona was examined in combination with ROFA on a 154 MW unit at a power generation facilty to examine sustainable pollutant reduction while combining both ROFA and FSI together.
  • The surprising results of the test are summarized in Table 1, as set forth hereinabove.
    TABLE 1
    FSI with ROFA Pollutant Reduction Percentage Test Results
    Pollutant Limestone Trona
    % Reduction Injection Injection
    SO2 64% 69%
    SO3 90% 90%
    HCL  0% 75%
    Mercury 89% 67%
    NOx  4% 11%
    PM
    18% 80%
  • Trona injection provided better SO2, HCl, NOx, and particulate matter (PM) reduction, while limestone provided better mercury (Hg) reduction. Both chemicals provided the same SO3 reduction.
  • This study was undertaken because of the potential of ROFA and FSI together to reduce SO2, Hg, and HCl air emissions on a low cost per kilowatt basis. The primary advantages of FSI relative to other FGD systems are the simplicity of the process and a low capital cost.
  • Past FSI demonstrations have produced SO2 reductions from 25-50%. When combined with ROFA, FSI produced 65% SO2 reduction at the 154 MW unit and 90% SO2 reduction at a 78 MW coal-fired unit in Sweden owned by Danisco Sugar.
  • Trona and limestone were chosen for injection. In the furnace, the sorbent first undergoes calcination to form highly reactive oxides that readily react with the SO2 in the combustion gas. Depending on the injected sorbent the reaction produces either sodium or calcium sulfate which is picked up by particulate control devices. The “popcorn-like” decomposition or calcination of the sorbent creates a large and reactive surface by bringing unreacted sodium or calcium carbonate to the particle surface for Hg, HCl, and SO2 neutralization. Trona was supplied by Solvay Minerals and limestone was supplied by Chemical Lime.
  • The activation, and thus chemical reactivity, of the trona and limestone was accelerated by the rapid mixing between the Rotamix injection air and turbulent combustion products in the furnace downstream of the ROFA ports.
  • The sorbent injection trials were conducted on a unit of a power generation facility in the U.S. The unit conditions were as follows:
      • CE four corner fired unit
      • 154 MWe generating capacity at gross
      • Four levels of burners built in 1957
      • No OFA or FGR systems installed previously
      • No burner modifications
  • Test data was collected manually and by a distributed control system. The test program for analysis included the following:
      • Coal composition
      • Sorbent particle size
      • ESP: Mercury, (elemental & speciated), HCL, SO3/SO2
      • Control room CEM data: NOx, SO2, O2, CO, CO2, opacity
  • The sorbent sizes were as shown in Table 2:
    TABLE 2
    Sorbent Particle Size (pass through)
    Limestone 92% less than 74 microns
    Limestone 80% less than 44 microns
    Trona 75% less than 70 microns
    Trona 50% less than 28 microns
    Trona
    10% less than 6 microns
  • The following data show the raw data from the testing and demonstrates the reduction as a function of molar ratio and also the speciation of the mercury reduction.
    Condition
    Baseline Limestone Trona
    Run
    1 2 1 2 1 2
    Date
    Nov. 12, Nov. 12, Dec. 10, Dec. 10, Dec. 13, Dec. 13,
    2002 2002 2002 2002 2002 2002
    Start Time
    10:10 14:02 12:29 16:20 9:45 14:10
    End Time
    12:19 16:10 Avg 14:43 18:32 Avg % Red* 12:01 16:22 Avg % Red*
    Flow dscfm 282.609 322.967 302.788 256.095 262.486 259.291 243.832 224.469 234.150
    (ESP ° F. 243 243 243 246 245 245 262 271 267
    Inlet)
    O2 % dry 4.3 4.3 4.3 5.5 5.4 5.4 4.6 3.9 4.3
    (ESP
    H2O % vol 8.0 7.5 7.8 5.3 6.3 5.8 6.6 7.4 7.0
    (ESP
    Inlet)
    HCl ppmvd 64.8 67.5 66.2 53.3 62.8 58.1 12.3% 16.1 12.4 14.3 78.4%
    (ESP lb/MMBtu 0.13 0.14 0.14 0.12 0.14 0.13 5.8% 0.03 0.02 0.03 78.4%
    Inlet) lb/hr 104.2 124.0 114.1 77.7 93.7 85.7 24.9% 22.3 15.9 19.1 83.3%
    PM gr/dscf 5.01 4.84 4.92 3.95 4.12 4.03 18.0% 1.23 0.75 0.99 79.9%
    (ESP lb/MMBtu 8.8 8.5 8.7 7.5 7.8 7.6 11.9% 2.2 1.3 1.7 79.8%
    Inlet) lb/hr 12.127 13.392 12.760 8.660 9.280 8.970 29.7% 2.577 1.441 2.009 84.3%
    Flow dscfm 271.890 237.852 254.871 234.814 234.010 234.412 234.860 229.637 232.248
    (Stack) ° F. 246 245 245 274 287 281 248 261 254
    O2 % dry 7.5 6.5 7.0 9.3 10.5 9.9 8.0 6.3 7.1
    (Stack)
    H2O % vol 8.5 7.7 8.1 6.7 7.1 6.9 6.5 7.1 6.8
    (Stack)
    SO2 ppmvd 729.9 706.2 718.1 324.3 356.0 340.2 52.6% 296.1 291.0 293.5 59.1%
    (Stack) lb/MMBtu 1.9 1.7 1.8 0.9 1.2 1.1 40.0% 0.8 0.7 0.7 58.6%
    lb/hr 2742 1675 2208 759 831 795.1 64.0% 694 666 679.9 69.2%
    SO3 ppmvd 0.47 0.54 0.51 0.06 0.06 0.06 87.5% 0.04 0.03 0.03 93.1%
    (Stack) lb/MMBtu 0.0015 0.0016 0.0015 0.0002 0.0003 0.0002 84.2% 0.0001 0.0001 0.0001 93.0%
    lb/hr 0.0042 0.0047 0.0044 0.0006 0.0006 0.0006 86.9% 0.0003 0.0003 0.0003 93.0%
    HgPM ug/Nm3 0.10 0.01 0.05 0.18 0.01 0.09 −79.1% 0.04 0.11 0.08 −52.1%
    (Stack) lb/MMBtu 8.6E−08 6.6E−09 4.6E−08 1.8E−07 8.2E−09 9.6E−08 −108.1% 4.1E−08 9.3E−08 6.7E−08 −45.2%
    lb/hr 9.2E−05 6.6E−06 4.9E−05 0.00015 5.8E−06 7.7E−05 −56.2% 3.7E−05 9.2E−05 6.4E−05 −30.5%
    Hg+2 ug/Nm3 7.95 8.16 8.06 0.90 1.04 0.97 87.9% 2.07 2.15 2.11 73.8%
    (Stack) lb/MMBtu 7.1E−06 6.7E−06 6.9E−06 9.2E−07 1.2E−06 1.1E−06 84.7% 1.9E−06 1.7E−06 1.8E−06 73.5%
    lb/hr 0.0075 0.0068 0.0072 0.0007 0.0009 0.0008 88.9% 0.0017 0.0017 0.0017 76.1%
    HgO ug/Nm3 2.50 3.14 2.82 0.09 0.07 0.08 97.1% 1.54 1.28 1.41 50.1%
    (Stack) lb/MMBtu 2.2E−06 2.6E−06 2.4E−06 9.2E−08 8.5E−08 8.9E−08 96.3% 1.4E−06 1.0E−06 1.2E−06 49.0%
    lb/hr 0.0024 0.0026 0.0025 0.0001 0.0001 0.0001 97.3% 0.0013 0.0010 0.0011 54.2%
    HgTotal ug/Nm3 10.54 11.31 10.93 1.18 1.12 1.15 89.5% 3.65 3.54 3.60 67.1%
    (Stack) lb/MMBtu 9.4E−06 9.3E−06 9.3E−06 1.2E−06 1.3E−06 1.2E−06 86.7% 3.4E−06 2.9E−06 3.1E−06 66.6%
    lb/hr 0.0100 0.0094 0.0097 0.0010 0.0009 0.0009 90.3% 0.0030 0.0028 0.0029 69.9%
    PM gr/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
    (Stack) lb/MMBtu #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
    lb/hr #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    *% reduction based on average values during sorbent injection tests compared to average values during baseline tests.

    **ESP Inlet O2 readings colleced by URS appear to contain ambient air dilution. Values shown based on plant instrumentation at air

    heater (wet basis) for Limestone and Trona tests. Baseline value assumed equal to Trona value.

    ***lb/MMBtu based on EPA Method 19 Fd factor of 9780 dscf/MMBtu
  • Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. All modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the following claims.

Claims (25)

1. A method of reducing SO2 flue gas concentration in a combustion process utilizing a sulfurous fuel, comprising the steps of:
providing a staged combustion system for application in a reactor, the staged combustion system having asymmetrical injection devices for introducing at least one sorbent to the reactor by asymmetrical injection at predetermined, spaced apart locations;
injecting the fuel with a primary air through a first stage prior to injection of a secondary air;
injecting the secondary air and at least one sorbent through the plurality of injection devices; and
controlling the asymmetrical injection of the secondary air to produce a turbulence resulting in dispersion of the at least one chemical agent into the reaction system, thereby providing increased reaction and reactor efficiency and reduced SO2 in the reaction process.
2. The method of claim 1, wherein the staged combustion system includes at least two stages.
3. The method of claim 1, wherein the staged combustion system includes at least three stages.
4. The method of claim 1, wherein the staged combustion system includes a primary stage, at least one ROFA stage, and at least one FSI stage.
5. The method of claim 4, wherein the staged combustion system includes at least one ROFA stage, and at least one FSI stage.
6. The method of claim 5, wherein the FSI stage and the ROFA stage are co-injected.
7. The method of claim 5, wherein the FSI stage and the ROFA stage are separate.
8. The method of claim 5, wherein the ROFA stage is upstream from the FSI stage.
9. The method of claim 6, wherein the FSI stage and the ROFA stage are injected co-axially.
10. A method for reducing pollutant formation, comprising the steps of:
providing a staged combustion system including a furnace with asymmetrical injection ports introducing at least one sorbent to the reactor by asymmetrical injection at predetermined, spaced apart locations;
injecting the fuel with a primary air through a first stage prior to injection of a secondary air;
injecting secondary air and at least one sorbent through the plurality of injection ducts; and
controlling the asymmetrical injection of secondary air to produce a turbulence resulting in dispersion of the at least one chemical agent into the reaction system, thereby providing increased reaction and reactor efficiency and reduced NOx formation in the reaction process.
11. The method of claim 10, wherein lime is injected to reduce NOx.
12. The method of claim 10, wherein lime is injected to reduce Hg.
13. The method of claim 10, wherein the staged combustion system includes at least two stages.
14. The method of claim 10, wherein the staged combustion system includes at least three stages.
15. The method of claim 10, wherein the staged combustion system includes a primary stage, at least one ROFA stage, and at least one FSI stage.
16. The method of claim 15, wherein the staged combustion system includes at least one ROFA stage, and at least one FSI stage.
17. The method of claim 16, wherein the FSI stage and the ROFA stage are co-injected.
18. The method of claim 16, wherein the FSI stage and the ROFA stage are separate.
19. The method of claim 16, wherein the ROFA stage is upstream from the FSI stage.
20. The method of claim 15, wherein the FSI stage and the ROFA stage are injected co-axially.
21. A method of reducing pollutant flue gas concentration in a combustion process utilizing a sulfurous fuel, comprising the steps of:
providing a staged combustion system for application in a reactor, the staged combustion system having asymmetrical injection devices for introducing at least one sorbent to the reactor by asymmetrical injection at predetermined, spaced apart locations;
injecting the fuel with a primary air through a first stage prior to injection of a secondary air;
injecting the secondary air and at least one sorbent through the plurality of injection devices; and
controlling the asymmetrical injection of the secondary air to produce a turbulence resulting in dispersion of the at least one chemical agent into the reaction system, thereby providing increased reaction and reactor efficiency and reduced SO2 in the reaction process;
wherein the staged combustion system includes ROFA and FSI in combination for providing increased reactivity within a predetermined zone of the reactor, thereby producing more complete, more effective, and more efficient reduction of pollutants therein.
22. The method of claim 21, wherein the FSI stage and the ROFA stage are co-injected.
23. The method of claim 21, wherein the FSI stage and the ROFA stage are separate.
24. The method of claim 21, wherein the ROFA stage is upstream from the FSI stage.
25. The method of claim 21, wherein the FSI stage and the ROFA stage are provided co-axially.
US10/848,231 2004-05-18 2004-05-18 Method for flue-gas reduction of pollutants in combustion processes Abandoned US20050260114A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/848,231 US20050260114A1 (en) 2004-05-18 2004-05-18 Method for flue-gas reduction of pollutants in combustion processes
CNB2005800229113A CN100518888C (en) 2004-05-18 2005-05-04 Method for flue-gas reduction of pollutants in combustion processes
KR1020067026473A KR20070048654A (en) 2004-05-18 2005-05-04 Method for flue-gas reduction of pollutants in combustion processes
PCT/US2005/015707 WO2005115592A2 (en) 2004-05-18 2005-05-04 Method for flue-gas reduction of pollutants in combustion processes
PL381880A PL210547B1 (en) 2004-05-18 2005-05-04 Method for flue-gas reduction of pollutants in combustion processes
US11/520,083 US7404940B2 (en) 2004-05-18 2006-09-13 Method for flue-gas reduction of pollutants in combustion processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/848,231 US20050260114A1 (en) 2004-05-18 2004-05-18 Method for flue-gas reduction of pollutants in combustion processes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/520,083 Continuation US7404940B2 (en) 2004-05-18 2006-09-13 Method for flue-gas reduction of pollutants in combustion processes

Publications (1)

Publication Number Publication Date
US20050260114A1 true US20050260114A1 (en) 2005-11-24

Family

ID=35375338

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/848,231 Abandoned US20050260114A1 (en) 2004-05-18 2004-05-18 Method for flue-gas reduction of pollutants in combustion processes
US11/520,083 Expired - Fee Related US7404940B2 (en) 2004-05-18 2006-09-13 Method for flue-gas reduction of pollutants in combustion processes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/520,083 Expired - Fee Related US7404940B2 (en) 2004-05-18 2006-09-13 Method for flue-gas reduction of pollutants in combustion processes

Country Status (5)

Country Link
US (2) US20050260114A1 (en)
KR (1) KR20070048654A (en)
CN (1) CN100518888C (en)
PL (1) PL210547B1 (en)
WO (1) WO2005115592A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070041885A1 (en) * 2005-08-18 2007-02-22 Maziuk John Jr Method of removing sulfur dioxide from a flue gas stream
US9067837B2 (en) 2013-03-15 2015-06-30 Three D Stack, LLC Cleaning stack gas
US9919269B2 (en) 2013-03-15 2018-03-20 3D Clean Coal Emissions Stack Llc Clean coal stack
US10486105B2 (en) 2016-05-14 2019-11-26 3D Clean Coal Emissions Stack, Llc Clean gas stack

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100043261A (en) * 2007-08-02 2010-04-28 더 벤타마이트 컴패니, 엘엘씨 Composition, production and use of sorbent particles for flue gas desulfurization
US20100203461A1 (en) * 2009-02-06 2010-08-12 General Electric Company Combustion systems and processes for burning fossil fuel with reduced emissions
EP2555851B1 (en) 2010-04-07 2021-09-01 Calgon Carbon Corporation Methods for removal of mercury from flue gas
UA99195C2 (en) * 2010-12-13 2012-07-25 Государственное предприятие «Украинский научно-технический центр металлургической промышленности «Энергосталь» System for spraying a sorbent in an environment of flue gases of thermal plants
JP5865014B2 (en) * 2011-06-24 2016-02-17 株式会社リケン piston ring
JP5865015B2 (en) * 2011-06-24 2016-02-17 株式会社リケン piston ring
US8900354B2 (en) 2011-09-08 2014-12-02 The Power Industrial Group Ltd. Boosted no-lance injection systems and methods
US20130330257A1 (en) 2012-06-11 2013-12-12 Calgon Carbon Corporation Sorbents for removal of mercury
US9308518B2 (en) 2013-02-14 2016-04-12 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
CA2995357C (en) 2015-08-11 2023-12-19 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
KR102301244B1 (en) * 2021-03-29 2021-09-10 주식회사 블루오션에코 Spontaneous combustion inhibitor of coal and method for inhibiting spontaneous combustion of coal using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809910A (en) * 1992-05-18 1998-09-22 Svendssen; Allan Reduction and admixture method in incineration unit for reduction of contaminants
US20040185399A1 (en) * 2003-03-19 2004-09-23 Goran Moberg Urea-based mixing process for increasing combustion efficiency and reduction of nitrogen oxides (NOx)
US20040185402A1 (en) * 2003-03-19 2004-09-23 Goran Moberg Mixing process for increasing chemical reaction efficiency and reduction of byproducts
US20040185401A1 (en) * 2003-03-19 2004-09-23 Goran Moberg Mixing process for combustion furnaces
US20040253161A1 (en) * 2003-06-12 2004-12-16 Higgins Brian S. Combustion NOx reduction method
US20050002841A1 (en) * 2003-06-13 2005-01-06 Goran Moberg Co-axial ROFA injection system
US20050013755A1 (en) * 2003-06-13 2005-01-20 Higgins Brian S. Combustion furnace humidification devices, systems & methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089910A (en) * 1990-06-28 1992-02-18 Lookheed Missiles & Space Company, Inc. Infrared catadioptric zoom relay telescope with an asperic primary mirror

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809910A (en) * 1992-05-18 1998-09-22 Svendssen; Allan Reduction and admixture method in incineration unit for reduction of contaminants
US20040185399A1 (en) * 2003-03-19 2004-09-23 Goran Moberg Urea-based mixing process for increasing combustion efficiency and reduction of nitrogen oxides (NOx)
US20040185402A1 (en) * 2003-03-19 2004-09-23 Goran Moberg Mixing process for increasing chemical reaction efficiency and reduction of byproducts
US20040185401A1 (en) * 2003-03-19 2004-09-23 Goran Moberg Mixing process for combustion furnaces
US20040253161A1 (en) * 2003-06-12 2004-12-16 Higgins Brian S. Combustion NOx reduction method
US20050002841A1 (en) * 2003-06-13 2005-01-06 Goran Moberg Co-axial ROFA injection system
US20050013755A1 (en) * 2003-06-13 2005-01-20 Higgins Brian S. Combustion furnace humidification devices, systems & methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070041885A1 (en) * 2005-08-18 2007-02-22 Maziuk John Jr Method of removing sulfur dioxide from a flue gas stream
US7531154B2 (en) 2005-08-18 2009-05-12 Solvay Chemicals Method of removing sulfur dioxide from a flue gas stream
US7854911B2 (en) 2005-08-18 2010-12-21 Solvay Chemicals, Inc. Method of removing sulfur dioxide from a flue gas stream
US9067837B2 (en) 2013-03-15 2015-06-30 Three D Stack, LLC Cleaning stack gas
US9737849B2 (en) 2013-03-15 2017-08-22 3 D Clean Coal Emissions Stack, Llc Cleaning stack gas
US9919269B2 (en) 2013-03-15 2018-03-20 3D Clean Coal Emissions Stack Llc Clean coal stack
US10486105B2 (en) 2016-05-14 2019-11-26 3D Clean Coal Emissions Stack, Llc Clean gas stack

Also Published As

Publication number Publication date
CN1997441A (en) 2007-07-11
PL381880A1 (en) 2007-07-23
US20070009413A1 (en) 2007-01-11
US7404940B2 (en) 2008-07-29
PL210547B1 (en) 2012-01-31
KR20070048654A (en) 2007-05-09
WO2005115592A3 (en) 2007-02-01
CN100518888C (en) 2009-07-29
WO2005115592A2 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US7404940B2 (en) Method for flue-gas reduction of pollutants in combustion processes
US7776279B2 (en) Combustion apparatus to reduce flue gas NOx by injection of n-agent droplets and gas in overfire air
US5809910A (en) Reduction and admixture method in incineration unit for reduction of contaminants
AU2014334786B2 (en) Method and apparatus for removing contaminants from exhaust gases
US6280695B1 (en) Method of reducing NOx in a combustion flue gas
US6030204A (en) Method for NOx reduction by upper furnace injection of solutions of fixed nitrogen in water
US5165903A (en) Integrated process and apparatus for control of pollutants in coal-fired boilers
US5443805A (en) Reduction of combustion effluent pollutants
WO2018036417A1 (en) Flue gas clean up method using a multiple system approach
CA2849749C (en) Dry sorbent injection during non-steady state conditions in dry scrubber
RU2698835C2 (en) Method and device for partial removal of contaminants from process gas flow
ZA200209641B (en) Potassium hydroxide flue gas injection technique to reduce acid gas emissions and improve electrostatic precipitator performance.
US5352423A (en) Use of aromatic salts for simultaneously removing SO2 and NOx pollutants from exhaust of a combustion system
US10197272B2 (en) Process and apparatus for reducing acid plume
EP1076595B1 (en) A method of producing so2 sorbent and thereafter utilizing such so2 sorbent to desulfurize combustion gases
EP1076594B1 (en) A method of producing so2 sorbent that is suitable for use to desulfurize combustion gases
WO1993023147A1 (en) Reducing proceeding and/or a system to intermix and means for the same
EP0535313A2 (en) Reduction of combustion effluent pollutants
Levendis et al. Use of aromatic salts for simultaneously removing SO 2 and NO x pollutants from exhaust of a combustion system
Amrhein et al. Furnace ammonia and limestone injection with dry scrubbing for improved simultaneous SOX and NOX removal
Yeh et al. Control of NO x During Stationary Combustion
Yeh et al. Control of NO

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOBOTEC USA, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIGGINS, BRIAN S.;SHILLING, MARK;REEL/FRAME:018488/0943

Effective date: 20061004

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION