US20050256057A1 - Protein hydrolysate rich in tripeptides - Google Patents
Protein hydrolysate rich in tripeptides Download PDFInfo
- Publication number
- US20050256057A1 US20050256057A1 US10/516,983 US51698304A US2005256057A1 US 20050256057 A1 US20050256057 A1 US 20050256057A1 US 51698304 A US51698304 A US 51698304A US 2005256057 A1 US2005256057 A1 US 2005256057A1
- Authority
- US
- United States
- Prior art keywords
- protein
- proline
- tripeptides
- hydrolysate
- peptides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010009736 Protein Hydrolysates Proteins 0.000 title claims abstract description 60
- 239000003531 protein hydrolysate Substances 0.000 title claims abstract description 58
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 131
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims abstract description 89
- 102000004190 Enzymes Human genes 0.000 claims description 113
- 108090000790 Enzymes Proteins 0.000 claims description 113
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 107
- 101710118538 Protease Proteins 0.000 claims description 89
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 73
- 239000000758 substrate Substances 0.000 claims description 69
- 108090000623 proteins and genes Proteins 0.000 claims description 66
- 102000004169 proteins and genes Human genes 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 60
- 239000000203 mixture Substances 0.000 claims description 52
- 108010068563 PepT tripeptidase Proteins 0.000 claims description 48
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 40
- 239000000047 product Substances 0.000 claims description 25
- 239000000413 hydrolysate Substances 0.000 claims description 21
- 108010070926 Tripeptide aminopeptidase Proteins 0.000 claims description 20
- 235000013305 food Nutrition 0.000 claims description 19
- 101100189356 Mus musculus Papolb gene Proteins 0.000 claims description 18
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 15
- 125000000539 amino acid group Chemical group 0.000 claims description 14
- 108091005502 Aspartic proteases Proteins 0.000 claims description 10
- 102000035101 Aspartic proteases Human genes 0.000 claims description 10
- 102000012479 Serine Proteases Human genes 0.000 claims description 10
- 108010022999 Serine Proteases Proteins 0.000 claims description 10
- 108010016626 Dipeptides Proteins 0.000 claims description 5
- 230000002829 reductive effect Effects 0.000 claims description 3
- 241000124008 Mammalia Species 0.000 claims 2
- 229940088598 enzyme Drugs 0.000 description 107
- 150000001413 amino acids Chemical class 0.000 description 54
- 235000001014 amino acid Nutrition 0.000 description 50
- 229940024606 amino acid Drugs 0.000 description 50
- 235000018102 proteins Nutrition 0.000 description 49
- 238000004458 analytical method Methods 0.000 description 29
- 230000000694 effects Effects 0.000 description 29
- 108010076119 Caseins Proteins 0.000 description 26
- 102000011632 Caseins Human genes 0.000 description 26
- 238000011534 incubation Methods 0.000 description 23
- 239000000243 solution Substances 0.000 description 20
- 230000008569 process Effects 0.000 description 19
- 230000007062 hydrolysis Effects 0.000 description 18
- 238000006460 hydrolysis reaction Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 239000002253 acid Substances 0.000 description 15
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 15
- 235000021240 caseins Nutrition 0.000 description 15
- 241000228245 Aspergillus niger Species 0.000 description 14
- 229920001184 polypeptide Polymers 0.000 description 14
- 108090000787 Subtilisin Proteins 0.000 description 13
- 235000019658 bitter taste Nutrition 0.000 description 13
- 108010068370 Glutens Proteins 0.000 description 12
- 239000005018 casein Substances 0.000 description 12
- 235000021312 gluten Nutrition 0.000 description 12
- 108010046377 Whey Proteins Proteins 0.000 description 10
- 230000002378 acidificating effect Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 10
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 10
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 10
- 241000228212 Aspergillus Species 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 108090000194 Dipeptidyl-peptidases and tripeptidyl-peptidases Proteins 0.000 description 9
- 102000003779 Dipeptidyl-peptidases and tripeptidyl-peptidases Human genes 0.000 description 9
- 101710178372 Prolyl endopeptidase Proteins 0.000 description 9
- 108010039203 Tripeptidyl-Peptidase 1 Proteins 0.000 description 9
- 102100034197 Tripeptidyl-peptidase 1 Human genes 0.000 description 9
- 102000007544 Whey Proteins Human genes 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 108010039189 tripeptidyl-peptidase 2 Proteins 0.000 description 9
- 238000012261 overproduction Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 240000008042 Zea mays Species 0.000 description 7
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 7
- 230000002009 allergenic effect Effects 0.000 description 7
- 230000002255 enzymatic effect Effects 0.000 description 7
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 235000021247 β-casein Nutrition 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 102000035195 Peptidases Human genes 0.000 description 6
- 108091005804 Peptidases Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 241000209140 Triticum Species 0.000 description 6
- 235000021307 Triticum Nutrition 0.000 description 6
- 239000005862 Whey Substances 0.000 description 6
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 6
- 230000000975 bioactive effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 235000005911 diet Nutrition 0.000 description 6
- 230000002496 gastric effect Effects 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 6
- 235000009973 maize Nutrition 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 238000004885 tandem mass spectrometry Methods 0.000 description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 5
- 102000005367 Carboxypeptidases Human genes 0.000 description 5
- 108010006303 Carboxypeptidases Proteins 0.000 description 5
- 108090000317 Chymotrypsin Proteins 0.000 description 5
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- 102000004407 Lactalbumin Human genes 0.000 description 5
- 108090000942 Lactalbumin Proteins 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 229960002376 chymotrypsin Drugs 0.000 description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 5
- 235000019253 formic acid Nutrition 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- ZHNFLHYOFXQIOW-LPYZJUEESA-N quinine sulfate dihydrate Chemical compound [H+].[H+].O.O.[O-]S([O-])(=O)=O.C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21.C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 ZHNFLHYOFXQIOW-LPYZJUEESA-N 0.000 description 5
- 210000000813 small intestine Anatomy 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 102100037084 C4b-binding protein alpha chain Human genes 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- 108010006035 Metalloproteases Proteins 0.000 description 4
- 102000005741 Metalloproteases Human genes 0.000 description 4
- 108010038807 Oligopeptides Proteins 0.000 description 4
- 102000015636 Oligopeptides Human genes 0.000 description 4
- 101710136733 Proline-rich protein Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 238000005903 acid hydrolysis reaction Methods 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- 230000037213 diet Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 235000013350 formula milk Nutrition 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 230000003301 hydrolyzing effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 235000016709 nutrition Nutrition 0.000 description 4
- 230000035764 nutrition Effects 0.000 description 4
- 235000021119 whey protein Nutrition 0.000 description 4
- 108090000915 Aminopeptidases Proteins 0.000 description 3
- 102000004400 Aminopeptidases Human genes 0.000 description 3
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 239000012901 Milli-Q water Substances 0.000 description 3
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 102000056251 Prolyl Oligopeptidases Human genes 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000003276 anti-hypertensive effect Effects 0.000 description 3
- UTXSFKPOIVELPQ-SFHVURJKSA-N benzyl n-[2-[(2s)-2-[(4-nitrophenyl)carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]carbamate Chemical compound C1=CC([N+](=O)[O-])=CC=C1NC(=O)[C@H]1N(C(=O)CNC(=O)OCC=2C=CC=CC=2)CCC1 UTXSFKPOIVELPQ-SFHVURJKSA-N 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229940021722 caseins Drugs 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 239000004310 lactic acid Substances 0.000 description 3
- 235000014655 lactic acid Nutrition 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 150000003147 proline derivatives Chemical class 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 229940080237 sodium caseinate Drugs 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 235000019640 taste Nutrition 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 208000015943 Coeliac disease Diseases 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 102000018389 Exopeptidases Human genes 0.000 description 2
- 108010091443 Exopeptidases Proteins 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 102000014171 Milk Proteins Human genes 0.000 description 2
- 108010011756 Milk Proteins Proteins 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000001539 anorectic effect Effects 0.000 description 2
- 230000002785 anti-thrombosis Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 108010079058 casein hydrolysate Proteins 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 239000007979 citrate buffer Substances 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 235000021245 dietary protein Nutrition 0.000 description 2
- 229940079919 digestives enzyme preparation Drugs 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000000367 exoproteolytic effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 210000003746 feather Anatomy 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 238000012994 industrial processing Methods 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 238000005040 ion trap Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 235000021239 milk protein Nutrition 0.000 description 2
- 239000002417 nutraceutical Substances 0.000 description 2
- 235000021436 nutraceutical agent Nutrition 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- QKFJKGMPGYROCL-UHFFFAOYSA-N phenyl isothiocyanate Chemical compound S=C=NC1=CC=CC=C1 QKFJKGMPGYROCL-UHFFFAOYSA-N 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229960001322 trypsin Drugs 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- VUDQSRFCCHQIIU-UHFFFAOYSA-N 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one Chemical compound CCCCCC(=O)C1=C(O)C(Cl)=C(OC)C(Cl)=C1O VUDQSRFCCHQIIU-UHFFFAOYSA-N 0.000 description 1
- UUUHXMGGBIUAPW-UHFFFAOYSA-N 1-[1-[2-[[5-amino-2-[[1-[5-(diaminomethylideneamino)-2-[[1-[3-(1h-indol-3-yl)-2-[(5-oxopyrrolidine-2-carbonyl)amino]propanoyl]pyrrolidine-2-carbonyl]amino]pentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]pyrrolidine-2-carbon Chemical compound C1CCC(C(=O)N2C(CCC2)C(O)=O)N1C(=O)C(C(C)CC)NC(=O)C(CCC(N)=O)NC(=O)C1CCCN1C(=O)C(CCCN=C(N)N)NC(=O)C1CCCN1C(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C1CCC(=O)N1 UUUHXMGGBIUAPW-UHFFFAOYSA-N 0.000 description 1
- AQFATCCHOXBYNK-UHFFFAOYSA-N 2-piperidin-1-ium-1-ylethyl 1-cyclohexylcyclohexane-1-carboxylate;chloride Chemical compound [Cl-].C1CCCCC1(C1CCCCC1)C(=O)OCC[NH+]1CCCCC1 AQFATCCHOXBYNK-UHFFFAOYSA-N 0.000 description 1
- WRDABNWSWOHGMS-UHFFFAOYSA-N AEBSF hydrochloride Chemical compound Cl.NCCC1=CC=C(S(F)(=O)=O)C=C1 WRDABNWSWOHGMS-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 108010064733 Angiotensins Proteins 0.000 description 1
- 102000015427 Angiotensins Human genes 0.000 description 1
- NKBQZKVMKJJDLX-SRVKXCTJSA-N Arg-Glu-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O NKBQZKVMKJJDLX-SRVKXCTJSA-N 0.000 description 1
- -1 Asp (“D”) Chemical class 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108090000145 Bacillolysin Proteins 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 241000606125 Bacteroides Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101000741065 Bos taurus Beta-casein Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108030001574 Deuterolysin Proteins 0.000 description 1
- 241000224495 Dictyostelium Species 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000589565 Flavobacterium Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000193159 Hathewaya histolytica Species 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108090000131 Metalloendopeptidases Proteins 0.000 description 1
- 102000003843 Metalloendopeptidases Human genes 0.000 description 1
- 102000035092 Neutral proteases Human genes 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 229940127450 Opioid Agonists Drugs 0.000 description 1
- 108010019160 Pancreatin Proteins 0.000 description 1
- 108090000882 Peptidyl-Dipeptidase A Proteins 0.000 description 1
- 102000004270 Peptidyl-Dipeptidase A Human genes 0.000 description 1
- ZPHBZEQOLSRPAK-UHFFFAOYSA-N Phosphoramidon Natural products C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O ZPHBZEQOLSRPAK-UHFFFAOYSA-N 0.000 description 1
- 101710088675 Proline-rich peptide Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 239000012564 Q sepharose fast flow resin Substances 0.000 description 1
- 206010062237 Renal impairment Diseases 0.000 description 1
- 238000010847 SEQUEST Methods 0.000 description 1
- 102000003667 Serine Endopeptidases Human genes 0.000 description 1
- 108090000083 Serine Endopeptidases Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 108090001109 Thermolysin Proteins 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000002456 anti-arthritic effect Effects 0.000 description 1
- 230000000767 anti-ulcer Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000012045 crude solution Substances 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 230000003480 fibrinolytic effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 210000001156 gastric mucosa Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 235000013402 health food Nutrition 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 230000000774 hypoallergenic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 235000021125 infant nutrition Nutrition 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000006362 insulin response pathway Effects 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229940055695 pancreatin Drugs 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- 229950000964 pepstatin Drugs 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229940117953 phenylisothiocyanate Drugs 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 108010072906 phosphoramidon Proteins 0.000 description 1
- BWSDNRQVTFZQQD-AYVHNPTNSA-N phosphoramidon Chemical compound O([P@@](O)(=O)N[C@H](CC(C)C)C(=O)N[C@H](CC=1[C]2C=CC=CC2=NC=1)C(O)=O)[C@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@@H]1O BWSDNRQVTFZQQD-AYVHNPTNSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000006041 probiotic Substances 0.000 description 1
- 230000000529 probiotic effect Effects 0.000 description 1
- 235000018291 probiotics Nutrition 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229940108461 rennet Drugs 0.000 description 1
- 108010058314 rennet Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000003508 trans-4-hydroxy-L-proline group Chemical group 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 235000008939 whole milk Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
Definitions
- the present invention relates to protein hydrolysate and the uses thereof.
- bioactive peptides and protein hydrolysates containing such bioactive peptides have been described in a number of patent applications.
- WO 97/00078 describes hydrolysates obtained by incubation with probiotic bacteria or enzymes obtained from such bacteria.
- WO 99/16461 describes the inhibition of angiotensin-converting enzyme by specific tripeptides obtained by fermentation of Lactobacillus .
- WO 01/32905 describes the preparation of a product containing antihypertensive peptides by fermenting casein with lactic acid bacteria.
- WO 01/68114 describe the use of highly purified or chemically synthesized peptides for reducing blood pressure or treating diabetes, renal impairment or obesity.
- the present invention provides a process to produce protein hydrolysate which is rich in tripeptides whereby the peptides preferably are rich in proline at one end of the peptide and preferably the peptide has a carboxy terminal proline.
- the protein hydrolysate of the invention is non-bitter.
- the hydrolysate may optionally comprise dipeptides.
- the selected protein or proteinaceous substrate is contacted with a suitable endoprotease.
- a suitable endoprotease is preferably a proline specific endoprotease (PSE or Endopro), a serine protease, a metalloendoprotease or an aspartic protease, more preferably a PSE is used.
- PSE proline specific endoprotease
- serine protease a serine protease
- a metalloendoprotease a metalloendoprotease or an aspartic protease
- TPAP tripeptidase
- Such tripeptidases are defined as enzymes capable of releasing tripeptides from a polypeptide, either from the N-terminal side of the polypeptide hereby encompassing the socalled tripeptidyl-peptidases or from the C-terminal side of the polypeptide hereby encompassing the socalled peptidyl-tripeptidases.
- the protein substrate is first fermented with a endoprotease, such as a serine protease, metalloendoprotease or an aspartic protease, to partly hydrolyse the protein.
- a endoprotease such as a serine protease, metalloendoprotease or an aspartic protease
- the process according to the invention involves a combination of one or more endoproteases with one or more tripeptidases.
- the enzymes are used in an isolated form and in an endoprotease to tripeptidase protein ratio range between 1:0.05 and 1:50, preferably between 1:0.1 to 1:10.
- the protein substrate or the partial hydrolysate formed can first be subjected to the suitable first endoprotease and subsequently the TPAP or mixture of TPAP's can be added.
- a one step process may be preferred.
- the TPAP used in the present process is a TPAP which after an incubation at pH5 of 1 hour at 50° C. shows at least 70% residual activity on a Ala-Ala-X-pNa substrate as measured in Example 1.
- X may vary with the TPAP in question depending on the specifity of the TPAP.
- X is an amino acid residue which gives rise to at least an significant activity of the TPAP (see for example FIG. 1 .)
- an enzyme To be useful as processing aids in the preparation of food ingredients, an enzyme must preferably meet a number of strict economical and legislative criteria. To meet the legislative criteria the enzyme should be obtained from an unsuspect source, for example a food-grade microorganism. To meet the economical criteria, the enzyme should be secreted by the microorganism, producible in high yields and exhibit a number of biochemical characteristics such as a long term stability under industrial processing conditions. To minimise the risks of microbial infections under such non-sterile conditions, industrial processing often employs acidic pH conditions and a temperature of 50 degrees C. or higher. An enzyme used in the present invention advantageously meet these demands.
- the present invention further provides a hydrolysate rich in tripeptides whereby preferably these tripeptides are rich in carboxy terminal proline.
- Rich in tripeptides means that at least 20 molar %, preferably at least 25 molar %, more preferably at least 30 molar % or most preferably at least 35 molar % of the smaller peptides present in the hydrolysate, is present as tripeptide.
- Smaller peptides are defined as peptides with a molecular weight of 200-2000 Da.
- Rich in proline means that at least 20%, preferably at least 30%, more preferably at least 40% and even more preferably 50% of the proline present in the starting protein substrate, is present in the tripeptides, preferably as carboxy terminal proline.
- Preferably 30% of the tripeptides or more preferably 35% of the tripeptides have a carboxy terminal proline residue, the values can be obtained with protein substrates that are rich in proline.
- the hydrolysate produced according to the present invention has in general a degree of hydrolysis of between 10 and 40, preferably between 15 and 30.
- the degree of hydrolysis is determined using the OPA method as described by Nielsen, P. M. et al (Journal of Food Science, Vol 66, No 5, PP 642-646, 2001).
- the hydrolysates produced according to the process of the present invention can be fractionated if desired. For example separation techniques such as centrifugation or filtration (for example microfiltration and ultrafiltration) can be used to produce compositions which are further enriched in peptides having a molecular weight of 2000 Da or less.
- composition comprising for at least 10 wt %, preferably for at least 20 wt %, more preferably for at least 30% and most preferably for at least 40 wt % of peptides having a molecular weight of 200-2000 Da, based on total amount of peptides present.
- Whey protein represents a very suitable substrate for producing hydrolysates by the process of the invention.
- Whey protein is relatively rich in “essential” and “branched chain” amino acids and has a high biological digestibility. Moreover, whey hydrolysates exhibit relatively low bitterness profile. Because whey has a relatively low proline content, the role of the tripeptidase in generating a mixture of easily assimilable peptides is important.
- proteins like casein, wheat and maize gluten, soy, rice protein, chicken feathers and gelatin exhibit vastly different amino acid compositions.
- some of these proteins potentially form the substrate of choice for the production of hydrolysates by the process of the invention.
- wheat gluten is extremely rich in glutamine and rice protein is rich in arginine residues. Both amino acids are known to improve physical endurance and the recovery rate following high intensity exercise.
- glutamine is not stable so that supply in a readily assimilable peptide is advantageous.
- Maize gluten is a cheap substrate that is extremely rich in leucine and phenylalanine, it is known that these amino acids can modulate glucose and insulin responses upon oral consumption.
- cysteine is a labile compound that is preferably supplied in the form of di- or tripeptides.
- proline residues i.e. more than 6 grams free amino acid per 100 grams of protein.
- proline confers an increased stability to peptides thereby increasing their potential significance in eliciting physiological effects such as decreasing blood pressure, acting as opioid agonists or antagonists, contracting smooth muscles and inhibiting platelet aggregation.
- recent research has implicated specific proline containing sequences or a shortage of proline-specific proteases to immunological effects associated with psychological features. For example celiac sprue is a widely prevalent autoimmune disease induced by exposure to dietary gluten (Shan, L. et al; Science Vol 297, 2002, 2275-2279) and linked with behaviour change (Bernejo, M. and Polanco I, Rev Neurol 2002 Feb. 28; 34 Suppl 1: S24-33).
- proline residues Up to now peptide bonds involving proline residues have been notoriously difficult to cleave using commercially available enzymes so that protein hydrolysates prepared from proline-rich substrates contain major fractions of large molecular weight material. Moreover, proline represents a very hydrophobic amino acid and yields extremely bitter hydrolysates. Thus, the production of acceptable hydrolysates from proline-rich substrates using existing technologies would lead to low yields and highly priced products.
- the present invention discloses an enzyme mixture that would permit simple protocols to convert all relevant proteinaceous substrates into highly desirable hydrolysates with a good taste, an efficient gastrointestinal uptake, low allergenicity levels and, if required, a high content of bioactive peptides.).
- This enzyme composition consisting of an endoprotease, preferably a proline specific endoprotease, and a tripeptidase when added to a suitable protein is able to produce the protein hydrolysate which is rich in tripeptides and optionally dipeptides whereby the di- and/or tripeptides are rich in proline at one end of the peptide.
- these protein hydrolysates offer attractive advantages such as lowered allergenicities, facilitated gastro-intestinal uptake, less chemical deterioration of desirable amino acids like glutamine and cystein and finally, absence of proteinaceous precipitations in acid beverages during prolonged storage periods. All these advantages can be combined if the hydrolysate is prepared using a combination of an endoprotease, preferably a proline specific endoprotease, and one or more tripeptidases. According to the invention several useful tripeptidases are preferably used in a pure or isolated state. Pure tripeptidase can be obtained for example by overexpression of the enzyme is a suitable transformed host microorganism.
- tripeptidases that exhibit a low selectivity towards the substrate to be cleaved, i.e. exhibit minimal amino acid residue cleavage preferences only. Combinations of tripeptidases that hydrolyse high percentages of the naturally occurring peptide bonds are preferred. Despite this high activity to naturally occurring peptide bonds, a total hydrolysis to free amino acids is prevented by the nature of the tripeptidases. Also tripeptidases that are optimally active between pH 4 to 8 and exhibit adequate temperature stability are preferred. Adequate temperature stability means that at least 40%, preferably at least 60%, more preferably between 70 and 100% of the initial hydrolytic activity survives after heating the enzyme together with the substrate for 1 hour at 50 degrees C. Tripeptidyl aminopeptidase is the preferred tripeptidase
- Tripeptidyl aminopeptidases are enzymes that can release tripeptides from the N-terminus of an oligopeptide. Little is known on enzymes that can release tripeptides from the oligopeptide's carboxyterminus (tripeptidyl carboxypeptidases or peptidyl-tripeptidases). The various physiological advantages of the mixture of tripeptides that can be formed by such enzymes was illustrated above. Tripeptides offer a much wider sequence variation than dipeptides can hereby increasing the chance of an optimal fit with the receptors responsible for modulating biological activities. This is well illustrated by the documented number of bioactive peptides having a carboxyterminal proline residue (see for example WO 01/68114).
- Tripeptidyl aminopeptidases (EC 3.4.14) have been isolated from mammalian as well as plant sources. Microorganisms from which tripeptidylpeptidases have been isolated are for example Streptomyces species (JP08308565, WO 95/17512 and U.S. Pat. No. 5,856,166)), Porphyromones gingivalis (WO 00/52147), Dictyostelium discoidum and Aspergillus species (WO 96/14404). To date, the occurrence of tripeptidyl carboxypeptidases (EC 3.4.15) has been demonstrated in mammalian cells and in the microorganism Clostridium histolyticum only.
- tripeptidases and/or endoproteases in high quantities and in a pure or isolated form.
- a preferred way of obtaining purified and isolated tripeptidases is via the overproduction using recombinant DNA techniques.
- a more preferred method is the overproduction of acid stable tripeptidases exhibiting adequate stabilities under processing conditions of 50 degrees C. or higher using recombinant DNA techniques.
- a particulary preferred method is the overproduction of such tripeptidases derived from Aspergillus and a most preferred method is the overproduction of such tripeptidases from Aspergillus niger.
- a polypeptide used in the process of the invention which has endoprotease or tripeptidase activity may be in an isolated form.
- an isolated polypeptide is an endogenously produced or a recombinant polypeptide which is essentially free from other polypeptides, and is typically at least 20% pure, preferably at least 40% pure, more preferably at least 60% pure, even more preferably at least 80% pure, still more preferably at least 90% pure, or most preferably at least 95% pure, as determined by SDS-PAGE.
- the polypeptide may be isolated by centrifugation, filtration (for example utrafiltration) or chromatographic methods, or any other technique known in the art for obtaining pure proteins from crude solutions.
- polypeptide may be mixed with carriers or diluents which do not interfere with the intended purpose of the polypeptide, and thus the polypeptide in this form will still be regarded as isolated. It will generally comprise the polypeptide in a preparation in which more than 10%, for example more than 20%, 30%, 40%, 50%, 80%, 90%, 95% or 99%, by weight of the proteins in the preparation is a polypeptide for use of the process of the present invention.
- the main aim of the hydrolysates of the invention is to minimize the allergenicity or immunoresponse of the product or to facilitate gastro-intestinal uptake.
- the use of a proline specific endoprotease in combination with one or more tripeptidases is of special importance as these offer an efficient way for producing such hydrolysates.
- the enzyme mixture according to the invention may comprise a tripeptidase or a mixture of tripeptidases.
- the enzyme mixture my also comprise a endoprotease, such as a serine protease, a metalloendoprotease, an aspartic protease, or a proline-specific endoprotease (PSE or E.C. 3.4.21.26) which work together with the tripeptidase to provide a primary protein hydrolysate.
- the endoprotease can be one or more different endoproteases which are incubated either simultaneously or consecutively with the protein substrate, for example the proteinaceous substrate may be first digested with an endoprotease preferably a serine protease, a metalloendoprotease or an aspartic protease and subsequently, digested with a second endoprotease, preferably PSE. Before adding the second endoprotease, the enzymes already present are optionally inactivated.
- Serine proteases represent a well known class of alkaline endoproteases. Examples include subtilisin (E.C. 3.4.21.62) and chymotrypsin (E.C. 3.4.21.1) which prefer cleavage of the peptide chain at the carboxy terminal side of hydrophobic amino acids such as Tyr, Trp, Phe and Leu.
- the enzyme mixture of the invention may contain chymotrypsin and/or subtilisin.
- Subtilisin is produced by species of Bacillus , has a particularly broad substrate specificity and a broad, alkaline pH optimum. The enzyme is optimally active between 50° C. and 60° C.
- Chymotrypsin may be obtained from animal pancreas, has a somewhat narrower substrate specificity at slightly more alkaline pH values than subtilisin and is optimally active below 50 degrees C.
- the class of metalloendoproteases is wide spread in bacteria, fungi and higher organisms. They can be separated into the neutral and acid metalloproteases. Of these two subclasses only the neutral proteases exhibit the desirable cleavage preference i.e. cleaving the peptide chain on the carboxy terminal side of hydrophobic amino acid residues such as Phe and Leu.
- Well known examples of the neutral metalloproteases are bacillolysin (E.C. 3.4.24.28) and thermolysin (E.C. 3.4.24.27) and either, or both of these, may be present in the enzyme mixture of the invention. Both enzymes are obtained from Bacillus species and exhibit maximum activity under neutral or slightly alkaline conditions.
- the aspartic proteases feature an acidic pH optimum that can be advantageously used in combination with a proline-specific endoprotease and a tripeptidase that also have acidic pH optima.
- the aspartic proteases especially pepsin is recognized as an effective endoprotease with a broad specificity. Suitable A. niger derived aspartic endoproteases have been specified in our copending application PCT/EP0201984.
- the process according to the invention involves a combination of one or more endoproteases with one or more tripeptidases.
- the enzymes are used in isolated form and in an endoprotease to tripeptidase protein ratio range between 1:0.05 and 1:50, preferably between 1:0.1 to 1:10
- the substantially pure enzymes are subjected to SDS-PAGE analysis followed by a standard protein staining protocol using Coomassie Brilliant Blue. Quantification of the enzymes used is carried out using a spot densitometer measuring the integrated density values of the protein bands corresponding with the active enzymes.
- denaturation is carried out by mixing the enzymes with a protease inhibitor, immersion of the mixture in a waterbath of 99 degrees C. for 5 minutes after which the required quantities of SDS and reducing compound are added.
- Serine endoproteases are inhibited by mixing with Pefabloc, metalloproteases by mixing with phosphoramidon and aspartic proteases by mixing with pepstatin. All inhibitors plus working procedures are obtainable from Roche.
- proline-specific endoprotease which, in conjunction with the prior art endoproteases, is able to generate non-bitter protein hydrolysates.
- This proline-specific endoprotease is an enzyme capable of cleaving peptides or polypeptides at the carboxy-terminal end of proline residues.
- Proline-specific endoproteases are widely found in animals and plants, but their presence in microorganisms appears to be limited.
- proline-specific endoprotease have been identified in species of Aspergillus (EP 0 522 428 and WO 02/45524), Flavobacterium (EP 0 967 285), Aeromonas (J.
- the proline-specific endoprotease is capable of extensively hydrolysing proline-rich proteins yielding relatively small peptides with a narrow size distribution. Because of the cleavage preference the proline-specific endoprotease, many of the peptides formed have a carboxyterminal proline residue. Furthermore, the processing of the hydrolysate is relatively simple as a debittering step by exoproteases is not involved so that only low levels of free amino acids will be formed.
- a particulary preferred method is the overproduction of an Aspergillus derived proline-specific endoprotease and a most preferred method is the overproduction of an Aspergillus niger derived proline-specific endopeptidase.
- the enzymes according to the invention may be used in an immobilized form so that large quantities of protein containing liquids can be treated. Ways to select appropriate support materials and suitable immobilization methods have been extensively described in the literature, for example in “Immobilization of Enzymes and Cells” (ed. Gordon F. Bickerstaff; ISBN 0-89603-386-4).
- non-bitter hydrolysates from proteinaceous substrates with novel amino acid compositions.
- novel amino acid compositions may offer serious benefits in certain food and medical applications. Examples are casein or wheat gluten or maize protein isolate with high levels of hydrophobic amino acid residues and, more specifically, proline residues present. Hitherto such substrates were of no practical use because of the objectional bitter tastes generated upon hydrolysis and the limited degrees of hydrolysis obtained using prior art methods.
- new, non-bitter hydrolysates can be made available to be used in infant and clinical nutrition, in therapeutic diets as well as in consumer diets and sport nutrition.
- Liquid enzyme formulations providing good shelf stabilities and suitable for oral consumption have been described in the prior art. Upon oral intake and the combination of the two acid stable enzymes will aid the digestion of proline rich proteins such as caseins or glutens hereby preventing or minimising the effects described for, for example, coeliac sprue.
- the proline-specific endoprotease is used to generate peptides having a carboxyterminal proline residue.
- Such peptides are desirable additions to various food or nutraceutical products as they have been implicated in anorectic, fibrinolytic, antithrombotic and antihypertensive effects, as well as in protection of the gastric mucosa and the prevention of rheumatoid arthritis.
- proline-specific endoprotease should preferably exhibit an activity spectrum with an acidic pH optimum.
- the invention demonstrates that the activity of an isolated, purified proline-specific endoprotease alone, i.e. without the substantial concomitant or subsequent activity of an exoproteolytic enzyme, is sufficient for significantly debittering a protein hydrolysate. Therefore the proline-specific endoprotease may comprise at least 5 units per gram protein of the enzyme preparation of the invention, preferably 10 u/g, more preferably 25 u/g and even more preferably 50 u/g.
- hydrolysates produced according to the invention are enriched in peptides having a carboxy terminal proline residue.
- An embodiment of the present invention provides the use of a proline-specific endoprotease, preferably isolated and/or purified, for the high yield production of protein hydrolysates having substantially low bitterness and low allergenic properties without the concomitant production of substantial levels of free amino acids in combination with a TPAP. All the enzymes may be added at the same time to the substrate or the enzymatic process can be performed in two phases, first the PSE hydrolysis followed by the TPAP hydrolysis.
- Tripeptidases are the enzymes of choice for preparing easily assimilable protein hydrolysates. Not only can the peptides formed be directly translocated over the wall of the small intestine but, due to their small size these peptides combine a good water solubility with a lack of any allergenic potential. Moreover, vulnerable but indispensible amino acids like glutamine, cysteine and tyrosine are much more stable if present in the form of tripeptides rather than free amino acids. Thus, upon digesting selected proteinaceous substrates with a suitable endoprotease in combination with a tripeptidyl peptidase, hydrolysates are formed in which selected amino acid residues are present in a stable and yet easily assimilable form.
- Conceivable products that can be conveniently produced using the enzyme mixture according to the invention are easily assimilable gluten hydrolysates supplying high levels of glutamine as well as hydrolysates obtained from keratin or lactalbumin-rich fractions from whey supplying high levels of cysteine.
- hydrolysates containing tripeptides exerting an enhanced modulating, regulatory or hormone-like activity as the result of their increased stability for example tripeptides rich in proline or glycine residues, could be formed upon the digestion of substrates like gelatin or casein or maize protein.
- the process of the invention is suitable for preparing hydrolysates of various protein fractions.
- a protein substrate such as a milk protein
- a TPAP may be incubated with an isolated, purified proline-specific endoprotease and a TPAP to produce a protein hydrolysate enriched in peptide fragments having a carboxy terminal proline.
- the average length of the peptides in the hydrolysates is in general from 2 to 9 amino acids, preferably from 3 to 6 amino acids, more preferably from 3 to 5 amino acids. This average length is based on peptides having molecular masses from 200 to 2000 Dalton and can be calculated by taking the sum of the number of each peptide multiplied with the length of said peptide and dividing this sum by the total number of peptides.
- peptides or peptide fragments it is meant peptides with molecular masses from 200 to 2000 Dalton. These peptides can be analysed according to the LC/MC analysis as described the “Materials and Methods” section.
- protein substrate is substantially hydrolysed, preferably at least 20% (w/w) of the protein substrate is converted into peptides having molecular masses from 200 to 2000 Dalton. More preferably from 30 to 90% (w/w) and even more preferably from 40 to 80% (w/w) of the protein substrate is converted into such peptides.
- Another embodiment of the invention is a protein hydrolysate enriched with a relatively high content of peptides having proline as the carboxy terminal amino acid residue. Since enzyme preparations typically utilized in the genesis of protein hydrolysates are not capable of generating peptides bearing proline residues at carboxy terminii, protein hydrolysates that are relatively rich in such peptides are desired.
- Substrates for hydrolysis by an enzyme mixture of the invention include whole milk, skimmed milk, acid casein, rennet casein, acid whey products or cheese whey products.
- Industrially obtainable fractions as for example fractions enriched in lactalbumine are also useful.
- the Aspergillus derived proline specific endoprotease does not only cleave at the carboxy-terminal side of proline residues but also at the carboxy-terminal side of hydroxyproline residues which makes other, collagen based animal proteins such as gelatine as well as bones or fish-bones containing residual meat interesting substrates for the enzyme.
- milk protein hydrolysates produced according to the invention may be used with or without additional filtration or purification steps in various speciality foods such as hypoallergenic hydrolysates for infant nutrition, basic hydrolysates for enteral and dietetic nutrition, as well as protein concentrates for various forms of health food.
- protein hydrolysates of the invention may be used to produce foodstuffs having low antigenicity, such as infant formula or requiring facilitated gastro-intestinal uptake, such as various medical or health related products.
- enzyme preparations according to the invention may be used to reduce bitterness in foods flavored by at least one protein hydrolysate, even when the protein hydrolysate is present in large amounts.
- foods may comprise between 5% and 10% (w/v) of a protein hydrolysate and still have their bitterness reduced using an enzyme preparation of the invention.
- the present invention preferably uses an isolated or purified proline-specific endoprotease with an acidic pH optimum in a combination with one or more isolated tripeptidases exhibiting acid pH optima for the preparation of a protein hydrolysate for various food applications.
- an isolated, purified proline-specific endoprotease is defined to have at least 10 units of proline specific endoprotease activity per gram of proteinaceous material. These units should be measured using the synthetic peptide Z-Gly-Pro-pNA (Bachem, Switserland) at 37 degrees C. and pH 7.
- the units should be measured at pH 5, as specified in the Materials and Methods section.
- the enzyme mixture of the invention overcomes a number of disadvantages of enzyme mixtures previously known in the art.
- the isolated, purified proline-specific endoprotease is key in the production of hydrolysates which combine a low allergenic potential, a high yield and a low bitterness profile.
- the isolated tripeptidases are key in the generation of easily assimilable peptides without any allergenic potential and a specific, preferred amino acid composition.
- hydrolysates produced with an enzyme mixture comprising this proline-specific endoprotease are relatively stable in the body, exhibit a surprising shelf stability upon their incorporation in acid products and contain very low levels of free amino acids, such that minimal off-tastes are generated during heating steps, such as spray drying or product sterilisation.
- Hydrolysates according to the invention will contain less than 900 micromoles of free amino acids per gram dry weight, preferably less than 300 micromoles of free amino acids per gram dry weight more preferably less than 150 micromoles of free amino acids per gram dry weight, and even more preferably less than 50 micromoles per gram dry weight.
- FIG. 1 Comparison of specifity of TPAP-A and TPAP-B using A-A-X-pNA substrates where X is all natural aminoacids, at pH 4.
- FIG. 2 Composition of soluble peptides obtained by hydrolysing alfa-lactalbumin with enzyme combinations as indicated.
- the enzymatic activity of proline specific endoproteases exhibiting pH optima above pH 6.0 are tested according to T. Diefenthal and H. Dargatz (World Journal of Microbiology &Biotechnology 11, 209-212 (1995)) on Z-Gly-Pro-pNA 0.26 mM in phosphate buffer 0.1M pH 7.0 at 25° C. The product was monitored spectrophotometrically at 410 nm. Proline specific endoproteases from Aspergillus was measured according to the method described in Japanese patent JP5015314 with minor modifications. In brief the enzymatic activity is tested on Z-Gly-Pro-pNA at 37 degrees C. in a citrate/disodium phosphate buffer pH 5.
- pH 5.0 is chosen because in this test the pH optimum of the enzyme is below pH 6.
- the reaction product was also monitored spectrophotometrically at 410 nM using a molar extinction coefficient of 10500 per mol/liter.
- the activity of the purified tripeptidyl aminopeptidase as over produced by A. niger (TPAP-A) was measured in a similar way. However, in this case the synthetic substrate Ala-Ala-Phe-pNA (Bachem, Switzerland) was used in an incubation in 0.1 mol/litre citrate buffer at pH 4.0 and 60 degrees C.
- the purified TPAP-A had an activity of 8 units/ml.
- a unit is defined as the quantity of enzyme that provokes the release of 1 ⁇ mol of p-nitroanilide per minute under these conditions.
- the Degree of Hydrolysis (DH) as obtained during incubation with the various proteolytic mixtures was monitored using a rapid OPA test (JFS, Vol 66, NO 5, 2001).
- HPLC high performance liquid chromatography
- Qtof-2 Micromass, Manchester, UK
- mass spectrometer was used to separate the peptides formed during digestion with trypsin. 5 microliter of the peptide solution was trapped on a micro-precolumn, C18, 5*0.3 mm (MCA30-05-C18, LC Packings, Amsterdam, Netherlands) using Milli Q water containing 0.1% of formic acid at a flow-rate of 20 microliter/min.
- the peptides were then eluted from the precolumn, using a fast gradient of 0.1% formic acid in Milli Q water (Millipore, Bedford, Mass., USA; Solution A) and 0.1% formic acid in acetonitrile (Solution B).
- the gradient started at 100% of Solution A and increased to 60% of solution B in 20 minutes and was kept at the latter ratio for another 5 minutes.
- the flow rate used during elution of the peptides was 200 nl/min.
- partial amino acid sequences of the A. niger proline-specific endopeptidase could be determined, by de novo sequencing of suitable peptides.
- HPLC using an ion trap mass spectrometer (Thermoquest®, Breda, the Netherlands) coupled to a P4000 pump (Thermoquest®, Breda, the Netherlands) was used in characterising the enzymatic protein hydrolysates produced by the inventive enzyme mixture.
- the peptides formed were separated using a PEPMAP C18 300A (MIC-15-03-C18-PM, LC Packings, Amsterdam, The Netherlands) column in combination with a gradient of 0.1% formic acid+1 mM nonafluoropentaoic acid (NFPA) in Milli Q water (Millipore, Bedford, Mass., USA; Solution A) and 0.1% formic acid in acetonitrile (Solution B) for elution.
- NFPA nonafluoropentaoic acid
- the gradient started at 100% of Solution A and increased to 40% of solution B in 140 minutes and was kept at the latter ratio for another 5 minutes.
- the injection volume used was 50 microliters, the flow rate was 50 microliter per minute and the column temperature was maintained at 30° C.
- the protein concentration of the injected sample was approx. 50 micrograms/milliliter.
- the mass range of the peptides formed starts at di- and tripeptides.
- the volatile ion-pairing reagent NFPA in combination with reversed phase liquid chromatography also smaller and more hydrophilic peptides can be monitored ending up with a mass ranging from approx. 200 to 2000 Daltons, considered suitable for further analysis by MS sequencing.
- LC/MS/MS can be used for the analysis of the C-terminus of a peptide.
- an algorithm in which the peptide's molecular mass (analyzed with LC/MS) and its (partial) amino acid sequence (analyzed with LC/MS/MS) are linked with automatic search procedures within protein databanks complex peptide mixtures can be analyzed. These options have enabled us to quantify the incidence of peptides carrying a carboxy terminal proline residue.
- Acid hydrolysis of the protein substrate to convert the proteins present into free amino acids was achieved by making a suspension of 100 milligrams of proteinaceous material in 2 milliliters 6 N HCl. Acid hydrolysis was carried out for 22 hours at 112 degrees C in an oxygen free atmosphere. After centrifugation the supernatant was diluted 10 times in dilute HCl. After this hydrolysis the amino acids were derivatised and analysed according to the Picotag method as specified in the operators manual of the Amino Acid Analysis System of Waters (Milford Mass., USA). The level of proline present was quantitated using HPLC methods.
- the micromoles of proline present times 100 were divided by the sum of the micromoles of all amino acids present in the sample analysed. Since during acid hydrolysis Trp and Cys are destroyed, these two amino acids are not included in this sum of the micromoles of all amino acids.
- a precisely weighed sample of the proteinaceous material was dissolved in dilute acid and precipitates were removed by centrifugation in an Eppendorf centrifuge.
- Amino acid analysis was carried out on the clear supernatant according to the PicoTag method as specified in the operators manual of the Amino Acid Analysis System of Waters (Milford Mass., USA). To that end a suitable sample was obtained from the liquid, added to dilute acid and homogenized. From the latter solution a new sample was taken, dried and derivatised using phenylisothiocyanate. The various derivatised amino acids present were quantitated using HPLC methods and added up to calculate the total level of free amino acids in the weighed sample.
- the sample is also subjected to acid hydrolysis followed by a quantification of the total free amino acids present as detailed above.
- the enzyme encoded by gene 12 was overproduced in an A. niger host cell and chromatographically purified. Purification was carried out on a Resource Q column in 50 millimol/liter acetate pH 4.5. Elution by increasing the NaCl concentration yielded the enzyme in a sharp activity peak. Activity was measured by incubation with the synthetic peptide Ala-Ala-Phe-pNA. The solution with the purified enzyme contained 8 units/ml if tested on the synthetic tripeptide Ala-Ala-Phe-pNA at pH 4.0 and 60 degrees C. (see Materials & Methods section).
- Casein hydrolysates subjected to a proline-specific endoprotease in combination with a tripeptidylaminopeptidase are non-bitter and contain a high proportion of tripeptides having carboxyterminal proline residues.
- a 6% (w/w on protein) casein solution was prepared by dissolving sodium caseinate in water. After adjustment of the pH to 8.0 by NaOH, the serine protease Delvolase was added to a concentration of 4% (volume of the commercial enzyme product per weight of sodium caseinate) and the mixture was incubated for 2.5 hours at 60 degrees C. under non-pH-stat conditions. Then the reaction was stopped by lowering the pH to 5.0 using lactic acid followed by a heat treatment of 10 minutes at 90 degrees C. The solution was cooled down to 50 degrees C. and two samples were taken. The first sample (Sample A) served as a reference characterizing the material that has been subjected to the action of a broad spectrum serine protease only.
- EndoPro refers to an overproduced and chromatographically purified proline specific endoprotease from A. niger as described in WO 02/45524
- TPAP-A chromatographically purified proline specific endoprotease from A. niger
- Samples A and B were sensorically evaluated by a trained panel. The two samples were tasted “blind” and then scored on a scale from 0 (non bitter) to 4 (very bitter) as described in the Materials & Methods section. Sample A was unanimously scored as “very bitter”, Sample B was unanimously scored as “non bitter”. This outcome confirmed the surprising debittering capacity of the EndoPro enzyme once more.
- Sample B Part of Sample B was then incubated with 20 units of chromatographically purified TPAP-A per gram of casein protein during 5 hours at pH 4.0 and 60 degrees C. Like before the enzyme reaction was terminated by heating of the solution for 10 minutes at 95 degrees C. to yield Sample C.
- Samples A, B and C were then subjected to LC/MS analysis (see Materials & Methods section) to determine the size distribution of major peptides present. From all hydrolysates at least 124 different peptides were analysed. The data obtained are shown underneath.
- Nutramigen (Mead Johnson, containing 14 grams of casein hydrolysate per 100 gram powder) contains the highest (i.e. 22%) molar fraction of peptides carrying C-terminal proline.
- Nutramigen Mead Johnson, containing 14 grams of casein hydrolysate per 100 gram powder
- the molar fraction of casein derived di- to heptapeptides as present in Nutramigen accounts for 83% of all peptides detected. Furthermore the molar fraction of di- and tripeptides as present amongst all peptides detected in Nutramigen could be shown to amount to 18%. Among the tripeptides identified, a molar fraction of 23% could be shown to have a carboxyterminal proline residue.
- the protein hydrolysate used represents a product which has probably been highly purified and selectively enriched by a number of techniques such as ultrafiltration and chromatography, the hydrolysate exhibits a low level of carboxyterminal proline residues which implies considerable bitterness and a limited fraction of protease resistant tripeptides only.
- the reaction was stopped by lowering the pH to 5.5 using lactic acid followed by a heat treatment of 10 minutes at 90 degrees C. Then the mixture was cooled down to 50 degrees C. and a sample was taken for LC/MS/MS analysis.
- a subsequent incubation with EndoPro was carried out by adding a chromatographically purified solution of the overproduced proline specific endoprotease from A. niger in a concentration of 20 units/gram protein. After incubating for 2 hours at 50 degrees C. under non-pH-stat conditions the EndoPro enzyme was inactivated by another heat treatment to yield another sample for LC/MS/MS analysis.
- chromatographically purified TPAP-A (see Example 1) was added in a concentration of 4 units per gram substrate and the incubation was continued for 2 hours at 60 degrees C. and then inactivated by heating to yield another LC/MS/MS sample. Subsequent incubations were carried out on beta-casein without Delvolase using EndoPro and TPAP, either alone or in combination, under the above described conditions. The latter samples were also subjected to LC/MS/MS analysis. The data obtained are shown underneath.
- Tripeptides Enzymes used to of (molar % of all (molar % of all (molar % of all (molar % of all prepare beta-casein peptides peptides peptides tripeptides hydrolysate analysed analysed) analysed) analysed) Subtilisin 93 0 12 6 Subtilisin + EndoPro 68 41 34 25 Subtilisin 69 36 45 36 +EndoPro + TPAP-A EndoPro 55 49 11 11 TPAP-A 1 0 100 100 EndoPro + TPAP-A 68 40 43 40
- TPAP-B tripeptidylaminopeptidase TPAP-B (corresponding with the enzyme encoded by gene 10 as described in our copending application PCT/EP02/01984 and overproduced in an A. niger host cell).
- enzyme TPAP-A the overproduced and secreted enzyme TPAP-B was first chromatogaphically purified; in this case on a Q sepharose FF colum (AA1188, Pharmadia) equilibrated in 20 millimol/l Bis Tris buffer, pH 5.5 and eluted with a gradient containing 1 mol/l NaCl in the same buffer.
- the reaction was started by adding 200 microliter of the chromatographically purified tripeptidase to each well. Extinction development was followed at 405 nm using a Tecan Genios micro titre plate reader. Efficiencies of both enzymes towards the various substrates are presented underneath in which the activity towards the Ala-Ala-Ala-pNA substrate was used as the 100% value.
- the various letters on the X-axis in the figure underneath refer to the international one letter symbols used to specify the amino acid residue “X’ in the Ala-Ala-X-pNA substrate.
- proline-rich protein substrates such as caseins or glutens or collagen-based compounds
- a proline-specific endoprotease and a tripeptidylpeptidase has been adequately demonstrated in the previous Examples.
- the enzyme combination is also beneficially used in the hydrolysis of substrates with lower proline contents.
- a crude lactalbumin fraction from bovine milk (Sigma) was suspended in water in a concentration of 20 grams/liter after which the pH was adjusted to 8.0.
- the serine protease subtilisin (Delvolase) was added to a concentration of 4% (volume of the commercial enzyme product per weight of the substrate) and the mixture was incubated for 2 hours at 60 degrees C. under non-pH-stat conditions. Then the pH of the suspension was lowered to pH to 4.5 using citric acid and divided into 4 portions. One portion was heated to inactivate the Delvolase enzyme and then kept frozen until LC/MS/MS analysis.
- chromatographically purified Endopro enzyme was added (1 unit/gram lactalbumin) or tripeptidylaminopeptidase (TPAP-A; 20 units/gram of lactalbumin) or a combination of EndoPro and TPAP-A (1 unit+20 units/gram lactalbumin; see Materials&Methods for unit definitions).
- TPAP-A tripeptidylaminopeptidase
- TPAP-A a combination of EndoPro and TPAP-A
- LC/MS/MS data obtained are shown in FIG. 2 peptide length in amino acid residues is depicted on the X-axis and on the Y-axis the number of peptides analysed. Even without a recalculation of peptides of a specific length into percentages of the total peptides analysed, the benefits of an incubation with either an proline-specific endopeptidase or a tripeptidase or a combination of these two enzymes, become visible. Together with the results provided in the previous Examples the data obtained clearly demonstrate that the combination of a proline-specific endoprotease with a tripeptidase provides superior hydrolysates, be it on proline-rich or on other proteinaceous substrates.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Fodder In General (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/039,973 US7972808B2 (en) | 2002-06-04 | 2008-02-29 | Protein hydrolysate rich in tripeptides |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02100667.1 | 2002-06-04 | ||
EP02100667 | 2002-06-04 | ||
PCT/EP2003/005876 WO2003102195A1 (en) | 2002-06-04 | 2003-06-03 | Protein hydrolysate rich in tripeptides |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/039,973 Division US7972808B2 (en) | 2002-06-04 | 2008-02-29 | Protein hydrolysate rich in tripeptides |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050256057A1 true US20050256057A1 (en) | 2005-11-17 |
Family
ID=29595050
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/516,983 Abandoned US20050256057A1 (en) | 2002-06-04 | 2003-06-03 | Protein hydrolysate rich in tripeptides |
US12/039,973 Expired - Fee Related US7972808B2 (en) | 2002-06-04 | 2008-02-29 | Protein hydrolysate rich in tripeptides |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/039,973 Expired - Fee Related US7972808B2 (en) | 2002-06-04 | 2008-02-29 | Protein hydrolysate rich in tripeptides |
Country Status (6)
Country | Link |
---|---|
US (2) | US20050256057A1 (ja) |
EP (1) | EP1509609B1 (ja) |
JP (1) | JP4376180B2 (ja) |
AU (1) | AU2003236689A1 (ja) |
ES (1) | ES2540926T3 (ja) |
WO (1) | WO2003102195A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070031399A1 (en) * | 2003-09-23 | 2007-02-08 | Luppo Edens | Use of proline specific endoproteases to hydrolyse peptides and proteins |
US20080220470A1 (en) * | 2002-06-04 | 2008-09-11 | Dsm Ip Assets B.V. | Protein hydrolysate rich in tripeptides |
WO2009120837A2 (en) * | 2008-03-26 | 2009-10-01 | Glanbia Nutritionals (Ireland) Ltd. | Leucine-rich peptide compositions and methods for isolation |
US7648721B2 (en) | 2001-07-18 | 2010-01-19 | Dsm Ip Assets B.V. | Hydrolyzed milk proteins |
US20100087629A1 (en) * | 2007-04-26 | 2010-04-08 | Tsutomu Saito | Method of producing a cidic-soluble soybean protein |
US20100167979A1 (en) * | 2006-02-09 | 2010-07-01 | Calpis Co. Ltd | Rheumatoid arthritis-preventive agent for oral intake |
US20110045130A1 (en) * | 2007-11-23 | 2011-02-24 | Luppo Edens | Bioactive peptide production |
US20110070334A1 (en) * | 2009-09-20 | 2011-03-24 | Nagendra Rangavajla | Probiotic Stabilization |
US20110171294A1 (en) * | 2008-09-30 | 2011-07-14 | Dsm Ip Assets B.V. | Enzyme composition and application thereof in the treatment of pancreatic insufficiency |
US20140093614A1 (en) * | 2009-09-20 | 2014-04-03 | Mead Johnson Nutrition Company | Probiotic stabilization |
US20180177205A1 (en) * | 2005-11-28 | 2018-06-28 | Dsm Ip Assets B.V. | Enzyme preparations yielding a clean taste |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1922054B1 (en) | 2004-06-28 | 2012-03-28 | DSM IP Assets B.V. | Cosmetic compositions containing protein hydrolysates |
CN101084004A (zh) * | 2004-12-22 | 2007-12-05 | 帝斯曼知识产权资产管理有限公司 | 单个酶促步骤中的血压降低寡肽 |
DK1831361T3 (da) * | 2004-12-23 | 2012-05-14 | Campina Nederland Holding Bv | Proteinhydrolysat beriget med peptider, som inhiberer DPP-IV, og deres anvendelse |
DE602006011275D1 (de) | 2005-02-03 | 2010-02-04 | Dsm Ip Assets Bv | Zusammensetzungen mit epigallocatechingallat und proteinhydrolysat |
EA016396B1 (ru) * | 2005-02-24 | 2012-04-30 | ДСМ АйПи АССЕТС Б.В. | Способ получения пептидного гидролизата, содержащего ipp, и применение указанного гидролизата для производства функционального пищевого продукта, предназначенного для поддержания здоровья сердечно-сосудистой системы |
US8431531B2 (en) | 2005-11-30 | 2013-04-30 | Campina Nederland Holding B.V. | Methods for stimulating glucagon-like peptide-1(GLP-1) secretion and treatments comprising same |
KR100738648B1 (ko) * | 2005-12-30 | 2007-07-11 | 씨제이 주식회사 | 단백질 분해 효소를 첨가한 된장의 제조방법 및 된장 |
CA2873127A1 (en) * | 2012-05-24 | 2013-11-28 | Abbott Laboratories | Sterilized liquid protein supplement including a solubility enhancing nutritional protein |
WO2014060495A1 (en) * | 2012-10-19 | 2014-04-24 | Dsm Ip Assets B.V. | Process for the production of an infant formula |
US10834946B2 (en) * | 2013-01-22 | 2020-11-17 | Mars, Incorporated | Flavor composition and edible compositions containing same |
US9138455B2 (en) | 2013-03-15 | 2015-09-22 | Mead Johnson Nutrition Company | Activating adiponectin by casein hydrolysate |
US9289461B2 (en) | 2013-03-15 | 2016-03-22 | Mead Johnson Nutrition Company | Reducing the risk of autoimmune disease |
US9345741B2 (en) | 2013-03-15 | 2016-05-24 | Mead Johnson Nutrition Company | Nutritional composition containing a peptide component with adiponectin simulating properties and uses thereof |
US9352020B2 (en) | 2013-03-15 | 2016-05-31 | Mead Johnson Nutrition Company | Reducing proinflammatory response |
US8889633B2 (en) | 2013-03-15 | 2014-11-18 | Mead Johnson Nutrition Company | Nutritional compositions containing a peptide component with anti-inflammatory properties and uses thereof |
US9345727B2 (en) | 2013-03-15 | 2016-05-24 | Mead Johnson Nutrition Company | Nutritional compositions containing a peptide component and uses thereof |
ES2689844T5 (es) | 2013-12-13 | 2022-12-02 | Nestle Sa | Uso de una fórmula para bebés que contiene suero lácteo dulce, para promover el desarrollo neuronal postnatal del tubo digestivo de bebés, y el establecimiento de las funciones intestinales que controla |
ES2750563T3 (es) | 2014-03-20 | 2020-03-26 | Bristol Myers Squibb Co | Moléculas con una estructura basada en fibronectina estabilizada |
BR112017008304A2 (pt) | 2014-10-24 | 2018-05-15 | Dupont Nutrition Biosciences Aps | tripeptidil peptidases tolerantes à prolina e seus usos |
WO2016210395A1 (en) * | 2015-06-26 | 2016-12-29 | Dupont Nutrition Biosciences Aps | Aminopeptidases for protein hydrlyzates |
US11129404B2 (en) | 2015-12-28 | 2021-09-28 | Abbott Laboratories | Nutritional compositions comprising hydrolyzed protein and a modified fat system and uses thereof |
JP2018057346A (ja) * | 2016-10-07 | 2018-04-12 | 森永乳業株式会社 | カゼイン酵素処理物及びその製造方法 |
KR20190081232A (ko) | 2017-12-29 | 2019-07-09 | 토탈바이오 주식회사 | 곤충(귀뚜라미)의 단백질과 산야초 추출물의 혼합물를 피부 미백, 세포재생, 보습 유효성분으로 포함하는 화장품 조성물 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5856166A (en) * | 1993-12-23 | 1999-01-05 | Cangene Corporation | Streptomyces proteases and methods for improved secretion of recombinantly-expressed proteins |
US5856308A (en) * | 1996-09-27 | 1999-01-05 | Haemacure Corporation | Artificial collagen |
US6310041B1 (en) * | 1999-03-09 | 2001-10-30 | Fornix Biosciences N.V. | Synthetic complementary peptides and ophthalmologic uses thereof |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2608050B1 (fr) * | 1986-12-15 | 1990-04-13 | Bellon Labor Sa Roger | Procede de preparation d'un melange peptidique riche en di- et tri-peptides, utilisable notamment en nutrition artificielle et en dietetique, melange ainsi obtenu, et utilisation de ce melange en nutrition artificielle et en dietetique |
EP0321603A1 (fr) | 1987-12-23 | 1989-06-28 | Societe Des Produits Nestle S.A. | Procédé de préparation d'un hydrolysat de protéines de lactosérum et d'un aliment hypoallergéniques |
EP0325986A3 (en) | 1988-01-28 | 1989-10-11 | Miles Inc. | Enzymatic hydrolysis of proteins |
JPH0630615B2 (ja) * | 1988-07-27 | 1994-04-27 | 江崎グリコ株式会社 | 低分子ペプチド組成物及びその製造方法 |
JPH0614776A (ja) | 1991-07-04 | 1994-01-25 | Fuji Oil Co Ltd | プロリルエンドペプチダーゼ及びその製造方法 |
JP3010795B2 (ja) | 1991-07-04 | 2000-02-21 | 不二製油株式会社 | ペプチドの苦味除去方法 |
EP0967285B1 (en) | 1991-07-24 | 2007-09-12 | Novartis AG | expression vector for prolylendopeptidase from Flavobacterium meningosepticum |
JPH05252979A (ja) * | 1992-02-28 | 1993-10-05 | Nippon Steel Corp | 低分子ペプチドの製造方法 |
JPH07115969A (ja) * | 1993-10-25 | 1995-05-09 | Asahi Chem Ind Co Ltd | 加水分解蛋白質の製造方法 |
ES2213164T3 (es) | 1994-10-26 | 2004-08-16 | Novozymes A/S | Metodo de produccion de un hidrolizado de proteina de leche. |
CN1611601A (zh) | 1994-11-08 | 2005-05-04 | 诺沃奇梅兹有限公司 | 三肽基氨肽酶 |
JPH08308565A (ja) * | 1995-05-17 | 1996-11-26 | Mercian Corp | トリペプチジルペプチダーゼおよびその製造方法 |
FI104465B (fi) | 1995-06-14 | 2000-02-15 | Valio Oy | Proteiinihydrolysaatteja allergioiden hoitamiseksi tai estämiseksi, niiden valmistus ja käyttö |
JP2001506858A (ja) * | 1996-12-23 | 2001-05-29 | デーエスエム ナムローゼ フェンノートシャップ | タンパク質加水分解物の製造方法 |
WO1998051803A1 (en) * | 1997-05-16 | 1998-11-19 | Novo Nordisk Biotech, Inc. | Polypeptides having prolyl pipeptidyl aminopeptidase activity and nucleic acids encoding same |
EP0897012A1 (en) * | 1997-07-05 | 1999-02-17 | Societe Des Produits Nestle S.A. | Cloning of the prolyl-dipeptidyl-peptidase from aspergillus oryzae |
JP4727770B2 (ja) | 1997-09-26 | 2011-07-20 | カルピス株式会社 | 尿中カテコールアミン低下、尿中ノルアドレナリン低下、尿中ドーパミン低下及びFischer比低下の少なくとも1つの軽減剤 |
WO2000052147A2 (en) * | 1999-03-05 | 2000-09-08 | University Of Georgia Research Foundation, Inc. | Bacterial prolyl peptidases and methods of use |
FI113741B (fi) | 1999-11-01 | 2004-06-15 | Valio Oy | Menetelmä verenpainetta alentavia peptidejä sisältävän tuotteen valmistamiseksi |
WO2001068114A1 (en) | 2000-03-10 | 2001-09-20 | Monsanto Company | Novel peptides with anti-hypertensive activity |
JP2001302690A (ja) * | 2000-04-19 | 2001-10-31 | Miyagi Kagaku Kogyo Kk | 皮膚浸透性トリペプチド、皮膚浸透性コラーゲンペプチド、皮膚浸透性外用剤および高吸収性食品 |
DE60142704D1 (en) * | 2000-12-07 | 2010-09-09 | Dsm Ip Assets Bv | Mit carboxy-terminal prolin peptide angereicherte proteinhydrolysate |
EP1377664A2 (en) * | 2001-02-23 | 2004-01-07 | DSM IP Assets B.V. | Genes encoding proteolytic enzymes from aspargilli |
ES2540926T3 (es) * | 2002-06-04 | 2015-07-14 | Dsm Ip Assets B.V. | Hidrolizado de proteínas rico en tripéptidos |
-
2003
- 2003-06-03 ES ES03735546.8T patent/ES2540926T3/es not_active Expired - Lifetime
- 2003-06-03 AU AU2003236689A patent/AU2003236689A1/en not_active Abandoned
- 2003-06-03 EP EP20030735546 patent/EP1509609B1/en not_active Expired - Lifetime
- 2003-06-03 US US10/516,983 patent/US20050256057A1/en not_active Abandoned
- 2003-06-03 WO PCT/EP2003/005876 patent/WO2003102195A1/en active Application Filing
- 2003-06-03 JP JP2004510432A patent/JP4376180B2/ja not_active Expired - Fee Related
-
2008
- 2008-02-29 US US12/039,973 patent/US7972808B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5856166A (en) * | 1993-12-23 | 1999-01-05 | Cangene Corporation | Streptomyces proteases and methods for improved secretion of recombinantly-expressed proteins |
US5856308A (en) * | 1996-09-27 | 1999-01-05 | Haemacure Corporation | Artificial collagen |
US6310041B1 (en) * | 1999-03-09 | 2001-10-30 | Fornix Biosciences N.V. | Synthetic complementary peptides and ophthalmologic uses thereof |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7648721B2 (en) | 2001-07-18 | 2010-01-19 | Dsm Ip Assets B.V. | Hydrolyzed milk proteins |
US20080220470A1 (en) * | 2002-06-04 | 2008-09-11 | Dsm Ip Assets B.V. | Protein hydrolysate rich in tripeptides |
US7972808B2 (en) | 2002-06-04 | 2011-07-05 | Dsm Ip Assets B.V. | Protein hydrolysate rich in tripeptides |
US20110142987A1 (en) * | 2003-09-23 | 2011-06-16 | Dsm Ip Assets B.V. | Use of proline specific endoproteases to hydrolyse peptides and proteins |
US8524225B2 (en) | 2003-09-23 | 2013-09-03 | Dsm Ip Assets B.V. | Use of proline specific endoproteases to hydrolyse peptides and proteins |
US20070031399A1 (en) * | 2003-09-23 | 2007-02-08 | Luppo Edens | Use of proline specific endoproteases to hydrolyse peptides and proteins |
US11576394B2 (en) * | 2005-11-28 | 2023-02-14 | Dsm Ip Assets B.V. | Enzyme preparations yielding a clean taste |
US20180177205A1 (en) * | 2005-11-28 | 2018-06-28 | Dsm Ip Assets B.V. | Enzyme preparations yielding a clean taste |
US8367614B2 (en) | 2006-02-09 | 2013-02-05 | Calpis Co., Ltd | Rheumatoid arthritis-preventive agent for oral intake |
US20100167979A1 (en) * | 2006-02-09 | 2010-07-01 | Calpis Co. Ltd | Rheumatoid arthritis-preventive agent for oral intake |
US20100087629A1 (en) * | 2007-04-26 | 2010-04-08 | Tsutomu Saito | Method of producing a cidic-soluble soybean protein |
US20110045130A1 (en) * | 2007-11-23 | 2011-02-24 | Luppo Edens | Bioactive peptide production |
US9222117B2 (en) | 2008-03-26 | 2015-12-29 | Glanbia Nutritionals (Ireland) Ltd. | Leucine-rich peptide compositions and methods for isolation |
WO2009120837A3 (en) * | 2008-03-26 | 2009-12-30 | Glanbia Nutritionals (Ireland) Ltd. | Leucine-rich peptide compositions and methods for isolation |
WO2009120837A2 (en) * | 2008-03-26 | 2009-10-01 | Glanbia Nutritionals (Ireland) Ltd. | Leucine-rich peptide compositions and methods for isolation |
US20110171294A1 (en) * | 2008-09-30 | 2011-07-14 | Dsm Ip Assets B.V. | Enzyme composition and application thereof in the treatment of pancreatic insufficiency |
US20110070334A1 (en) * | 2009-09-20 | 2011-03-24 | Nagendra Rangavajla | Probiotic Stabilization |
US20140093614A1 (en) * | 2009-09-20 | 2014-04-03 | Mead Johnson Nutrition Company | Probiotic stabilization |
US20140093613A1 (en) * | 2009-09-20 | 2014-04-03 | Mead Johnson Nutrition Company | Probiotic stabilization |
Also Published As
Publication number | Publication date |
---|---|
EP1509609A1 (en) | 2005-03-02 |
US20080220470A1 (en) | 2008-09-11 |
JP2005528110A (ja) | 2005-09-22 |
US7972808B2 (en) | 2011-07-05 |
WO2003102195A1 (en) | 2003-12-11 |
JP4376180B2 (ja) | 2009-12-02 |
AU2003236689A1 (en) | 2003-12-19 |
ES2540926T3 (es) | 2015-07-14 |
EP1509609B1 (en) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7972808B2 (en) | Protein hydrolysate rich in tripeptides | |
RU2370279C2 (ru) | Применение пролинспецифичных эндопротеаз для гидролиза пептидов и белков | |
US8088597B2 (en) | Blood pressure lowering peptides from glycomacropeptide | |
US20070207944A1 (en) | Blood Pressure Lowering Oligopeptides | |
JP5580273B2 (ja) | 単一の酵素工程における血圧降下ペプチド | |
CA2600506A1 (en) | Blood pressure lowering protein hydrolysates | |
JP2008511317A (ja) | Ace阻害乳漿加水分解物 | |
WO2014060495A1 (en) | Process for the production of an infant formula | |
JP2007513900A (ja) | Ace阻害効果を有するペプチド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DSM IP ASSETS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EDENS, LUPPO;DEKKER, PETRUS JACOBUS THEODORUS;DE ROOS, ANDRE LEONARDUS;REEL/FRAME:016550/0472;SIGNING DATES FROM 20041028 TO 20041105 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |