[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20050244834A1 - Single nucleotide polymorphisms in genes - Google Patents

Single nucleotide polymorphisms in genes Download PDF

Info

Publication number
US20050244834A1
US20050244834A1 US10/831,997 US83199704A US2005244834A1 US 20050244834 A1 US20050244834 A1 US 20050244834A1 US 83199704 A US83199704 A US 83199704A US 2005244834 A1 US2005244834 A1 US 2005244834A1
Authority
US
United States
Prior art keywords
wiaf
individual
nucleic acid
nucleotide
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/831,997
Inventor
Eric Lander
Michele Cargill
James Ireland
Stacey Bolk
George Daley
Jeanette McCarthy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whitehead Institute for Biomedical Research
Millennium Pharmaceuticals Inc
Original Assignee
Whitehead Institute for Biomedical Research
Millennium Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whitehead Institute for Biomedical Research, Millennium Pharmaceuticals Inc filed Critical Whitehead Institute for Biomedical Research
Priority to US10/831,997 priority Critical patent/US20050244834A1/en
Publication of US20050244834A1 publication Critical patent/US20050244834A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the variant form may confer an evolutionary advantage or disadvantage relative to a progenitor form, or may be neutral.
  • a variant form confers a lethal disadvantage and is not transmitted to subsequent generations of the organism.
  • a variant form confers an evolutionary advantage to the species and is eventually incorporated into the DNA of many or most members of the species and effectively becomes the progenitor form.
  • a restriction fragment length polymorphism is a variation in DNA sequence that alters the length of a restriction fragment (Botstein et al., Am. J. Hum. Genet. 32, 314-331 (1980)). The restriction fragment length polymorphism may create or delete a restriction site, thus changing the length of the restriction fragment.
  • RFLPs have been widely used in human and animal genetic analyses (see WO 90/13668; W090/11369; Donis-Keller, Cell 51, 319-337 (1987); Lander et al., Genetics 121, 85-99 (1989)). When a heritable trait can be linked to a particular RFLP, the presence of the RFLP in an individual can be used to predict the likelihood that the animal will also exhibit the trait.
  • VNTR variable number tandem repeat
  • polymorphisms take the form of single nucleotide variations between individuals of the same species. Such polymorphisms are far more frequent than RFLPs, STRs and VNTRs. Some single nucleotide polymorphisms (SNP) occur in protein-coding nucleic acid sequences (coding sequence SNP (cSNP)), in which case, one of the polymorphic forms may give rise to the expression of a defective or otherwise variant protein and, potentially, a genetic disease.
  • SNP single nucleotide polymorphisms
  • genes in which polymorphisms within coding sequences give rise to genetic disease include ⁇ -globin (sickle cell anemia), apoE4 (Alzheimer's Disease), Factor V Leiden (thrombosis), and CFTR (cystic fibrosis).
  • cSNPs can alter the codon sequence of the gene and therefore specify an alternative amino acid. Such changes are called “missense” when another amino acid is substituted, and “nonsense” when the alternative codon specifies a stop signal in protein translation. When the cSNP does not alter the amino acid specified the cSNP is called “silent”.
  • single nucleotide polymorphisms occur in noncoding regions. Some of these polymorphisms may also result in defective protein expression (e.g., as a result of defective splicing). Other single nucleotide polymorphisms have no phenotypic effects.
  • Single nucleotide polymorphisms can be used in the same manner as RFLPs and VNTRs, but offer several advantages. Single nucleotide polymorphisms occur with greater frequency and are spaced more uniformly throughout the genome than other forms of polymorphism. The greater frequency and uniformity of single nucleotide polymorphisms means that there is a greater probability that such a polymorphism will be found in close proximity to a genetic locus of interest than would be the case for other polymorphisms. The different forms of characterized single nucleotide polymorphisms are often easier to distinguish than other types of polymorphism (e.g., by use of assays employing allele-specific hybridization probes or primers).
  • the invention relates to a gene which comprises a single nucleotide polymorphism at a specific location.
  • the invention relates to the variant allele of a gene having a single nucleotide polymorphism, which variant allele differs from a reference allele by one nucleotide at the site(s) identified in the Table and FIG. 3 .
  • Complements of these nucleic acid sequences are also included.
  • the nucleic acid molecules can be DNA or RNA, and can be double- or single-stranded. Nucleic acid molecules can be, for example, 5-10, 5-15, 10-20, 5-25, 10-30, 10-50 or 10-100 bases long.
  • the invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.
  • the invention further provides a method of analyzing a nucleic acid from an individual.
  • the method determines which base is present at any one of the polymorphic sites shown in the Table and/or FIG. 3 .
  • a set of bases occupying a set of the polymorphic sites shown in the Table and/or FIG. 3 is determined. This type of analysis can be performed on a number of individuals, who are tested for the presence of a disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymorphic site or sites in the individuals tested.
  • the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype.
  • the method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymorphic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.
  • thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation.
  • ECM extracellular matrix
  • Thrombospondins also known as thrombin sensitive proteins or TSPs
  • TSPs thrombin sensitive proteins
  • SNPs in these genes which are associated with premature coronary artery disease (CAD)(or coronary heart disease) and myocardial infarction (MI) have been identified and represent a potentially vital marker of upstream biology influencing the complex process of atherosclerotic plaque generation and vulnerability.
  • CAD premature coronary artery disease
  • MI myocardial infarction
  • the invention relates to the TSP gene SNPs identified as described herein, both singly and in combination, as well as to the use of these SNPs, and others in TSP genes, particularly those nearby in linkage disequilibrium with these SNPs, for diagnosis, prediction of clinical course and treatment response for vascular disease, development of new treatments for vascular disease based upon comparison of the variant and normal versions of the gene or gene product, and development of cell-culture based and animal models for research and treatment of vascular disease.
  • the invention further relates to novel compounds and pharmaceutical compositions for use in the diagnosis and treatment of such disorders.
  • the vascular disease is CAD or MI.
  • the invention relates to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-1 (e.g., as exemplified by SEQ ID NO: 1), and to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-4 (e.g., as exemplified by SEQ ID NO: 3).
  • Preferred portions are at least 10 contiguous nucleotides and comprise the polymorphic site, e.g., a portion of SEQ ID NO: 1 which is at least 10 contiguous nucleotides and comprises the “G” at position 2210, or a portion of SEQ ID NO: 3 which is at least 10 contiguous nucleotides and comprises the “C” at position 1186.
  • the invention further relates to isolated gene products, e.g., polypeptides or proteins, which are encoded by a nucleic acid molecule comprising all or a portion of the variant allele of TSP-1 or TSP-4 (e.g., SEQ ID NO: 1 or SEQ ID NO: 3, respectively).
  • the invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
  • the invention further relates to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-1 (e.g., as exemplified by SEQ ID NO: 2), and to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-4 (e.g., as exemplified by SEQ ID NO: 4).
  • Preferred polypeptides are at least 10 contiguous amino acids and comprise the polymorphic amino acid, e.g., a portion of SEQ ID NO: 2 which is at least 10 contiguous amino acids and comprises the serine at residue 700, or a portion of SEQ ID NO: 4 which is at least 10 contiguous amino acids and comprises the proline at residue 387.
  • the invention further relates to isolated nucleic acid molecules encoding such proteins and polypeptides, as well as to antibodies which bind, e.g., specifically, to such proteins and polypeptides.
  • the invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with the presence of one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual.
  • the method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of the indicated nucleotide positions, wherein presence of one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the reference nucleotide at one or more of said positions.
  • the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
  • the vascular disease is selected from the group consisting of CAD and MI.
  • the invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual.
  • the method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of the indicated nucleotide positions, wherein presence of one or more of (a) an A at nucleotide position 2210 of SEQ ID NO: 1; or (b) a G at nucleotide position 1186 of SEQ ID NO: 3 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the variant nucleotide at said position.
  • the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
  • the vascular disease is selected from the group consisting of CAD and MI.
  • the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a DNA sample from an individual to be assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of SEQ ID NO: 1 or 1186 of SEQ ID NO: 3.
  • the presence of the reference nucleotide at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual having the variant nucleotide at one or more of these positions, or a lower likelihood of having severe symptomology.
  • the individual is an individual at risk for development of a vascular disease.
  • the invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with the presence of one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 in an individual.
  • the method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein presence of one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the reference amino acid at one or more of said positions.
  • the invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 in an individual.
  • the method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein presence of one or more of (a) an asparagine at amino acid position 700 of SEQ ID NO: 2; or (b) an alanine at amino acid position 387 of SEQ ID NO: 4 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the variant amino acid at one or more of said positions.
  • the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a biological sample comprising the TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of SEQ ID NO: 2 or 387 of SEQ ID NO: 4.
  • the presence of the reference amino acid at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual having the variant amino acid at one or more of these positions, or a lower likelihood of having severe symptomology.
  • the individual is an individual at risk for development of a vascular disease.
  • the invention in another embodiment, relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product, or active portion thereof, for use in the treatment of vascular diseases.
  • the invention further relates to the use of agonists and antagonists of TSP-1 and TSP-4 activity for use in the treatment of vascular diseases.
  • the vascular disease is selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
  • the vascular disease is selected from the group consisting of CAD and MI.
  • FIGS. 1A-1D show the reference nucleotide (SEQ ID NO: 1) and amino acid (SEQ ID NO: 2) sequences for TSP-1.
  • FIGS. 2A-2C show the reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4.
  • FIG. 3 shows a table providing detailed information about the SNPs identified herein.
  • Column one shows the internal polymorphism identifier.
  • Column two shows the accession number for the reference sequence in the TIGR database which can be found on the world wide web at tigr.org/tdb/hgi/searching/hgigreports.html.
  • Column three shows the nucleotide position for the SNP site.
  • Column four shows the gene in which the polymorphism was identified.
  • Column five shows the polymorphic site and additional flanking sequence on each side of the polymorphism.
  • Column six shows the type of mutation produced by the polymorphism.
  • Columns seven and eight show the reference and alternate (variant) nucleotides, respectively, for the SNP.
  • Columns nine and ten show the reference and alternate (variant) amino acids, respectively, encoded by the alleles of the gene.
  • the present invention relates to a gene which comprises a single nucleotide polymorphism (SNP) at a specific location.
  • the gene which includes the SNP has at least two alleles, referred to herein as the reference allele and the variant allele.
  • the reference allele (prototypical or wild type allele) has been designated arbitrarily and typically corresponds to the nucleotide sequence of the gene which has been deposited with GenBank or TIGR under a given Accession number.
  • the variant allele differs from the reference allele by one nucleotide at the site(s) identified in the Table.
  • the present invention also relates to variant alleles of the described genes and to complements of the variant alleles.
  • the invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
  • the invention further relates to portions of the variant alleles and portions of complements of the variant alleles which comprise (encompass) the site of the SNP and are at least 5 nucleotides in length. Portions can be, for example, 5-10, 5-15, 10-20, 5-25, 10-30, 10-50 or 10-100 bases long.
  • a portion of a variant allele which is 21 nucleotides in length includes the single nucleotide polymorphism (the nucleotide which differs from the reference allele at that site) and twenty additional nucleotides which flank the site in the variant allele. These nucleotides can be on one or both sides of the polymorphism.
  • Polymorphisms which are the subject of this invention are defined in the Table with respect to the reference sequence deposited in GenBank or TIGR under the Accession number indicated.
  • the invention relates to a portion of a gene (e.g., AT3) having a nucleotide sequence as deposited in GenBank (e.g., U11270) comprising a single nucleotide polymorphism at a specific position (e.g., nucleotide 11918).
  • the reference nucleotide for AT3 is shown in column 8, and the variant nucleotide is shown in column 9 of the Table.
  • the nucleotide sequences of the invention can be double- or single-stranded.
  • the invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.
  • the invention further provides a method of analyzing a nucleic acid from an individual.
  • the method determines which base is present at any one of the polymorphic sites shown in the Table and/or FIG. 3 .
  • a set of bases occupying a set of the polymorphic sites shown in the Table and/or FIG. 3 is determined. This type of analysis can be performed on a number of individuals, who are tested for the presence of a disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymorphic site or sites in the individuals tested.
  • the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype.
  • the method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymorphic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.
  • a nucleic acid molecule or oligonucleotide can be DNA or RNA, and single- or double-stranded. Nucleic acid molecules and oligonucleotides can be naturally occurring or synthetic, but are typically prepared by synthetic means. Preferred nucleic acid molecules and oligonucleotides of the invention include segments of DNA, or their complements, which include any one of the polymorphic sites shown in the Table. The segments can be between 5 and 250 bases, and, in specific embodiments, are between 5-10, 5-20, 10-20, 10-50, 20-50 or 10-100 bases. For example, the segment can be 21 bases. The polymorphic site can occur within any position of the segment. The segments can be from any of the allelic forms of DNA shown in the Table.
  • nucleotide As used herein, the terms “nucleotide”, “base” and “nucleic acid” are intended to be equivalent.
  • nucleotide sequence As used herein, the terms “nucleotide sequence”, “nucleic acid sequence”, “nucleic acid molecule” and “segment” are intended to be equivalent.
  • Hybridization probes are oligonucleotides which bind in a base-specific manner to a complementary strand of nucleic acid. Such probes include peptide nucleic acids, as described in Nielsen et al., Science 254, 1497-1500 (1991). Probes can be any length suitable for specific hybridization to the target nucleic acid sequence. The most appropriate length of the probe may vary depending upon the hybridization method in which it is being used; for example, particular lengths may be more appropriate for use in microfabricated arrays, while other lengths may be more suitable for use in classical hybridization methods. Such optimizations are known to the skilled artisan. Suitable probes and primers can range from about 5 nucleotides to about 30 nucleotides in length.
  • probes and primers can be 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 28 or 30 nucleotides in length.
  • the probe or primer preferably overlaps at least one polymorphic site occupied by any of the possible variant nucleotides.
  • the nucleotide sequence can correspond to the coding sequence of the allele or to the complement of the coding sequence of the allele.
  • primer refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature.
  • the appropriate length of a primer depends on the intended use of the primer, but typically ranges from 15 to 30 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.
  • a primer need not reflect the exact sequence of the template, but must be sufficiently complementary to hybridize with a template.
  • primer site refers to the area of the target DNA to which a primer hybridizes.
  • primer pair refers to a set of primers including a 5′ (upstream) primer that hybridizes with the 5′ end of the DNA sequence to be amplified and a 3′ (downstream) primer that hybridizes with the complement of the 3′ end of the sequence to be amplified.
  • linkage describes the tendency of genes, alleles, loci or genetic markers to be inherited together as a result of their location on the same chromosome. It can be measured by percent recombination between the two genes, alleles, loci or genetic markers.
  • polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population.
  • a polymorphic marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population.
  • a polymorphic locus may be as small as one base pair.
  • Polymorphic markers include restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats, simple sequence repeats, and insertion elements such as Alu.
  • allelic form is arbitrarily designated as the reference form and other allelic forms are designated as alternative or variant alleles.
  • allelic form occurring most frequently in a selected population is sometimes referred to as the wildtype form. Diploid organisms may be homozygous or heterozygous for allelic forms.
  • a diallelic or biallelic polymorphism has two forms.
  • a triallelic polymorphism has three forms.
  • Work described herein pertains to the resequencing of large numbers of genes in a large number of individuals to identify polymorphisms which can predispose individuals to disease.
  • polymorphisms in genes which are expressed in liver may predispose individuals to disorders of the liver.
  • SNPs may alter the function of the encoded proteins.
  • the discovery of the SNP facilitates biochemical analysis of the variants and the development of assays to characterize the variants and to screen for pharmaceutical that would interact directly with on or another form of the protein.
  • SNPs include silent SNPs
  • a single nucleotide polymorphism occurs at a polymorphic site occupied by a single nucleotide, which is the site of variation between allelic sequences.
  • the site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of the populations).
  • a single nucleotide polymorphism usually arises due to substitution of one nucleotide for another at the polymorphic site.
  • a transition is the replacement of one purine by another purine or one pyrimidine by another pyrimidine.
  • a transversion is the replacement of a purine by a pyrimidine or vice versa.
  • Single nucleotide polymorphisms can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele.
  • the polymorphic site is occupied by a base other than the reference base. For example, where the reference allele contains the base “T” at the polymorphic site, the altered allele can contain a “C”, “G” or “A” at the polymorphic site.
  • the invention also relates to nucleic acid molecules which hybridize to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
  • Hybridizations are usually performed under stringent conditions, for example, at a salt concentration of no more than 1 M and a temperature of at least 25° C.
  • stringent conditions for example, at a salt concentration of no more than 1 M and a temperature of at least 25° C.
  • 5 ⁇ SSPE 750 mM NaCl, 50 mM NaPhosphate, 5 mM EDTA, pH 7.4
  • a temperature of 25-30° C., or equivalent conditions are suitable for allele-specific probe hybridizations.
  • Equivalent conditions can be determined by varying one or more of the parameters given as an example, as known in the art, while maintaining a similar degree of identity or similarity between the target nucleotide sequence and the primer or probe used.
  • the invention also relates to nucleic acid molecules which share substantial sequence identity to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
  • nucleic acid molecules and fragments which have at least about 60%, preferably at least about 70, 80 or 85%, more preferably at least about 90%, even more preferably at least about 95%, and most preferably at least about 98% identity with nucleic acid molecules described herein.
  • the percent identity of two nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence).
  • the length of a sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 60%, and even more preferably at least 70%, 80% or 90% of the length of the reference sequence.
  • the actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm. A preferred, non-limiting example of such a mathematical algorithm is described in Karlin et al., Proc. Natl. Acad. Sci.
  • an isolated nucleic acid of the invention may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs.
  • the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix.
  • the material may be purified to essential homogeneity, for example as determined by PAGE or column chromatography such as HPLC.
  • an isolated nucleic acid comprises at least about 50, 80 or 90 percent (on a molar basis) of all macromolecular species present.
  • FIG. 3 Some of the novel polymorphisms of the invention are shown in the Table. Columns one and two show designations for the indicated polymorphism. Column three shows the Genbank or TIGR Accession number for the wild type (or reference) allele. Column four shows the location of the polymorphic site in the nucleic acid sequence with reference to the Genbank or TIGR sequence shown in column three. Column five shows common names for the gene in which the polymorphism is located. Column six shows the polymorphism and a portion of the 3′ and 5′ flanking sequence of the gene. Column seven shows the type of mutation; N, non-sense, S, silent, M, missense. Columns eight and nine show the reference and alternate nucleotides, respectively, at the polymorphic site. Columns ten and eleven show the reference and alternate amino acids, respectively, encoded by the reference and variant, respectively, alleles. Other novel polymorphisms of the invention are shown in FIG. 3 .
  • Polymorphisms are detected in a target nucleic acid from an individual being analyzed.
  • genomic DNA virtually any biological sample (other than pure red blood cells) is suitable.
  • tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, buccal, skin and hair.
  • tissue sample must be obtained from an organ in which the target nucleic acid is expressed.
  • the target nucleic acid is a cytochrome P450
  • the liver is a suitable source.
  • PCR DNA Amplification
  • PCR Protocols A Guide to Methods and Applications (eds. Innis, et al., Academic Press, San Diego, Calif., 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Pat. No. 4,683,202.
  • LCR ligase chain reaction
  • NASBA nucleic acid based sequence amplification
  • the latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
  • ssRNA single stranded RNA
  • dsDNA double stranded DNA
  • the first type of analysis is carried out to identify polymorphic sites not previously characterized (i.e., to identify new polymorphisms). This analysis compares target sequences in different individuals to identify points of variation, i.e., polymorphic sites.
  • de novo characterization is carried out to identify polymorphic sites not previously characterized (i.e., to identify new polymorphisms).
  • This analysis compares target sequences in different individuals to identify points of variation, i.e., polymorphic sites.
  • groups of individuals representing the greatest ethnic diversity among humans and greatest breed and species variety in plants and animals patterns characteristic of the most common alleles/haplotypes of the locus can be identified, and the frequencies of such alleles/haplotypes in the population can be determined. Additional allelic frequencies can be determined for subpopulations characterized by criteria such as geography, race, or gender.
  • the de novo identification of polymorphisms of the invention is described in the Examples section.
  • the second type of analysis determines which form(s) of a characterized (known) polymorphism are present in individuals under test. There are a variety of suitable procedures, which are discussed in turn.
  • Allele-specific probes for analyzing polymorphisms is described by e.g., Saiki et al., Nature 324, 163-166 (1986); Dattagupta, EP 235,726, Saiki, WO 89/11548. Allele-specific probes can be designed that hybridize to a segment of target DNA from one individual but do not hybridize to the corresponding segment from another individual due to the presence of different polymorphic forms in the respective segments from the two individuals. Hybridization conditions should be sufficiently stringent that there is a significant difference in hybridization intensity between alleles, and preferably an essentially binary response, whereby a probe hybridizes to only one of the alleles.
  • Some probes are designed to hybridize to a segment of target DNA such that the polymorphic site aligns with a central position (e.g., in a 15-mer at the 7 position; in a 16-mer, at either the 8 or 9 position) of the probe. This design of probe achieves good discrimination in hybridization between different allelic forms.
  • Allele-specific probes are often used in pairs, one member of a pair showing a perfect match to a reference form of a target sequence and the other member showing a perfect match to a variant form. Several pairs of probes can then be immobilized on the same support for simultaneous analysis of multiple polymorphisms within the same target sequence.
  • the polymorphisms can also be identified by hybridization to nucleic acid arrays, some examples of which are described in WO 95/11995.
  • One form of such arrays is described in the Examples section in connection with de novo identification of polymorphisms.
  • the same array or a different array can be used for analysis of characterized polymorphisms.
  • WO 95/11995 also describes subarrays that are optimized for detection of a variant form of a precharacterized polymorphism.
  • Such a subarray contains probes designed to be complementary to a second reference sequence, which is an allelic variant of the first reference sequence.
  • the second group of probes is designed by the same principles as described in the Examples, except that the probes exhibit complementarity to the second reference sequence.
  • a second group (or further groups) can be particularly useful for analyzing short subsequences of the primary reference sequence in which multiple mutations are expected to occur within a short distance commensurate with the length of the probes (e.g., two or more mutations within 9 to 21 bases).
  • An allele-specific primer hybridizes to a site on target DNA overlapping a polymorphism and only primes amplification of an allelic form to which the primer exhibits perfect complementarity. See Gibbs, Nucleic Acid Res. 17, 2427-2448 (1989). This primer is used in conjunction with a second primer which hybridizes at a distal site. Amplification proceeds from the two primers, resulting in a detectable product which indicates the particular allelic form is present. A control is usually performed with a second pair of primers, one of which shows a single base mismatch at the polymorphic site and the other of which exhibits perfect complementarity to a distal site. The single-base mismatch prevents amplification and no detectable product is formed.
  • the method works best when the mismatch is included in the 3′-most position of the oligonucleotide aligned with the polymorphism because this position is most destabilizing to elongation from the primer (see, e.g., WO 93/22456).
  • the direct analysis of the sequence of polymorphisms of the present invention can be accomplished using either the dideoxy chain termination method or the Maxam-Gilbert method (see Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd Ed., CSHP, New York 1989); Zyskind et al., Recombinant DNA Laboratory Manual , (Acad. Press, 1988)).
  • Amplification products generated using the polymerase chain reaction can be analyzed by the use of denaturing gradient gel electrophoresis. Different alleles can be identified based on the different sequence-dependent melting properties and electrophoretic migration of DNA in solution. Erlich, ed., PCR Technology, Principles and Applications for DNA Amplification , (W. H. Freeman and Co, New York, 1992), Chapter 7.
  • Alleles of target sequences can be differentiated using single-strand conformation polymorphism analysis, which identifies base differences by alteration in electrophoretic migration of single stranded PCR products, as described in Orita et al., Proc. Nat. Acad. Sci. 86, 2766-2770 (1989).
  • Amplified PCR products can be generated as described above, and heated or otherwise denatured, to form single stranded amplification products.
  • Single-stranded nucleic acids may refold or form secondary structures which are partially dependent on the base sequence.
  • the different electrophoretic mobilities of single-stranded amplification products can be related to base-sequence differences between alleles of target sequences.
  • An alternative method for identifying and analyzing polymorphisms is based on single-base extension (SBE) of a fluorescently-labeled primer coupled with fluorescence resonance energy transfer (FRET) between the label of the added base and the label of the primer.
  • SBE single-base extension
  • FRET fluorescence resonance energy transfer
  • the method such as that described by Chen et al., ( PNAS 94:10756-61 (1997), incorporated herein by reference) uses a locus-specific oligonucleotide primer labeled on the 5′ terminus with 5-carboxyfluorescein (FAM). This labeled primer is designed so that the 3′ end is immediately adjacent to the polymorphic site of interest.
  • FAM 5-carboxyfluorescein
  • the labeled primer is hybridized to the locus, and single base extension of the labeled primer is performed with fluorescently labeled dideoxyribonucleotides (ddNTPs) in dye-terminator sequencing fashion, except that no deoxyribonucleotides are present.
  • ddNTPs dideoxyribonucleotides
  • An increase in fluorescence of the added ddNTP in response to excitation at the wavelength of the labeled primer is used to infer the identity of the added nucleotide.
  • this information can be used in a number of methods.
  • polymorphisms of the invention are often used in conjunction with polymorphisms in distal genes.
  • Preferred polymorphisms for use in forensics are biallelic because the population frequencies of two polymorphic forms can usually be determined with greater accuracy than those of multiple polymorphic forms at multi-allelic loci.
  • the capacity to identify a distinguishing or unique set of forensic markers in an individual is useful for forensic analysis. For example, one can determine whether a blood sample from a suspect matches a blood or other tissue sample from a crime scene by determining whether the set of polymorphic forms occupying selected polymorphic sites is the same in the suspect and the sample. If the set of polymorphic markers does not match between a suspect and a sample, it can be concluded (barring experimental error) that the suspect was not the source of the sample. If the set of markers does match, one can conclude that the DNA from the suspect is consistent with that found at the crime scene. If frequencies of the polymorphic forms at the loci tested have been determined (e.g., by analysis of a suitable population of individuals), one can perform a statistical analysis to determine the probability that a match of suspect and crime scene sample would occur by chance.
  • p(ID) is the probability that two random individuals have the same polymorphic or allelic form at a given polymorphic site. In biallelic loci, four genotypes are possible: AA, AB, BA, and BB. If alleles A and B occur in a haploid genome of the organism with frequencies x and y, the probability of each genotype in a diploid organism is (see WO 95/12607):
  • the probability of identity at one locus i.e, the probability that two individuals, picked at random from a population will have identical polymorphic forms at a given locus
  • p ( ID ) ( x 2 ) 2 +(2 xy ) 2 +(y 2 ) 2 .
  • the cumulative probability of identity (cum p(ID)) for each of multiple unlinked loci is determined by multiplying the probabilities provided by each locus.
  • cum p ( ID ) p ( ID 1) p ( ID 2) p ( ID 3) . . . p ( IDn )
  • the cumulative probability of non-identity for random individuals becomes very high (e.g., one billion to one). Such probabilities can be taken into account together with other evidence in determining the guilt or innocence of the suspect.
  • the object of paternity testing is usually to determine whether a male is the father of a child. In most cases, the mother of the child is known and thus, the mother's contribution to the child's genotype can be traced. Paternity testing investigates whether the part of the child's genotype not attributable to the mother is consistent with that of the putative father. Paternity testing can be performed by analyzing sets of polymorphisms in the putative father and the child.
  • the set of polymorphisms in the child attributable to the father does not match the set of polymorphisms of the putative father, it can be concluded, barring experimental error, that the putative father is not the real father. If the set of polymorphisms in the child attributable to the father does match the set of polymorphisms of the putative father, a statistical calculation can be performed to determine the probability of coincidental match.
  • the cumulative probability of exclusion of a random male is very high. This probability can be taken into account in assessing the liability of a putative father whose polymorphic marker set matches the child's polymorphic marker set attributable to his/her father.
  • the polymorphisms of the invention may contribute to the phenotype of an organism in different ways. Some polymorphisms occur within a protein coding sequence and contribute to phenotype by affecting protein structure. The effect may be neutral, beneficial or detrimental, or both beneficial and detrimental, depending on the circumstances. For example, a heterozygous sickle cell mutationi confers resistance to malaria, but a homozygous sickle cell mutation is usually lethal. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on replication, transcription, and translation. A single polymorphism may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by polymorphisms in different genes. Further, some polymorphisms predispose an individual to a distinct mutation that is causally related to a certain phenotype.
  • Phenotypic traits include diseases that have known but hitherto unmapped genetic components (e.g., agammaglobulimenia, diabetes insipidus, Lesch-Nyhan syndrome, muscular dystrophy, Wiskott-Aldrich syndrome, Fabry's disease, familial hypercholesterolemia, polycystic kidney disease, hereditary spherocytosis, von Willebrand's disease, tuberous sclerosis, hereditary hemorrhagic telangiectasia, familial colonic polyposis, Ehlers-Danlos syndrome, osteogenesis imperfecta, and acute intermittent porphyria).
  • agammaglobulimenia e.g., diabetes insipidus, Lesch-Nyhan syndrome, muscular dystrophy, Wiskott-Aldrich syndrome, Fabry's disease, familial hypercholesterolemia, polycystic kidney disease, hereditary spherocytosis, von Willebrand's disease, tube
  • Phenotypic traits also include symptoms of, or susceptibility to, multifactorial diseases of which a component is or may be genetic, such as autoimmune diseases, inflammation, cancer, diseases of the nervous system, and infection by pathogenic microorganisms.
  • autoimmune diseases include rheumatoid arthritis, multiple sclerosis, diabetes (insulin-dependent and non-independent), systemic lupus erythematosus and Graves disease.
  • Some examples of cancers include cancers of the bladder, brain, breast, colon, esophagus, kidney, leukemia, liver, lung, oral cavity, ovary, pancreas, prostate, skin, stomach and uterus.
  • Phenotypic traits also include characteristics such as longevity, appearance (e.g., baldness, obesity), strength, speed, endurance, fertility, and susceptibility or receptivity to particular drugs or therapeutic treatments.
  • genes in which cSNPs of the present invention have been identified are genes which have been previously sequenced and characterized in one of their allelic forms.
  • Correlation is performed for a population of individuals who have been tested for the presence or absence of a phenotypic trait of interest and for polymorphic markers sets.
  • a set of polymorphisms i.e. a polymorphic set
  • the alleles of each polymorphism of the set are then reviewed to determine whether the presence or absence of a particular allele is associated with the trait of interest.
  • Correlation can be performed by standard statistical methods such as a ⁇ -squared test and statistically significant correlations between polymorphic form(s) and phenotypic characteristics are noted.
  • allele A1 at polymorphism A correlates with heart disease.
  • allele B1 at polymorphism B correlates with increased milk production of a farm animal.
  • Such correlations can be exploited in several ways.
  • detection of the polymorphic form set in a human or animal patient may justify immediate administration of treatment, or at least the institution of regular monitoring of the patient.
  • Detection of a polymorphic form correlated with serious disease in a couple contemplating a family may also be valuable to the couple in their reproductive decisions.
  • the female partner might elect to undergo in vitro fertilization to avoid the possibility of transmitting such a polymorphism from her husband to her offspring.
  • immediate therapeutic intervention or monitoring may not be justified.
  • the patient can be motivated to begin simple life-style changes (e.g., diet, exercise) that can be accomplished at little cost to the patient but confer potential benefits in reducing the risk of conditions to which the patient may have increased susceptibility by virtue of variant alleles.
  • Identification of a polymorphic set in a patient correlated with enhanced receptiveness to one of several treatment regimes for a disease indicates that this treatment regime should be followed.
  • Y ijknp is the milk, fat, fat percentage, SNF, SNF percentage, energy concentration, or lactation energy record
  • is an overall mean
  • YS i is the effect common to all cows calving in year-season
  • X k is the effect common to cows in either the high or average selection line
  • ⁇ 1 to ⁇ 17 are the binomial regressions of production record on mtDNA D-loop sequence polymorphisms
  • PE n is permanent environmental effect common to all records of cow n
  • a n is effect of animal n and is composed of the additive genetic contribution of sire and dam breeding values and a Mendelian sampling effect
  • e p is a random residual. It was found that eleven of seventeen polymorphisms tested influenced at least one production trait. Bovines having the best polymorphic forms for milk production at these eleven loci are used as parents for breeding the next generation of the herd.
  • the previous section concerns identifying correlations between phenotypic traits and polymorphisms that directly or indirectly contribute to those traits.
  • the present section describes identification of a physical linkage between a genetic locus associated with a trait of interest and polymorphic markers that are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and co-segregate with it.
  • Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander et al., Proc. Natl. Acad. Sci . ( USA ) 83, 7353-7357 (1986); Lander et al., Proc. Natl.
  • Linkage studies are typically performed on members of a family. Available members of the family are characterized for the presence or absence of a phenotypic trait and for a set of polymorphic markers. The distribution of polymorphic markers in an informative meiosis is then analyzed to determine which polymorphic markers co-segregate with a phenotypic trait. See, e.g., Kerem et al., Science 245, 1073-1080 (1989); Monaco et al., Nature 316, 842 (1985); Yamoka et al., Neurology 40, 222-226 (1990); Rossiter et al., FASEB Journal 5, 21-27 (1991).
  • Linkage is analyzed by calculation of LOD (log of the odds) values.
  • a lod value is the relative likelihood of obtaining observed segregation data for a marker and a genetic locus when the two are located at a recombination fraction ⁇ , versus the situation in which the two are not linked, and thus segregating independently (Thompson & Thompson, Genetics in Medicine (5th ed, W. B. Saunders Company, Philadelphia, 1991); Strachan, “Mapping the human genome” in The Human Genome (BIOS Scientific Publishers Ltd, Oxford), Chapter 4).
  • the likelihood at a given value of ⁇ is: probability of data if loci linked at ⁇ to probability of data if loci unlinked.
  • the computed likelihoods are usually expressed as the log 10 of this ratio (i.e., a lod score). For example, a lod score of 3 indicates 1000:1 odds against an apparent observed linkage being a coincidence.
  • the use of logarithms allows data collected from different families to be combined by simple addition. Computer programs are available for the calculation of lod scores for differing values of ⁇ (e.g., LIPED, MLINK (Lathrop, Proc. Nat. Acad. Sci . ( USA ) 81, 3443-3446 (1984)).
  • a recombination fraction may be determined from mathematical tables. See Smith et al., Mathematical tables for research workers in human genetics (Churchill, London, 1961); Smith, Ann. Hum. Genet. 32, 127-150 (1968). The value of ⁇ at which the lod score is the highest is considered to be the best estimate of the recombination fraction.
  • Positive lod score values suggest that the two loci are linked, whereas negative values suggest that linkage is less likely (at that value of ⁇ ) than the possibility that the two loci are unlinked.
  • a combined lod score of +3 or greater is considered definitive evidence that two loci are linked.
  • a negative lod score of ⁇ 2 or less is taken as definitive evidence against linkage of the two loci being compared.
  • Negative linkage data are useful in excluding a chromosome or a segment thereof from consideration. The search focuses on the remaining non-excluded chromosomal locations.
  • the invention further provides variant forms of nucleic acids and corresponding proteins.
  • the nucleic acids comprise one of the sequences described in the Table, column 5, in which the polymorphic position is occupied by one of the alternative bases for that position.
  • Some nucleic acids encode full-length variant forms of proteins.
  • variant proteins have the prototypical amino acid sequences encoded by nucleic acid sequences shown in the Table, column 5, (read so as to be in-frame with the full-length coding sequence of which it is a component) except at an amino acid encoded by a codon including one of the polymorphic positions shown in the Table. That position is occupied by the amino acid coded by the corresponding codon in any of the alternative forms shown in the Table.
  • Variant genes can be expressed in an expression vector in which a variant gene is operably linked to a native or other promoter.
  • the promoter is a eukaryotic promoter for expression in a mammalian cell.
  • the transcription regulation sequences typically include a heterologous promoter and optionally an enhancer which is recognized by the host.
  • the selection of an appropriate promoter for example trp, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected.
  • Commercially available expression vectors can be used. Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.
  • the means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, supra.
  • a wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as E. coli , yeast, filamentous fuigi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like.
  • gene product includes mRNA, peptide and protein products.
  • the protein may be isolated by conventional means of protein biochemistry and purification to obtain a substantially pure product, i.e., 80, 95 or 99% free of cell component contaminants, as described in Jacoby, Methods in Enzymology Volume 104, Academic Press, New York (1984); Scopes, Protein Purification, Principles and Practice, 2nd Edition, Springer-Verlag, New York (1987); and Deutscher (ed), Guide to Protein Purification, Methods in Enzymology , Vol. 182 (1990). If the protein is secreted, it can be isolated from the supernatant in which the host cell is grown. If not secreted, the protein can be isolated from a lysate of the host cells.
  • the invention further provides transgenic nonhuman animals capable of expressing an exogenous variant gene and/or having one or both alleles of an endogenous variant gene inactivated.
  • Expression of an exogenous variant gene is usually achieved by operably linking the gene to a promoter and optionally an enhancer, and microinjecting the construct into a zygote.
  • Inactivation of endogenous variant genes can be achieved by forming a transgene in which a cloned variant gene is inactivated by insertion of a positive selection marker. See Capecchi, Science 244, 1288-1292 (1989). The transgene is then introduced into an embryonic stem cell, where it undergoes homologous recombination with an endogenous variant gene. Mice and other rodents are preferred animals. Such animals provide useful drug screening systems.
  • the present invention includes biologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides.
  • biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding.
  • Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.
  • Antibodies that specifically bind to variant gene products but not to corresponding prototypical gene products are also provided.
  • Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof. Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, Antibodies, A Laboratory Manual , Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies, Principles and Practice (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.
  • kits comprising at least one allele-specific oligonucleotide as described herein.
  • the kits contain one or more pairs of allele-specific oligonucleotides hybridizing to different forms of a polymorphism.
  • the allele-specific oligonucleotides are provided immobilized to a substrate.
  • the same substrate can comprise allele-specific oligonucleotide probes for detecting at least 10, 100 or all of the polymorphisms shown in the Table.
  • kits include, for example, restriction enzymes, reverse-transcriptase or polymerase, the substrate nucleoside triphosphates, means used to label (for example, an avidin-enzyme conjugate and enzyme substrate and chromogen if the label is biotin), and the appropriate buffers for reverse transcription, PCR, or hybridization reactions.
  • the kit also contains instructions for carrying out the methods.
  • thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation.
  • ECM extracellular matrix
  • Thrombospondins also known as thrombin sensitive proteins or TSPs
  • TSPs are large molecular weight glycoproteins composed of three identical disulfide-linked polypeptide chains. TSPs are stored in the alpha-granules of platelets and secreted by a variety of mesenchymal and epithelial cells (Majack et al., Cell Membrane 3:57-77 (1987)). Platelets secrete TSPs when activated in the blood by such physiological agonists such as thrombin.
  • TSPs have lectin properties and a broad function in the regulation of fibrinolysis and as a component of the ECM, and are one of a group of ECM proteins which have adhesive properties. TSPs bind to fibronectin and fibrinogen (Lahav et al., Eur J Biochem 145:151-6 (1984)), and these proteins are known to be involved in platelet adhesion to substratum and platelet aggregation (Leung, J Clin Invest 74:1764-1772 (1986)).
  • TSPs in response of cells to growth factors.
  • Submitogenic doses of PDGF induce a rapid but transitory, increase in TSP synthesis and secretion by rat aortic smooth muscle cells (Majack et al., J Biol Chem 101: 1059-70 (1985)).
  • PDGF responsiveness to TSP synthesis in glial cells has also been shown (Asch et al., Proc Natl Acad Sci 83:2904-8 (1986)).
  • TSP mRNA levels rise rapidly in response to PDGF (Majack et al., J. Biol Chem 262:8821-5 (1987)).
  • TSPs act synergistically with epidermal growth factor to increase DNA synthesis in smooth muscle cells (Majack et al., Proc Natl Acad Sci 83:9050-4 (1986)), and monoclonal antibodies to TSPs inhibit smooth muscle cell proliferation (Majack et al., J Biol Chem 106:415-22 (1988)).
  • TSPs modulate local adhesions in endothelial cells
  • TSPs particularly TSP-1 primarily derived from platelet granules
  • TGFB-1 transforming growth factor beta-1
  • Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI.
  • CAD CAD
  • Specific reference nucleotide (SEQ ID NO: 1) and amino acid (SEQ ID NO: 2) sequences for TSP-1 are shown in FIGS. 1A-1D .
  • Specific reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4 are shown in FIGS. 2A-2C . It is understood that the invention is not limited by these exemplified reference sequences, as variants of these sequences which differ at locations other than the SNP sites identified herein can also be utilized. The skilled artisan can readily determine the SNP sites in these other reference sequences which correspond to the SNP sites identified herein by aligning the sequence of interest with the reference sequences specifically disclosed herein, and programs for performing such alignments are commercially available. For example, the ALIGN program in the GCG software package can be used, utilizing a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4, for example.
  • the first (G334u4) is a change from A (reference nucleotide) to G (alternate or variant nucleotide) at nucleotide position 2210 of the nucleic acid sequence of TSP—I ( FIGS. 1A-1D ), resulting in a missense amino acid mutation from asparagine (reference) to serine (alternate) at amino acid 700.
  • the second SNP (G355u2) is a change from G (reference) to C (alternate) at nucleotide position 1186 of the nucleic acid sequence of TSP-4 ( FIGS.
  • polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population.
  • a polymorphic marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population.
  • a polymorphic locus may be as small as one base pair, in which case it is referred to as a single nucleotide polymorphism (SNP).
  • SNP single nucleotide polymorphism
  • the invention relates to a method for predicting the likelihood that an individual will have a vascular disease, or for aiding in the diagnosis of a vascular disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a DNA sample from an individual to be assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of the TSP-1 gene or 1186 of the TSP-4 gene. In a preferred embodiment, the nucleotides present at both of these nucleotide positions are determined.
  • the TSP-1 gene has the nucleotide sequence of SEQ ID NO: 1 and the TSP-4 gene has the nucleotide sequence of SEQ ID NO: 3.
  • the presence of one or more of a G (the variant nucleotide) at position 2210 of SEQ ID NO: 1 or a C (the variant nucleotide) at position 1186 of SEQ ID NO: 1186 indicates that the individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference nucleotide at one or more of these positions.
  • the presence of one or more of an A (the reference nucleotide) at position 2210 of SEQ ID NO: 1 or a G (the reference nucleotide) at position 1186 of SEQ ID NO: 3 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease than if that individual had the variant nucleotide at one or more of these positions.
  • the individual is an individual at risk for development of a vascular disease.
  • the individual exhibits clinical symptomology associated with a vascular disease.
  • the individual has been clinically diagnosed as having a vascular disease.
  • Vascular diseases include, but are not limited to, atherosclerosis, coronary heart disease, myocardial infarction (MI), stroke, peripheral vascular diseases, venous thromboembolism and puhnonary embolism.
  • the vascular disease is CAD or MI.
  • the genetic material to be assessed can be obtained from any nucleated cell from the individual.
  • genomic DNA virtually any biological sample (other than pure red blood cells) is suitable.
  • tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, skin and hair.
  • tissue sample For assay of cDNA or mRNA, the tissue sample must be obtained from a tissue or organ in which the target nucleic acid is expressed.
  • PCR PCR Technology: Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, NY, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, et al., Academic Press, San Diego, Calif., 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Pat. No. 4,683,202.
  • LCR ligase chain reaction
  • NASBA nucleic acid based sequence amplification
  • the latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
  • ssRNA single stranded RNA
  • dsDNA double stranded DNA
  • the nucleotide which occupies the polymorphic site of interest can be identified by a variety of methods, such as Southern analysis of genomic DNA; direct mutation analysis by restriction enzyme digestion; Northern analysis of RNA; denaturing high pressure liquid chromatography (DHPLC); gene isolation and sequencing; hybridization of an allele-specific oligonucleotide with amplified gene products; single base extension (SBE).
  • determination of the allelic form of TSP is carried out using SBE-FRET methods as described herein, or using chip-based oligonucleotide arrays as described herein.
  • the invention also relates to a method for predicting the likelihood that an individual will have a vascular disease, or for aiding in the diagnosis of a vascular disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a biological sample comprising TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of the TSP-1 gene product (e.g., as exemplified by SEQ ID NO: 2) or 387 of the TSP-4 gene product (e.g., as exemplified by SEQ ID NO: 4). In a preferred embodiment, the amino acids present at both of these amino acid positions are determined.
  • the term “relevant portion” of the TSP-1 and TSP-4 proteins is intended to encompass any portion of the protein which comprises the polymorphic amino acid positions.
  • the presence of one or more of a serine (the variant amino acid) at position 700 of SEQ ID NO: 2, or a proline (the variant amino acid) at position 387 of SEQ ID NO: 4 indicates that the individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference amino acid at one or more of these positions.
  • the presence of one or more of an asparagine (the reference amino acid) at position 700 of SEQ ID NO: 2, or an alanine (the reference amino acid) at position 387 of SEQ ID NO: 4 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease, than if that individual had the varaint amino acid at one or more of these positions.
  • the individual is an individual at risk for development of a vascular disease.
  • the individual exhibits clinical symptomology associated with a vascular disease.
  • the individual has been clinically diagnosed as having a vascular disease.
  • the biological sample contains protein molecules from the test subject.
  • In vitro techniques for detection of protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence.
  • in vivo techniques for detection of protein include introducing into a subject a labeled anti-protein antibody.
  • the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
  • Polyclonal and/or monoclonal antibodies that specifically bind to variant gene products but not to corresponding reference gene products, and vice versa, are also provided. Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof comprising the variant portion.
  • Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, Antibodies, A Laboratory Manual , Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies, Principles and Practice (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.
  • the polymorphisms of the invention may be associated with vascular disease in different ways.
  • the polymorphisms may exert phenotypic effects indirectly via influence on replication, transcription, and translation. Additionally, the described polymorphisms may predispose an individual to a distinct mutation that is causally related to a certain phenotype, such as susceptibility or resistance to vascular disease and related disorders.
  • the discovery of the polymorphisms and their correlation with CAD and MI facilitates biochemical analysis of the variant and reference forms and the development of assays to characterize the variant and reference forms and to screen for pharmaceutical agents that interact directly with one or another form of the protein.
  • these particular polymorphisms may belong to a group of two or more polymorphisms in the TSP gene(s) which contributes to the presence, absence or severity of vascular disease.
  • An assessment of other polymorphisms within the TSP gene(s) can be undertaken, and the separate and combined effects of these polymorphisms, as well as alternations in other, distinct genes, on the vascular disease phenotype can be assessed.
  • Correlation between a particular phenotype, e.g., the CAD or MI phenotype, and the presence or absence of a particular allele is performed for a population of individuals who have been tested for the presence or absence of the phenotype. Correlation can be performed by standard statistical methods such as a Chi-squared test and statistically significant correlations between polymorphic form(s) and phenotypic characteristics are noted. This correlation can be exploited in several ways.
  • a polymorphic form e.g., the variant allele for TSP-1 and/or TSP-4
  • detection of the polymorphic form in an individual may justify immediate administration of treatment, or at least the institution of regular monitoring of the individual.
  • Detection of a polymorphic form correlated with a disorder in a couple contemplating a family may also be valuable to the couple in their reproductive decisions.
  • the female partner might elect to undergo in vitro fertilization to avoid the possibility of transmitting such a polymorphism from her husband to her offspring.
  • immediate therapeutic intervention or monitoring may not be justified.
  • the individual can be motivated to begin simple life-style changes (e.g., diet modification, therapy or counseling) that can be accomplished at little cost to the individual but confer potential benefits in reducing the risk of conditions to which the individual may have increased susceptibility by virtue of the particular allele.
  • identification of a polymorphic form correlated with enhanced receptiveness to one of several treatment regimes for a disorder indicates that this treatment regimen should be followed for the individual in question.
  • a genetic locus associated with a trait of interest e.g., CAD or MI
  • polymorphic markers that are or are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and co-segregate with it.
  • Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander et al., Proc. Natl. Acad. Sci . ( USA ) 83, 7353-7357 (1986); Lander et al., Proc. Natl. Acad. Sci .
  • the invention in another embodiment, relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product for use in the treatment of vascular disease, e.g., CAD and MI.
  • a reference TSP gene product is intended to mean gene products which are encoded by the reference allele of the TSP gene.
  • the present invention includes biologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides.
  • Biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding.
  • Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.
  • the polypeptide or protein, or fragment thereof, of the present invention can be formulated with a physiologically acceptable medium to prepare a pharmaceutical composition.
  • the particular physiological medium may include, but is not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions.
  • the optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to medicinal chemists, and will depend on the ultimate pharmaceutical formulation desired.
  • Methods of introduction of exogenous peptides at the site of treatment include, but are not limited to, intradernal, intramuscular, intraperitoneal, intravenous, subcutaneous, oral and intranasal. Other suitable methods of introduction can also include rechargeable or biodegradable devices and slow release polymeric devices.
  • the pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents and treatment regimens.
  • compositions comprising a nucleotide sequence encoding reference or variant TSP-1 and/or TSP-4 gene products.
  • reference genes can be expressed in an expression vector in which a reference gene is operably linked to a native or other promoter.
  • the promoter is a eukaryotic promoter for expression in a mammalian cell.
  • the transcription regulation sequences typically include a heterologous promoter and optionally an enhancer which is recognized by the host.
  • the selection of an appropriate promoter for example trp, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected.
  • Commercially available expression vectors can be used.
  • Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.
  • the means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, supra.
  • a wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as E. coli , yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like.
  • cells can be engineered to express the reference allele of the invention by gene therapy methods.
  • DNA encoding the reference TSP gene product, or an active fragment or derivative thereof can be introduced into an expression vector, such as a viral vector, and the vector can be introduced into appropriate cells in an animal.
  • the cell population can be engineered to inducibly or constitutively express active reference TSP gene product.
  • the vector is delivered to the bone marrow, for example as described in Corey et al. ( Science 244:1275-1281 (1989)).
  • the invention further relates to the use of compositions (i.e., agonists) which enhance or increase the activity of the reference (or variant) TSP (e.g., TSP-1 or TSP-4) gene product, or a functional portion thereof, for use in the treatment of vascular disease.
  • compositions i.e., antagonists
  • TSP e.g., TSP-1 or TSP-4 gene product
  • the invention also relates to constructs which comprise a vector into which a sequence of the invention has been inserted in a sense or antisense orientation.
  • a vector comprising a nucleotide sequence which is antisense to the variant TSP-1 or TSP-4 allele may be used as an antagonist of the activity of the TSP-1 or TSP-4 variant allele.
  • a vector comprising a nucleotide sequence of the TSP-1 or TSP-4 reference allele may be used therapeutically to treat vascular diseases.
  • the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • vector refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome.
  • Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
  • certain vectors, expression vectors are capable of directing the expression of genes to which they are operably linked.
  • expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors).
  • vectors such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) that serve equivalent functions.
  • viral vectors e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses
  • Preferred recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell.
  • the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed.
  • operably linked is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
  • regulatory sequence is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
  • the expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.
  • the recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as E. coli , insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra.
  • the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • host cell and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
  • a host cell can be any prokaryotic or eukaryotic cell.
  • a nucleic acid of the invention can be expressed in bacterial cells (e.g., E. coli ), insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
  • transformation and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.
  • a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a polypeptide of the invention.
  • the invention further provides methods for producing a polypeptide using the host cells of the invention.
  • the method comprises culturing the host cell of the invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced.
  • the method further comprises isolating the polypeptide from the medium or the host cell.
  • the host cells of the invention can also be used to produce nonhuman transgenic animals.
  • a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a nucleic acid of the invention has been introduced.
  • Such host cells can then be used to create non-human transgenic animals in which exogenous nucleotide sequences have been introduced into their genome or homologous recombinant animals in which endogenous nucleotide sequences have been altered.
  • Such animals are useful for studying the function and/or activity of the nucleotide sequence and polypeptide encoded by the sequence and for identifying and/or evaluating modulators of their activity.
  • a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
  • Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
  • a transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
  • an “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
  • a transgenic animal of the invention can be created by introducing a nucleic acid of the invention into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
  • the sequence can be introduced as a transgene into the genome of a non-human animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
  • a tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of a polypeptide in particular cells.
  • transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, U.S. Pat. No. 4,873,191 and in Hogan, Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals.
  • a transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene.
  • transgenic animals carrying a transgene encoding the transgene can further be bred to other transgenic animals carrying other transgenes.
  • the invention also relates to the use of the variant and reference gene products to guide efforts to identify the causative mutation for vascular diseases or to identify or synthesize agents useful in the treatment of vascular diseases, e.g., CAD and MI.
  • Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science, 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity in vitro, or in vitro activity.
  • Sites that are critical for polypeptide activity can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol., 224:899-904 (1992); de Vos et al. Science, 255:306-312 (1992)).
  • Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of proteins of the invention in clinical trials.
  • An exemplary method for detecting the presence or absence of proteins or nucleic acids of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting the protein, or nucleic acid (e.g., mRNA, genomic DNA) that encodes the protein, such that the presence of the protein or nucleic acid is detected in the biological sample.
  • a preferred agent for detecting mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA sequences described herein, preferably in an allele-specific manner.
  • the nucleic acid probe can be, for example, a full-length nucleic acid, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA.
  • oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA.
  • Other suitable probes for use in the diagnostic assays of the invention are described herein.
  • kits for detecting the presence of proteins or nucleic acid molecules of the invention in a biological sample can comprise a labeled compound or agent (e.g., nucleic acid probe) capable of detecting protein or mRNA in a biological sample; means for determining the amount of protein or mRNA in the sample; and means for comparing the amount of protein or mRNA in the sample with a standard.
  • the compound or agent can be packaged in a suitable container.
  • the kit can further comprise instructions for using the kit to detect protein or nucleic acid.
  • the polymorphisms shown in the Table were identified by resequencing of target sequences from individuals of diverse ethnic and geographic backgrounds by hybridization to probes immobilized to microfabricated arrays. The strategy and principles for design and use of such arrays are generally described in WO 95/11995.
  • a typical probe array used in this analysis has two groups of four sets of probes that respectively tile both strands of a reference sequence.
  • a first probe set comprises a plurality of probes exhibiting perfect complementarily with one of the reference sequences.
  • Each probe in the first probe set has an interrogation position that corresponds to a nucleotide in the reference sequence. That is, the interrogation position is aligned with the corresponding nucleotide in the reference sequence, when the probe and reference sequence are aligned to maximize complementarily between the two.
  • For each probe in the first set there are three corresponding probes from three additional probe sets. Thus, there are four probes corresponding to each nucleotide in the reference sequence.
  • probes from the three additional probe sets are identical to the corresponding probe from the first probe set except at the interrogation position, which occurs in the same position in each of the four corresponding probes from the four probe sets, and is occupied by a different nucleotide in the four probe sets.
  • probes were 25 nucleotides long. Arrays tiled for multiple different references sequences were included on the same substrate.
  • Genomic DNA was amplified in at least 50 individuals using 2.5 pmol each primer, 1.5 mM MgCl 2 , 100 ⁇ M dNTPs, 0.75 ⁇ M AmpliTaq GOLD polymerase, and 19 ng DNA in a 15 ⁇ l reaction.
  • Reactions were assembled using a PACKARD MultiPROBE robotic pipetting station and then put in MJ 96-well tetrad thermocyclers (96° C. for 10 minutes, followed by 35 cycles of 96° C. for 30 seconds, 59° C. for 2 minutes, and 72° C. for 2 minutes). A subset of the PCR assays for each individual were run on 3% NuSieve gels in 0.5 ⁇ TBE to confirm that the reaction worked.
  • Low-density DNA chips (Affymetrix, Calif.) were hybridized following the manufacturer's instructions. Briefly, the hybridization cocktail consisted of 3M TMACl, 10 mM Tris pH 7.8, 0.01% Triton X-100, 100 mg/ml herring sperm DNA (Gibco BRL), 200 pM control biotin-labeled oligo. The processed PCR products were denatured for 7 minutes at 100° C. and then added to prewarmed (37° C.) hybridization solution. The chips were hybridized overnight at 44° C.
  • Chips were washed in 1 ⁇ SSPET and 6 ⁇ SSPET followed by staining with 2 ⁇ g/ml SARPE and 0.5 mg/ml acetylated BSA in 200 ⁇ l of 6 ⁇ SSPET for 8 minutes at room temperature. Chips were scanned using a Molecular Dynamics scanner.
  • Chip image files were analyzed using Ulysses (Affymetrix, Calif.) which uses four algorithms to identify potential polymorphisms.
  • Candidate polymorphisms were visually inspected and assigned a confidence value: high confidence candidates displayed all three genotypes, while likely candidates showed only two genotypes (homozygous for reference sequence and heterozygous for reference and variant).
  • Some of the candidate polymorphisms were confirmed by ABI sequencing. Identified polymorphisms were compared to several databases to determine if they were novel. Results are shown in the Table.
  • Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI.
  • CAD CAD
  • G1043u2 WIAF-12449 M94055 5205 Human voltage-gated TTGACACCTT[T/C]GGCAACAGCA S T C F F sodium channel mRNA, complete cds.
  • G1043u3 WIAF-12450 M94055 5224 Human voltage-gated CATGATCTGC[C/T]TGTTCCAAAT S C T L L sodium channel mRNA, complete cds.
  • G1043u4 WIAF-12451 M94055 5514 Human voltage-gated AGGTTTGGGA[C/A]AACTTTCATC S C A E E sodium channel mRNA, complete cds.
  • E. coli homolog 2 (colon cancer, non- polyposis type 1) G1537u2 WIAF-12044 U04045 599 MSH2, mutS GACTGTGTGA[A/T]TTCCCTGATA M A T E D ( E. coli ) homolog 2 (colon cancer, non- polyposis type 1) G1537u3 WIAF-12045 U04045 1452 MSH2, mutS AGATATGGAT[C/T]AGGTGGAAAA N C T Q * ( E. coli ) homolog 2 (colon cancer, non- polyposis type 1) G1537u4 WIAF-12076 U04045 938 MSH2, mutS GACACTTTGA[A/T]CTGACTACTT M A T E D ( E.
  • G1554u3 WIAF-12060 HT4161 1436 ELK3, ELK3, ETS- CACATGCCAG[T/C]GCCAATCCCC M T C V A domain protein (SRF accessory protein 2) NOTE: Symbol and name provisional.
  • G22u9 WIAF-10317 U86136 4230 Human telomerase- GTGTCTGAGA[G/A]ACTCCGGACC M G A R K associated protein TP-1 mRNA, complete cds.
  • G22u10 WIAF-10318 U86136 4419 Human telomerase- GGGACTAAGA[G/C]CTGGGAAGAA M G C S T associated protein TP-1 mRNA, complete cds.
  • G22u26 WIAF-10346 U86136 4762 Human telomerase- TTTCGAAGTT[C/T]CTTACCAACC S C T F F associated protein TP-1 mRNA, complete cds.
  • G22u27 WIAF-10351 U86136 1737 Human telomerase- CTCCAGCATG[G/C]GAAGTCGGTG M G C G A associated protein TP-1 mRNA, complete cds.
  • G22u28 WIAF-10352 U86136 3543 Human telomerase- ACAGTGCAAC[A/G]GCTGATGCTG M A G Q R associated protein TP-1 mRNA, complete cds.
  • G232u5 WIAF-11682 U58917 1794 Homo sapiens IL-17 GTTCGAATGTE[G/T]AGAACCTCTA N G T E * receptor mRNA, complete cds.
  • G232u7 WIAF-11660 U58917 743 Homo sapiens IL-17 TGACCAGTTT[T/C]CCGCACATGG S T C F F receptor mRNA, complete cds.
  • RNA II DNA directed) poly- peptide A (220 kD) G2489u3 WIAF-14237 X63564 2678 POLR2A, polymerase CTGAATACAA[C/T]AACTTCAAGT ? C T ? ?
  • RNA II DNA directed) poly- peptide A (220 kD) G2489u4 WIAF-14238 X63564 3059 POLR2A, polymerase AGCTGCGCTA[C/T]GGCGAACACG ? C T ? ?
  • RNA II DNA directed poly- peptide A (220 kD) G2489u5 WIAF-14239 X63564 3827 POLR2A, polymerase TGGGCCAGTC[C/T]GCTCGAGATG ? C T ? ?
  • RNA II DNA directed poly- peptide A (220 kD) G2489u6 WIAF-14240 X63564 3992 POLR2A, polymerase TGCCTGACTT[T/C]GATGTGGCCC ? T C ? ?
  • RNA II DNA directed poly- peptide A (220 kD) G2489u7 WIAF-14245 X63564 3938 POLR2A, polymerase CCCAGAGCAC[G/A]GTGGTGGCAG ? G A ? ?
  • RNA II DNA directed) poly- peptide A (220 kD)
  • G250u1 WIAF-11696 HT0155 1113 IL3RA interleukin CTGTGTCTTC[G/C]TGATCTGCAG M G C V L 3 receptor
  • alpha (low affinity) G251u1 WIAF-11666 HT0240 179 interleukin 1 TGGATAAGAC[C/T]CGAGCTTTGA S C T T T beta convertase G251u2 WIAF-11694 HT0240 973 interleukin 1 GATGCTATTA[A/G]GAAAGCCCAC M
  • G K R beta convertase G251u3 WIAF-11695 HT0240 783 interleukin 1 CCCAGATATA[C/T]TACAACTCAA S C T L L beta convertase G2513u1 WIAF-13736 HT27365 1721 PLCB3, phospho- AACTATCTAT[G/A]AAAAGCCAAA M G A M
  • transcript 1 G305u21 WIAF-10154 HT0034 186 prolyl 4-hydroxy- TGGCCGCCCA[C/A]AAGTACCTCC M C A H Q lase, beta subunit/ protein disulfide isomerase/thyroid hormone-binding protein, alt.
  • transcript 1 G305u3 WIAF-10155 HT0034 1428 prolyl 4-hydroxy- GGACGGTCAT[T/C]GATTACAACG S T C I I lase, beta subunit/ protein disulfide isomerase/thyroid hormone-binding protein, alt, transcript 1 G3050u1 WIAF-12860 HT1558 2098 PSRG1: female AACATTGCAA[T/C]GGCATTTTGA S T C N N N sterile homeotic related gene 1 (mouse homolog) G3050u2 WIAF-12861 HT1558 2845 FSRG1: female TAGGCCCTTC[T/C]GGCTTTGGAC S T C S S sterile homeotic related gene 1 (mouse homolog) G3050u3 WIAF-12862 HT1558 3409 FSRG1: female CCTCGTCGTC[G/A]TCTTCAGACA S G A S S S sterile homeotic related gene 1 (mouse homolog) G3050u4 WIAF-1287
  • TTGTGAAATC[T/A]ATTCGAAGTA S T A S S transcript 2 G594u2 WIAF-10098 HT3921 567 annexin V, alt. CGAAGTAATG[C/T]TCACCGCCAG M C T A V transcript 2 G594u3 WIAF-10099 HT3921 774 annexin V, alt. ATTGCTTCAA[G/C]CACACCTCAA M G C R T transcript 2 G594a4 WIAF-10505 HT3921 424 annexin V, alt. GAGTAGTCGC[C/T]ATGCCACACG — C T — — transcript 2 G594a5 WIAF-13123 HT3921 571 annexin V, alt.
  • G55u1 WIAF-10434 HT1115 1214 ERCC3, excision CTGTGGAGCA[G/A]TGGAAAGCCC S G
  • ATCACCTCAC[A/T]CATGGAAAGC M A T H L transcript 1 G749u2 WIAF-11875 HT3734 386 osteopontin, alt. AAGATGATGA[A/G]GACCATGTGG S A G D D transcript 1 G749u3 WIAF-11876 HT3734 419 osteopontin, alt. CCATTGACTC[C/A]AACCACTCTC S G A S S transcript 1 G749a4 WIAF-12084 HT3734 171 osteopontin, alt. TAAACAGGCT[G/A]ATTCTCGAAC M G A D N transcript 1 G749u5 WIAF-13387 HT3734 738 osteopontin, alt.
  • G787u1 WIAF-12652 HT27477 468 TRIP15 thyroid GAAAATTATA[T/C]TTAGAACGAG S T C Y Y receptor interacting protein 15
  • G793u1 WIAF-12643 HT5152 458 thyroid receptor GGAACCTTTT[C/G]AAAGAATGTT N C G S * interactor 8
  • transcript 1 G955a2 WIAF-13167 HT3860 3842 calcium channel CTACCCCAAC[C/a]CAGAAACTAC M C a P T voltage-gated, alpha 1 subunit, L type, alt. transcript 1 G955a3 WIAF-13168 HT3860 5624 calcium channel, GTGTGCCCCA[G/a]AGTCCGAGCC M G a E K voltage-gated, alpha 1 subunit, L type, alt. transcript 1 G955a4 WIAF-13169 HT3860 5703 calcium channel, ATCAGCTTCT[A/g]CATGCTCTGT M A g Y C voltage-gated, alpha 1 subunit, L type, alt.
  • transcript 1 G955a5 WIAF-13170 HT3860 5809 calcium channel ACCACCTGGA[T/c]GAGTTTAAAA S T c D D voltage-gated, alpha 1 subunit, L type, alt.
  • transcript 1 G955a6 WIAF-13171 HT3860 6616 calcium channel CCGGCTCCAA[C/t]GCCAACATCA S C t N N voltage-gated, alpha 1 subunit, L type, alt.
  • transcript 1 G956u1 WIAF-14187 HT2199 1334 calcium channel, CTTCACATAG[C/T]CCTTTTGGTA M C T A V voltage-gated, alpha 1D subunit, DHP-sensitive G956u2 WIAF-14188 HT2199 1452 calcium channel, AAGAGGACCC[A/T]GCTCCATGTG S A T P P voltage-gated, alpha 1D subunit, DHP-sensitive G956u3 WIAF-14189 HT2199 1614 calcium channel, GCTGGACAGA[C/T]GTGCTCTACT S C T D D voltage-gated, alpha 1D subunit, DHP-sensitive G956u4 WIAF-14190 HT2199 2540 calcium channel, GGCAAGTTTA[A/T]TTTTGATGAA M A T N I voltage-gated, alpha 1D subunit, DHP-sensitive.
  • G956u5 WIAF-14191 HT2199 3210 calcium channel TGCTGACCAC[T/C]GCTCCCCTGG S T C S S voltage-gatad, alpha 1D subunit, DHP-sensitive G956u6 WIAF-14192 HT2199 3326 calcium channel, TTGAAGATGA[C/T]AACTTTTGGA M C T T T I voltage-gated, alpha 1D subunit, DHP-sensitive G956u7 WIAF-14193 HT2199 3274 calcium channel, ACTGGGTTAC[T/C]TTGACTATGC M T C F L voltage-gated, alpha 1D subunit, DHP-sensitive G956u8 WIAF-14194 HT2199 5127 calcium channel, TGCCTCTCAA[C/T)AGTGACGGGA S C T N N voltage-gated, alpha 1D subunit, DHP-sensitive G956u9 WIAF-14195 HT2199 5173 calcium channel, TGCTTTGGTT[C/T]GAACC
  • transcript G957u5 WIAF-12314 HT4229 5971 calcium channel TATGGACCCC[C/A]CCCATGACGG S G A T T voltage-gated, alpha 1E subunit, alt. transcript 2 G957u6 WIAF-12315 HT4229 5985 calcium channel, ATGACGGACA[G/T]TTCCAACAAC M G T Q H voltage-gated, alpha 1E subunit, alt. transcript 2 G957u7 WIAF-12329 HT4229 3100 calcium channel, GCTGGCAGCA[C/A]GCCTTGATGA M G A G S voltage-gated, alpha 1E subunit, alt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention provides nucleic acid segments of the human genome, particularly nucleic acid segments from a gene, including polymorphic sites. Allele-specific primers and probes hybridizing to regions flanking or containing these sites are also provided. The nucleic acids, primers and probes are used in applications such as phenotype correlations, forensics, paternity testing, medicine and genetic analysis. A role for the thrombospondin gene(s) in vascular disease is also disclosed. Use of single nucleotide polymorphisms in the thrombospondin gene(s) for diagnosis, prediction of clinical course and treatment response, development of therapeutics and development of cell-culture-based and animal models for research and treatment are disclosed.

Description

    RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 09/657,472, filed Sep. 7, 2000, which claims the benefit of U.S. Provisional Application Serial No. 60/153,357, filed Sep. 10, 1999, U.S. Provisional Application Serial No. 60/220,947, filed Jul. 26, 2000, and U.S. Provisional Application Serial No. 60/225,724, filed Aug. 16, 2000, the entire teachings of all of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • The genomes of all organisms undergo spontaneous mutation in the course of their continuing evolution, generating variant forms of progenitor nucleic acid sequences (Gusella, Ann. Rev. Biochem. 55, 831-854 (1986)). The variant form may confer an evolutionary advantage or disadvantage relative to a progenitor form, or may be neutral. In some instances, a variant form confers a lethal disadvantage and is not transmitted to subsequent generations of the organism. In other instances, a variant form confers an evolutionary advantage to the species and is eventually incorporated into the DNA of many or most members of the species and effectively becomes the progenitor form. In many instances, both progenitor and variant form(s) survive and co-exist in a species population. The coexistence of multiple forms of a sequence gives rise to polymorphisms.
  • Several different types of polymorphism have been reported. A restriction fragment length polymorphism (RFLP) is a variation in DNA sequence that alters the length of a restriction fragment (Botstein et al., Am. J. Hum. Genet. 32, 314-331 (1980)). The restriction fragment length polymorphism may create or delete a restriction site, thus changing the length of the restriction fragment. RFLPs have been widely used in human and animal genetic analyses (see WO 90/13668; W090/11369; Donis-Keller, Cell 51, 319-337 (1987); Lander et al., Genetics 121, 85-99 (1989)). When a heritable trait can be linked to a particular RFLP, the presence of the RFLP in an individual can be used to predict the likelihood that the animal will also exhibit the trait.
  • Other polymorphisms take the form of short tandem repeats (STRs) that include tandem di-, tri- and tetra-nucleotide repeated motifs. These tandem repeats are also referred to as variable number tandem repeat (VNTR) polymorphisms. VNTRs have been used in identity and paternity analysis (U.S. Pat. No. 5,075,217; Armour et al., FEBS Lett. 307, 113-115 (1992); Horn et al., WO 91/14003; Jeffreys, EP 370,719), and in a large number of genetic mapping studies.
  • Other polymorphisms take the form of single nucleotide variations between individuals of the same species. Such polymorphisms are far more frequent than RFLPs, STRs and VNTRs. Some single nucleotide polymorphisms (SNP) occur in protein-coding nucleic acid sequences (coding sequence SNP (cSNP)), in which case, one of the polymorphic forms may give rise to the expression of a defective or otherwise variant protein and, potentially, a genetic disease. Examples of genes in which polymorphisms within coding sequences give rise to genetic disease include β-globin (sickle cell anemia), apoE4 (Alzheimer's Disease), Factor V Leiden (thrombosis), and CFTR (cystic fibrosis). cSNPs can alter the codon sequence of the gene and therefore specify an alternative amino acid. Such changes are called “missense” when another amino acid is substituted, and “nonsense” when the alternative codon specifies a stop signal in protein translation. When the cSNP does not alter the amino acid specified the cSNP is called “silent”.
  • Other single nucleotide polymorphisms occur in noncoding regions. Some of these polymorphisms may also result in defective protein expression (e.g., as a result of defective splicing). Other single nucleotide polymorphisms have no phenotypic effects.
  • Single nucleotide polymorphisms can be used in the same manner as RFLPs and VNTRs, but offer several advantages. Single nucleotide polymorphisms occur with greater frequency and are spaced more uniformly throughout the genome than other forms of polymorphism. The greater frequency and uniformity of single nucleotide polymorphisms means that there is a greater probability that such a polymorphism will be found in close proximity to a genetic locus of interest than would be the case for other polymorphisms. The different forms of characterized single nucleotide polymorphisms are often easier to distinguish than other types of polymorphism (e.g., by use of assays employing allele-specific hybridization probes or primers).
  • Only a small percentage of the total repository of polymorphisms in humans and other organisms has been identified. The limited number of polymorphisms identified to date is due to the large amount of work required for their detection by conventional methods. For example, a conventional approach to identifying polymorphisms might be to sequence the same stretch of DNA in a population of individuals by dideoxy sequencing. In this type of approach, the amount of work increases in proportion to both the length of sequence and the number of individuals in a population and becomes impractical for large stretches of DNA or large numbers of persons.
  • SUMMARY OF THE INVENTION
  • Work described herein pertains to the identification of polymorphisms which can predispose individuals to disease, by resequencing large numbers of genes in a large number of individuals. Various genes from a number of individuals have been resequenced as described herein, and SNPs in these genes have been discovered (see the Table and FIG. 3). Some of these SNPs are cSNPs which specify a different amino acid sequence, some of the SNPs are silent cSNPs and some of these cSNPs specify a stop signal in protein translation. Some of the identified SNPs were located in non-coding regions.
  • The invention relates to a gene which comprises a single nucleotide polymorphism at a specific location. In a particular embodiment the invention relates to the variant allele of a gene having a single nucleotide polymorphism, which variant allele differs from a reference allele by one nucleotide at the site(s) identified in the Table and FIG. 3. Complements of these nucleic acid sequences are also included. The nucleic acid molecules can be DNA or RNA, and can be double- or single-stranded. Nucleic acid molecules can be, for example, 5-10, 5-15, 10-20, 5-25, 10-30, 10-50 or 10-100 bases long.
  • The invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.
  • The invention further provides a method of analyzing a nucleic acid from an individual. The method determines which base is present at any one of the polymorphic sites shown in the Table and/or FIG. 3. Optionally, a set of bases occupying a set of the polymorphic sites shown in the Table and/or FIG. 3 is determined. This type of analysis can be performed on a number of individuals, who are tested for the presence of a disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymorphic site or sites in the individuals tested.
  • Thus, the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype. The method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymorphic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.
  • The thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation. Thrombospondins (also known as thrombin sensitive proteins or TSPs) are large molecular weight glycoproteins composed of three identical disulfide-linked polypeptide chains. The results described herein also reveal an important association between alterations, particularly SNPs, in TSP genes, particularly TSP-1 and TSP-4, and vascular disease. In particular, SNPs in these genes which are associated with premature coronary artery disease (CAD)(or coronary heart disease) and myocardial infarction (MI) have been identified and represent a potentially vital marker of upstream biology influencing the complex process of atherosclerotic plaque generation and vulnerability.
  • Thus, the invention relates to the TSP gene SNPs identified as described herein, both singly and in combination, as well as to the use of these SNPs, and others in TSP genes, particularly those nearby in linkage disequilibrium with these SNPs, for diagnosis, prediction of clinical course and treatment response for vascular disease, development of new treatments for vascular disease based upon comparison of the variant and normal versions of the gene or gene product, and development of cell-culture based and animal models for research and treatment of vascular disease. The invention further relates to novel compounds and pharmaceutical compositions for use in the diagnosis and treatment of such disorders. In preferred embodiments, the vascular disease is CAD or MI.
  • The invention relates to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-1 (e.g., as exemplified by SEQ ID NO: 1), and to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-4 (e.g., as exemplified by SEQ ID NO: 3). Preferred portions are at least 10 contiguous nucleotides and comprise the polymorphic site, e.g., a portion of SEQ ID NO: 1 which is at least 10 contiguous nucleotides and comprises the “G” at position 2210, or a portion of SEQ ID NO: 3 which is at least 10 contiguous nucleotides and comprises the “C” at position 1186. The invention further relates to isolated gene products, e.g., polypeptides or proteins, which are encoded by a nucleic acid molecule comprising all or a portion of the variant allele of TSP-1 or TSP-4 (e.g., SEQ ID NO: 1 or SEQ ID NO: 3, respectively). The invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
  • The invention further relates to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-1 (e.g., as exemplified by SEQ ID NO: 2), and to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-4 (e.g., as exemplified by SEQ ID NO: 4). Preferred polypeptides are at least 10 contiguous amino acids and comprise the polymorphic amino acid, e.g., a portion of SEQ ID NO: 2 which is at least 10 contiguous amino acids and comprises the serine at residue 700, or a portion of SEQ ID NO: 4 which is at least 10 contiguous amino acids and comprises the proline at residue 387. The invention further relates to isolated nucleic acid molecules encoding such proteins and polypeptides, as well as to antibodies which bind, e.g., specifically, to such proteins and polypeptides.
  • The invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with the presence of one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual. The method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of the indicated nucleotide positions, wherein presence of one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the reference nucleotide at one or more of said positions. In a particular embodiment the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism. In a preferred embodiment, the vascular disease is selected from the group consisting of CAD and MI.
  • The invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual. The method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of the indicated nucleotide positions, wherein presence of one or more of (a) an A at nucleotide position 2210 of SEQ ID NO: 1; or (b) a G at nucleotide position 1186 of SEQ ID NO: 3 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the variant nucleotide at said position. In a particular embodiment the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism. In a preferred embodiment, the vascular disease is selected from the group consisting of CAD and MI.
  • In one embodiment, the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a DNA sample from an individual to be assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of SEQ ID NO: 1 or 1186 of SEQ ID NO: 3. The presence of the reference nucleotide at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual having the variant nucleotide at one or more of these positions, or a lower likelihood of having severe symptomology. In a particular embodiment, the individual is an individual at risk for development of a vascular disease.
  • The invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with the presence of one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 in an individual. The method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein presence of one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the reference amino acid at one or more of said positions.
  • The invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 in an individual. The method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein presence of one or more of (a) an asparagine at amino acid position 700 of SEQ ID NO: 2; or (b) an alanine at amino acid position 387 of SEQ ID NO: 4 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the variant amino acid at one or more of said positions.
  • In one embodiment, the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a biological sample comprising the TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of SEQ ID NO: 2 or 387 of SEQ ID NO: 4. The presence of the reference amino acid at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual having the variant amino acid at one or more of these positions, or a lower likelihood of having severe symptomology. In a particular embodiment, the individual is an individual at risk for development of a vascular disease.
  • In another embodiment, the invention relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product, or active portion thereof, for use in the treatment of vascular diseases. The invention further relates to the use of agonists and antagonists of TSP-1 and TSP-4 activity for use in the treatment of vascular diseases. In a particular embodiment the vascular disease is selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism. In a preferred embodiment, the vascular disease is selected from the group consisting of CAD and MI.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1D show the reference nucleotide (SEQ ID NO: 1) and amino acid (SEQ ID NO: 2) sequences for TSP-1.
  • FIGS. 2A-2C show the reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4.
  • FIG. 3 shows a table providing detailed information about the SNPs identified herein. Column one shows the internal polymorphism identifier. Column two shows the accession number for the reference sequence in the TIGR database which can be found on the world wide web at tigr.org/tdb/hgi/searching/hgigreports.html. Column three shows the nucleotide position for the SNP site. Column four shows the gene in which the polymorphism was identified. Column five shows the polymorphic site and additional flanking sequence on each side of the polymorphism. Column six shows the type of mutation produced by the polymorphism. Columns seven and eight show the reference and alternate (variant) nucleotides, respectively, for the SNP. Columns nine and ten show the reference and alternate (variant) amino acids, respectively, encoded by the alleles of the gene.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a gene which comprises a single nucleotide polymorphism (SNP) at a specific location. The gene which includes the SNP has at least two alleles, referred to herein as the reference allele and the variant allele. The reference allele (prototypical or wild type allele) has been designated arbitrarily and typically corresponds to the nucleotide sequence of the gene which has been deposited with GenBank or TIGR under a given Accession number. The variant allele differs from the reference allele by one nucleotide at the site(s) identified in the Table. The present invention also relates to variant alleles of the described genes and to complements of the variant alleles. The invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
  • The invention further relates to portions of the variant alleles and portions of complements of the variant alleles which comprise (encompass) the site of the SNP and are at least 5 nucleotides in length. Portions can be, for example, 5-10, 5-15, 10-20, 5-25, 10-30, 10-50 or 10-100 bases long. For example, a portion of a variant allele which is 21 nucleotides in length includes the single nucleotide polymorphism (the nucleotide which differs from the reference allele at that site) and twenty additional nucleotides which flank the site in the variant allele. These nucleotides can be on one or both sides of the polymorphism. Polymorphisms which are the subject of this invention are defined in the Table with respect to the reference sequence deposited in GenBank or TIGR under the Accession number indicated. For example, the invention relates to a portion of a gene (e.g., AT3) having a nucleotide sequence as deposited in GenBank (e.g., U11270) comprising a single nucleotide polymorphism at a specific position (e.g., nucleotide 11918). The reference nucleotide for AT3 is shown in column 8, and the variant nucleotide is shown in column 9 of the Table. The nucleotide sequences of the invention can be double- or single-stranded.
  • The invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.
  • The invention further provides a method of analyzing a nucleic acid from an individual. The method determines which base is present at any one of the polymorphic sites shown in the Table and/or FIG. 3. Optionally, a set of bases occupying a set of the polymorphic sites shown in the Table and/or FIG. 3 is determined. This type of analysis can be performed on a number of individuals, who are tested for the presence of a disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymorphic site or sites in the individuals tested.
  • Thus, the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype. The method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymorphic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.
  • Definitions
  • A nucleic acid molecule or oligonucleotide can be DNA or RNA, and single- or double-stranded. Nucleic acid molecules and oligonucleotides can be naturally occurring or synthetic, but are typically prepared by synthetic means. Preferred nucleic acid molecules and oligonucleotides of the invention include segments of DNA, or their complements, which include any one of the polymorphic sites shown in the Table. The segments can be between 5 and 250 bases, and, in specific embodiments, are between 5-10, 5-20, 10-20, 10-50, 20-50 or 10-100 bases. For example, the segment can be 21 bases. The polymorphic site can occur within any position of the segment. The segments can be from any of the allelic forms of DNA shown in the Table.
  • As used herein, the terms “nucleotide”, “base” and “nucleic acid” are intended to be equivalent. The terms “nucleotide sequence”, “nucleic acid sequence”, “nucleic acid molecule” and “segment” are intended to be equivalent.
  • Hybridization probes are oligonucleotides which bind in a base-specific manner to a complementary strand of nucleic acid. Such probes include peptide nucleic acids, as described in Nielsen et al., Science 254, 1497-1500 (1991). Probes can be any length suitable for specific hybridization to the target nucleic acid sequence. The most appropriate length of the probe may vary depending upon the hybridization method in which it is being used; for example, particular lengths may be more appropriate for use in microfabricated arrays, while other lengths may be more suitable for use in classical hybridization methods. Such optimizations are known to the skilled artisan. Suitable probes and primers can range from about 5 nucleotides to about 30 nucleotides in length. For example, probes and primers can be 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 28 or 30 nucleotides in length. The probe or primer preferably overlaps at least one polymorphic site occupied by any of the possible variant nucleotides. The nucleotide sequence can correspond to the coding sequence of the allele or to the complement of the coding sequence of the allele.
  • As used herein, the term “primer” refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. The appropriate length of a primer depends on the intended use of the primer, but typically ranges from 15 to 30 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the template, but must be sufficiently complementary to hybridize with a template. The term primer site refers to the area of the target DNA to which a primer hybridizes. The term primer pair refers to a set of primers including a 5′ (upstream) primer that hybridizes with the 5′ end of the DNA sequence to be amplified and a 3′ (downstream) primer that hybridizes with the complement of the 3′ end of the sequence to be amplified.
  • As used herein, linkage describes the tendency of genes, alleles, loci or genetic markers to be inherited together as a result of their location on the same chromosome. It can be measured by percent recombination between the two genes, alleles, loci or genetic markers.
  • As used herein, polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. A polymorphic marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population. A polymorphic locus may be as small as one base pair. Polymorphic markers include restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats, simple sequence repeats, and insertion elements such as Alu. The first identified allelic form is arbitrarily designated as the reference form and other allelic forms are designated as alternative or variant alleles. The allelic form occurring most frequently in a selected population is sometimes referred to as the wildtype form. Diploid organisms may be homozygous or heterozygous for allelic forms. A diallelic or biallelic polymorphism has two forms. A triallelic polymorphism has three forms.
  • Work described herein pertains to the resequencing of large numbers of genes in a large number of individuals to identify polymorphisms which can predispose individuals to disease. For example, polymorphisms in genes which are expressed in liver may predispose individuals to disorders of the liver. By altering amino acid sequence, SNPs may alter the function of the encoded proteins. The discovery of the SNP facilitates biochemical analysis of the variants and the development of assays to characterize the variants and to screen for pharmaceutical that would interact directly with on or another form of the protein. SNPs (including silent SNPs) also enable the development of specific DNA, RNA, or protein-based diagnostics that detect the presence or absence of the polymorphism in particular conditions.
  • A single nucleotide polymorphism occurs at a polymorphic site occupied by a single nucleotide, which is the site of variation between allelic sequences. The site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of the populations).
  • A single nucleotide polymorphism usually arises due to substitution of one nucleotide for another at the polymorphic site. A transition is the replacement of one purine by another purine or one pyrimidine by another pyrimidine. A transversion is the replacement of a purine by a pyrimidine or vice versa. Single nucleotide polymorphisms can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele. Typically the polymorphic site is occupied by a base other than the reference base. For example, where the reference allele contains the base “T” at the polymorphic site, the altered allele can contain a “C”, “G” or “A” at the polymorphic site.
  • The invention also relates to nucleic acid molecules which hybridize to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site. Hybridizations are usually performed under stringent conditions, for example, at a salt concentration of no more than 1 M and a temperature of at least 25° C. For example, conditions of 5×SSPE (750 mM NaCl, 50 mM NaPhosphate, 5 mM EDTA, pH 7.4) and a temperature of 25-30° C., or equivalent conditions, are suitable for allele-specific probe hybridizations. Equivalent conditions can be determined by varying one or more of the parameters given as an example, as known in the art, while maintaining a similar degree of identity or similarity between the target nucleotide sequence and the primer or probe used.
  • The invention also relates to nucleic acid molecules which share substantial sequence identity to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site. Particularly preferred are nucleic acid molecules and fragments which have at least about 60%, preferably at least about 70, 80 or 85%, more preferably at least about 90%, even more preferably at least about 95%, and most preferably at least about 98% identity with nucleic acid molecules described herein. The percent identity of two nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence). The nucleotides or amino acids at corresponding positions are then compared, and the percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=# of identical positions/total # of positions×100). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 60%, and even more preferably at least 70%, 80% or 90% of the length of the reference sequence. The actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm. A preferred, non-limiting example of such a mathematical algorithm is described in Karlin et al., Proc. Natl. Acad. Sci. USA, 90:5873-5877 (1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) as described in Altschul et al., Nucleic Acids Res., 25:389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., NBLAST) can be used. See the world wide web at ncbi.nlm.nih.gov. In one embodiment, parameters for sequence comparison can be set at score=100, wordlength=12, or can be varied (e.g., W=5 or W=20).
  • The term “isolated” is used herein to indicate that the material in question exists in a physical milieu distinct from that in which it occurs in nature. For example, an isolated nucleic acid of the invention may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs. In some instances, the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix. In other circumstance, the material may be purified to essential homogeneity, for example as determined by PAGE or column chromatography such as HPLC. Preferably, an isolated nucleic acid comprises at least about 50, 80 or 90 percent (on a molar basis) of all macromolecular species present.
  • I. Novel Polymorphisms of the Invention
  • Some of the novel polymorphisms of the invention are shown in the Table. Columns one and two show designations for the indicated polymorphism. Column three shows the Genbank or TIGR Accession number for the wild type (or reference) allele. Column four shows the location of the polymorphic site in the nucleic acid sequence with reference to the Genbank or TIGR sequence shown in column three. Column five shows common names for the gene in which the polymorphism is located. Column six shows the polymorphism and a portion of the 3′ and 5′ flanking sequence of the gene. Column seven shows the type of mutation; N, non-sense, S, silent, M, missense. Columns eight and nine show the reference and alternate nucleotides, respectively, at the polymorphic site. Columns ten and eleven show the reference and alternate amino acids, respectively, encoded by the reference and variant, respectively, alleles. Other novel polymorphisms of the invention are shown in FIG. 3.
  • II. Analysis of Polymorphisms
  • A. Preparation of Samples
  • Polymorphisms are detected in a target nucleic acid from an individual being analyzed. For assay of genomic DNA, virtually any biological sample (other than pure red blood cells) is suitable. For example, convenient tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, buccal, skin and hair. For assay of cDNA or mRNA, the tissue sample must be obtained from an organ in which the target nucleic acid is expressed. For example, if the target nucleic acid is a cytochrome P450, the liver is a suitable source.
  • Many of the methods described below require amplification of DNA from target samples. This can be accomplished by e.g., PCR. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, NY, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, et al., Academic Press, San Diego, Calif., 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Pat. No. 4,683,202.
  • Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)), and self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA, 87, 1874 (1990)) and nucleic acid based sequence amplification (NASBA). The latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
  • B. Detection of Polymorphisms in Target DNA
  • There are two distinct types of analysis of target DNA for detecting polymorphisms. The first type of analysis, sometimes referred to as de novo characterization, is carried out to identify polymorphic sites not previously characterized (i.e., to identify new polymorphisms). This analysis compares target sequences in different individuals to identify points of variation, i.e., polymorphic sites. By analyzing groups of individuals representing the greatest ethnic diversity among humans and greatest breed and species variety in plants and animals, patterns characteristic of the most common alleles/haplotypes of the locus can be identified, and the frequencies of such alleles/haplotypes in the population can be determined. Additional allelic frequencies can be determined for subpopulations characterized by criteria such as geography, race, or gender. The de novo identification of polymorphisms of the invention is described in the Examples section. The second type of analysis determines which form(s) of a characterized (known) polymorphism are present in individuals under test. There are a variety of suitable procedures, which are discussed in turn.
  • 1. Allele-Specific Probes
  • The design and use of allele-specific probes for analyzing polymorphisms is described by e.g., Saiki et al., Nature 324, 163-166 (1986); Dattagupta, EP 235,726, Saiki, WO 89/11548. Allele-specific probes can be designed that hybridize to a segment of target DNA from one individual but do not hybridize to the corresponding segment from another individual due to the presence of different polymorphic forms in the respective segments from the two individuals. Hybridization conditions should be sufficiently stringent that there is a significant difference in hybridization intensity between alleles, and preferably an essentially binary response, whereby a probe hybridizes to only one of the alleles. Some probes are designed to hybridize to a segment of target DNA such that the polymorphic site aligns with a central position (e.g., in a 15-mer at the 7 position; in a 16-mer, at either the 8 or 9 position) of the probe. This design of probe achieves good discrimination in hybridization between different allelic forms.
  • Allele-specific probes are often used in pairs, one member of a pair showing a perfect match to a reference form of a target sequence and the other member showing a perfect match to a variant form. Several pairs of probes can then be immobilized on the same support for simultaneous analysis of multiple polymorphisms within the same target sequence.
  • 2. Tiling Arrays
  • The polymorphisms can also be identified by hybridization to nucleic acid arrays, some examples of which are described in WO 95/11995. One form of such arrays is described in the Examples section in connection with de novo identification of polymorphisms. The same array or a different array can be used for analysis of characterized polymorphisms. WO 95/11995 also describes subarrays that are optimized for detection of a variant form of a precharacterized polymorphism. Such a subarray contains probes designed to be complementary to a second reference sequence, which is an allelic variant of the first reference sequence. The second group of probes is designed by the same principles as described in the Examples, except that the probes exhibit complementarity to the second reference sequence. The inclusion of a second group (or further groups) can be particularly useful for analyzing short subsequences of the primary reference sequence in which multiple mutations are expected to occur within a short distance commensurate with the length of the probes (e.g., two or more mutations within 9 to 21 bases).
  • 3. Allele-Specific Primers
  • An allele-specific primer hybridizes to a site on target DNA overlapping a polymorphism and only primes amplification of an allelic form to which the primer exhibits perfect complementarity. See Gibbs, Nucleic Acid Res. 17, 2427-2448 (1989). This primer is used in conjunction with a second primer which hybridizes at a distal site. Amplification proceeds from the two primers, resulting in a detectable product which indicates the particular allelic form is present. A control is usually performed with a second pair of primers, one of which shows a single base mismatch at the polymorphic site and the other of which exhibits perfect complementarity to a distal site. The single-base mismatch prevents amplification and no detectable product is formed. The method works best when the mismatch is included in the 3′-most position of the oligonucleotide aligned with the polymorphism because this position is most destabilizing to elongation from the primer (see, e.g., WO 93/22456).
  • 4. Direct-Sequencing
  • The direct analysis of the sequence of polymorphisms of the present invention can be accomplished using either the dideoxy chain termination method or the Maxam-Gilbert method (see Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd Ed., CSHP, New York 1989); Zyskind et al., Recombinant DNA Laboratory Manual, (Acad. Press, 1988)).
  • 5. Denaturing Gradient Gel Electrophoresis
  • Amplification products generated using the polymerase chain reaction can be analyzed by the use of denaturing gradient gel electrophoresis. Different alleles can be identified based on the different sequence-dependent melting properties and electrophoretic migration of DNA in solution. Erlich, ed., PCR Technology, Principles and Applications for DNA Amplification, (W. H. Freeman and Co, New York, 1992), Chapter 7.
  • 6. Single-Strand Conformation Polymorphism Analysis
  • Alleles of target sequences can be differentiated using single-strand conformation polymorphism analysis, which identifies base differences by alteration in electrophoretic migration of single stranded PCR products, as described in Orita et al., Proc. Nat. Acad. Sci. 86, 2766-2770 (1989). Amplified PCR products can be generated as described above, and heated or otherwise denatured, to form single stranded amplification products. Single-stranded nucleic acids may refold or form secondary structures which are partially dependent on the base sequence. The different electrophoretic mobilities of single-stranded amplification products can be related to base-sequence differences between alleles of target sequences.
  • 7. Single-Base Extension
  • An alternative method for identifying and analyzing polymorphisms is based on single-base extension (SBE) of a fluorescently-labeled primer coupled with fluorescence resonance energy transfer (FRET) between the label of the added base and the label of the primer. Typically, the method, such as that described by Chen et al., (PNAS 94:10756-61 (1997), incorporated herein by reference) uses a locus-specific oligonucleotide primer labeled on the 5′ terminus with 5-carboxyfluorescein (FAM). This labeled primer is designed so that the 3′ end is immediately adjacent to the polymorphic site of interest. The labeled primer is hybridized to the locus, and single base extension of the labeled primer is performed with fluorescently labeled dideoxyribonucleotides (ddNTPs) in dye-terminator sequencing fashion, except that no deoxyribonucleotides are present. An increase in fluorescence of the added ddNTP in response to excitation at the wavelength of the labeled primer is used to infer the identity of the added nucleotide.
  • III. Methods of Use
  • After determining polymorphic form(s) present in an individual at one or more polymorphic sites, this information can be used in a number of methods.
  • A. Forensics
  • Determination of which polymorphic forms occupy a set of polymorphic sites in an individual identifies a set of polymorphic forms that distinguishes the individual. See generally National Research Council, The Evaluation of Forensic DNA Evidence (Eds. Pollard et al., National Academy Press, DC, 1996). The more sites that are analyzed, the lower the probability that the set of polymorphic forms in one individual is the same as that in an unrelated individual. Preferably, if multiple sites are analyzed, the sites are unlinked. Thus, polymorphisms of the invention are often used in conjunction with polymorphisms in distal genes. Preferred polymorphisms for use in forensics are biallelic because the population frequencies of two polymorphic forms can usually be determined with greater accuracy than those of multiple polymorphic forms at multi-allelic loci.
  • The capacity to identify a distinguishing or unique set of forensic markers in an individual is useful for forensic analysis. For example, one can determine whether a blood sample from a suspect matches a blood or other tissue sample from a crime scene by determining whether the set of polymorphic forms occupying selected polymorphic sites is the same in the suspect and the sample. If the set of polymorphic markers does not match between a suspect and a sample, it can be concluded (barring experimental error) that the suspect was not the source of the sample. If the set of markers does match, one can conclude that the DNA from the suspect is consistent with that found at the crime scene. If frequencies of the polymorphic forms at the loci tested have been determined (e.g., by analysis of a suitable population of individuals), one can perform a statistical analysis to determine the probability that a match of suspect and crime scene sample would occur by chance.
  • p(ID) is the probability that two random individuals have the same polymorphic or allelic form at a given polymorphic site. In biallelic loci, four genotypes are possible: AA, AB, BA, and BB. If alleles A and B occur in a haploid genome of the organism with frequencies x and y, the probability of each genotype in a diploid organism is (see WO 95/12607):
      • Homozygote: p(AA)=x2
      • Homozygote: p(BB)=y2=(1−x)2
      • Single Heterozygote: p(AB)=p(BA)=xy=x(1−x)
      • Both Heterozygotes: p(AB+BA)=2xy=2x(1−x)
  • The probability of identity at one locus (i.e, the probability that two individuals, picked at random from a population will have identical polymorphic forms at a given locus) is given by the equation:
    p(ID)=(x 2)2+(2xy)2+(y2)2.
  • These calculations can be extended for any number of polymnorphic forms at a given locus. For example, the probability of identity p(ID) for a 3-allele system where the alleles have the frequencies in the population of x, y and z, respectively, is equal to the sum of the squares of the genotype frequencies:
    p(ID)=x 4+(2xy)2+(2yz)2+(2xz)2 +z 4 +y 4
  • In a locus of n alleles, the appropriate binomial expansion is used to calculate p(ID) and p(exc).
  • The cumulative probability of identity (cum p(ID)) for each of multiple unlinked loci is determined by multiplying the probabilities provided by each locus.
    cum p(ID)=p(ID1)p(ID2)p(ID3) . . . p(IDn)
  • The cumulative probability of non-identity for n loci (i.e. the probability that two random individuals will be different at 1 or more loci) is given by the equation:
    cump(nonID)=1−cump(ID).
  • If several polymorphic loci are tested, the cumulative probability of non-identity for random individuals becomes very high (e.g., one billion to one). Such probabilities can be taken into account together with other evidence in determining the guilt or innocence of the suspect.
  • B. Paternity Testing
  • The object of paternity testing is usually to determine whether a male is the father of a child. In most cases, the mother of the child is known and thus, the mother's contribution to the child's genotype can be traced. Paternity testing investigates whether the part of the child's genotype not attributable to the mother is consistent with that of the putative father. Paternity testing can be performed by analyzing sets of polymorphisms in the putative father and the child.
  • If the set of polymorphisms in the child attributable to the father does not match the set of polymorphisms of the putative father, it can be concluded, barring experimental error, that the putative father is not the real father. If the set of polymorphisms in the child attributable to the father does match the set of polymorphisms of the putative father, a statistical calculation can be performed to determine the probability of coincidental match.
  • The probability of parentage exclusion (representing the probability that a random male will have a polymorphic form at a given polymorphic site that makes him incompatible as the father) is given by the equation (see WO 95/12607):
    p(exc)=xy(1−xy)
    where x and y are the population frequencies of alleles A and B of a biallelic polymorphic site.
  • (At a triallelic site p(exc)=xy(1−xy)+yz(1−yz)+xz(1−xz)+3xyz(1−xyz))), where x, y and z and the respective population frequencies of alleles A, B and C).
  • The probability of non-exclusion is
    p(non-exc)=1−p(exc)
  • The cumulative probability of non-exclusion (representing the value obtained when n loci are used) is thus:
    cump(non-exc)=p(non-exc1)p(non-exc2)p(non-exc3) . . . p(non-excn)
  • The cumulative probability of exclusion for n loci (representing the probability that a random male will be excluded)
    cump(exc)=1−cump(non-exc).
  • If several polymorphic loci are included in the analysis, the cumulative probability of exclusion of a random male is very high. This probability can be taken into account in assessing the liability of a putative father whose polymorphic marker set matches the child's polymorphic marker set attributable to his/her father.
  • C. Correlation of Polymorphisms with Phenotypic Traits
  • The polymorphisms of the invention may contribute to the phenotype of an organism in different ways. Some polymorphisms occur within a protein coding sequence and contribute to phenotype by affecting protein structure. The effect may be neutral, beneficial or detrimental, or both beneficial and detrimental, depending on the circumstances. For example, a heterozygous sickle cell mutationi confers resistance to malaria, but a homozygous sickle cell mutation is usually lethal. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on replication, transcription, and translation. A single polymorphism may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by polymorphisms in different genes. Further, some polymorphisms predispose an individual to a distinct mutation that is causally related to a certain phenotype.
  • Phenotypic traits include diseases that have known but hitherto unmapped genetic components (e.g., agammaglobulimenia, diabetes insipidus, Lesch-Nyhan syndrome, muscular dystrophy, Wiskott-Aldrich syndrome, Fabry's disease, familial hypercholesterolemia, polycystic kidney disease, hereditary spherocytosis, von Willebrand's disease, tuberous sclerosis, hereditary hemorrhagic telangiectasia, familial colonic polyposis, Ehlers-Danlos syndrome, osteogenesis imperfecta, and acute intermittent porphyria). Phenotypic traits also include symptoms of, or susceptibility to, multifactorial diseases of which a component is or may be genetic, such as autoimmune diseases, inflammation, cancer, diseases of the nervous system, and infection by pathogenic microorganisms. Some examples of autoimmune diseases include rheumatoid arthritis, multiple sclerosis, diabetes (insulin-dependent and non-independent), systemic lupus erythematosus and Graves disease. Some examples of cancers include cancers of the bladder, brain, breast, colon, esophagus, kidney, leukemia, liver, lung, oral cavity, ovary, pancreas, prostate, skin, stomach and uterus. Phenotypic traits also include characteristics such as longevity, appearance (e.g., baldness, obesity), strength, speed, endurance, fertility, and susceptibility or receptivity to particular drugs or therapeutic treatments.
  • The correlation of one or more polymorphisms with phenotypic traits can be facilitated by knowledge of the gene product of the wild type (reference) gene. The genes in which cSNPs of the present invention have been identified are genes which have been previously sequenced and characterized in one of their allelic forms.
  • Correlation is performed for a population of individuals who have been tested for the presence or absence of a phenotypic trait of interest and for polymorphic markers sets. To perform such analysis, the presence or absence of a set of polymorphisms (i.e. a polymorphic set) is determined for a set of the individuals, some of whom exhibit a particular trait, and some of which exhibit lack of the trait. The alleles of each polymorphism of the set are then reviewed to determine whether the presence or absence of a particular allele is associated with the trait of interest. Correlation can be performed by standard statistical methods such as a κ-squared test and statistically significant correlations between polymorphic form(s) and phenotypic characteristics are noted. For example, it might be found that the presence of allele A1 at polymorphism A correlates with heart disease. As a further example, it might be found that the combined presence of allele A1 at polymorphism A and allele B1 at polymorphism B correlates with increased milk production of a farm animal.
  • Such correlations can be exploited in several ways. In the case of a strong correlation between a set of one or more polymorphic forms and a disease for which treatment is available, detection of the polymorphic form set in a human or animal patient may justify immediate administration of treatment, or at least the institution of regular monitoring of the patient. Detection of a polymorphic form correlated with serious disease in a couple contemplating a family may also be valuable to the couple in their reproductive decisions. For example, the female partner might elect to undergo in vitro fertilization to avoid the possibility of transmitting such a polymorphism from her husband to her offspring. In the case of a weaker, but still statistically significant correlation between a polymorphic set and human disease, immediate therapeutic intervention or monitoring may not be justified. Nevertheless, the patient can be motivated to begin simple life-style changes (e.g., diet, exercise) that can be accomplished at little cost to the patient but confer potential benefits in reducing the risk of conditions to which the patient may have increased susceptibility by virtue of variant alleles. Identification of a polymorphic set in a patient correlated with enhanced receptiveness to one of several treatment regimes for a disease indicates that this treatment regime should be followed.
  • For animals and plants, correlations between characteristics and phenotype are useful for breeding for desired characteristics. For example, Beitz et al., U.S. Pat. No. 5,292,639 discuss use of bovine mitochondrial polymorphisms in a breeding program to improve milk production in cows. To evaluate the effect of mtDNA D-loop sequence polymorphism on milk production, each cow was assigned a value of 1 if variant or 0 if wildtype with respect to a prototypical mitochondrial DNA sequence at each of 17 locations considered. Each production trait was analyzed individually with the following animal model:
    Y ijkpn =μ+YS i +P j +X k1+ . . . β17 +PE n +a n +e p
    where Yijknp is the milk, fat, fat percentage, SNF, SNF percentage, energy concentration, or lactation energy record; μ is an overall mean; YSi is the effect common to all cows calving in year-season; Xk is the effect common to cows in either the high or average selection line; β1 to β17 are the binomial regressions of production record on mtDNA D-loop sequence polymorphisms; PEn is permanent environmental effect common to all records of cow n; an is effect of animal n and is composed of the additive genetic contribution of sire and dam breeding values and a Mendelian sampling effect; and ep is a random residual. It was found that eleven of seventeen polymorphisms tested influenced at least one production trait. Bovines having the best polymorphic forms for milk production at these eleven loci are used as parents for breeding the next generation of the herd.
  • D. Genetic Mapping of Phenotypic Traits
  • The previous section concerns identifying correlations between phenotypic traits and polymorphisms that directly or indirectly contribute to those traits. The present section describes identification of a physical linkage between a genetic locus associated with a trait of interest and polymorphic markers that are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and co-segregate with it. Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander et al., Proc. Natl. Acad. Sci. (USA) 83, 7353-7357 (1986); Lander et al., Proc. Natl. Acad. Sci. (USA) 84, 2363-2367 (1987); Donis-Keller et al., Cell 51, 319-337 (1987); Lander et al., Genetics 121, 185-199 (1989)). Genes localized by linkage can be cloned by a process known as directional cloning. See Wainwright, Med. J. Australia 159, 170-174 (1993); Collins, Nature Genetics 1, 3-6 (1992).
  • Linkage studies are typically performed on members of a family. Available members of the family are characterized for the presence or absence of a phenotypic trait and for a set of polymorphic markers. The distribution of polymorphic markers in an informative meiosis is then analyzed to determine which polymorphic markers co-segregate with a phenotypic trait. See, e.g., Kerem et al., Science 245, 1073-1080 (1989); Monaco et al., Nature 316, 842 (1985); Yamoka et al., Neurology 40, 222-226 (1990); Rossiter et al., FASEB Journal 5, 21-27 (1991).
  • Linkage is analyzed by calculation of LOD (log of the odds) values. A lod value is the relative likelihood of obtaining observed segregation data for a marker and a genetic locus when the two are located at a recombination fraction θ, versus the situation in which the two are not linked, and thus segregating independently (Thompson & Thompson, Genetics in Medicine (5th ed, W. B. Saunders Company, Philadelphia, 1991); Strachan, “Mapping the human genome” in The Human Genome (BIOS Scientific Publishers Ltd, Oxford), Chapter 4). A series of likelihood ratios are calculated at various recombination fractions (θ), ranging from θ=0.0 (coincident loci) to θ=0.50 (unlinked). Thus, the likelihood at a given value of θ is: probability of data if loci linked at θ to probability of data if loci unlinked. The computed likelihoods are usually expressed as the log10 of this ratio (i.e., a lod score). For example, a lod score of 3 indicates 1000:1 odds against an apparent observed linkage being a coincidence. The use of logarithms allows data collected from different families to be combined by simple addition. Computer programs are available for the calculation of lod scores for differing values of θ (e.g., LIPED, MLINK (Lathrop, Proc. Nat. Acad. Sci. (USA) 81, 3443-3446 (1984)). For any particular lod score, a recombination fraction may be determined from mathematical tables. See Smith et al., Mathematical tables for research workers in human genetics (Churchill, London, 1961); Smith, Ann. Hum. Genet. 32, 127-150 (1968). The value of θ at which the lod score is the highest is considered to be the best estimate of the recombination fraction.
  • Positive lod score values suggest that the two loci are linked, whereas negative values suggest that linkage is less likely (at that value of θ) than the possibility that the two loci are unlinked. By convention, a combined lod score of +3 or greater (equivalent to greater than 1000:1 odds in favor of linkage) is considered definitive evidence that two loci are linked. Similarly, by convention, a negative lod score of −2 or less is taken as definitive evidence against linkage of the two loci being compared. Negative linkage data are useful in excluding a chromosome or a segment thereof from consideration. The search focuses on the remaining non-excluded chromosomal locations.
  • IV. Modified Polypeptides and Gene Sequences
  • The invention further provides variant forms of nucleic acids and corresponding proteins. The nucleic acids comprise one of the sequences described in the Table, column 5, in which the polymorphic position is occupied by one of the alternative bases for that position. Some nucleic acids encode full-length variant forms of proteins. Similarly, variant proteins have the prototypical amino acid sequences encoded by nucleic acid sequences shown in the Table, column 5, (read so as to be in-frame with the full-length coding sequence of which it is a component) except at an amino acid encoded by a codon including one of the polymorphic positions shown in the Table. That position is occupied by the amino acid coded by the corresponding codon in any of the alternative forms shown in the Table.
  • Variant genes can be expressed in an expression vector in which a variant gene is operably linked to a native or other promoter. Usually, the promoter is a eukaryotic promoter for expression in a mammalian cell. The transcription regulation sequences typically include a heterologous promoter and optionally an enhancer which is recognized by the host. The selection of an appropriate promoter, for example trp, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected. Commercially available expression vectors can be used. Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.
  • The means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, supra. A wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as E. coli, yeast, filamentous fuigi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like. As used herein, “gene product” includes mRNA, peptide and protein products.
  • The protein may be isolated by conventional means of protein biochemistry and purification to obtain a substantially pure product, i.e., 80, 95 or 99% free of cell component contaminants, as described in Jacoby, Methods in Enzymology Volume 104, Academic Press, New York (1984); Scopes, Protein Purification, Principles and Practice, 2nd Edition, Springer-Verlag, New York (1987); and Deutscher (ed), Guide to Protein Purification, Methods in Enzymology, Vol. 182 (1990). If the protein is secreted, it can be isolated from the supernatant in which the host cell is grown. If not secreted, the protein can be isolated from a lysate of the host cells.
  • The invention further provides transgenic nonhuman animals capable of expressing an exogenous variant gene and/or having one or both alleles of an endogenous variant gene inactivated. Expression of an exogenous variant gene is usually achieved by operably linking the gene to a promoter and optionally an enhancer, and microinjecting the construct into a zygote. See Hogan et al., “Manipulating the Mouse Embryo, A Laboratory Manual,” Cold Spring Harbor Laboratory. Inactivation of endogenous variant genes can be achieved by forming a transgene in which a cloned variant gene is inactivated by insertion of a positive selection marker. See Capecchi, Science 244, 1288-1292 (1989). The transgene is then introduced into an embryonic stem cell, where it undergoes homologous recombination with an endogenous variant gene. Mice and other rodents are preferred animals. Such animals provide useful drug screening systems.
  • In addition to substantially full-length polypeptides expressed by variant genes, the present invention includes biologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides. Biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding. Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.
  • Polyclonal and/or monoclonal antibodies that specifically bind to variant gene products but not to corresponding prototypical gene products are also provided. Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof. Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies, Principles and Practice (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.
  • V. Kits
  • The invention further provides kits comprising at least one allele-specific oligonucleotide as described herein. Often, the kits contain one or more pairs of allele-specific oligonucleotides hybridizing to different forms of a polymorphism. In some kits, the allele-specific oligonucleotides are provided immobilized to a substrate. For example, the same substrate can comprise allele-specific oligonucleotide probes for detecting at least 10, 100 or all of the polymorphisms shown in the Table. Optional additional components of the kit include, for example, restriction enzymes, reverse-transcriptase or polymerase, the substrate nucleoside triphosphates, means used to label (for example, an avidin-enzyme conjugate and enzyme substrate and chromogen if the label is biotin), and the appropriate buffers for reverse transcription, PCR, or hybridization reactions. Usually, the kit also contains instructions for carrying out the methods.
  • The thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation. Thrombospondins (also known as thrombin sensitive proteins or TSPs) are large molecular weight glycoproteins composed of three identical disulfide-linked polypeptide chains. TSPs are stored in the alpha-granules of platelets and secreted by a variety of mesenchymal and epithelial cells (Majack et al., Cell Membrane 3:57-77 (1987)). Platelets secrete TSPs when activated in the blood by such physiological agonists such as thrombin. TSPs have lectin properties and a broad function in the regulation of fibrinolysis and as a component of the ECM, and are one of a group of ECM proteins which have adhesive properties. TSPs bind to fibronectin and fibrinogen (Lahav et al., Eur J Biochem 145:151-6 (1984)), and these proteins are known to be involved in platelet adhesion to substratum and platelet aggregation (Leung, J Clin Invest 74:1764-1772 (1986)).
  • Recent work has implicated TSPs in response of cells to growth factors. Submitogenic doses of PDGF induce a rapid but transitory, increase in TSP synthesis and secretion by rat aortic smooth muscle cells (Majack et al., J Biol Chem 101: 1059-70 (1985)). PDGF responsiveness to TSP synthesis in glial cells has also been shown (Asch et al., Proc Natl Acad Sci 83:2904-8 (1986)). TSP mRNA levels rise rapidly in response to PDGF (Majack et al., J. Biol Chem 262:8821-5 (1987)). TSPs act synergistically with epidermal growth factor to increase DNA synthesis in smooth muscle cells (Majack et al., Proc Natl Acad Sci 83:9050-4 (1986)), and monoclonal antibodies to TSPs inhibit smooth muscle cell proliferation (Majack et al., J Biol Chem 106:415-22 (1988)). TSPs modulate local adhesions in endothelial cells, and TSPs, particularly TSP-1 primarily derived from platelet granules, are known to be an important activator of transforming growth factor beta-1 (TGFB-1) (Crawford et al., Cell 93:1159 (1998)) and appear to be a potential link between platelet-thrombosis and development of atherosclerosis.
  • To determine pivotal genes associated with premature coronary artery disease, we analyzed DNA from 347 patients with MI or coronary revascularization before age 40 (men) or 45 (women) and 422 general population controls. Cases were drawn (one per family) from a retrospective collection of sibling pairs with premature CAD. Controls were ascertained through random-digit dialing. Both cases and controls were Caucasian. A complete database of phenotypic and laboratory variables for the affected patients afforded logistic regression to control for age, diabetes, body mass index, gender.
  • Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI. For CAD, 148 of 347 patients carried at least one copy of the TSP-4 variant compared with 142 of 422 control subjects; adjusted odds ratio 1.47, p=0.01. For premature MI, the association was even stronger: 91 of 187 cases vs. 142 of 422 controls had the variant; adjusted odds ratio 2.08, p=0.0003. The TSP-1 SNP was rare. Nonetheless, homozygosity for the variant allele gave an adjusted odds ratio of 9.5, p=0.04.
  • Specific reference nucleotide (SEQ ID NO: 1) and amino acid (SEQ ID NO: 2) sequences for TSP-1 are shown in FIGS. 1A-1D. Specific reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4 are shown in FIGS. 2A-2C. It is understood that the invention is not limited by these exemplified reference sequences, as variants of these sequences which differ at locations other than the SNP sites identified herein can also be utilized. The skilled artisan can readily determine the SNP sites in these other reference sequences which correspond to the SNP sites identified herein by aligning the sequence of interest with the reference sequences specifically disclosed herein, and programs for performing such alignments are commercially available. For example, the ALIGN program in the GCG software package can be used, utilizing a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4, for example.
  • Two SNPs have been specifically studied as described herein. The first (G334u4) is a change from A (reference nucleotide) to G (alternate or variant nucleotide) at nucleotide position 2210 of the nucleic acid sequence of TSP—I (FIGS. 1A-1D), resulting in a missense amino acid mutation from asparagine (reference) to serine (alternate) at amino acid 700. The second SNP (G355u2) is a change from G (reference) to C (alternate) at nucleotide position 1186 of the nucleic acid sequence of TSP-4 (FIGS. 2A-2C), resulting in a missense amino acid alteration from alanine (reference) to proline (alternate) at amino acid 387. With respect to the G355u2 SNP, individuals with CAD carried at least one copy of the variant “C” allele more frequently than control individuals (43% as compared with 34%). With respect to the G355u2 SNP, individuals with MI carried at least one copy of the variant “C” allele more frequently than control individuals (49% as compared with 34%). With respect to the G334u4 SNP, individuals with CAD carried two copies of the variant “G” allele more frequently than control individuals (1.7% as compared with 0.2%). With respect to the G334u4 SNP, individuals with MI carried two copies of the variant “G” allele more frequently than control individuals (2% as compared with 0.2%).
  • As used herein, the term “polymorphism” refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. A polymorphic marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population. A polymorphic locus may be as small as one base pair, in which case it is referred to as a single nucleotide polymorphism (SNP).
  • Thus, the invention relates to a method for predicting the likelihood that an individual will have a vascular disease, or for aiding in the diagnosis of a vascular disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a DNA sample from an individual to be assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of the TSP-1 gene or 1186 of the TSP-4 gene. In a preferred embodiment, the nucleotides present at both of these nucleotide positions are determined. In one embodiment the TSP-1 gene has the nucleotide sequence of SEQ ID NO: 1 and the TSP-4 gene has the nucleotide sequence of SEQ ID NO: 3. The presence of one or more of a G (the variant nucleotide) at position 2210 of SEQ ID NO: 1 or a C (the variant nucleotide) at position 1186 of SEQ ID NO: 1186 indicates that the individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference nucleotide at one or more of these positions. Conversely, the presence of one or more of an A (the reference nucleotide) at position 2210 of SEQ ID NO: 1 or a G (the reference nucleotide) at position 1186 of SEQ ID NO: 3 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease than if that individual had the variant nucleotide at one or more of these positions.
  • In a particular embodiment, the individual is an individual at risk for development of a vascular disease. In another embodiment the individual exhibits clinical symptomology associated with a vascular disease. In one embodiment, the individual has been clinically diagnosed as having a vascular disease. Vascular diseases include, but are not limited to, atherosclerosis, coronary heart disease, myocardial infarction (MI), stroke, peripheral vascular diseases, venous thromboembolism and puhnonary embolism. In preferred embodiments, the vascular disease is CAD or MI.
  • The genetic material to be assessed can be obtained from any nucleated cell from the individual. For assay of genomic DNA, virtually any biological sample (other than pure red blood cells) is suitable. For example, convenient tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, skin and hair. For assay of cDNA or mRNA, the tissue sample must be obtained from a tissue or organ in which the target nucleic acid is expressed.
  • Many of the methods described herein require amplification of DNA from target samples. This can be accomplished by e.g., PCR. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, NY, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, et al., Academic Press, San Diego, Calif., 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Pat. No. 4,683,202.
  • Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)), and self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA, 87, 1874 (1990)) and nucleic acid based sequence amplification (NASBA). The latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
  • The nucleotide which occupies the polymorphic site of interest (e.g., nucleotide position 2210 in TSP-1 and/or nucleotide position 1186 in TSP-4) can be identified by a variety of methods, such as Southern analysis of genomic DNA; direct mutation analysis by restriction enzyme digestion; Northern analysis of RNA; denaturing high pressure liquid chromatography (DHPLC); gene isolation and sequencing; hybridization of an allele-specific oligonucleotide with amplified gene products; single base extension (SBE). In a preferred embodiment, determination of the allelic form of TSP is carried out using SBE-FRET methods as described herein, or using chip-based oligonucleotide arrays as described herein.
  • The invention also relates to a method for predicting the likelihood that an individual will have a vascular disease, or for aiding in the diagnosis of a vascular disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a biological sample comprising TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of the TSP-1 gene product (e.g., as exemplified by SEQ ID NO: 2) or 387 of the TSP-4 gene product (e.g., as exemplified by SEQ ID NO: 4). In a preferred embodiment, the amino acids present at both of these amino acid positions are determined. As used herein, the term “relevant portion” of the TSP-1 and TSP-4 proteins is intended to encompass any portion of the protein which comprises the polymorphic amino acid positions. The presence of one or more of a serine (the variant amino acid) at position 700 of SEQ ID NO: 2, or a proline (the variant amino acid) at position 387 of SEQ ID NO: 4 indicates that the individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference amino acid at one or more of these positions. Conversely, the presence of one or more of an asparagine (the reference amino acid) at position 700 of SEQ ID NO: 2, or an alanine (the reference amino acid) at position 387 of SEQ ID NO: 4 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease, than if that individual had the varaint amino acid at one or more of these positions.
  • In a particular embodiment, the individual is an individual at risk for development of a vascular disease. In another embodiment the individual exhibits clinical symptomology associated with a vascular disease. In one embodiment, the individual has been clinically diagnosed as having a vascular disease.
  • In this embodiment of the invention, the biological sample contains protein molecules from the test subject. In vitro techniques for detection of protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. Furthermore, in vivo techniques for detection of protein include introducing into a subject a labeled anti-protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Polyclonal and/or monoclonal antibodies that specifically bind to variant gene products but not to corresponding reference gene products, and vice versa, are also provided. Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof comprising the variant portion. Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies, Principles and Practice (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.
  • The polymorphisms of the invention may be associated with vascular disease in different ways. The polymorphisms may exert phenotypic effects indirectly via influence on replication, transcription, and translation. Additionally, the described polymorphisms may predispose an individual to a distinct mutation that is causally related to a certain phenotype, such as susceptibility or resistance to vascular disease and related disorders. The discovery of the polymorphisms and their correlation with CAD and MI facilitates biochemical analysis of the variant and reference forms and the development of assays to characterize the variant and reference forms and to screen for pharmaceutical agents that interact directly with one or another form of the protein.
  • Alternatively, these particular polymorphisms may belong to a group of two or more polymorphisms in the TSP gene(s) which contributes to the presence, absence or severity of vascular disease. An assessment of other polymorphisms within the TSP gene(s) can be undertaken, and the separate and combined effects of these polymorphisms, as well as alternations in other, distinct genes, on the vascular disease phenotype can be assessed.
  • Correlation between a particular phenotype, e.g., the CAD or MI phenotype, and the presence or absence of a particular allele is performed for a population of individuals who have been tested for the presence or absence of the phenotype. Correlation can be performed by standard statistical methods such as a Chi-squared test and statistically significant correlations between polymorphic form(s) and phenotypic characteristics are noted. This correlation can be exploited in several ways. In the case of a strong correlation between a particular polymorphic form, e.g., the variant allele for TSP-1 and/or TSP-4, and a disease for which treatment is available, detection of the polymorphic form in an individual may justify immediate administration of treatment, or at least the institution of regular monitoring of the individual. Detection of a polymorphic form correlated with a disorder in a couple contemplating a family may also be valuable to the couple in their reproductive decisions. For example, the female partner might elect to undergo in vitro fertilization to avoid the possibility of transmitting such a polymorphism from her husband to her offspring. In the case of a weaker, but still statistically significant correlation between a polymorphic form and a particular disorder, immediate therapeutic intervention or monitoring may not be justified. Nevertheless, the individual can be motivated to begin simple life-style changes (e.g., diet modification, therapy or counseling) that can be accomplished at little cost to the individual but confer potential benefits in reducing the risk of conditions to which the individual may have increased susceptibility by virtue of the particular allele. Furthermore, identification of a polymorphic form correlated with enhanced receptiveness to one of several treatment regimes for a disorder indicates that this treatment regimen should be followed for the individual in question.
  • Furthermore, it may be possible to identify a physical linkage between a genetic locus associated with a trait of interest (e.g., CAD or MI) and polymorphic markers that are or are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and co-segregate with it. Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander et al., Proc. Natl. Acad. Sci. (USA) 83, 7353-7357 (1986); Lander et al., Proc. Natl. Acad. Sci. (USA) 84, 2363-2367 (1987); Donis-Keller et al., Cell 51, 319-337 (1987); Lander et al., Genetics 121, 185-199 (1989)). Genes localized by linkage can be cloned by a process known as directional cloning. See Wainwright, Med. J Australia 159, 170-174 (1993); Collins, Nature Genetics 1, 3-6 (1992). Linkage studies are discussed in more detail above.
  • In another embodiment, the invention relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product for use in the treatment of vascular disease, e.g., CAD and MI. As used herein, a reference TSP gene product is intended to mean gene products which are encoded by the reference allele of the TSP gene. In addition to substantially full-length polypeptides expressed by the genes, the present invention includes biologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides. Biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding. Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.
  • For instance, the polypeptide or protein, or fragment thereof, of the present invention can be formulated with a physiologically acceptable medium to prepare a pharmaceutical composition. The particular physiological medium may include, but is not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions. The optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to medicinal chemists, and will depend on the ultimate pharmaceutical formulation desired. Methods of introduction of exogenous peptides at the site of treatment include, but are not limited to, intradernal, intramuscular, intraperitoneal, intravenous, subcutaneous, oral and intranasal. Other suitable methods of introduction can also include rechargeable or biodegradable devices and slow release polymeric devices. The pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents and treatment regimens.
  • The invention further pertains to compositions, e.g., vectors, comprising a nucleotide sequence encoding reference or variant TSP-1 and/or TSP-4 gene products. For example, reference genes can be expressed in an expression vector in which a reference gene is operably linked to a native or other promoter. Usually, the promoter is a eukaryotic promoter for expression in a mammalian cell. The transcription regulation sequences typically include a heterologous promoter and optionally an enhancer which is recognized by the host. The selection of an appropriate promoter, for example trp, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected. Commercially available expression vectors can be used. Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.
  • The means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, supra. A wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as E. coli, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like.
  • It is also contemplated that cells can be engineered to express the reference allele of the invention by gene therapy methods. For example, DNA encoding the reference TSP gene product, or an active fragment or derivative thereof, can be introduced into an expression vector, such as a viral vector, and the vector can be introduced into appropriate cells in an animal. In such a method, the cell population can be engineered to inducibly or constitutively express active reference TSP gene product. In a preferred embodiment, the vector is delivered to the bone marrow, for example as described in Corey et al. (Science 244:1275-1281 (1989)).
  • The invention further relates to the use of compositions (i.e., agonists) which enhance or increase the activity of the reference (or variant) TSP (e.g., TSP-1 or TSP-4) gene product, or a functional portion thereof, for use in the treatment of vascular disease. The invention also relates to the use of compositions (i.e., antagonists) which reduce or decrease the activity of the variant (or reference) TSP (e.g., TSP-1 or TSP-4) gene product, or a functional portion thereof, for use in the treatment of vascular disease.
  • The invention also relates to constructs which comprise a vector into which a sequence of the invention has been inserted in a sense or antisense orientation. For example, a vector comprising a nucleotide sequence which is antisense to the variant TSP-1 or TSP-4 allele may be used as an antagonist of the activity of the TSP-1 or TSP-4 variant allele. Alternatively, a vector comprising a nucleotide sequence of the TSP-1 or TSP-4 reference allele may be used therapeutically to treat vascular diseases. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) that serve equivalent functions.
  • Preferred recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term “regulatory sequence” is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
  • The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein. The recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as E. coli, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, a nucleic acid of the invention can be expressed in bacterial cells (e.g., E. coli), insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.
  • A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a polypeptide of the invention. Accordingly, the invention further provides methods for producing a polypeptide using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of the invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.
  • The host cells of the invention can also be used to produce nonhuman transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a nucleic acid of the invention has been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous nucleotide sequences have been introduced into their genome or homologous recombinant animals in which endogenous nucleotide sequences have been altered. Such animals are useful for studying the function and/or activity of the nucleotide sequence and polypeptide encoded by the sequence and for identifying and/or evaluating modulators of their activity. As used herein, a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, an “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
  • A transgenic animal of the invention can be created by introducing a nucleic acid of the invention into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. The sequence can be introduced as a transgene into the genome of a non-human animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of a polypeptide in particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, U.S. Pat. No. 4,873,191 and in Hogan, Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding the transgene can further be bred to other transgenic animals carrying other transgenes.
  • The invention also relates to the use of the variant and reference gene products to guide efforts to identify the causative mutation for vascular diseases or to identify or synthesize agents useful in the treatment of vascular diseases, e.g., CAD and MI. Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science, 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity in vitro, or in vitro activity. Sites that are critical for polypeptide activity can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol., 224:899-904 (1992); de Vos et al. Science, 255:306-312 (1992)).
  • Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of proteins of the invention in clinical trials. An exemplary method for detecting the presence or absence of proteins or nucleic acids of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting the protein, or nucleic acid (e.g., mRNA, genomic DNA) that encodes the protein, such that the presence of the protein or nucleic acid is detected in the biological sample. A preferred agent for detecting mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA sequences described herein, preferably in an allele-specific manner. The nucleic acid probe can be, for example, a full-length nucleic acid, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.
  • The invention also encompasses kits for detecting the presence of proteins or nucleic acid molecules of the invention in a biological sample. For example, the kit can comprise a labeled compound or agent (e.g., nucleic acid probe) capable of detecting protein or mRNA in a biological sample; means for determining the amount of protein or mRNA in the sample; and means for comparing the amount of protein or mRNA in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect protein or nucleic acid.
  • The following Examples are offered for the purpose of illustrating the present invention and are not to be construed to limit the scope of this invention. The teachings of all references cited herein are hereby incorporated herein by reference.
  • EXAMPLES
  • Identification of Single Nucleotide Polymorphisms
  • The polymorphisms shown in the Table were identified by resequencing of target sequences from individuals of diverse ethnic and geographic backgrounds by hybridization to probes immobilized to microfabricated arrays. The strategy and principles for design and use of such arrays are generally described in WO 95/11995.
  • A typical probe array used in this analysis has two groups of four sets of probes that respectively tile both strands of a reference sequence. A first probe set comprises a plurality of probes exhibiting perfect complementarily with one of the reference sequences. Each probe in the first probe set has an interrogation position that corresponds to a nucleotide in the reference sequence. That is, the interrogation position is aligned with the corresponding nucleotide in the reference sequence, when the probe and reference sequence are aligned to maximize complementarily between the two. For each probe in the first set, there are three corresponding probes from three additional probe sets. Thus, there are four probes corresponding to each nucleotide in the reference sequence. The probes from the three additional probe sets are identical to the corresponding probe from the first probe set except at the interrogation position, which occurs in the same position in each of the four corresponding probes from the four probe sets, and is occupied by a different nucleotide in the four probe sets. In the present analysis, probes were 25 nucleotides long. Arrays tiled for multiple different references sequences were included on the same substrate.
  • Publicly available sequences for a given gene were assembled into Gap4, which can be found on the world wide web at biozentrum.unibas.ch/biocomp/staden/Overview.html. PCR primers covering each exon were designed using Primer 3, which can be found on the world wide web at genome.wi.mit.edu/cgi-bin/primer/primer3.cgi. Primers were not designed in regions where there were sequence discrepancies between reads. Genomic DNA was amplified in at least 50 individuals using 2.5 pmol each primer, 1.5 mM MgCl2, 100 μM dNTPs, 0.75 μM AmpliTaq GOLD polymerase, and 19 ng DNA in a 15 μl reaction. Reactions were assembled using a PACKARD MultiPROBE robotic pipetting station and then put in MJ 96-well tetrad thermocyclers (96° C. for 10 minutes, followed by 35 cycles of 96° C. for 30 seconds, 59° C. for 2 minutes, and 72° C. for 2 minutes). A subset of the PCR assays for each individual were run on 3% NuSieve gels in 0.5×TBE to confirm that the reaction worked.
  • For a given DNA, 5 μL (about 50 ng) of each PCR or RT-PCR product were pooled (Final volume=150-200 μl). The products were purified using QiaQuick PCR purification from Qiagen. The samples were eluted once in 35 μl sterile water and 4 μl 10× One-Phor-All buffer (Pharmacia). The pooled samples were digested with 0.2μ DNaseI (Promega) for 10 minutes at 37° C. and then labeled with 0.5 mmols biotin-N-6-ddATP and 15μ Terminal Transferase (GibcoBRL Life Technology) for 60 minutes at 37° C. Both fragmentation and labeling reactions were terminated by incubating the pooled sample for 15 minutes at 100° C.
  • Low-density DNA chips (Affymetrix, Calif.) were hybridized following the manufacturer's instructions. Briefly, the hybridization cocktail consisted of 3M TMACl, 10 mM Tris pH 7.8, 0.01% Triton X-100, 100 mg/ml herring sperm DNA (Gibco BRL), 200 pM control biotin-labeled oligo. The processed PCR products were denatured for 7 minutes at 100° C. and then added to prewarmed (37° C.) hybridization solution. The chips were hybridized overnight at 44° C. Chips were washed in 1×SSPET and 6×SSPET followed by staining with 2 μg/ml SARPE and 0.5 mg/ml acetylated BSA in 200 μl of 6×SSPET for 8 minutes at room temperature. Chips were scanned using a Molecular Dynamics scanner.
  • Chip image files were analyzed using Ulysses (Affymetrix, Calif.) which uses four algorithms to identify potential polymorphisms. Candidate polymorphisms were visually inspected and assigned a confidence value: high confidence candidates displayed all three genotypes, while likely candidates showed only two genotypes (homozygous for reference sequence and heterozygous for reference and variant). Some of the candidate polymorphisms were confirmed by ABI sequencing. Identified polymorphisms were compared to several databases to determine if they were novel. Results are shown in the Table.
  • Association of Thrombospondin Gene Polymorphisms with Vascular Disease
  • To determine pivotal genes associated with premature coronary artery disease, we analyzed DNA from 347 patients with MI or coronary revascularization before age 40 (men) or 45 (women) and 422 general population controls. Cases were drawn (one per family) from a retrospective collection of sibling pairs with premature CAD. Controls were ascertained through random-digit dialing. Both cases and controls were Caucasian. A complete database of phenotypic and laboratory variables for the affected patients afforded logistic regression to control for age, diabetes, body mass index, gender.
  • Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI. For CAD, 148 of 347 patients carried at least one copy of the TSP-4 variant compared with 142 of 422 control subjects; adjusted odds ratio 1.47, p=0.01. For premature MI, the association was even stronger: 91 of 187 cases vs. 142 of 422 controls had the variant; adjusted odds ratio 2.08, p=0.0003. The TSP-1 SNP was rare. Nonetheless, homozygosity for the variant allele gave an adjusted odds ratio of 9.5, p=0.04.
    Genbank
    or TIGR Position Muta-
    Poly WIAF Accession in Gene Flanking tion Ref Alt Ref Alt
    ID ID Number Sequence Description Seq Type NT NT AA AA
    AT3a7 WIAF-13246 U11270 11918 AT3, CTGCAGGAGT[G/A]GCTGGATGAA N G A W *
    antithrombin III
    DRD5u22 WIAF-12913 M67439 310 DRD1, CATCTGGACC[C/T]TGCTGGGCAA S C T L L
    dopamine receptor
    D1
    DRD5u23 WIAF-12914 M67439 332 DRD1, GTGCTGGTGT[G/C]CGCAGCCATC M G C C S
    dopamine receptor
    D1
    DRD5u24 WIAF-12915 M67439 369 DRD1, TGCGCGCCAA[C/G]ATGACCAACG M C G N K
    dopamine receptor
    D1
    DRD5u25 WIAF-12916 M67439 522 DRD1, TGTGCTCCAC[T/C]GCCTCCATCC S T C T T
    dopamine receptor
    D1
    DRD5u26 WIAF-12917 M67439 953 DRD1, GCAGAGCACG[C/T]GCAGAGCTGC M C T A V
    dopamine receptor
    D1
    DRD5u27 WIAF-12918 M67439 635 DRD1, ATGGTCGGCC[T/C]GGCATGGACC M T C L P
    dopamine receptor
    D1
    DRD5u2B WIAF-129l9 M67439 606 DRD1, GCAAGATGAC[T/C]CAGCGCATGG S T C T T
    dopamine receptor
    D1
    DRD5u29 WIAF-12920 M67439 845 DRD1, TCGCTCATCA[G/A]CTTCTACATC M G A S N
    dopamine receptor
    D1
    DRD5u30 WIAF-12921 M67439 720 DRD1, CGGGCCGGCT[G/T]GACCTGCCAA S G T L L
    dopamine receptor
    D1
    DRD5u31 WIAF-12922 M67439 1044 DRD1, AGACCCTGTC[G/A]GTGATCATGG S G A S S
    dopamine receptor
    D1
    DRD5u32 WIAF-12923 M67439 766 DRD1, GGAGGAGGAC[T/G]TTTGGGAGCC M T G F V
    dopamine receptor
    D1
    DRD5u33 WIAF-12924 N67439 777 DRD1, TTTCCGAOCC[C/T]GACCTCAATG S C T P P
    dopamine receptor
    D1
    DRD5u34 WIAF-12925 M67439 786 DRD1, CCGACGTGAA[T/C]GCACACAACT M T G N K
    dopamine receptor
    D1
    DRD5u35 WIAF-12926 M67439 881 DRD1, ACCTACACGC[G/A]CATCTACCGC M G A R H
    dopamine receptor
    D1
    DRD5u36 WIAF-12927 M67439 1279 DRD1, GTGCACCCAC[T/G]TCTGCTCCCG M T G F V
    dopamine receptor
    D1
    DRD5u37 WIAF-12928 M67439 1370 DRD1, GAAATCGCAG[C/T]TGCCTACATC M C T A V
    dopamine receptor
    D1
    DRD5u38 WIAF-12929 M67439 1500 DRD1, ACCCTGTTGC[T/A]GAGTCTGTCT S T A A A
    dopamine receptor
    D1
    DRD5u39 WIAF-12930 M67439 1338 DRD1, TCTCCTACAA[C/T]CAAGACATCG S C T N N
    dopamine receptor
    D1
    DRD5u40 WIAF-12931 M67439 1215 DRD1, CACTCAACCC[C/A]CTCATCTATG S C A P P
    dopamine receptor
    D1
    DRD5u41 WIAF-12932 M67439 1242 DRD1, ACGCCGACTT[T/C]CAGAAGGTGT S T C P F
    dopamine receptor
    D1
    DRD5u42 WIAF-12933 M67439 1441 DRD1, CGAGGAGGAC[G/A]GTCCTTTCGA M G A G S
    dopamine receptor
    D1
    DRD5u43 WIAF-12934 M67439 1460 DRD1, GATCGCATGT[T/C]CCAGATCTAT M T C F S
    dopamine receptor
    D1
    DRD5u44 WIAF-12960 M67439 399 DRD1, TGTCTCTGGC[C/T]GTGTCTGACC S C T A A
    dopamine receptor
    D1
    DRD5u45 WIAF-12961 M46743 9162 DRD1, TGCCGCCAGC[C/G]AGcAAcOCCA S C G G G
    dopamine receptor
    D1
    DRD5u46 WIAF-12962 M67439 195 DRD1, GGCAGTTCGC[T/G]CTATACCAGC S T G A A
    dopamine receptor
    D1
    DRD5u47 WIAF-12963 M67439 264 DRD1, TGGGGCCCTC[A/C]CAGCTCCTCA S A G S S
    dopamine receptor
    D1
    DRD5u48 WIAF-12964 M61439 465 DRD1, TGGCCGGTTA[C/T]TGCCCCTTTC S C T Y Y
    dopamine receptor
    D1
    DRD5u49 WIAF-12965 M67439 511 DRD1, CTTCGACATC[A/T]TGTGCTCCAC M A T M L
    dopamine receptor
    D1
    DRD5u50 WIAF-12966 M67439 557 DRD1, ATCAGCGTGG[A/C]CCCCTACTGG M A G D G
    dopamine receptor
    D1
    DRD5u51 WIAF-12967 M67439 476 DRD1, TGGCCCTTTG[C/A]AGCGTTCTGC M G A G E
    dopamine receptor
    D1
    DRD5u52 WIAF-12968 M67439 1004 DRD1, AGCCTGCGCG[C/T]TTCCATCAAC M C T A V
    dopamine receptor
    D1
    DRD5u53 WIAF-12969 M67439 1036 DRD1, GGTTCTCAAG[A/C]CCCTGTCGGT M A C T P
    dopamine receptor
    D1
    DRD5u54 WIAF-12970 M67439 859 DRD1, CTACATCCCC[G/A]TTGCCATCAT M G A V I
    dopamine receptor
    D1
    DRD5u55 WIAF-12971 M67439 931 DRD1, GATTTCCTCC[C/T]TGGAGAGGGC S C T L L
    dopamine receptor
    D1
    G10u1 WIAF-10234 J04111 1308 JUN, v-jun avian CCCTCAACGC[C/T]TCGTTCCTCC S C T A A
    sarcoma virus 17
    oncogene homolog
    G10u2 WIAF-10235 J04111 1471 JUN, v-jun avian GCTGCTCAAG[C/T]TGGCGTCGCC S C T L L
    sarcoma virus 17
    oncogene homolog
    G10u3 WIAF-10253 J04111 2010 JUN, v-jun avian TGGAGTCCCA[G/A]GAGCCGATCA S G A Q Q
    sarcoma virus 17
    oncogene homolog
    G1001u1 WIAF-13746 D26135 993 DGKG, diacyl- CCCCAGTCGT[C/A]TACCTGAAGG S G A V V
    glycerol kinase,
    gamma (90 kD)
    G1001u2 WIAF-13764 D26135 2313 DGKG, diacyl- ATGTGATGAG[A/T]GAGAAACATC M A T R S
    glycerol kinase,
    gamma (90 kD)
    G1002u1 WIAF-13918 X57206 334 ITPKB, inositol CCCCAACATC[A/C]GGACAAGCCT M A C Q P
    1,4,5-trisphosphate
    3-kinase B
    G1002u2 WIAF-13925 X57206 575 ITPKB, inositol CCAACTCAGC[T/C]TTCCTGCATA S T C A A
    1,4,5-trisphosphate
    3-kinase B
    G1004u1 WIAF-13567 L36151 1854 PIK4CA, phospha- GCCGCTCAGA[C/T]TCCGAGGATG S C T D D
    tidylinositol 4-
    kinase, catalytic,
    alpha polypeptide
    G1006u1 WIAF-12375 HT2690 858 PRKCA, protein GGTACAAGTT[G/A]CTTAACCAAG S G A L L
    kinase C, alpha
    G1008u1 WIAF-12397 HT2136 300 PRKCZ, protein CTGGCCTGCC[A/C]TCTCCCCGAC S A G P P
    kinase C, zeta
    C1008u2 WIAF-12398 HT2136 246 PRKCZ, protein AGTGCAGGGA[T/C]GAAGGCCTCA S T C D D
    kinase C, zeta
    G1008u3 WIAF-12399 HT2136 504 PRKCZ, protein GCTCCCACCC[C/T]CTCGTCCCCC S C T G G
    kinase C, zeta
    G1008u4 WIAF-12403 HT2136 807 PRKCZ, protein AGAAGAATGA[C/T]CAAATTTACG S C T D D
    kinase C, zeta
    G1008u5 WIAF-12404 HT2136 1514 PRKCZ, protein GGATTTTCTG[A/T]CATCAACTCC M A T D V
    kinase C, zeta
    G1008u6 WIAF-12412 HT2136 166 PRKCZ, protein CAAGTGGGTC[C/A]ACACCGAAGG M G A D N
    kinase C, zeta
    C1008u7 WIAF-12418 HT2136 560 PRKCZ, protein TCCCAACAGC[C/T]TCCACTACAC M C T P L
    kinase C, zeta
    C1009u1 WIAF-12396 L05186 2495 PTK2, PTK2 protein TCATCAACAA[G/A]ATGAAACTCG S G A K K
    tyrosine kinase 2
    G1011u1 WIAF-11988 X07876 1250 WNT2, wingless-type TCCCATCTCA[C/A]CCGCATGACC M C A T N
    MMTV integration
    site family member
    2
    G1011u2 WIAF-11997 X07876 788 WNT2, wingless-type CACTATGGGA[T/C]CAAATTTGCC M T C I T
    MMTV integration
    site family member
    2
    G1011u3 WIAF-12014 X07876 1338 WNT2, wingless-type TGCACACATG[C/A]AAGGCCCCCA N C A C *
    MMTV integration
    site family member
    2
    C1011u4 WIAF-13475 X07876 856 WNT2, wingless-type CCTGATGAAT[C/T]TTCACAACAA M C T L F
    MMTV integration
    site family member
    2
    C1011u5 WIAF-13476 X07876 958 WNT2, wingless-type GACATGCTGG[C/T]TGGCCATGGC S C T L L
    MMTV integration
    site family member
    2
    G1011u6 WIAF-13477 X07876 789 WNT2, wingless-type ACTATCCGAT[C/T]AAATTTCCCC S C T I I
    MMTV integration
    site family member
    2
    G1011u7 WIAF-13478 X07876 823 WNT2, wingless-type TGCAAAGGAA[A/C]GCAAACCAAA M A G R G
    MMTV integration
    site family member
    2
    G1012u1 WIAF-12408 HT48910 1574 WNT2B, wingless-type ATACTTGCAA[A/C]GCCCCCAAGA S A G K K
    MMTV integration
    site family, member
    2B
    G1016a1 WIAF-12125 Z22534 793 ACVR1, activin A CCCAAGCCGA[A/C]AATGTTCCCG S A G E E
    receptor, type I
    G1016u2 WIAF-12392 Z22534 373 ACVR1, activin A CTGGCCAACC[T/C]GTGGACTGCT S T C A A
    receptor, type I
    G1018u1 WIAF-12413 X74210 1150 ADCY2, adenylate CAAATTCCGA[C/T]TGCGTATTAA M G T V L
    cyclase 2 (brain)
    G1019u1 WIAF-12394 U83867 5475 SPTAN1, spectrin, GCGACCTAAC[T/C]CGCCTCCACA S T C T T
    alpha, nonerythro-
    cytic 1 (alpha-
    fodrin)
    G1019u2 WIAF-12406 U83867 1223 SPTAN1, spectrin, GCCCTCATCA[A/G]TGCACATCAC M A G N S
    alpha, nonerythro-
    cytic 1 (alpha-
    fodrin)
    G1019u3 WIAF-12409 U83867 3555 SPTAN1, spectrin, CTCAAGCTCT[T/C]ATCCCACACC S T C L L
    alpha, nonerythro-
    cytic 1 (alpha-
    fodrin)
    G1019u4 WIAF-12415 U83867 3369 SPTAN1, spectrin, TCCCTCAACC[C/A]AATGAACTAC S G A A A
    alpha, nonerythro-
    cytic 1 (alpha-
    fodrin)
    C1019u5 WIAF-12417 U83867 5839 SPTAN1, spectrin, TCACACACAC[T/A]TCACCCTCCA M T A F I
    alpha, nonerythro-
    cytic 1 (alpha-
    fodrin)
    G1022u1 WIAF-12393 U45945 631 ATP1B2, ATPase, CATCAATCTT[A/C]CCTCTCCTCC M A G T A
    Na+/K+
    transporting, beta
    2 polypeptide
    G1022u2 WIAF-12400 U45945 432 ATP1B2, ATPase, GCCGCCCTGG[G/A]CGCTATTACG S G A G G
    Na+/K+
    transporting, beta
    2 polypeptide
    G1023u1 WIAF-12401 D89722 395 ARNTL, aryl hydro- AACATTAAGA[C/C]GTGCCACCAA M G C G R
    carbon receptor
    nuclear
    translocator-like
    G1023u2 WIAF-12407 D89722 681 ARNTL, aryl hydro- CTCATAGATC[C/T]AAAAACTGGA M C T A V
    carbon receptor
    nuclear
    translocator-like
    G1024u1 WIAF-12410 U85946 731 Homo sapiens brain CATACATTTT[C/T]ACAACTTAAA M C T S L
    secretory protein
    hSec10p (HSEC10)
    mRNA, complete cds.
    G1027u1 WIAF-12402 L47647 1135 CKB, creatine TCGAGATGGA[A/G]CAGCGGCTGG S A G E E
    kinase, brain
    G1027u2 WIAF-12405 L47647 499 CKB, creatine CCGAGCCCCG[A/C]GCCATCGACA S A C R R
    kinase, brain
    G103u1 WIAF-10427 HT2269 335 ERCC5, excision GGGATCCCCA[T/C]CCGAACTCAA S T C H H
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u2 WIAF-10429 HT2269 1221 ERCC5, excision CCCTCCTTCT[C/T]CAAGAACTTT M C T P S
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u3 WIAF-10431 HT2269 1783 ERCC5, excision TCTCCAACTT[C/C]TACAAATTCT M G C C S
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complenientation
    group G (Cockayne
    syndrome))
    G103u4 WIAF-10432 HT2269 2077 ERCC5, excision ACTGAATCTG[C/A]AGGCCAGGAT M C A A E
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u5 WIAF-10446 HT2269 3338 ERCC5, excision AATTTGAGCT[A/T]CTTGATAAGG S A T L L
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u6 WIAF-10447 HT2269 3487 ERCC5, excision TCAGAATCAT[C/T]TGATGGATCT M C T S F
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u7 WIAF-10448 HT2269 3507 ERCC5, excision TTCAAGTGAA[C/G]ATGCTGAAAG M C G H D
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u8 WIAF-10457 HT2269 1388 ERCC5, excision CTCTTCACGAE[T/G]CACCAAGATC M T G D E
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma-
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u9 WIAF-10458 HT2269 1362 ERCC5, excision CCGGACTCTT[T/C]CAGCCATTAA M T C S P
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u10 WIAF-10459 HT2269 2357 ERCC5, excision CTGAGAAAGA[T/C]GCCGAACATT S T C D D
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u11 WIAF-10462 HT2269 3109 ERCC5, excision TGGAACAGAA[C/T]GAAGACAGAT M C T T M
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u12 WIAF-10463 HT2269 3138 ERCC5, excision GTTTCCTGTA[T/C]TAAAGCAACT S T C L L
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u14 WIAF-10484 HT2269 3553 ERCC5, excision AGAACAGCTG[C/T]GAAAGAGCCA M C T A V
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103u15 WIAF-10485 HT2269 1429 ERCC5, excision CATCTCCACA[C/T]CCGACCGCCA M C T T M
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G103a16 WIAF-12097 HT2269 3335 ERCC5, excision AACAATTTGA[G/T]CTACTTCATA M G T E D
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 5 (xeroderma
    pigmentosum,
    complementation
    group G (Cockayne
    syndrome))
    G1030u1 WIAF-12411 U07358 203 ZPK, zipper ACACTTCTGA[C/T]TGCACTCCCG S C T D D
    (leucine) protein
    kinase
    G1030u2 WIAF-12416 U07358 1806 ZPK, zipper GCCACCCCAT[G/T]AACCTGGACG N G T E *
    (leucine) protein
    kinase
    G1031a1 WIAF-12124 U87460 2825 GPR37, G protein- GAGTCACCAC[C/T]TTCACCTTAT S C T T T
    coupled receptor 37
    (endothelin
    receptor type
    B-like)
    G1032u1 WIAF-12381 U57911 926 C110RF8, chromosome ACGTACATCA[A/C]TGCCTCGACG M A C N T
    11 open reading
    frame 8
    G1033u1 WIAF-12437 M65188 431 GJA1, gap junction TCTGTACCCA[C/T]ACTCTTCTAC M C T T I
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u2 WIAF-12438 M65188 169 GJA1, gap junction ACGCAACATG[G/C]GTGACTGGAG M G C G R
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u3 WIAF-12439 M65188 467 GJA1, gap junction TATCTCATGC[C/A]AAAGGAACAG M G A R Q
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u4 WIAF-12440 M65188 263 GJA1, gap junction TTCATTTTCC[C/A]AATCCTGCTG M C A R Q
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u5 WIAF-12441 M65188 218 GJA1, gap junction CAAGCCTACT[C/T]AACTGCTCGA M C T S L
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u6 WIAF-12442 M65188 498 GJA1, gap junction AGAAAGAGGA[A/G]GAACTCAAGC S A G E E
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u7 WIAF-12465 M65188 550 GJA1, gap junction GCACTTGAAG[C/A]AGATTGAGAT M C A Q K
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u8 WIAF-12466 M65188 548 GJA1, gap junction ATGCACTTGA[A/G]GCACATTGAC M A G K R
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u9 WIAF-12486 M65188 933 GJA1, gap junction CCCTGAGCCC[T/C]GCCAAACACT S T C P P
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u10 WIAF-12487 M65188 990 GJA1, gap junction CCTCACCAAC[C/T]GCTCCCCTCT S C T T T
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u11 WIAF-12488 M65188 1034 GJA1, gap junction AACCTGCTTA[C/A]TCGCGACAGA M C A T N
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u12 WIAF-12489 M65188 1158 GJA1, gap junction CTAACTCCCA[T/C]CCACAGCCTT S T C H H
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u13 WIAF-12490 M65188 1222 GJA1, gap junction TGGACATGAA[T/C]TACAGCCACT S T C L L
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u14 WIAF-12491 M65188 1069 GJA1, gap junction CCGCAATTAC[A/C]ACAAGCAAGC M A G N D
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u15 WIAF-12492 M65188 1250 GJA1, gap junction CTCCACCACC[G/A]ACCTTCAAGC M G A R Q
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u16 WIAF-12496 M65188 423 GJA1, gap junction TATTTCTCTC[T/C]GTACCCACAC S T C S S
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u17 WIAF-12503 M65188 880 GJA1, gap junction CCTTAAGGAT[C/T]GGGTTAACCG M C T R W
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u18 WIAF-12504 M65188 855 GJA1, gap junction AACTCTTCTA[T/C]GTTTTCTTCA S T C Y Y
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u19 WIAF-12505 M65188 576 GJA1, gap junction AGTTCAAGTA[C/T]GGTATTGAAG S C T Y Y
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u20 WIAF-12512 M65188 1255 GJA1, gap junction CCACCCACCT[T/G]CAACCACACC M T G S A
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u21 WIAF-12513 M65188 1078 GJA1, gap junction CAACAAGCAA[C/A]CAAGTGACCA M G A A T
    protein, alpha 1,
    43 kD (connexin 43)
    G1033u22 WIAF-12514 M65188 1097 GJA1, gap junction CAAAACTCCG[C/G]TAATTACACT M C G A G
    protein, alpha 1,
    43 kD (connexin 43)
    G1034u1 WIAF-12443 J03544 1201 PYGB, phosphory- AGACCTGTGC[A/G]TACACCAACC S A G A A
    lase, glycogen;
    brain
    G1034u2 WIAF-12469 J03544 771 PYGB, phosphory- GACACCCCAG[T/C]CCCCGGCTAC M T C V A
    lase, glycogen;
    brain
    G1034u3 WIAF-12470 J03544 1465 PYGB, phosphory- TCCACTCCGA[C/C]ATCGTCAAAC M G C E D
    lase, glycogen;
    brain
    G1034u4 WIAF-12471 J03544 1583 PYGB, phosphory- CCCGCTCCCC[G/A]ATACCATCCT M G A D N
    lase, glycogen;
    brain
    G1034u5 WIAF-12472 J03544 1774 PYGB, phosphory- CCATGTTCGA[T/C]GTGCATGTGA S T C D D
    lase, glycogen;
    brain
    G1034u6 WIAF-12474 J03544 2449 PYGB, phosphory- AGGTGGACCA[G/A]CTGTACCGGA S G A Q Q
    lase, glycogen;
    brain
    G1034u7 WIAF-12508 J03544 718 PYGB, phosphory- CCCCCGACGG[C/T]GTGAAGTGGC S C T G G
    lase, glycogen;
    brain
    G1035u1 WIAF-12484 U97105 1962 DPYSL2, dihydro- GCAGAGGAGC[A/G]GCAGACGATC M A G Q R
    pyrimidinase-like 2
    G1035u2 WIAF-12485 U97105 2842 DPYSL2, dihydro- ATGACGGACC[T/C]GTGTGTGAAG S T C P P
    pyrimidinase-like 2
    G1035u3 WIAF-12511 U97105 2062 DPYSL2, dihydro- CCATCACCAT[C/T]GCCAACCAGA S C T I I
    pyrimidinase-like 2
    G1036u1 WIAF-12444 D88460 311 WASL, Wiskott- ACGTGGGGTC[C/T]CTGTTGCTCA S C T S S
    Aldrich syndrome
    like
    G1038u1 WIAF-12445 HT2746 994 PCTK2, PCTAIRE TAGAAGAAAG[C/A]TATTGCATCG M G A V I
    protein kinase 2
    G1039u1 WIAF-12429 HT2747 955 serine/threonine ATCCAAGAGT[C/T]GCATGTCAGC M C T R C
    kinase, PCTAIRE-3
    G1039u2 WIAF-12458 HT2747 808 serine/threonine CACAGAAGAG[A/T]CGTGGCCCGG M A T T S
    kinase, PCTAIRE-3
    G1041u1 WIAF-12459 X72886 544 H.sapiens TYRO3 CAAGTGGCTG[G/C]CCCTGGAGAG M G C A P
    mRNA.
    G1041u2 WIAF-12460 X72886 693 H.sapiens TYRO3 TTGGCGGGAA[C/T]CGCCTGAAAC S C T N N
    mRNA.
    G1041u3 WIAF-12502 X72886 561 H.sapiens TYRO3 AGAGCCTGGC[C/T]GACAACCTGT S C T A A
    mRNA.
    G1043u1 WIAF-12448 M94055 5481 Human voltage-gated CTCTGAGTGA[G/A]GATGACTTTG S G A E E
    sodium channel
    mRNA, complete cds.
    G1043u2 WIAF-12449 M94055 5205 Human voltage-gated TTGACACCTT[T/C]GGCAACAGCA S T C F F
    sodium channel
    mRNA, complete cds.
    G1043u3 WIAF-12450 M94055 5224 Human voltage-gated CATGATCTGC[C/T]TGTTCCAAAT S C T L L
    sodium channel
    mRNA, complete cds.
    G1043u4 WIAF-12451 M94055 5514 Human voltage-gated AGGTTTGGGA[C/A]AACTTTCATC S C A E E
    sodium channel
    mRNA, complete cds.
    G1043u5 WIAF-12452 M94055 5217 Human voltage-gated CCAACAGCAT[G/C]ATCTCCCTGT M G C M I
    sodium channel
    mRNA, complete cds.
    G1043u6 WIAF-12453 M94055 5334 Human voltage-gated CCTCACTTAA[A/G]CCAGACTCTG S A G K K
    sodium channel
    mRNA, complete cds.
    G1043u7 WIAF-12454 M54055 5424 Human voltage-gated TGTACATCGC[G/C]GTCATCCTGG S G C A A
    sodium channel
    mRNA, complete cds.
    G1043u8 WIAF-12455 M94055 5322 Human voltage-gated ATCACCCTGG[A/C]AGCTCAGTTA S A C G G
    sodium channel
    mRNA, complete cds.
    G1043u9 WIAF-12456 M94055 1200 Human voltage-gated ATGGCTACAC[G/A]AGCTTTGACA S G A T T
    sodium channel
    mRNA, complete cds.
    G1043u10 WIAF-12499 M94055 1170 Human voltage-gated TCTGTGTGAA[G/T]GCTCGTAGAA M G T K N
    sodium channel
    mRNA, complete cds.
    G1046a1 WIAF-13187 U50352 267 ACCN1, amiloride- TCCCACCTGT[C/A]ACCCTCTCTA S G A V V
    sensitive cation
    channel 1, neuronal
    (degenerin)
    G1046a2 WIAF-13188 U50352 282 ACCN1, amiloride- TCTGTAACCT[C/g]AATGGCTTCC S C g L L
    sensitive cation
    channel 1, neuronal
    (degenerin)
    G1046a3 WIAF-13189 U50352 315 ACCN1, amiloride- TCACCACCAA[C/t]CACCTGTACC S C t N N
    sensitive cation
    channel 1, neuronal
    (degenerin)
    G1046a4 WIAF-13190 U50352 386 ACCN1, amiloride- CCCCATCTGG[C/a]TGACCCCTCC M C a A D
    sensitive cation
    channel 1, neuronal
    (degenerin)
    G1046a5 WIAF-13191 U50352 417 ACCN1, amiloride- CCCTCCGGCA[C/A]AACCCCAACT S G A Q Q
    sensitive cation
    channel 1, neuronal
    (degenerin)
    G1048u1 WIAF-12641 HT5174S 3214 REST, RE1-silencing CAGTCAAACC[G/A]CCTAAGGCAC S G A A A
    transcription
    factor
    G1048u2 WIAF-12642 HT5174S 3199 REST, RE1-silencing CAAAGGAAGC[C/G]TTGGCAGTCA S C G A A
    transcription
    factor
    G1048u3 WIAF-12657 HT5174S 2125 REST, RE1-silencing CTCCCATCGA[C/T]ACTCCTCAGA M G T E D
    transcription
    factor
    G1048u4 WIAF-12660 HT5174S 2333 REST, RE1-silencing CGAACCTCTT[A/C]ACATACACCT M A C K Q
    transcription
    factor
    G1051u1 WIAF-12431 HT28321 658 SCNN1G, sodium ATGACACCTC[C/T]GACTGTGCCA S C T S S
    channel, non-
    voltage gated 1,
    gamma
    G1051u2 WIAF-12434 HT28321 1735 SCNN1G, sodium AAGCCAAGGA[G/A]TGGTCCGCCT S C A E E
    channel, non-
    voltage gated 1,
    gamma
    G1051u3 WIAF-12473 HT28321 409 SCNN1G, sodium AGTCCCTGTA[T/C]GCCTTTCCAC S T C Y Y
    channel, non-
    voltage gated 1,
    gamma
    G1051u4 WIAF-12475 HT28321 953 SCNN1G, sodium AGTCATTTTG[T/C]ACATAAACGA M T C Y H
    channel, non-
    voltage gated 1,
    gamma
    G1051u5 WIAF-12476 HT28321 975 SCNN1G, sodium GAGCAATACA[A/C]CCCATTCCTC M A G N S
    channel, non-
    voltage gated 1,
    gamma
    G1051u6 WIAF-12477 HT28321 1192 SCNN1G, sodium CTGCCTACTC[C/A]CTCCAGATCT S G A S S
    channel, non-
    voltage gated 1,
    gamma
    G1053a1 WIAF-13192 HT2201 4085 SCN5A, sodium CGTCCTCTGA[C/A]AGCTCTCTCA M G A R K
    channel, voltage-
    gated, type V,
    alpha polypeptide
    (long (electro-
    cardiographic)
    QT syndrome 3)
    G1053a2 WIAF-13193 HT2201 5607 SCN5A, sodium ACTTTCCCCA[C/T]CCCCTGTCTG S C T D D
    channel, voltage-
    gated, type V,
    alpha polypeptide
    (long (electro-
    cardiographic)
    QT syndrome 3)
    G1053a3 WIAF-13194 HT2201 5828 SCN5A, sodium GACCCCATCA[C/T]CACCACACTC M C T T I
    channel, voltage-
    gated, type V,
    alpha polypeptide
    (long (electro-
    cardiographic)
    QT syndrome 3)
    G1053a4 WIAF-13202 HT2201 713 SCN5A, sodium GCGTTCACTT[T/A]CCTTCCGGAC M T A F Y
    channel, voltage-
    gated, type V,
    alpha polypeptide
    (long (electro-
    cardiographic)
    QT syndrome 3)
    G1053a5 WIAF-13203 HT2201 6148 SCN5A, sodium CCACACTGAA[G/T]ATCTCGCCGA M G T D Y
    channel, voltage-
    gated, type V,
    alpha polypeptide
    (long (electro-
    cardiographic)
    QT syndrome 3)
    G1053a6 WIAF-13204 HT2201 6217 SCN5A, sodium GCCCTCGCTC[C/T]CCACGACACA G T
    channel, voltage-
    gated, type V,
    alpha polypeptide
    (long (electro-
    cardiographic)
    QT syndrome 3)
    G1053a7 WIAF-13205 HT2201 6324 SCN5A, sodium AATCCCCCTC[G/A]CCCCCGCCCA G A
    channel, voltage-
    gated, type V,
    alpha polypeptide
    (long (electro-
    cardiographic)
    QT syndrome 3)
    G1054u1 WIAF-12419 HT2202 2252 SCN4A, sodium TTGGCAAGAG[C/T]TACAAGGAGT S C T S S
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u2 WIAF-12423 HT2202 4559 SCN4A, sodium TGGTCATGTT[C/T]ATCTACTCCA S C T F F
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u3 WIAF-12424 HT2202 4856 SCN4A, sodium TCAACATGTA[C/G]ATCGCCATCA N C G Y *
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u4 WIAF-12425 HT2202 4777 SCN4A, sodium GTCAAGGCTC[A/G]CTGCGGCAAC M A G D G
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u5 WIAF-12426 HT2202 4863 SCN4A, sodium GTACATCGCC[A/G]TCATCCTGGA M A G I V
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u6 WIAF-12427 HT2202 4566 SCN4A, sodium GTTCATCTAC[T/G]CCATCTTCGG M T G S A
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u7 WIAF-12428 HT2202 4923 SCN4A, sodium TGGTGAAGAT[G/T]ACTTTGAGAT M G T D Y
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u8 WIAF-12446 HT2202 3595 SCN4A, sodium TTCTGGCTGA[T/C]CTTCAGCATC M T C I T
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u9 WIAF-12447 HT2202 4203 SCN4A, sodium GGAGACAGAC[G/A]ACCAGAGCCA M G A D N
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u10 WIAF-12495 HT2202 4811 SCN4A, sodium TCTGCTTCTT[C/A]TGCAGCTATA M C A F L
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u11 WIAF-12497 HT2202 5555 SCN4A, sodium CAGGGCAGAC[T/G]GTGCGCCCAG S T G T T
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1054u12 WIAF-12498 HT2202 5480 SCN4A, sodium CACGGGACGC[C/T]GGACCCACTA S C T A A
    channel, voltage-
    gated, type IV,
    alpha polypeptide
    G1059u1 WIAF-12432 HT33704 112 APLP1, amyloid beta CGCTGCTGCT[G/A]CCACTATTGC S G A L L
    (A4) precursor-like
    protein 1
    G1059u2 WIAF-12433 HT33704 140 APLP1, amyloid beta TCTGCGCGCG[C/T]AGCCCGCCAT N C T Q *
    (A4) precursor-like
    protein 1
    G1059u3 WIAF-12435 HT33704 1344 APLP1, amyloid beta CACCATGTGG[C/T]CGCCCTGGAT M C T A V
    (A4) precursor-like
    protein 1
    G1059u4 WIAF-12457 HT33704 1687 APLP1, amyloid beta ATCACCGAAA[C/A]CTGAATGCGT S C A K K
    (A4) precursor-like
    protein 1
    G1059u5 WIAF-12500 HT33704 976 APLP1, amyloid beta CGTTCCTGAG[A/C]GCCAAGATGG S A G R R
    (A4) precursor-like
    protein 1
    G1059u6 WIAF-12501 HT33704 1786 APLP1, amyloid beta GTCAGGCTCT[A/G]TCGGGTCTGC S A G V V
    (A4) precursor-like
    protein 1
    G1060u1 WIAF-12436 HT1418 1744 APLP2, amyloid beta CCAAGAAATT[C/C]AAGAGGAAAT M C G Q E
    (A4) precursor-like
    protein 2
    G1060u2 WIAF-12467 HT1418 2213 APLP2, amyloid beta ATCACCCTGC[T/C]GATGCTGACC M T G V G
    (A4) precursor-like
    protein 2
    G1060u3 WIAF-12468 HT1418 2256 APLP2, amyloid beta GCCACGGGAT[C/T]CTGGAGGTTG S C T I I
    (A4) precursor-like
    protein 2
    G1066a1 WIAF-13195 HT3538 566 CCKBR, cholecysto- CTTTGGCACC[G/A]TCATCTGCAA M G A V I
    kinin B receptor
    G1066a2 WIAF-13196 HT3538 607 CCKBR, cholecysto- GGGTGTCTGT[G/A]AGTGTGTCCA S G A V V
    kinin B receptor
    G1066a3 WIAF-13206 HT3538 864 CCKBR, cholecysto- CTGCTGCTTC[T/A]GCTCTTGTTC M T A L Q
    kinin B receptor
    G1067u1 WIAF-12478 HT0830 684 KCNA1, potassium AAACGCTGTG[C/T]ATCATCTGGT S C T C C
    voltage-gated
    channel, shaker-
    related subfamily,
    member 1 (episodic
    ataxia with
    myokymia)
    G1067u2 WIAF-12479 HT0830 722 KCNA1, potassium GTGCGCTTCT[T/C]CGCCTGCCCC M T C F S
    voltage-gated
    channel, shaker-
    related subfamily,
    member 1 (episodic
    ataxia with myo-
    kymia)
    G1067u3 WIAF-12480 HT0830 804 KCNA1, potassium ATTTCATCAC[C/C]CTCGCCACCG S C G T T
    voltage-gated
    channel, shaker-
    related subfamily,
    member 1 (episodic
    ataxia with myo-
    kymia)
    G1067u4 WIAF-12509 HT0830 690 KCNA1, potassium TGTGCATCAT[C/T]TGGTTCTCCT S C T I I
    voltage-gated
    channel, shaker-
    related subfamily,
    member 1 (episodic
    ataxia with myo-
    kymia)
    G1068u1 WIAF-12493 HT0831 774 KCNA2, potassium TGAACATCAT[T/A]GACATTGTGG S T A I I
    voltage-gated
    channel, shaker-
    related subfamily,
    member 2
    G1070a1 WIAF-13197 HT27728 522 KCNJ6, potassium CACAGTGACC[T/C]GGCTCTTTTT M T C W R
    inwardly-rectifying
    channel, subfamily
    J, member 6
    G1070a2 WIAF-13201 HT27728 1244 KCNJ6, potassium CCCTGGAGGA[T/C]GGGTTCTACG S T C D D
    inwardly-rectifying
    channel, subfamily
    J, member 6
    G1070a3 WIAF-13207 HT27728 707 KCNJ6, potassium ATAAATGCCC[C/A]GACCGAATTA S G A P P
    inwardly-rectifying
    channel, subfamily
    J, member 6
    G1071u1 WIAF-12422 HT48672 1534 KCNJ3, potassium TTCCGGGCAA[C/T]TCAGAACAAA S C T N N
    inwardly-rectifying
    channel, subfamily
    J, member 3
    G1073u1 WIAF-12461 HT4556 1127 KCNJ1, potassium CACTGTGCCA[T/C]GTGCCTTTAT M T C M T
    inwardly-rectifying
    channel, subfamily
    J, member 1
    G1074u1 WIAF-12462 HT27804 289 KCNAB2, potassium ACCTCTTCGA[T/C]ACACCAGAAG S T C D D
    voltage-gated
    channel, shaker-
    related subfamily,
    beta member 2
    G1079u1 WIAF-12463 HT27383 1130 potassium channel, ACCTGGCCGA[T/A]GAGATCCTGT M T A D E
    inwardly rectifing
    (GB:D50582)
    G1079u2 WIAF-12464 HT27383 1192 potassium channel, CCTTACTCTG[T/G]GGACTACTCC M T G V G
    inwardly rectifing
    (GB:D50582)
    G1079u3 WIAF-12481 HT27383 708 potassium channel, CCTTCCCTCC[A/G]TCTTCATCAA M A G I V
    inwardly rectifing
    (GB:D50582)
    G1079u4 WIAF-12482 HT27383 779 potassium channel, CGGTCATCGC[T/C]CTCCCCCACG S T C A A
    inwardly rectifing
    (GB:D50582)
    G1079u5 WIAF-12483 HT27383 276 potassium channel, GCACCCTGCC[C/A]ACCCCACCTA M G A E K
    inwardly rectifing
    (GB:D50582)
    G1079u6 WIAF-12510 HT27383 489 potassium channel, CTGCCTCATC[C/A]CCTTCCCCCA M G A A T
    inwardly rectifing
    (GB:D50582)
    G1080u1 WIAF-12536 HT4412 1099 KCNJ4, potassium TCGACTACTC[A/G]CGTTTTCACA S A G S S
    inwardly rectifying
    channel, subfamily
    J, member 4
    G1080u2 WIAF-12537 HT4412 1050 KCNJ4, potassium GGCCACCGCT[T/A]TGAGCCTGTG M T A F Y
    inwardly-rectifying
    channel, subfamily
    J, member 4
    G1081u1 WIAF-12538 HT27724 1090 KCNJ2, potassium GGCCACCGCT[A/T]TGAGCCTGTG M A T Y F
    inwardly-rectifying
    channel, subfamily
    J, member 2
    G1082u1 WIAF-12662 HT28319 768 potassium channel, CGCGGGTCAC[C/T]GACGAGGGCG S C T T T
    inwardly rectify-
    ing, high
    conductance,
    alpha subunit
    G1082u2 WIAF-12663 HT28319 854 potassium channel, CTGGTGTCGC[C/T]CATCACCATC M C T P L
    inwardly rectify-
    ing, high
    conductance, alpha
    subunit
    G1082u3 WIAF-12679 HT28319 471 potassium channel, TCTCCATCGA[G/C]ACGCAGACCA M G C E D
    inwardly rectify-
    ing, high
    conductance, alpha
    subunit
    G1084a1 WIAF-13198 HT0383 2028 KCNB1, potassium CACTCCCCAG[C/A]AAGACTCCGG M C A S R
    voltage-gated
    channel, Shab-
    related subfamily,
    member 1
    G1084a2 WIAF-13199 HT0383 2033 KCNB1, potassium CCCAGCAAGA[C/G]TGGGCGCAGC M C G T S
    voltage-gated
    channel, Shab-
    related subfamily,
    member 1
    G1084a3 WIAF-13200 HT0383 2321 KCNB1, potassium GAGTGTGCCA[C/A]GCTTTTGGAC M C A T K
    voltage-gated
    channel, Shab-
    related subfamily,
    member 1
    G1084a4 WIAF-13208 HT0383 870 KCNB1, potassium ACAACCCCCA[G/A]CTGGCCCACG S C A Q Q
    voltage-gated
    channel, Shab-
    related subfamily,
    member 1
    G1088u1 WIAF-12516 HT0522 1503 KCNA5, potassium TCCTGGGCAA[G/A]ACCTTCCAGC S G A K K
    voltage-gated
    channel, shaker-
    related subfamily,
    member 5
    G1088u2 WIAF-12519 HT0522 1249 KCNA5, potassium CGAGCTGCTC[G/A]TGCGCTTCTT M G A V M
    voltage-gated
    channel, shaker-
    related subfamily,
    member 5
    G1088u3 WIAF-12520 HT0522 973 KCNA5, potassium CTCTGGGTCC[G/A]CGCGGGCCAT M G A A T
    voltage-gated
    channel, shaker-
    related subfamily,
    member 5
    G1088u4 WIAF-12521 HT0522 1013 KCNA5, potassium GTTATCCTCA[T/C]CTCCATCATC M T C I T
    voltage-gated
    channel, shaker-
    related subfamily,
    member 5
    G1090u1 WIAF-12651 HT1497 1836 KCNA5, potassium CAACCAGCCA[G/A]TGGAGGAGGC M G A S N
    voltage-gated
    channel, shaker-
    related subfamily,
    member 6
    G1091u1 WIAF-12714 HT0222 843 KCNA3, potassium CATCATCTGG[T/C]TCTCCTTCGA M T C F L
    voltage-gated
    channel, shaker-
    related subfamily,
    member 3
    G1094a1 WIAF-13218 HT27381 1280 KCNJ8, potassium GTGTATTCTG[T/A]GGATTACTCC M T a V E
    inwardly-rectifying
    channel, subfamily
    J, member 8
    G1095u1 WIAF-12532 HT2629 765 KCNMA1, potassium TTCTCTACTT[C/T]GGCTTGCGGT S C T F F
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u2 WIAF-12533 HT2629 2441 KCNMA1, potassium GTGGTCTGCA[T/C]CTTTGCCCAC M T C I T
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u3 WIAF-12534 HT2629 2714 KCNMA1, potassium GATGATACTT[C/C]GCTCCACCAC M C G S W
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u4 WIAF-12535 HT2629 2439 KCNMA1, potassium TCGTGGTCTG[C/T]ATCTTTGGCG S C T C C
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u5 WIAF-12539 HT2629 3048 KCNMA1, potassium CACTCATGAG[C/T]GCGACGTACT S C T S S
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u6 WIAF-12544 HT2629 2352 KCNMA1, potassium GGATGTTTCA[C/T]TGGTGTGCAC S C T H H
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u7 WIAF-12545 HT2629 2392 KCNMA1, potassium CATCCTGACT[C/T]GAAGTGAAGC N C T R *
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u8 WIAF-12546 HT2629 2295 KCNMA1, potassium CTGGCAATGA[T/C]CAGATTGACA S T C D D
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u9 WIAF-12548 HT2629 2949 KCNMA1, potassium AGTTTTTGGA[C/T]CAAGACGATG S C T D D
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u10 WIAF-12549 HT2629 2865 KCNMA1, potassium TGCACGGCAT[G/A]TTACGTCAAC M C A M I
    large conductance
    calcium-activated
    channel, subfamily
    M, alpha member 1
    G1095u1 WIAF-12547 L26318 930 PRKMB, protein TGCTGGTAAT[A/T]CATCCATCTA S A T I I
    kinase mitogen
    activated 8
    (MAP kinase)
    G1098u1 WIAF-12515 L19711 2650 DAG1, dystroglycan TCTACCTGCA[C/T]ACAGTCATTC S C T H H
    1 (dystrophin-
    associated
    glycoprotein 1)
    G110u1 WIAF-10385 HT27392 230 meiosis-specific CAAAGGTATA[C/T]AGATGACAAC N C T Q *
    recA homolog,
    HsLim15
    G110u2 WIAF-10397 HT27392 1050 meiosis-specific CCTGAAAATG[A/G]AGCCACCTTC M A G E G
    recA homolog,
    HsLim15
    G110u3 WIAF-10399 HT27392 674 meiosis-specific TGAACATCAG[A/G]TGGACCTACT M A G M V
    recA homolog,
    HsLim15
    G1106u1 WIAF-12647 HT5073 5781 MAP1B, microtubule- ACTATGAGAA[G/A]ATAGACAGAA S C A K K
    associated protein
    1B
    G1106u2 WIAF-12648 HT5073 5916 MAP1B, microtubule- CTGAACAGCG[C/T]GGGTACTCAT S C T G G
    associated protein
    1B
    G1106u3 WIAF-12650 HT5073 1837 MAP1B, microtubule- AGACAAGCCA[G/A]TAAAAACAGA M G A V I
    associated protein
    1B
    G1105u4 WIAF-12653 HT5073 2476 MAP1B, microtubule- CACCACACCA[G/A]CTGTCATGGC M G A A T
    associated protein
    1B
    G1106u5 WIAF-12656 HT5073 3913 MAP1B, microtubule- GCCCAATGAG[A/C]TTAAACTCTC M A G I V
    associated protein
    1B
    G1106u6 WIAF-12667 HT5073 559 MAP1B, microtubule- GATTTTCACC[G/A]ATCAAGAGAT M G A D N
    associated protein
    1B
    G1106u7 WIAF-12668 HT5073 570 MAP1B, microtubule- ATCAAGAGAT[C/T]CCGGAGTTAC S C T I I
    associated protein
    1B
    G1106u8 WIAF-12669 HT5073 6175 MAP1B, microtubule- TACTTCCACA[T/C]ACTCTTACCA M T C Y H
    associated protein
    1B
    G1106u9 WIAF-12670 HT5073 1215 MAP1B, microtubule- TCACTCTCCA[C/C]TACCTAAACA M G C Q H
    associated protein
    1B
    G1106u10 WIAF-12672 HT5073 1821 MAP1B, microtubule- AGGTAATGGT[G/A]AAAAAAGACA S G A V V
    associated protein
    1B
    G1106u11 WIAF-12673 HT5073 2727 MAP1B, microtubule- CTCCTGCCGA[G/T]TCCCCTGATG M G T E D
    associated protein
    1B
    G1106u12 WIAF-12674 HT5073 2739 MAP1B, microtubule- CCCCTCATGA[G/A]GGAATCACTA S G A E E
    associated protein
    1B
    G1106u13 WIAF-12676 HT5073 3643 MAP1B, microtubule- ACATGCCACT[C/A]ATCCCAAGCA M G A D N
    associated protein
    1B
    G1106u14 WIAF-12677 HT5073 3609 MAP1B, microtubule- CACCCCTCAA[C/T]CCATTTTCTG S C T N N
    associated protein
    1B
    G1106u15 WIAF-12682 HT5073 4752 MAP1B, microtubule- TTCCACACCC[A/T]ACAACAGATG S A T p p
    associated protein
    1B
    G1110u1 WIAF-12517 HT1096 1527 myelin associated GCCCCCTCGT[G/C]CTCACCAGCA S G C V V
    glycoprotein
    G1110u2 WIAF-12518 HT1096 1678 myelin associated TGTGCGCCCC[G/T]TGGTCGCCTT M G T V L
    glycoprotein
    G1110u3 WIAF-12522 HT1096 1271 myelin associated GCCGTGTCAC[C/T]CCACGATGAT M C T P L
    glycoprotein
    G1113u1 WIAF-12523 HT2242 353 myelin transcrip- AATTCCGATC[C/T]GATCCTCACC M C T R L
    tion factor 1
    G1116a1 WIAF-13217 HT28451 417 myelin oligodendro- CAACCTTATC[G/A]ACACCCTCTC S G A S S
    cyte glycoprotein
    (MOG)
    G1116a2 WIAF-13219 HT28451 913 myelin oligodendro- GCAGATCACT[C/G]TTGGCCTCGT M C G L V
    cyte glycoprotein
    (MOG)
    G1116a3 WIAF-132201 HT28451 922 myelin oligodendro- TCTTGGCCTC[G/A]TCTTCCTCTG M G A V I
    cyte glycoprotein
    (MOG)
    G1120u1 WIAF-12525 HT3695 1200 neurofilament, TAGAGATAGC[T/C]GCTTACAGAA S T C A A
    subunit H
    G1123u1 WIAF-12542 HT2569 2269 OMG, oligodendro- CAGCTGCAAC[T/C]CTAACTATTC S T C T T
    cyte myelin
    glycoprotein
    G1126u1 WIAF-12526 HT28354 626 PSEN2, presenilin 2 GAGCGAAGCA[T/C]GTGATCATGC S T C H H
    (Alzheimer disease
    4)
    G1126u2 WIAF-12527 HT28354 494 PSEN2, presenilin 2 ATGGAGAGAA[T/C]ACTGCCCAGT S T C N N
    (Alzheimer disease
    4)
    G1126u3 WIAF-12528 HT28354 434 PSEN2, presenilin 2 TAATGTCGGC[C/T]GAGAGCCCCA S C T A A
    (Alzheimer disease
    4)
    G1126u4 WIAF-12543 HT28354 550 PSEN2, presenilin 2 GACCCTGACC[G/A]CTATGTCTGT M G A R H
    (Alzheimer disease
    4)
    G117u1 WIAF-10391 HT27765 156 GTBP, G/T mismatch- ACTTCTCACC[A/G]GGAGATTTGG S A G P P
    binding protein
    G117u2 WIAF-10392 HT27765 420 GTBP, G/T mismatch- AACGTGCAGA[T/C]GAAGCCTTAA S T C S S
    binding protein
    G117u3 WIAF-10407 HT27765 939 GTBP, G/T mismatch- CCCACGTTAG[T/C]GGAGGTGGTG S T C S S
    binding protein
    G117u4 WIAF-10411 HT27765 1622 GTBP, G/T mismatch-
    binding protein CATTGTTCGA[G/A]ATTTAGGACT M G A R K
    G117u5 WIAF-10412 HT27765 2405 GTBP, G/T mismatch- GACAGCAGGG[C/T]TATAATGTAT M C T A V
    binding protein
    G117u6 WIAF-10413 HT27765 2387 GTBP, G/T mismatch- AAGAGTCAGA[A/T]CCACCCAGAC M A T N I
    binding protein
    G125u1 WIAF-10371 HT28632 1999 ATM, ataxia CAGTAATTTT[C/T]CTCATCTTGT M C T P S
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u2 WIAF-10372 HT28632 2631 ATM, ataxia TAATGAATGA[C/A]ATTGCAGATA M C A D E
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u3 WIAF-10373 HT28632 3084 ATM, ataxia CAATGGAAGA[T/G]GTTCTTGAAC M T G D E
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125Su5 WIAF-10375 HT28632 4767 ATM, ataxia CACTTATACC[C/T]CTTGTGTATG S C T P P
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u6 WIAF-10383 HT28632 8713 ATM, ataxia ATTCTTGGAT[C/T]CAGCTATTTG M C T P S
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u7 WIAF-10396 HT28632 1825 ATM, ataxia CACTTTGGCA[C/G]TGACCACCAG M C G L V
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u8 WIAF-10398 HT28632 2924 ATM, ataxia ACTACTGCTC[A/G]GACCAATACT M A G Q R
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u9 WIAF-10405 HT28632 8967 ATM, ataxia TTCAACGTGT[C/T]TTCACAAGAT S C T V V
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u10 WIAF-10408 HT28632 6954 ATM, ataxia CCAAACACCT[T/C]GTACAACTCT S T C L L
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u11 WIAF-10409 HT28632 6855 ATM, ataxia TTCACCACCC[T/C]ATCATCGCTC S T C P P
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u12 WIAF-10410 HT28632 6801 ATM, ataxia TATATATTAA[G/T]TGGCAGAAAC M G T K N
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u13 WIAF-10421 HT28632 335 ATM, ataxia CATTCAGATT[C/C]CAAACAAGCA M C G S C
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125u14 WIAF-11607 HT28632 3966 ATM, ataxia TTCCACATCT[C/A]GTCATTAGAA S G A L L
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G125a15 WIAF-13130 HT28632 8642 ATM, ataxia CAGAAATATC[A/C]ACTCTTCATG M A C E A
    telangiectasia
    mutated (includes
    complementation
    groups A, C and D)
    G136u1 WIAF-10388 HT3337 535 MLH1, mutL AGGAGAAAAG[C/T]TTTAAAAAAT M C T A V
    (E. coli) homolog 1
    (colon cancer, non-
    polyposis type 2)
    G136u2 WIAF-10389 HT3337 769 MLH1, mutL TTCAAAATGA[A/G]TGGTTACATA M A G N S
    (E. coli) homolog 1
    (colon cancer, non-
    polyposis type 2)
    G144u1 WIAF-11638 HT3625 1129 FOS, v-fos FBJ CCTCTGCACT[C/T]CGGTCGTCAC M C T P S
    murine osteo-
    sarcoma viral
    oncogene homolog
    G1461u1 WIAF-12562 HT0329 684 pRB-binding protein TTGCCAAGAA[C/A]TCCAAGAACC S G A K K
    G1466u1 WIAF-12571 HT27849 2128 API2, apoptosis ATGATCCATG[G/C]GTAGAACATG M G C W C
    inhibitor 2
    G1468u1 WIAF-12563 HT4986 1928 apoptosis CCACCAGACC[A/T]GACGAGGGGC S A T P P
    inhibitor, neuronal
    G1468u2 WIAF-12564 HT4986 3057 apoptosis TTTGCAATTC[C/C]TTCAAGGGAG M C G L V
    inhibitor, neuronal
    G1472u1 WIAF-12565 HT28478 242 BAK1, BCL2- GGCACCAGTC[C/T]GGAGAGCCTG S C T C C
    antagonist/killer 1
    G1472u2 WIAF-12572 HT28478 509 BAK1, BCL2- TGCACCCCAC[G/A]GCAGAGAATG S G A T T
    antagonist/killer 1
    G1473u1 WIAF-12568 HT28606 394 CASP6, caspase 6, GGTGTCAACT[G/C]TTAGCCACGC M G C V L
    apoptosis-related
    cysteine protease
    G1473u2 WIAF-12576 HT28606 411 CASP6, caspase 6, ACGCAGATGC[C/T]GATTGCTTTG S C T A A
    apoptosis related
    cysteine protease
    G1479u1 WIAF-12550 Y09077 711 ATR, ataxia ACTTTATTAA[T/C]GGTTCTTACT M T C M T
    telangiectasis and
    Rad3 related
    G1479u2 WIAF-12551 Y09077 4303 ATR, ataxia TTGCGTATGC[T/C]GATAATAGCC S T C A A
    telangiectasia and
    Rad3 related
    G1479u3 WIAF-12552 Y09077 1894 ATR, ataxia ATTCTGATGA[T/C]CCCTGTTTAA S T C D D
    telangiectasia and
    Rad3 related
    G1479u4 WIAF-12553 Y09077 1855 ATR, ataxia ATTTATGTGG[T/A]ATGCTCTCAC S T A G G
    telangiectasia and
    Rad3 related
    G1479u5 WIAF-12558 Y09077 5287 ATR, ataxia TCATTCATTA[T/C]CATGGTCTAG S T C Y Y
    telangiectasia and
    Rad3 related
    G1479u6 WIAF-12559 Y09077 5539 ATR, ataxia CAGCTTTTTA[T/C]GACTCACTGA S T C Y Y
    telangiectasia and
    Rad3 related
    G1479u7 WIAF-12569 Y09077 1540 ATR, ataxia ATCCTGTTAT[T/C]GAGATGTTAG S T C I I
    telangiectasia and
    Rad3 related
    G1479u8 WIAF-12570 Y09077 2521 ATR, ataxia ATTTAATGGA[A/C]GATCCAGACA S A G E E
    telangiectasia and
    Rad3 related
    G1482u1 WIAF-12560 HT27870 3176 BLM, Bloom syndrome AAAATATAAC[G/A]GAATCCAGGA S G A T T
    G1482u2 WIAF-12561 HT27870 3605 BLM, Bloom syndrome GAAATAAAGC[C/A]CAAACTGTAC S C A A A
    G1482u3 WIAF-12573 HT27870 2677 BLM, Bloom syndrome TATCTATTAC[C/T]GAAAAACCCT M C T P L
    G1483u1 WIAF-12597 HT1470 1910 MYBL2, v-myb avian GGATGAGGAT[C/A]TGAAGCTGAT M G A V M
    myeloblastosis
    viral oncogene
    homolog-like 2
    G14B3u2 WIAF-12610 HT1470 244 MYBL2, v-myb avian ATGAGGAGGA[C/T]GAGCAGCTGA S C T D D
    myeloblastosis
    viral oncogene
    homolog-like 2
    G1483u3 WIAF-12611 HT1470 1406 MYBL2, v-myb avian CACTCAGAAT[A/G]GCACCAGTCT M A G S G
    myeloblastosis
    viral oncogene
    homolog-like 2
    G1485u1 WIAF-12581 HT1432 1941 BCR, breakpoint TGGAGATGAG[A/G]AAATGGGTCC S A G R R
    cluster region
    G1485u2 WIAF-12582 HT1432 3144 BCR, breakpoint TGACCATCAA[T/C]AAGGAAGATG S T C N N
    cluster region
    G1485u3 WIAF-12583 HT1432 3777 BCR, breakpoint ATAACAAGGA[T/C]GTGTCGGTGA S T C D D
    cluster region
    G1485u4 WIAF-12603 HT1432 2831 BCR, breakpoint CAGATCAAGA[C/A]TGACATCCAG M G A S N
    cluster region
    G1485u5 WIAF-12608 HT1432 4217 BCR, breakpoint ATCCCTGCCC[C/T]GGACAGCAAG M C T P L
    cluster region
    G1486u1 WIAF-12578 HT33770 1909 BRCA2, breast ATTGATAATG[G/A]AAGCTGGCCA M G A G E
    cancer 2, early
    onset
    G1486u2 WIAF-12579 HT33770 3623 BRCA2, breast AGTTTAGAAA[A/G]CCAAGCTACA S A G K K
    cancer 2,
    early onset
    G1486u3 WIAF-12586 HT33770 1341 BRCA2, breast AAATGTAGCA[A/C]ATCAGAAGCC M A C N H
    cancer 2, early
    onset
    G1486u4 WIAF-12594 HT33770 446 BRCA2, breast CTTATAATCA[G/A]CTGGCTTCAA S G A Q Q
    cancer 2, early
    onset
    G1486u5 WIAF-12598 HT33770 3013 BRCA2, breast ACCATGGTTT[T/C]ATATGGAGAC M T C L S
    cancer 2, early
    onset
    G1486u6 WIAF-12599 HT33770 3187 BRCA2, breast GAAAAAAATA[A/T]TGATTACATG M A T N I
    cancer 2, early
    onset
    G1486u7 WIAF-12604 HT33770 4971 BRCA2, breast AGCATGTGAG[A/C]CCATTGAGAT M A C T P
    cancer 2, early
    onset
    G1486u8 WIAF-12607 HT33770 4034 BRCA2, breast ATGATTCTGT[C/T]GTTTCAATGT S C T V V
    cancer 2, early
    onset
    G1487u1 WIAF-12584 HT27632 2536 BRCA1, breast AGTCAGTGTG[C/G]AGCATTTGAA M C G A G
    cancer 1, early
    onset
    G1487u2 WIAF-12587 HT27632 4697 BRCA1, breast CATCTCAAGA[G/C]GAGCTCATTA M G C E D
    cancer 1, early
    onset
    G1487u3 WIAF-12595 HT27632 469 BRCA1, breast TCTCCTGAAC[A/G]TCTAAAAGAT M A G H R
    cancer 1, early
    onset
    G1487u4 WIAF-12600 HT27632 3667 BRCA1, breast AGCGTCCAGA[A/G]AGGAGAGCTT M A G K R
    cancer 1, early
    onset
    G1487u5 WIAF-12601 HT27632 3537 BRCA1, breast TATGGGAAGT[A/G]GTCATGCATC M A G S G
    cancer 1, early
    onset
    G1487u6 WIAF-12602 HT27632 4956 BRCA1, breast ATCTGCCCAG[A/G]GTCCAGCTGC M A G S G
    cancer 1, early
    onset
    G1487u7 WIAF-12605 HT27632 2090 BRCA1,breast AGTACAACCA[A/G]ATGCCAGTCA S A G Q Q
    cancer 1, early
    onset
    G1487u8 WIAF-12614 HT27632 233 BRCA1,breast TCTCCACAAA[G/A]TGTGACCACA S G A K K
    cancer 1, early
    onset
    G1492u1 WIAF-12585 HT3506 3912 cell death- TCCAGGTCCG[T/C]GGCCTGGAGA S T C R R
    associated kinase
    G1492u2 WIAF-12593 HT3506 4352 cell death- TACAACACCA[A/G]TAACGGGGCT M A G N S
    associated kinase
    G1492u3 WIAF-12606 HT3506 2127 cell death- GCAATTTGGA[C/T]ATCTCCAACA S C T D D
    associated kinase
    G1492u4 WIAF-12612 HT3506 1605 cell death- TCAAATTTCT[C/T]ACTGACAACA S C T L L
    associated kinase
    G1494u1 WIAF-12589 HT28507 366 cell death-inducing TTCACCACAC[T/C]TAAGGAGAAC M T C L P
    protein Bik
    G1495u1 WIAF-12580 HT27803 759 CSE1L, chromosome TTTCTTCCCT[G/C]ATCCTGATCT S G C L L
    segregation 1
    (yeast homolog)-
    like
    G1501u1 WIAF-13502 HT1949 1181 MCC, mutated in CAGCAATGAC[A/C]TTCCCATCGC M A C I L
    colorectal cancers
    G1501u2 WIAF-13503 HT1949 1753 MCC, mutated in CAGCTGAGAA[C/T]GCTGCCAAGG S C T N N
    colorectal cancers
    G1501u3 WIAF-13504 HT1949 2344 MCC, mutated in TGTCCCTAGC[T/C]GAACTCAGGA S T C A A
    colorectal cancers
    G1501u4 WIAF-13521 HT1949 445 MCC, mutated in AGCGAACGAC[G/A]CTTCGCTATG S G A T T
    colorectal cancers
    G1501u5 WIAF-13522 HT1949 1504 MCC, mutated in AAAGCAATGC[T/C]GAGAGGATGA S T C A A
    colorectal cancers
    G1501u6 WIAF-13527 HT1949 2511 MCC, mutated in TTCGTGAATG[A/G]TCTAAAGCGG M A G D G
    colorectal cancers
    G1502u1 WIAF-12633 HT1547 870 CCND1, cyclin D1 AGTGTGACCC[A/G]GACTGCCTCC S A G P P
    (PRAD1: para-
    thyroid adeno-
    matosis 1)
    G1503u1 WIAF-13741 U37022 1151 CDK4, cyclin- CATGCCAATT[G/A]CATCGTTCAC M G A C Y
    dependent kinase 4
    G1503u2 WIAF-13742 U37022 1410 CDK4, cyclin- CTGAAGCCCA[C/T]CAGTTGGGCA S C T D D
    dependent kinase 4
    G1503u3 WIAF-13743 U37022 1328 CDK4, cyclin- TATGCAACAC[C/T]TGTGGACATG M C T P L
    dependent kinase 4
    G1503u4 WIAF-13780 U37022 1194 CDK4, cyclin- TTCTGGTCAC[A/G]AGTGGTCCAA S A G T T
    dependent kinase 4
    G1503u5 WIAF-13781 U37022 1443 CDK4, cyclin- TGATTGGGCT[G/A]CCTCCAGAGG S G A L L
    dependent kinase 4
    G1503u6 WIAF-13787 U37022 1633 CDK4, cyclin- CTCTTATCTA[C/T]ATAAGGATGA M C T H Y
    dependent kinase 4
    G1517u1 WIAF-12618 HT1132 3894 ERBB3, v-erb-b2 CAGACCTCAG[T/C]GCCTCTCTGG S T C S S
    avian erythro-
    blastic leukemia
    viral oncogene
    homolog 3
    G152u1 WIAF-11608 HT3854 1673 HSPA1L, heat shock GTGAGTGATG[A/C]AGGTTTCAAG M A C E A
    70 kD protein like
    1
    G152u2 WIAF-11629 HT3854 1683 HSPA1L, heat shock AAGGTTTGAA[G/A]GGCAAGATTA S G A K K
    70 kD protein like
    1
    G152u3 WIAF-11609 HT3854 1478 HSPA1L, heat shock GTCACAGCCA[C/T]GGACAAGAGC M C T T M
    70 kD protein like
    1
    G152u4 WIAF-11610 HT3854 1443 HSPA1L, heat shock TGACGTTTCA[C/T]ATTGATGCCA S C T D D
    70 kD protein like
    1
    G1520u1 WIAF-12162 HT1175 2211 DNA excision repair TGACCGTGGA[C/T]GAGGGTGTCC S C T D D
    protein ERCC2, 5′
    end
    G1520u2 WIAF-12166 HT1175 546 DNA excision repair CCCACTGCCG[A/C]TTCTATGAGG S A C R R
    protein ERCC2, 5′
    end
    G1527u1 WIAF-12168 HT0086 577 GSTM2, glutathione TCATCTCCCG[A/C]TTTGAGGGCT S A C R R
    S-transferase M2
    (muscle)
    G1527u2 WIAF-12169 HT0086 644 GSTM2, glutathione ACCTGTGTTC[A/T]CAAAGATGGC M A T T S
    S-transferase M2
    (muscle)
    G1527u3 WIAF-12171 HT0086 100 GSTM2, glutathione ACTCAAGCTA[C/T]GAGGAAAAGA S C T Y Y
    S-transferase M2
    (muscle)
    G1527u4 WIAF-12172 HT0086 41 GSTM2, glutathione GGGGTACTGG[A/G]ACATCCGCGG M A G N D
    S-transferase M2
    (muscle)
    G1527u5 WIAF-12173 HT0086 215 GSTM2, glutathione GATTGATGGG[A/G]CTCACAAGAT M A G T A
    S-transferase M2
    (muscle)
    G1527u6 WIAF-12194 HT0086 238 GSTM2, glutathione CCCAGAGCAA[T/C]GCCATCCTGC S T C N N
    S-transferase M2
    (muscle)
    G1528u1 WIAF-11950 HT1811 529 GSTM3, glutathione GTATATTTGA[C/G]CCCAAGTGCC M C G D E
    S-transferase M3
    (brain)
    G1528u2 WIAF-11951 HT1811 674 GSTM3, glutathione CAACAAGCCT[C/A]TATGCTGAGC M G A V I
    S-transferase M3
    (brain)
    G1528u3 WIAF-11989 HT1811 572 GSTM3, glutathione GGCTTTCATG[T/C]GCCGTTTTGA M T G C G
    S-transferase M3
    (brain)
    G1528u4 WIAF-13470 HT1811 240 GSTM3, glutathione CAGAGCAATG[C/A]CATCTTGCGC M C A A D
    S-transferase M3
    (brain)
    G1529u1 WIAF-14146 HT2006 797 GSTM4, glutathione TGGACGCCTT[C/T]CCAAATCTGA S C T F F
    S-transferase M4
    G153u1 WIAF-12163 HT3856 1212 HSPA1B, heat shock TGGGGCTGGA[G/A]ACGGCCGGAG S G A E E
    70 kD protein 1
    G153u2 WIAF-12182 HT3856 676 HSPA1B, heat shock GGCCGGGGAC[A/G]CCCACCTGGG M A G T A
    70 kD protein 1
    G153u3 WIAF-12183 HT3856 1695 HSPA1B, heat shock TCAGCGAGGC[C/G]GACAAGAAGA S C G A A
    70 kD protein 1
    G153u4 WIAF-12189 HT3856 330 HSPA1B, heat shock ACAAGGGGGA[G/C]ACCAAGGCAT M G C E D
    70 kD protein 1
    G153u5 WIAF-12190 HT3856 1053 HSPA1B, heat shock AGCTGCTGCA[A/G]GACTTCTTCA S A G Q Q
    70 kD protein 1
    G1530u1 WIAF-11964 HT3010 673 GSTM5, glutathione ATTCCTCCGA[G/A]GTCTTTTGTT M G A G S
    S-transferase M5
    G1530u2 WIAF-11995 HT3010 593 GSTM5, glutathione GACGCCTTCC[T/C]AAACTTGAAG M T C L P
    S-transferase M5
    G1530u3 WIAF-13473 HT3010 693 GSTM5, glutathione TTGGAAAGTC[A/G]GCTACATGGA S A G S S
    S-transferase M5
    G1533u1 WIAF-13458 HT27460 543 GSTT2, glutathione CTCTCGGCTA[C/T]GAACTGTTTG S C T Y Y
    S-transferase
    theta 2
    G1533u2 WIAF-13460 HT27460 417 GSTT2, glutathione GGACTGCCAT[G/A]GACCAGGCCC M G A M I
    S-transferase
    theta 2
    G1533u3 WIAF-13461 HT27460 359 GSTT2, glutathione CAGGTGTTGG[G/A]GCCACTCATT M G A G E
    S-transferase
    theta 2
    G1533u4 WIAF-13462 HT27460 363 GSTT2, glutathione TGTTGGGGCC[A/C]CTCATTGGGG S A C P P
    S-transferase
    theta 2
    G1533u5 WIAF-13463 HT27460 385 GSTT2, glutathione CCAGGTGCCC[G/A]AGGAGAAGGT M G A E K
    S-transferase
    theta 2
    G1535u1 WIAF-11952 HT0436 517 HCK, hemopoietic CCGCGTTGAC[T/C]CTCTGGACAC M T C S P
    cells kinase
    G1535u2 WIAF-12013 HT0436 783 HCK, hemopoietic TGGACCACTA[C/T]AAGAAGGGGA S C T Y Y
    cells kinase
    G1535u3 WIAF-13464 HT0436 357 HCK, hemopoietic TCATCGTGGT[T/C]GCCCTGTATG S T C V V
    cells kinase
    G1535u4 WIAF-13465 HT0436 387 HCK, hemopoietic CCATTCACCA[C/T]GAAGACCTCA S C T H H
    cells kinase
    G1535u5 WIAF-13466 HT0436 471 HCK, hemopoietic CCCTGGCCAC[C/G]CGGAAGGACG S C G T T
    cells kinase
    G1535u6 WIAF-13467 HT0436 240 HCK, hemopoietic CCAGCGCCAG[C/T]CCACACTCTC S C T S S
    cells kinase
    G1535u7 WIAF-13468 HT0436 394 HCK, hemopoietic CCACGAAGAC[C/T]TCAGCTTCCA M C T L F
    cells kinase
    G1537u1 WIAF-12020 U04045 1514 MSH2, mutS GTGAATTAAG[A/C]GAAATAATCA S A G R R
    (E. coli) homolog 2
    (colon cancer, non-
    polyposis type 1)
    G1537u2 WIAF-12044 U04045 599 MSH2, mutS GACTGTGTGA[A/T]TTCCCTGATA M A T E D
    (E. coli) homolog 2
    (colon cancer, non-
    polyposis type 1)
    G1537u3 WIAF-12045 U04045 1452 MSH2, mutS AGATATGGAT[C/T]AGGTGGAAAA N C T Q *
    (E. coli) homolog 2
    (colon cancer, non-
    polyposis type 1)
    G1537u4 WIAF-12076 U04045 938 MSH2, mutS GACACTTTGA[A/T]CTGACTACTT M A T E D
    (E. coli) homolog 2
    (colon cancer, non-
    polyposis type 1)
    G1537u5 WIAF-12077 U04045 1878 MSH2, mutS TCAGCTAGAT[G/A]CTGTTGTCAG M G A A T
    (E. coli) homolog 2
    (colon cancer, non-
    polyposis type 1)
    G1543u1 WIAF-13856 J00119 553 MOS, v-mos Moloney GAGTTTCTGG[G/T]CTGAGCTCAA M G T A S
    murine sarcoma
    viral oncogene
    homolog
    G1543u2 WIAF-13857 J00119 621 MOS, v-mos Moloney GCACGCGCAC[G/A]CCCGCAGGGT S G A T T
    murine sarcoma
    viral oncogene
    homolog
    G1544u1 WIAF-12018 U59464 3821 PTCH, patched CATCCCGAAT[C/T]CAGGCATCAC M C T S F
    (Drosophila)
    homolog
    G1544u2 WIAF-12019 U59464 3618 PTCH, patched GCGTGGTCCG[C/T]TTCGCCATGC S C T R R
    (Drosophila)
    homolog
    G1544u3 WIAF-12027 U59464 1761 PTCH, patched ATTTTGCCAT[G/T]GTTCTGCTCA M G T M I
    (Drosophila)
    homolog
    G1544u4 WIAF-12029 U59464 4074 PTCH, patched CTGCCATGGG[C/T]AGCTCCGTGC S C T G G
    (Drosophila)
    homolog
    G1544u5 WIAF-12043 U59464 3845 PTCH, patched CCCTCGAACC[C/T]GAGACAGCAG M C T P L
    (Drosophila)
    homolog
    G1544u6 WIAF-12056 U59464 1433 PTCH, patched CTGCTGGTTG[C/T]ACTGTCAGTG M C T A V
    (Drosophila)
    homolog
    G1544u7 WIAF-12058 U59464 3298 PTCH, patched CACCGTTCAC[G/C]TTGCTTTGGC M G C V L
    (Drosophila)
    homolog
    G1544u8 WIAF-12062 U59464 3986 PTCH, patched TCTACTGAAG[G/A]GCATTCTGGC M G A G E
    (Drosophila)
    homolog
    G1544u9 WIAF-13489 U59464 1665 PTCH, patched CCATCAGCAA[T/C]GTCACAGCCT S T C N N
    (Drosophila)
    homolog
    G1544u10 WIAF-13490 U59464 2396 PTCH, patched AAATACTTTT[C/T]TTTCTACAAC M C T S F
    (Drosophila)
    homolog
    G1544u11 WIAF-13491 U59464 2199 PTCH, patched GGACACTCTC[A/G]TCTTTTGCTG S A G S S
    (Drosophila)
    homolog
    G1544u12 WIAF-13492 U59464 2222 PTCH, patched AAGCACTATG[C/T]TCCTTTCCTC M C T A V
    (Drosophila)
    homolog
    G1544u13 WIAF-13500 U59464 1686 PTCH, patched TCTTCATGGC[C/T]GCGTTAATCC S C T A A
    (Drosophila)
    homolog
    G1545u1 WIAF-12032 HT0473 1835 RAG1, recombina- GGACATGGAA[G/A]AAGACATCTT M G A E K
    tion activating
    gene 1
    G1545u2 WIAF-12035 HT0473 2519 RAG1, recombina- TGACATTGGC[A/G]ATGCAGCTGA M A G N D
    tion activating
    gene 1
    G1545u3 WIAF-12046 HT0473 3045 RAG1, recombina- CGGAAAATGA[A/G]TGCCAGGCAG M A G N S
    tion activating
    gene 1
    G1545u4 WIAF-12047 HT0473 3146 RAG1, recombina- TCATAATGCA[T/C]TAAAAACCTC S T C L L
    tion activating
    gene 1
    G1545u5 WIAF-12075 HT0473 2513 RAG1, recombina- CCACTGTGAC[A/T]TTGGCAATGC M A T I F
    tion activating
    gene 1
    G1545u6 WIAF-13484 HT0473 1322 RAG1, recombina- GTCGCTGACT[C/T]GGAGAGCTCA M C T R W
    tion activating
    gene 1
    G1545u7 WIAF-13494 HT0473 2571 RAG1, recombina- GAAGTGTATA[A/C]GAATCCCAAT M A G K R
    tion activating
    gene 1
    G1545u8 WIAF-13498 HT0473 1018 RAG1, recombina- TTCTGGCTGA[C/A]CCTGTGGAGA M C A D E
    tion activating
    gene 1
    G1545u9 WIAF-13499 HT0473 2782 RAG1, recombina- ATCTTTACCT[G/C]AAGATGAAAC S G C L L
    tion activating
    gene 1
    G1548u1 WIAF-12015 HT4999 133 IF127, interferon, CTCTGCCGTA[G/A]TTTTGCCCCT M G A V I
    alpha-inducible
    protein 27
    G1548u2 WIAF-13482 HT4999 380 IFI27, interferon, ATCCTGGGCT[C/T]CATTGGGTCT M C T S F
    alpha-inducible
    protein 27
    G1548u3 WIAF-13483 HT4999 135 IF127, interferon, CTGCCGTAGT[T/C]TTGCCCCTGG S T C V V
    alpha-inducible
    protein 27
    G155u1 WIAF-11634 HT3962 991 CHCl, chromosome AGCTGGATGT[G/A]CCTGTGGTAA S G A V V
    condensation 1
    G155u2 WIAF-11635 HT3962 1271 CHCl, chromosome CGGCTTCGGC[C/T]TCTCCAACTA M C T L F
    condensation 1
    G155u3 WIAF-11636 HT3962 1192 CHCl, chromosome GCCGGGGCCA[C/T]GTGAGATTCC S C T H H
    condensation 1
    G155u4 WIAF-11637 HT3962 1267 CHCl, chromosome TGTACGGCTT[C/T]GGCCTCTCCA S C T F F
    condensation 1
    G155u5 WIAF-11649 HT3962 1657 CHCl, chromosome TGATGGGCAA[A/G]CAGCTGGAGA S A G K K
    condensation 1
    G1550u1 WIAF-12057 M16038 611 LYN, v-yes-1 Yama- GCAAAGTCCC[T/G]TTTAACAAAA M T G L R
    guchi sarcoma viral
    related oncogene
    homolog
    G1550u2 WIAF-12061 M16038 1371 LYN, v-yes-1 Yama- TGGCATACAT[C/T]GAGCGGAAGA S C T I I
    guchi sarcoma viral
    related oncogene
    homolog
    G1550u3 WIAF-12080 M16038 1059 LYN, v-yes-1 Yama- AAAGGCTTGG[C/T]GCTGGGCAGT S C T G G
    guchi sarcoma viral
    related oncogene
    homolog
    G1550u4 WIAF-12081 M16038 996 LYN, v-yes-1 Yama- AGCCACAGAA[G/A]CCATGGGATA S G A K K
    guchi sarcoma viral
    related oncogene
    homolog
    G1552u1 WIAF-12030 HT4578 2355 PMS1, postmeiotic CCTGCTATTT[A/T]AAAGACTTCT N A T K *
    segregation
    increased
    (S. cerevisiae) 1
    G1552u2 WIAF-12031 HT4578 2231 PMS1, postmeiotic
    segregation ACAAAGTTGA[C/T]TTAGAAGAGA S C T D D
    increased
    (S. cerevisiae) 1
    G1552u3 WIAF-12040 HT4578 617 PMS1, postmeiotic TCATGAGCTT[T/C]GGTATCCTTA S T C F F
    segregation
    increased
    (S. cerevisiae) 1
    G1552u4 WIAF-12063 HT4578 1723 PMS1, postmeiotic TCATGTAACA[A/C]AAAATCAAAT M A G K R
    segregation
    increased
    (S. cerevisiae) 1
    G1552u5 WIAF-12064 HT4578 1732 PMS1, postmeiotic AAAAAATCAA[A/G]TGTAATAGAT M A G N S
    segregation
    increased
    (S. cerevisiae) 1
    G1552u6 WIAF-12065 HT4578 1660 PMS1, postmeiotic TTACCATGTA[A/G]AGTAAGTAAT M A G K R
    segregation
    increased
    (S. cerevisiae) 1
    G1552u7 WIAF-12066 HT4578 1975 PMS1, postmeiotic GAACGATACA[A/G]TAGTCAAATG M A G N S
    segregation
    increased
    (S. cerevisiae) 1
    G1552u8 WIAF-12067 HT4578 1881 PMS1, postmeiotic TTTAGAGGAT[G/T]CAACACTACA M G T A S
    segregation
    increased
    (S. cerevisiae) 1
    G1552u9 WIAF-12068 HT4578 2454 PMS1, postmeiotic TTTAGACGTT[T/A]TATATAAAAT M T A L I
    segregation
    increased
    (S. cerevisiae) 1
    G1552u10 WIAF-12069 HT4578 2457 PMS1, postmeiotic AGACGTTTTA[T/C]ATAAAATGAC M T C Y H
    segregation
    increased
    (S. cerevisise) 1
    G1552u11 WIAF-12082 HT4578 2557 PMS1, postmeiotic ATACCAGGAC[T/C]TTCAATTACT M T C V A
    segregation
    increased
    (S. cerevisiae) 1
    G1552u12 WIAF-12083 HT4578 971 PMS1, postmeiotic
    segregation TTTTCTTTCT[G/T]AAAATCGATG S G T L L
    increased
    (S. cerevisiae) 1
    G1554u1 WIAF-12028 HT4161 1500 ELK3, ELK3, ETS- CTCAGAAATC[C/T]TGATGACCTC S C T S S
    domain protein (SRF
    accessory protein
    2) NOTE: Symbol
    and name
    provisional.
    G1554u2 WIAF-12059 HT4161 1380 ELK3, ELK3, ETS- CTGCCAGGCT[G/A]CAAGGGCCAA S G A L L
    domain protein (SRF
    accessory protein
    2) NOTE: Symbol
    and name
    provisional.
    G1554u3 WIAF-12060 HT4161 1436 ELK3, ELK3, ETS- CACATGCCAG[T/C]GCCAATCCCC M T C V A
    domain protein (SRF
    accessory protein
    2) NOTE: Symbol
    and name
    provisional.
    G1562u1 WIAF-12024 HT28220 804 PDCD1, programmed GGGGCTCAGC[T/C]GACGGCCCTC S T C A A
    cell death 1
    G1562u2 WIAF-13488 HT28220 644 PDCD1, programmed GACCCCTCAG[C/T]CGTGCCTCTG M C T A V
    cell death 1
    G1563u1 WIAF-13493 HT1187 1748 EGFR, epidermal CCGGAGCCCA[G/A]GGACTGCGTC M G A R K
    growth factor
    receptor (avian
    erythroblastic
    leukemia viral
    (v-erb-b) oncogene
    homolog)
    G1563u2 WIAF-13497 HT1187 2073 EGFR, epidermal ACGGATGCAC[T/A]GGGCCAGGTC S T A T T
    growth factor
    receptor (avian
    erythroblastic
    leukemia viral
    (v-erb-b) oncogene
    homolog)
    G1566u1 WIAF-12016 HT27594 235 PDCD2, programmed GCGCCGCTGC[C/G]TGGCCGCCCG M C G P R
    cell death 2
    G1566u2 WIAF-12033 HT27594 904 PDCD2, programmed TTGGAATTCC[A/G]GGTCATGCCT M A G Q R
    cell death 2
    G1566u3 WIAF-12041 HT27594 331 PDCD2, programmed AATCAACTAC[C/T]CAGGAAAAAC M C T P L
    cell death 2
    G1566u4 WIAF-12071 HT27594 649 PDCD2, programmed CCTGAGGTTG[T/C]GGAAAAGGAA M T C V A
    cell death 2
    G1566u5 WIAF-12072 HT27594 633 PDCD2,programmed AGAAGATGAG[A/T]TTATGCCTGA M A T I F
    cell death 2
    G1567u1 WIAF-12042 M95936 293 AKT2, v-akt murine GAGAGGCCGC[G/A]ACCCAACACC M G A R Q
    thymoma viral
    oncogene homolog 2
    G1572u1 WIAF-12212 HT3998 1894 proto-oncogene c- TGTTCCAGGA[A/G]TCCAGTATCT S A G E E
    abl, tyrosine
    protein kinase,
    alt. transcript 2
    G1572u2 WIAF-12233 HT3998 3694 proto-oncogene c- AGCTTCAGAT[C/T]TGCCCGGCGA S C T I I
    abl, tyrosine
    protein kinase,
    alt. transcript 2
    G1572u3 WIAF-12234 HT3998 3721 proto-oncogene c- GCAGTGGTCC[G/A]GCGGCCACTC S G A P P
    abl, tyrosine
    protein kinase,
    alt. transcript 2
    G1573u1 WIAF-12021 HT0642 343 CBL, Cas-Br-M TCATGGACAA[G/C]CTGGTGCGGT M G C K N
    (murine) ecotropic
    retroviral
    transforming
    sequence
    G1573u2 WIAF-12022 HT0642 363 CBL, Cas-Br-M TTGTGTCAGA[A/T]CCCAAAGCTG M A T N I
    (murine) ecotropic
    retroviral
    transforming
    sequence
    G1573u3 WIAF-12034 HT0642 2364 CBL, Cas-Br-M AATATTCAGT[C/T]CCAGGCGCCA M C T S P
    (murine) ecotropic
    retroviral
    transforming
    sequence
    G1573u4 WIAF-12049 HT0642 387 CBL, Cas-Br-M CTAAAGAATA[G/A]CCCACCTTAT M G A S N
    (murine) ecotropic
    retroviral
    transforming
    sequence
    G1573u5 WIAF-12050 HT0642 947 CBL, Cas-Br-M AACTCATCCT[G/A]GCTACATGGC M G A G S
    (murine) ecotropic
    retroviral
    transforming
    sequence
    G1573u6 WIAF-12070 HT0642 2740 CBL, Cas-Br-M TCGAGAACCT[C/T]ATGAGTCAGG S C T L L
    (murine) ecotropic
    retroviral
    transforming
    sequence
    G1573u7 WIAF-12073 HT0642 661 CBL, Cas-Br-M TCTTTCCAAG[T/C]GGACTCTTTC S T C S S
    (murine) ecotropic
    retroviral
    transforming
    sequence
    G1573u8 WIAF-12074 HT0642 2569 CBL, Cas-Br-M CTCTGGATGG[T/C]GATCCTACAA S T C G G
    (murine) ecotropic
    retroviral
    transforming
    sequence
    G1573u9 WIAF-13486 HT0642 2006 CBL, Cas-Br-M CCGGCACTCA[C/T]TTCCATTTTC M C T L F
    (murine) ecotropic
    retroviral
    transforming
    sequence
    G1574u1 WIAF-12037 HT1508 2493 FES, feline sarcoma
    (Snyder-Theilen) AGCGGCCCAG[C/T]TTCAGCACCA S C T S S
    viral (v-fes)/
    Fujinami avian
    sarcoma (PRCII)
    viral (v-
    fps) oncogene
    homolog
    G1574u2 WIAF-12051 HT1508 189 FES, feline sarcoma
    (Snyder-Theilen) CCCAGCGGGT[C/T]AAGAGTGACA S C T V V
    viral (v-fes)/
    Fujinami avian
    sarcoma (pRCII)
    viral (v-
    fps) oncogene
    homolog
    G1574u3 WIAF-12052 HT1508 1441 FES, feline sarcoma GAAGCCCCTG[C/T]ATGAGCAGCT M C T H Y
    (Snyder-Theilen)
    viral (v-fes)/
    Fujinami avian
    sarcoma (PRCII)
    viral (v-
    fps) oncogene
    homolog
    G1574u4 WIAF-12053 HT1508 2202 FES, feline sarcoma GAGAGGAAGC[C/T]GATGGGGTCT S C T A A
    (Snyder-Theilen)
    viral (v-fes)/
    Fujinami avian
    sarcoma (PRCII)
    viral (v-fps)
    oncogene homolog
    G1574u5 WIAF-12054 HT1508 2088 FES, feline sarcoma CTGCTGGCAT[G/T]GAGTACCTGG M G T M I
    (Snyder-Theilen)
    viral (v-fes)/
    Fujinami avian
    sarcoma (PRCII)
    viral (v-fps)
    oncogene homolog
    G1574u6 WIAF-12078 HT1508 1577 FES, feline sarcoma GATGGTCTGC[C/T]CCGGCACTTC M C T P L
    (Snyder-Theilen)
    viral (v-fes)/
    Fujinami avian
    sarcoma (PRCII)
    viral (v-fps)
    oncogene homolog
    G1574u7 WIAF-13495 HT1508 579 FES, feline sarcoma GTGACAAGGC[T/C]AAGGACAAGT S T C A A
    (Snyder-Theilen)
    viral (v-fes)/
    Fujinami avian
    sarcoma (PRCII)
    viral (v-fps)
    oncogene homolog
    G1575u1 WIAF-12079 HT1052 963 FGR, Gardner- TGGGCACCGG[C/T]TGCTTCGGGG S C T G G
    Rasheed feline
    sarcoma viral
    (v-fgr) oncogene
    homolog
    G1575u2 WIAF-13487 HT1052 232 FGR, Gardner- CAGAAGCTAC[G/A]GGGCAGCAGA M G A G R
    Rasheed feline
    sarcoma viral
    (v-fgr) oncogene
    homolog
    G1585u1 WIAF-12017 HT1675 996 CRK, v-crk avian TGGATCAACA[G/A]AATCCCGATG S G A Q Q
    sarcoma virus CT10
    oncogene homolog
    G1585u2 WIAF-12036 HT1675 446 CRK, v-crk avian ACTACAACGT[T/C]GATAGAACCA M T C L S
    sarcoma virus CT10
    oncogene homolog
    G1587u1 WIAF-12023 HT0590 1473 proto-oncogene dbl GGCCAATCCA[A/G]TTTGTGGTAC S A G Q Q
    G1587u2 WIAF-12025 HT0590 2549 proto-oncogene dbl GTCCAGGCTT[C/T]TAATGTAGAT M C T S F
    G1587u3 WIAF-12026 HT0590 2828 proto-oncogene dbl GCATCACAAT[C/T]TGCAGAAATC M C T S F
    G1587u4 WIAF-12038 HT0590 982 proto-oncogene dbl AAATTCTCAG[G/C]AGCTATTATC M G C E Q
    G1587u5 WIAF-12039 HT0590 2343 proto-oncogene dbl AACCAATGCA[G/T]CGACACCTTT M G T Q H
    G1587u6 WIAF-12048 HT0590 683 proto-oncogene dbl GACACTGAAG[G/A]AGCTGTCAGT M G A G E
    G1587u7 WIAF-12055 HT0590 2686 proto-oncogene dbl TTCTCTTCAG[C/T]AGAATGATGA N C T Q *
    G1587u8 WIAF-13485 HT0590 2136 proto-oncogene dbl ACTGTGAAGG[T/A]TCTGCTCTGT S T A G G
    G1587u9 WIAF-13496 HT0590 1566 proto-oncogene dbl AAAATCAGAG[C/T]AACTTAAAAA S C T S S
    G159u1 WIAF-11616 HT4209 1059 RAD23B, RAD23 AGTACTGGGG[C/T]TCCTCAGTCT M C T A V
    (S. cerevisiae)
    homolog B
    G1590u1 WIAF-13897 HT2455 1257 ETS2, v-ets avian GCCAGTCTCT[C/G]TGCCTCAATA S C G L L
    erythroblastosis
    virus E26 oncogene
    homolog 2
    G1590u2 WIAF-13913 HT2455 1107 ETS2, v-ets avian ATTCTGGGAC[T/G]CCCAAAGACC S T G T T
    erythroblastosis
    virus E26 oncogene
    homolog 2
    G1590u3 WIAF-13914 HT2455 1314 ETS2, v-ets avian GGAGTGACCC[A/G]GTGGAGCAAG S A G P P
    erythroblastosis
    virus E26 oncogene
    homolog 2
    G1591u1 WIAF-13924 HT2333 417 HRAS, v-Ha-ras TCCAGAACCA[T/C]TTTGTGGACG S T C H H
    Harvey rat sarcoma
    viral oncogene
    homolog
    G1595u1 WIAF-12262 HT33778 1302 proto-oncogene GCATACCTCA[G/C]TGGCTACTAA M G C S T
    1-myc, alt.
    transcript 1
    G1597u1 WIAF-12243 HT0410 900 MAS1, MAS1 oncogene CCATCTTGGT[C/T]GTGAAGATCC S C T V V
    G150u1 WIAF-11630 HT4247 690 RAD23A, RAD23 AGAGCCAGGT[A/G]TCGGAGCAGC S A G V V
    (S. cerevisiae)
    homolog
    G1602u1 WIAF-14180 HT1903 1321 proto-oncogene GTCGCCGGGG[C/A]CCAGCAAATA M C A P T
    pim-1
    G1604u1 WIAF-12319 HT2788 1182 REL, v-rel avian CCTCCCAAAG[T/C]GCTGGGATTA S T C S S
    reticuloendo-
    theliosis viral
    oncogene homolog
    G1609u1 WIAF-12358 HT33646 348 RIPK1, receptor GACGCACGGT[C/T]TCCCATGACC S C T V V
    (TNFRSF) interact-
    ing serine-
    threonine kinase
    1
    G161u1 WIAF-11654 HT4251 1522 DNA repair and TATGATCCAT[C/T]TTAACTGAGG M C T S F
    recombination
    homolog RAD52
    G1610a1 WIAF-12101 HT27727 501 replication TGCAACTCCT[G/A]CTATTAAGAC M G A A T
    protein Rpa4,
    30 kDa
    G1610a2 WIAF-12102 HT27727 554 replication TACCGTGTAA[C/T]GTGAACCAGC S C T N N
    protein Rpa4,
    30 kDa
    G1610u3 WIAF-12307 HT27727 450 replication TTCTGCTGCT[G/A]ATGGAGCGAG M G A D N
    protein Rpa4,
    30 kDa
    G1610u4 WIAF-12320 HT27727 1037 replication TGATTCATGA[G/C]TGTCCTCATC M G C E D
    protein Rpa4,
    30 kDa
    G1610u5 WIAF-12321 HT27727 857 replication TAGAGGACAT[G/A]AACGAGTTCA M G A M I
    protein Rpa4,
    30 kDa
    G1610u6 WIAF-12343 HT27727 539 replication GAATTCAGGA[C/T]GTTGTACCGT S C T D D
    protein Rpa4,
    30 kDa
    G1630u1 WIAF-12302 HT3563 4312 DCC, deleted in ACTCATGAAG[C/T]AGCTTAATGC N C T Q *
    colorectal
    carcinoma
    G1632u1 WIAF-13572 HT27355 742 tumor suppressor, TTTATGACAT[G/C]AAGCGGGGCT M G C M I
    PDGF receptor
    beta-like
    G1632u2 WIAF-13584 HT27355 1102 tumor suppressor, TGGAAGACTT[C/T]GAGACGATTG S C T F F
    PDGF receptor
    beta-like
    G1632u3 WIAF-13601 HT27355 258 tumor suppressor, AAGACGCAGT[C/T]TATCATGATG M C T S F
    PDGF receptor
    beta-like
    G1633u1 WIAF-13957 HT1778 1263 FER, fer (fps/ TTCAGGCAAA[T/C]GAGATCATGT S T C N N
    fes related)
    tyrosine kinase
    (phosphoprotein
    NCP94)
    G1633u2 WIAF-13958 HT1778 2407 F2R, fer (fps/ TATGTTGTAT[C/T]TCGAGAGTAA M C T L F
    fes related)
    tyrosine kinase
    (phosphoprotein
    NCP94)
    G1634u1 WIAF-13505 HT3216 1569 ELK1, ELK1, member TCTCGACCCC[C/T]GTGGTGCTCT S C T P P
    of ETS oncogene
    family
    G1634u2 WIAF-13858 HT3216 456 ELK1, ELK1, member GGCTGTGGGG[A/G]CTACGCAAGA S A G G G
    oncogene family
    G1634u3 WIAF-13859 HT3216 745 ELK1, ELK1, member AGGCCCAGGC[G/A]GTTTGGCACG M G A G S
    of ETS oncogene
    family
    G1638u1 WIAF-14172 HT1224 98 uracil-DNA GCTGGGACCT[G/C]TTCCACAAAT G C
    glycosylase
    G1643u1 WIAF-13517 HT3751 629 DXS648E, DNA seg- TACATCCCCA[G/A]TCGTGGCCCT M G A S N
    ment on chromosome
    X (unique) 648
    expressed sequence
    G1645u1 WIAF-14087 D21089 363 XPC, xeroderma AAAACCTCAA[G/A]GTTATAAAGG S G A K K
    pigmentosum, com-
    plementation group
    C
    G1645u2 WIAF-14088 D21089 2166 XPC, xeroderma TGCATTCCAG[G/A]CACACGTGGC S G A R R
    pigmentosum, com-
    plementation group
    C
    G1645u3 WIAF-14089 D21089 1580 XPC, xeroderma GGGAGCCATC[G/A]TAAGGACCCA M G A R H
    pigmentosum, com-
    plementation group
    C
    G1645u4 WIAF-14090 D21089 1601 XPC, xeroderma AGCTTGCCAG[T/C]GGCATCCTCA M T C V A
    pigmentosum, com-
    plementation group
    C
    G1645u5 WIAF-14091 D21089 2920 XPC, xeroderma CCCATTTGAG[A/C]AGCTGTGAGC M A C K Q
    pigmentosum, com-
    plementation group
    C
    G1645u6 WIAF-14103 D21089 405 XPC, xeroderma ATGACCTCAG[G/A]GACTTTCCAA S G A R R
    pigmentosum, com-
    plementation group
    C
    G1645u7 WIAF-14104 D21089 151 XPC, xeroderma GGGACGCGAA[C/G]TGCGCAGCCA M C G L V
    pigmentosum, com-
    plementation group
    C
    G1645u8 WIAF-14105 D21089 2133 XPC, xeroderma AAGCGGTCTA[C/T]TCCAGGGATT S C T Y Y
    pigmentosum, com-
    plementation group
    C
    G167u1 WIAF-11632 HT4579 83 PMS2L8, postmeiotic CCTATTCATC[G/A]GAAGTCAGTC M G A R Q
    segregation
    increased 2-like 8
    G167u2 WIAF-11633 HT4579 219 PMS2L8, postmeiotic GAGTGGATCT[T/C]ATTGAAGTTT S T C L L
    segregation
    increased 2-like 8
    G167u3 WIAF-11644 HT4579 768 PMS2L8, postmeiotic TGCCCCCTAG[T/C]GACTCCGTGT S T C S S
    segregation
    increased 2-like 8
    G161u4 WIAF-11622 HT4579 1645 PMS2L8, postmeiotic GAAAGCGCCT[G/A]AAACTGACGA M G A E K
    segregation
    increased 2-like 8
    G167u5 WIAF-11645 HT4579 1512 PMS2L8, postmeiotic ACTCGGGGCA[C/T]GGCAGCACTT S C T H H
    segregation
    increased 2-like 8
    G167u6 WIAF-11646 HT4579 1619 PMS2L8, postmeiotic TCGCAGGAAC[A/C]TGTGGACTCT M A G H R
    segregation
    increased 2-like 8
    G167u7 WIAF-11647 HT4579 1432 PMS2L8, postmeiotic CGTCCTGAGA[C/T]CTCAGAAAGA M C T P S
    segregation
    increased 2-like 8
    G167u8 WIAF-11625 HT4579 2490 PMS2L8, postmeiotic GGACTGCTCT[T/C]AACACAAGCG S T C L L
    segregation
    increased 2-like 8
    G167u9 WIAF-11619 HT4579 804 PMS2L8, postmeiotic TGAGCTGTTC[G/C]GATGCTCTGC S G C S S
    segregation
    increased 2-like 8
    G167u10 WIAF-11623 HT4579 1555 PMS2L8, postmeiotic CATCCCAGAC[A/G]CGGGCAGTCA M A G T A
    segregation
    increased 2-like 8
    G167u11 WIAF-11624 HT4575 2364 PMS2L8, postmeiotic CCTTCGGACC[C/T]CAGGACGTCG S C T P P
    segregation
    increased 2-like 8
    G167u12 WIAF-11626 HT4579 2348 PMS2L8, postmeiotic ACTAGTAAAA[A/G]CTGGACCTTC M A G N S
    segregation
    increased 2-like 8
    G181u1 WIAF-11697 HT48793 311 ERCC4, excision ATATTTGCGA[C/T]AAGTAGGATA M C T T I
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 4
    G181u2 WIAF-11698 HT48793 295 ERCC4, excision CACACAAGGT[G/C]GTGTTATATT M G C G R
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 4
    G181u3 WIAF-11699 HT48793 234 ERCC4, excision TTGAACACCT[C/T]CCTCCCCCTC S C T L L
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 4
    G181u4 WIAF-11704 HT48793 808 ERCC4, excision TTTGTGGCAC[C/T]AGCTTGGAGC N C T Q *
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 4
    G181u5 WIAF-11705 HT48793 640 ERCC4, excision TTCTATGACA[C/T]CTACCATGCT M C T P S
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 4
    G181u6 WIAF-11670 HT48793 1117 ERCC4, excision AGAAAGCAAC[C/T]CAAAGTGGGA M C T P S
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 4
    G185u1 WIAF-11668 HT5122 319 ACVR2B, activin A TCTGCAACGA[G/A]CGCTTCACTC S G A E E
    receptor, type IIB
    G185u2 WIAF-11707 HT5122 70 ACVR2B, activin A AGACACGGGA[G/C]TGCATCTACT M G C E D
    receptor, type IIB
    G185u3 WIAF-11672 HT5122 812 ACVR2B, activin A CCTCACGGAT[T/C]ACCTCAAGGG M T C Y H
    receptor, type IIB
    G185u4 WIAF-13542 X77533 1109 ACVR2B, activin A GGCTCCTGAG[G/A]TGCTCGAGGG M G A V M
    receptor, type IIB
    G185u5 WIAF-13558 X77533 997 ACVR2B, activin A TGCTGAAGAG[C/T]GACCTCACAG S C T S S
    receptor, type IIB
    G187u1 WIAF-11669 HT97400 183 androgen CCAGAGACAG[C/T]GCGACCCGGA M C T R C
    G191u1 WIAF-10176 AF025375 414 CXCR4, chemokine ACCTGGCCAT[C/T]GTCCACGCCA S C T I I
    (C-X-C motif),
    receptor 4 (fusin)
    G193u1 WIAF-10178 D29984 231 CCR2, chemokine AGTGCTTGAC[T/A]GACATTTACC S T A T T
    (C-C motif)
    receptor 2
    G193u2 WIAF-10179 D29984 190 CCR2, chemokine CATGCTGGTC[G/A]TCCTCATCTT M G A V I
    (C-C motif)
    receptor 2
    G194u1 WIAF-10211 D43767 121 SCYA17, small ACATCCACCC[A/C]GCTCGAGGGA S A C A A
    inducible cytokine
    subfamily A
    (Cys-Cys), member
    17
    G197u1 WIAF-10167 D50403 1515 NRAMP1, natural GGTGCTAGTC[T/C]GCGCCATCAA M T C C R
    resistance-
    associated
    macrophage protein
    1 (might include
    Leishmaniasis)
    G197u2 WIAF-10173 D50403 1629 NRAMP1, natural CACCTACCTG[G/C]TCTGGACCTG M G C V L
    resistance-
    associated
    macrophage protein
    1 (might include
    Leishmaniasis)
    G20u1 WIAF-10249 U14722 896 ACVR1B, activin A CGGTACACAG[T/C]GACAATTGAG M T C V A
    receptor, type IB
    G20u2 WIAF-10250 U14722 866 ACVR1B, activin A GAGCACGGGT[C/T]CCTGTTTGAT M C T S F
    receptor, type IB
    G20u3 WIAF-10251 U14722 1391 ACVR1B, activin A CAGAGTTATG[A/T]GGCACTGCGG M A T E V
    receptor, type IB
    G20u4 WIAF-10252 U14722 1236 ACVR1B, activin A TATATTGGGA[G/C]ATTGCTCGAA M G C E D
    receptor, type IB
    G20u5 WIAF-10261 U14722 518 ACVR1B, activin A GAGATGTGTC[T/C]CTCCAAAGAC M T C L P
    receptor, type IB
    G207a1 WIAF-10516 L25259 866 Human CTLA4 AGCTGTACTT[C/T]CAACAGTTAT M C T P S
    counter-receptor
    (B7-2) mRNA,
    complete cds.
    G208u1 WIAF-10204 L31581 85 CCR7, chemokine GGGGAAACCA[A/G]TGAAAAGCGT M A G M V
    (C-C motif)
    receptor 7
    G211u1 WIAF-10213 M24545 174 SCYA2, small, TCACCTGCTG[T/C]TATAACTTCA S T C C C
    inducible cytokine
    A2 (monocyte
    chemotactic protein
    1, homologous to
    mouse Sig-je)
    G214u1 WIAF-10191 M27533 452 CD80, CD80 antigen TGAAAGAAGT[G/A]GCAACGCTGT S G A V V
    (CD28 antigen
    ligand 1, B7-1
    antigen)
    G215u1 WIAF-11659 M28393 822 PRF1, perforin 1 GCATCTCTGC[C/T]GAAGCCAAGG S C T A A
    (preforming
    protein)
    G215u2 WIAF-11723 M28393 159 PRF1, perform 1 TGACCAGCCT[C/T]CGCCGCTCGG S C T L L
    (preforming
    protein)
    G215u3 WIAF-11724 M28393 96 PRF1, perform 1 CAGAGTGCAA[G/A]CGCAGCCACA S G A K K
    (preforming
    protein)
    G215u4 WIAF-11725 M28393 1377 PRF1, perform 1 ATAACAACCC[C/T]ATCTGGTCAG S C T P P
    (preforming
    protein)
    G215u5 WIAF-11726 M28393 1326 PRF1, perform 1 TGAAGCTCTT[C/T]TTTGGTGGCC S C T F F
    (preforming
    protein)
    G215u6 WIAF-11727 M28393 1076 PRF1, perform 1 CGGCGGGAGG[C/T]ACTGAGGAGG M C T A V
    (preforming
    protein)
    G217u1 WIAF-11691 M31932 649 FCGR2B, Fc fragment GCAGCTCTTC[A/C]CCAATGGGGA S A G S S
    of IgG, low
    affinity IIb,
    receptor for (CD32)
    G217u2 WIAF-11692 M31932 625 FCGR2B, Fc fragment TCACTGTCCA[A/G]GTGCCCAGCA S A G Q Q
    of IgG, low
    affinity IIb,
    receptor for (CD32)
    G217u3 WIAF-11712 M31932 332 FCGR2B, Fc fragment GACTGGCCAG[A/C]CCAGCCTCAG M A C T P
    of IgG, low
    affinity IIb,
    receptor for (CD32)
    G217u4 WIAF-11713 M31932 101 FCGR2B, Fc fragment GGCTTCTGCA[G/T]ACAGTCAAGC M G T D Y
    of IgG, low
    affinity IIb,
    receptor for (CD32)
    G218u1 WIAF-10184 M36712 677 CD8B1, CD8 antigen, TTTTACAAAT[A/G]AGCAGAGAAT N A G * *
    beta polypeptide 1
    (p37)
    G218u2 WIAF-10188 M36712 326 CD8B1, CD8 antigen, GCTGTGTTTC[G/C]GGATGCAAGC M G C R P
    beta polypeptide 1
    (p37)
    G218u3 WIAF-10189 M36712 196 CD8B1, CD8 antigen, CAGTAACATG[C/T]GCATCTACTG M C T R C
    beta polypeptide 1
    (p37)
    G218u4 WIAF-10190 M36712 225 CD8B1, CD8 antigen, AGCGCCAGGC[A/C]CCGAGCAGTG S A C A A
    beta polypeptide 1
    (p37)
    G218u5 WIAF-10194 M36712 583 CD8B1, CD8 antigen, GGTGGCTGGC[G/A]TCCTGGTTCT M G A V I
    beta polypeptide 1
    (p37)
    G218u6 WIAF-10208 M36712 372 CD8B1, CD8 antigen, TGAAGCCGGA[A/G]GACAGTGGCA S A G E E
    beta polypeptide 1
    (p37)
    G218u7 WIAF-10209 M36712 400 CD8B1, CD8 antigen, CTGCATGATC[G/T]TCGGGAGCCC M G T V F
    beta polypeptide 1
    (p37)
    G218u8 WIAF-10210 M36712 270 CD8B1, CD8 antigen, TCTGGGATTC[C/T]GCAAAAGGGA S C T S S
    beta polypeptide 1
    (p37)
    G218a9 WIAF-10518 M36712 618 CD8B1, CD8 antigen, GAGTGGCCAT[C/G]CACCTGTGCT M C G I M
    beta polypeptide 1
    (p37)
    G218a10 WIAF-13223 M36712 556 CD8B1, CD8 antigen, TTGTAGCCCC[A/G]TCACCCTTGG M A G I V
    beta polypeptide 1
    (p37)
    G218a11 WIAF-13224 M36712 836 CD8B1, CD8 antigen, CTGTGTGTGA[T/C]GTGCATGGGA T C
    beta polypeptide 1
    (p37)
    G22u1 WIAF-10301 U86136 6719 Human telomerase- GGTGGTAACC[G/A]TCGGGCTAGA M G A V I
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u2 WIAF-10302 U86136 7537 Human telomerase- CTGATGGGAT[C/G]CTATGGAACC M C G I M
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u3 WIAF-10311 U86136 1798 Human telomerase- ATGATGCCAT[T/C]GATGCCCTCG S T C I I
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u4 WIAF-10312 U86136 2397 Human telomerase- CTGTCTCTGG[C/T]TGGCCAAAGG M C T A V
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u5 WIAF-10313 U86136 3289 Human telomerase- AGAAAGGGAT[A/C]ACCTGCCGCA S A C I I
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u6 WIAF-10314 U86136 3242 Human telomerase- AGAGGCCGCA[T/C]GTCGGATCTC M T C C R
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u7 WIAF-10315 U86136 4482 Human telomerase- CCGTTTGCCT[G/A]CCTCGTCCAG M G A C Y
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u8 WIAF-10316 U86136 4363 Human telomerase- GTTTGACTGT[G/A]GACCAGCTGC S G A V V
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u9 WIAF-10317 U86136 4230 Human telomerase- GTGTCTGAGA[G/A]ACTCCGGACC M G A R K
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u10 WIAF-10318 U86136 4419 Human telomerase- GGGACTAAGA[G/C]CTGGGAAGAA M G C S T
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u11 WIAF-10319 U86136 5269 Human telomerase- TCTCCGATGA[T/C]ACACTCTTTC S T C D D
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u12 WIAF-10320 U86136 5015 Human telomerase- GCTGCTCTCC[C/T]GGAGATGGCA M C T R W
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u13 WIAF-10321 U86136 5133 Human telomerase- GTGGCCTTCT[C/T]CACCAATGGG M C T S F
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u14 WIAF-10322 U86136 7764 Human telomerase- ACAGCCCTCC[A/G]TGTCCTACCT M A G H R
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u15 WIAF-10323 U86136 7884 Human telomerase- TGCCTGGAAC[C/T]TTGCCTGGGC M C T P L
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u16 WIAF-10324 U86136 7744 Human telomerase- AGATTCACTC[C/A]GCCTCTGTCA S G A S S
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u17 WIAF-10337 U86136 1018 Human telomerase- CCATTGCTGC[T/C]TTCTTGCCGG S T C A A
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u18 WIAF-10338 U86136 1000 Human telomerase- TGGCCAATAA[C/A]ATCTTGGCCA M C A N K
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u19 WIAF-10339 U86136 1182 Human telomerase- ATGACGGACA[A/G]ATTTGCCCAG M A G K R
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u20 WIAF-10340 U86136 1939 Human telomerase- AGCAGCTTCG[T/G]ATGGCAATGA S T G R R
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u21 WIAF-10341 U86136 2227 Human telomerase- TCACGAGGGC[G/A]GAGCAGGTGG S G A A A
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u22 WIAF-10342 U86136 2776 Human telomerase- GGCGCAGCAT[C/T]CGGCTTTTCA S C T I I
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u23 WIAF-10343 U86136 2877 Human telomerase- GCCCCTCACC[C/A]TATCAGCCTT M G A R H
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u24 WIAF-10344 U86136 3087 Human telomerase- TCAGGGCGCT[C/T]TGTGACAGAG M C T S F
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u25 WIAF-10345 U86136 3662 Human telomerase- CAAGGTGGCA[C/T]CATTAGTCTT M C T P S
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u26 WIAF-10346 U86136 4762 Human telomerase- TTTCGAAGTT[C/T]CTTACCAACC S C T F F
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u27 WIAF-10351 U86136 1737 Human telomerase- CTCCAGCATG[G/C]GAAGTCGGTG M G C G A
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u28 WIAF-10352 U86136 3543 Human telomerase- ACAGTGCAAC[A/G]GCTGATGCTG M A G Q R
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u29 WIAF-10353 U86136 4232 Human telomerase- GTCTGAGAGA[C/T]TCCGGACCCT M C T L F
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u30 WIAF-10354 U86136 4523 Human telomerase- GGAGGGCCCT[C/T]TGGAGCGCCC S C T L L
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u31 WIAF-10355 U86136 5333 Human telomerase- TGGTTGTCGG[G/T]TGCTGCAGAC M G T V L
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u32 WIAF-10356 U86136 6208 Human telomerase- AGCTGCTGAC[G/A]CGGCCACACA S G A T T
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u33 WIAF-10357 U86136 7703 Human telomerase- TAGTCAGCCA[A/G]CACCACATCT M A G T a
    associated protein
    TP-1 mRNA, complete
    cds.
    G22u34 WIAF-10360 U86136 3881 Human telomerase- CATCGATGGG[G/A]CTGATAGGTT M G A A T
    associated protein
    TP-1 mRNA, complete
    cds.
    G222u1 WIAF-11700 M57230 697 IL6ST, interleukin TGAGTGGGAT[G/C]GTGGAAGGGA M G C G R
    6 signal transducer
    (gp130, oncostatin
    M receptor)
    G222u2 WIAF-11701 M57230 708 IL6ST, interleukin GTGGAAGGGA[A/G]ACACACTTGG S A G E E
    6 signal transducer
    (gp130, oncostatin
    M receptor)
    G222u3 WIAF-11702 M57230 677 IL6ST, interleukin GAGGGGAACA[A/G]AATGAGGTGT M A G K R
    6 signal transducer
    (gp130, oncostatin
    M receptor)
    G222u4 WIAF-11706 M57230 1616 IL6ST, interleukin AAGAAATATA[T/C]ACTTGAGTGG M T C I T
    6 signal transducer
    (gp130, oncostatin
    M receptor)
    G222u5 WIAF-11667 M57230 1444 IL6ST, interleukin TGATCGCTAT[C/G]TAGCAACCCT M C G L V
    6 signal transducer
    (gp130, oncostatin
    M receptor)
    G222u6 WIAF-11708 M57230 981 IL6ST, interleukin TCTTAAAATT[G/C]ACATGGACCA M G C L F
    6 signal transducer
    (gp130, oncostatin
    M receptor)
    G226u1 WIAF-11714 M85079 869 TGFBR2, transform- CACTGGGAGT[T/C]GCCATATCTG S T C V V
    ing growth factor,
    beta receptor II
    (70-80 kD)
    G226u2 WIAF-11715 H85079 1749 TGFBR2, transform- ACATTATCAC[C/T]CTCCATTTCC M C T P S
    ing growth factor,
    beta receptor II
    (70-80 kD)
    G226u3 WIAF-11716 M85079 1601 TGFBR2, transform- TCCCAACTCC[A/C]ACATACATCC S A G A A
    ing growth factor,
    beta receptor II
    (70-80 kD)
    G226u4 WIAF-11721 H85079 1256 TGFBR2, transform- TACTCCACTT[C/C]CTCACCCCTC M C G F L
    ing growth factor,
    beta receptor II
    (70-80 kD)
    G226u5 WIAF-11722 M85079 1502 TGFBR2, transform- TCCTCAACAA[C/T]CACCTAACCT S C T N N
    ing growth factor,
    beta receptor II
    (70-80 kD)
    G226u6 WIAF-11671 M85079 888 TGFBR2, transform- TCTCATCATC[A/C]TCTTCTACTC M A C I L
    ing growth factor,
    beta receptor II
    (70-80 kD)
    G226u7 WIAF-11674 M85079 1425 TGFBR2, transform- CCTCCACAGT[G/A]ATCACACTCC M G A D N
    ing growth factor,
    beta receptor II
    (70-80 kD)
    G227u1 WIAF-10197 M86511 685 CD14, CD14 antigen CCTGTCTGAC[A/G]ATCCTGGACT M A G N D
    G227u2 WIAF-10212 M86511 497 CD14, CD14 antigen GAAGCCACAG[G/A]ACTTGCACTT M G A G E
    G2278u1 WIAF-14117 AF034611 959 CUBN, cubilin ACATAAATAA[T/C]CGCCCCTGTT S T C N N
    (intrinsic factor-
    cobalamn receptor)
    G2278u2 WIAF-14118 AF034611 781 CUBN, cubilin CCGTGGATGT[C/T]TTCACCCAAC M C T S F
    (intrinsic factor-
    cobalain receptor)
    G2278u3 WIAF-14119 AF034611 641 CUBN, cubilin CTCAGACGTA[C/T]CCACCCCAGT S C T Y Y
    (intrinsic factor-
    cobalamin receptor)
    G2278u4 WIAF-14121 AF034611 1185 CUBN, cubilin TCCTTATCCG[C/A]CAAATGCATG M C A P T
    (intrinsic factor-
    cobalamin receptor)
    G2278u5 WIAF-14133 AF034611 1532 CUBN, cubilin TCTGCGTTAT[C/G]AAAACTGAAA M C G I M
    (intrinsic factor
    cobalamin receptor)
    G2278u6 WIAF-14134 AF034611 2208 CUBN, cubilin GCCTTTCACT[C/T]ACACCAGGCA M C T H Y
    (intrinsic factor
    cobalamin receptor)
    G228u1 WIAF-10199 U00672 586 IL10RA, interleukin CCAACGTCCC[G/A]CCAAACTTCA S G A P P
    10 receptor, alpha
    G228u2 WIAF-10200 U00672 731 IL10RA, interleukin AGAGCAGTGC[A/G]TCTCCCTCAC M A G I V
    10 receptor, alpha
    G2280u1 WIAF-13970 AJ001515 1747 RYR3, ryanodine CAGGTATCTT[G/A]GAAGTTTTGC S G A L L
    receptor 3
    G2280u2 WIAF-13974 AJ001515 8593 RYR3, ryanodine TAGAAGCCAT[T/C]GTCAGCAGTG S T C I I
    receptor 3
    G2282u1 WIAF-12694 D00726 263 FECH, ACATGGGAGG[C/T]CCTGAAACTG S C T G G
    ferrochelatase
    (protoporphyria)
    G2282u2 WIAF-12695 D00726 514 FECH, TACTATATTG[G/A]ATTTCGGTAC M G A G E
    ferrochelatase
    (protoporphyria)
    G2285u1 WIAF-12688 D16611 673 CPO, copropor- AGAAGACGCT[G/A]TCCATTTTCA M G A V I
    phyrinogen oxidase
    (coproporphyria,
    harderoporphyria)
    G2285u2 WIAF-12689 D16611 783 CPO, copropor- ATCGTGGAGA[G/A]CGGCGGGGCA S G A E E
    phyrinogen oxidase
    (coproporphyria,
    harderoporphyria)
    G2287u1 WIAF-12687 D28472 502 PTGER4, prosta- GGGCCTCACG[C/T]TCTTTGCAGT M C T L F
    glandin E receptor
    4 (subtype EP4)
    G2287u2 WIAF-12691 D28472 1309 PTGER4, prosta- TGAAAATGGC[C/T]TTGGAGGCAG M C T L F
    glandin E receptor
    4 (subtype EP4)
    G2287u3 WIAF-12707 D28472 243 PTGER4, prosta- AGGAGACGAC[C/T]TTCTACACGC S C T T T
    glandin E receptor
    4 (subtype EP4)
    G2287u4 WIAF-12710 D28472 1342 PTGER4, prosta- GGTGTGCCTG[G/A]CATGGGCCTG M G A G D
    glandin E receptor
    4 (subtype EP4)
    G229u1 WIAF-10185 U16752 202 SDF1, stromal cell- CATGTTGCCA[G/A]AGCCAACCTC M G A R K
    derived factor 1
    G2295u1 WIAF-12727 D89079 613 LTB4R, leukotriene CTATGTCTGC[G/C]GAGTCAGCAT M G C G R
    b4 receptor (chemo-
    kine receptor-like
    1)
    G2295u2 WIAF-1272B D89079 1248 LTB4R, leukotriene AGGGCACGGG[T/C]TCCGAGGCGT S T C G G
    b4 receptor (chemo-
    kine receptor-like
    1)
    G2295u3 WIAF-12753 D89079 1348 LTB4R, leukotriene CCTCACTGCC[T/G]CCAGCCCTCT M T G S A
    b4 receptor (chemo-
    kine receptor-like
    1)
    G230u1 WIAF-10201 U31628 627 IL15RA, interleukin ACAGCCAAGA[A/C]CTGGGAACTC M A C N T
    15 receptor, alpha
    alpha
    G2300u1 WIAF-12735 J02959 102 LTA4H, leukotriene ACCTGCACCT[C/T]CGCTGCACGC S G T L L
    A4 hydrolase
    G2300u2 WIAF-12738 J02959 1380 LTA4H, leukotriene CCTGGCTCTA[C/T]TCTCCTGGAC S C T Y Y
    A4 hydrolase
    G2302u1 WIAF-12741 J03037 627 CA2, carbonic TCCTGAATCC[C/T]TGGATTACTG S C T L L
    anhydrase II
    G2302u2 WIAF-12742 J03037 819 CA2, carbonic GCCACTGAAG[A/G]ACAGGCAAAT M A G N D
    anhydrase II
    G2303u1 WIAF-12751 J03571 304 ALOX5, arachidonate CGCTGAAGAC[G/A]CCCCACGGGG S G A T T
    5-lipoxygenase
    G2303u2 WIAF-12752 J03571 794 ALOX5, arachidonate AGAGCTGCCC[G/A]AGAAGCTCCC M G A E K
    5-lipoxygenase
    G2304u1 WIAF-12772 J03575 840 PDHA1, pyruvate TCCGAGAGGC[A/C]ACAAGGTTTG S A G A A
    dehydrogenase
    (lipoamide) alpha 1
    G2304u2 WIAF-12779 J03575 1044 PDHA1, pyruvate CCAGTGTGGA[A/C]GAACTAAAGG M A C E D
    dehydrogenase
    (lipoamide) alpha 1
    G2305u1 WIAF-12763 J03576 456 PDHB, pyruvate TCTTCAGGGG[A/G]CCCAATGGTG S A G G G
    debydrogenase
    (lipoamide) beta
    G2305u2 WIAF-12764 J03576 650 PDHB, pyruvate GTTCCTTTTG[A/C]ATTTCTCCCG M A C E A
    dehydrogenase
    (lipoamide) beta
    G231u1 WIAF-10202 U32324 734 IL11RA, interleukin CCAGGGCCTG[C/T]GGGTAGAGTC M C T R W
    11 receptor, alpha
    G2312u1 WIAF-12762 J05096 3726 ATP1A2, ATPase, TCAAGAACCA[C/T]ACAGAGATCG S C T H H
    Na+/K+
    transporting,
    alpha 2 (+)
    polypeptide
    G2313u1 WIAF-12760 J05200 6141 RYR1, ryanodine TGCAATTCAA[A/G]GATGGTACAG S A G K K
    receptor 1
    (skeletal)
    G2313u2 WIAF-12767 J05200 3048 RYR1, ryanodine CGGCGCAGAC[A/G]ACACTGGTGG S A G T T
    receptor 1
    (skeletal)
    G2313u3 WIAF-12768 J05200 3084 RYR1, ryanodine ATGGCCACAA[C/T]GTGTGGGCCC S C T N N
    receptor 1
    (skeletal)
    G2313u4 WIAF-12777 J05200 5667 RYR1, ryanodine GCATCTTTGG[C/T]GATGAGGATG S C T G G
    receptor 1
    (skeletal)
    G2313u5 WIAF-12780 J05200 6600 RYR1, ryanodine GCTCGCTGCT[C/T]ATCGTGCAGA S C T L L
    receptor 1
    (skeletal)
    G2313u6 WIAF-12781 J05200 7191 RYR1, ryanodine AGCCTGAGTG[C/T]TTCGHACCCG S C T C C
    receptor 1
    (skeletal)
    G2313u7 WIAF-12782 J05200 7602 RYR1, ryanodine ACCACAAGGC[G/A]TCCATGGTGC S G A A A
    receptor 1
    (skeletal)
    G2313u8 WIAF-12784 J05200 9288 RYR1, ryanodine CAGACGCCCC[A/G]GCTCTGGTCA S A G P P
    receptor 1
    (skeletal)
    G2313u9 WIAF-12786 J05200 13690 RYR1, ryanodine TCCAAAGAAG[G/A]AGGAAGCTGG M G A E K
    receptor 1
    (skeletal)
    G2313u10 WIAF-12789 J05200 3147 RYR1, ryanodine ACATCCCAGC[G/A]CGCCCAAACC S G A A A
    receptor 1
    (skeletal)
    G23144u1 WIAF-12771 J05272 1920 IMPDH1, IMP TGAAGATCGC[A/G]CAGGGTGTCT S A G A A
    (inosine mono-
    phosphate)
    dehydrogenase 1
    G2319u1 WIAF-12814 K03191 651 CYP1A1, cytochrome CCCCTACAGG[T/C]ATGTGGTGGT M T C Y H
    P450, subfamily I
    (aromatic compound
    inducible), poly-
    peptide 1
    G232u1 WIAF-11657 U58917 1490 Homo sapiens IL,-17 TGAACATGAT[C/T]CTCCCGGACT S C T I I
    receptor mRNA,
    complete cds.
    G232u2 WIAF-11677 U58917 1293 Homo sapiens IL-17 GCAGGCCATC[T/C]CGGAGGCAGG M T C S P
    receptor mRNA,
    complete cds.
    G232u3 WIAF-11658 U58917 1132 Homo sapiens IL-17 GGCCTGCCTG[C/T]GGCTCACCTG M C T A V
    receptor mRNA,
    complete cds.
    G232u4 WIAF-11679 U58917 905 Homo sapiens IL-17 GCAGCTGCCT[C/T]AATGACTGCC S C T L L
    receptor mRNA,
    complete cds.
    G232u5 WIAF-11682 U58917 1794 Homo sapiens IL-17 GTTCGAATGTE[G/T]AGAACCTCTA N G T E *
    receptor mRNA,
    complete cds.
    G232u7 WIAF-11660 U58917 743 Homo sapiens IL-17 TGACCAGTTT[T/C]CCGCACATGG S T C F F
    receptor mRNA,
    complete cds.
    G2322u1 WIAF-12853 L01406 1316 GHRHR, growth CTGACATCTA[T/C]GTGCTAGGCT M T C M T
    hormone releasing
    hormone receptor
    G2328u1 WIAF-12845 L20316 1285 GCGR, glucagon TGCGGGCACG[G/C]CAGATGCACC S G C R R
    receptor
    G2329u1 WIAF-12850 L22214 713 ADORA1, adenosine TGCTGGCAAT[T/C]GCTGTGGACC S T C I I
    A1 receptor
    G2329u2 WIAF-12851 L22214 716 ADORA1, adenosine TGGCAATTGC[T/G]GTGGACCGCT S T G A A
    A1 receptor
    G2335a1 WIAF-12136 L32961 265 ABAT, 4-amino- CCTAGATCTC[A/G]GGAGTTAATG M A G Q R
    butyrate amino-
    transferase
    G2335a2 WIAF-12137 L32961 407 ABAT, 4-amino- TCTCCTCTGT[T/C]CCCATAGGTT S T C V V
    butyrate amino-
    transferase
    G2335u3 WIAF-12838 L32961 365 ABAT, 4-amino- TTGATGTGGA[C/T]GGCAACCGAA S C T D D
    butyrate amino-
    transferase
    G2335u4 WIAF-12839 L32961 583 ABAT, 4-amino- ATCACCATGG[C/T]CTGCGGCTCC M C T A V
    butyrate amino-
    transferase
    G2335u5 WIAF-12841 L32961 1082 ABAT, 4-amino- TGGACGAGGT[C/A]CAGACCGGAG S C A V V
    butyrate amino-
    transferase
    G2335u6 WIAF-12852 L32961 227 ABAT, 4-amino- ATTATGATGG[C/A]CCTCTGATGA S G A G G
    butyrate amino-
    transferase
    G2337u1 WIAF-13577 L34820 149 ALDH5A1, aldehyde TGTTCTCGAA[A/C]GAATGCCAAG M A G K R
    dehydrogenase
    5
    family, member A1
    (succinate-semi-
    aldehyde
    dehydrogenase)
    G2342a1 WIAF-12138 M12530 1602 TF, transferrin GCCTAAACCT[G/C]TGTGAACCCA S G C L L
    G2342a2 WIAF-12139 M12530 1795 TF, transferrin TACCAGGAAA[C/T]CTGTGGAGGA M C T P S
    G2346u1 WIAF-12829 M13928 234 ALAD, aminolevuli- TGGCCAGGTA[T/C]GGTGTGAAGC S T C Y Y
    nate, delta-,
    dehydratase
    G2346u2 WIAF-12830 M13928 529 ALAD, aminolevuli- TGAGGTGGCA[T/C]TGGCGTATGC S T C L L
    nate, delta-,
    dehydratase
    G2346u3 WIAF-12843 M13928 480 ALAD, aminolevuli- TGAGTGAAAA[C/T]GGAGCATTCC S C T N N
    nate, delta-,
    dehydratase
    G2348u1 WIAF-12835 M14016 621 UROD, uroporphyrino- CTCTGGTCCC[A/G]TATCTGGTAG S A G P P
    gen decarboxylase
    G235u1 WIAF-11678 U83171 100 SCYA22, small CAGGCCCCTA[C/T]GGCGCCAACA S C T Y Y
    inducible cytokine
    subfamily A (Cys-
    Cys), member 22
    G2363a1 WIAF-10519 M37435 596 CSF1, colony GACAAGGACT[G/T]GAATATTTTC M G T W L
    stimulating factor
    1 (macrophage)
    G2363a2 WIAF-13225 M37435 498 CSF1, colony AAGAGCATGA[C/T]AAGGCCTGCG S C T D D
    stimulating factor
    1 (macrophage)
    G2363a3 WIAF-13226 M37435 712 CSF1, colony CAGTGACCCG[G/T]CCTCTGTCTC M G T A S
    stimulating factor
    1 (macrophage)
    G2369u1 WIAF-12854 M30773 857 PPP3R1, protein TTGATTTGCA[C/T]AATTCTCGTT S C T D D
    phosphatase 3
    (formerly 2B),
    regulatory subunit
    B (19 kD), alpha
    isoform
    (calcineurin B,
    type I)
    G2369u2 WIAF-12855 M30773 1274 PPP3R1, protein ATGTGTGACT[C/T]TTATCAGAGA - C T - -
    phosphatase 3
    (formerly 25),
    regulatory subunit
    B (19 kD), alpha
    isoform
    (calcineurin B,
    type I)
    G237u1 WIAF-11662 U86358 311 SCYA25, small CACCACAACA[T/C]GCAGACCTTC M T C M T
    inducible cytokine
    subfamily A (Cys-
    Cys), member 25
    G237u2 WIAF-11680 U86358 134 SCYA25, small GTGCTCCGGC[G/A]CGCCTGGACT M G A R H
    inducible cytokine
    subfamily A (Cys-
    Cys), member 25
    G237u3 WIAF-11681 U86358 133 SCYA25, small TGTGCTCCGG[C/T]GCGCCTGGAC M C T R C
    inducible cytokine
    subfamily A (Cys-
    Cys), member 25
    G237u5 WIAF-11661 U86358 302 SCYA25, small GCAAAGCTCC[A/G]CCACAACATG M A G H R
    inducible cytokine
    subfamily A (Cys-
    Cys), member 25
    G237u6 WIAF-11663 U86358 378 SCYA25, small AGTTATCATC[A/C]TCCAAGTTTA S A G S S
    inducible cytokine
    subfamily A (Cys-
    Cys), member 25
    G2373u1 WIAF-12870 M36035 500 BZRP, benzo- GCTGGCCTTC[G/A]CGACCACACT M G A A T
    diazapine receptor
    (peripheral)
    G2376u1 WIAF-13025 M57414 979 TACR2, tachykinin CTGCTGCCCA[T/C]GGGTCACACC M T C W R
    receptor
    2
    G238u1 WIAF-10177 X01394 239 TNF, tumor necrosis GCTCCAGGCG[G/T]TGCTTGTTCC S G T R R
    factor (TNF super-
    family, member 2)
    G2381u1 WIAF-12894 M59941 730 CSF2RB, colony CAGAGGTTTG[C/T]TGGGACTCCC S C T C C
    stimulating factor
    2 receptor, beta,
    low-affinity
    (granulocyte-
    macrophage)
    G2381u2 WIAF-12896 M59941 1306 CSF2RB, colony GGATCTGGAG[C/T]GAGTGGAGTG S C T S S
    stimulating factor
    2 receptor, beta,
    low-affinity
    (granulocyte-
    macrophage)
    G2381u3 WIAF-12900 M59941 1972 CSF2RB, colony CGATGGGACCC[G/A]GGACAGGCCG S G A P P
    stimulating factor
    2 receptor, beta,
    low-affinity
    (granulocyte-
    macrophage)
    G2381u4 WIAF-12901 M59941 1982 CSF2RB, colony GGGACAGGCC[G/A]TGGAACTGGA M G A V M
    stimulating factor
    2 receptor, beta,
    low-affinity
    (granulocyte-
    macrophage)
    G2381u5 WIAF-12942 M59941 773 CSF2RB, colony CCAGAACCTG[G/C]AGTGCTTCTT M G C E Q
    stimulating factor
    2 receptor, beta,
    low-affinity
    (granulocyte-
    macrophage)
    G2381u6 WIAF-12946 M59941 2458 CSF2RB, colony CCCCACAGCC[C/A]GAGGGCCTCC S C A P P
    stimulating factor
    2 receptor, beta,
    low-affinity
    (granulocyte-
    macrophage)
    G2384u1 WIAF-12908 M61831 1000 AHCY, S-adenosyl- GCCGTGGAGA[A/C]GGTGAACATC M A C K T
    homocysteine
    hydrolase
    G2387u1 WIAF-12910 M63967 2585 ALDH5, aldehyde CTGCTGAACC[T/G]CCTGGCAGAC M T G L R
    dehydrogenase
    5
    G2387u2 WIAF-12911 M63967 2996 ALDH5, aldehyde TATGGCCCAA[C/G]AGCAGGTGCG M C G T R
    dehydrogenase
    5
    G2387u3 WIAF-12954 M63967 2522 ALDH5, aldehyde GCCCGGGAAG[C/T]CTTCCGCCTG M C T A V
    dehydrogenase
    5
    G2387u4 WIAF-12955 M63967 2448 ALDH5, aldehyde ACCCTACCAC[C/T]GGGGAGGTCA S C T T T
    dehydrogenase
    5
    G2387u5 WIAF-12956 M63967 2460 ALDH5, aldehyde GGGAGGTCAT[C/T]GGGCACGTGG S C T I I
    dehydrogenase 5
    G2387u6 WIAF-12957 M63967 2991 ALDH5, aldehyde CGGGGTATGG[C/T]CCAACAGCAG S C T G G
    dehydrogenase 5
    G2387u7 WIAF-12958 M63967 3022 ALDH5, aldehyde CGCCCAGCAC[A/G]TGGATGTTGA M A G M V
    dehydrogenase 5
    G2387u8 WIAF-12959 M63967 2943 ALDH5, aldehyde CCCTCATCAA[G/C]GAGGCAGGCT M G C K N
    dehydrogenase
    5
    G2388u1 WIAF-12888 M64590 588 GLDC, glycine TGCCACAGAC[G/A]ATTTTGCCGA S C A T T
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u2 WIAF-12889 M64590 651 GLDC, glycine ACCAGCCTGA[G/A]GTGTCTCAGG S G A E E
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u3 WIAF-12890 M64590 698 GLDC, glycine CAGACCATGG[T/C]GTGTGACATC M T C V A
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u4 WIAF-12891 M64590 557 GLDC, glycine TATATTGGCA[T/C]GGGCTATTAT M T C M T
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u5 WIAF-12938 M64590 587 GLDC, glycine GTGCCACAGA[C/G]GATTTTGCGG M C G T R
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u6 WIAF-12939 M64590 518 GLDC, glycine CTGCATGCCA[T/C]TTCAAGCAAA M T C I T
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u7 WIAF-12940 M64590 810 GLDC, glycine GGAAATTTCT[C/T]GTTGATCCCC S C T L L
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u8 WIAF-12941 M64590 1481 GLDC, glycine CATTGTGGCT[G/A]CTCAGTGAAG M G A C Y
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u9 WIAF-12947 M64590 1841 GLDC, glycine AAACTGAACA[C/A]TTCGTCTGAA M G A S N
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav
    age system protein
    P)
    G2388u10 WIAF-12948 M64590 2325 GLDC, glycine GACAGGTCTA[C/T]CTACACCGGG S C T Y Y
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u11 WIAF-12949 M64590 2362 GLDC, glycine GGTGGGAATC[T/A]GTCCCCCTGG M T A C S
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2388u12 WIAF-12950 M64590 3220 GLDC, glycine TTAGTCCTCT[C/G]TCCCTAAGTT - C G - -
    dehydrogenase
    (decarboxylating;
    glycine decarboxyl-
    ase, glycine cleav-
    age system protein
    P)
    G2391u1 WIAF-12998 M69238 623 ARNT, aryl hydro- TGGTGTATGT[G/C]TCTGACTCCG S G C V V
    carbon receptor
    nuclear
    translocator
    G2391u2 WIAF-13002 M69238 1072 ARNT, aryl hydro- TGCCTAGTGG[C/T]CATTGGCAGA M C T A V
    carbon receptor
    nuclear
    translocator
    G2391u3 WIAF-13021 M69238 966 ARNT, aryl hydro- ACCTCACTTC[G/A]TGGTGGTCCA M G A V M
    carbon receptor
    nuclear
    translocator
    G2394u1 WIAF-13003 M73747 2061 TSHR, thyroid TTGCTCGTAC[T/A]CTTCTATCCA M T A L H
    stimulating hormone
    receptor
    G2394u2 WIAF-13004 M73747 2248 TSHR, thyroid TTACCCACGA[C/G]ATGAGGCAGG M C G D E
    stimulating hormone
    receptor
    G2396u1 WIAF-12995 M74542 1027 ALDH3, aldehyde CCCCCAGTCC[C/G]CGGTGATGCA M C G P A
    dehydrogenase 3
    G2396u2 WIAF-13019 M74542 1295 ALDH3, aldehyde GGCAACAACA[G/A]CTTCGAGACT M G A S N
    dehydrogenase
    3
    G2403u1 WIAF-13583 M83670 280 CA4, carbonic TACGATAAGA[A/T]GCAAACGTGG M A T K M
    anhydrase IV
    G2409u1 WIAF-10010 HT2156 1268 AGTR1, angiotensin CCACTCAAAC[C/T9 TTTCAACAAA M C T L F
    receptor 1
    G2411u1 WIAF-13541 M97759 210 ADORA2B, adenosine TGGCGGGCAA[C/T]GTGCTGGTGT S C T N N
    A2b receptor
    G2422u1 WIAF-14077 S90469 375 POR, P450 GCAGCCTGCC[A/G]GAGATCGACA S A G P P
    (cytochrome)
    oxidoreductase
    G2422u2 WIAF-14078 S90469 852 POR, P450 TCCTGGCTGC[A/G]GTCACCACCA S A G A A
    (cytochrome)
    oxidoreductase
    G2422u3 WIAF-14082 S90469 1496 POR, P450 AAGGAGCCTG[T/C]CGCCGAGAAC M T C V A
    (cytochrome)
    oxidoreductase
    G2422u4 WIAF-14099 S90469 1443 POR, P450 AGACCAAGGC[C/T]GGCCGCATCA S C T A A
    (cytochrome)
    oxidoreductase
    G2422u5 WIAF-14100 S90469 1704 POR, P450 GCCGCCGCTC[G/A]GATGAGGACT S G A S S
    (cytochrome)
    oxidoreductase
    G2427u1 WIAF-14079 U07919 1369 ALDH6, aldehyde ACTATGGACT[C/T]ACAGCAGCCG S C T L L
    dehydrogenase 6
    G2427u2 WIAF-14096 U07919 1347 ALDH6, aldehyde ATAAAAAGAG[C/T]GAATACCACC M C T A V
    dehydrogenase 6
    G243u1 WIAF-11684 X57522 926 TAP1, transporter ATAGCCAGTG[C/G]AGTGCTGGAG M C G A G
    1, ABC (ATP
    binding cassette)
    G243u2 WIAF-11685 X57522 627 TAP1, transporter ACCCTACCGC[C/T]TTCGTTGTCA S C T A A
    1, ABC (ATP
    binding cassette)
    G243u3 WIAF-11686 X57522 538 TAP1, transporter CCTGCCGGGA[C/G]TTCCCTTGTT M C G L V
    1, ABC (ATP
    binding cassette)
    G243u4 WIAF-11687 X57522 798 TAP1, transporter TGGTGGTCCT[C/G]TCCTCTCTTG S C G L L
    1, ABC (ATP
    binding cassette)
    G243u5 WIAF-11689 X57522 1465 TAP1, transporter TAGTATTTCA[G/T]GTATCCTGCT M G T G C
    1, ABC (ATP
    binding cassette)
    G243u6 WIAF-11690 X57522 177 TAP1, transporter AGAGTCCCAG[A/G]CCCGGCCGGG S A G R R
    1, ABC (ATP
    binding cassette)
    G243u7 WIAF-11693 X57522 1067 TAP1, transporter AACATCATGT[C/T]TCGGGTAACA M C T S F
    1, ABC (ATP
    binding cassette)
    G243u8 WIAF-11665 X57522 1207 TAP1, transporter GGTCACCCTG[A/G]TCACCCTGCC M A G I V
    1, ABC (ATP
    binding cassette)
    G243u9 WIAF-11664 X57522 1757 TAP1, transporter CCAAACCCCC[C/T]ACATGTCTTA N C T P L
    1, ABC (ATP
    binding cassette)
    G244u1 WIAF-10174 X60592 239 TNFRSF5, tumor CTTGCGGTCA[A/C]AGCGAATTCC S A G E E
    necrosis factor
    receptor super-
    family, member 5
    G2441u1 WIAF-13682 U30246 1355 SLC12A2, solute TGCTTAAGGA[A/G]CATTCCATAC S A G E E
    carrier family 12
    (sodium/potassium/
    chloride trans-
    porters), member 2
    G2441u2 WIAF-13714 U30246 2691 SLC12A2, solute AGCCAAATAT[C/G]AGCCATGGCT M C G Q E
    carrier family 12
    (sodium/potassium/
    chloride trans-
    porters), member 2
    G2443u1 WIAF-14004 U37143 1456 CYP2J2, cytochrome CTGAAGTTTA[G/A]AATGGGTATC M G A R K
    P450, subfamily IIJ
    (arachidonic acid
    epoxygenase)
    polypeptide 2
    G2443u2 WIAF-14032 U37143 376 CYP2J2, cytochrome TTTAAGAAAA[A/G]TGGATTGATT M A G N S
    P450, subfamily IIJ
    (arachidonic acid
    epoxygenase)
    polypeptide 2
    G2443u3 WIAF-14033 U37143 1502 CYP2J2, cytochrone TCTGCGCTGT[T/A]CCTCAGGTGT S T A V V
    P450, subfamily IIJ
    (arachidonic acid
    epoxygenase)
    polypeptide 2
    G2444u1 WIAF-14065 U37519 771 ALDH3, aldehyde CCCGCACGGA[A/G]TTGCCTCGTG M A G N S
    dehydrogenase
    3
    G2444u2 WIAF-14066 U37519 1698 ALDH3, aldehyde AAGGAGATCC[G/A]CTACCCACCC M G A R H
    dehydrogenase
    3
    G2445u1 WIAF-14114 U38178 236 CNP, 2′,3′-cyclic TGCCGGGCGC[C/A]CCTCTCGCTG M G A R H
    nucleotide
    3′
    phosphodiesterase
    G2445u2 WIAF-14115 U38175 849 CNP, 2′,3′-cyclic GTGCCGCCGA[A/G]GAAAAAGTGC S A G G E
    nucleotide
    3′
    phosphodiesterase
    G2445u3 WIAF-14122 U38178 1655 CNP, 2′,3′-cyclic GTTATCTTGC[A/T]GAGATCTCTG M A T Q L
    nucleotide
    3′
    phosphodiesterase
    G2445u4 WIAF-14241 X95520 941 CNP, 2′,3′-cyclic TGCAAAATAT[T/C]CAGGAGACCG ? T C ? ?
    nucleotide 3′
    phosphodiesterase
    G2445u5 WIAF-14242 X95520 1057 CNP, 2′,3′-cyclic TCGAGTTGAT[C/T]TTTCAGTGCT ? C T ? ?
    nucleotide 3′
    phosphodiesterase
    G2445u6 WIAF-14243 X95520 1583 CNP, 2′,3′-cyclic TCTACTGGCT[C/G]TCTAACTAAT ? C G ? ?
    nucleotide 3′
    phosphodiesterase
    G2448u1 WIAF-13973 U46689 1895 ALDH10, aldehyde TTGTCAAGGC[A/T]GAATATTACT S A T A A
    dehydrogenase 10
    (fatty aldehyde
    dehydrogenase)
    G2457u1 WIAF-13898 U90277 1304 GRIN2A, glutamate GGTCCCGATG[C/T]ACACCTTGCA M C T H Y
    receptor, iono-
    tropic, N-methyl
    D-aspartate 2A
    G2457u2 WIAF-13899 U90277 1934 GRIN2A, glutamate AAGAAGTAAT[G/T]GCACCGTCTC M G T G C
    receptor, iono-
    tropic, N-methyl
    D-aspartate 2A
    G2457u3 WIAF-13900 U90277 2230 GRIN2A, glutamate TCGCTGTCAT[A/G]TTCCTGGCTA M A G I M
    receptor, iono-
    tropic, N-methyl
    D-aspartate 2A
    G2457u4 WIAF-13902 U90277 2916 GRIN2A, glutamate GGCATCTACA[G/A]CTGCATTCAT M G A S N
    receptor, iono-
    tropic, N-methyl
    D-aspartate 2A
    G2457u5 WIAF-13903 U90277 3251 GRIN2A, glutamate CTATGTATTC[C/T]AGGCACAACA N C T Q *
    receptor, iono-
    tropic, N-methyl
    D-aspartate 2A
    G2457u6 WIAF-13917 U90277 2756 GRIN2A, glutamate GGACATTGAC[A/C]ACATCCCGGG M A G N D
    receptor, iono-
    tropiC, N-methyl
    D-aspartate 2A
    G2468u1 WIAF-13642 X04011 1017 CYBB, cytochrome AGGTGTCCAA[G/A]CTGGAGTGGC S G A K K
    b-245, beta poly-
    peptide (chronic
    granulomatous
    disease)
    G2473u1 WIAF-13670 X06990 1417 ICAM1, inter- GGTCACCCGC[G/A]AGGTGACCGT M G A E K
    cellular adhesion
    molecule 1 (CD54),
    human rhinovirus
    receptor
    G2473u2 WIAF-13695 X06990 179 ICAM1, inter- GACCAGCCCA[A/T]GTTGTTGGGC M A T K M
    cellular adhesion
    molecule 1 (CD54),
    human rhinovirus
    receptor
    G2480u1 WIAF-14148 X55330 800 AGA, aspartylgluco- TTGGCATGGT[T/G]GTAATCCATA S T G V V
    saminidase
    G2480u2 WIAF-14149 X55330 852 AGA, aspartylgluco- AAATGGTATA[A/T]AATTCAAAAT M A T K *
    saminidase
    G2480u3 WIAF-14158 X55330 616 AGA, aspartylgluco- TTATCTACCA[G/C]TGCTTCTCAA M G C S T
    saminidase
    G2485u1 WIAF-13612 X59543 2301 RRM1, ribo- ATTGATCAAA[C/A]CCAATCTTTG M G A S N
    nucleotide
    reductase M1
    polypeptide
    G2485u2 WIAF-43613 X59543 2410 RRM1, ribo- ATTTAAGGAC[G/A]AGACCAGCAG S G A T T
    nucleotide
    reductase M1
    polypeptide
    G2485u3 WIAF-13651 X59543 548 RRM1, ribo- CAAGTCAACA[T/C]TGGATATTGT S T C L L
    nucleotide
    reductase M1
    polypeptide
    G2485u4 WIAF-13652 X59543 199 RRM1, ribo- TGCATGTGAT[C/T]AAGCGAGATG S C T I I
    nucleotide
    reductase M1
    polypeptide
    G2485u5 WIAF-13653 X59543 1037 RRM1, ribo- CAACACAGCT[C/A]GATATGTGGA S C A R R
    nucleotide
    reductase M1
    polypeptide
    G2485u6 WIAF-13660 X59543 1955 RRM1, ribo- GAAGATTGCA[A/C]ADTATGGTAT M A C K Q
    nucleotide
    reductase M1
    polypeptide
    G2485u7 WIAF-13877 X59543 860 RRM1, ribo- GAGTATGAAA[G/C]ATGACAGCAT M G C E Q
    nucleotide
    reductase M1
    polypeptide
    G2486u1 WIAF-14075 X59618 543 RRM2, ribo- TCAGCACTGG[G/C]AATCCCTGAA M G C E Q
    nucleotide
    reductase M2
    polypeptide
    G2486u2 WIAF-14076 X59618 189 RRM2, ribo- TCGCTGCGCC[T/G]CCACTATGCT - T G - -
    nucleotide
    reductase M2
    polypeptide
    G2486u3 WIAF-14092 X59618 524 RRM2, ribo- TTGACCTCTC[C/G]AACGACATTC S C G S S
    nucleotide
    reductase M2
    polypeptide
    G2488u1 WIAF-13585 X63563 1633 POLR2B, polymerase CCTTGATGGC[C/A]TATATTTCAG S G A A A
    (RNA) II (DNA
    directed) poly-
    peptide B (140 kD)
    G2488u2 WIAF-13586 X63563 2452 POLR2B, polymerase CTGTAGACCG[C/T]GGCTTCTTCA S C T R R
    (RNA) II (DNA
    directed) poly-
    peptide B (140 kD)
    G2488u3 WIAF-13587 X63563 2740 POLR2B, polymerase TCAGAACTAG[T/C]GAGACCGGCA S T C S S
    (RNA) II (DNA
    directed) poly-
    peptide B (140 kD)
    G2488u4 WIAF-13602 X63563 1411 POLR2B, polymerase GGGGTGATCA[A/G]AAGAAAGCTC S A G Q Q
    (RNA) II (DNA
    directed) poly-
    peptide B (140 kD)
    G2488u5 WIAF-13603 X63563 2386 POLR2B, polymerase CAATTGTGGC[C/T]ATTGCATCAT S C T A A
    (RNA) II (DNA
    directed) poly-
    peptide B (140 kD)
    G2489u1 WIAF-14181 X63564 1346 POLR2A, polymerase TGGTGGACAA[T/C]GAGCTGCCTG S T C N N
    (RNA) II (DNA
    directed) poly-
    peptide A (220 kD)
    G2489u2 WIAF-14236 X63564 1647 POLR2A, polymerase TGAATCTTAG[C/T]GTGACAACTC ? C T ? ?
    (RNA) II (DNA
    directed) poly-
    peptide A (220 kD)
    G2489u3 WIAF-14237 X63564 2678 POLR2A, polymerase CTGAATACAA[C/T]AACTTCAAGT ? C T ? ?
    (RNA) II (DNA
    directed) poly-
    peptide A (220 kD)
    G2489u4 WIAF-14238 X63564 3059 POLR2A, polymerase AGCTGCGCTA[C/T]GGCGAACACG ? C T ? ?
    (RNA) II (DNA
    directed) poly-
    peptide A (220 kD)
    G2489u5 WIAF-14239 X63564 3827 POLR2A, polymerase TGGGCCAGTC[C/T]GCTCGAGATG ? C T ? ?
    (RNA) II (DNA
    directed) poly-
    peptide A (220 kD)
    G2489u6 WIAF-14240 X63564 3992 POLR2A, polymerase TGCCTGACTT[T/C]GATGTGGCCC ? T C ? ?
    (RNA) II (DNA
    directed) poly-
    peptide A (220 kD)
    G2489u7 WIAF-14245 X63564 3938 POLR2A, polymerase CCCAGAGCAC[G/A]GTGGTGGCAG ? G A ? ?
    (RNA) II (DNA
    directed) poly-
    peptide A (220 kD)
    G250u1 WIAF-11696 HT0155 1113 IL3RA, interleukin CTGTGTCTTC[G/C]TGATCTGCAG M G C V L
    3 receptor, alpha
    (low affinity)
    G251u1 WIAF-11666 HT0240 179 interleukin 1 TGGATAAGAC[C/T]CGAGCTTTGA S C T T T
    beta convertase
    G251u2 WIAF-11694 HT0240 973 interleukin 1 GATGCTATTA[A/G]GAAAGCCCAC M A G K R
    beta convertase
    G251u3 WIAF-11695 HT0240 783 interleukin 1 CCCAGATATA[C/T]TACAACTCAA S C T L L
    beta convertase
    G2513u1 WIAF-13736 HT27365 1721 PLCB3, phospho- AACTATCTAT[G/A]AAAAGCCAAA M G A M I
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u2 WIAF-13737 HT27365 1741 PLCB3, phospho- AACTATTGGG[A/T]AATCTGTTCA M A T E V
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u3 WIAF-13738 HT27365 1697 PLCB3, phospho- AATCTGTTCA[A/G]TACACGGATT S A G Q Q
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u4 WIAF-13739 HT27365 1908 PLCB3, phospho- CTGTCAGATT[C/A]TAGCAATGAA M G A V I
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u5 WIAF-13740 HT27365 2172 PLCB3, phospho- TATACAGATA[C/T]ACGGAATTCC M C T H Y
    lipase C, beta 3
    (phosphotidylino-
    sitol-specific)
    G2513u6 WIAF-13744 HT27365 3019 PLCB3, phospho- TTGAAGGGCC[A/C]AGGAGATCTG M A G Q R
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u7 WIAF-13745 HT27365 3024 PLCB3, phospho- GGGCCAAGCA[G/A]ATCTGTTGAA M G A D N
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u8 WIAF-13771 HT27365 1079 PLCB3, phospho- ACATTTTTGA[T/C]CCTGAGCAAA S T C D D
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u9 WIAF-13772 HT27365 1546 PLCB3, phospho- AAGTTGCCTT[C/T]TGATCCAGAT M C T S F
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u10 WIAF-13773 HT27365 1514 PLCB3, phospho- AATTAAAAAG[A/T]ATGATCATTG M A T R S
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u11 WIAF-13774 HT27365 1445 PLCB3, phospho- AGGTCTTTGG[C/T]AATAAACTCT S C T G G
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u12 WIAF-13778 HT27365 2087 PLCB3, phospho- TTCATATCAA[G/A]ATCATCAGTG S G A K K
    lipase C, beta 3
    (phosphotidylino-
    sitol-specific)
    G2513u13 WIAF-13779 HT27365 2367 PLCB3, phospho- TGAATGTTTG[C/T]ACCCTGGATA N C T Q *
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u14 WIAF-13782 HT27365 2719 PLCB3, phospho- CTCATCACCA[G/A]TGACAATACT M G A S N
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u15 WIAF-13783 HT27365 2567 PLCB3, phospho- TTGATGACAT[C/T]TTTAAAATAG S C T I I
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u16 WIAF-13784 HT27365 2864 PLCB3, phospho- TAGAAATGGC[G/A]GACACACTCC S G A A A
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u17 WIAF-13785 HT27365 2571 PLCB3, phospho- TGACATCTTT[A/T]AAATAGCGGT N A T K *
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G2513u18 WIAF-13786 HT27365 2706 PLCB3, phospho- TCTGTCATCT[C/T]GCCTCATCAC M C T R W
    lipase C, beta 3
    (phosphatidylino-
    sitol-specific)
    G252u1 WIAF-10195 HT0425 397 FCER2, Fc fragment GAGGGCTGCC[C/T]GGAACGTCTC M C T R W
    of IgE, low
    affinity II,
    receptor for
    (CD23A)
    G252u2 WIAF-10206 HT0425 930 FCER2, Fc fragment ATGGGAGCCA[T/C]GTGGACTACA S T C H H
    of IgE, low
    affinity II,
    receptor for
    (CD23A)
    G253u1 WIAF-10175 HT0573 228 IFNB1, interferon, GGCTTGAATA[C/T]TGCCTCAACG S C T Y Y
    beta
    1, fibroblast
    G254u1 WIAF-10196 HT0611 466 IL4R, interleukin TCAGTGCGGA[T/C]AACTATACAC S T C D D
    4 receptor
    G254u2 WIAF-10198 HT0611 1474 IL4R, interleukin CATGCCTTCT[T/C]CCACCTTCGG S T C L L
    4 receptor
    G254u3 WIAF-10207 HT0611 1902 IL4R, interleukin AGTGGCTATC[A/G]GGAGTTTGTA M A G Q R
    4 receptor
    G260u1 WIAF-10186 HT1090 453 IL4R, interleukin TGTTATAATC[C/G]ACAACCCATA M C G A G
    1 receptor, type I
    G261u1 WIAF-10187 HT1101 434 IL7R, interleukin CCTCACTGTC[A/G]TCTATCCCCA M A G I V
    7 receptor
    G261u2 WIAF-10203 HT1101 517 IL7R, interleukin TTTTAATCCA[T/C]CATCTAGCTT S T C H H
    7 receptor
    G267u1 WIAF-11735 HT1877 881 IL2RB, interleukin TCCTCGTGGG[C/T]CTCAGCGGGG S C T G G
    2 receptor, beta
    G267u2 WIAF-11759 HT1877 379 IL2RB, interleukin AGTCAAGCAT[C/T]CTGCGCCTGC M G T S F
    2 receptor, beta
    G268u1 WIAF-11758 HT1985 568 CD19 antigen GCCTCCGTGT[G/C]TCCCACCGAG M G C V L
    G268u2 WIAF-11734 HT1985 783 CD19 antigen ACGATCGCCC[G/T]GCCAGAGATA S G T P P
    G270u1 WIAF-11736 HT2415 530 IL6R, interleukin AGGAGGTGGC[A/G]AGAGCCGTGC S A G A A
    6 receptor
    G270u2 WIAF-11760 HT2415 1590 IL6R, interleukin CATTGCCATT[G/A]TTCTGAGGTT M G A V I
    6 receptor
    G270u3 WIAF-11737 HT2415 1510 IL6R, interleukin CCAGTGCAAG[A/C]TTCTTCTTCA M A C D A
    6 receptor
    G270u4 WIAF-11761 HT2415 1451 IL6R, interleukin CTACTAATAA[A/T]GACGATGATA M A T K N
    6 receptor
    G270u5 WIAF-11766 HT2415 1843 IL6R, interleukin TTCCCCAGAT[A/C]CCTGGCTGGG N A G * W
    6 receptor
    G270u6 WIAF-11767 HT2415 1829 IL6R, interleukin ATACAGACTA[C/T]TTCTTCCCCA S C T Y Y
    6 receptor
    G271u1 WIAF-11762 HT2531 577 CD2, CD2 antigen TCAGAGGCTC[A/G]TCACACACAA M A G I V
    (p50), sheep red
    blood cell receptor
    G271u2 WIAF-11739 HT2531 861 CD2, CD2 antigen GGAAGCCCCA[A/C]CAAATTCCAG M A C X H
    (p50), sheep red
    blood cell receptor
    G271u3 WIAF-11768 HT2531 818 CD2, CD2 antigen CTGGAGACAA[G/A]AGCCCACAGA M G A R K
    (p50), sheep red
    blood cell receptor
    G271u4 WIAF-11738 HT2531 736 CD2, CD2 antigen CCTCTTGATG[G/A]TCTTTGTGGC M G A V I
    (p50), sheep red
    blood cell receptor
    G273u1 WIAF-11763 HT3139 667 IL2RA, interleukin ATCATCGTGC[C/T]TGGCTGCCAG M C T P L
    2 receptor, alpha
    G273u2 WIAF-11764 HT3139 956 IL2RA, interleukin AAACTCCAAT[G/C]CACCCACTGC M G C M I
    2 receptor, alpha
    G273u3 WIAF-11765 HT3139 701 IL2RA, interleukin ACGATGACCC[G/A]CCAGAGATCC S G A P P
    2 receptor, alpha
    G273u4 WIAF-11740 HT3139 1133 IL2RA, interleukin AAATGACCCA[C/T]GGGAAGACAA S C T H H
    2 receptor, alpha
    G273u5 WIAF-11769 HT3139 1163 IL2RA, interleukin AGCCCCAGCT[C/A]ATATGCACAG S C A L L
    2 receptor, alpha
    G276u1 WIAF-10192 HT3670 644 CD4 antigen CTCCTAGTAG[C/G]CCCTCAGTGC M C G S R
    G276u2 WIAF-10193 HT3670 1535 CD4 antigen CCTGCCAGTG[T/C]CCTCACCGCT S T C C C
    G276u3 WIAF-10205 HT3670 1217 CD4 antigen TGATCCTGAC[T/C]TTCAAACTCG S T C S S
    G277u1 WIAF-10007 D10232 851 RENBP, renin- CACGTGATTG[A/G]CAAGTTCCTA M A G D G
    binding protein
    G277u2 WIAF-10032 D10232 842 RENBP, renin- CTTCGAGCCC[A/G]CGTGATTGAC M A G H R
    binding protein
    G277u3 WIAF-10042 D10232 634 RENBP, renin- CCTGGCGGCC[A/G]AATACGCAGA M A G K E
    binding protein
    G279u1 WIAF-10047 K01740 1658 F8C, coagulation ACTGATGTCC[G/A]TCCTTTGTAT M G A R H
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279u2 WIAF-10049 K01740 2328 F8C, coagulation CCTTACTGAA[G/A]GTTTCTAGTT S G A K K
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279u3 WIAF-10050 K01740 4650 F8C, coagulation CTGTTCTCCC[G/A]AAACCAGACT S G A P P
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279u4 WIAF-10050 K01740 6919 F8C, coagulation CCAGAAGACA[A/C]TGAAAGTCAC M A G M V
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279u5 WIAF-10080 K01740 480 F8C, coagulation TTAAGAACAT[G/A]GCTTCCCATC M G A M I
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279u6 WIAF-10082 K01740 2129 F8C, coagulation TACATTCTAA[G/A]CATTGGAGCA M G A S N
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279u7 WIAF-10084 K01740 2533 F8C, coagulation GTTTGCACAC[A/G]CAACACCTAT M A G R G
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279u8 WIAF-10086 K01740 6639 F8C, coagulation ACCCTCCAAT[T/C]ATTGCTCGAT S T C I I
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279u9 WIAF-10087 K01740 5957 F8C, coagulation GAGAATTATC[G/A]CTTCCATGCA M G A R H
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279a10 WIAF-10495 K01740 5829 F8C, coagulation TGACAGTACA[G/A]GAATTTGCTC S G A Q Q
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279a11 WIAF-10496 K01740 5852 F8C, coagulation TTTTTCACCA[T/G]CTTTCATGAG M T G I S
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279a12 WIAF-10502 K01740 2492 F8C, coagulation ACCACAATTC[C/T]AGAAAATGAC M C T P L
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279a13 WIAF-10503 K01740 6906 F8C, coagulation TGCAAGTGGA[C/T]TTCCAGAAGA S C T D D
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279a14 WIAF-13120 K01740 1980 F8C, coagulation CAGAGAATAT[A/C]CAACGCTTTC S A c I I
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G279a15 WIAF-13121 K01740 1982 F8C, coagulation GAGAATATAC[A/C]ACGCTTTCTC M A c Q P
    factor VIIIc,
    procoagulant
    component
    (hemophilia A)
    G282u1 WIAF-10067 L25615 976 AVPR1A, arginine CGCCTTTCTT[C/A]ATCATCCAGA M C A F F
    vasopressin
    receptor 1A
    G282u2 WIAF-10070 L25615 460 AVPR1A, arginine TCGGCATGTT[T/C]GCGTCGGCCT S T C F F
    vasopressin
    receptor 1A
    G282u3 WIAF-10071 L25615 343 AVPR1A, arginine GCCTGGCCGA[C/T]CTGGCCGTGG S C T D D
    vasopression
    receptor 1A
    G282u4 WIAF-10072 L25615 68 AVPR1A, arginine TCTCTCCGCC[G/A]GTCCCGACGC M G A G S
    vasopression
    receptor 1A
    G282u5 WIAF-10073 L25615 535 AVPR1A, arginine AGACTCTGCA[A/G]CAGCCCGCGC S A G Q Q
    vasopressin
    receptor 1A
    G282u6 WIAF-10092 L25615 1075 AVPR1A, arginine CCTTGAATAG[C/A]TGCTGTAATC M C A S R
    vasopressin
    receptor 1A
    G282a7 WIAF-10499 L25615 1089 AVPR1A, arginine TGTAATCCCT[G/A]GATATACATG N G A W *
    vasopressin
    receptor 1A
    G284u1 WIAF-10182 M16827 1179 ACADM, acyl- AATATCCTGT[A/G]GAAAAACTAA S A G V V
    Coenzyme A
    dehydrogenase,
    C-4 to C-12
    straight chain
    G284a2 WIAF-10515 M16827 696 ACADM, acyl- TTGTGGAACC[A/G]GATACCCCAG S A G A A
    Coenzyme A
    dehydrogenase,
    C-4 to C-12
    straight chain
    G285u1 WIAF-10108 M28372 258 ZNF9, zinc finger CTCTTCCAGA[T/C]ATTTGTTATC S T C D D
    protein 9 (a
    cellular retroviral
    nucleic acid
    binding protein)
    G289u1 WIAF-10041 M63012 172 PON1, paraoxonase 1 CTCTGAAGAC[A/T]TGGAGATACT M A T M L
    G290u1 WIAF-10085 M63959 354 LRPAP1, low density CTCATACGCA[A/G]CCTCAATGTC M A G N S
    lipoprotein-related
    protein-associated
    protein 1 (alpha-2-
    macroglobulin
    receptor associated
    protein 1)
    G290a2 WIAF-13122 M63959 223 LRPAP1, low density AGCGACTGCA[T/A]CTTCCTCCCG M T A H Q
    lipoprotein-related
    protein-associated
    protein 1 (alpha-2-
    macroglobulin
    receptor associated
    protein 1)
    G292u1 WIAF-10180 M74096 1002 ACADL, acyl- AGTGCAACAT[A/C]AATTAGCAGA M A C K Q
    Coenzyme A
    dehydrogenase,
    long chain
    G293u1 WIAF-10068 M74775 723 LIPA, lipase A, AAGGACTTAT[T/C]TGGACACAAA M T C F S
    lysosomal acid,
    cholesterol
    esterase (Wolman
    disease)
    G293a2 WIAF-10497 M74775 107 LIPA, lipase A, TGAGGGGTCT[G/A]GAGGGAAACT M G A G R
    lysosomal acid,
    cholesterol
    esterase (Wolman
    disease)
    G293a3 WIAF-10498 M74775 86 LIPA, lipase A, GGTTCTCTGG[C/A]CCCTGCATTC M C A P T
    lysosomal acid,
    cholesterol
    esterase (Wolman
    disease)
    G295u1 WIAF-10057 U04270 1282 KCNH2, potassium AAAGGAGCGA[A/T]CCCACAATGT M A T T S
    voltage-gated
    channel, subfamily
    H, member 2
    G295u2 WIAF-10062 U04270 1875 KCNH2, potassium CGCACTGGCT[A/G]GCCTGCATCT S A G L L
    voltage-gated
    channel, subfamily
    H, member 2
    G295u3 WIAF-10064 U04270 2040 KCNH2, potassium ACTTCACCTT[C/T]AGCAGCCTCA S C T F F
    voltage-gated
    channel, subfamily
    H, member 2
    G295u4 WIAF-10088 U04270 1650 KCNH2, potassium CCGGCCGCAT[C/T]GCCCTCCACT S C T I I
    voltage-gated
    channel, subfamily
    H, member 2
    G295u5 WIAF-10090 U04270 2139 KCNH2, potassium CCCTCATGTA[T/C]GCTAGCATCT S T C Y Y
    voltage-gated
    channel, subfamily
    H, member 2
    G2951u1 WIAF-14147 HT0030 1334 ZNF42, zinc finger CCCTGCTCTG[A/G]TCACCACCCG M A G I V
    protein 42
    (myeloid-specific
    retinoic acid
    responsive)
    G2951u2 WIAF-14157 HT0030 1558 ZNF42, zinc finger ACCAGCTTAC[G/A]CACACCGAGG S G A T T
    protein 42
    (myeloid-specific
    retinoic acid
    responsive)
    G2959u1 WIAF-13501 HT0134 1014 GRLP1, gluco- GTGGAGAGAC[T/C]CTGCATAGCT S T C T T
    corticoid receptor
    DNA binding factor 1
    G2959u2 WIAF-13518 HT0134 1853 GRLF1, gluco- GAGCCATCTT[A/C]CAGCCTGTTT M A C Y S
    corticoid receptor
    DNA binding factor 1
    G296a1 WIAF-10514 U12778 961 ACADSB, acyl- TATTCCATAT[A/G]TTAAAGAAAG M A G I V
    Coenzyme A
    dehydrogenase,
    short/branched
    chain
    G2968u1 WIAF-12699 HT0244 1754 SMARCA1, SWI/SNF CAGAACAAAC[C/T]ACTACGTGTA M C T P L
    related, matrix
    associated, actin
    dependent regulator
    of chromatin, sub-
    family a, member 1
    G2968u2 WIAF-12716 HT0244 2624 SMARCA1, SWI/SNF TGGGAACGTT[G/T]CAATGAATTA M G T C F
    related, matrix
    associated, actinc
    dependent regulator
    of chromatin, sub-
    family a, member 1
    G297u1 WIAF-10109 U516660 402 ECH1, enoyl ACATGGCTTC[G/A]GACATCCTCC S G A S S
    Coenzyme Ahydratase
    1, peroxisomal
    G297u2 WIAF-10110 U16660 149 ECH1, enoyl GCACAAGAGG[A/C]GGCTTCCGGA M A C E A
    Coenzyme A hydratase
    1, peroxisomal
    G2970u1 WIAF-12746 HT0281 682 BR140: bromodomain- ATGACATGGA[C/T]GAGCAGGACT S C T D D
    containing protein,
    140 kD (peregrin)
    G2975U1 WIAF-12729 HT0334 1104 B-cell-specific ACTTTTCCGG[G/A]ACTCCCTACA S G A C G
    transcription
    factor
    G2975u2 WIAF-12730 HT0334 1185 B-cell-specific GCTCCCCCTA[C/T]TATTATACCC S C T Y Y
    transcription
    factor
    G2976a1 WIAF-12129 HT0340 1600 SATB1, special GTCCTGCCCC[C/A]CTCATCAGCA S C A P P
    AT-rich sequence
    binding protein 1
    (binds to nuclear
    matrix/scaf fold-
    associating DNA's)
    G2976u2 WIAF-12743 HT0340 2116 SATB1, special AT- TGGCCTCTCC[A/G]GCACAGTCAG S A G P P
    rich sequence
    binding protein 1
    (binds to nuclear
    matrix/scaf fold-
    associating DNA's)
    G2978u1 WIAF-12721 HT0346 1140 MSX1, msh (Droso- CATAGAGGGT[C/T]CCAGGTCCCC - C T - -
    phila) homeo box
    homolog 1 (formerly
    homeo box 7)
    G298u1 WIAF-10048 U33837 8995 Human glycoprotein CCGGACAGGA[G/A]GTGCATTCCC M G A R K
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u2 WIAF-10051 U33837 13217 Human glycoprotein ATGCAGCCAT[C/T]GAACTGCCTA S C T I I
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u3 WIAF-10077 U33837 6298 Human glycoprotein AACTCTTTCA[T/C]TGTTGTTTCA M T C I T
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u4 WIAF-10078 U33837 6371 Human glycoprotein CCATGGTCCC[G/A]GTGGCAGGCC S G A P P
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u5 WIAF-10079 U33837 6914 Human glycoprotein ACTCTGAAGT[G/A]ATTCGTTATG S G A V V
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u6 WIAF-10081 U33837 8718 Human glycoprotein GTTCCAATGC[G/A]CATCTGGGCG M G A A T
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u7 WIAF-10083 U33837 9088 Human glycoprotein ACTTGCTCTG[A/G]AAATGAATTC M A G E G
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u8 WIAF-10096 U33837 6949 Human glycoprotein ACTCCTTATC[G/C]CATCACTCTT M G C G A
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u9 WIAF-10097 U33837 7149 Human glycoprotein TTCCTTCCAA[A/C]ACAATCGTGG M A G N D
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u10 WIAF-10100 U33837 8590 Human glycoprotein TACACAAAAT [C/A]TCATAATTCA M G A C Y
    receptor gp330
    precursor, mRNA,
    complete cds.
    G298u11 WIAF-10101 U33837 12948 Human glycoprotein CATCTTTCAA[G/C]ACCACTTATA M G C D H
    receptor gp330
    precursor, mRNA,
    complete cds.
    G2980u1 WIAF-12723 HT0356 437 TLE1, transducin- TCATGGCCAC[G/A]GACCCCCACT M G A G R
    like enhancer of
    split 1, homolog of
    Drosophila E(sp1)
    G2980u2 WIAF-12726 HT0356 2044 TLE1, transducin- AGTGGCTGGC[A/G]GTGGGCATGG S A G A A
    like enhancer of
    split 1, homolog of
    Drosophila E(sp1)
    G2980u3 WIAF-12747 HT0356 379 TLE1, transducin- CCATGGCAGA[G/A]TTGAATGCCA S G A E E
    like enhancer of
    split 1, homolog of
    Drosophila E(sp1)
    G2980u4 WIAF-12748 HT0356 276 TLE1, transducin- ATCGCCAAGA[G/A]ATTGAATACG M G A R K
    like enhancer of
    split 1, homolog of
    Drosophila E(sp1)
    G2980u5 WIAF-12749 HT0356 1876 TLE1, transducin- GCCACACAGA[C/T]GGAGCCAGCT S C T D D
    like enhancer of
    split 1, homolog of
    Drosophila E(sp1)
    G2980u6 WIAF-12750 HT0356 1759 TLE1, transducin- CCGCCTGCTA[C/T]GCCCTGGCCA S C T Y Y
    like enhancer of
    split 1, homolog of
    Drosophila E(sp1)
    G2981u1 WIAF-12720 HT0357 2206 TLE2, transducin- ACAAATACAT[T/C]GTGACAGSCT S T C I I
    like enhancer of
    split 2, homolog of
    Drosophila E(sp1)
    G2981u2 WIAF-12737 HT0357 1036 TLE2, transducin- CGGACAGCGT[C/T]GCCCTCACCA S C T V V
    like enhancer of
    split 2, homolog of
    Drosophila E(sp1)
    G2981u3 WIAF-12740 HT0357 2181 TLE2, transducin- CTGAGTTGTG[A/T]CATCTCCAGA M A T D V
    like enhancer of
    split 2, homolog of
    Drosophila E(sp1)
    G2983u1 WIAF-12833 HT0360 636 TLE3, transducin- TGTCACCCTC[G/C]GAAAGCCTCC S G C S S
    like enhancer of
    split 3, homolog of
    Drosophila E(sp1)
    G2983u2 WIAF-12834 HT0360 1944 TLE3, transducin- TGGACAACAC[G/A]GTGCGCTCCT S G A T T
    like enhancer of
    split 3, homolog of
    Drosophila E(sp1)
    G2983u3 WIAF-12848 HT0360 1710 TLE3, transducin- ACCTGGCCTC[C/A]CCCACGCCCC S G A S S
    like enhancer of
    split 3, homolog of
    Drosophila E(sp1)
    G2985u1 WIAF-12724 HT0421 995 homeotic protein D3 CGCTTCGCCA[G/A]CGCCAACCTC M G A S N
    G2985u2 WIAF-12725 HT0421 1003 homeotic protein D3 CACCGCCAAC[C/T]TGCAGGCCAC S C T L L
    G2986u1 WIAF-14124 HT0468 1197 CSDA, cold shock GCCGTGGATA[C/T]CGGCCTCCCT S C T Y Y
    domain protein A
    G2987u1 WIAF-12758 HT0474 2068 ZNF7, zinc AGTGCTTTTA[C/T]GAATATGCGA S C T Y Y
    finger protein 7
    (KOX 4, clone
    HF.16)
    G2987u2 WIAF-12773 HT0474 985 ZNF7, zinc GAGAGAAGCC[G/C]TACGAATGTG S G C P P
    finger protein 7
    (KOX 4, clone
    HF.16)
    G2987u3 WIAF-12775 HT0474 1278 ZNF7, zinc AGCCAGCAGT[C/T]GCAGCTGGTT M C T S L
    finger protein 7
    (KOX 4, clone
    HF.16)
    G3005a1 WIAF-12133 HT0735 1441 homeotic protein GAGGCAGCGG[C/T]CCCGGGCCTG S C T G G
    5.1
    G3008a1 WIAF-12134 HT0753 1850 ATF4, activating TAAAAGAGAG[C/A]GCGGATTCCC S G A R R
    transcription
    factor 4 (tax-
    responsive enhancer
    element B67)
    G3008u2 WIAF-12798 HT0753 946 ATF4, activating CCCTTCGACC[C/A]GTCGGGTTTG M C A P Q
    transcription
    factor 4 (tax-
    responsive enhancer
    element B67)
    G3008u3 WIAF-12812 HT0753 1482 ATF4, activating CACTGCTTAC[G/A]TTGCCATGAT M G A V I
    transcription
    factor 4 (tax-
    responsive enhancer
    element B67)
    G3008u4 WIAF-12813 HT0753 1847 ATF4, activating CTCTAAAAGA[G/C]AGGGCGGATT M G C E D
    transcription
    factor 4 (tax-
    responsive enhancer
    element B67)
    G301u1 WIAF-10127 U71285 3639 MTR, 5-methyltetra- TGTGGAGACT[C/T]GCAGACATCG S C T L L
    hydrofolate-
    homocysteine
    methyltransferase
    G3012u1 WIAF-12794 HT0873 402 MAD, MAX TGGTGCCACT[C/T]GGACCCGAAT S G T L L
    dimerization
    protein
    G3014u1 WIAF-14183 HT0899 274 homeotic protein 2, AAAAGACTCA[G/A]TACTTGGCCT S G A Q Q
    distal-less
    G3020u1 WIAF-12797 HT0956 852 MLLT3, myeloid/ GTGCCTTCAA[A/G]GAACCTTCCA S A G K K
    lymphoid or mixed-
    lineage leukemia
    (trithorax
    (Drosophila)
    homolog);
    translocated to, 3
    G3023u1 WIAF-13724 HT0966 381 zinc finger, X- GCTGCAGCAA[G/A]CAATATGACA S G A K K
    linked, duplicated
    A
    G3023u2 WIAF-13725 HT0966 220 zinc finger, X- GGCCAAACTC[G/A]GCGCCCACCA M G A G S
    linked, duplicated
    A
    G3023u3 WIAF-13726 HT0966 69 zinc finger, X- AGTCGCACGA[T/C]AAACTGCGGC S T C D D
    linked, duplicated
    A
    G3023u4 WIAF-13727 HT0966 249 zinc finger, X- ACTTCGAACC[C/T]CACACCCCTT S C T P P
    linked, duplicated
    A
    G3023u5 WIAF-13765 HT0966 661 zinc finger, X- CAGGTTCTCT[G/A]CTCGCAGTAG M G A A T
    linked, duplicated
    A
    G3023u6 WIAF-13766 HT0966 1302 zinc finger, X- TGACTCCTTC[C/T]AGCACCCTTT S G T S S
    linked, duplicated
    A
    G3027u1 WIAF-12800 HT1035 124 HOXB7, homeo box B7 TTATGCGAAT[G/A]CTTTATTTTC M G A A T
    G3027u2 WIAF-12816 HT1035 450 HOXB7, homeo box B7 GCCACTCGCA[C/T]TTCGCGCCCC S C T D D
    G3028u1 WIAF-12806 HT1037 701 homeotic protein C8 AGACCCTCGA[A/G]CTCCAGAACC S A G E E
    G3029u1 WIAF-14153 HT1100 441 zinc finger TCAGACTCAG[G/A]CAAAACTCCG S G A R R
    protein 8
    G3029u2 WIAF-14155 HT1100 1416 zinc finger GCCGTCAACA[A/G]TCCTCGACCA S A G Q Q
    protein 8
    G303u1 WIAF-10000 X13916 4110 LRP1, low density ATGGAGCTGG[C/A]GCCCGACAAC M G A G E
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u2 WIAF-10001 X13916 4012 LRP1, low density GCGAGCTCTG[C/T]GACCACTGCT S C T C C
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u3 WIAF-10002 X13916 4702 LRP1, low density GCCTGCCCCG[C/T]ATTGAGGCAG S C T R R
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u4 WIAF-10003 X13916 6395 LRP1, low density CTGGATCGCA[G/A]GCAACATCTA M G A G S
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u5 WIAF-10004 X13916 6937 LRP1, low density AAGGCACCAA[C/T]GTGTGCGCGG S C T N N
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u6 WIAF-10005 X13916 9391 LRP1, low density GGCTGAAGGA[T/C]GACGGCCGCA S T C D D
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u7 WIAF-10011 X13916 766 LRP1, low density ACTGCATCGA[C/T]GGCTCAGATG S C T D D
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u8 WIAF-10015 X13916 9040 LRP1, low density ACCCGACCTG[C/T]GGCCCCAGTG S C T C C
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u9 WIAF-10019 X13916 11749 LRP1, low density CCCTGCGCTG[C/T]AACATGTTCG S C T C C
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u10 WIAF-10020 X13916 1917 LRP1, low density GACCAGTATG[G/A]GAAGCCGGGT M G A G E
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u11 WIAF-10021 X13916 4810 LRP1, low density AGAAGCGCAT[C/T]CTTTGGATTG S C T I I
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u12 WIAF-10022 X13916 6367 LRP1, low density TTGGCCGTGT[G/C]GAGGGCATTG S G C V V
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u13 WIAF-10023 X13916 6247 LRP1, low density CTGTCCGCAT[C/T]GACTTCCACG S C T I I
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u14 WIAF-10024 X13916 8371 LRP1, low density ACGCCTCAGA[T/C]GAGATGAACT S T C D D
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u15 WIAF-10030 X13916 11395 LRP1, low density ACGGCAGCGA[C/T]GAGGAGGCCT S C T D D
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u16 WIAF-10031 X13916 12763 LRP1, low density ACGTCTTTGA[G/A]GATTACATCT S G A E E
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u17 WIAF-10035 X13916 640 LRP1, low density ACGGATCTGA[C/T]GAGGCCCCTG S C T D D
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u18 WIAF-10037 X13916 1609 LRP1, low density GCCGCCTTGT[C/T]TACTGGGCAG S C T V V
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u19 WIAF-10038 X13916 1629 LRP1, low density GATGCCTATC[T/G]GGACTATATT M T G L R
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u20 WIAF-10039 X13916 2210 LRP1, low density CACCAGCTAC[C/T]TCATTGGCCG M C T L F
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u21 WIAF-10043 X13916 7287 LRP1, low density GATGGCTCCA[G/A]GAGGATCACC M G A R K
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u22 WIAF-10044 X13916 8258 LRP1, low density CTCTGACGAC[A/G]TCCCTTGCAA M A G I V
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G303u23 WIAF-10045 X13916 11871 LRP1, low density GTGCGCACCG[A/G]GAAAGCCGCC M A G E G
    lipoprotein-
    related protein 1
    (alpha-2-macro-
    globulin receptor)
    G3031u1 WIAF-14097 HT1128 611 PSMC3, proteasome TGGGGATCCA[A/C]CCTCCAAAAG S A G Q Q
    (prosome, macro-
    pain) 26S subunit,
    ATPase, 3
    G3034u2 WIAF-12837 HT1182 421 TCF12, tran- ATCTTCAATT[A/C]TGGGTTCCTT M A G M V
    scription factor 12
    (HTF4, helix-loop-
    helix transcription
    factors 4)
    G3038u1 WIAF-12864 HT1373 1700 NFKB1, nuclear AGAGAAGGCT[A/G]TGCAGCTTGC M A G M V
    factor of kappa
    light polypeptide
    gene enhancer in
    B-cells 1 (p105)
    G3038u2 WIAF-12881 HT1373 1936 NFKB1, nuclear TGTACCAGAC[G/A]CCCTTGCACT S G A T T
    factor of kappa
    light polypeptide
    gene enhancer in
    B-cells 1 (p105)
    G3038u3 WIAF-12882 HT1373 2641 NFKB1, nuclear AGCTGCACCT[G/C]TATAAGTTAC S G C L L
    factor of kappa
    light polypeptide
    gene enhancer in
    B-cells 1 (p105)
    G3039u1 WIAF-13027 HT1375 3761 GLI3, GLI-Kruppel AACAGCCCCG[G/T]AACTCCCACC M G T G V
    family member
    GLI3 (Greig
    cephalopoly-
    syndactyly
    syndrome)
    G3039u2 WIAF-13028 HT1375 3963 GLI3, CLI-Kruppel CGCCAAATGA[G/T]TCAGCTGGCA M G T E D
    family member
    GLI3 (Greig
    cephalopoly-
    syndactyly
    syndrome)
    G304u1 WIAF-12242 HT637 158 FABP3, fatty acid CTCACCCTAA[A/C]AACACACAGC M A G K R
    binding protein
    3, muscle and heart
    (mammary derived
    growth inhibitor)
    G3043u1 WIAF-12867 HT1486 842 IRF2, interferon GTGCCGAGGG[G/A]CGGCCACACT S G A G G
    regulatory
    factor
    2
    G3047u1 WIAF-12875 HT1518 1233 transcription TCCGTTTCCT[C/T]GAGAGCCTGC S C T L L
    factor
    1, nucleolar
    G3047u2 WIAF-12876 HT1518 1746 transcription GGATTAAGAA[G/A]GCACCCGAAG S G A K K
    factor
    1, nucleolar
    G3047u3 WIAF-12877 HT1518 1829 transcription TCCAAGAAGA[T/C]GAAATTCCAG M T C M T
    factor
    1, nucleolar
    G3048u1 WIAF-12884 HT1530 628 transcription AGTGGAGCGT[C/T]GCCGCCGAGA M C T R C
    factor USF
    G305u1 WIAF-10150 HT0034 777 prolyl 4-hydroxy- CCCTTGTCAT[C/T]GAGTTCACCG S C T I I
    lase, beta subunit/
    protein disulfide
    isomerase/thyroid
    hormone-binding
    protein, alt.
    transcript 1
    G305u21 WIAF-10154 HT0034 186 prolyl 4-hydroxy- TGGCCGCCCA[C/A]AAGTACCTCC M C A H Q
    lase, beta subunit/
    protein disulfide
    isomerase/thyroid
    hormone-binding
    protein, alt.
    transcript 1
    G305u3 WIAF-10155 HT0034 1428 prolyl 4-hydroxy- GGACGGTCAT[T/C]GATTACAACG S T C I I
    lase, beta subunit/
    protein disulfide
    isomerase/thyroid
    hormone-binding
    protein, alt,
    transcript 1
    G3050u1 WIAF-12860 HT1558 2098 PSRG1: female AACATTGCAA[T/C]GGCATTTTGA S T C N N
    sterile homeotic
    related gene 1
    (mouse homolog)
    G3050u2 WIAF-12861 HT1558 2845 FSRG1: female TAGGCCCTTC[T/C]GGCTTTGGAC S T C S S
    sterile homeotic
    related gene 1
    (mouse homolog)
    G3050u3 WIAF-12862 HT1558 3409 FSRG1: female CCTCGTCGTC[G/A]TCTTCAGACA S G A S S
    sterile homeotic
    related gene 1
    (mouse homolog)
    G3050u4 WIAF-12874 HT1558 1699 FSRG1: female TCTCTTCTGT[G/C]TCACACACAG S G C V V
    sterile homeotic
    related gene 1
    (mouse homolog)
    G3050u5 WIAF-12878 HT1558 2093 FSRG1: female GTTAAAACAT[T/G]GCAATGGCAT M T G C G
    sterile homeotic
    related gene 1
    (mouse homolog)
    G3050u6 WIAF-12879 HT1558 2746 FSRG1: female CTGGGGCCGA[C/T]GAAGATGACA S C T D D
    sterile homeotic
    related gene 1
    (mouse homolog)
    G3051u1 WIAF-12866 HT1569 1423 MEF2B, MADS box CTTGGCCGAC[G/A]GCTGGCCCCG S G A T T
    transcription
    enhancer factor
    2,
    polypeptide B
    (myocyte enhancer
    factor 2B)
    G3051u2 WIAF-13022 HT1569 661 MEF2B, MADS box CAGACTACAG[C/T]GAGCCCCACG S C T S S
    transcription
    enhancer factor
    2,
    polypeptide B
    (myocyte enhancer
    factor 2B)
    G3057a1 WIAF-12142 HT1669 5565 alpha-fetoprotein AGACTGCTCT[T/C]GAGGCTCATA S T C L L
    enhancer-binding
    protein
    G3057a2 WIAF-12143 HT1669 5634 alpha-fetoprotein CTCTGTCTGC[C/A]ATGCTCTTAG S G A A A
    enhancer-binding
    protein
    G3057a3 WIAF-12144 HT1669 5664 alpha-fetoprotein GGGGACTCCA[G/T]ATGAAAGGAG M G T Q H
    enhancer-binding
    protein
    G3057a4 WIAF-12145 HT1669 5703 alpha-fetoprotein GCTTTTCCCA[C/T]CTACCCCCAA S C T H H
    enhancer-binding
    protein
    G3057u5 WIAF-12885 HT1669 2227 alpha-fetoprotein TCTGGAGATC[C/T]ATATGAGGTC M C T H Y
    enhancer-binding
    protein
    G3057u6 WIAF-12892 HT1669 3720 alpha-fetoprotein AGACCTTGCC[G/A]GCTCAGCTAC S G A P P
    enhancer-binding
    protein
    G3057u7 WIAF-12893 HT1669 4137 alpha-fetoprotein CAAGGTTTAC[G/A]GACTACCACC S G A T T
    enhancer-binding
    protein
    G3057u8 WIAF-12897 HT1669 4783 alpha-fetoprotein GAAGACCAAC[A/C]CTCCCCAGCA M A C T P
    enhancer-binding
    protein
    G3057u9 WIAF-12898 HT1669 5215 alpha-fetoprotein TCCAACCTCC[A/C]CAATGAACAC M A C T P
    enhancer-binding
    protein
    G3057u10 WIAF-12904 HT1669 7266 alpha-fetoprotein CCCTGCAGCC[C/TI GCGTTGACTT S C T A A
    enhancer-binding
    protein
    G3057u11 WIAF-12907 HT1669 8345 alpha-fetoprotein CCAACACACG[A/C]CTATTCGGAG M A C D A
    enhancer-binding
    protein
    G3057u12 WIAF-12943 HT1669 4257 alpha-fetoprotein TGGTGTGGTT[T/C]CAGAATGCCC S T C F F
    enhancer-binding
    protein
    G057u13 WIAF-12951 HT1669 7333 alpha-fetoprotein ACCAGGCTTT[T/A]CTCCTTATTA M T A S T
    enhancer-binding
    protein
    G3057u14 WIAF-13030 HT1669 303 alpha-fetoprotein GCAHCCTGTC[C/A]GAGGACGAGT S G A S S
    enhancer-binding
    protein
    G3057u15 WIAF-13031 HT1669 777 alpha-fetoprotein GCCTTCCAGA[G/A]GACGACGAGG S G A E E
    enhancer-binding
    protein
    G306u1 WIAF-10118 HT0040 1618 CPT2, carnitine CTCTACTGCC[C/A]TCCACTTTGA M G A V I
    palmitoyl-
    transferase II
    G307u1 WIAF-10076 HT0114 110 EDN2, endothelin 2 CGTTGCGCTA[G/A]CCCTGCTCGT M G A A T
    G3070u1 WIAF-12972 HT2085 625 pre-B-cell leukemia AGAAATATGA[A/C]CAGGCATGTA S A G E E
    transcription
    factor
    3
    G3070u2 WIAF-12973 HT2085 841 pre-B-cell leukemia GTAACTTCAG[T/C]AAACAGGCCA S T C S S
    transcription
    factor
    3
    G3071u1 WIAF-12886 HT2086 995 AGER, advanced CCTGCGAGGC[T/C]GTGATGATCC S T C A A
    glycosylation end
    product-specific
    receptor
    G3071u2 WIAF-12887 HT2086 1475 AGER, advanced GAGGCCAGAT[C/G]TACAGCCCAC M C G I M
    glycosylation end
    product-specific
    receptor
    G3071u3 WIAF-12935 HT2086 933 AGER, advanced ACGCATGGTG[A/G]GCATCATCCA M A G S G
    glycosylation end
    product-specific
    receptor
    G3071u4 WIAF-12936 HT2086 1052 AGER, advanced GTAACTTCAC(C/T]AAACAGGCCA S C T S S
    glycosylation end
    product-specific
    receptor
    G3071u5 WIAF-12937 HT2086 836 AGER, advanced AGAAGTATGA[G/A]CAGGCATGTA S G A E E
    glycosylation end
    product-specific
    receptor
    G308u1 WIAF-10094 HT0192 484 ANX4, annexin IV ATGGACGGAG[C/G]CTTGAAGATG M C G S R
    (placental anti-
    coagulant protein
    II)
    G308u2 WIAF-10095 HT0192 333 ANX4, annexin IV GGGATCATGA[C/T]GCCCACGGTC M C T T M
    (placental anti-
    coagulant protein
    II)
    G3081u1 WIAF-12997 HT2188 689 PSMC2, proteasome GGCATTGAGC[C/T]TCCCAAGGGC M C T P L
    (prosome, macro-
    pain) 26S subunit,
    ATPase, 2
    G3083u1 WIAF-12976 HT2228 106 IGHMBP2, immuno- TGCTGGAGCT[T/C]GAGAGAGACG S T C L L
    globulin mu
    binding protein 2
    G3083u2 WIAF-12985 HT2228 2260 IGHMBP2, immuno- TGGAGTTCAT[G/C]GCCAGCAAGA M G C M I
    globulin mu
    binding protein 2
    G3083u3 WIAF-12986 HT2228 2060 IGHMBP2, inmuno- GGGACCTGCT[A/G]CGTCCACCAG M A G T A
    globulin mu
    binding protein 2
    G3083u4 WIAF-12987 HT2228 2365 IGHMBP2, immuno- ACGACAGTTC[C/T]GGGGAAGGGA S C T S S
    globulin mu
    binding protein 2
    G3083u5 WIAF-13005 HT2228 411 IGHMBP2, immuno- TTTGATGAGT[C/T]CCACGATTTC M C T S F
    globulin mu
    binding protein 2
    G3083u6 WIAF-13006 HT2228 272 IGHMBP2, immuno- ATACGGGTCC[G/A]CGGCAGCTCT M G A A T
    globulin mu
    binding protein 2
    G3083u7 WIAF-13010 HT2228 2581 IGHMBP2, immuno- TCAGGAGCGC[G/A]CAGGGGCAGC S G A A A
    globulin mu
    binding protein 2
    G3083u8 WIAF-13011 HT2228 2594 IGHMBP2, immuno- GGGGCAGCCC[G/A]CCAGCAAGGA M G A A T
    globulin mu
    binding protein 2
    G3088u1 WIAF-12984 HT2318 884 HIVEP1, human TGTGGCACTA[C/T]GTCCCCCTCC M C T T M
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u2 WIAF-12988 HT2318 2469 HIVEP1, human TCTTGTCACC[A/G]CGTCAACACC S A G P P
    immunodeficiency
    virus type I
    enhancer-binding
    protein
    G3088u3 WIAF-12989 HT2318 3066 HIVEP1, human TTCTTGGTAC[T/C]GGACAGTCCC S T C T T
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u4 WIAF-12991 HT2318 4008 HIVEP1, human TTATCCGGCA[G/T]CACAACATCC M G T Q H
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u5 WIAF-12992 HT2318 4880 HIVEP1, human CAAATCCATG[C/G]ACCGCCTAGC M C G A G
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u6 WIAF-12993 HT2318 5148 HIVEP1, human TTGACAGCAT[G/A]TCTAATTCGC M G A M I
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u7 WIAF-12999 HT2318 5834 HIVEP1, human CCAGCTGATA[A/C]TTCATCAACA M A G N S
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u8 WIAF-13000 HT2318 6065 HIVEP1, human CAAAGTCAAC[G/A]GCCAGTCACT M G A R Q
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u9 WIAF-13001 HT2318 7652 HIVEP1, human CATAGGAATA[C/T]GGTCACACAA M C T T M
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G30B8u10 WIAF-13008 HT2318 741 HIVEP1, human TTCTGCAGCA[A/G]CCATCTGAAC S A G Q Q
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u11 WIAF-13009 HT2318 948 HIVEP1, human CAGAACTGAG[C/T]ACCTTGTCAC S C T S S
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u12 WIAF-13012 HT2318 1909 HIVEP1, human TGAAACTTTA[C/T]TAAAATCAAG S C T L L
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u13 WIAF-13013 HT2318 2803 HIVEP1, human TCTTCTGTCT[G/A]TACCTTCACT M G A V I
    immunodeficiency
    virus type I
    enhancer-binding
    protein
    1
    G3088u14 WIAF-13015 HT2318 3342 HIVEP1, human GCGGTCTGCA[A/G]CCTCAGATTC S A G Q Q
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u15 WIAF-13016 HT2318 3542 HIVEP1, human CCTAAACATA[G/A]TGTTACCATA M G A S N
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3088u16 WIAF-13017 HT2318 4972 HIVEP1, human TGGGTCTTCT[A/G]AAAGTGAGGA M A G K E
    immunodeficiency
    virus type I
    enhancer-binding
    protein 1
    G3095u1 WIAF-12994 HT2435 701 TCF2, transcription CCGCTCTGTA[C/T]ACCTGGTACG S C T Y Y
    factor
    2, hepatic;
    LF-B3; variant
    hepatic nuclear
    factor
    G3095u2 WIAF-13018 HT2435 362 TCF2, transcription GGGCCGAGCC[C/T]GACACCAAGC S C T P P
    factor
    2, hepatic;
    LF-B3; variant
    hepatic nuclear
    factor
    G3095u3 WIAF-13020 HT2435 1620 TCF2, transcription CCAGTTCTCC[C/T]AGCAGCTGCA N C T Q *
    factor 2, hepatic;
    LF-B3; variant
    hepatic nuclear
    factor
    G3100a1 WIAF-12147 HT2483 526 ZNF141, zinc finger GAATGAGTGT[A/G]AGTTGCAGAA M A G K E
    protein 141 (dione
    pHZ-44)
    G3102u1 WIAF-12975 HT2508 259 NRF1, nuclear CGCCTTCTTC[G/T]CCCGAGGACA S G T S S
    respiratory factor
    1
    G3103u1 WIAF-13617 HT2511 1106 E2F2, E2F CCTTGGACCA[G/T]CTCATCCAGA M H T Q H
    transcription
    factor
    2
    C3103u2 WIAF-13659 HT2511 1154 E2F2, E2F CTGAGGACAA[G/A]GCCAACAAGA S G A K K
    transcription
    factor
    2
    G311u1 WIAF-10291 HT0402 1339 A2M, alpha-2-macro- GTCCCTGTTA[C/T]GGCTACCAGT S C T Y Y
    globulin
    G311u2 WIAF-10292 HT0402 1201 A2M, alpha-2-macro- TCATATTCAT[C/T]AGAGGAAATG S C T I I
    globulin
    G311u3 WIAF-10293 HT0402 3041 A2M, alpha-2-macro- TACTCCAGAG[C/A]TCAACTCCAA M G A V I
    globulin
    G311u4 WIAF-10294 HT0402 3676 A2M, alpha-2-macro- TGACATCCTA[T/C]GTGCTCCTCC S T C Y Y
    globulin
    G311u5 WIAF-10296 HT0402 3364 A2M, alpha-2-macro- ATATCACCAT[C/T]GCCCTTCTGG S C T I I
    globulin
    G311u6 WIAF-10297 HT0402 3203 A2M, alpha-2-macro- CCAAGCTCGA[G/T]CCTACATCTT M G T A S
    globulin
    G311a7 WIAF-10494 HT0402 1122 A2M, alpha-2-macro- TCACACTTTC[G/A]ACAGGGAATT M G A R Q
    globulin
    G3119u1 WIAF-13947 HT2654 2876 GLI, glioma- TTTCTGGGCG[G/A]TTCCCAGGTT M G A G D
    associated oncogene
    homolog (zinc
    finger protein)
    G3119u2 WIAF-13959 HT2654 654 GLI, glioma- AGTGCCGGGA[G/A]GAACCCTTGG S G A E E
    associated oncogene
    homolog (zinc
    finger protein)
    G3119u3 WIAF-13965 HT2654 3376 GLI, glioma- TGGGGAAACA[G/C]AATTCCTCAA M G C E Q
    associated oncogene
    homolog (zinc
    finger protein)
    G312u1 WIAF-10006 HT0428 898 PLAU, plasminogen CTCACCACAA[C/T]CACATTCCCT S C T N N
    activator,
    urokinase
    G312u2 WIAF-10029 HT0428 498 PLAU, plasminogen GGCCTAAACC[C/T]GCTTGTCCAA M C T P L
    activator,
    urokinase
    G312a3 WIAF-10521 HT0428 767 PLAU, plasminogen TGATTACCCA[A/C]AGAAGGACGA M A C K Q
    activator,
    urokinase
    G3125u1 WIAF-13675 HT2674 740 GTF2F2, general ACATCACAAA[A/G]CAACCTGTGG S A G K K
    transcription
    factor hF, poly-
    peptide 2 (30 kD
    subunit)
    G313u1 WIAF-10129 HT0462 3086 platelet-derived CATGCGTGTG[C/A]ACTCAGACAA M G A D N
    growth factor,
    alpha polypeptide
    (GB:M21574)
    G313u2 WIAF-10130 HT0462 1078 platelet-derived ATGAGAAAGG[T/C]TTCATTGAAA S T G G G
    growth factor,
    alpha polypeptide
    (CB:M21574)
    G313u3 WIAF-10133 HT0462 1571 platelet-derived GGAGATCCAC[T/C]CCCCAGACAG M T C S P
    growth factor,
    alpha polypeptide
    (CB:M21574)
    G313u4 WIAF-10135 HT0462 2611 platelet-derived CTCGCAACGT[C/T]CTCCTGGCAC S C T V V
    growth factor,
    alpha polypeptide
    (CB:M21574)
    C314u1 WIAF-10069 HT0467 1890 ALOX15, TCAGCCAGGA[G/A]CTGGCTGCCC S G A E E
    arachidonate 15-
    lipoxygenase
    G3141u1 WIAF-13934 HT27498 878 NFATC3, nuclear CCAGAGGATA[G/A]CTGGCTACTC M G A S N
    factor of activated
    T-cells,
    cytoplasmic 3
    G3141u2 WIAF-13936 HT27498 1189 NFATC3, nuclear GCCTGCCTCA[T/C]GCAATGGGAA M T C C R
    factor of activated
    T-cells,
    cytoplasmic 3
    G3141u3 WIAF-13938 HT27498 2241 NFATC3, nuclear CTCTGCGGGG[T/C]TTCCCTTCAG S T C G G
    factor of activated
    T-cells,
    cytoplasmic 3
    C3141u4 WIAF-13944 HT27498 702 NFATC3, nuclear ATGCCTCTGA[C/T]CACGCAGCCC S C T D D
    factor of activated
    T-cells,
    cytoplasmic 3
    G3159u1 WIAF-13891 HT2757 523 SP4, Sp4 tran- CTTCAAAAGA[C/A]AATAACGTTT S G A E E
    scription factor
    G3159u2 WIAF-13892 HT2757 1514 SP4, Sp4 tran- ACAGAATGTT[C/T]AACTTCAAGC N C T Q *
    scription factor
    G3159u3 WIAF-13893 HT2757 2236 SP4, Sp4 tran- TGTTTTGTGG[C/T]AAAAGATTCA S C T G G
    scription factor
    G3165u1 WIAF-13860 HT27636 437 transcription AGCAGCTCAC[A/G]GAGGAACTGA S A G T T
    factor B-ATF
    G3165u2 WIAF-13861 HT27636 512 transcription CCACCACGCC[C/G]TCGCCCCCCG S C G P P
    factor B-ATF
    G3173u1 WIAF-13556 HT2772 1686 ZNF74, zinc finger TGCACAGCGA[G/A]GGGAAGCCCT S G A E E
    protein 74 (Cos52)
    G3175u1 WIAF-13948 HT2776 2037 transcriptional TGTTCGGACC[A/G]GAAGCACCCA S A G P P
    regulator, via
    glucocorticoid
    receptor
    G3182u1 WIAF-14036 HT2783 1614 MHC2TA, MHC class ATCCTAGACG[C/G]CTTCGAGGAG M C G A G
    II transactivator
    G3182u2 WIAF-14037 HT2783 2791 MHC2TA, MHC class TGAGCGACAC[G/A]GTGGCGCTGT S G A T T
    II transactivator
    C3182u3 WIAF-14059 HT2783 1657 MHC2TA, MHC class TGCACAGCAC[C/A]TGCGGACCGG S G A T T
    II transactivator
    G3182u4 WIAF-14060 HT2783 1606 MHC2TA, MHC class TTCTGCTCAT[C/T]CTAGACGCCT S C T I I
    II transactivator
    G3183u1 WIAF-13950 HT27861 392 zinc finger protein TACTCTAGAG[G/A]AGCCTGTTGG M G A E K
    C2H2-150
    G3184u1 WIAF-13864 HT27862 271 zinc finger protein GAAACTCCAG[T/G]TCAAAGACTT M T G F V
    C2H2-171
    G3184u2 WIAF-13865 HT27862 248 zinc finger protein CTGCTTGAAT[T/C]CATGTATGAR M T C F S
    C2H2-171
    G320u1 WIAF-10136 HT0791 552 ANX7, annexin VII CCAACTTCCA[T/C]GCTATAAGAG S T C D D
    (synexin)
    G320u2 WIAF-10137 HT0791 1350 ANX7, annexin VII TTGACCTTGT[A/G]CAAATAAAAC S A G V V
    (synexin)
    G3208u1 WIAF-14186 HT27930 485 zinc finger GTCACAAGTC[A/C]GCCCTAATTG S A G S S
    protein ZNF37A
    G3218u1 WIAF-13526 HT28104 187 zinc finger CCCGACAGCT[C/T]ATTAAGAAAG M C T H Y
    protein ZNF169,
    Krueppel-type
    G323u1 WIAF-10066 HT0915 1361 Homo sapiens ACTTCTGTGA[C/T]GTCCAGCGCT S C T D D
    inducible nitric
    oxide synthase
    (NOS) mRNA,
    complete cds.
    G325u1 WIAF-10106 HT0962 3817 FBN1, fibrillin 1 TGTGAATGCC[C/T]GCCTGGCCAT M C T P L
    (Marfan syndrome)
    G325u2 WIAF-10113 HT0962 722 FBN1, fibrillin 1 AGATACCTCC[T/C]TCCTCTGGCT S T G P P
    (Marfan syndrome)
    G325u3 WIAF-10114 HT0962 2022 FBN1, fibrillin 1 GATCTGCAAT[A/C]ATGGACGCTG M A C N H
    (Marfan syndrome)
    G325u4 WIAF-10116 HT0962 3603 FBN1, fibrillin 1 GAACTGCACA[G/C]ACATTGACGA M G C D H
    (Marfan syndrome)
    C325u5 WIAF-10117 HT0962 2270 FBN1, fibrillin 1 TCTGCATCAA[C/T]GGGCGTTGCG S C T N N
    (Marfan syndrome)
    G326u1 WIAF-10036 HT1009 1854 KLKB1, kallikreim GCAAACACAA[C/T]GGAATGTGGC S C T N N
    B plasma (Fletcher
    factor) 1
    G327u1 WIAF-10052 HT1011 1599 HRG, histidine- AAGCCAGACA[A/T]TCAGCCCTTT M A T N I
    rich glycoprotein
    G327u2 WIAF-10054 HT1011 1083 HRG, histidine- CCACTATTGC[C/T]CATGTCCTGC M C T P L
    rich glycoprotein
    G327u3 WIAF-10055 HT1011 1140 HRG, histidine- GCCCAAAGAC[A/G]TTCTCATAAT M A G H R
    rich glycoprotein
    G328u1 WIAF-10145 HT1087 255 SAA1, serum amyloid GTGCCTGGGC[T/C]GCAGAAGTGA S T C A A
    A1
    G328a2 WIAF-10511 HT1087 248 SAA1, serum amyloid CCTGGGGGTC[C/T]CTGGGCTGCA M C T A V
    A1
    G328a3 WIAF-10512 HT1087 305 SAA1, serum amyloid TTCTTTGGCC[A/G]TGGTGCGGAC M A G H R
    A1
    G328a4 WIAF-13126 HT1087 295 SAA1, serum amyloid TATCCAGAGA[T/C]TCTTTGGCCA M T C F L
    A1
    G328a5 WIAF-13127 HT1087 82 SAA1, serum amyloid CTTGGTCCTG[C/A]GTGTCAGCAG M G A G S
    A1
    G329u1 WIAF-10140 HT1141 2514 PLCG1, phospho- CTGACCTTCA[T/C]CAAGAGCGCC M T C I T
    lipase C, gamma 1
    (formerly subtype
    148)
    G329u2 WIAF-10162 HT1141 1036 PLCG1, phospho- TATGCCCGGA[C/A]ACCATGAACA M C A D E
    lipase C, gamma 1
    (formerly subtype
    148)
    G329u3 WIAF-10163 HT1141 911 PLCG1, phospho- GTTCATGCTC[A/G]GCTTCCTCCG M A G S G
    lipase C, gamma 1
    (formerly subtype
    148)
    G3295u1 WIAF-14017 HT3460 1229 FUBP, far upstream CCATAAAAAG[C/T]ATAACCCAGC S C T S S
    element binding
    protein
    G3296u1 WIAF-14168 HT3466 6289 transcription CAGCCTGGAC[G/A]AGAGCCCCAT M G A E K
    factor TFIIIC, RNA
    polymerase III,
    alpha subunit
    G3296u2 WIAF-14179 HT3466 235 transcription GGCCATCAGC[T/A]TCTATGAGGA M T A F I
    factor TFIIIC, RNA
    polymerase III,
    alpha subunit
    G3298u1 WIAF-13523 HT3504 1803 DNA-binding protein ACTTTGCCAA[C/T]GTGCAGGAGC S C T N N
    HRFX2
    G3298u2 WIAF-13524 HT3504 1743 DNA-binding protein GGGCGGTGCT[G/A]CAGAACACGT S G A L L
    HRFX2
    G3298u3 WIAF-13528 HT3504 2002 DNA-binding protein GTTCTTGCTG[A/G]AATGGTCCTT M A G K E
    HRFX2
    G33u1 WIAF-10254 X82540 1044 INHBC, inhibin, AAGGCCAACA[C/T]AGCTGCAGGC M C T T I
    beta C
    G33u2 WIAF-10255 X82540 1136 INHBC, inhibin, CAGCAACATT[G/A]TCAAGACTGA M G A V I
    beta C
    G33u3 WIAF-10256 X82540 1185 INHBC, inhibin, GGGTGCAGTT[A/G]GTCTATGTGT N A G * W
    beta C
    G33u4 WIAF-10259 X82540 892 INHBC, inhibin, TTTTTGTGGA[C/T]TTCCGTGAGA S C T D D
    beta C
    G3303u1 WIAF-13566 HT3523 981 POU6F1, POU CAGGCCAGGA[G/A]ATCACTGAAA S G A E E
    domain, class 6,
    transcription
    factor
    1
    G3304u1 WIAF-13932 HT3544 970 SP2, Sp2 transcrip- TCAACAACCT[C/T]GTGAACGCCA S C T L L
    tion factor
    G3304u2 WIAF-13935 HT3544 1891 SP2, Sp2 transcrip- AGAAGCACGT[T/G]TGCCACATCC S T G V V
    tion factor
    G3304u3 WIAF-13943 HT3544 920 SP2, Sp2 transcrip- TGTGGTGAAG[T/C]TGACAGGTGG S T C L L
    tion factor
    G3311u1 WIAF-13839 HT3585 757 GATA3, GATA- CCCACTCCCG[T/C]GGCAGCATGA S T C R R
    binding protein
    3
    G3311u2 WIAF-13840 HT3585 901 GATA3, GATA- TCGGATGCAA[G/A]TCCAGGCCCA S G A K K
    binding protein
    3
    G3316u1 WIAF-13818 HT3607 282 zinc finger AAAGAGTTTC[A/G]GTCACACTTC M A G S G
    protein HKE-T1,
    Kruppel-like
    G3319u1 WIAF-14214 HT3613 1086 SMARCA3, SWI/SNF AAACTCTTAC[A/C]GCCATTGCAG S A G T T
    related, matrix
    associated, actin
    dependent regulator
    of chromatin,
    subfamily a, member
    3
    G3319u2 WIAF-14221 HT3613 1261 SMARCA3, SWI/SNF TAGATCTAGT[G/C]AACAACCCAG M G C E Q
    related, matrix
    associated, actin
    dependent regulator
    of chromatin,
    subfamily a, member
    3
    G3320u1 WIAF-13692 HT3622 624 BCL6, B-cell CLL/ ATTTGCGGGA[G/C]GGCAACATCA M G C E D
    lymphoma 6 (zinc
    finger protein 51)
    G3320u2 WIAF-13717 HT3622 1062 BCL6, B-cell CLL/ ACAGCCGGCC[C/A]ACTTTGGAGG S G A P P
    lymphoma 6 (zinc
    finger protein 51)
    G3321u1 WIAF-13761 HT3641 235 STAT2, signal TCTTGGATCA[G/C]CTGAACTATG M G C Q H
    transducer and
    activator of
    transcription 2,
    113 kD
    G3321u2 WIAF-13762 HT3641 774 STAT2, signal CAAAAAGCCT[G/C]CATCAGAGCT M G C C S
    transducer and
    activator of
    transcription 2,
    113 kD
    G3328u1 WIAF-13543 HT3681 1550 transcription CCACAATGGT[A/C]TCAGAGCAGG S A G V V
    factor znf6
    G3328u2 WIAF-13544 HT3681 1389 transcription AGAGGATTTA[G/C]AGGAAGATGA M G C E Q
    factor znf6
    G3336u1 WIAF-13848 HT3732 216 XBP1, X-box binding ACCTGAGCCC[C/T]GAGGAGAAGG S C T P P
    protein
    1
    G334u1 WIAF-1008 HT1220 893 THBS1, thrombo- TACATTCGCC[A/C]CAAGACAAAG M A C H P
    spondin
    1
    G334u2 WIAF-10009 HT1220 2000 THBS1, thrombo- TCACAGCCCT[T/C]CGGCCAGCCT M T C F S
    spondin
    1
    G334u3 WIAF-10016 HT1220 1521 THBS1, thrombo- CCCAGATGAA[T/C]GGCAAACCCT S T C N N
    spondin
    1
    G334u4 WIAF-10017 HT1220 2210 THBS1, thrombo- GGCTGGCCCA[A/G]TGAGAACCTG M A G N S
    spondin
    1
    G334u5 WIAF-10018 HT1220 2979 THBS1, thrombo- GTGAGACCGA[T/C]TTCCGCCGAT S T C D D
    spondin
    1
    G334u6 WIAF-10033 HT1220 1136 THBS1, thrombo- TGTCACTGTC[A/G]GAACTCACTT M A G Q R
    spondin
    1
    G334u7 WIAF-10034 HT1220 1859 THBS1, thrombo- AGTGGAAATG[C/A]CATCCAGTGC M G A G D
    spondin
    1
    G3343u1 WIAF-13545 HT3770 1104 ZNF76, zinc finger GCACTGCCCA[C/T]GGCGAGCTGG S C T H H
    protein 76
    (expressed in
    testis)
    G3343u2 WIAF-13561 HT3770 425 ZNF76, zinc finger GAGCAGTATG[C/A]CAGCAAGGTT M C A A D
    protein 76
    (expressed in
    testis)
    G3343u3 WIAF-13562 HT3770 143 ZNF76, zinc finger CACCAGGTGA[C/T]GGTACAGAAA M C T T M
    protein 76
    (expressed in
    testis)
    G3343u4 WIAF-13563 HT3770 646 ZNF76, zinc finger GAAGACCCAC[G/T]TTCGTACCCA M G T V F
    protein 76
    (expressed in
    testis)
    G3343u5 WIAF-13564 HT3770 611 ZNF76, zinc finger AGCTGTGGAA[A/G]GGCCTTTGCC M A G K R
    protein 76
    (expressed in
    testis)
    G3344u1 WIAF-13664 HT3772 925 zinc finger protein AGCTCTCGCA[C/T]TCGGACGACA S C T H H
    HAZ
    G3345u1 WIAF-13508 HT3823 315 TCF6L1, transcrip- TTCGATTTTC[T/C]AAAGAACAAC S T C S S
    tion factor 6-
    like 1 (mito-
    chondrial
    transcription
    factor 1-like)
    G3345u2 WIAF-13509 HT3823 167 TCF6L1, transcrip- GGCGTGCTGA[G/CITGCCCTGGGA M G C S T
    tion factor 6-
    like 1 (mito-
    chondrial
    transcription
    factor 1-like)
    G3345u3 WIAF-13531 HT3623 625 TCF6L1, transcrip- TTATAACGTT[T/G]ATGTAGCTGA M T G Y D
    tion factor 6-
    like 1 (mito-
    chondrial
    transcription
    factor 1-like)
    G3352u1 WIAF-13589 HT4005 1190 MITF, micro- CTCGGAACTG[G/A]GACTCAGGCC M G A G E
    phthalmia-associated
    transcription factor
    G3352u2 WIAF-13604 HT4005 1156 MITF, micro- TCTCACGGAT[G/A]GCACCATCAC M G A G S
    phthalmia-associated
    transcription factor
    G3353u1 WIAF-13937 HT4010 360 GTF2H3, general ATCTAATGAC[C/A]AAAAGTGACA S C A T T
    transcription
    factor IIH,
    polypeptide 3
    (34 kD subunit)
    G3358u1 WIAF-13671 HT4187 398 ETV5, ets variant GATGATGAAC[A/C]GTTTGTCCCA M A G Q R
    gene 5 (ets-related
    molecule)
    G3358u2 WIAF-13672 HT4187 223 ETV5, ets variant TCAGCAAGTC[C/T]CTTTTATGGT M C T P S
    gene 5 (ets-related
    molecule)
    G3358u3 WIAF-13673 HT4187 1236 ETV5, ets variant GACTGGAAGC[C/G]AAAGTCAAAC S C G G G
    gene 5 (eta-related
    molecule)
    G3358u4 WIAF-13674 HT4187 1678 ETV5, ets variant TTACCTCCTC[G/A]ACATGGACCG M G A D N
    gene 5 (ets-related
    molecule)
    G3358u5 WIAF-13706 HT4187 414 ETV5, ets variant TCCCAGATTT[T/C]CAGTCTGATA S T C F F
    gene 5 (ets-related
    molecule)
    G3358u6 WIAF-13707 HT4187 1238 ETV5, ets variant CTGGAAGGCA[A/C]AGTCAAACAG M A G K R
    gene 5 (ets-related
    molecule)
    G336u1 WIAF-10152 HT1258 566 ACAT1, acetyl- AGAGCATCTC[C/A]AATGTTCCAT S C A S S
    Coenzyme A acetyl-
    transferase 1
    (acetoacetyl
    Coenzyme A thiolase)
    G3369u1 WIAF-14047 HT4302 614 zinc finger ATCTCAATCG[A/G]CACAAGCTCT S A G R R
    protein DB1
    G337u1 WIAF-10268 HT1259 464 EDNRB, endothelin AAAGCAGACA[G/T]GACGGCAGGA M G T R M
    receptor type B
    G337u2 WIAF-10298 HT1259 1281 EDNRB, endothelin TGAAGCTCAC[T/A]CTTTATAATC S T A T T
    receptor type B
    G3373u1 WIAF-14203 HT4342 1253 MTF1, metal- CTCAACAGAC[A/G]GCTTCCTTGA S A G T T
    regulatory
    transcription
    factor
    1
    G3390u1 WIAF-14182 HT4483 680 ZNF133, zinc finger AGAGCCAGAG[C/T]TCTACCTCGA M C T L F
    protein 133 (clone
    pHZ-13)
    G3390u2 WIAF-14184 HT4483 1026 ZNF133, zinc finger GCTCACACAG[G/A]GAACCCTGAG M G A G E
    protein 133 (clone
    pHZ-13)
    G3390u3 WIAF-14185 HT4483 1423 ZNF133, zinc finger AAAAGCCTTA[T/C]GTGTGCCGGG S T C Y Y
    protein 133 (clone
    pHZ-13)
    G3390u4 WIAF-14197 HT4483 811 ZNF133, zinc finger CTGGGGATCC[A/G]GGCCCAGGGG S A G P P
    protein 133 (clone
    pHZ-13)
    G3390u5 WIAF-14198 HT4483 1420 ZNF133, zinc finger GGGAAAAGCC[T/G]TATGTCTCCC S T G P P
    protein 133 (clone
    pHZ-13)
    G3390u6 WIAF-14199 HT4483 2143 ZNF133, zinc finger CAGCTCTAAT[C/T]ACACACAAGC S C T I I
    protein 133
    (clone pHZ-13)
    G3391u1 WIAF-13631 HT4484 391 ZNF136, zinc finger AGCATTGTAT[A/G]TGGAGAAGTC M A G Y C
    protein 136
    (clone pHZ-20)
    G3396u1 WIAF-13978 HT4491 1283 ZNF135, zinc finger CACACCTCCT[C/T]GCTCAGCCAG M C T S L
    protein 135
    (clone pHZ-17)
    G3396u2 WIAF-13979 HT4491 1296 ZNF135, zinc finger TCAGCCAGCA[C/T]GAAAGGACGC S C T H H
    protein 135
    (clone pHZ-17)
    G3396u3 WIAF-13980 HT4491 1028 ZNF135, zinc finger AGTCACAGCT[C/T]CTCCCTCACC M C T S L
    protein 135
    (clone pHZ-17)
    G3396u4 WIAF-13981 HT4491 1057 ZNF135, zinc finger GCGAATCCAC[A/C]CTGGGGAGAA M A G T A
    protein 135
    (clone pHZ-17)
    G3396u5 WIAF-13982 HT4491 1152 ZNF135, zinc finger CAGGAGAGAA[A/G]CCCTATGAAT S A G K K
    protein 135
    (clone pHZ-17)
    G3396u6 WIAF-13983 HT4491 1243 ZNF135, zinc finger AAAGCCGTAT[G/C]GGTGCAATGA M G C G R
    protein 135
    (clone pHZ-17)
    G3396u7 WIAF-13984 HT4491 1045 ZNF135, zinc finger CACCAAACAT[C/T]AGCGAATCCA N C T Q *
    protein 135
    (clone pHZ-17)
    G340u1 WIAF-10139 HT1386 459 CYP27A1, cytochrome CCTATGGGCC[G/A]TTCACCACGG S G A P P
    P450, subfamily
    XXVIIA (steroid 27-
    hydroxylase,
    cerebrotendinous
    xanthomatosis),
    polypeptide 1
    G340u2 WIAF-10160 HT1386 801 CYP27A1, cytochrome TCCCCAAGTG[G/A]ACTCGCCCCG N G A W *
    P450, subfamily
    XXVIIA (steroid 27-
    hydroxylase,
    cerebrotendinous
    xanthomatosis),
    polypeptide 1
    G341u1 WIAF-10121 HT1388 912 MUT, methylmalonyl GAGCTGGCCT[A/G]TACTTTAGCA M A G Y C
    Coenzyme A
    mutase
    G341u2 WIAF-10128 HT1388 2087 MUT, methylmalonyl TGCTCTGGGC[G/A]TAAGCACCCT M G A V I
    Coenzyme A
    mutase
    G3410u1 WIAF-13749 HT4550 1720 zinc finger TGAGTCCTCT[G/T]TTTCATCAGC M G T V F
    homeodomain protein
    G3410u2 WIAF-13750 HT4550 2843 zinc finger AAACATCATT[T/C]GATTGAACAC M T C L S
    homeodonain protein
    G3410u3 WIAF-13751 HT4550 2745 zinc finger AGATATTCCA[A/T]AAGAGTAGTT M A T Q H
    homeodomain protein
    G3410u4 WIAF-13775 HT4550 236 zinc finger AGAGAAGGGA[A/C]TGCTAACAAC M A C N T
    homeodomain protein
    G3410u5 WIAF-13776 HT4550 195 zinc finger TGCCAACAGA[C/T]CAGACAGTGT S C T D D
    homeodomain protein
    G3410u6 WIAF-13777 HT4550 606 zinc finger ATAACTTTAG[T/C]TGCTCCCTGT S T C S S
    homeodomain protein
    G3410u7 WIAF-13793 HT4550 2073 zinc finger CAGTTTTACC[A/C]GTGCCATCAA S A G P P
    homeodomain protein
    G343u1 WIAF-10120 HT1552 561 HK1, hexokinase 1 CTTGCCAACA[A/C]TCCAAAATAG S A G Q Q
    C343u2 WIAF-10124 HT1552 159 HK1, hexokinase 1 ACAAGTATCT[G/C]TATGCCATCC S G C L L
    G348u1 WIAF-10269 HT1906 2212 PECAM1, platelet/ TGACGATGTC[A/G]GAAACCATCC S A G G G
    endothelial cell
    adhesion molecule
    (CD31 antigen)
    G348u2 WIAF-10277 HT1906 1656 PECAM1, platelet/ GCCATTCCCA[C/T]GCCAAAATGT S C T H H
    endothelial cell
    adhesion molecule
    (CD31 antigen)
    G348u3 WIAF-10283 HT1906 577 PECAM1, platelet/ AGAGTACCAG[C/G]TGTTGGTGGA S C G V V
    endothelial cell
    adhesion molecule
    (CD31 antigen)
    G348a5 WIAF-13119 HT1906 ? PECAM1, platelet/ ATTCTTCCC[C/G] ? C G
    endothelial cell
    adhesion molecule
    (CD31 antigen)
    G351u1 WIAF-10123 HT1990 1047 OSBP, oxysterol TGCTCGCAGA[C/A]TCAGATGAAT S G A E E
    binding protein
    G351u2 WIAF-10132 HT1990 1023 OSBP, oxysterol TGGCCAAGGC[C/A]AAAGCTGTGA S C A A A
    binding protein
    G355u1 WIAF-10146 HT2143 1670 THBS4, AACTCCCTGA[C/A]TGTCTTAAAT M G A S N
    thrombospondin
    4
    G355u2 WIAF-10165 HT2143 1186 THBS4, TCGAAATCCA[G/C]CGTGCGTTCC M G C A P
    thrombospondin
    4
    G355a3 WIAF-10510 HT2143 1962 THBS4, ACTGCCCCAC[C/G]GTCATTAACA S C G T T
    thrombospondin
    4
    G355a4 WIAF-13125 HT2143 1963 THBS4, CTGCCCCACC[G/a]TCATTAACAG M C a V I
    thrombospondin 4
    G3552u1 WIAF-12701 HT28101 1006 CLCN2, chloride AAGAGACTAT[T/C]ACAGCCCTCT S T C I I
    channel 2
    G3552u2 WIAF-12731 HT28101 1823 CLCN2, chloride CCGCCACCAG[C/T]AGTACCCGGT N C T Q *
    channel 2
    G3552u3 WIAF-12736 HT28101 2254 CLCN2, chloride GGAGCGCAGA[G/C]TCGGCAGGCA M G C E D
    channel
    2
    G3565u1 WIAF-12744 HT2896 334 calcyclin GCCCTCAAGG[G/A]CTGAAAATAA M G A G D
    G357u1 WIAF-10267 HT2244 4300 C4B, complement ATGAGTACGA[T/C]GAGCTTCCAG S T C D D
    component 4B
    G357u2 WIAF-10280 HT2244 5095 C4B, complement TCATGGGTCT[G/A]GATGGGGCCA S G A L L
    component 4B
    G357u3 WIAF-10295 HT2244 2996 C4B, complement CTCAGATCCA[T/C]TGGACACTTT S T C L L
    component 4B
    G359u1 WIAF-10026 HT2411 936 PLAT, plasminogen CGCAGGCTCA[A/C]GTGGGAGTAC M A G T M
    activator, tissue
    G359a2 WIAF-10520 HT2411 1444 PLAT, plasminogen AGGCCTTGTC[T/C]CCTTTCTATT S T C S S
    activator, tissue
    G3592u1 WIAF-12759 HT4214 743 CLCN4, chloride CTTCTAACGA[C/A]ACCACTTTTG S G A E E
    channel
    4
    G3592u2 WIAF-12761 HT4214 835 CLCN4, chloride GCTTACATTC[T/G]GAATTACTTA M T G L R
    channel
    4
    G361u1 WIAF-10053 HT2479 857 cystathionine beta TGGCTCACTA[C/T]GACACCACCG S C T Y Y
    synthase, alt.
    transcript 1
    G361u2 WIAF-10056 HT2479 1097 cystathionine beta TCATCCCCAC[G/A]GTGCTGGACA S G A T T
    synthase, alt.
    transcript 1
    G362u1 WIAF-10058 HT2638 223 ADRB2, adrenergic, GGCACCCAAT[G/A]GAACCCATCC M G A G R
    beta-2-, receptor,
    surface
    G362u2 WIAF-10059 HT2638 429 ADRS2, adrenergic, TCATGGGCCT[G/A]CCAGTGGTGC S G A L L
    beta-2-, receptor,
    surface
    G362u3 WIAF-10060 HT2638 256 ADRB2, adrenergic, CGTCACGCAG[G/C]AAAGGGACCA M G C E Q
    beta-2-, receptor,
    surface
    G362u4 WIAF-10093 HT2638 1230 ADRB2, adrenergic, AGGCCTATGG[G/C]AATGGCTACT S G C G G
    beta-2-, receptor,
    surface
    G3620u1 WIAF-12808 HT97200 458 ACATN, acetyl- CACTCTCTGG[A/G]TATGAAGAGC M A G D G
    Coenzyme A
    transporter
    G3627u1 WIAF-12820 HT97387 347 NAPG, N-ethyl- GCACAAACTA[C/T]CAGAGGCCGT M C T P S
    maleimide-sensitive
    factor attachment
    protein, gamma
    G366u1 WIAF-10046 HT2764 987 BDKRB2, bradykinin GCCTCCTTCA[T/C]CGCCTACAGC M T C M T
    receptor B2
    G366a2 WIAF-10500 HT2764 820 BDKRB2, bradykinin AGATCCAGAC[C/A]GAGAGGAGGG S G A T T
    receptor B2
    G366a3 WIAF-10501 HT2764 961 BDKRB2, bradykinin GCATCATCGA[T/C]GTAATCACAC S T C D D
    receptor B2
    G367u1 WIAF-10156 HT27685 6965 ACACA, acetyl- ATCATCCATA[T/C]GACGCAGCAC N T C * C
    Coenzyme A
    carboxylase alpha
    G370u1 WIAF-10281 HT27888 3250 LEPR, leptin AAAATTCTCC[G/A]TTGAAGGATT S G A P P
    receptor
    G370u2 WIAF-10282 HT27888 3229 LEPR, leptin TCACCAAGTG[C/T]TTCTCTAGCA S C T C C
    receptor
    G370u3 WIAF-10284 HT27888 1005 LEPR, leptin CAATATCAAG[T/C]GAAATATTCA M T C V A
    receptor
    G370u4 WIAF-10285 HT27888 1894 LEPR, leptin CAGAGAATAA[C/TI CTTCAATTCC S C T N N
    receptor
    G370u5 WIAF-10299 HT27888 1222 LEPR, leptin TTCTGACAAG[T/C]GTTGGGTCTA S T C S S
    receptor
    G370u6 WIAF-10300 HT27888 2161 LEPR, leptin CTATGAAAAA[G/C]GAGAAAAATG M G C K N
    receptor
    G371u1 WIAF-10107 HT27943 349 CRAT, carnitine TCATCTACTC[G/C]AGCCCAGGCG S G C S S
    acetyltransferase
    G371a2 WIAF-12093 HT27943 287 CRAT, carnitine GGAGAACTGG[C/T]TGTCTGAGTG S C T L L
    acetyltransferase
    G372a1 WIAF-10506 HT28247 1099 HADHA, hydroxyacyl- TGGAGCTCCA[C/A]AGAAGGATGT M C A Q K
    Coenzyme A dehydro-
    genase dehydro-
    genase/3-ketoacyl-
    Coenzyme A
    thiolase/enoyl-
    Coenzyme A
    hydratase (tri-
    functional
    protein), alpha
    subunit
    G374u1 WIAF-10103 HT28496 4435 FASN, fatty acid CACCTCCCAC[G/A]TCCCGGAGGT M G A V I
    synthase
    G374u2 WIAF-10104 HT28496 5996 FASN, fatty acid CTGGACAGGG[T/C]GACCCGAGAG M T C V A
    synthase
    G374u3 WIAF-10105 HT28496 5644 FASN, fatty acid CAAGAGCTAC[A/G]TCATCGCTGG M A G I V
    synthase
    G374u4 WIAF-10115 HT28496 6387 FASN, fatty acid TGGCACACAT[C/T]CTGGGCATCC S C T I I
    synthase
    G374u5 WIAF-10119 HT28496 567 FASN, fatty acid GGGGCATCAA[C/T]GTCCTGCTGA S C T N N
    synthase
    G374a6 WIAF-12094 HT28496 5520 FASN, fatty acid ACATGGCCCA[A/G]GGGAAGCACA S A G Q Q
    synthase
    G377u1 WIAF-10142 HT2996 929 PCCB, propionyl GGACCCGGCT[T/C]CCGTCCGTGA M T C S P
    Coenzyme A
    carboxylase,
    beta polypeptide
    G377u2 WIAF-10143 HT2996 1416 PCCB, propionyl CACCTTTGTG[G/A]TGATACCAAC N G A G D
    Coenzyme A
    carboxylase,
    beta polypeptide
    G380u1 WIAF-10122 HT3159 831 INSR, insulin TCTACCTCCA[C/T]GGCAGGTGTG S C T D D
    receptor
    G380u2 WIAF-10126 HT3159 1698 INSR, insulin GGCAGGATCC[A/G]TGTGGTTCCA S A G A A
    receptor
    G380u4 WIAF-11605 HT3159 2382 INSR, insulin GCGTGCCCAC[G/A]AGTCCGGAGG S G A T T
    receptor
    G383u1 WIAF-10125 HT33546 3633 phospholipase C, AGCAGCGGGC[G/A]AGGCTCCCCC M G A R Q
    beta
    3, alt.
    transcript 2
    G385u1 WIAF-10141 HT3383 1505 PRCP, ATGACAGTGC[A/G]GGAAAGCAGC S A G A A
    prolylcarboxy-
    peptidase
    (angiotensinase C)
    G385u2 WIAF-10157 HT3383 1360 PRCP, ATCACAGACA[C/G]TCTGGTTGCA M C G T S
    prolylcarboxy-
    peptidase
    (angiotensinase C)
    G387u1 WIAF-11729 HT3439 2697 SREBF2, sterol CACTCTCCAG[G/C]AGCTCCGTGC M G C R S
    regulatory element
    binding tran-
    scription factor 2
    G387u2 WIAF-11770 HT3439 1901 SREBF2, sterol GCTGCTGCCC[C/G]CAACCTACAA M C G A G
    regulatory element
    binding tran-
    scription factor 2
    G388u1 WIAF-10270 HT3440 245 SELPLG, selectin CTCCAGAAAT[G/A]CTGAGGAACA M G A M I
    P ligand
    G390u1 WIAF-10276 HT3568 2049 NOS3, nitric oxide TTGCTCGTGC[C/G]GTGGACACAC S C G A A
    synthase 3
    (endothelial cell)
    G391u1 WIAF-10013 HT3630 6205 VWF, von Willebrand AGCACCTGCA[G/C]GTGATTCTCC M G C E D
    factor
    G391u2 WIAF-10265 HT3630 4554 VWF, von Hillebrand GCCCCTCACA[A/C]CAACGCCTTC M A G N S
    factor
    G391u3 WIAF-10266 HT3630 7489 VWF, von Willebrand TGGCCTCAAC[C/T]GCCACCAATC S C T T T
    factor
    C391u4 HIAF-10272 HT3630 2470 VWF, von Willebrand ACTGTACCAT[G/A]AGTGCAGTCC M G A M I
    factor
    G391u5 WIAF-10273 HT3630 2615 VWF, von Willebrand GCTCGAGTGT[A/G]CCAAAACGTG M A G T A
    factor
    G391u6 WIAF-10274 HT3630 2635 VWF, von Willebrand GCCAGAACTA[T/C]GACCTGGACT S T C Y Y
    factor
    G391u7 WIAF-10275 HT3630 4045 VWF, von Willebrand TCTCGGAACC[G/A]CCGTTGCACG S G A P P
    factor
    G391u8 WIAF-10278 HT3630 4446 VWF, von Willebrand AACTTTGTCC[C/A]CTACGTCCAG M G A R H
    factor
    G391u9 WIAF-10279 HT3630 5152 VWF, von Willebrand GCCCTAATGC[C/T]AACGTGCACG S C T A A
    factor
    G391u10 WIAF-10286 HT3630 3448 VWF, von Willebrand TTACCAGTGA[C/T]GTCTTCCAGG S C T D D
    factor
    G391u11 WIAF-10287 HT3630 4891 VWF, von Willebrand ACATGGTCAC[C/T]GTGGAGTACC S C T T T
    factor
    G391u12 WIAF-10288 HT3630 4805 VWF, von Willebrand CAGGAGCAAG[G/A]AGTTCATGGA M G A E K
    factor
    G391u13 WIAF-10289 HT3630 4943 VWF, von Willebrand CCTGCAGCCC[G/T]TGCGAGAGAT M G T V L
    factor
    G391u14 WIAF-10290 HT3630 4915 VWF, von Willebrand TCAGCGAGGC[A/C]CAGTCCAAAG S A C A A
    factor
    G391a15 WIAF-10517 HT3630 6194 VWF, von Willebrand AAACAAGGAG[C/T]AGGACCTGGA N C T Q *
    factor
    G391a16 WIAF-13222 HT3630 6419 VWF, von Willebrand TCACCTTGGT[C/T]ACATCTTCAC M C T H Y
    factor
    G3941u1 WIAF-14123 HT3464 1265 mannosidase, alpha, CACGTCTGCA[A/G]CCAGCTGGAG M A G N S
    lysosomal
    G3941u2 WIAF-14135 HT3464 965 mannosidase, alpha, ACCAACCACA[C/T]TGTGATGACC M C T T I
    lysosomal
    G395u1 WIAF-10271 HT4158 1627 ECE1, endothelin TCACTGCCGA[T/C]CAGCTCAGGA S T C D D
    converting enzyme
    1
    G395a2 WIAF-13110 HT4158 1493 ECE1, endothelin CATCTACAAC[A/T]TGATAGGATA M A T M L
    converting enzyme 1
    G3959u1 WIAF-13634 HT4490 250 ADTB1, adaptin, TGAAGAAGCT[G/A]GTATACCTCT S G A L L
    beta 1 (beta
    prime)
    G3959u2 WIAF-13640 HT4490 2029 ADTB1, adaptin, TTCTTGGCGG[T/C]GCCCTTGACA S T C G G
    beta 1 (beta
    prime)
    G3959u3 WIAF-13641 HT4490 2395 ADTB1, adaptin, AGGTCCACGC[C/A]CCACTCACCC S G A A A
    beta 1 (beta
    prime)
    G3967u1 WIAF-13997 HT2958 918 ACTC, actin, GAGGCACCAC[T/C]ATGTACCCTG S T C T T
    alpha, cardiac
    muscle
    G3968u1 WIAF-14159 HT1986 1747 ACTN3, actinin, CGAGGCTGAC[C/T]GAGAGCGAGG N C T R *
    alpha 3
    G3968u2 WIAF-14164 HT1986 1900 ACTN3, actinin, GGTGCCCAGC[C/T]GTGACCAGAC M C T R C
    alpha
    3
    G3968u3 WIAF-14165 HT1986 2184 ACTN3, actinin, ACACCGTCTA[C/T]AGCATGGAGC S C T Y Y
    alpha
    3
    G3968u4 WIAF-14167 HT1986 2557 ACTN3, actinin, GATCTTGCCA[G/A]GAGACAAGAA M G A G R
    alpha
    3
    G3968u5 WIAF-14175 HT1986 1212 ACTN3, actinin, GGCTGCTCTC[G/A]GAGATCCGGC S G A S S
    alpha
    3
    G3979u1 WIAF-13884 HT0623 776 GPC1, glypican 1 TGCTGCTGCC[T/G]GATCACTACC S T G P P
    G3979u2 WIAF-13885 HT0623 680 GPC1, glypican 1 TCTACTACCC[C/TI GCTGCCAACC S C T R R
    G3979u3 WIAF-13886 HT0623 1361 GPC1, glypican 1 AGCTGCTCTC[T/C]GAACCCAAGG S T C S S
    G3979u4 WIAF-13887 HT0623 1163 GPC1, glypican 1 ACAGTCTCAT[C/T]GGCAGCGTCC S C T I I
    G3979u5 WIAF-13888 HT0623 1670 GPC1, glypican 1 ACGCCAGTGA[C/T]GACGGCACCG S C T D D
    G3979u6 WIAF-13905 HT0623 1069 GPC1, glypican 1 CTTCCCAACC[A/T]CGCCGACCTG M A T Q L
    G3979u7 WIAF-13906 HT0623 1514 GPC1, glypican 1 TCATCCCTCA[C/T]GCCCTCCCCA S C T D D
    G3979u8 WIAF-13907 HT0623 1720 GPC1, glypican 1 GACCTCTCCC[G/C]CCCCAAGGTC M G C G A
    G3979u9 WIAF-13908 HT0623 1676 GPC1, glypican 1 CTCACCACGG[C/T]AGCGGCTCGG S C T G G
    G3979u10 WIAF-13909 HT0623 1719 GPC1, glypican 1 TGACCTCTCC[G/A]GCCGCAACGT M G A G S
    G399u1 WIAF-10102 HT48511 450 AQP3, aquaporin 3 TCTGGCACTT[T/C]GCCCACAACC S T C A A
    G399u2 WIAF-10111 HT48511 192 AQP3, aquaporin 3 CCTCCCTCCC[C/T]CAGGTTGTGC S C T A A
    G399u3 WIAF-10112 HT48511 165 AQP3, aquaporin 3 CCCTCATCCT[C/G]GTGATGTTTG S C G L L
    G3997u1 WIAF-13649 HT27682 473 MFAP2, micro- TGTGTGCCCA[C/T]GAGGAGCTCC S C T H H
    fibrillar-
    associated
    protein 2
    G3997u2 WIAF-13650 HT27682 377 MFAP2, micro- CCATACACAG[G/T]CCTTCCAAAC M G T R S
    fibrillar-
    associated
    protein 2
    G3997u3 WIAF-13876 HT27682 453 MFAP2, micro- GGAGATCTGT[G/T]TTCGTACAGT M G T V F
    fibrillar-
    associated
    protein 2
    G4022u1 WIAF-14020 HT2426 240 TGM1, trans- TGGCTGCTGT[T/C]CATGCCGAAA M T C S P
    glutaminase 1 (K
    polypeptide epi-
    dermal type I,
    protein-glutamine-
    gamma glutamyl-
    transferase)
    G4022u2 WIAF-14021 HT2426 371 TGM1, trans- CCCGGGGCAG[C/TI GGTGTCAATG S C T S S
    glutaminase 1 (K
    polypeptide epi-
    dermal type I,
    protein-glutamine-
    gamma-glutamyl-
    transferase)
    G4022u3 WIAF-14022 HT2426 506 TGM1, trans- ACGAGCTGAT[A/GIGTGCGCCGCG M A G I M
    glutaminase 1 (K
    polypeptide epi-
    dermal type I,
    protein-glutamine-
    gamma-glutamyl-
    transferase)
    G4022u4 WIAF-14031 HT2426 2491 TGM1, trans- GGTGGAGGTG[A/T]CAGTCACTTA M A T D V
    glutaminase 1 (K
    polypeptide epi-
    dermal type I,
    protein-glutamine-
    gamma-glutamyl-
    transferase)
    G4038u1 WIAF-13998 HT4211 411 LAMB3, laminin, GGTGGCAGTC[C/A]CAGAATGATG S C A S S
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u2 WIAF-13999 HT4211 258 LAMB3, laminin, CTTCATCTAC[C/T]TGTGGACTGA S C T T T
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u3 WIAF-14002 HT4211 1830 LAMB3, laminin, GAGGCTACTG[C/T]AATCGCTACC S C T C C
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u4 WIAF-14003 HT4211 2668 LAMB3, laminin, GACCACGCAG[A/T]TGATTAGGCC M A T M L
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u5 WIAF-14018 HT4211 248 LAMB3, laminin, TTTCTCCGAG[C/T]TTCATCTACC M C T A V
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u6 WIAF-14019 HT4211 887 LAMB3, laminin, CACGGCCATG[C/T]TGATCGCTGC M C T A V
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u7 WIAF-14023 HT4211 1266 LAMB3, laminin, AGTGTGATCC[G/A]GATGGGGCAG S G A P P
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u8 WIAF-14025 HT4211 1693 LAMB3, laminin, CTATGGAGAC[G/A]TGGCCACAGG M G A V M
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u9 WIAF-14026 HT4211 1553 LAMB3, laminin, GGCTGTGAAC[C/T]GTGTGCCTGC M C T P L
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u10 WIAF-14029 HT4211 3562 LANB3, laminin, CCTGACAGGA[C/T]TGGAGAAGCG S C T L L
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4038u11 WIAF-14030 HT4211 3546 LAMB3, laminin, TGCTGCGCTC[A/G]GCGGACCTGA S A G S S
    beta 3 (nicein
    (125 kD), kalinin
    (140 kD), BM600
    (125 kD))
    G4045u1 WIAF-13571 HT0652 1266 adducin, beta sub- TGGAGCAGGA[G/T]AAGCACCGGC M G T E D
    unit
    G4050u1 WIAF-14106 HT1466 1366 villin CGTTTGCCAG[G/A]GCAGCCAGGC M G A G S
    G4050u2 WIAF-14107 HT1466 1468 villin GGTCCCAATG[G/A]GCAAGGAGCC M G A G S
    G4050u3 WIAF-14108 HT1466 1932 villin CCACAGAGAT[C/T]CCTGACTTCA S C T I I
    G4050u4 WIAF-14110 HT1466 2438 villin TTTGGGATGA[C/T]TCCACCTGCC M C T T I
    G4057u1 WIAF-13648 HT33633 371 CNN3, calponin 3, TTCAGGCTTA[T/C]GGTATGAAGC S T C Y Y
    acidic
    G4066u1 WIAF-13676 HT4301 654 troponin T, beta, AGATTGACAA[G/A]TTCGACTTTG S G A K K
    skeletal
    G4066u2 WIAF-13677 HT4301 774 troponin T, beta, GCAAAGTCGG[C/T]GCGCGCTGGA S C T G G
    skeletal
    G4066u3 WIAF-13708 HT4301 625 troponin T, beta, GGAGCTCTGG[G/C]AGACCCTGCA M G C E Q
    skeletal
    G4080u1 WIAF-14142 HT1396 13130 HSPG2, heparan GATTCTCCTC[G/A]GCCATCACAC S G A S S
    sulfate proteo-
    glycan 2 (perlecan)
    G4080u2 WIAF-14150 HT1396 10340 HSPG2, heparan TTGAGTTCCA[C/T]TGTCCTCTGC S C T H H
    sulfate proteo-
    glycan 2 (perlecan)
    G4080u3 WIAF-14151 HT1396 12392 HSPG2, heparan AATGCTATGA[T/C]AGCTCCCCAT S T C D D
    sulfate proteo-
    glycan 2 (perlecan)
    G4080u4 WIAF-14152 HT1396 3416 HSPG2, heparan TCCCTCTGCC [C/T]GAGCAAACCG S C T P P
    sulfate proteo-
    glycan 2 (perlecan)
    G4080u5 WIAF-14154 HT1396 4588 HSPG2, heparan GTGCCGCTGG[T/C]GGCCAGCATC M T C V A
    sulfate proteo-
    glycan 2 (perlecan)
    G4080u6 WIAF-14156 HT1396 9582 HSPG2, heparan GCACAGCCAC[C/A]CCGTGCTGCA M G A A T
    sulfate proteo-
    glycan 2 (perlecan)
    G4096u1 WIAF-13890 HT4237 394 motor protein CAAAGAAATC[G/A]ATTCAGTCGC S G A S S
    G4096u2 WIAF-13910 HT4237 455 motor protein ATCTAAACAC[C/T]CTGCCTCACA M C T P S
    G4096u3 WIAF-13911 HT4237 1150 motor protein CTAACCTTGT[A/G]TCTCAGTATC S A G V V
    G4109u1 WIAF-14034 HT28223 1238 phosphoglucomutase- TACACCGTCC[C/T]GAAGACGCAT M C T A V
    related protein
    G4109u2 WIAF-14035 HT28223 1043 phosphoglucomutase- ATTATTCCTG[C/A]CCGGAACCAG M C A A D
    related protein
    G4112u1 WIAF-13615 HT4401 374 KIF5A, kinesin AGATGTCCTT[G/A]CTCGCTACAA M G A A T
    family member 5A
    G4112u2 WIAF-13623 HT4401 2767 KIF5A, kinesin AGAGAGTTAA[G/T]GCCCTCCACC M G T K N
    family member 5A
    G4114u1 WIAF-14113 HT4160 830 fibrinogen-like AACTTCACCA[G/A]AACATGGCAA M G A R K
    protein pT49
    G4118u1 WIAF-14010 HT0841 564 MYL5, myosin, TCGATGTGGC[G/A]GGCAACCTGG S G A A A
    light polypeptide
    5, regulatory
    G4118u2 WIAF-14011 HT0841 368 MYL5, myosin, TTCACCATGT[T/C]TCTGAACCTG M T C F S
    light polypeptide
    5, regulatory
    G4118u3 WIAF-14012 HT0841 533 MYL5, myosin, GAGGTGGACC[A/G]GATGTTCCAG M A G Q R
    light polypeptide
    5, regulatory
    G4122u1 WIAF-13955 HT97538 161 myosin-I TCGAGAACCT[A/G]CGCCCCCGAT S A G L L
    G4124u1 WIAF-13895 HT0925 1517 TCM3, transgluta- TCGCTCGCAT[G/A]CTGGCACTAG M G A M I
    minase 3 (E poly-
    peptide, protein-
    glutamine gamma-
    glutamyl-
    transferase)
    G4124u2 WIAF-13896 HT0925 1433 TCM3, transgluta- AACCCAACAC[G/A]CCATTTGCCC S G A T T
    minase 3 (E poly-
    peptide, protein-
    glutamine-gamma-
    glutamyl-
    transferase)
    G4126u1 WIAF-13830 HT2465 1035 myosin binding ACTCGTACTC[C/G]TTCCGGCTCT S C G S S
    protein H
    G4126u2 WIAF-13853 HT2465 369 myosin binding AGAGAGGCAC[G/C]CTCGGAGTGG M G C G A
    protein H
    G4130u1 WIAF-13614 HT1657 198 CFL1, cofilin 1 CTGTCCACGA[T/C]CCCTACGCCA S T C D D
    (non-muscle)
    G4138u1 WIAF-13598 HT33664 601 MAGP2: Microfibril- GAAAGATGAG[C/T]TTTCCCGTCA M C T L F
    associated glyco-
    protein-2
    G4138u2 WIAF-13599 HT33664 405 MAGP2: Microfibril- ATGACTTGGC[C/T]TCCCTCAGTC S C T A A
    associated glyco-
    protein-2
    G4138u3 WIAF-13600 HT33664 327 MAGP2: Microfibril- AAGATCCTAA[T/C]CTGCTGAATG S T C N N
    associated glyco-
    protein-2
    G4159u1 WIAF-14048 HT3443 1119 SNL, singed GCTGCTACTT[T/C]GACATCGACT S T C F F
    (Drosophila)-like
    (sea urchin fascin
    homolog like)
    G4170u1 WIAF-13580 HT5069 1131 Golgi protein, GAAATATACC[A/G]TAAGTATCGA M A G I V
    peripheral,
    brefeldin A-
    sensitive
    G4170u2 WIAF-13581 HT5069 930 Golgi protein, GTATAATAAA[C/T]TCCTGGACTT M C T L F
    peripheral,
    brefeldin A-
    sensitive
    G4170u3 WIAF-13582 HT5069 2312 Golgi protein, AGCAGCCTTA[A/G]GCATCTTGGA N A G * *
    peripheral,
    brefeldin A-
    sensitive
    G4170u4 WIAF-13596 HT5069 359 Golgi protein, TCAACCACGT[T/G]TCTGTGCCTT S T G L L
    peripheral,
    brefeldin A-
    sensitive
    G4170u5 WIAF-13597 HT5069 1007 Golgi protein, AAAAAGCCAA[T/A]ACTGTTCCTG M T A N K
    peripheral,
    brefeldin A-
    sensitive
    G4171u1 WIAF-13688 HT1587 667 KIF5B, kinesin TTTTTAATTA[T/C]ATTTACTCCA S T C Y Y
    family member 5B
    G4171u2 WIAF-13689 HT1587 1036 KIF5B, kinesin TTAGTAAAAC[T/C]GGAGCTGAAG S T C T T
    family member SB
    G4176u1 WIAF-14204 HT33754 130 TNR, tenascin R GCTCATTGGC[G/A]TCAACCTGAT M G A V I
    (restrictin,
    janusin)
    G4176u2 WIAF-14205 HT33754 463 TNR, tenascin R CTGTCCATGT[G/T]CCAGTTCAGC M G T A S
    (restrictin,
    janusin)
    G4176u3 WIAF-14206 HT33754 249 TNR, tenascin R ACTACAACAC[G/A]TCCAGCAAAC S G A T T
    (restrictin,
    janusin)
    G4176u4 WIAF-14208 HT33754 2009 TNR, tenascin R CTGGTCCCCA[G/A]CGCCATTGGT M G A R K
    (restrictin,
    janusin)
    G4176u5 WIAF-14209 HT33754 2175 TNR, tenascin R CAGCCTCCTC[G/A]GAGACCTCCA S G A S S
    (restrictin,
    janusin)
    G4176u6 WIAF-14210 HT33754 3318 TNR, tenascin R AATCCACCGA[C/T]GGAAGCCGCA S C T D D
    (restrictin,
    janusin)
    G4176u7 WIAF-14211 HT33754 3221 TNR, tenascin R CCGGCAAACC[T/C]GACAGCCAGT M T C L P
    (restrictin,
    janusin)
    G4176u8 WIAF-14217 HT33754 1635 TNR, tenascim R TCTCGGACAC[C/TI GTGGCTTTTG S C T T T
    (restrictin,
    janusin)
    G4178u1 WIAF-14138 HT0224 2827 ACTN2, actinin, GCTGCGTTCT[C/T]TTCCGCACTC M C T S F
    alpha
    2
    G4178u2 WIAF-14139 HT0224 2818 ACTN2, actinin, CTGGATTACG[C/T]TGCGTTCTCT M C T A V
    alpha
    2
    G418u1 WIAF-11750 L07594 2370 TGFBR3, trans- GAGTGCACTT[C/T]CCTATCCCGC S C T F F
    forming growth
    factor, beta
    receptor III
    (betaglycan, 300 kD)
    G418u2 WIAF-11751 L07594 2586 TGFBR3, trans- AGAAGACGTT[C/T]ACCAACCCCC S C T F F
    forming growth
    factor, beta
    receptor III
    (betaglycan, 300 kD)
    G418u3 WIAF-11752 L07594 2671 TGFBR3, trans- AATTTCTCCA[C/T]CAATTTTCCA M C T P S
    forming growth
    factor, beta
    receptor III
    (betaglycan, 300 kD)
    G418u4 WIAF-11771 L07594 438 TGFBR3, trans- TGTCTGAACT[C/T]TCACCTCTCA S G T L L
    forming growth
    factor, beta
    receptor III
    (betaglycan, 300 kD)
    G418u5 WIAF-11744 L07594 392 TGFBR3, trans- CTGATCAGCT[T/C]CTGTTTAGCC M T C F S
    forming growth
    factor, beta
    receptor III
    (betaglycan, 300 kD)
    G418u6 WIAF-11772 L07594 1470 TGFBR3, trans- AGCTACGGAT[C/T]CTGCTGGACC S C T I I
    forming growth
    factor, beta
    receptor III
    (betaglycan, 300 kD)
    G418u7 WIAF-11773 L07594 1170 TGFBR3, trans- TCTTGAAGTG[C/A]AAAAACTCTG N C A C *
    forming growth
    factor, beta
    receptor III
    (betaglycan, 300 kD)
    G418u8 WIAF-11745 L07594 1463 TGFBR3, trans- CCTCCTGAGC[T/C]ACGGATCCTC M T C L P
    forming growth
    factor, beta
    receptor III
    (betaglycan, 300 kD)
    G418u9 WIAF-11746 L07594 2211 TGFBR3, trans- ATGTTGAGGT[A/G]TCTGTTACTA S A G V V
    forming growth
    factor, beta
    receptor III
    (betaglycan, 300 kD)
    G4181u1 WIAF-14207 HT2008 425 SPTBN1, spectrin, CTCTGCGCGG[C/T]TTTTTCAGCG M C T L F
    beta, non-
    erythrocytic 1
    G4181u2 WIAF-14213 HT2008 3565 SPTBN1, spectrin, ACACAGCGAT[C/T]GCCTCGGAGG S C T I I
    beta, non-
    erythrocytic 1
    G4181u3 WIAF-14218 HT2008 1258 SPTBN1, spectrin, ACCTTCTGGA[A/G]TGCATTGAAC S A G E E
    beta, non-
    erythrocytic 1
    G4181u4 WIAF-14219 HT2008 1780 SPTBN1, spectrin, AGCTCGAGGC[C/T]GAGAATTACC S C T A A
    beta, non-
    erythrocytic 1
    G4181u5 WIAF-14220 HT2006 3637 SPTBN1, spectrin, ACATCAAGAA[T/C]GAGATCGACA S T C N N
    beta, non-
    erythrocytic 1
    G4183u1 WIAF-13976 HT2640 404 TPM4, tropomyosin 4 CCAAGCACAT[T/C]GCGGAAGAGG S T C I I
    G4185u1 WIAF-13554 HT3451 257 MFAP1, micro- AAGGCCAGAC[T/C]ATGCCCCTAT M T G Y D
    fibrillar-
    associated
    protein 1
    G4185u2 WIAF-13555 HT3451 1108 MFAP1, micro- CCAACAAAGC[T/C]GTTAAGGGCA S T G A A
    fibrillar-
    associated
    protein 1
    G4185u3 WIAF-13570 HT3451 274 MFAP1, micro- CTATGCAGTC[C/T]TCAGATCACG S C T S S
    fibrillar-
    associated
    protein 1
    G4196u1 WIAF-13665 HT97558 941 NUP88, nucleoporin GGGTCCATTG[C/A]CCATGCATCT M C A A D
    88 kD
    G4196u2 WIAF-13666 HT97558 1092 NUP8B, nucleoporin ATGACCACAC[G/A]TCAGAAAACT S G A T T
    88 kD
    G4196u3 WIAF-13667 HT97558 1551 NUP88, nucleoporin TCCATCCAGC[C/A]TCTCCTCCCC S G A A A
    88 kD
    G4196u4 WIAF-13668 HT97558 2220 NUP88, nucleoporin AGGGTGAACA[T/C]ATAAGCCAAA S T C H H
    88 kD
    G4196u5 WIAF-13669 HT97558 2205 NUP88, nucleoporin CCATCCTGAA[A/G]GAGGAGGGTG S A G K K
    88 kD
    G4208u1 WIAF-13921 HT1122 1329 VCL, vinculin TCATCCTAAA[G/C]AAAGAGATCA M G C E Q
    G4208u2 WIAF-13922 HT1122 2438 VCL, vinculin CCATCTCCCC[A/G]ATGGTGATGC S A G P P
    G4208u3 WIAF-13941 HT1122 818 VCL, vinculin GCCATCAAGA[T/C]GCCTGCGCCA S T C D D
    G4208u4 WIAF-13942 HT1122 1556 VCL, vinculin AACCACAGCG[C/A]TCGATTGATA S G A R R
    G4213u1 WIAF-13605 HT2813 163 NUP153, nucleoporin GCCAGGCTCC[T/C]TACAAAGATA S T C L L
    153 kD
    G4213u2 WIAF-13606 HT2813 742 NUP153, nucleoporin GAATTCTTCA[A/C]TCCTTAAAAC M A G I V
    153 kD
    G4213u3 WIAF-13609 HT2813 1800 NUP153, nucleoporin TTACACCTGC[A/C]GAAATCCTCA S A C A A
    153 kD
    G4213u4 WIAF-13627 HT2813 1829 NUP153,nucleoporin AGTGTTCTAG[A/C]TATTCTCAAA M A C D A
    153 kD
    G4213u5 WIAF-13632 HT2813 3258 NUP153, nucleoporin CTTTTCCCAA[C/T]GTGGAGCCTC S C T N N
    153 kD
    G4213u6 WIAF-13635 HT2813 4162 NUP153, nucleoporin CTCTGCAACA[A/C]CTCCTAATTC M A G T A
    153 kD
    G4218u1 WIAF-13854 HT1681 1122 phosphatidyl- AACCTTATTA[T/C]TTTATCTCAC M T C I T
    inositol glycan,
    class A
    G4223u1 WIAF-14160 HT1684 1434 CD36L2, CD36 ATTAGATGAC[T/C]TTGTTGAAAC M T C F L
    antigen (collagen
    type I receptor,
    thrombospondin
    receptor)-like 2
    (lysosomal integral
    membrane protein
    II)
    G4223u2 WIAF-14173 HT1684 696 CD36L2, CD36 GTGGTCCCAC[G/A]TGCACTTCCT M G A V M
    antigen (collagen
    type I receptor,
    thrombospondin
    receptor)-like 2
    (lysosomal integral
    membrane protein
    II)
    G4223u3 WIAF-14174 HT1684 986 CD36L2, CD36 CAGACAAGTC[C/T]AATATCATTA S C T C C
    antigen (collagen
    type I receptor,
    thrombospondin
    receptor)-like 2
    (lysosomal integral
    membrane protein
    II)
    G4223u4 WIAF-14176 HT1684 1437 CD36L2, CD36 AGATGACTTT[G/A]TTGAAACGCG M G A V I
    antigen (collagen
    type I receptor,
    thrombospondin
    receptor)-like 2
    (lysosomal integral
    membrane protein
    II)
    G4227u1 WIAF-14056 HT1929 912 proteoglycan 2 ATCCCTCCAA[C/A]AAACATCCCC S C A K K
    G4227u2 WIAF-14057 HT1929 1254 proteoglycan 2 CGAACTTTCC[C/A]TACTCCCCTC S C A A A
    G4227u3 WIAF-14058 HT1929 1321 proteoglycan 2 CCCAGCACCC[T/C]ACTCCCCTCC M T C Y H
    G4229u1 WIAF-13961 HT1689 74 SDC4, syndecan 4 CCTGCTCCTC[T/C]TCTTCCTACC M T C F L
    (amphiglycan,
    ryudocan)
    G4230u1 WIAF-13525 HT4995 602 TRAM protein CCATAACCTC[A/C]TGACATTTCA M A C M L
    G4243u1 WIAF-14169 HT2901 406 KRT17, keratin 17 ACCTCCACCT[C/A]AACATCCCTC S G A V V
    G4243u2 WIAF-14170 HT2901 478 KRT17, keratin 17 ACACCACAAT[T/C]CACCACCTCC S T C I I
    G4243u3 WIAF-14171 HT2901 389 KRT17, keratin 17 GGAGGAGGCC[A/C]ACACTGAGCT M A G N D
    G4243u4 WIAF-14178 HT2901 564 KRT17, keratin 17 CTGGCTGCTC[A/C]TGACTTCCGC M A C D A
    G4244u1 WIAF-14086 HT1056 386 clathrin, light ATCGATTGCA[G/C]TCAGAGCCTG M G C Q H
    polypeptide a
    G4246u1 WIAF-14044 HT97492 259 SLN, sarcolipin GTCCTATCAC[T/C]ACTGAGAGGC M T C Y H
    G4246u2 WIAF-14045 HT97492 189 SLN, sarcolipin ACACCCGGGA[G/A]CTGTTTCTCA S G A E E
    G4254u1 WIAF-13546 HT3393 86 TNNI2, troponin I, ACCTGAAGAG[C/T]CTGATCCTGC S C T S S
    skeletal, fast
    G4254u2 WIAF-13553 HT3393 530 TNNI2, troponin I,
    skeletal, fast TCGAGGAGAA[G/C]TCTGGCATGG M G C K N
    G4255u1 WIAF-13644 HT2907 562 CRYAB, crystallin, AGTTCCACAG[G/A]AAATACCGGA S G A R R
    alpha B
    G4255u2 WIAF-13645 HT2907 367 CRYAB, crystallin, CCTCCTTCCT[G/A]CGGCCACCCA S G A L L
    alpha B
    G4255u3 WIAF-13872 HT2907 271 CRYAB, crystallin, CCAGCCGCCT[C/T]TTTGACCAGT S C T L L
    alpha B
    G4255u4 WIAF-13873 HT2907 580 CRYAB, crystallin, GGATCCCAGC[T/C]GATGTAGACC S T C A A
    alpha B
    G4257u1 WIAF-14052 HT1694 394 PIGF, TAGAGTTGGC[A/G]TTGGAAACAT S A G A A
    phosphatidylinositol
    glycan, class F
    G4257u2 WIAF-14053 HT1694 252 PIGF, TATTTAGTAG[T/C]GAAACCAAAT M T C V A
    phosphatidylinositol
    glycan, class F
    G4257u3 WIAF-14069 HT1694 291 PIGF, TCATTATCAC[A/G]CAAGGTAACT M A G H R
    phosphatidylinositol
    glycan, class F
    G4264u1 WIAF-13519 HT0968 1720 TJP1, tight CGGTCAGTGG[C/T]TTCCAGCCAG M C T A V
    junction protein 1
    (zona occludens 1)
    G4264u2 WIAF-13520 HT0968 2272 TJP1, tight CATGCTGATG[A/C]TCACACACCT M A G D G
    junction protein 1
    (zona occludens 1)
    G4264u3 WIAF-13529 HT0968 5408 TJP1, tight AGCCTCCTGA[A/T]GCTGATGGTG M A T E D
    junction protein 1
    (zona occiudens 1)
    G434u1 WIAF-11748 M21121 286 SCYA5, small TACATCAACT[C/T]TTTGGAGATG M C T S F
    inducible cytokine
    A5 (RANTES)
    G434u2 WIAF-11749 M21121 137 SCYA5, small GCTTTGCCTA[C/T]ATTGCCCGCC S C T Y Y
    inducible cytokine
    A5 (RANTES)
    G435u1 WIAF-11741 M31933 754 FCGR2B, Fc fragment GTCACTGGGA[T/C]TGCTGTAGCC M T C I T
    of IgG, low
    affinity IIb,
    receptor for (CD32)
    G435u2 WIAF-11743 M31933 395 FCGR2B, Fc fragment GGGAGTACAC[G/A]TGCCAGACTG S G A T T
    of IgG, low
    affinity IIb,
    receptor for (CD32)
    G435u3 WIAF-11742 M31933 673 FCGR2B, Fc fragment TACACGCTGT[T/A]CTCATCCAAG M T A F Y
    of IgG, low
    affinity IIb,
    receptor for (CD32)
    G4369u1 WIAF-13728 HT0900 1176 GBE1, glucan TTACGTCCAT[G/A]CTTTATCATC M G A M I
    (1,4-alpha-),
    branching enzyme 1
    (glycogen branching
    enzyme, Andersen
    disease, glycogen
    storage disease
    type IV)
    G4369u2 WIAF-13729 HT0900 1609 GBE1, glucan GAGTGTCCTG[A/G]CTCCTTTTAC M A G T A
    (1,4-alpha-),
    branching enzyme 1
    (glycogen branching
    enzyme, Andersen
    disease, glycogen
    storage disease
    type IV)
    G4373u1 WIAF-13559 HT0940 1117 HSD17B2, hydroxy- GCCAGCAAGG[A/T]CTTCTCTCCG M A T D V
    steroid (17-beta)
    dehydrogenase 2
    G4373u2 WIAF-13560 HT0940 1195 HSD17B2, hydroxy- CCAGGGAAAG[G/A]CGCTTACTTG M G A G D
    steroid (17-beta)
    dehydrogenase 2
    G438u1 WIAF-11830 M63121 583 TNFRSF1A, tumor ACCGTGTGTG[G/A]CTGCAGGAAG M G A G D
    necrosis factor
    receptor super-
    family, member 1A
    G438u2 WIAF-11790 M63121 618 TNFRSF1A, tumor TTATTGGACT[G/A]AAAACCTTTT M G A E K
    necrosis factor
    receptor super-
    family, member 1A
    G440u1 WIAF-11806 M74447 261 TAP2, transporter TGCTAAAGCT[A/G]AGAGGGCTGC S A G L L
    2, ABC (ATP
    binding cassette)
    G440u2 WIAF-11807 M74447 2089 TAP2, transporter CAGGCTGCAG[G/A]CAGTTCAGCG M G A A T
    2, ABC (ATP
    binding cassette)
    G440u3 WIAF-11808 M74447 2155 TAP2, transporter TGCCCAGCTC[C/T]AGGAGGGACA N C T Q *
    2, ABC (ATP
    binding cassette)
    G440u4 WIAF-11818 M74447 1789 TAP2, transporter GAACAACATT[G/A]CTTATGGGCT M G A A T
    2, ABC (ATP
    binding cassette)
    G440u5 WIAF-11819 M74447 1565 TAP2, transporter AAGGGGCTGA[C/T]GTTTACCCTA M C T T M
    2, ABC (ATP
    binding cassette)
    G440u6 WIAF-11820 M74447 1254 TAP2, transporter TGCACTTGGG[G/T[GTCCACATCC S C T G G
    2, ABC (ATP
    binding cassette)
    G440u7 WIAF-11788 M74447 1231 TAP2, transporter GTACCTGCTC[A/C]TAACCAGGCT M A G I V
    2, ABC (ATP
    binding cassette)
    G440u8 WIAF-11821 M74447 1404 TAP2, transporter TGCTCAGCAA[C/T]GTGGGAGCTC S C T N N
    2, ABC (ATP
    binding cassette)
    G440u9 WIAF-11783 M74447 2187 TAP2, transporter CCCGCCTGGT[T/C]CAGCACCGGC S T G V V
    2, ABC (ATP
    binding cassette)
    G440u10 WIAF-11786 M74447 1825 TAP2, transporter TGATAAGGTG[A/G]TGGCGGCTGC M A G M V
    2, ABC (ATP
    binding cassette)
    G4400u1 WIAF-14007 HT97396 839 A33 GCCAATCAAA[G/T]GACGGCTCAC M G T K N
    G4404u1 WIAF-14013 HT1215 109 ACP2, acid CCGCCCACCC[G/A]GGCCCGGAGT M G A R Q
    phosphatase
    2,
    lysosomal
    G4404u2 WIAF-14016 HT1215 1271 ACP2, acid ACCGCCACGT[C/T]GCAGATGGGG S C T V V
    phosphatase 2,
    lysosomal
    G4406u1 WIAF-13661 HT3564 872 ACPP, acid ACAAAAAACT[T/C]ATCATGTATT S T C L L
    phosphatase,
    prostate
    G4406u2 WIAF-13662 HT3564 839 ACPP, acid ATCACATGAA[G/A]AGAGCAACTC S G A K K
    phosphatase,
    prostate
    G4406u3 WIAF-13881 HT3564 741 ACPP, acid AGAATTGTCA[G/T]AATTGTCCCT N G T E *
    phosphatase,
    prostate
    G441u1 WIAF-10166 M77349 698 TGFBI, transforming GTGCCCGGCT[C/G]CTGAAAGCCG S C G L L
    growth factor,
    beta-induced, 68 kD
    G441u2 WIAF-10168 M77349 1028 TGFBI, transforming GCCTCTCTGT[A/G]CAGACCCTGG S A G V V
    growth factor,
    beta-induced, 68 kD
    G441u3 WIAF-10169 M77349 1667 TGFBI, transforming ACACAGTCTT[T/C]GCTCCCACAA S T C F F
    growth factor,
    beta-induced, 68 kD
    G441u4 WIAF-10171 M77349 1463 TGFBI, transforming GTAATAGCCT[C/T]TGCATTGAGA S C T L L
    growth factor,
    beta-induced, 68 kD
    G4411u1 WIAF-14005 HT97468 492 acyl-CoA GCTCACCAAT[A/G]AGGCCACCCT M A G K E
    G4411u2 WIAF-14008 HT97468 1076 acyl-CoA TGCCCCACAC[C/T]GAGGACGAGA S C T T T
    G4412u1 WIAF-13576 HT1882 657 ACADS, acyl- GCAAAACAAG[G/A]GCATCAGTGC M G A G S
    Coenzyne A
    dehydrogenase, C-2
    to C-3 short chain
    G4412u2 WIAF-13579 HT1882 1022 ACADS, acyl- TGACCTGGCC[C/T]GCTGCCATGC S C T R R
    Coenzyme A
    dehydrogenase, C-2
    to C-3 short chain
    G4415u1 WIAF-14080 HT2503 2170 acyl-Coenzyme A: TCATTATATT[C/T]GAGCAGATTC S C T F F
    cholesterol
    acyltransferase
    G4415u2 WIAF-14081 HT2503 1993 acyl-Coenzyme A: TTTCAGTTCC[C/T]TATTTTCTGT S C T P P
    cholesterol
    acyltransferase
    G4415u3 WIAF-14098 HT2503 2006 acyl-Coenzyme A: TTTTCTGTTT[C/G]AACATTGGCG M C G Q E
    cholesterol
    acyltransferase
    G4415u4 WIAF-14101 HT2503 2365 acyl-Coenzyme A: GGGGTTATGT[C/T]GCTATGAAGT S C T V V
    cholesterol
    acyltransferase
    G4417u1 WIAF-13819 HT0542 356 AOAH, acyloxyacyl TCCAGCCAAC[G/A]ATGACCAGTC M G A D N
    hydrolase (neutro-
    phil)
    G4417u2 WIAF-13820 HT0542 340 AOAH, acyloxyacyl TTCAGTCCTC[G/A]GCCTCTCCAG S G A S S
    hydrolase
    (neutrophil)
    G4417u3 WIAF-13824 HT0542 1595 AOAH, acyloxyacyl GCTAAATAAA[G/A]ACATGACCTA M G A D N
    hydrolase
    (neutrophil)
    G4417u4 WIAF-13841 HT0542 382 AOAH, acyloxyacyl CCAGCCTCTC[G/A]AATGGGCACA S G A S S
    hydrolase
    (neutrophil)
    G4417u5 WIAF-13842 HT0542 458 AOAH, acyloxyacyl CAACTCGACG[G/A]TCCAGGCCTC M G A V I
    hydrolase
    (neutrophil)
    G4417u6 WIAF-13843 HT0542 1201 AOAH, acyloxyacyl GATTTCTGGA[C/T]TCCACTGTTG S C T D D
    hydrolase
    (neutrophil)
    G4417u7 WIAF-13844 HT0542 1321 AOAH, acyloxyacyl ACCTGAAGAA[A/G]TTTATAGAAA S A G K K
    hydrolase
    (neutrophil)
    G4417u8 WIAF-13845 HT0542 1404 AOAH, acyloxyacyl GATGTCTCCA[G/A]TCGGAACAGT M G A S N
    hydrolase
    (neutrophil)
    G4417u9 WIAF-13846 HT0542 1759 AOAH, acyloxyacyl AATTTACAAA[C/T]TTCAATCTTT S C T N N
    hydrolase
    (neutrophil)
    G4417u10 WIAF-13847 HT0542 1644 AOAH, acyloxyacyl CTCCAGGTCA[G/A]CCCCTGCCAC M G A S N
    hydrolase
    (neutrophil)
    G442u1 WIAF-11828 M94582 933 IL8RA, interleukin CACATCGACC[G/A]GGCTCTCGAT M G A R Q
    8 receptor, alpha
    G442u2 WIAF-11829 M94582 721 IL8RA, interleukin TCATCGTGCC[A/G]CTGCTGATCA S A G P P
    8 receptor, alpha
    G442u3 WIAF-11780 M94582 1027 IL8RA, interleukin GCCATGGACT[C/T]CTCAAGATTC S C T L L
    8 receptor, alpha
    G442u4 WIAF-11792 M94582 78 IL8RA, interleukin ATGGACAGTC[A/C]CAGCTTTGAA M A G D G
    8 receptor,
    alpha
    G4423u1 WIAF-13752 HT2216 71 ADSL, GCTATGCCAG[C/T]CCGGAGATGT S C T S S
    adenylosuccinate
    lyase
    G4423u2 WIAF-13794 HT2216 126 ADSL, ATGGCGCCAG[C/T]TGTGGCTGTG S C T L L
    adenylosuccinate
    lyase
    G4423u3 WIAF-13795 HT2216 674 ADSL, AGCTTGACAA[G/A]ATGGTCACAG S G A K K
    adenylosuccinate
    lyase
    G4428u1 WIAF-13954 HT97524 57 ADFP, adipose TGGTCAACCT[C/A]CCCTTGGTGA S G A L L
    differentiation
    related protein;
    adipophilin
    G4434u1 WIAF-13506 HT0863 551 ARF3, ADP- TCTGGAGACA[C/T]TACTTCCAGA S C T H H
    ribosylation factor
    3
    G444u1 WIAF-10172 U28694 398 CCR3, chemokine CGACATCTTT[T/G]TCATAATCCT M T G F V
    (C-C motif)
    receptor 3
    G444u2 WIAF-10181 U28694 214 CCR3, chemokine TCCTCATAAA[A/C]TACAGGAGGC S A G K K
    (C-C motif)
    receptor 3
    G4440u1 WIAF-14054 HT1392 136 ADRBK1, adrenergic, GCAAGAAGAT[A/C]CTGCTGCCCG S A G I I
    beta, receptor
    kinase
    1
    G445u1 WIAF-10183 U40373 319 Human cell TAGAAGGCCA[C/T]CTGGTGATTC S C T H H
    surface glyco-
    protein CD44 mRNA,
    complete cds.
    G4456u1 WIAF-13629 HT0626 796 ALDOC, aldolase C, CCCTGCTCAA[G/A]CCCAACATCC S G A K K
    fructose-
    bisphosphate
    G446u1 WIAF-11832 U64198 754 IL12RB2, inter- TGAACCCTTC[C/G]CATGTAATTT S C G S S
    leukin 12 receptor,
    beta 2
    G446u2 WIAF-11795 U64198 2569 IL12RB2, inter- TTTTCTCAAC[G/A]CATTACTTCC S G A T T
    leukin 12 receptor,
    beta 2
    G446u3 WIAF-11833 U64198 2500 IL12RB2, inter- TGCAACGTAA[A/C]CCCAATTGCA S A G K K
    leukin 12 receptor,
    beta 2
    G446u4 WIAF-11835 U64198 1918 IL12RB2, inter- CTCCTCGCCA[G/C]CTCTCTGCAA M G C Q H
    leukin 12 receptor,
    beta 2
    G446u5 WIAF-11793 U64198 991 IL12RB2, inter- GTGGAGCAGA[C/A]ATCTTCGTTC S G A E E
    leukin 12 receptor,
    beta 2
    G446u6 WIAF-11794 U64198 2469 IL12RB2, inter- AGTTCCCACC[G/C]AAATGAGAGG M G C G A
    leukin 12 receptor,
    beta 2
    G446a7 WIAF-13128 U64198 1964 IL12RB2, inter- GGTGACTTGG[C/g]AGCCTCCCAG M C g Q E
    leukin 12 receptor,
    beta 2
    G446a8 WIAF-13129 U64198 2060 IL12RB2, inter- TCTAAACTGG[C/G]TACCCACTCG M C G L V
    leukin 12 receptor,
    beta 2
    G447u1 WIAF-11796 X03663 384 CSF1R, colony CCAGTGTCCC[C/T]GAGCTGGTCG S C T P P
    stimulating factor
    1 receptor,
    formerly McDonough
    feline sarcoma
    viral (v-fms)
    oncogene homolog
    G447u2 WIAF-11836 X03663 1026 CSF1R, colony ACAACAACAC[T/C]AAGCTGCCAA S T C T T
    stimulating factor
    1 receptor,
    formerly McDonough
    feline sarcoma
    viral (v-fms)
    oncogene homolog
    G447u3 WIAF-11837 X03663 886 CSF1R, colony CCTCAAAGTG[C/A]ACAAACTCAT M C A Q K
    stimulating factor
    1 receptor,
    formerly McDonough
    feline sarcoma
    viral (v-fms)
    oncogene homolog
    G447u4 WIAF-11797 X03663 2425 CSF1R, colony GAAGAAATAT[G/A]TCCGCAGGGA M G A V I
    stimulating factor
    1 receptor,
    formerly McDonough
    feline sarcoma
    viral (v-fms)
    oncogene homolog
    G4473u1 WIAF-13904 HT1352 860 FUCA1, TTCAAGCCAC[A/G]GAGCTTGCCA M A G Q R
    fucosidase,
    alpha-L- 1,
    tissue
    G4473u2 WIAF-13916 HT1352 440 FUCA1, ACAAACTGGC[C/T]GAGTCCTGTG M C T P L
    fucosidase,
    alpha-L- 1,
    tissue
    G4479u1 WIAF-13637 HT1995 2465 AMPD2, adenosine GCCTCAATGA[G/T]CCTGGTCCAT G T
    monophosphate
    deaminase 2
    (isoform L)
    G4479u2 WIAF-13866 HT1995 1258 AMPD2, adenosine TGGATGTGCA[T/C]GCGGACAGGA S T C H H
    monophosphate
    deaminase 2
    (isoform L)
    G4479u3 WIAF-13867 HT1995 1280 AMPD2, adenosine CACTTTCCAT[C/T]CCTTTGACAA M C T R C
    monophosphate
    deaminase 2
    (isoform L)
    G4479u4 WIAF-13868 HT1995 1201 AMPD2, adenosine TGCGGGAGGT[C/T]TTTGAGAGCA S C T V V
    monophosphate
    deaminase 2
    (isoform L)
    G4479u5 WIAF-13869 HT1995 1579 AMPD2, adenosine GTACCAAGGG[C/T]CAGCTGGCCA S C T G G
    monophosphate
    deaminase 2
    (isoform L)
    G4492u1 WIAF-14084 HT3390 866 ANX11, annexin CCTGGGGAGT[C/T]GCTCCAACAA M C T R C
    XI (56 kD
    autoantigen)
    G4492u2 WIAF-14085 HT3390 850 ANX11, annexin AGGCCATCAT[T/C]GACTGCCTGG S T C I I
    XI (56 kD
    autoantigen)
    G450u1 WIAF-10170 X85740 1196 CCR4, chemokine TCCAAATTTA[C/T]TCTGCTGACA S C T Y Y
    (C-C motif)
    receptor 4
    G4502u1 WIAF-13510 HT4840 165 ASS, AAGCCTATGA[C/T]GTCATTGCCT S C T D D
    argininosuccinate
    synthetase
    G4502u2 WIAF-13511 HT4840 369 ASS, GGCCCTGCAT[C/T]GCCCGCAAAC S C T I I
    argininosuccinate
    synthetase
    G4502u3 WIAF-13512 HT4840 73 ASS, AATCCCAGAC[G/A]CTATGTCCAC G A
    argininosuccinate
    synthetase
    G4502u4 WIAF-13513 HT4840 129 ASS, TGGACACCTC[G/C]TGCATCCTCG S G C S S
    argininosuccinate
    synthetase
    G4502u5 WIAF-13514 HT4840 285 ASS, AGTTTGTGGA[G/A]GAGTTCATCT S G A E E
    argininosuccinate
    synthetase
    G4502u6 WIAF-13515 HT4840 234 ASS, AGGCACTGAA[C/A]CTTGGGGCCA S G A K K
    argininosuccinate
    synthetase
    G4502u7 WIAF-13516 HT4840 316 ASS, CCAGTCCAGC[G/A]CACTGTATGA N G A A T
    argininosuccinate
    synthetase
    G4502u8 WIAF-13537 HT4840 426 ASS, TGTCCCACGG[C/T]GCCACAGGAA S C T G G
    argininosuccinate
    synthetase
    G4502u9 WIAF-13538 HT4840 530 ASS, GAATTCTACA[A/C]CCGGTTCAAG M A G N S
    argininosuccinate
    synthetase
    G4502u10 WIAF-13539 HT4840 750 ASS, TTCTCGACAT[C/T]GAGTTCAAAA S C T I I
    argininosuccinate
    synthetase
    G4502u11 WIAF-13540 HT4840 960 ASS, ATGCTCATTT[A/G]GACATCGAGG S A G L L
    argininosuccinate
    synthetase
    G4508u1 WIAF-13663 HT28557 1767 ARSD, CAGTTTTCCA[T/C]GAGCAACATC M T C M T
    arylsulfatase D
    G4508u2 WIAF-13693 HT28557 433 ARSD, TTCAGTGGAA[C/T]GCAGGCTCAG S C T N N
    arylsulfatase D
    G4508u3 WIAF-13694 HT28557 747 ARSD, GGTTTCTTCT[C/G]TGTCTCCGCG M C G S C
    arylsulfatase D
    G4508u4 WIAF-13696 HT28557 1012 ARSD, CCAGCACTGC[A/C]TTCCTGGGGA S A G A A
    arylsulfatase D
    G4508u5 WIAF-13697 HT28557 1302 ARSD, CGAGTGATTG[G/A]AGAGCCCACG M G A G E
    arylsulfatase D
    G4508u6 WIAF-13698 HT28557 1285 ARSD, GGGTGCTCCC[G/A]GCCCGCCGAG S G A P P
    arylsulfatase D
    G4508u7 WIAF-13699 HT28557 1807 ARSD, AGCCGTGCTG[C/T]GGACATTTCC S C T C C
    arylsulfatase D
    G4508u8 WIAF-13718 HT28557 483 ARSD, GCAAGAATCT[T/C]GCAGCAGCAT M T C L S
    arylsulfatase D
    G4518u1 WIAF-13809 HT3430 515 ASPA, ACAACACCAC[C/T]TCTAACATGG S C T T T
    aspartoacylase
    (aminoacylase 2,
    Canavan disease)
    G4518u2 WIAF-13810 HT3430 851 ASPA, AACTTCATTA[C/T]CCCCGGGATC S C T Y Y
    aspartoacylase
    (aminoacylase 2,
    Canavan disease)
    G4518u3 WIAF-13811 HT3430 787 ASPA, CATCATTTCA[A/G]TGAAGGAAAA M A G N S
    aspartoacylase
    (aminoacylase 2,
    Canavan disease)
    G4518u4 WIAF-13837 HT3430 618 ASPA, ACCCTGCTAC[G/A]TTTATCTGAT M G A V I
    aspartoacylase
    (aminoacylase 2,
    Canavan disease)
    G452a1 WIAF-10509 HT0695 553 APOA4, ACCCAGGTCA[A/C]CACGCAGGCC M A G N S
    apolipoprotein A-IV
    G452a2 WIAF-13124 HT0695 563 APOA4, ACACGCAGGC[C/T]GAGCAGCTGC S C T A A
    apolipoprotein A-IV
    G4524u1 WIAF-14120 HT1541 726 ATP5A1, ATP CTCAATTGCT[A/G]TTGACACAAT M A G I V
    synthase, H+
    transporting, mito-
    chondrial F1
    complex, alpha
    subunit, isoform 1,
    cardiac muscle
    G4524u2 WIAF-14131 HT1541 153 ATP5A1, ATP ATCTTTCATT[G/T]CTGCAAGGAA M G T A S
    synthase, H+
    transporting, mito-
    chondrial F1
    complex, alpha
    subunit, isoform 1,
    cardiac muscle
    G4526u1 WIAF-14130 HT4994 400 ATP5D, ATP TCCATCGCAG[T/C]GAACGGCGAC M T C V A
    synthase, H+
    transporting, mito-
    chondrial F1
    complex, delta
    subunit
    G453u1 WIAF-10138 HT0768 1747 PDGFRB, platelet- CTGCCGCCCA[C/T]GCTGCTGGGG M C T T M
    derived growth
    factor receptor,
    beta polypeptide
    G453u2 WIAF-10147 HT0768 2957 PDGFRB, platelet- TTTTGCCTTT[A/G]AAGTGGATGG S A G L L
    derived growth
    factor receptor,
    beta polypeptide
    G453u3 WIAF-10148 HT0768 3608 PDGFRB, platelet- AGCCGGAGCC[A/G]GAGCTGGAAC S A G P P
    derived growth
    factor receptor,
    beta polypeptide
    G453u4 WIAF-10149 HT0768 457 PDGFRB, platelet- CAGGGCCTGG[T/G]CGTCACACCC M T G V G
    derived growth
    factor receptor,
    beta polypeptide
    G453u5 WIAF-10151 HT0768 1505 PDGFRB, platelet- AGCTGACACT[G/C]GTTCGCGTGA S G C L L
    derived growth
    factor receptor,
    beta polypeptide
    G453u6 WIAF-10153 HT0768 3446 PDGFRB, platelet- ACCCCAAACC[C/T]GAGCTTGCTG S C T P P
    derived growth
    factor receptor,
    beta polypeptide
    G453u7 WIAF-10161 HT0768 2030 PDGFRB, platelet- TTTGGCAGAA[G/A]AAGCCACGTT S G A K K
    derived growth
    factor receptor,
    beta polypeptide
    G4533u1 WIAF-13616 HT1618 343 ATP synthase, H+ GTTACATGAT[C/T]GACAACGTGA S C T I I
    transporting,
    subunit D,
    vacuolar
    G4534u1 WIAF-13569 HT3556 654 ATP6E, ATPase, H+ TAAAGGTTTC[C/T]AACACCCTGG S C T S S
    transporting,
    lysosomal
    (vacuolar
    proton pump) 31 kD
    G4535u1 WIAF-13747 HT27972 357 ATP50, ATP TCACTACCAA[C/T]CTGATCAATT S C T N N
    synthase, H+
    transporting,
    mitochondrial F1
    complex, O subunit
    (oligomycin
    sensitivity
    conferring
    protein)
    G4535u2 WIAF-13748 HT27972 144 ATP50, ATP AGGTATACGG[T/C]ATTGAAGGTC S T C G G
    synthase, H+
    transporting,
    mitochondrial F1
    complex, O subunit
    (oligomycin
    sensitivity
    conferring
    protein)
    G4535u3 WIAF-13792 HT27972 329 ATP50, ATP ATCACAGCAA[A/G]AGAGAGGTTC M A G K R
    synthase, H+
    transporting,
    mitochondrial F1
    complex, O subunit
    (oligomycin
    sensitivity
    conferring
    protein)
    G45439u1 WIAF-13711 HT48520 288 ATPase, 14 kDa TGCCCTGGAC[G/A]CCCACCAGCA M G A A T
    subunit, vacuolar
    G4548u1 WIAF-14127 HT1574 3138 ATPase, Ca2+ trans- CGCAATGTCT[T/C]TGACGGCATC M T C F S
    porting membrane,
    isoform 2
    G4548u2 WIAF-14137 HT1574 2089 ATPase, Ca2+ trans- GCACTATCTG[C/T]GTGGCCTACC S C T C C
    porting membrane,
    isoform 2
    G4548u3 WIAF-14140 HT1574 2924 ATPase, Ca2+ trans- CAGGACCATG[A/T]TGAAGAACAT M A T M L
    porting membrane,
    isoform 2
    G4549u1 WIAF-14161 HT1346 524 ATP2B4, ATPase, TGCACTGACC[C/T]AGATTAATGT N C T Q *
    Ca++ transporting,
    plasma membrane 4
    G4549u2 WIAF-14162 HT1346 715 ATP2B4, ATPase, ATGTCACGCT[C/T]ATCATCCTGC S C T L L
    Ca++ transporting,
    plasma membrane 4
    G4549u3 WIAF-14163 HT1346 508 ATP2B4, ATPase, AGCTGCGTTC[G/A]ACGGATOCAC S G A S S
    Ca++transporting,
    plasma membrane 4
    G4549u4 WIAF-14166 HT1346 1084 ATP2B4, ATPase, TGATCCAACG[G/A]AATGATCTCA S G A G G
    Ca++ transporting,
    plasma membrane 4
    G4552u1 WIAF-13630 HT0867 710 ATP7A, ATPase, TACTAGCACT[A/G]TTGAAGGAAA M A G I V
    Cu++ transporting,
    alpha polypeptide
    (Menkes syndrome)
    G456u1 WIAF-100741 HT2834 408 EDN1, endothelin 1 CCTGGCGGCT[T/G]CGCCGGTCCA S T G L L
    G456u2 WIAF-10075 HT2834 585 EDN1, endothelin 1 CAGACCGTGA[A/G]AATAGATGCC S A G E E
    G456a3 WIAF-10507 HT2834 861 EDN1, endothelin 1 TGAAAGGCAA[T/G]CCCTCCAGAG M T G K N
    G4565u1 WIAF-14041 HT28561 320 ATP1G1, ATPase, CGAGGCTGCT[G/A]TTACGGCTCA S G A L L
    Na+/K+
    transporting, gamma
    1 polypeptide
    G4565u2 WIAF-14062 HT28561 216 ATP1G1, ATPase, CAGTGACGGG[G/A]ACAAAGGTCT M G A D N
    Na+/K+
    transporting, gamma
    1 polypeptide
    G4565u3 WIAF-14063 HT28561 315 ATP1G1, ATPase, ACCGCCGAGG[C/A]TGCTGTTACG M C A L M
    Na+/K+
    transporting, gamma
    1 polypeptide
    G4565u4 WIAF-14064 HT28561 531 ATP1G1, ATPase, TTTCCCCAGG[T/C]GAATGGGCTG N T C * R
    Na+/K+
    transporting, gamma
    1 polypeptide
    G4568u1 WIAF-14212 HT0082 717 AMFR, autocrine TGCCTCATGC[A/G]TACGTCCCAC M A G I V
    motility factor
    receptor
    G457a1 WIAF-10489 HT2903 321 SELL, selectin L ACAAATCTCT[C/T]ACTGAAGAAG S C T L L
    (lymphocyte
    adhesion
    molecule 1)
    G457a2 WIAF-10490 HT2903 577 SELL, selectin L CCAGTGTCAG[T/C]TTGTGATTCA M T C F L
    (lymphocyte
    adhesion
    molecule 1)
    G457a3 WIAF-10491 HT2903 601 SELL, selectin L TGAGCCTTTG[G/C]AGGCCCCAGA M G C E Q
    (lymphocyte
    adhesion
    molecule 1)
    G457a4 WIAF-10492 HT2903 637 SELL, selectin L CTGTACTCAC[C/T]CTTTGGGAAA M C T P S
    (lymphocyte
    adhesion
    molecule 1)
    G4573u1 WIAF-13568 HT28320 943 NCAT2, mannosyl CGGACAACCT[G/T]ACCCTGCGCT S G T L L
    (alpha-1,6-)-
    glycoprotein beta-
    1,2-N-acetylgluco-
    saminyltransferase
    G4574u1 WIAF-13805 HT0198 163 beta-1,4 N- CGGCCTCCGG[C/G]TACCTCTTGC M C G L V
    acetylgalacto-
    saminyltransferase
    G4574u2 WIAF-13806 HT0198 415 beta-1,4 N- TGCCACAAGA[G/A]AGCAGGAGTT M G A E K
    acetylgalacto-
    saminyltransferase
    G4574u3 WIAF-13807 HT0196 726 beta-1,4 N- AACTACAACT[G/T]GTCACTTACA S G T L L
    acetylgalacto-
    saminyltransferase
    G4574u4 WIAF-13836 HT0198 559 beta-1,4 N- AGGGCTGAGC[C/A]TTCAGGCAGC M C A L I
    acetylgalacto-
    saminyltransferase
    G4575u1 WIAF-13626 HT0341 1251 GCNT1, glucosaminyl AGTATGATCT[A/G]TCTGACATGC S A G L L
    (N-acetyl)
    transferase 1,
    core 2 (beta-1,6-N-
    acetylgluco-
    saminyltransferase)
    G4577u1 WIAF-13971 HT1495 1268 SIAT1, sialyl- ATTTCTTTAA[C/T]AACTACAAGA S C T N N
    transferase 1
    (beta-galactoside
    alpha-2, 6-
    sialytransferase)
    G458u1 WIAF-10063 HT2968 1464 ALB, albumin GTGCAGAAGA[C/A]TATCTATCCG M C A D E
    G458u2 WIAF-10089 HT2968 1470 ALB, albumin AAGACTATCT[A/C]TCCGTGGTCC S A C L L
    G458u3 WIAF-10091 HT2968 1707 ALB, albumin TTGTTGAGCT[C/T]GTGAAACACA S C T L L
    G458a4 WIAF-10504 HT2968 889 ALB, albumin CAGGGCGGAC[C/T]TTGCCAAGTA M C T L F
    G458a5 WIAF-10508 HT2968 1475 ALB, albumin TATCTATCCG[T/A]GGTCCTGAAC M T A V E
    G458a6 WIAF-12091 HT2968 1330 ALB, albumin CCAGAATGCG[C/T]TATTAGTTCG S C T L L
    G458a7 WIAF-12092 HT2968 1408 ALB, albumin CCTAGGAAAA[G/a]TGGGCAGCAA M G a V M
    G4592u1 WIAF-14126 HT2128 985 branched-chain keto ACCAGCCCTT[T/C]CTCATCGAGG S T C F F
    acid dehydrogenase
    E1, alpha poly-
    peptide
    G4593u1 WIAF-13574 HT97373 1743 BARD1, ERCA1 GCTAGCCACT[G/C]CTCAGTAATG M G C C S
    associated RING
    domain
    1
    G4593u2 WIAF-13592 HT97373 1167 BARD1, ERCA1 TGTTCTTCAC[C/T]ACCTTCATGC M C T P L
    associated RING
    domain
    1
    G4593u3 WIAF-13593 HT97373 1591 BARD1, ERCA1 AGAATGGGCA[C/TI GTGGATATAG S C T H H
    associated RING
    domain
    1
    G4593u4 WIAF-13594 HT97373 2030 BARD1, ERCA1 AAAGTATGAA[A/G]TTCCTGAAGG M A G I V
    associated RING
    domain
    1
    G4593u5 WIAF-13595 HT97373 2006 BARD1, ERCA1 AAGAAAAGTA[T/C]GTGAACAGGA M T C C R
    associated RING
    domain
    1
    G4599u1 WIAF-13920 HT4273 1803 CDH13, cadherin 13, TCGTACCCGA[C/T]GTCTCCTACG S C T D D
    H-cadherin
    (heart)
    G4614u1 WIAF-13733 HT4835 91 S100A3, S100 AGGATGGCCA[G/A]GCCTCTGGAG M G A R K
    calcium-binding
    protein A3
    G4614u2 WIAF-13734 HT4835 203 S100A3, S100 TGCTGCAGAA[G/A]GAGCTGGCCA S G A K K
    calcium-binding
    protein A3
    G4614u3 WIAF-13769 HT4835 344 S100A3, S100 TCTACTGCCA[C/T]GAGTACTTCA S C T H H
    calcium-binding
    protein A3
    G462u1 WIAF-10134 HT4753 600 PDGFA, platelet- ACGGGGTCCA[C/T]GCCACTAAGC S C T H H
    derived growth
    factor alpha
    polypeptide
    G4627u1 WIAF-14042 HT0771 186 ANX6, annexin VI GGAGGCCATA[C/T]TGGACATAAT S C T L L
    (p68)
    G4627u2 WIAF-14043 HT0771 1664 ANX6, annexin VI CAGACACACC[T/C]AGTGGAGACA S T C P P
    (p68)
    G4627u3 WIAF-14067 HT0771 1498 ANX6, annexin VI AAGGAGCACT[A/G]TCACAAGTCC M A G Y C
    (p68)
    G4644u1 WIAF-13801 HT1736 1990 CPS1, carbamoyl- TGGTGGAGAA[G/A]TCAGTGACAG S G A K K
    phosphate
    synthetase
    1,
    mitochondrial
    G4644u2 WIAF-13802 HT1736 1866 CPS1, carbamoyl- ATTGGCTACC[C/T]AGTGATGATC M C T P L
    phosphate
    synthetase
    1,
    mitochondrial
    G4644u3 WIAF-13803 HT1736 1993 CPS1, carbamoyl- TGGAGAAGTC[A/C]GTGACAGGTT S A C S S
    phosphate
    synthetase
    1,
    mitochondrial
    G4644u4 WIAF-13804 HT1736 1860 CPS1, carbamoyl- GACACCATTG[G/A]CTACCCAGTG M G A G D
    phosphate
    synthetase
    1,
    mitochondrial
    G4644u5 WIAF-13831 HT1736 1087 CPS1, carbamoyl- AGCCTGTTTT[C/T]AATATCACAA M G T L F
    phosphate
    synthetase
    1,
    mitochondrial
    G4644u6 WIAF-13835 HT1736 1958 CPS1, carbamoyl- CACAAAGGCC[T/C]TTGCTATGAC M T C F L
    phosphate
    synthetase
    1,
    mitochondrial
    G4644u7 WIAF-13855 HT1736 1332 CPS1, carbamoyl- AAAGCTACCA[C/A]CATTACATCA M C A T N
    phosphate
    synthetase
    1,
    mitochondrial
    G4659u1 WIAF-14143 HT1183 1830 catenin, alpha GTGCCAACGT[T/C]CCTCAACCGT S T C V V
    G466u1 WIAF-10164 U00968 2403 SREBF1, sterol AGCAGTGCCC[C/A]CCAGGCCTGC M G A R H
    regulatory element
    binding transcrip-
    tion factor 1
    G4662u1 WIAF-13710 HT2142 2183 CTNNB1, catenin TTTTGTTCCG[A/C]ATGTCTGAGG S A C R R
    (cadherin
    associated
    protein), beta 1
    (88 kD)
    G467a1 WIAF-13304 X72861 827 ADRB3, adrenergic, GGCCATCGCC[T/C]GGACTCCGAG M T C W R
    beta-3-,
    receptor
    G467a2 WIAF-13305 X72861 832 ADRB3, adrenergic, TCGCCTGGAC[T/A]CCGAGACTCC S T A T T
    beta-3-,
    receptor
    G467a3 WIAF-13306 X72861 870 ADRB3, adrenergic, TTCGTCACTT[C/T]CCTGGCCGCA M C T S L
    beta-3-,
    receptor
    G467a4 WIAF-13307 X72861 1761 ADRB3, adrenergic, TGCGCCGCCG[C/T]CCGCCCCGCC M C T A V
    beta-3-,
    receptor
    G467a5 WIAF-13305 X72861 1899 ADRB3, adrenergic, TCTGTTGATC[A/C]GAACCTGTCG A C
    beta-3-,
    receptor
    G4671u1 WIAF-13956 HT1925 161 NDUFB7, NADH TGGTGGCCAC[A/C]CAGCAGGACA S A G T T
    dehydrogenase
    (ubiquinone) 1
    beta subcomplex, 7
    (18 kD, B18)
    G4673u1 WIAF-13889 HT0191 1349 CDC25A, cell TCTCGGGCCA[G/C]CCCCAAAGAC M G C S T
    division cycle 25A
    G4674u1 WIAF-13821 HT1393 261 CDC25B, cell ACCACCTCCC[C/T]GGGCTCGGCA S C T A A
    division cycle 25B
    G4674u2 WIAF-13822 HT1393 1297 CDC25B, cell GATGGTCCCC[C/T]TATTCACGGG S C T L L
    division cycle 25B
    G4674u3 WIAF-13823 HT1393 1083 CDC25B, cell ATAACCCCAG[C/A]CGGAGCCTGA S G A R R
    division cycle 25B
    G4674u4 WIAF-13827 HT1393 1446 CDC25B, cell AGAGCCCCAT[C/T]CCCCCCTGTA S C T I I
    division cycle 25B
    G468a1 WIAF-13309 L37019 192 ASIP, agouti AAATCCAAAC[C/A]CATCGGCACA M C A P Q
    (mouse)-signaling
    protein
    G4691u1 WIAF-13753 HT97602 179 CMKBR9, chemokine TATAGCCTGA[T/A]TTTTGTGTTG M T A I N
    (C-C motif)
    receptor 9
    G4691u2 WIAF-13754 HT97602 134 CMKBR9, chemokine AAGGATGCAG[T/C]GGTCTCCTTT M T C V A
    (C-C motif)
    receptor 9
    G4691u3 WIAF-13755 HT97602 193 CMKBR9, chemokine TGTGTTGGGC[C/T]TCAGCGGGAA M C T L F
    (C-C motif)
    receptor 9
    G4691u4 WIAF-13756 HT97602 770 CMKBR9, chemokine AAAATAGCTC[C/T]AGCCTTGGTG M C T A V
    (C-C motif)
    receptor 9
    G4691u5 WIAF-13759 HT97602 1130 CMKBR9, chemokine TCTCAGAACT[A/C]CCCTAACAAG M A C Y S
    (C-C motif)
    receptor 9
    G4691u6 WIAF-13796 HT97602 482 CMKBR9, chemokine AGGCTGAGGA[C/A]CCCGGCCAAG M C A T N
    (C-C motif)
    receptor 9
    G4691u7 WIAF-13797 HT97602 259 CMKBR9, chemokine GATGGTTGAG[A/G]TCTATCTGCT M A G I V
    (C-C motif)
    receptor 9
    G4691u8 WIAF-13798 HT97602 434 CMKBR9, chemokine ATGACCCTGG[A/G]CAAGTACCTG M A G D G
    (C-C motif)
    receptor 9
    G4691u9 WIAF-13799 HT97602 755 CMKBR9, chemokine CAGGGCCGGG[C/T]TTTAAAAATA M C T A V
    (C-C motif)
    receptor 9
    G4699u1 WIAF-14040 HT4277 1426 BAAT, bile acid TTCCAGATGT[C/T]ACCAGTCAAC S G T V V
    Coenzyme A: amino
    acid N-acyl-
    transferase
    (glycine N-
    choloyltransferase)
    G4726u1 WIAF-14128 HT48614 1606 AOC3, amine TCCACCCCAG[T/C]GGGGCCATAG S T C S S
    oxidase, copper
    containing 3
    (vascular adhesion
    protein 1)
    G4726u2 WIAF-14129 HT48614 2242 AOC3, amine TTCCTAACAC[A/G]GTGACTGTGG S A G T T
    oxidase, copper
    containing 3
    (vascular adhesion.
    protein 1)
    G4726u3 WIAF-14141 HT48614 659 AOC3, amine CCTGCCCTAT[C/T]ACCGACGCCC M C T H Y
    oxidase, copper
    containing 3
    (vascular adhesion
    protein 1)
    G4744u1 WIAF-13683 HT2599 564 CTH, cystathionase ATATTGTCCA[T/C]AAGCATGGAG S T C H H
    (cystathionine
    gamma-lyase)
    G4748u1 WIAF-14144 HT1061 242 CYBA, cytochrome GGGACAGAAG[C/T]ACATGACCGC M C T H Y
    b-245, alpha
    polypeptide
    G4748u2 WIAF-14145 HT1061 265 CYBA, cytochrome TGGTGAAGCT[G/C]TTCGGGCCCT S G C L L
    b-245, alpha
    polypeptide
    G4750u1 WIAF-14116 HT48417 156 CYB5, cytochrome TGAAGTACTA[C/T]ACCCTAGAGG S C T Y Y
    b-5
    G4751u1 WIAF-13770 HT1285 495 UQCRC2, ubiquinol- AGAATTTCGT[C/A]GTTGGGAAGT M C A R S
    cytochrome c
    reductase core
    protein II
    G4788u1 WIAF-13931 HT28249 1864 DSC3, desmocollin 3 CTGTTGATCC[T/C]GATGAACCTG S T C P P
    G4788u2 WIAF-13933 HT28249 2000 DSC3, desmocollin 3 TGGATTTCAA[G/T]AATATACCAT N G T E *
    G4788u3 WIAF-13945 HT28249 2524 DSC3, desmocollin 3 ACACTTACTC[G/A]GAGTGGCACA S G A S S
    G479u1 WIAF-12567 U36310 894 GPD2, glycerol-3- GGGAAAGTCC[A/G]TGTGACCGGC M A G H R
    phosphate
    dehydrogenase 2
    (mitochondrial)
    G479u2 WIAF-12574 U36310 1657 GPD2, glycerol-3- CTGGCAAAAG[G/T]TGGCCTATTG M G T R S
    phosphate
    dehydrogenase 2
    (mitochondrial)
    G479u3 WIAF-12575 U36310 1131 GPD2, glycerol-3- GTTATTTTCT[T/C]CTTACCCTGG M T C F S
    phosphate
    dehydrogenase 2
    (mitochondrial)
    G480u1 WIAF-12175 HT336 250 GRB2, growth AATGAAACCA[C/A]ATCCGTGGTT M C A H N
    factor receptor-
    hound protein 2
    G4819u1 WIAF-13985 HT97576 1804 EYA1, eyes absent CCCTGCACCA[T/C]GCCTTGGAAC S T C H H
    (Drosophila)
    homolog 1
    G482u1 WIAF-12181 J04501 1186 GYS1, glycogen CTGACGTCTT[T/C]CTGGAGGCAT S T C F F
    synthase 1
    (muscle)
    G482u2 WIAF-12195 J04501 1406 GYS1, glycogen CCTTCCCGAC[A/G]TGAACAAGAT M A G M V
    synthase 1
    (muscle)
    G4827u1 WIAF-14177 HT97477 68 elongation CGAGCTGGCC[A/G]TCATGGTCAT M A G H R
    G483a1 WIAF-12113 HT4341 1850 GSY2 TTACCAGCAT[C/T]CCAGACACCT M G T A S
    G483u2 WIAF-12148 HT4341 1130 GSY2 GTTTTTCATT[A/C]TCCCTGCCAA M A C M L
    G483u3 WIAF-12149 HT4341 880 GSY2 CCTTCAATGT[T/C]AAGAAATTTT S T G V V
    G483u4 WIAF-12150 HT4341 1115 GSY2 CATCACACTC[C/A]TGGTGTTTTT M G A V M
    G483u5 WIAF-12156 HT4341 1230 GSY2 GAAAACTTTG[C/A]AAAAAAACTC M G A G E
    G483u6 WIAF-12159 HT4341 2033 GSY2 TCACAGATAC[G/A]ATGACGAACA M G A D N
    G483u7 WIAF-12160 HT4341 1836 GSY2 TACTTACGCA[G/C]ATATTACCAC M G C R T
    G483u8 WIAF-12161 HT4341 1678 GSY2 CTTACGGTAT[T/C]TACATCGTTG S T C I I
    G483u9 WIAF-12177 HT4341 790 GSY2 GCGCTCACGT[G/C]TTCACCACGG S G C V V
    G483u10 WIAF-12188 HT4341 1728 GSY2 TCCAATCACC[T/C]GACTAAGTTT M T C L P
    G484u1 WIAF-12151 HT5111 487 GSY3 CATCAAAGTG[A/G]TTGGCAATGG M A G I V
    G484u2 WIAF-12187 HT5111 1141 GSY3 AACCCCGCAA[C/T]AAATCCCAGA N C T Q *
    G489u1 WIAF-12152 HT2607 1181 IRS1, insulin AAGAAGTGGC[G/A]GCACAAGTCG M G A R Q
    receptor
    substrate
    1
    G489u2 WIAF-12184 HT2607 1031 IRS1, insulin ATGGCCAGCC[C/T]TCCGGAGAGC M C T P L
    receptor
    substrate
    1
    G492a1 WIAF-13345 L08603 307 MC4R, melanocortin AGAAACCATT[A/C]TCATCACCCT M A G I V
    4 receptor
    G493u1 WIAF-12154 X67594 346 MC1R, melanocortin CGCGCTGGTG[G/T]TGGCCACCAT M G T V L
    1 receptor
    (alpha melanocyte
    stimulating
    hormone receptor)
    G493u2 WIAF-12167 X67594 646 MC1R, melanocortin GACCCTGCCG[C/T]GGGCGCGGCA M C T R W
    1 receptor
    (alpha melanocyte
    stimulating
    hormone receptor)
    G493u3 WIAF-12170 X67594 1110 MC1R, melanocortin AGGTCCTGAC[A/G]TGCTCCTGGT S A G T T
    1 receptor
    (alpha melanocyte
    stimulating
    hormone receptor)
    G493u4 WIAF-12186 X67594 442 MC1R, melanocortin CGGGAGCAAC[C/T]TGCTCGAGAC M G T V L
    1 receptor
    (alpha melanocyte
    stimulating
    hormone receptor)
    G498u1 WIAF-11809 J04127 1305 CYP19, cytochrome CTTATAGGTA[C/T]TTTCAGCCAT S C T Y Y
    P450, subfamily
    XIX (aromatization
    of androgens)
    G498u2 WIAF-11810 J04127 1377 CYP19, cytochrome TGAAAGCCAT[C/T]CTCGTTACAC S C T I I
    P450, subfamily
    XIX (aromatization
    of androgens)
    G498u3 WIAF-11811 J04127 1406 CYP19, cytochrome CGATTCCACG[T/C]GAAGACATTG M T C V A
    P450, subfamily
    XIX (aromatization
    of androgens)
    G498u4 WIAF-11838 J04127 1055 CYP19, cytochrome ATTGCTGACA[G/A]AGACATAAAG M G A R K
    P450, subfamily
    XIX (aromatization
    of androgens)
    G498u5 WIAF-11800 J04127 1001 CYP19, cytochrome ATTGCAAAGC[A/C]CCCTAATGTT M A G H R
    P450, subfamily
    XIX (aromatization
    of androgens)
    G499u1 WIAF-11785 HT1439 2142 ESR1, estrogen TCCCTGCCAC[A/G]GTCTGAGAGC S A G T T
    receptor
    1
    G499u2 WIAF-11801 HT1439 443 ESR1, estrogen CCCCTGAACC[G/A]TCCGCAGCTC M G A R H
    receptor
    1
    G500u1 WIAF-11803 X99101 793 ESR1, estrogen CATGATCAGC]T/C]GGGCCAAGAA M T C W R
    receptor
    1
    G500u2 WIAF-11816 X99101 489 ESR1, estrogen GGAAGTGTTA[C/T]GAAGTGGGAA S C T Y Y
    receptor
    1
    G500u3 WIAF-11817 X99101 474 ESR1, estrogen AGGCCTGCCG[A/G]CTTCGGAAGT S A G R R
    receptor 1
    G505u1 WIAF-11824 HT1113 1063 PRLR, prolactin GCTTTCAAGC[C/A]CTATAGCATC M G A G D
    receptor
    G505u2 WIAF-11827 HT1113 2083 PRLR, prolactin GCAACATCAA[C/A]CAAGTCCAGG M G A S N
    receptor
    G505u3 WIAF-11787 HT1113 582 PRLR, prolactin GAGGACATAC[A/G]TCATGATGGT M A G I V
    receptor
    G505u4 WIAF-11802 HT1113 792 PRLR, prolactin CCTGTATGAA[A/C]TTCGATTAAA M A C I L
    receptor
    G509u1 WIAF-11789 M32313 378 SRD5A1, steroid-S- CACTGTTCGC[A/G]TGTACAATGG S A G A A
    alpha-reductase,
    alpha polypeptide 1
    (3-oxo-5 alpha-
    steroid delta 4-
    dehydrogenase
    alpha 1)
    G510a1 WIAF-13348 U17280 582 STAR, steroidogenic CCAATGTCAA[C/A]GAGATCAAGG S G A K K
    acute regulatory
    protein
    G52u1 WIAF-10224 HT0488 1139 inhibin, beta B CCAACATGAT[T/C]GTGGAGGAGT S T C I I
    G520u1 WIAF-13507 D31770 517 ACVR2, activin A CTTATTTTCC[G/A]GAGATGGAAG S G A P P
    receptor, type
    II
    G520u2 WIAF-13532 D31770 1177 ACVR2, activin A CAGCTTGCAT[T/G]GCTGACTTTG M T G I M
    receptor, type
    II
    G520u3 WIAF-13533 D31770 1189 ACVR2, activin A CTGACTTTGG[G/C]TTGGCCTTAA S G C G G
    receptor, type
    II
    G520u4 WIAF-13534 D31770 1024 ACVR2, activin A TCTCTTCGAA[T/C]GAACTGTGTC S T C N N
    receptor, type
    II
    G523u1 WIAF-12155 HT4996 538 OXTR, oxytocin TGACGGGGAA[C/T]GCGTGTGTGC S C T N N
    receptor
    G523u2 WIAF-12180 HT4996 1057 OXTR, oxytocin TCTGGCAGAA[C/T]TTGCGGCTCA S C T N N
    receptor
    G524a1 WIAF-13349 L05144 190 PCK1, phosphoenol- TGGACAGCCT[G/A]CCCCAGGCAG S G A L L
    pyruvate carboxy-
    kinase 1 (soluble)
    G528u1 WIAF-11831 V00572 988 PGK1, phospho- AAGCCACTGT[G/C]GCTTCTGGCA S G C V V
    glycerate kinase
    1
    G53u1 WIAF-10307 HT0508 723 DNA repair protein CCAGCGACCC[G/A]GCAGGACCTA S G A P P
    XRCC1
    G53u2 WIAF-10308 HT0508 746 DNA repair protein TATGCAGCTG[C/T[TACCCTCCAG M C T A V
    XRCC1
    G53u3 WIAF-10309 HT0508 1884 DNA repair protein GGGATCCCAG[C/T]TTTGAGGAGG S C T S S
    XRCC1
    G53u4 WIAF-10362 HT0508 425 DNA repair protein AACCCCAACC[G/A]CGTTCGCATG M G A R H
    XRCC1
    G534a1 WIAF-13311 U28281 1284 SCTR, secretin GCTTCCTCAA[T/C]GGGGAGGTGC S T C N N
    receptor
    G534a2 WIAF-13311 U28281 1404 SCTR, secretin AGCACAGCCA[G/A]GGCACCTGCA S G A Q Q
    receptor
    G535u1 WIAF-12157 HT5001 1158 SHC1 ATGCTCTTCG[G/C]GTGCCTCCAC S G C R R
    G535u2 WIAF-12196 HT5001 774 SHC1 ATGAGGAGGA[G/A]GAAGAGCCAC S G A E E
    G536u1 WIAF-13923 M20747 535 SLC2A4, solute GCCTGCCCAA[C/T]GCTGCTGCCT S C T N N
    carrier family 2
    (facilitated
    glucose
    transporter),
    member 4
    G538u1 WIAF-11812 M55531 438 SLC2A5, solute GCAGCAGAGT[C/T]GCCACATCAT S C T V V
    carrier family 2
    (facilitated
    glucose
    transporter),
    member 5
    G538u2 WIAF-11813 M55531 124 SLC2A5, solute GACGCTTGTG[C/T]TTGCCCTGGC M C T L F
    carrier family 2
    (facilitated
    glucose
    transporter)
    member 5
    G538u3 WIAF-11791 M55531 816 SLC2A5, solute ACAGGGAGGT[C/A]GCCGAGATCC S G A V V
    carrier family 2
    (facilitated
    glucose
    transporter),
    member 5
    G539u1 WIAF-12158 K03195 224 Human (HepG2) glu- TCATGCTGCC[T/C]GTCCGAGGAC S T C A A
    cose transporter
    gene mRNA,
    complete cds.
    G539u2 WIAF-12191 K03195 1244 Human (HepG2) glu- CCATCGCGCT[A/C]CCACTCCTGG S A G L L
    cose transporter
    gene mRNA,
    complete cds.
    G540a1 WIAF-12114 HT960 1100 SOS1 AGTGAAGATC[A/C]ACAACACAAG M A C Q P
    G540u2 WIAF-12165 HT950 933 SOS1 ATGATCGTTT[C/T]CTTAGTCAGT S C T F F
    G540u3 WIAF-12178 HT960 399 SOS1 TACTACCAGT[C/T]TTACAATACA S C T V V
    G540u4 WIAF-12193 HT960 195 SOS1 CTCAGCCCCG[A/C]AGTCCTTCAG S A C R R
    G540u5 WIAF-12197 HT960 1329 SOS1 GTTGTAATCA[A/C]TTTATAATCC S A G E E
    G540u6 WIAF-12198 HT960 1339 SOS1 ATTTATAATC[C/A]AACCAACTCT M G A E K
    G543a1 WIAF-13312 J00306 1373 SST, somatostatin AACCAGGAAC[T/C]CCCCAACTAC M T C L P
    G543a2 WIAF-13313 J00306 1603 SST, somatostatin ACTATTGTCC[A/G]TATCACACCT A G
    G544u1 WIAF-12174 HT27489 982 SUR, sulfonylurea CCATTGACAT[G/C]GCCACGGAAA M G C M I
    receptor
    (hyperinsulinemia)
    G546u1 WIAF-13618 HT225 426 TKT, transketolase GCTACATTGC[C/T]CAGCAGAACA S C T A A
    (Wernicke Korsakoff
    syndrome)
    G551u1 WIAF-11709 HT1118 257 TNFRSF1B, tumor GCTGCAGCAA[A/G]TGCTCGCCGG S A G K K
    necrosis factor
    receptor super-
    family, member 1B
    G551u2 WIAF-11710 HT1118 449 TNFRSF1B, tumor TCTGCACCTG[C/T]AGGCCCGGCT S C T C C
    necrosis factor
    receptor super-
    family, member 1B
    G551u3 WIAF-11719 HT1118 648 TNFRSF1B, tumor GATCTGTAAC[G/A]TGGTGGCCAT M G A V M
    necrosis factor
    receptor super-
    family, member 1B
    G551u4 WIAF-11673 HT1118 676 TNFRSF1B, tumor AATGCAACCA[T/C]CCATGCAGTC M T G M R
    necrosis factor
    receptor super-
    family, member 1B
    G551u5 WIAF-11720 HT1118 808 TNFRSF1B, tumor CCAAGCACCT[C/T]CTTCCTGCTC M C T S F
    necrosis factor
    receptor super-
    family, member 1B
    G552u1 WIAF-12229 HT5108 384 TRAP3 GCCGCTGCCC[G/AICTCATGCTGA S G A P P
    G555u1 WIAF-12211 U94592 478 UCP2, uncoupling CGCGCTACAG[T/C]CAGCGCCCAG M T C V A
    protein 2
    (mitochondrial,
    proton carrier)
    G556u1 WIAF-11804 AF001787 480 UCP2, uncoupling TCGGCCTCTA[T/C]GACTCCCTCA S T C Y Y
    protein 2
    (mitochondrial,
    proton carrier)
    G556u2 WIAF-11805 AF001787 563 UCP2, uncoupling TGCACCACAG[G/A]AGCCATGGCG M G A G E
    protein 2
    (mitochondrial,
    proton carrier)
    G556u3 WIAF-11823 AF001787 1113 UCP2, uncoupling TACGCCAATC[A/C]CCCTTTTGAA S A G S S
    protein 2
    (mitochondrial,
    proton carrier)
    G556u4 WIAF-11782 AF001787 386 UCP2, uncoupling ATCCTGACCA[T/C]GGTGCGGACT M T C M T
    protein 2
    (mitochondrial,
    proton carrier)
    G561a1 WIAF-12111 HT1176 2430 IDE, insulin- ACTCTGGCAT[C/A]GAGATATACT S C A I I
    degrading enzyme
    G561u2 WIAF-12222 HT1176 3099 IDE, insulin- ATATTAACTT[C/G]ATGGCTGCAA M C G F L
    degrading enzyme
    GSG2u1 WIAF-12223 HT27503 680 tumor necrosis CCTGTAGTGA[A/C]TCGGCCGCTG M A C N T
    factor receptor
    type
    1 associated
    protein
    G562u2 WIAF-12224 HT27503 900 tumor necrosis CGCTCCAGCG[C/A]CTGGTGGAGG S C A R R
    factor receptor
    type
    1 associated
    protein
    G573u1 WIAF-12199 HT28094 469 SSTR1, somatostatin GGACCGCTAC[G/C]TGGCCGTGGT M G C V L
    receptor
    1
    G573u2 WIAF-12208 HT28094 480 SSTR1, somatostatin TGGCCCTGGT[G/A]CATCCCATCA S G A V V
    receptor
    1
    G573u3 WIAF-12209 HT28094 879 SSTR1, somatostatin TGCAGCTGGT[T/C]AACGTGTTTG S T C V V
    receptor
    1
    G574u1 WIAF-11822 HT4058 1054 SSTR5, somatostatin GCCACGGAGC[C/T]GCGTCCAGAC M C T P L
    receptor
    5
    G575u1 WIAF-12200 HT28095 99 SSTR3, somatostatin ACGTGTCGGC[C/A]GGCCCAAGCC S G A A A
    receptor
    3
    G575u2 WIAF-12217 HT28095 453 SSTR3, somatostatin CCACCCGGTC[G/A]GCCCGCTGGC S G A S S
    receptor
    3
    G585u1 WIAF-12204 HT1022 1133 PYGL, AGCTGAATGA[T/C]ACTCACCCTC S T C D D
    phosphorylase,
    glycogen;
    liver (Hers
    disease, glycogen
    storage disease
    type VI)
    G585u2 WIAF-12205 HT1022 1988 PYGL, AGCTGATCAC[T/C[TCAGTGGCAG S T C T T
    phosphorylase,
    glycogen;
    liver (Hers
    disease, glycogen
    storage disease
    type VI)
    G585u3 WIAF-12225 HT1022 1883 PYGL, TGTACAACCC[C/T]ATTAAGAAAG S C T R R
    phosphorylase,
    glycogen;
    liver (Hers
    disease, glycogen
    storage disease
    type VI)
    G585u4 WIAF-12226 HT1022 2037 PYGL, AAGCAAGTTG[A/G]AAGTCATCTT M A G K E
    phosphorylase,
    glycogen;
    liver (Hers
    disease, glycogen
    storage disease
    type VI)
    G585u5 WIAF-12231 HT1022 1387 PYGL, GATGTGGACC[C/G]TCTGAGAAGG M C G P R
    phosphorylase,
    glycogen;
    liver (Hers
    disease, glycogen
    storage disease
    type VI)
    G586a1 WIAF-12112 HT1878 2410 PFKM, CCGGGGAAGC[T/G]GCCGTCTAAA S T G A A
    phosphofructo-
    kinase, muscle
    G586u2 WIAF-12206 HT1878 375 PFKM, GGACCACTCC[G/A]AGCTCCCTAC M G A R Q
    phosphofructo-
    kinase, muscle
    G586u3 WIAF-12207 HT1878 322 PFKM, TGCGAGGCAC[C/A]GTGATTGGAA S G A T T
    phosphofructo-
    kinase, muscle
    G586u4 WIAF-12227 HT1878 334 PFKM, TGATTGGAAG[T/C]GCCCGGTGCA S T C S S
    phosphofructo-
    kinase, muscle
    G586u5 WIAF-12228 HT1878 408 PFKM, CGTCGGATCA[C/G]CAATCTCTGT M C G T S
    phosphofructo-
    kinase, muscle
    G586u6 WIAF-12235 HT1878 717 PFKM, CACTGTGGAT[A/G]CCTGGCCCTT M A G Y C
    phosphofructo-
    kinase, muscle
    G587u1 WIAF-12615 HT3847 366 phosphofructo- ATGCCAGCCT[T/C]ACAGGTGCCA S T C L L
    kinase, liver
    G589u1 WIAF-12210 L39211 1327 CPT1A, carnitine CAGCGTTCTT[C/T]GTGACGTTAG S C T F F
    palmitoyl-
    transferase I,
    liver
    G589u2 WIAF-12215 L39211 2080 CPT1A, carnitine AATATCTCGC[T/C]GTGGAGTCCC S T C A A
    palmitoyl-
    transferase I,
    liver
    G589u3 WIAF-12216 L39211 679 CPT1A, carnitine ACTTCAAACG[C/T]ATGACAGCAC S G T R R
    palmitoyl-
    transferase I,
    liver
    G589u4 WIAF-12218 L39211 1844 CPT1A, carnitine CCTCACATAC[G/C]AGGCCTCCAT M G C E Q
    palmitoyl-
    transferase I,
    liver
    G592u1 WIAF-11814 X96586 1089 NSMAF, neutral TCCGGGATCT[C/T]AGTAAGCCAG S C T L L
    sphingomyelinase
    (N-SMase)
    activation
    associated
    factor
    G592u2 WIAF-11815 X96586 2020 NSMAF, neutral AAGTATATCA[T/G]TTTCAAATAT M T G F V
    sphingomyelinase
    (N-SMase)
    activation
    associated
    factor
    G592u3 WIAF-11834 X96586 1673 NSMAF, neutral GTAGCCATGC[T/C]TACGCAAATC M T C L P
    sphingomyelinase
    (N-SMase)
    activation
    associated
    factor
    G592u4 WIAF-11784 X96586 1889 NSMAF, neutral CACGAGCACT[A/G]TAAAATCCAC M A C Y C
    sphingomyelinase
    (N-SMase)
    activation
    associated
    factor
    G592u5 WIAF-11798 X96586 1677 NSMAF, neutral CCATGCTTAC[G/A]CAAATCTTGG S G A T T
    sphingomyelinase
    (N-SMase)
    activation
    associated
    factor
    G592u6 WIAF-11799 X96586 2429 NSMAF, neutral TGCCATTCAG[G/C]GATTCTATGT M G C G A
    sphingomyelinase
    (N-SMase)
    activation
    associated
    factor
    G592a7 WIAF-13156 X96586 2205 NSMAF, neutral ATTCTGCATC[G/A]TGGGACTCTA S G A S S
    sphingomyelinase
    (N-SMase)
    activation
    associated
    factor
    GS94u1 WIAF-10065 HT3921 1153 annexin V, alt. TTGTGAAATC[T/A]ATTCGAAGTA S T A S S
    transcript
    2
    G594u2 WIAF-10098 HT3921 567 annexin V, alt. CGAAGTAATG[C/T]TCACCGCCAG M C T A V
    transcript 2
    G594u3 WIAF-10099 HT3921 774 annexin V, alt. ATTGCTTCAA[G/C]CACACCTCAA M G C R T
    transcript
    2
    G594a4 WIAF-10505 HT3921 424 annexin V, alt. GAGTAGTCGC[C/T]ATGCCACACG C T
    transcript 2
    G594a5 WIAF-13123 HT3921 571 annexin V, alt. GTAATGCTCA[G/C]CGCCAGGAAA M G C Q H
    transcript
    2
    G595u1 WIAF-12203 HT27983 1008 NRIP1, nuclear TGCAACATTA[C/T]AGGCTGTTGC N C T Q *
    receptor
    interacting
    protein
    1
    G595u2 WIAF-12220 HT27983 785 NRIP1, nuclear CCCTCAGTCA[T/C]GATTCTTTAA S T C H H
    receptor
    interacting
    protein
    1
    G595u3 WIAF-12232 HT27983 1231 NRP1, nuclear GTTGGCAGTT[A/T]CCAGCTCCCA M A T Y F
    receptor
    interacting
    protein
    1
    G595u4 WIAF-12261 HT27983 2048 NRIP1, nuclear GCAGTACTCA[G/A]TCTCAAAACC S G A Q Q
    receptor
    interacting
    protein
    1
    C595u5 WIAF-12274 HT27983 2376 NRIP1, nuclear TCCTCAACCA[G/T]GGCTTTCTGG M G T G W
    receptor
    interacting
    protein
    1
    G595u6 WIAF-12275 HT27983 3498 NRIP1, nuclear ACTATATTAC[A/G]TGCTTCAAAA M A G M V
    receptor
    interacting
    protein
    1
    G595u7 WIAF-12276 HT27983 3671 NRIP1, nuclear ACAATAGCCA[T/C]ATGGGAAATA S T C H H
    receptor
    interacting
    protein
    1
    G595u8 WIAF-12294 HT27983 2020 NRIP1, nuclear ATCAAATGGA[A/G]TTCCCCACCA M A G N S
    receptor
    interacting
    protein
    1
    G595u9 WIAF-12295 HT27983 3140 NRIP1, nuclear ATTTGTCCCC[G/A]CACAGAAGTA S G A P P
    receptor
    interacting
    protein
    1
    G596u1 WIAF-10144 HT3537 3299 PC, pyruvate TGCGGTCCAT[C/T]TTGGTCAAGG S C T I I
    carboxylase
    G596u2 WIAF-10158 HT3537 2662 PC, pyruvate ACCAACCTCC[A/C]CTTCCAGGCC M A C H P
    carboxylase
    G596u3 WIAF-10159 HT3537 2156 PC, pyruvate CCATCTCATA[C/A]ACGGGCGACG N C A Y *
    carboxylase
    G598a1 WIAF-12118 HT48666 5585 HERC1, hect GGGACCTATG[C/T]TGATAAACTG M C T A V
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u2 WIAF-12236 HT48666 4456 HERC1, hect CCTGTTAATA[T/C]TAGGAGTAAG S T C L L
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u3 WIAF-12237 HT48665 6356 HERC1, hect GGTAATGAAG[G/T]CACGTGTGTT M G T G V
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u4 WIAF-12240 HT48666 12219 HERC1, hect GTACCTTTGT[C/T]ATCCAGGCCA S C T V V
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u5 WIAF-12241 HT48666 12480 HERC1, hect CCAGGCAGAT[C/G]GAGGCCTTAC M C G I M
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u6 WIAF-12244 HT48666 12975 HERC1, hect GAGTAATCAT[T/A]GAAGATGTGG S T A I I
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u7 WIAF-12245 HT48666 1424 HERC1, hect TCCAATAATC[A/T]GTCAACTTTA M A T Q L
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u8 WIAF-12250 HT48666 5854 HERC1, hect TTCAAAAGCA[A/T]TTCAATCAAA M A T I F
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u9 WIAF-12251 HT48666 6754 HERC1, hect TATTCAGCTC[G/A]TCCGTATCCT M G A V I
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u10 WIAF-12252 HT48666 7535 HERC1, hect ATCTTTACCT[C/T]GGTCCTATGA S C T L L
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u11 WIAF-12254 HT48666 9189 HERC1, hect GTGGAAATCC[A/G]TACTACCTGT S A G P P
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u12 WIAF-12255 HT48666 10119 HERC1, hect TTGTGGCATT[G/C]CTAGCAGACA M G C L F
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u13 WIAF-12257 HT48666 11109 HERC1, hect ATCCATCTAT[T/C]GTAAATGGCA S T C I I
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u14 WIAF-12258 HT48666 13513 HERC1, hect CTATGGACCT[C/T]AGATAACTGT N C T Q *
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G5958u15 WIAF-12259 HT48666 13697 HERC1, hect ACCATCACAG[A/C]GATGTGCCAG M A G E G
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u16 WIAF-12255 HT48666 1098 HERC1, hect CCCTTTACGA[G/A]GCAGCATTAT S G A E E
    (homologous to the
    E6 AP (UDE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u17 WIAF-12272 HT48666 6079 HERC1, hect TATGTGGGAG[A/G]CACCCATTGC M A G T A
    (homologous to the
    E6 AP (UHE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u18 WIAF-12273 HT48666 9551 HERC1, hect AAGAGCTCCT[C/T]TGGGAGAATA M C T S F
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u19 WIAF-12277 HT48666 666 HERC1, hect GTCTTTGCAA[C/T]GATGTCATTC S C T N N
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u20 WIAF-12278 HT48666 882 HERC1, hect GCTCATTGCG[A/G]TATCTTCTTG S A G R R
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u21 WIAF-12279 HT48666 893 HERC1, hect TATCTTCTTC[A/T]ATGGATAGAA M A T E V
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u22 WIAF-12280 HT48666 13276 HERC1, hect AGAACTCAGC[A/C]TTCACACGGT M A G I V
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u23 WIAF-12283 HT48666 6519 HERC1, hect CCTGTCTGTT[A/T]GACATGGAAC M A T L F
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u24 WIAF-12284 HT48666 8386 HERC1, hect GGGGTTCTCT[C/T]TTCGGCAGAT M C T L F
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u25 WIAF-12286 HT48666 10266 HERC1, hect CAGCTCAGCA[A/T]CTCGTGCGCA M A T Q H
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u26 WIAF-12287 HT48666 10099 HERC1, hect CTTTGTTGTA[A/G]CACAGGCCCT M A G T A
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u27 WIAF-12289 HT48666 11835 HERC1, hect AGAACTGTCT[G/C]CCTGACCCTG S G C L L
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u28 WIAF-12290 HT48666 12689 HERC1, hect TTAAACCACA[C/T]TTTGGCAGTG M C T T I
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u29 WIAF-12291 HT48666 14655 HERC1, hect ACGTGGACAA[C/T]GCCGAGGGCT S C T N N
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u30 WIAF-12296 HT48666 393 HERC1, hect ATTCCCCATT[T/C]GCCGGGGCAC S T C F F
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u31 WIAF-12297 HT48666 479 HERC1, hect GGCAAGGTGA[A/G]GCAGCAGCAG M A G K R
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u32 WIAF-12298 HT48666 1197 HERC1, hect ATGCTCCCAT[T/C]GTCTCCGAAA S T C I I
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u33 WIAF-12300 HT48666 3595 HERC1, hect TCCAGAGGAA[C/T]AGCACACTGC N C T Q *
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G598u34 WIAF-12301 HT48666 3661 HERC1, hect CACTCCTCAA[T/C]TGGATAAATG S T C L L
    (homologous to the
    E6 AP (UBE3A)
    carboxyl terminus)
    domain and RCC1
    (CHC1)-like domain
    (RLD) 1
    G601u1 WIAF-12246 HT27734 106 PRKMK5, protein TGGAGAACCA[G/A]GTGCTGGTAA S G A Q Q
    kinase, mitogen-
    activated, kinase 5
    (MAP kinase
    kinase 5)
    G601u2 WIAF-12247 HT27734 351 PRKMK5, protein GTAAATGGAC[A/G]GTTAATAGAG M A G Q R
    kinase, mitogen-
    activated, kinase 5
    (MAP kinase
    kinase 5)
    G601u3 WIAF-12292 HT27734 617 PRKMK5, protein AGCATATCAT[G/C]TCCCGAGTGG M G C V L
    kinase, mitogen-
    activated, kinase 5
    (MAP kinase
    kinase 5)
    G603u1 WIAF-12248 HT4291 1336 mitogen-activated AGTCATCAGC[T/C]TTGTGCCACC M T C F L
    protein (MAP)
    kinase p38
    G603u2 WIAF-12281 HT4291 1230 mitogen-activated CTCAGTACCA[C/T]GATCCTGATG S C T H H
    protein (MAP)
    kinase p38
    G610u1 WIAF-12249 HT48690 1012 protein kinase, CCGAGCCATA[T/C]GATGAGAGCG S T C V Y
    mitogen-activated,
    p38Beta (MAP kinase
    p38Beta)
    G610u2 WIAF-12263 HT48690 799 protein kinase, AAATCTCCTC[G/A]GAACACGCCC S G A S S
    mitogem-activated,
    p38Beta (MAP kinase
    p38Beta)
    GS10u3 WIAF-12264 HT48690 848 protein kinase, GCCCCAGAAG[G/A]ACCTGAGCAG M G A D N
    mitogen-activated,
    p38Beta (MAP kinase
    p38Beta)
    G610u4 WIAF-12282 HT48690 439 protein kinase, TCCTGGTTTA[C/T]CAGCTCCTGC S C T Y Y
    mitogen-activated,
    p38Beta (MAP kinase
    p38Beta)
    G612u1 WIAF-12344 HT1436 1513 RAF1, v-raf-1 TTTGCATGCA[A/G]AGAACATCAT M A G K E
    murine leukemia
    viral oncogene
    homolog
    1
    G614u1 WIAF-12267 HT321 603 BRAF, v-raf murine GACAGTCTAA[A/G]GAAAGCACTG M A G K R
    sarcoma viral
    oncogene homolog 51
    G614u2 WIAF-12268 HT321 2282 BRAF, v-raf murine CCAAACAGAG[G/A]ATTTTAGTCT M G A D N
    sarcoma viral
    oncogene homolog 51
    G614u3 WIAF-12299 HT321 973 BRAF, v-raf murine AGGAAGAGGC[G/A]TCCTTAGCAC S G A A A
    sarcoma viral
    oncogene homolog 51
    G616u1 WIAF-12253 HT48746 498 TRAF-interacting AAGAAGACAA[G/T]AGGTTTCTTC N G T E *
    protein (I-TRAF)
    G616u2 WIAF-12269 HT48746 1338 TRAF-interacting GCATATACCT[C/G]GAGTATGTGA M C G R G
    protein (I-TRAF)
    G616u3 WIAF-12285 HT48746 377 TRAF-interacting ATAACAATTA[T/C]GGCTGTGTCC S T C Y Y
    protein (I-TRAF)
    G616u4 WIAF-12288 HT48746 1032 TRAF-interacting TGAAATTCAG[G/A]GAATTGACCC M G A G R
    protein (I-TRAF)
    G617u1 WIAF-12256 HT1614 52 PPP1CA, protein GAAGCTCAAC[C/T]TGGACTCGAT S C T L L
    phosphatase
    1,
    catalytic subunit,
    alpha isoform
    G617u2 WIAF-12270 HT1614 792 PPP1CA, protein AAGACGGCTA[C/T]GAGTTCTTTG S C T Y Y
    phosphatase
    1,
    catalytic subunit,
    alpha isoform
    G618u1 WIAF-12238 HT27508 1598 protein CATTGAACCA[A/C]CACAGTTCAA M A C T P
    phosphatase, 2A
    B56-alpha
    subunit
    G618u2 WIAF-12271 HT27508 1135 protein ATCAGAAATT[C/T]GTACAACAGC S C T F F
    phosphatase, 2A
    B56-alpha
    subunit
    G62u1 WIAF-10369 HT0855 214 ERCC6, excision AGGAGTACCT[G/C]TCCTTTCGTT S G C L L
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u2 WIAF-10370 HT0855 926 ERCC6, excision AAAACTGTCT[T/C]TTGAAAGGAA M T C F L
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u3 WIAF-10428 HT0855 2904 ERCC6, excision AGCACGGACA[C/T]GCAGGCCCGG M C T T M
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u4 WIAF-10430 HT0855 3368 ERCC6, excision TGACCCTCAC[A/G]TGAGTAGTAA M A G M V
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u5 WIAF-10451 HT0855 1376 ERCC6, excision TTCTGGGGAA[G/A]AAGCTGAAGC M G A E K
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u6 WIAF-10452 HT0855 3716 ERCC6, excision TAAGCATTGC[A/G]GACACGCCAA M A G R G
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u7 WIAF-10453 HT0855 3967 ERCC6, excision CCCTGAAAGC[A/C]CTGAGGCTCT S A C A A
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u8 WIAF-10454 HT0855 4016 ERCC6, excision TGGTGTTCCC[A/G]CCTGGACTGG M A G T A
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u9 WIAF-10455 HT0855 3979 ERCC6, excision TGAGGCTCTC[T/C]CGTCAGCGGT S T C S S
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u10 WIAF-10456 HT0855 3729 ERCC6, excision GACCCCAAGT[T/C]TGAAGGAACT M T G F C
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u11 WIAF-10476 HT0855 1275 ERCC6, excision TCTGGAGATG[G/A]TACTGACTAT M G A G D
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u12 WIAF-10477 HT0855 2017 ERCC6, excision TGATCTTGGA[C/T]GAAGGACACA S C T D D
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u13 WIAF-10479 HT0855 3265 ERCC6, excision CTAACATATC[T/C]CTAAATCATG S T C S S
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G62u14 WIAF-10481 HT0855 4317 ERCC6, excision GGGCACCTGC[A/G]GGAAGCTTCT M A G Q R
    repair cross-
    complementing rodent
    repair deficiency,
    complementation
    group 6
    G620a1 WIAF-12116 HT1943 1256 PPP2CB, protein TATCATGGAA[T/A]TAGATGACAC M T A L I
    phosphatase 2
    (formerly 2A),
    catalytic subunit,
    beta isoform
    G620a2 WIAF-12117 HT1943 1326 PPP2CB, protein CCTCATGTTA[C/G]ACGGCGCACC M C G T R
    phosphatase 2
    (formerly 2A),
    catalytic subunit,
    beta isoform
    G620u3 WIAF-12239 HT1943 819 PPP2CB, protein TTTTATGATG[A/G]ATGTCTGCGA M A G E G
    phosphatase 2
    (formerly 2A),
    catalytic subunit,
    beta isoform
    G623u1 WIAF-12260 HT3979 459 PPP1CB, protein TTCATCGACA[A/G]TATACACATT S A G Q Q
    phosphatase
    1,
    catalytic subunit,
    beta isoform
    G625u1 WIAF-12266 HT1951 2279 PPP2R2A, protein CATTCTGGAG[A/G]ATTACTAGCA M A G E G
    phosphatase 2
    (formerly 2A),
    regulatory subunit
    (PR 52), alpha
    isoform
    G628a1 WIAF-12104 HT2780 1104 PPP1CC, protein AGGGGTATGA[T/A]CACAAAGCAA M T A I N
    phosphatase
    1,
    catalytic subunit,
    gamma isoform
    G628a2 WIAF-12105 HT2780 973 PPP1CC, protein CCAATTATTG[C/T]GGACAGTTTG S C T C C
    phosphatase
    1,
    catalytic subunit,
    gamma isoform
    G628u3 WIAF-12311 HT2780 888 PPP1CC, protein GATCTTATAT[G/T]TAGAGCCCAT M A T C P
    phosphatase
    1,
    catalytic subunit,
    gamma isoforn
    G630a1 WIAF-12103 HT5086 704 protein phosphatase AAAGATGCAG[A/G]TCTGAACTCT M A G D G
    2A, 130 kDa
    regulatory subunit
    G630a2 WIAF-12106 HT5086 1015 protein phosphatase CGATGGGAAC[G/T]CCCCATCCTT M G T A S
    2A, 130 kDa
    regulatory subunit
    G630a3 WIAF-12107 HT5086 1024 protein phosphatase CGCCCCATCC[T/c]TTGGTTTACT M T c F L
    2A, 130 kDa
    regulatory subunit
    G630a4 WIAF-12108 HT5086 837 protein phosphatase ACTTAAAGGA[T/C]ATTGCAGGAG S T C D D
    2A, 130 kDa
    regulatory subunit
    G630u5 WIAF-12325 HT5086 1200 protein phosphatase TAAAGATGTG[C/T]TTGGACATCT S C T C C
    2A, 130 kDa
    regulatory subunit
    G630u6 WIAF-12326 HT5086 2810 protein phosphatase ATGTTCAGGG[C/TITGCAGGGGGA M C T A V
    2A, 130 kDa
    regulatory subunit
    G630u7 WIAF-12351 HT5086 512 protein phosphatase ATTATGGCAG [C/T]AACTTACAGA M C T A V
    2A, 130 kDa
    regulatory subunit
    G630u8 WIAF-12352 HT5086 703 protein phosphatase CAAACATGCA[G/A]ATCTGAACTC M G A D N
    2A, 130 kDa
    regulatory subunit
    G630u9 WIAF-12353 HT5086 1069 protein phosphatasa ACCTTTGTCT[C/T]ATAGAAACTC M C T H Y
    2A, 130 kDa
    regulatory subunit
    G634u1 WIAF-11825 X04434 2283 IGF1R, insulin- TGCAAGTGGC[C/T]AACACCACCA S C T A A
    like growth factor
    1 receptor
    G634u2 WIAF-11826 X04434 2279 IGF1R, insulin- GTCATGCAAG[T/C]GGCCAACACC M T C V A
    like growth factor
    1 receptor
    G634u3 WIAF-11781 X04434 1731 IGF1R, insulin- ACAAGGACGT[G/AIGAGCCCGGCA S G A V V
    like growth factor
    1 receptor
    G634a4 WIAF-13106 X04434 948 IGF1R, insulin- TCCACGACGG[C/A]GAGTGCATGC S C A G G
    like growth factor
    1 receptor
    G634a5 WIAF-13107 X04434 1089 IGF1R, insulin- CTTCTGCTCA[G/C]ATGCTCCAAG M G C Q H
    like growth factor
    1 receptor
    G634a6 WIAF-13108 X04434 2539 IGF1R, insulin- AGAAGGAGCA[G/A]ATGACATTCC M G A D N
    like growth factor
    1 receptor
    G634a7 WIAF-13109 X04434 2606 IGF1R, insulin- AAGTGGCCGG[A/C]ACCTGACAAT M A C E A
    like growth factor
    1 receptor
    G634a8 WIAF-13111 X04434 1543 IGF1R, insulin- CTCCACCACC[A/T]CGTCGAAGAA M A T T S
    like growth factor
    1 receptor
    G634a9 WIAF-13112 X04434 1549 IGF1R, insulin- CACCACGTCG[A/G]AGAATCGCAT M A G K E
    like growth factor
    1 receptor
    G634a10 WIAF-13113 X04434 1596 IGF1R, insulin- CCCCTGACTA[C/T]AGGGATCTCA S C T Y Y
    like growth factor
    1 receptor
    G645u1 WIAF-12332 HT5191 1127 retinoic acid- TCTGCAGACT[C/T]TTCAGGAGAG M C T L F
    binding protein II
    G645u2 WIAF-12333 HT5191 1048 retinoic acid- AAGCATTAGA[G/A]GCCTTACAGA S G A E E
    binding protein II
    G646u1 WIAF-12303 X81479 1204 EMR1, egf-like CAAATATCCA[T/C]GTGGACTAAA M T C M T
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G646u2 WIAF-12304 X81419 1919 EMR1, egf-like TTCTGCTGTG[T/G]CGCTCCATCC M T G C W
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G646u3 WIAF-12316 X81479 590 EMR1, egf-like CTTGCCCAGA[G/T]CATGCAACTT M G T E D
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G646u4 WIAF-12317 X81479 799 EMR1, egf-like GCACCAAGCA[G/A]TGGACAGTTG M G A S N
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G646u5 WIAF-12318 X81479 558 EMR1, egf-like TGAAGACGTG[A/G]ATGAATGTGC M A G N D
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G646u6 WIAF-12334 X81479 207 EMR1, egf-like TTACTATTGC[A/G]CTTGCAAACA M A G T A
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G646u7 WIAF-12335 X81479 458 EMR1, egf-like TCACCAGCAG[G/C]GTCTGCCCTG M G C R S
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G646u8 WIAF-12336 X81479 1308 EMR1, egf-like CTCAGCAAAT[G/A]TCACTCCGGC M G A V I
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G646u9 WIAF-12337 X81479 1285 EMR1, egf-like ACACTGGCAT[C/T]TTTTTGGAAA M C T S F
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G646u10 WIAF-12338 X81479 2026 EMR1, egf-like GACAACAAGA[C/T]GGGCTGCGCC M C T T M
    module containing,
    mucin-like,
    hormone receptor-
    like sequence 1
    G647u1 WIAF-12339 HT5190 174 RARA, retinoic acid TGCCTCCCTA[C/T]GCCTTCTTCT S C T Y Y
    receptor, alpha
    G648a1 WIAF-13332 HT0070 469 retinoic acid AACCTGAGCC[A/G]CGACCAGCGT A G
    receptor, beta
    G648a2 WIAF-13333 HT0070 532 retinoic acid ATTGTTTTTA[A/G]GGTGAGAAAT A G
    receptor, beta
    G6S0u1 WIAF-12323 X52773 862 RXRA, retinoid X CTCGCCGAAC[G/A]ACCCTGTCAC M G A D N
    receptor, alpha
    G650u2 WIAF-12341 X5277 3102 RXRA, retinoid X TCCTGCCGCT[C/T]GATTTCTCCA S C T L L
    receptor, alpha
    G650u3 WIAF-12348 X5277 3673 RXRA, retinoid X GGCCATCGGC[A/C]TGAAGCGGCA M A G M V
    receptor, alpha
    G650u4 WIAF-12349 X52773 902 RXRA, retinoid X GACAAACACC[T/C]TTTCACCCTC M T C L P
    receptor, alpha
    G653a1 WIAF-13326 HT1458 439 RARB, retinoic AGGACAAAGC[T/C]CTCAAAGCAT S T C A A
    acid receptor,
    beta
    G655a1 WIAF-13327 J05252 1158 PCSK2, proprotein CCTTCACGAA[C/T]GGGAGGAAAA S C T N N
    convertase
    subtilisin/kexin
    type
    2
    G655a2 WIAF-13334 J05252 678 PCSK2, proprotein CCTATCCTTA[C/A]CCTCCCTACA N C A Y *
    convertase
    subtilisin/kexin
    type
    2
    G655a3 WIAF-13335 J05252 744 PCSK2, proprotein TTTCTGCTCC[C/T]GCCAACAACA S C T A A
    convertase
    subtilisin/kexin
    type
    2
    G658u1 WIAF-11856 J02943 971 CBG, corticosteroid TCTATGACCT[T/C]CGAGATGTCC S T C L L
    binding globulin
    G658u2 WIAF-13407 J02943 771 CBG, corticosteroid CCTTCATGAC[T/C]CACAGCTCCC M T G S A
    binding globulin
    G658u3 WIAF-13408 J02943 773 CBG, corticosteroid TTCATCACTC[A/G]GAGCTCCCCT S A G S S
    binding globulin
    G658u4 WIAF-13409 J02943 1046 CBG, corticosteroid TCACCCAGGA[C/T]GCCCAGCTCA S C T D D
    binding globulin
    G663u1 WIAF-13400 HT3157 1202 TPO, thyroid CGCCACGCGC[G/A]CCTGCGGCCT S G A A A
    peroxidase
    G663u2 WIAF-13401 HT3157 1282 TPO, thyroid GGCCGCGCCA[G/C]CGAGGTCCCC M G C S T
    peroxidase
    G668a1 WIAF-13350 U53506 350 DI02, deiodinase, TCGATGCCTA[C/A]AAACAGGTGA N C A Y *
    iodothyronine,
    type II
    G668a2 WIAF-13351 U53506 354 DI02, deiodinase, TGCCTACAAA[C/A]AGGTGAAATT M C A Q K
    iodothyronine,
    type II
    G668a3 WIAF-13352 U53506 408 DI02, deiodinase, TGTCTCGACT[A/G]CAGAAGGAGG M A G T A
    iodothyronine,
    type II
    G673a1 WIAF-13328 M57464 1723 Human ret proto- CGAGCCTGGC[C/A]AGCCCCGGGG M G A E K
    oncogene mRNA for
    tyrosine kinase.
    G673a2 WIAF-13338 M57464 1186 Human ret proto- GGCTCGCCCA[T/A[TTGCCCAGAT M T A F I
    oncogene mRNA for
    tyrosine kinase.
    G673a3 WIAF-13337 M57464 1227 Hunan ret proto- ACTGCCAGGC[G/A]TTCACTCGGA S G A A A
    oncogene mRNA for
    tyrosine kinase.
    G673a4 WIAF-13338 M57464 2118 Human ret proto- TTGGAAAAAC[T/A]CTAGGAGAAG S T A T T
    oncogene mRNA for
    tyrosine kinase.
    G673a5 WIAF-13339 M57464 2238 Human ret proto- CGAGTGAGCT[T/C]CGAGACCTGC S T G L L
    oncogene mRNA for
    tyrosine kinase.
    G678a1 WIAF-13353 D49492 1439 GDF10, growth TCGGCTGGAA[T/A]GAATGCATAA M T A N K
    differentiation
    factor 10
    G55u1 WIAF-10434 HT1115 1214 ERCC3, excision CTGTGGAGCA[G/A]TGGAAAGCCC S G A Q Q
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 3 (xeroderma
    pigmentosum group B
    complementing)
    G68u2 WIAF-10435 HT1115 1155 ERCC3, excision TGTGACTGCT[G/C]CATGCACTGT M G C A P
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 3 (xeroderma
    pigmentosum group B
    complementing)
    G68u3 WIAF-10436 HT1115 1327 ERCC3, excision AGCACCTACT[C/T]CATCCTGGGC M C T S F
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 3 (xeroderma
    pigmentosum group B
    complementing)
    G68u4 WIAF-10461 HT1115 926 ERCC3, excision AGGAAATCAT[T/C]CACGAACTCC S T C I I
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 3 (xeroderma
    pigmentosum group B
    complementing)
    G68u5 WIAF-10464 HT1115 1430 ERCC3, excision AAGTGCACAC[C/T]ATACCAGCCA S C T T T
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 3 (xeroderma
    pigmentosum group B
    complementing)
    G684a1 WIAF-13359 X51801 712 BMP7, bone morpho- GTTTATCACG[T/G]GCTCCACCAG M T G V G
    genetic protein
    7 (osteogenic
    protein 1)
    G684a2 WIAF-13360 X51801 719 BMP7, bone morpho- AGGTCCTCCA[G/A]GAGCACTTGG S G A Q Q
    genetic protein
    7 (osteogenic
    protein 1)
    G684a3 WIAF-13361 X51801 796 BMP7, bone morpho- GGCTGGCTGG[T/G]GTTTCACATC M T G V G
    genetic protein
    7 (osteogenic
    protein 1)
    G684a4 WIAF-13362 X51803 862 BMP7, bone morpho- GGCCTGCAGC[T/G]CTCGGTGGAG M T G L R
    genetic protein
    7 (osteogenic
    protein 1)
    G684a5 WIAF-13363 X51801 658 BMP7, bone morpho- ATCTACAAGG[A/G]CTACATCCGC M A G D G
    genetic protein
    7 (osteogenic
    protein 1)
    G684u6 WIAF-13834 X51801 1421 BMP7, bone morpho- GCCACTAGCT[C/T]CTCCCAGAAT C T
    genetic protein
    7 (osteogenic
    protein 1)
    G685a1 WIAF-13329 D89675 882 BMPR1B, bone GTTCCCTTTA[T/G]GATTATCTGA N T G Y *
    morphogenetic
    protein receptor,
    type IB
    G685a2 WIAF-13330 D89675 920 BMPR1B, bone GCTAAATCAA[T/C]GCTGAAGTTA M T C M T
    morphogenetic
    protein receptor,
    type IB
    G685a3 WIAF-13331 D89675 770 BMPR1B, bone TATCACACAG[T/C]GTTCATGAGG M T G V G
    morphogenetic
    protein receptor,
    type IB
    G685a4 WIAF-13340 D89675 1303 BMPR1B, bone TCCTTATCAT[C/A]ACCTACTGCC M G A D N
    morphogenetic
    protein receptor,
    type IB
    G685a5 WIAF-13341 D89675 1372 BMPR1B, bone GTTACCCCCC[T/G]CATTCCCAAA M T G S A
    morphogenetic
    protein receptor,
    type IB
    G685a6 WIAF-13342 D89675 1173 BMPR1B, bone TGTTGGACGA[C/A]AGCTTGAACA S G A E E
    morphogenetic
    protein receptor,
    type IB
    G686u1 WIAF-13816 Z48923 2705 BMPR2, bone AAATTTGGCA[G/A]CAAGCACAAA M G A S N
    morphogenetic
    protein
    receptor, type
    II (serine/
    threonine kinase)
    G686u2 WIAF-13817 Z48923 2749 BMPR2, bone TGGAGTTGCC[A/T]AGATGAATAC N A T K *
    morphogenetic
    protein
    receptor, type II
    (serine/threonine
    kinase)
    G687a1 WIAF-13343 HT1455 626 CALB1, calbindin 1, ATGATCACGA[C/T]GGCAATCCAT S C T D D
    (28 kD)
    G696u1 WIAF-11839 HT27700 1075 calcium-sensing GCCCACAATT[G/C]CACCTGATGA M G C A P
    receptor
    G696u2 WIAF-11840 HT27700 1551 calcium-sensing TACCTGTGGA[C/T]ACCTTTCTGA S C T D D
    receptor
    G696u3 WIAF-11841 HT27700 1688 calcium-sensing TTACGGATAT[C/T]CTACAATGTG M C T S F
    receptor
    G696u4 WIAF-11842 HT27700 1698 calcium-sensing CCTACAATGT [G/T]TACTTACCAG S G T V V
    receptor
    G696u5 WIAF-11858 HT27700 1767 calcium-sensing GGAGAGGGCT[C/T]TTCACCAATG S C T L L
    receptor
    G696u6 WIAF-118S9 HT27700 1689 calcium-sensing TACGCATATC[C/T]TACAATGTGT S C T S S
    receptor
    G696u7 WIAF-11860 HT27700 2541 calcium-sensing TCGTCCTCTG[C/T]ATCTCATCCA S C T C C
    receptor
    G696u8 WIAF-11861 HT27700 2581 calcium-sensing TGTCCTCCTG[G/A]TGTTTGAGGC M G A V M
    receptor
    G696u9 WIAF-11863 HT27700 3159 calcium-sensing TCTCCCGCAA[G/C]CGGTCCAGCA M G C K N
    receptor
    G696u10 WIAF-11872 HT27700 562 calcium-sensing TCCTATTCAT[T/AJTTCGAGTACC M T A F I
    receptor
    G696u11 WIAF-11878 HT27700 2941 calcium-sensing CATTCCAGCC[T/G]ATGCCAGCAC M T G Y D
    receptor
    G696u12 WIAF-13386 HT27700 1145 calcium-sensing AGGGATATCT[G/A]CATCGACTTC M G A C Y
    receptor
    G696u13 WIAF-13395 HT27700 670 calcium-sensing CATATTTGCC[A/GJTAGAGGACAT M A G I V
    receptor
    G696u14 WIAF-13396 HT27700 2243 calcium-sensing TTCTGGTCCA[A/G]TGAGAACCAC M A G N S
    receptor
    G696u15 WIAF-13397 HT27700 2742 calcium-sensing AGCTGGAGGA[T/C]GAGATCATCT S T C D D
    receptor
    G698u1 WIAF-13547 X61598 393 CBP1, collagen- TCAGCAACTC[G/C]ACGGCGCGCA S G C S S
    binding protein
    1
    G698u2 WIAF-13549 X61598 628 CBP1, collagen- CGGCGCCCTG[C/T]TAGTCAACGC S C T L L
    binding protein
    1
    G698u3 WIAF-13550 X61598 1230 CBP1, collagen- GCGGCTCCCT[G/A]CTATTCATTG S G A L L
    binding protein
    1
    G701u1 WIAF-12382 HT27657 706 CGRP type I AACGATGTTG[C/A]AGCAGGAACT M C A A E
    receptor
    G701u2 WIAF-12391 HT27657 841 CGRP type I TGGACAAATT[A/T]TACCCAGTGT M A T Y F
    receptor
    G704u1 WIAF-14046 X60382 1396 COL10A1, collagen, AGGCATTCCA[G/A]GATTCCCTGG M G A G R
    type X, alpha
    1 (Schmid meta-
    physeal chondro-
    dysplasia)
    G704u2 WIAF-14070 X60382 1648 COL10A1, collagen, TGCCAACCAG[G/C]CGGTAACAGC M G C G R
    type X, alpha
    1 (Schmid meta-
    physeal chondro-
    dysplasia)
    G704u3 WIAF-14071 X60382 1824 COL10A1, collagen, CATACCACGT[G/C]CATCTGAAAG S G C V V
    type X, alpha
    1 (Schmid meta-
    physeal chondro-
    dysplasia)
    G704u4 WIAF-14072 X60382 1582 COL10A1, collagen, AGTCATCCCT[C/C]ACGGTTTTAT M G C E Q
    type X, alpha
    1 (Schmid meta-
    physeal chondro-
    dysplasia)
    G705a1 WIAF-13228 J04177 686 COL11A1, collagen, ACAACAAAAC[T/A]GTCACAATCA S T A T T
    type XI, alpha 1
    G705a2 WIAF-13229 J04177 698 COL11A1, collagen, TGACAATCAT[T/A]GTTGATTGTA S T A I I
    type XI, alpha 1
    G705a3 WIAF-13230 J04177 8881 COL11A1, collagen, TACTCCACAC[T/A]CTGACTCTTC M T A C S
    type XI, alpha 1
    G705a4 WIAF-13231 J04177 894 COL11A1, collagen, AGACTGTGAC[T/A]CTTCAGCACC M T A S T
    type XI, alpha 1
    G705a5 WIAF-13232 J04177 651 COL11A1, collagen, TGACCGCAAG[T/A]CCCATCCCCT M T A W R
    type XI, alpha 1
    G705a6 WIAF-13233 J04177 661 COL11A1, collagen, TGGCATCGGG[T/A]AGCAATCAGC M T A V E
    type XI, alpha 1
    G705a7 WIAF-13234 J04177 1597 COL11A1, collagen, CGTCCTGGCT[T/C]ACCAGGGGCT M T C L S
    type XI, alpha 1
    G705a8 WIAF-13235 J04177 2745 COL11A1, collagen, TGGGTTTCCA[C/A]GTGCCAATGG M G A G S
    type XI, alpha 1
    G705a9 WIAF-13236 J04177 4385 COL11A1, collagen, GTCCAGAAGG[T/A]CTTCGGGGCA S T A G G
    type XI, alpha 1
    G705a10 WIAF-13237 J04177 4576 COL11A1, collagen, GAAAAAGGTG[A/T]CCGAGGGGTC M A T D V
    type XI, alpha 1
    G705a11 WIAF-13238 J04177 4306 COL11A1, collagen, GCTAAGGGGG[A/C]AGCAGGTCCA M A C E A
    type XI, alpha 1
    G705a12 WIAF-13239 J04177 4837 COL11A1, collagen, AGACATACTG[A/G]AGGCATGCAA M A G E G
    type XI, alpha 1
    G705a13 WIAF-13240 J04177 4931 COL11A1, collagen, AACAAGACAT[C/T]CACCATATGA S C T I I
    type XI, alpha 1
    G705a14 WIAF-13346 J04177 299 COL11A1, collagen, AAGCACTAGA[T/G]TTTCACAATT M T G D E
    type XI, alpha 1
    G705a15 WIAF-13347 J04177 2225 COL11A1, collagen, GGGAGCCTGG[G/C]CCTCCAGGTC S G C G G
    type XI, alpha 1
    G705u16 WIAF-13679 J04177 5493 COL11A1, collagen, AATTCATCAA[G/A]TACCTATTGT M G A V I
    type XI, alpha 1
    G705u17 WIAF-13700 J04177 3484 COL11A1, collagen, GGACTTCAAG[G/A]TCCTGTTGGT M G A G D
    type XI, alpha 1
    G705u18 WIAF-13709 J04177 5392 COL11A1, collagen, GACATGTCCT[A/T]TGACAATAAT M A T Y F
    type XI, alpha 1
    G707u1 WIAF-12363 U32169 4996 COL11A2, collagen, TCCCCTGAGA[C/T]TCCGTGGGGC M C T L F
    type XI, alpha 2
    G707u2 WIAF-12374 U32169 3580 COL11A2, collagen, CAATGGCCCT[C/A]ATGGCCCACA M G A D N
    type XI, alpha 2
    G707u3 WIAF-12385 U32169 2059 COL11A2, collagen, GCCTGGCTCA[C/A]ACGGACCCCC M G A D N
    type XI, alpha 2
    G708a1 WIAF-13354 U73778 1885 COL12A1, collagen, GCCTCTCCTC[C/T]TCCACAGACC M C T P L
    type XII,
    alpha 1
    G708a2 WIAF-13355 U73778 3630 COL12A1, collagen, TGTTGGACAA[C/A]AAATGACAAC M G A E K
    type XII,
    alpha 1
    G708a3 WIAF-13356 U73778 3905 COL12A1, collagen, GCTTCTTGCA[A/T]GCTCTGGCAA M A T Q H
    type XII,
    alpha 1
    G708a4 WIAF-13357 U73778 7051 COL12A1, collagen, ATTCCACCAG[C/A]CCGGGATGTA M C A A D
    type XII,
    alpha 1
    G708a5 WIAF-13358 U73778 8036 COL12A1, collagen, AAGAAGTAAA[C/A]ACATTATTTT S G A K K
    type XII,
    alpha 1
    G708a6 WIAF-13364 U73778 1461 COL12A1, collagen, TGGCTCCTAT[A/T]GCATTGGGAT M A T S C
    type XII,
    alpha 1
    G708a7 WIAF-13365 U73778 2344 COL12A1, collagen, ATTACTTGGA[C/T]TCAAGCTCCA M C T T I
    type XII,
    alpha 1
    G708a8 WIAF-13366 U73778 5207 COL12A1, collagen, CAGATAAGAT[C/A]GAGACCATCT M G A M I
    type XII,
    alpha 1
    G708a9 WIAF-13367 U73778 6592 COL12A1, collagen, GAGCCCATGG[A/T]AGCCTTTGTT M A T E V
    type XII,
    alpha 1
    G708a10 WIAF-13368 U73778 7434 COL12A1, collagen, CCAGGATGAG[G/A]TCAACAAGGC M G A V I
    type XII,
    alpha 1
    G708a11 WIAF-13369 U73778 9108 COL12A1, collagen, ACCTCGGGGG[C/G]TGCCTGGGCC M C G L V
    type XII,
    alpha 1
    G708a12 WIAF-13370 U73778 9111 COL12A1, collagen, TCGGGGGCTG[C/T]CTGGGCCCCC M C T P S
    type XII,
    alpha 1
    G708a13 WIAF-13371 U73778 9196 COL12A1, collagen, CCCCCTGGCC[G/A]TCCTGGAAAC M G A R H
    type XII,
    alpha 1
    G708u14 WIAF-13972 U73778 3044 COL12A1, collagen, CAGTATTTGC[C/A]ACTTACAGCA S C A A A
    type XII,
    alpha 1
    G708u15 WIAF-13977 U73778 5853 COL12A1, collagen, TCTGACTCTA[G/C]TTCCCGTTTA M G C V L
    type XII,
    alpha 1
    G710u1 WIAF-12371 D38163 3082 COL19A1, collagen, AGGAAACAAG[C/T]GCTCCATGGG M G T G C
    type XIX,
    alpha 1
    G710u2 WIAF-12388 D38163 2089 COL19A1, collagen, TCCAGGGACT[C/T]CAGGCAATGA M C T P S
    type XIX,
    alpha l
    C711u1 WIAF-12360 L25286 1449 COL15A1, collagen, TGTGGGTCCA[A/C]GCACTCAACA M A G S G
    type XV, alpha 1
    C711u2 WIAF-12372 L25286 4001 COL15A1, collagen, ATATTCCAAT[A/C]TACTCCTTTC M A G I M
    type XV, alpha
    1
    G711u3 WIAF-12373 L25286 3867 COL15A1, collagen, CCATTTGCAA[G/T]ATCTGTCCAC M G T D Y
    type XV, alpha
    1
    C711a4 WIAF-13372 L25286 395 COL15A1, collagen, CCACCAGCAC[C/T]CGTGCTGCCG S C T T T
    type XV, alpha
    1
    C711a5 WIAF-13373 L25286 3101 COL15A1, collagen, AAGGCGACCA[G/A]GGACCCCAGG S G A Q Q
    type XV, alpha
    1
    G712u1 WIAF-13619 M92642 3608 COL16A1, collagen, GGCGACCAGG[C/A]ATTTCAAGGC M G A G E
    type XVI,
    alpha 1
    G712u2 WIAF-13620 M92642 4944 COL16A1, collagen, CCATGAAAAC[C/T]ATGAAGGGGC S C T T T
    type XVI,
    alpha 1
    G712u3 WIAF-13621 M92642 4707 COL16A1, collagen, CCAAACGTCA[A/C]AAAGGGGACA M A C E D
    type XVI,
    alpha 1
    G712u4 WIAF-13654 M92642 421 COL16A1, collagen, GCCCACGCCA[C/A]GAGTATTCCC S C A R R
    type XVI,
    alpha 1
    G712u5 WIAF-13655 M92642 444 COL16A1, collagen, GGGGTCTCCC[G/A]GAGGAGTTTG S G A P P
    type XVI,
    alpha 1
    G712u6 WIAF-13656 M92642 338 COL16A1, collagen, CTCATGAAGA[A/C]GTCTGCCATC M A C K T
    type XVI,
    alpha 1
    G712u7 WIAF-13862 M92642 3227 COL16A1, collagen, CCTGGTCCTC[C/T]GGGATTCCCA M C T P L
    type XVI,
    alpha 1
    G712u8 WIAF-13863 M92642 3199 COL16A1, collagen, TCCTGGCTGT[G/T]TTGGGAGCCC M G T V F
    type XVI,
    alpha 1
    G712u9 WIAF-13878 M92642 318 COL16A1, collagen, ACCTCATCCA[C/T]CGACTCAGCC S C T H H
    type XVI,
    alpha 1
    G712u10 WIAF-13882 M92642 1346 COL16A1, collagen, ACAGGCGAGA[A/G]GGGCCAGAAA M A G K R
    type XVI,
    alpha 1
    G712u11 WIAF-13883 M92642 1309 COL16A1, collagen, GTCACGACCT[C/T]TGGGACCCTC S C T L L
    type XVI,
    alpha 1
    G715a1 WIAF-13344 Z74615 3504 COL1A1, collagen, TCCTGGTGAA[C/G]AAGGTCCCTC M C G Q E
    type I, alpha 1
    G717u1 WIAF-12639 Z74616 3988 COL1A2, collagen, ATGAGGAGAC[T/C]GGCAACCTGA S T C T T
    type I, alpha 2
    G720u1 WIAF-12367 X14420 3494 COL3A1, collagen, GGTGCAATCG[G/A]CAGTCCAGGA M G A G D
    type III, alpha 1
    (Ehlers-Danlos
    syndrome type IV,
    autosomal dominant)
    G720u2 WIAF-12383 X14420 3035 COL3A1, collagen, GGTGTCAAGG[G/A]TGAAAGTGGG M G A G D
    type III, alpha 1
    (Ehlers-Danlos
    syndrome type IV,
    autosomal dominant)
    G720a3 WIAF-13374 X14420 214 COL3A1, collagen, TCTTGGTCAG[T/C]CCTATGCGGA M T C S P
    type III, alpha 1
    (Ehlers-Danlos
    syndrome type IV,
    autosomal dominant)
    G720a4 WIAF-13375 X14420 1953 COL3A1, collagen, CTGGACCTCA[A/G]GGACCCCCAG S A G Q Q
    type III, alpha 1
    (Ehlers-Danlos
    syndrome type IV,
    autosomal dominant)
    G720a5 WIAF-13376 X14420 2194 COL3A1, collagen, TAGAGGTGGA[G/A]CTGGTCCCCC M G A A T
    type III, alpha 1
    (Ehlers-Danlos
    syndrome type IV,
    autosomal dominant)
    G720a6 WIAF-13377 X14420 3731 COL3A1, collagen, GGGATTGGAG[G/A]TGAAAAAGCT M G A G D
    type III, alpha 1
    (Ehlers-Danlos
    syndrome type IV,
    autosomal dominant)
    G722u1 WIAF-14132 HT3162 140 COL4A2, collagen, GAGATTGGCG[C/T]GACTGGTGAT M C T A V
    type IV, alpha 2
    G724a1 WIAF-12120 X81053 3892 COL4A4, collagen, CTCGTGGAAA[G/A]AAAGGTCCCC S G A K K
    type IV, alpha 4
    G724a2 WIAF-12121 X81053 4187 COL4A4, collagen, GAAAGGACCA[A/G]TGGGATTCCC M A G H V
    type IV, alpha 4
    G724a3 WIAF-12122 X81053 3802 COL4A4, collagen, ATGATGTGGG[G/A]CCACCTGGTC S G A G G
    type IV, alpha 4
    G724a4 WIAF-12123 X81053 1838 COL4A4, collagen, ACCAGGAAAG[C/A]ATGGTGCCTC M C A H N
    type IV, alpha 4
    G724u5 WIAF-12364 X81053 376 COL4A4, collagen, CTGTTTGCCA[C/T[TGTCTTCCTG S C T H H
    type IV, alpha
    4
    G724u6 WIAF-12365 X81053 2018 COL4A4, collagen, TCCAGGGGAT[C/G]ATGAACATGC M C G H D
    type IV, alpha
    4
    G724u7 WIAF-12366 X81053 4756 COL4A4, collagen, GCCTTCCCCT[A/G]TTTACCACGC S A G V V
    type IV, alpha
    4
    G724u8 WIAF-12377 X81053 3595 COL4A4, collagen, CTGGACCACC[A/G]GGGTGCCCAG S A G P P
    type IV, alpha
    4
    G724u9 WIAF-12378 X81053 3516 COL4A4, collagen, GGAGCATCCG[C/C]ACACCAGGGC M G C G A
    type IV, alpha
    4
    G724u10 WIAF-12379 X81053 4288 COL4A4, collagen, CTGGTCTTCC[A/G]GCTCCCAGAG S A G P P
    type IV, alpha
    4
    G724u11 WIAF-12380 X81053 5140 COL4A4, collagen, GCCACTTTTT[C/A]GCAAATAAGT M C A F L
    type IV, alpha
    4
    G724u12 WIAF-12387 X81053 207 COL4A4, collagen, GACTTCCCTG[C/T]GATGTGGTCT C T
    type IV, alpha
    4
    G727u1 WIAF-12362 D90279 5135 COL5A1, collagen, TTCAACGTTT[A/T]CTGCAACTTC M A T Y F
    type V, alpha 1
    G727u2 WIAF-12369 D90279 4686 COL5A1, collagen, AACAGGGTAT[C/T]ACTGCTCCTT S C T I I
    type V, alpha 1
    G727u3 WIAF-12370 D90279 4608 COL5A1, collagen, TCGGTCCTCC[G/C]GCTGAACAGG S G C P P
    type V, alpha 1
    G727a4 WIAF-13300 D90279 2034 COL5A1, collagen, ACGGCCTGGC[T/A]GGGTTGCCAG S T A A A
    type V, alpha 1
    G727a5 WIAF-13301 D90279 2073 COL5A1, collagen, GTGACCCTGG[T/C]CCTTCCGGCC S T C G G
    type V, alpha 1
    G727a6 WIAF-13302 D90279 3763 COL5A1, collagen, CGGGCACAAA[G/A]GTGATGAAGG M G A G S
    type V, alpha 1
    G729u1 WIAF-11844 L02870 2345 COL7A1, collagen, ATGGACTGGA[G/A]CCAGATACTG S G A E E
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u2 WIAF-11845 L02870 3083 COL7A1, collagen, TATCCTGGCG[G/A]CCACTCAGAG S G A R R
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u3 WIAF-11846 L02810 3031 COL7A1, collagen, GACTCGGTGA[C/T]TTTGGCCTGG M C T T I
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u4 WIAF-11851 L02870 1289 COL7A1, collagen, CGGACTATGA[G/T]GTGACCGTGA M G T E D
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u5 WIAF-11852 L02870 1032 COL7A1, collagen, CCAAGTGACT[G/T]TGATTGCCCT M G T V L
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u6 WIAF-11853 L02870 1897 COL7A1, collagen, CGCCGGGAGC[C/T]GGAAACTCCA M C T P L
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u7 WIAF-11854 L02870 1827 COL7A1, collagen, GCTTAGCTAC[A/T]CTGTGCGGGT M A T T S
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u8 WIAF-11855 L02870 1893 COL7A1, collagen, TGTCCGCCGG[G/A]AGCCCGAAAC M G A E K
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u9 WIAF-11864 L02870 2142 COL7A1, collagen, GGGCCCTGCT[G/A]CAGTCATCGT M G A A T
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u10 WIAF-11865 L02870 2353 COL7A1, collagen, GAGCCAGATA(C/T]TGAGTATACG M C T T I
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u11 WIAF-11866 L02870 2221 COL7A1, collagen, TCATCTGTCA[C/T]CATTACCTGG M C T T I
    type VII, alpha
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u12 WIAF-11869 L02870 6585 COL7A1, collagen, ACCAGGAGAG[C/T]GTGGTATGGC M C T R C
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u13 WIAF-11870 L02870 8169 COL7A1, collagen, GGGTGACCGA[G/T]GCTTTGACGG M G T G C
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u14 WIAF-11877 L02870 438 COL7A1, collagen, CGCCATCCGT[G/A]AGCTTAGCTA M G A E K
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u15 WIAF-11882 L02870 3481 COL7A1, collagen, AGGATCCGTG[A/T]CATGCCCTAC M A T D V
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u16 WIAF-11883 L02870 5654 COL7A1, collagen, ACGGAGAACC[T/C]GGGGACCCTG S T C P P
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u17 WIAF-11884 L02870 7124 COL7A1, collagen, TGCCAGGGCC[G/C]CGAGGCCAGA S G C P P
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u18 WIAF-11885 L02870 7757 COL7A1, collagen, CCTTGGATGG[T/C]GACAAAGGAC S T C G C
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u19 WIAF-13389 L02870 1615 COL7A1, collagen, ACCGTGGTTC[C/T]CACTGGACCA M C T P L
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u20 WIAF-13390 L02870 2930 COL7A1, collagen, TCCTAGGGCC[G/A]GCTGGAGAAG S G A P P
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u21 WIAF-13399 L02870 5145 COL7A1, collagen, CCAGCGACAT[C/T]CTGGACAGGA M C T P S
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G729u22 WIAF-13411 L02870 3472 COL7A1, collagen, ATCTTGCAAA[G/A]GATCCCTGAC M G A R K
    type VII, alpha 1
    (epidermolysis
    bullosa, dys-
    trophic, dominant
    and recessive)
    G730a1 WIAF-13303 X57527 305 COL8A1, collagen, ATGGGCAAGG[A/G]AGCCGTTCCC M A G E G
    type VIII,
    alpha 1
    G732u1 WIAF-l26l6 M95610 936 COL9A2, collagen, CACGGGCCAC[A/G]GCCCGGAACT S A G T T
    type IX, alpha 2
    G732u2 WIAF-12617 M95610 696 COL9A2, collagen, AAGGGAGAGA[C/T]GGGCCCTCAT S C T D D
    type IX, alpha 2
    G732u3 WIAF-12619 M95610 1288 COL9A2, collagen, AACTCGGTCA[C/T]CCAGCGCTCG H C T P S
    type IX, alpha 2
    G732u4 WIAF-12620 M95610 962 COL9A2, collagen, CCACCAGCCC[C/G]TAGCGCCTCT M C G P R
    type IX, alpha 2
    G737u1 WIAF-13394 M13436 ? INHBA, inhibin, TGCTCCCTG[G/T] ? G T
    beta A (activin
    A, activin AB alpha
    polypeptide)
    G738a1 WIAF-13383 M58549 183 MGP, matrix Gla ATGGAGAGCT[A/G]AAGTCCAAGA M A G K E
    protein
    G738a2 WIAF-13384 M58549 330 MGP, matrix Gla GCGCCGAGGG[A/G]CCAAATGAGA M A G T A
    protein
    G739u1 WIAF-11867 U94332 862 TNFRSF11B, tumor TGCTGAAGTT[A/G]TGGAAACATC S A G L L
    necrosis factor
    receptor super-
    family, member 11b
    (osteoprotegerin)
    G739u2 WIAF-11874 U94332 1244 TNFRSP11B, tumor GTATCACAAG[T/C]TATTTTTAGA S T C L L
    necrosis factor
    receptor-super-
    family, member 11b
    (osteoprotegerin)
    G743u1 WIAF-13402 HT847 1669 PTHR1, parathyroid CCCTGGAGAC[C/A]CTCGAGACCA S C A T T
    hormone receptor
    1
    G747u1 WIAF-12414 J03040 123 SPARC, secreted CTCAGCAAGA[A/G]GCCCTGCCTG S A G E E
    protein, acidic,
    cysteine-rich
    (osteonectin)
    G748u1 WIAF-12628 HT0157 117 VDR, vitamin D CCTTCAGGGA[T/C]GGAGGCAATG M T C M T
    (1,25-dihydroxy-
    vitamin D3)
    receptor
    G748u2 WIAF-12629 HT0157 1171 VDR, vitamin D CCGCGCTGAT[T/C]GAGGCCATCC S T C I I
    (1,25-dihydroxy-
    vitamin D3)
    receptor
    G748u3 WIAF-12640 HT0157 172 VDR, vitamin D TTGACCGGAA[C/T]GTGCCCCGGA S C T N N
    (1,25-dihydroxy-
    vitamin D3)
    receptor
    G749u1 WIAF-11862 HT3734 679 osteopontin, alt. ATCACCTCAC[A/T]CATGGAAAGC M A T H L
    transcript
    1
    G749u2 WIAF-11875 HT3734 386 osteopontin, alt. AAGATGATGA[A/G]GACCATGTGG S A G D D
    transcript
    1
    G749u3 WIAF-11876 HT3734 419 osteopontin, alt. CCATTGACTC[C/A]AACCACTCTC S G A S S
    transcript
    1
    G749a4 WIAF-12084 HT3734 171 osteopontin, alt. TAAACAGGCT[G/A]ATTCTCGAAC M G A D N
    transcript
    1
    G749u5 WIAF-13387 HT3734 738 osteopontin, alt. CCAGGACCTG[A/C]ACGCGCCTTC M A C N H
    transcript
    1
    G749u6 WIAF-13388 HT3734 716 osteopontin, alt. CATACAAGGC[C/A]ATCCCCGTTC S C A A A
    transcript
    1
    G751u1 WIAF-12631 HT5036 410 ADM, GACAGCAGTC[C/G]GGATGCCGCC M C G P R
    adrenomedullin
    G752u1 WIAF-11843 HT1782 1405 CHGA, chromogranin CGGCCATTGA[A/G]GCAGAGCTGG S A G E E
    A (parathyroid
    secretory protein
    1)
    G752u2 WIAF-11873 HT1782 1187 CHGA, chromogranin GGACAACCCG[C/A]ACAGTTCCAT M G A D N
    A (parathyroid
    secretory protein
    1)
    G754a1 WIAF-13382 K02043 663 NPPA, natriuretic GTACAATGCC[C/A]TGTCCAACGC M G A V M
    peptide precursor A
    G756u1 WIAF-12395 HT3508 2086 SCNN1A, sodium CAGTTCCTCC[A/G]CCTGTCCTCT ? A G T A
    channel, non-
    voltage-gated 1
    alpha
    G757u1 WIAF-12420 HT28563 797 SCNN1B, sodium CCTGCAGGCC[A/C]CCAACATCTT M A C T P
    channel, non-
    voltage-gated 1,
    beta (Liddle
    syndrome)
    G757u2 WIAF-12421 HT28563 1006 SCNN1B, sodium
    channel, non-
    voltage-gated 1,
    beta (Liddle
    syndrome)
    G757u3 WIAF-12430 HT28563 1768 SCNN1B, sodium TCATCGACTT[T/C]GTGTGGATCA S T C F F
    channel, non-
    voltage-gated 1,
    beta (Liddle
    syndrome)
    G757u4 WIAF-12494 HT28563 662 SCNN1B, sodium AAGCAGCTCA[G/C]CATCAGAAAA M G C A P
    channel, non-
    voltage-gated 1,
    beta (Liddle
    syndrome)
    G757u5 WIAF-12506 HT28563 1091 SCNN1B, sodium GATGCTTCAC[G/C]AGCAGAGCTC M G C E Q
    channel, non-
    voltage-gated 1,
    beta (Liddle
    syndrome)
    G757u6 WIAF-12507 HT28563 1452 SCNN1B, sodium ACCTGCATTC[C/T]CATCTGCAAG M G T G V
    channel, non-
    voltage-gated 1,
    beta (Liddle
    syndrome)
    G758u1 WIAF-12621 HT27856 415 SCNN1D, sodium CGGGAACCCA[C/T]GTCGGCCGAG M C T R C
    channel, non-
    voltage-gated 1,
    delta
    G758u2 WIAF-12632 HT27856 325 SCNN1D, sodium CCTCTTTGAG[C/T]GTCACTGCCA M C T R C
    channel, non-
    voltage-gated 1,
    delta
    G758u3 WIAF-12634 HT27856 879 SCNN1D, sodium ATGGCGTCTG[C/A]ACAGCTCAGC N G A W *
    channel, non-
    voltage-gated 1,
    delta
    G758u4 WIAF-12635 HT27856 1138 SCNN1D, sodium CGTGGAGGTG[G/C]AGCTCCTACA M G C E Q
    channel, non-
    voltage-gated 1,
    delta
    G762u1 WIAF-12622 HT27531 1850 NPR3, natriuretic TAGGACCTGG[C/T]TTGCTAATGG S C T G G
    peptide receptor
    C/guanylate cyclase
    C (atrionatriuretic
    peptide receptor C)
    G762u2 WIAF-12623 HT27531 1926 NPR3, natriuretic AGAAGAAAGT[A/G]ACCTTGGAAA M A G N D
    peptide receptor
    C/guanylate cyclase
    C (atrionatriuretic
    peptide receptor C)
    C)
    G762u3 WIAF-12624 HT27531 1791 NPR3, natriuretic CAAATCATCA[G/T]GTGGCCTAGA M G T G C
    peptide receptor
    C/guanylate cyclase
    C (atrionatriuretic
    peptide receptor
    G762u4 WIAF-12636 HT27531 1963 NPR3, natriuretic GAAGATTCCA[T/C]CAGATCCCAT M T C I T
    peptide receptor
    C/guanylate cyclase
    C (atrionatriuretic
    peptide receptor
    C)
    G763u1 WIAF-12659 HT3183 1633 NPR2, natriuretic CTGGGCCCTT[C/T]CCTGATGAAC M C T S F
    peptide receptor
    B/guanylate cyclase
    B (atrionatriuretic
    peptide receptor
    B)
    G763u2 WIAF-12678 HT3183 668 NPR2, natriuretic TGCCATCACT[T/C]CTGCTGTTGG S T C L L
    peptide receptor
    B/guanylate cyclase
    B (atrionatriuretic
    peptide receptor
    B)
    G763u3 WIAF-12684 HT3183 2354 NPR2, natriuretic TGTTTGAACT[C/T]AAACATATGA S C T L L
    peptide receptor
    B/guanylate cyclase
    B (atrionatriuretic
    peptide receptor
    B)
    G764u1 WIAF-12698 HT1221 3021 NPR1, natriuretic CCCCGTTACT[C/T]TCTCTTTGGG M G T C F
    peptide receptor
    A/guanylate cyclase
    A (atrionatriuretic
    peptide receptor
    A)
    G764u2 WIAF-12706 HT1221 588 NPR1, natriuretic GAGCGCCAAG[C/T]GCTCATGCTC M C T A V
    peptide receptor
    A/guanylate cyclase
    A (atrionatriuretic
    peptide receptor
    A)
    G764u3 WIAF-12709 HT1221 1897 NPR1, natriuretic GTCCCCGTGG[G/A]AGCCTGCAGG S G A G G
    peptide receptor
    A/guanylate cyclase
    A (atrionatriuretic
    peptide receptor
    A)
    G765u1 WIAF-10012 HT2456 604 DCP1, dipeptidyl GCTGGCACAA[A/G]GCTGCGGGCA S A G N N
    carboxypeptidase 1
    (angiotensin I
    converting enzyme)
    G765u2 WIAF-10014 HT2456 2350 DCP1, dipeptidyl TGATGGCCAC[A/G]TCCCGCAAAT S A G T T
    carboxypeptidase 1
    (angiotensin I
    converting enzyme)
    G765u3 WIAF-10025 HT2456 1688 DCP1, dipeptidyl CCCACTGCAC[C/A]AGTGTCACAT M C A Q K
    carboxypeptidase 1
    (angiotensin I
    converting enzyme)
    G765u4 WIAF-10027 HT2456 3220 DCP1, dipeptidyl TCCCCTTCAG[C/T]TACCTCGTCG S C T S S
    carboxypeptidase 1
    (angiotensin I
    converting enzyme)
    G765u5 WIAF-10028 HT2456 3409 DCP1, dipeptidyl TCAGGTACTT[T/C]GTCAGCTTCA S T C F F
    carboxypeptidase 1
    (angiotensin I
    converting enzyme)
    G765u6 WIAF-10040 HT2456 775 DCP1, dipeptidyl AGCCCCTCTA[C/T]CTGAACCTCC S C T Y Y
    carboxypeptidase 1
    (angiotensin I
    converting enzyme)
    G772u1 WIAF-12626 HT2121 1064 AVPR2, arginine TCAGCAGCAC[C/T]GTGTCCTCAG S C T S S
    vasopressin
    receptor 2
    (nephrogenic
    diabetes
    insipidus)
    G772u2 WIAF-12627 HT2121 998 AVPR2, arginine CCTTTGTGCT[A/G]CTCATGTTGC S A G L L
    vasopressin
    receptor 2
    (nephrogenic
    diabetes
    insipidus)
    G773u1 WIAF-12644 HT2141 163 SLC6A6, solute CTAGCAAGAT[C/T]GACTTTGTGC S C T I I
    carrier family 6
    (neurotransmitter
    transporter,
    taurine), member 6
    G773u2 WIAF-12645 HT2141 445 SLC6A6, solute TCGTCATCCT[G/C]GCCTGGGCCA S G C L L
    carrier family 6
    (neurotransmitter
    transporter,
    taurine), member 6
    G773u3 WIAF-12665 HT2141 289 SLC6A6, solute TCTTTGGGAG[C/T]GGCCTGCCTG S C T S S
    carrier family 6
    (neurotranemitter
    transporter,
    taurine), member 6
    G773u4 WIAF-12666 HT2141 382 SLC6A6, solute CCTTGTTCTC[T/C]GGTATCGGCT S T C S S
    carrier family 6
    (neurotransmitter
    transporter,
    taurine), member 6
    G776u1 WIAF-11857 U66088 1457 SLC6A6, solute TAGAACACCT[C/T]ATCAAACCTC S C T L L
    carrier family 5
    (sodium iodide
    symporter), member
    5
    G776u2 WIAF-11871 U66088 2039 SLC5A5, solute GATTGTTGTG[G/C]TGGGACCTCG M G C W C
    carrier family 5
    (sodium iodide
    symporter), member
    5
    G776u3 WIAF-13398 U66088 1379 SLC5A5, solute GGCTTTTCCT[G/A]GCCTGTGCTT S G A L L
    carrier family 5
    (sodium iodide
    symporter), member
    5
    G777u1 WIAF-12646 HT27843 4348 SMRT ATACAATATC[A/G]GCCACCCTGG M A G S G
    G777u2 WIAF-12654 HT27843 2031 SMRT CTGAGCTGGG[T/C]AACCCGCGCC S T C G G
    G777u3 WIAF-12655 HT27643 2052 SMRT ACACCCCCCT[C/A]ACCTATCACC S G A L L
    G777u4 WIAF-12675 HT27843 2205 SMRT CTCGTGACAT[C/T]GCCAAGTCCC S C T I I
    G778u1 WIAF-14093 HT1449 8212 TG, thyroglobulin ATCTCCTCTC[T/C]GAACACATCT M T C L P
    G778u2 WIAF-14111 HT1449 6033 TG, thyroglobulin ATGTCAACGA[C/T]CGTGCGATGC M C T R W
    G778u3 WIAF-14112 HT1449 6894 TG, thyroglobulin GTATCTCAAT[G/T]TGTTCATCCC M G T V L
    G778u4 WIAF-14125 HT1449 2375 TG, thyroglobulin ATGGCCCTCC[T/C]GAGCACCTCT S T C P P
    G778u5 WIAF-14136 HT1449 1931 TG, thyroglobulin ACCATCTCCA[A/C]TCCTTTTCCC S A G Q Q
    G783u1 WIAF-12649 X97674 4008 H. sapiens mRNA for CTACTGGTAT[G/C]CCAGCAACTA M G C M I
    transcriptional
    intermediary
    factor
    2.
    G783u2 WIAF-12658 X97674 2566 H. sapiens mRNA for GCCTGCCACT[G/A]AGCTGCACAA M G A E K
    transcriptional
    intermediary
    factor
    2.
    G783u3 WIAF-12671 X97674 3828 H. sapiens mRNA for CTCTGAGCCC[T/C]GGACTACCAA S T C P P
    transcriptional
    intermediary
    factor
    2.
    G785u1 WIAF-13385 HT1291 386 TTR, transthyretin CCAACCACTC[C/T]GCCCCCCGCC S C T S S
    (prealbumin,
    amyloidosis type I)
    G787u1 WIAF-12652 HT27477 468 TRIP15: thyroid GAAAATTATA[T/C]TTAGAACGAG S T C Y Y
    receptor
    interacting
    protein 15
    G792u1 WIAF-12661 HT27476 265 thyroid receptor CAGCTGGAAC[G/A]TGAACAGGGC M G A V M
    interactor 14
    G793u1 WIAF-12643 HT5152 458 thyroid receptor GGAACCTTTT[C/G]AAAGAATGTT N C G S *
    interactor 8
    G794u1 WIAF-12664 HT5136 1110 PSMC5, proteasome GCGTGTCCAC[G/A]GAACCTGGCA S G A T T
    (prosome, macro-
    pain) 26S subunit,
    ATPase, 5
    G797u1 WIAF-11847 HT3919 140 glutamate receptor CTCACGGAGG[A/G]TTCCCCAACA S A G G G
    3, flip isoform
    G797u2 WIAF-11848 HT3919 759 glutamate receptor GGTTGTGATC[C/T]TAGGGAAACA S C T L L
    3, flip isoform
    G797u3 WIAF-11849 HT3919 1253 glutamate receptor GCTACTCCAA[C/T]GACTATGAAA S C T N N
    3, flip isoform
    G797u4 WIAF-11850 HT3919 1770 glutamate receptor TCTTTTCCTA[C/A]TCAGCACGTT M G A V I
    3, flip isoform
    G797u5 WIAF-13404 HT3919 2711 glutamate receptor GCTACAACGT[G/A]TATGGAACAG S G A V V
    3, flip isoform
    G797u6 WIAF-13405 HT3919 2376 glutamate receptor CTCAGCATTA[G/A]GAACGCCTGT M G A G R
    3, flip isoform
    G798u1 WIAF-11868 X77748 2655 GRM3, glutamate TGCAGACGAC[A/G]ACCATGTGCA S A G T T
    receptor, metabo-
    tropic 3
    G798u2 WIAF-11879 X77748 2771 GRM3, glutamate CACAGACTCC[A/G]CCTCAACAGG M A G H R
    receptor,
    metabotropic 3
    G798a3 WIAF-12085 X77748 2699 GRM3, glutamate GTGGTCTTGG[G/C]CTGTTTGTTT M G C G A
    receptor,
    metabotropic 3
    G798a4 WIAF-12086 X77748 2738 GRM3, glutamate ATCCTGTTTC[A/G]ACCCCAGAAG M A G Q R
    receptor,
    metabotropic 3
    G798a5 WIAF-12087 X77748 2072 GRM3, glutamate ACACCCTTGG[T/C]CAAAGCATCG M T C V A
    receptor,
    metabotropic 3
    G798a6 WIAF-12088 X77748 2235 GRM3, glutamate CCCTGCTCAC[C/TI AAGACAAACT S C T T T
    receptor,
    metabotropic 3
    G798u7 WIAF-13391 X77748 1131 GRM3, glutamate GCGCCAATGC[C/T]TCCTTCACCT S C T A A
    receptor,
    metabotropic 3
    G799u1 WIAF-11880 M81883 2000 GAD1, glutamate CAACAAATGC[C/T]TGGAACTGGC S C T L L
    decarboxylase 1
    (brain, 67 kD)
    G799u2 WIAF-11881 M81883 1822 GAD1, glutamate AGGGTATACT[C/T]CAAGGATCCA S C T L L
    decarboxylase 1
    (brain, 67 kD)
    G799u3 WIAF-13392 M81883 661 GAD1, glutamate GCGTGGCCCA[T/C]GGATGCACCA S T C H H
    decarboxylase 1
    (brain, 67 kD)
    G799u4 WIAF-13393 M81883 556 GAD1, glutamate AGCTGATGGC[G/A]TCTTCGACCC S G A A A
    decarboxylase 1
    (brain, 67 kD)
    G799u5 WIAF-13410 M81883 1229 GAD1, glutamate CCTCATGGAA[C/T]AAATAACACT N C T Q *
    decarboxylase 1
    (brain, 67 kD)
    G801u1 WIAF-13403 D49394 1596 HTR3, 5-hydroxy- TTTACCTGCT[A/G]GCGGTGCTGG S A G L L
    tryptamine
    (serotonin)
    receptor 3
    G803a1 WIAF-13118 U66406 1446 EFNB3, ephrin-B3 CTGGGCCTGG[G/A]GGGTGGAGGT M G A G E
    G804u1 WIAF-11887 Z26653 7237 LAMA2, laminin, TCACTGATGG[G/T]CACATAAAAG S G T G G
    alpha 2 (merosin,
    congenital muscular
    dystrophy)
    G804u2 WIAF-11901 Z26653 9351 LAMA2, laminin, GCAAGCCACT[G/C]GAGGTTAATT M G C W S
    alpha 2 (merosin,
    congenital muscular
    dystrophy)
    G804u3 WIAF-11924 Z26653 8740 LAMA2, laminin, ACACTACCCG[A/G]AGAATTGGTC S A G R R
    alpha 2 (merosin,
    congenital muscular
    dystrophy)
    G804u4 WIAF-11943 Z26653 8577 LAMA2, laminin, ACCAAAATCA[A/G]TGATGGCCAG M A G N S
    alpha 2 (merosin,
    congenital muscular
    dystrophy)
    G804a5 WIAF-12089 Z26653 3372 LAMA2, laminin, CTCTGTGACT[G/A]CTTCCTCCCT M G A C Y
    alpha 2 (merosin,
    congenital muscular
    dystrophy)
    G804a6 WIAF-13227 Z26653 7047 LAMA2, laminin, GTCAGTCCTC[A/G]GGTGGAAGAT M A g Q R
    alpha 2 (nerosin,
    congenital muscular
    dystrophy)
    G804u7 WIAF-13437 Z26653 6791 LAMA2, laminin, TGTGAGAGCC[C/T]TGGATGGACC S C T L L
    alpha 2 (merosin,
    congenital muscular
    dystrophy)
    G805u1 WIAF-13416 U14755 799 LHX1, LIM AAGTAACAGC[A/G]GTGTTGCCAA M A G S G
    homeobox protein 1
    G805u2 WIAF-13417 U14755 743 LHX1, LIM GGCGAGGAAC[T/C]CTACATCATC M T C L P
    homeobox protein 1
    G805u3 WIAF-13428 U14755 639 LHX1, LIM GCCGTCAGGG[C/A]ATCTCCCCTA S C A G G
    homeobox protein 1
    G806u1 WIAF-11886 AF026547 2656 CSPG3, chondroitin TTGGAGTTCC[A/G]GCCATGTCTA S A G P P
    sulfate proteo-
    glycan 3
    (neurocan)
    G606u2 WIAF-11895 AF026547 529 CSPG3, chondroitin TGACCTTCGC[T/C]GAGGCCCAGG S T C A A
    sulfate proteo-
    glycan 3
    (neurocan)
    G806u3 WIAF-11896 AF026547 477 CSPG3, chondroitin CAGGTGACAG[G/A]TGTTGTGTTC M G A G D
    sulfate proteo-
    glycan 3
    (neurocan)
    G806u4 WIAF-11917 AF026547 89 CSPG3, chondroitin ACAGGATATC[A/G]CCGATGCCAG M A G T A
    sulfate proteo-
    glycan 3
    (neurocan)
    G806u5 WIAF-11918 AF026547 213 CSPG3, chondroitin AGCGCAGCCC[G/C]AGATCCCCCT M G C R P
    sulfate proteo-
    glycan 3
    (neurocan)
    G806u6 WIAF-11929 AF026547 769 CSPG3, chondroitin GCTTTGCCCG[G/A]GAGCTGGGGG S G A R R
    sulfate proteo-
    glycan 3
    (neurocan)
    G806u7 WIAF-11931 AF026547 3148 CSPG3, chondroitin ACATTGATGA[C/T]TGCCTCTGCA S C T D D
    sulfate proteo-
    glycan 3
    (neurocan)
    G806u8 WIAF-11949 AF026547 209 CSPG3, chondroitin GCCAAGCGCA[G/A]CCCGAGATGC M G A A T
    sulfate proteo-
    glycan 3
    (neurocan)
    G806a9 WIAF-13114 AF026547 3430 CSPG3, chondroitin ATGAAAACAC[G/A]TGGATCGGCC S G A T T
    sulfate proteo-
    glycan 3
    (neurocan)
    G806u10 WIAF-13420 AF026547 2113 CSPG3, chondroitin CCAGGGCAGA[C/G]TTCAGAGAAA M C G D S
    sulfate proteo-
    glycan 3
    (neurocan)
    C806u11 WIAF-13431 AF026547 94 CSPG3, chondroitin ATATCACCGA[T/C]CCCACCCAAA M T C P E
    sulfate proteo-
    glycan 3
    (neurocan)
    G806u12 WIAF-13432 AF026547 275 CSPG3, chondroitin ACAGGACTTC[C/T]CCATCCTGGT M C T P S
    sulfate proteo-
    glycan 3
    (neurocan)
    G808a1 WIAF-13117 Y13276 177 TLX, tailless GCATGAGCAA[G/a]CCAGCCCGAT S G a K K
    homolog
    (Drosophila)
    G810u1 WIAF-11890 X98248 990 SORT1, sortilin 1 ATAACGATAC[C/A]ACAAGAAGGA S C A T T
    G810u2 WIAF-11891 X98248 1093 SORT1, sortilin 1 GGCAGCAAAT[G/T]ATGACATCGT M G T D Y
    G810u3 WIAF-11907 X98248 1683 SORT1, sortilin 1 CAGACGAAGG[T/C]CAATGCTGGC S T G G G
    G810u4 WIAF-11908 X98248 1433 SORT1, sortilin 1 ATCTCCCAGA[A/C]ACTGAATGTT M A C K T
    G810u5 WIAF-11909 X98248 1354 SORT1, sortilin 1 GAAGCCTGAA[A/G]ACAGTGAATG M A G N D
    G810u6 WIAF-11910 X98248 2180 SORT1, sortilin 1 TACCGGAAAA[T/A]TCCAGGGGAC M T A I N
    G810u7 WIAF-11911 X98248 2264 SORT1, sortilin 1 AACTTTTTGA[G/A]TCCGGAAAAA M G A S N
    G810u8 WIAF-11925 X98248 1993 SORT1, sortilin 1 TCGAGACTAT[G/A]TTGTGACCAA M G A V I
    G810u9 WIAF-11939 X98248 1351 SORT1, sortilin 1 GAGGAAGCCT[G/C]AAAACAGTGA M G C E Q
    G810u10 WIAF-11940 X98248 2232 SORT1, sortilin 1 AACTAAAAGA[C/T]TTCAAAAAGA S C T D D
    G810a11 WIAF-13115 X98248 1769 SORT1, sortilin 1 TCCATCAATA[T/A]CACCATTTGC M T A I N
    G810a12 WIAF-13116 X98248 1757 SORT1, sortilin 1 CCTGGAGCTA[G/A]GTCCATGAAT M G A R K
    G811u1 WIAF-11893 HT3676 900 synapsin I, alt, TGACCAAGAC[G/A]TATGCCACTG S G A T T
    transcript
    1
    G811u2 WIAF-11894 HT3676 758 synapsin I, alt, ACCTTCTACC[C/T]CAATCACAAA M C T P L
    transcript
    1
    G811u3 WIAF-11927 HT3676 996 synapsin I, alt, CGTCAGTGTC[A/T]GGGAACTGGA S A T S S
    transcript
    1
    G811u4 WIAF-11928 HT3676 1054 synapsin I, alt, CATGTCTCAC[A/G]CATACAAGCT M A G R G
    transcript
    1
    G811u5 WIAF-13418 HT3676 249 synapsin I, alt, TGTCCAACGC[G/A[GTCAAGCAGA S G A A A
    transcript
    1
    G811u6 WIAF-13419 HT3676 432 synapsin I, alt, TTAAAGTAGA[G/A]CAGGCCGAAT S G A E E
    transcript
    1
    G812u1 WIAF-11898 HT4564 163 STX1A, syntaxin CCAACCCCCA[T/C]GAGAAGACGA S T C D D
    1A (brain)
    G812u2 WIAF-11942 HT4564 604 STX1A, syntaxin TACAGGACAT[C/T]TTCATCGACA M G T M I
    1A (brain)
    G813u1 WIAF-11934 U72508 939 Human B7 mRNA, TATGACACAG[G/A]ACACAGGATG M G A G E
    complete cds.
    G813u2 WIAF-11946 U72508 619 Human B7 mRNA, GCATCCACAT[G/C]CTCACAGGTC M G C M I
    complete cds.
    G816u1 WIAF-11897 HT4230 151 HTR2B, 5-hydroxy- CTAACTGGTC[T/C]GCATTACAGA S T G S S
    tryptamine
    (serotonin)
    receptor 2B
    G816u2 WIAF-11930 HT4230 189 HTR2B, 5-hydroxy- GAAATGAAAC[A/G]CATTGTTGAC M A G Q R
    tryptamine
    (serotonin)
    receptor 2B
    G818u1 WIAF-11902 HT2694 753 TPH, tryptophan GAGTTTTTCA[C/T]TCCACTCAAT S C T H H
    hydroxylase
    (tryptophan
    5-monooxygenase)
    G818u2 WIAF-11903 HT2694 775 TPH, tryptophan TGTGAGACAC[A/G]GTTCACATCC M A G S G
    hydroxylase
    (tryptophan
    5-monooxygenase)
    G818u3 WIAF-11904 HT2694 1211 TPH, tryptophan TATAATCCAT[A/C]TACACGCAGT M A C Y S
    hydroxylase
    (tryptophan
    5-monooxygenase)
    G818u4 WIAF-11905 HT2694 1081 TPH, tryptophan GATTACCTGC[A/C]AACAGGAATG M A C K Q
    hydroxylase
    (tryptophan
    5-monooxygenase)
    G818u5 WIAF-11933 HT2694 795 TPH, tryptophan CCTTCTATAC[C/T]CCAGAGCCAG S C T T T
    hydroxylase
    (tryptophan
    5-monooxygenase)
    G818u6 WIAF-11935 HT2694 1239 TPH, tryptophan TCCTGAAAGA[C/T]ACCAAGAGCA S C T D D
    hydroxylase
    (tryptophan
    5-monooxygenase)
    G822u1 WIAF-11906 HT0207 936 ASMT, acetyl- CAGACGGAAA[G/T]TGCTCACACC M G T K N
    serotonin N-
    methyltransferase
    G822u2 WIAF-11919 HT0207 637 ASMT, acetyl- TGGTGCGACA[C/T]CGATAAAGCT M C T R W
    serotonin N-
    methyltransferase
    G822u3 WIAF-11936 HT0207 318 ASMT, acetyl- GAAAAGCTTT[C/T]TATCGAAACA S C T F F
    serotonin N-
    methyltransferase
    G822u4 WIAF-11937 HT0207 116 ASMT, acetyl- AATGACTACG[C/T]CAACGGCTTC M C T A V
    serotonin N-
    methyltransferase
    G822u5 WIAF-11938 HT0207 930 ASMT, acetyl- ACTGGGCAGA[C/T]GGAAAGTGCT S C T D D
    serotonin N-
    methyltransferase
    G822u6 WIAF-13427 HT0207 120 ASMT, acetyl- ACTACGCCAA[C/A]GGCTTCATGG M C A N K
    serotonin N-
    methyltransferase
    G825u1 WIAF-11888 HT4974 236 ADAR, adenosine GCTCAGATAC[C/T]AGCAGCCTGG N C T Q *
    deaminase, RNA-
    specific
    G825u2 WIAF-11900 HT4974 3076 ADAR, adenosine TCTTTGACAA[A/G]TCCTGCAGCG S A G K K
    deaminase, RNA
    specific
    G825u3 WIAF-11912 HT4974 2537 ADAR, adenosine CTTGATTGGG[G/C]AGAACGAGAA M G C E Q
    deaminase, RNA-
    specific
    G825u4 WIAF-11941 HT4974 3558 ADAR, adenosine GATGGCTATG[A/G]CCTGGAGATC M A G D G
    deaminase, RNA-
    specific
    G825a5 WIAF-12090 HT4974 1305 ADAR, adenosine CCTGAGACCA[A/G]AAGAAACGCA M A G K R
    deaminase, RNA-
    specific
    G825u6 WIAF-13426 HT4974 3683 ADAR, adenosine CCGCAGGGAT[C/T]TACTGAGACT S C T L L
    deaminase, RNA-
    specific
    G826u1 WIAF-12554 X99383 2109 ADARB1, adenosine AGATTACCAA[A/G]CCCAACGTGT S A G K K
    deaminase, RNA-
    specific, B1
    (homolog of rat
    RED1)
    G826u2 WIAF-12566 X99383 1698 ADARB1, adenosine TGTCCTCCAG[T/G]GACAAGATTG M T G S R
    deaminase, RNA-
    specific, B1
    (homolog of rat
    RED1)
    G829u1 WIAF-13735 U49262 1404 DVL3, dishevelled 3 GGGTTGGAGG[T/C]CCGTGACTGC M T C V A
    (homologous to
    Drosophila dsh)
    G83u1 WIAF-10449 HT1576 1338 DNMT1, DNA ATGATGACCC[G/A]TCTCTTGAAG S G A P P
    (cytosine-5-)-
    methyltransferase 1
    G83u2 WIAF-10450 HT1576 1871 DNMT1, DNA AAGCTGGTCT[A/C]CCAGATCTTC M A G Y C
    (cytosine-5-)-
    methyltransferase 1
    G83u3 WIAF-10468 HT1576 928 DNMT1, DNA AAATCCACAG[A/G]TTTCTGATGA M A G I V
    (cytosine-5-)-
    methyltransferase 1
    G83u4 WIAF-10469 HT1576 1562 DNMT1, DNA AATTCCGACT[C/T]CACCTATGAG M C T S L
    (cytosine-5-)-
    methyltransferase 1
    G83u5 WIAF-10471 HT1576 2424 DNMT1, DNA GGGCCACGTC[G/A]GACCCTCTGC S G A S S
    (cytosine-5-)-
    methyltransferase 1
    G83u6 WIAF-10473 HT1576 3790 DNMT1, DNA GTTCTTCCTC[C/T]TGGACAATGT S C T L L
    (cytosine-5-)-
    methyltransferase 1
    G83u7 WIAF-10486 HT1576 1581 DNMT1, DNA AGGACCTGAT[C/A]AACAAGATCG S C A I I
    (cytosine-5-)-
    methyltransferase 1
    G832u1 WIAF-12577 L13387 1129 PAFAH1B1, platelet- AGACATTCAC[A/T]GGACACAGAG S A T T T
    activating factor
    acetylhydrolase,
    isoform Ib, alpha
    subunit (45 kD)
    G835u1 WIAF-12555 U38276 1311 SEMA3F, sema CCTCTGGCTC[C/A]GTGTTCCGAG S C A S S
    domain, immuno-
    globulin domain
    (Ig), short
    basic domain,
    secreted, 3F
    G835u2 WIAF-12556 U38276 1229 SEMA3F, sema ACTCACTTTG[A/T]TGACCTCCAG M A T D V
    domain, immuno-
    globulin domain
    (Ig), short
    basic domain,
    secreted, 3F
    G835u3 WIAF-12557 U38276 1473 SEMA3F, sema GAACCTTCAC[G/A]CCATCTATGA S G A T T
    domain, immuno-
    globulin domain
    (Ig), short
    basic domain,
    secreted, 3F
    G835a4 WIAF-13138 U38276 1726 SEMA3F, sema TGACCACCAC[A/T]TCGACCAGCT M A T M L
    domain, immuno-
    globulin domain
    (Ig), short
    basic domain,
    secreted, 3F
    G836u1 WIAF-12592 U28369 1056 SEMA3B, sema AACGACGTGC[G/A]CGGCCAGCGC M G A G D
    domain, immuno-
    globulin domain
    (Ig), short
    basic domain,
    secreted, 3B
    G836u2 WIAF-12609 U28369 1479 SEMA3B, sema GTCCTCCCCA[C/T]TGGGGGGCGC M C T T I
    domain, immuno-
    globulin domain
    (Ig), short
    basic domain,
    secreted, 3B
    G838u1 WIAF-12590 U72671 1107 ICAM5, inter- CGCAGCTGGG[A/G]CCCAAGCTCT M A G T A
    cellular adhesion
    molecule
    5,
    telencephalin
    G838u2 WIAF-12591 U72671 966 ICAM5, inter- CAGGCAGCTG[A/G]TCTGCAACGT M A G I V
    cellular adhesion
    molecule
    5,
    telencephalin
    G840a1 WIAF-12109 HT961 2232 SOS1, son of seven- CTCAGGCAAA[T/C]GGACTAAGCC S T C N N
    less (Drosophila)
    homolog 1
    G840a2 WIAF-12110 HT961 2404 SOS1, son of seven- ACCGTCTGAA[C/G]TTGTAGGGAG M C G L V
    less (Drosophila)
    homolog 1
    G840u3 WIAF-12213 HT961 3813 SOS1, son of seven- CAAGGGTACC[G/A]CGTCGATGCT S G A P P
    less (Drosophila)
    homolog 1
    G841u1 WIAF-12153 HT97420 1372 SMOH, smoothened TTTTGGCTTC[C/G]TGGCCTTTGG M C G L V
    (Drosophila)
    homolog
    G841u2 WIAF-12179 HT97420 858 SMOH, smoothened CCCAGTTCAT[G/T]GATCCTGCCC M G T M I
    (Drosophila)
    homolog
    G841u3 WIAF-12185 HT97420 1164 SMOH, smoothened CTCTGAGTGG[G/C]ATTTGTTTTG S C G G G
    (Drosophila)
    homolog
    G847u1 WIAF-12588 L41939 2019 EPHB2, EphB2 GGTCTGCAGT[G/T]GCCACCTGAA M G T G C
    G847u2 WIAF-12596 L41939 1806 EPHB2, EphB2 GTGTAACAGA[A/C]GACCGGCCTT S A C R R
    G847u3 WIAF-12613 L41939 2885 EPHB2, EphB2 AGGCCATCAA[G/C]ATGGGGCAGT M G C K N
    G848u1 WIAF-12685 L40636 2484 EPHB1, EphB1 GTCAACAGTA[A/C]CCTGGTCTGC M A G N S
    G848u2 WIAF-12690 L40636 2020 EPHB1, EphB1 CCTTCACTTA[T/C]GAGGATCCCA S T C Y Y
    G849u1 WIAF-11920 D83492 1544 EPHB6, EphB6 ACCTGTGTGG[C/T]TCATCCACAC M C T A V
    G849u2 WIAF-11921 D83492 3301 EPHB6, EphB6 CTTTGGGATA[C/T]TCATGTGGCA M C T L F
    G849u3 WIAF-13412 D83492 1139 EPHB6, EphB6 GAGACCTTCA[C/T]CCTTTACTAC M C T T I
    G849u4 WIAF-13413 D83492 1895 EPHB6, EphH6 TTTGAGGTGC[A/C]AGGCTCAGCA M A C Q P
    G849u5 WIAF-13414 D83492 2338 EPHB6, EphB6 CTATGACCAG[G/A]CAGAAGACGA M G A A T
    G849u6 WIAF-13415 D83492 2567 EPHB6, EphB6 GGGGCTTTGG[G/C]CTTCCTCCTG M C G A G
    G849u7 WIAF-13422 D83492 2860 EPHB6, EphB6 GGCCATCCAG[G/A]CCCTCTGGGC M G A A T
    G849u8 WIAF-13423 D83492 2782 EPHB6, EphB6 GGAGGTCATT[G/C]GGACAGGCTC M A C G R
    G849u9 WIAF-13424 D83492 3038 EPHB6, EphB6 TTCCTCAGGC[A/C]GCGGGAGGGC M A G Q R
    G849u10 WIAF-13425 D83492 3637 EPHB6, EphB6 AGCCATTGGA[C/T]TGGAGTGCTA S C T L L
    G856u1 WIAF-12625 D45906 1323 LIMK2, LIM domain AGCTCAACCT[G/C]CTGACAGAGT S G C L L
    kinase
    2
    G858u1 WIAF-12630 U65019 864 MADH2, MAD (mothers TTTGGTGTTC[G/A]ATAGCATATT S G A S S
    against decapenta-
    plegic, Drosophila)
    homolog 2
    G86u1 WIAF-10437 HT1701 263 RAD51, RAD51 TGAAGCAAAT[G/C]CAGATACTTC M G C A P
    (S. cerevisiae)
    homolog (E coli
    RecA homolog)
    G86u2 WIAF-10465 HT1701 861 RAD51, RAD51 GCATCAGCCA[T/C]GATGGTAGAA M T C M T
    (S. cerevisiae)
    homolog (E coil
    RecA homolog)
    G86u3 WIAF-10466 HT1701 924 RAD51, RAD51 TACAGAACAC[A/G]CTACTCGGGT M A G D G
    (S. cerevisiae)
    homolog (E coli
    RecA homolog)
    G864a1 WIAF-13139 X82324 183 POU3F4, POU domain, CAGCAATCGG[C/t]ATCCCCTCCG M C t H Y
    class
    3, tran-
    scription factor 4
    G866u1 WIAF-12637 HT0101 2576 glutamate receptor AAATCCCGTA[G/A]TCAATCCAAG M G A S N
    (GB:M64752)
    G866u2 WIAF-12638 HT0101 1131 glutamate receptor TAACAGGAAA[C/T]GTGCAGTTTA S C T N N
    (GB:M64752)
    G869u1 WIAF-13406 HT33620 3627 GRIN2C, glutamate AGATCAGCAG[G/T]GTACCCCCTC M G T R S
    receptor, iono-
    tropic, N-methyl
    D-aspartate 2C
    G870u1 WZAF-11889 HT4468 714 SLC1A1, solute CAGAAGAGTC[C/G]TTCACAGCTG S C G S S
    carrier family 1
    (neuronal/
    epithelial high
    affinity glutamate
    transporter, system
    Xag), member 1
    G870u2 WIAF-11913 HT4468 314 SLC1A1, solute CTACAGAAAT[T/A]CTACTTTGCT M T A F Y
    carrier family 1
    (neuronal/
    epithelial high
    affinity glutamate
    transporter, system
    Xag), member 1
    G870u3 WIAF-11914 HT4468 579 SLC1A1, solute AAGTCAGTAC[G/A]CTCGATGCCA S G A T T
    carrier family 1
    (neuronal/
    epithelial high
    affinity glutamate
    transporter, system
    Xag), member 1
    G870u4 WIAF-11922 HT4468 706 SLC1A1, solute GAACATGACA[G/A]AAGAGTCCTT M G A E K
    carrier family 1
    (neuronal/
    epithelial high
    affinity glutamate
    transporter, system
    Xag), member 1
    G870u5 WIAF-11923 HT4468 978 SLC1A1, solute GGAAGATCAT[A/G]GAAGTTGAAG M A G I M
    carrier family 1
    (neuronal/
    epithelial high
    affinity glutamate
    transporter, system
    Xag), member 1
    G871ul WIAF-11892 HT3187 1004 SLC1A3, solute TTCTCTTAAC[G/C]AAGCCATCAT M G C E Q
    carrier family 1
    (glial high
    affinity glutamate
    transporter),
    member 3
    G871u2 WIAF-11915 HT3187 1154 SLC1A3, solute TGTTGGCTTA[C/T]TCATTCACGC M C T L F
    carrier family 1
    (glial high
    affinity glutamate
    transporter),
    member 3
    G871u3 WIAF-11926 HT3187 1412 SLC1A3, solute GGCTGCCATT[T/G]TCATTGCTCA M T G F V
    carrier family 1
    (glial high
    affinity glutamate
    transporter),
    member 3
    G871u4 WIAF-11944 HT3187 1217 SLC1A3, solute AAACCCTTGG[G/A]TTTTTATTCC M G A V I
    carrier family 1
    (glial high
    affinity glutamate
    transporter),
    member 3
    G872u1 WIAF-13433 HT4077 1271 SLC1A2, solute CTGTTGGAGC[A/C]ACCATTAACA S A C A A
    carrier family 1
    (glial high
    affinity glutamate
    transporter),
    member 2
    G879u1 WIAF-11899 HT28317 1273 GRM2, glutamate GACTTTGTGC[T/C]CAACGTCAAG M T C L P
    receptor, metabo-
    tropic 2
    G879u2 WIAF-11932 HT28317 2349 GRM2, glutamate CTTCTATGTC[A/C]CCTCCAGTGA M A G T A
    receptor, metabo-
    tropic 2
    G879u3 WIAF-13421 HT28317 2186 GRM2, glutamate ATGCAAGTAT[G/T]TTGGGCTCGC M G T M I
    receptor, metabo-
    tropic 2
    G879u4 WIAF-13429 HT28317 2567 GRM2, glutamate CCCAGTTTGT[C/T]CCCACTGTTT S C T V V
    receptor, metabo-
    tropic 2
    G879u5 WIAF-13436 HT28317 2046 CRM2, glutamate ACAGGTGGCC[A/G]TCTGCCTGGC M A G I V
    receptor, metabo-
    tropic 2
    G879u6 WIAF-13438 HT28317 2425 GRM2, glutamate GTCCTTGGCT[C/T]CCTCTTTGCG M G T C F
    receptor, metabo-
    tropic 2
    G879u7 WIAF-13439 HT28317 2463 GRM2, glutamate CCTCTTCCAG[C/T]CGCAGAAGAA M C T P S
    receptor, metabo-
    tropic 2
    G880u1 WIAF-12164 HT33719 2117 GRM4, glutamate AGCCCGACCT[T/G]GGCACCTGCT S T G L L
    receptor, metabo-
    tropic 4
    G880u2 WIAF-12176 HT33719 2427 GRM4, glutamate GGACCTGTCG[C/T]TCATCTGCCT M C T L F
    receptor, metabo-
    tropic 4
    G880u3 WIAF-12192 HT33719 2372 GRM4, glutamate ACCAGCGGAC[A/G]CTCGACCCCC S A G T T
    receptor, metabo-
    tropic 4
    G883a1 WIAF-13140 HT48863 1408 GRM7, glutamate ATCGCAAATC[C/a]ACAGGACAGG N C a C *
    receptor, metabo-
    tropic 7
    G883a2 WIAF-13141 HT48863 2027 GRM7, glutamate TCCTGTCTTC[C/t]TGGCAATGTT S C t L L
    receptor, metabo-
    tropic 7
    G883a3 WIAF-13147 HT48863 1813 GRM7, glutamate TGTGCACACT[A/g]CCATGTAAGC S A g L L
    receptor, metabo-
    tropic 7
    G883a4 WIAF-13148 HT48863 1536 GRM7, glutamate TGTGCTGACT[A/t]CCGGGCTCTC M A t Y F
    receptor, metabo-
    tropic 7
    G883a5 WIAF-13149 HT48863 2473 GRM7, glutamate AAGCCAGAGG[G/a]GTTCTCAAGT S G a G G
    receptor, metabo-
    tropic 7
    G883a6 WIAF-13150 HT48863 2434 GRM7, glutamate TCATAGACTA[C/t]GATGAACACA S C t Y Y
    receptor, metabo-
    tropic 7
    G884u1 WIAF-11916 U95025 1052 GRM8, glutamate CGAACTCTTG[C/A]CAATAATCGA M C A A D
    receptor,
    metabotropic 8
    G884u2 WIAF-11945 U95025 2016 GRM8, glutamate AAACAAACCG[T/C]ATCCACCGAA S T C R R
    receptor, metabo-
    tropic 8
    G884u3 WIAF-11946 U95025 1852 GRM8, glutamate CAGGGCTTCA[G/A]GACGCGAACT M G A G R
    receptor, metabo-
    tropic 8
    G884u4 WIAF-11947 U95025 2078 GRM8, glutamate ATTAGTCCAG[C/G]ATCTCAGCTG M C G A G
    receptor, metabo-
    tropic 8
    G884u5 WIAF-13430 U95025 1897 GRM8, glutamate TTTTCTCTGT[T/G]ATTCAATCAC M T G Y D
    receptor, metabo-
    tropic 8
    G884u6 WIAF-13435 U95025 2364 GRM8, glutamate TTACCATGTA[T/C]ACCACCTGCA S T C Y Y
    receptor, metabo-
    tropic 8
    G885u1 WIAF-13434 AF002700 1363 GFRA2, GDNF family AACTCAGGCC[C/A]CAGCACAGCC M C A P H
    receptor alpha
    2
    G886a1 WIAF-13142 U95847 497 GFRA1, GDNF family GAAGTCCCTC[T/a]ACAACTGCCG M T a Y N
    receptor alpha
    1
    G886a2 WIAF-13143 U95847 1385 GFRA1, GDNF family GTCTGAGAAT[G/a]AAATTCCCAC M G a E K
    receptor alpha
    1
    G886a3 WIAF-13151 U95847 781 GFRA1, GDNF family GCGTGTCCAA[T/C]GATGTCTGCA S T c N N
    receptor alpha
    1
    G892u1 WIAF-11956 U12140 798 NTRK2, neuro- TGGGCAATCC[A/C]TTTACATGCT S A G P P
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u2 WIAF-11957 U12140 834 NTRK2, neuro- GGATCAAGAC[T/A]CTCCAACAGC S T A T T
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u3 WIAF-11958 U12140 956 NTRK2, neuro- GCAAATCTGG[C/T]CGCACCTAAC M C T A V
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u4 WIAF-11960 U12140 1738 NTRK2, neuro- CTCCAAGTTT[G/A]GCATCAAAGG M G A G S
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u5 WIAF-11962 U12140 2486 NTRK2, neuro- GTCGGTGGCC[A/C]CACAATGCTG M A G H R
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u6 WIAF-11965 U12140 1106 NTRK2, neuro- TCCTTAAGGA[T/C]AACTAACATT M T C I T
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u7 WIAF-11966 U12140 2085 NTRK2, neuro- AGGATGCCAG[T/C]GACAATGCAC S T C S S
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u8 WIAF-11967 U12140 2230 NTRK2, neuro- GGACCTCAAC[A/C]AGTTCCTCAG M A C K Q
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u9 WIAF-11968 U12140 2223 NTRK2, neuro- AGCATGGGGA[C/T]CTCAACAAGT S C T D D
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u10 WIAF-11992 U12140 1602 NTRK2, neuro- GTAATCAAAT[C/T]CCTTCCACAG S C T I I
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u11 WIAF-11998 U12140 1354 NTRK2, neuro- TACTAAAATA[C/T]ATGTTACCAA M C T H Y
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u12 WIAF-11999 U12140 1944 NTRK2, neuro- CATTTGTTCA[G/C]CACATCAAGC M G C Q H
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u13 WIAF-12000 U12140 2103 NTRK2, neuro- CACGCAAGGA[C/T]TTCCACCGTG S C T D D
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u14 WIAF-12001 U12140 1860 NTRK2, neuro- CTGTCATTAT[T/C]GGAATGACCA S T C I I
    trophic tyrosine
    kinase, receptor,
    type 2
    G892a15 WIAF-13144 U12140 1868 NTRK2, neuro- ATTGGAATGA[C/G]CAAGATCCCT M C G T S
    trophic tyrosine
    kinase, receptor,
    type 2
    G892a16 WIAF-13145 U12140 1903 NTRK2, neuro- CCAGTACTTT[C/T]GCATCACCAA M G T G C
    trophic tyrosine
    kinase, receptor,
    type 2
    G892a17 WIAF-13146 U12140 1965 NTRK2, neuro- GACATAACAT[T/G]GTTCTGAAAA M T G I M
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u18 WIAF-13442 U12140 958 NTRK2, neuro- AAATCTGGCC[G/T]CACCTAACCT M G T A S
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u19 WIAF-13446 U12140 2502 NTRK2, neuro- TGCTGCCCAT[T/C]CGCTGGATGC S T C I I
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u20 WIAF-13447 U12140 2317 NTRK2, neuro- GATGCTGCAT[A/T]TAGCCCAGCA M A T I L
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u21 WIAF-13448 U12140 2364 NTRK2, neuro- CGTCCCAGCA[C/A]TTCGTGCACC M C A H Q
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u22 WIAF-13449 U12140 2507 NTRK2, neuro- CCCATTCGCT[G/A]GATCCCTCCA N G A W *
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u23 WIAF-13471 U12140 2389 NTRK2, neuro- TTTGCCCACC[A/C]CGAACTCCCT S A C R R
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u24 WIAF-13472 U12140 2416 NTRK2, neuro- GGAGAACTTG[C/T]TCGTGAAAAT S C T L L
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u25 WIAF-13474 U12140 359 NTRK2, neuro- GGGATCTCGT[C/T]CTGGATAAGG M C T S F
    trophic tyrosine
    kinase, receptor,
    type 2
    G892u26 WIAF-13479 U12140 1044 NTRK2, neuro- TGTATTGGGA[T/C]GTTGGTAACC S T C D D
    trophic tyrosine
    kinase, receptor,
    type 2
    G9u1 WIAF-10222 J03826 1130 FDXR, ferredoxin GGTATAAGAG[C/T]CGCCCTGTCG S C T S S
    reductase
    G9u2 WIAF-10258 J03826 388 FDXR, ferredoxin CCGGAGCTGC[A/C]GGAGGCCTAC M A G Q R
    reductase
    G900u1 WIAF-11970 HT3470 497 STX4A, syntaxin 4A TGCAATTCAA[T/C]GCACTCCGAA M T C M T
    (placental)
    G901u1 WIAF-11969 HT27792 758 STX3A, syntaxin 3A TGCACACAGT[G/A]GACCACGTGG S G A V V
    G901u2 WIAF-11971 HT27792 317 STX3A, syntaxin 3A ACGTCCGGAA[C/A]AAACTGAAGA M C A N K
    G901u3 WIAF-12002 HT27792 611 STX3A, syntaxin 3A AGCAAGCCCT[C/T]AGTGAGATTG S C T L L
    G901u4 WIAF-12003 HT27792 909 STX3A, syntaxin 3A CCTCAATTAA[C/A]ACTCCCCTAA G A
    G901u5 WIAF-12004 HT27792 163 STX3A, syntaxin 3A ATTGAGGAAA[C/T]TCGGCTTAAC M C T T I
    G901a6 WIAF-13152 HT27792 82 STX3A, syntaxin 3A CAGCTGACAC[A/C]GGATGATGAT M A G Q R
    G901u7 WIAF-13453 HT27192 828 STX3A, syntaxin 3A CCGGAAGAAA[T/C]TGATAATTAT S T C L L
    G901u8 WIAF-13455 HT27792 226 STX3A, syntaxin 3A TACAGTATCA[T/C]TCTCTCTGCA M T C I T
    G902u1 WIAF-13454 HT27744 848 STX5A, syntaxin 5A ACTTCCAGTC[T/A]GTCACCTCCA S T A S S
    G902u2 WIAF-13456 HT27744 338 STX5A, syntaxin 5A ATTTCGTGAG[A/G]GCCAAGGGCA S A G R R
    G905u1 WIAF-12202 HT27789 487 CREBL1, cAMP TCCAGATCAA[C/T]GTTATCCCCA S C T N N
    responsive element
    binding protein-
    like 1
    G905u2 WIAF-12219 HT27789 151 CREBL1, cAMP ATTCTGCCCT[A/T]GATCAAGTGG S A T L L
    responsive element
    binding protein-
    like 1
    G905u3 WIAF-12230 HT27789 649 CREBL1, cAMP AGTCCCTGTC[C/G]CCTTCAGGAT S C G S S
    responsive element
    binding protein-
    like 1
    G906u1 WIAF-12214 HT4372 2127 N-ethylmaleimide- AAGGGAAGAA[G/A]GTCTGGATAG S G A K K
    sensitive factor
    G906u2 WIAF-12221 HT4372 514 N-ethylmaleimide- GGGAGAGCCT[G/A]CGACAGGGAA M G A A T
    sensitive factor
    G908u1 WIAF-12201 HT3665 98 RAB5A, RAB5A, GCCCAAATAC[T/G]GGAAATAAAA S T G T T
    member RAS
    oncogene family
    G91u1 WIAF-10438 HT1848 496 ERCC1, excision TCGTGCGCAA[C/T]GTGCCCTGGG S C T N N
    repair cross-
    complementing
    rodent repair
    deficiency, com-
    plementation group
    1 (includes over-
    lapping antisense
    sequence)
    G91u2 WIAF-10439 HT1848 367 ERCC1, excision CTGGCGCCAC[G/A]TGCCCCACAG S C A T T
    repair cross-
    complementing
    rodent repair
    deficiency,
    complementation
    group 1 (includes
    overlapping anti-
    sense sequence)
    G914a1 WIAF-13210 HT3672 252 synaptobrevin 1 GCAGTGCTGC[C/A]AAGCTAAAGA S G A A A
    G915a1 WIAF-12115 D63506 1390 Homo sapiens mRNA TTACCTTGGT[G/A]TTCCCATTGT M G A V I
    for unc-
    18homologue,
    complete cds.
    G915u2 WIAF-12293 D63506 685 Homo sapiens mRNA ACAGCTTGTT[G/A]AAAAAAAGCT M G A E K
    for unc-
    18homologue,
    complete cds.
    G916a1 WIAF-13209 HT28523 308 Huntingtin GAGCACTTTT[C/T]GGAGGCCAGC M C T S L
    associated protein
    1-like protein
    G916a2 WIAF-13211 HT28523 762 Huntingtin CGGAGGACTT[G/C]GTCCCCCACG M G C L F
    associated protein
    1-like protein
    G916a3 WIAF-13212 HT28523 560 Huntingtin GAGCTCAGAA[C/T]GTCTCTAAGG M C T T N
    associated protein
    1-like protein
    G917u1 WIAF-11972 U79734 1075 HIP1, huntingtin AGAGCCAGCG[G/A]GTTGTGCTGC S G A R R
    interacting
    protein
    1
    G917u2 WIAF-11973 U79734 1005 HIP1, huntingtin GACCACTTAA[T/C]TGAGCGACTA M T C I T
    interacting
    protein
    1
    G917u3 WIAF-11977 U79734 1539 HIP1, huntingtin CTGCAAGGCA[G/A]CCTGGAAACT M G A S N
    interacting
    protein
    1
    G917u4 WIAF-12005 U79734 817 HIP1, huntingtin TGGTGGTGAT[C/T]CCTGCAGAGG S C T I I
    interacting
    protein 1
    G917u5 WIAF-12006 U79734 1906 HIP1, huntingtin GCTGGAGCCA[G/C]TATCTGGCCT M G C Q H
    interacting
    protein
    1
    G917a6 WIAF-13157 U79734 993 HIP1, huntingtin AAGGATGAGA[A/G]GGACCACTTA M A G K R
    interacting
    protein 1
    G919u1 WIAF-11974 D30742 707 CAMK4, calcium/ ACTGCGCACC[T/C]GAAATTCTTA S T C P P
    calmodulin
    dependent protein
    kinase IV
    G919u2 WIAF-11991 D30742 1139 CAMK4, calcium/ AGAGCCACAA[G/A]GCTAGCCGAG S G A K K
    calmodulin
    dependent protein
    kinase IV
    G919u3 WIAF-12007 D30742 834 CAMK4, calcium/ CATGTTCAGG[A/T]GAATTCTGAA N A T R *
    calmodulin
    dependent protein
    kinase IV
    G919u4 WIAF-13443 D30742 1088 CAMK4, calcium/ TGGCCTCTTC[C/G]CGCCTGGGAA S C G S S
    calmodulin-
    dependent protein
    kinase IV
    G920u1 WIAF-11979 X78520 1952 CLCN3, chloride ATGACATTCC[T/C]GATCGTCCAG S T C P P
    channel
    3
    G920u2 WIAF-11980 X78520 1819 CLCN3, chloride ATAGCCTTCC[C/T]TAATCCATAC M C T P L
    channel
    3
    G920u3 WIAF-11981 X78520 2094 CLCN3, chloride CATTGGAGCG[A/C]TCGCAGCGAAG M A G I V
    channel
    3
    G920u4 WIAF-11983 X78520 2822 CLCN3, chloride ATATTTTCCG[A/G]AAGCTGGGAC S A G R R
    channel
    3
    G920u5 WIAF-11984 X78520 2745 CLCN3, chloride GCCATTGAAG[C/T]TTCCAAGCAT M C T L F
    channel
    3
    G920u6 WIAF-11987 X78520 2499 CLCN3, chloride TCCCTTACCT[C/T]TCCTGACACA M G T V F
    channel
    3
    G920u7 WIAF-12008 X78520 1251 CLCN3, chloride CATCATCACA[G/A]GTTACTTGGC M G A G S
    channel
    3
    G920u8 WIAF-12011 X78520 888 CLCN3, chloride AGTACTAACA[C/T]TAACACGATT S C T L L
    channel
    3
    G920u9 WIAF-13459 X78520 2804 CLCN3, chloride CAATCGACAT[T/C]GTCCTCCATA S T C I I
    channel 3
    G921u1 WIAF-11954 J02908 931 CLU, clusterin GAGACCTTGA[C/T]CAGGAAATAC M C T T I
    (complement lysis
    inhibitor, SP-40,
    40, sulfated glyco-
    protein 2,
    testosterone-
    repressed prostate
    message
    2,
    apolipoprotein J)
    G921u2 WIAF-11955 J02908 880 CLU, clusterin CCCTCCCAGG[C/T]TAAGCTCCGG M C T A V
    (complement lysis
    inhibitor, SP-40,
    40, sulfated glyco-
    protein 2,
    testosterone-
    repressed prostate
    message
    2,
    apolipoprotein J)
    G921u3 WIAF-11990 J02908 1051 CLU, clusterin CTCACCCAAG[G/C]CGAACACCAG M G C G A
    (complement lysis
    inhibitor, SP-40,
    40, sulfated glyco-
    protein 2,
    testosterone-
    repressed prostate
    message
    2,
    apolipoprotein J)
    G921u4 WIAF-13469 J02908 986 CLU, clusterin TCAACACCTC[C/T]TCCTTCCTGG S C T S S
    (complement lysis
    inhibitor, SP-40,
    40, sulfated glyco-
    protein 2,
    testosterone-
    repressed prostate
    message
    2,
    apolipoprotein J)
    G923u1 WIAF-11993 M19650 1059 Human 2′,3′-cyclic GAGCTAAGCC[G/A]GGGCAAGCTC M G A R Q
    nucleotide
    3′-
    phosphodiesterase
    mRNA, complete
    cds.
    G923u2 WIAF-11994 M19650 1062 Human 2′,3′-cyclic CTAAGCCGGG[G/T]CAAGCTCTAT M G T G V
    nucleotide
    3′-
    phosphodiesterase
    mRNA, complete
    cds.
    G923u3 WIAF-13445 M19650 1141 Human 2′,3′-cyclic TCTTCACGGG[C/A]TACTACGGGA S G A G G
    nucleotide
    3′-
    phosphodiesterase
    mRNA, complete
    cds.
    G925u1 WIAF-11953 L11315 666 CAK, cell adhesion GGGTCATGAG[T/C]GTCTCTCTGC S T C S S
    kinase
    G925u2 WIAF-11959 L11315 2562 CAK, cell adhesion TGCTGCCCAT[C/T]CGCTGGATCC S C T I I
    kinase
    G925u3 WIAF-11996 L11315 2049 CAK, cell adhesion AAGATCTCCT[T/C]AGTCTTCATT S T C V V
    kinase
    G925u4 WIAF-13440 L11315 1601 CAK, cell adhesion TACCAGGAGC[C/T]CCGGCCTCGT M C T P L
    kinase
    G925u5 WIAF-13441 L11315 1629 CAK, cell adhesion CGCCCCACTC[C/T]GCTCCCTGTG S C T S S
    kinase
    G925u6 WIAF-13451 L11315 2262 CAK, cell adhesion TGGACAACGG[C/T]GACCTCAACC S C T G G
    kinase
    G926u1 WIAF-11961 AF018956 577 NRP1, neuropilin 1 TGAAAGCTTT[C/T]ACCTGGACCC M G T D Y
    G926u2 WIAF-11963 AF018956 1683 NRP1, neuropilin 1 CCACCCGATT[G/C]ATCAGGATCT M C G F L
    G926u3 WIAF-11975 AF018956 2176 NRP1, neuropilin 1 GACCTTCTGG[T/C]ATCACATGTC M T C Y H
    G926u4 WIAF-11976 AF018956 2092 NRP1, neuropilin 1 TTCCCAAGCT[G/T]ACGAAAATCA M G T D Y
    G926a5 WIAF-13158 AF018956 747 NRP1, neuropilin 1 TTTTTTACAC[C/T]GACAGCGCGA S C T T T
    G926a6 WIAF-13159 AF018956 996 NRP1, neuropilin 1 ACTTGGGCCT[T/C]CTGCGCTTTC S T C L L
    G926u7 WIAF-13444 AF018956 644 NRP1, neuropilin 1 GAAATCTGGG[A/C]TGGATTCCCT M A C D A
    G926u8 WIAF-13450 AF018956 1738 NRP1, neuropilin 1 CAGAATGGAG[C/G]TGCTCGGCTG M C C L V
    G926u9 WIAF-13452 AF018956 537 NRP1, neuropilin 1 TTGTCTTTCC[C/A]CCAAAGATGT S C A A A
    G926u10 WIAF-13457 AF018956 2197 NRP1, neuropilin 1 TGGCTCCCAC[G/A]TCGGCACACT M G A V I
    G927u1 WIAF-11978 AF022860 870 NRP2, neuropilin 2 GGATTCCTAA[T/C]GAACAGATCA S T C N N
    G927u2 WIAF-11982 AF022860 1674 NRP2, neuropilin 2 ATCACACCCC[T/G]GACATCCGAA S T G P P
    G927u3 WIAF-11985 AF022860 1250 NRP2, neuropilin 2 TGGCACTCAG[C/A]TATCGCCCTC M G A G D
    G927u4 WIAF-11986 AF022860 1071 NRP2, neuropilin 2 ATGGCTACTA[C/T]GTCAAATCCT S C T Y Y
    G927u5 WIAF-12009 AF022860 726 NRP2, neuropilin 2 GTTCATCCAC[G/A]GCGATCCTCT S G A T T
    G927u6 WIAF-12010 AF022860 2522 NRP2, neuropilin 2 GCAACCTCAG[G/T]GTCTGGCGCC M G T C V
    G927u7 WIAF-12012 AF022860 123 NRP2, neuropilin 2 GCTATATCAC[C/T]TCTCCCCGTT S C T T T
    G927a8 WIAF-13160 AF022860 2427 NRP2, neuropilin 2 CTTTTCCAGT[G/T]CACATCCCAG S C T V V
    G927a9 WIAF-13161 AF022860 2430 NRP2, neuropilin 2 TTGCAGTGGA[C/G]ATCCCAGAAA M C G D E
    G927a10 WIAF-13162 AF022860 2463 NRP2, neuropilin 2 AACCATATCA[A/G]GATCAAATTG S A G E E
    G927a11 WIAF-13163 AF022860 2473 NRP2, neuropilin 2 AGATGAAATT[G/T]ATCATCAATA M G T D Y
    G927u12 WIAF-13480 AF022860 724 NRP2, neuropilin 2 TCGTTCATCG[A/T]CGGGGATCCT M A T T S
    G927u13 WIAF-13481 AF022860 767 NRP2, neuropilin 2 ATGCCCGTGC[C/T]CAAGGATGCC M C T A V
    G930a1 WIAF-13164 HT2608 609 GABRA2, gamma- ACAATGGGAA[G/a]AAATCAGTAG S G a K K
    aminobutyric acid
    (GASA) A receptor,
    alpha 2
    G931a1 WIAF-13153 HT2609 1111 GABRA3, gamma- ACTGGTTCAT[A/g]GCCCTCTGTT M A g I M
    aminobutyric acid
    (GABA) A receptor,
    alpha 3
    G931a2 WIAF-13165 HT2609 1448 GABRA3, gamma- TGTCAGCAAG[G/A]TTCACAAAAT M G A V I
    aminobutyric acid
    (GASA) A receptor,
    alpha 3
    G932a1 WIAF-13154 HT27773 1077 GABRA4, gamma- CAAAAGAAAG[A/G]CATCAAACCC M A G T A
    aminobutyric acid
    (GABA) A receptor,
    alpha 4
    G932a2 WIAF-13155 HT27773 1189 GABRA4, gamma- AGAACAAATG[C/A]TTTGGTTCAC M C A A D
    aminobutyric acid
    (GABA) A receptor,
    alpha 4
    G936u1 WIAF-12308 HT3432 1027 GABRB2, gamma- AATTACGATG[C/T]TTCACCTGCA M C T A V
    aminobutyric acid
    (GABA) A receptor,
    beta 2
    G936u2 WIAF-12327 HT3432 362 GABRB2, gamma- AAGGCTATGA[C/T]ATTCGTCTGA S C T D D
    aminobutyric acid
    (GABA) A receptor,
    beta 2
    G936u3 WIAF-12328 HT3432 571 GABRB2, gamma- CTCTGGGTG[C/T]TGATACCTAT M C T P L
    aminobutyric acid
    (GABA) A receptor,
    beta 2
    G939u1 WIAF-12330 HT2236 1219 GABRR2, gamma- CTGGATGGAA[G/C]CTACAGTGAG M G C S T
    aminobutyric acid
    (GABA) receptor,
    rho 2
    G939u2 WIAF-12355 HT2236 1003 GABRR2, gamma- ACCACCATCA[T/C]CACGGGCGTG M T C I T
    aminobutyric acid
    (GABA) receptor,
    rho 2
    G939u3 WIAF-12356 HT2236 1041 CABRR2, gamma- CGTCTCCTAC[G/A]TCAAGGCCGT M G A V I
    aminobutyric acid
    (GABA) receptor,
    rho 2
    G950u1 WIAF-13622 U64871 725 Human putative G GTCCTGCTCC[A/C]GTTCACCACT M A C Q P
    protein-coupled
    receptor (GPR19)
    gene, complete
    cds.
    G950u2 WIAF-13624 U64871 443 Human putative G GATAACAGCA[A/C]GCCACATTTG M A C K T
    protein-coupled
    receptor (GPR19)
    gene, complete
    cds.
    G950u3 WIAF-13625 U64871 818 Human putative G CTGGGTAGTG[C/T]AACGTGCAAG M C T A V
    protein-coupled
    receptor (GPR19)
    gene, complete
    cds.
    G955a1 WIAF-13166 HT3860 5110 calcium channel, CTGGCCTCTT[T/c]ACCGTGGAGA S T c F F
    voltage-gated,
    alpha 1 subunit,
    L type, alt.
    transcript 1
    G955a2 WIAF-13167 HT3860 3842 calcium channel, CTACCCCAAC[C/a]CAGAAACTAC M C a P T
    voltage-gated,
    alpha 1 subunit,
    L type, alt.
    transcript 1
    G955a3 WIAF-13168 HT3860 5624 calcium channel, GTGTGCCCCA[G/a]AGTCCGAGCC M G a E K
    voltage-gated,
    alpha 1 subunit,
    L type, alt.
    transcript 1
    G955a4 WIAF-13169 HT3860 5703 calcium channel, ATCAGCTTCT[A/g]CATGCTCTGT M A g Y C
    voltage-gated,
    alpha 1 subunit,
    L type, alt.
    transcript 1
    G955a5 WIAF-13170 HT3860 5809 calcium channel, ACCACCTGGA[T/c]GAGTTTAAAA S T c D D
    voltage-gated,
    alpha 1 subunit,
    L type, alt.
    transcript 1
    G955a6 WIAF-13171 HT3860 6616 calcium channel, CCGGCTCCAA[C/t]GCCAACATCA S C t N N
    voltage-gated,
    alpha 1 subunit,
    L type, alt.
    transcript 1
    G956u1 WIAF-14187 HT2199 1334 calcium channel, CTTCACATAG[C/T]CCTTTTGGTA M C T A V
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u2 WIAF-14188 HT2199 1452 calcium channel, AAGAGGACCC[A/T]GCTCCATGTG S A T P P
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u3 WIAF-14189 HT2199 1614 calcium channel, GCTGGACAGA[C/T]GTGCTCTACT S C T D D
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u4 WIAF-14190 HT2199 2540 calcium channel, GGCAAGTTTA[A/T]TTTTGATGAA M A T N I
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive.
    G956u5 WIAF-14191 HT2199 3210 calcium channel, TGCTGACCAC[T/C]GCTCCCCTGG S T C S S
    voltage-gatad,
    alpha 1D subunit,
    DHP-sensitive
    G956u6 WIAF-14192 HT2199 3326 calcium channel, TTGAAGATGA[C/T]AACTTTTGGA M C T T I
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u7 WIAF-14193 HT2199 3274 calcium channel, ACTGGGTTAC[T/C]TTGACTATGC M T C F L
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u8 WIAF-14194 HT2199 5127 calcium channel, TGCCTCTCAA[C/T)AGTGACGGGA S C T N N
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u9 WIAF-14195 HT2199 5173 calcium channel, TGCTTTGGTT[C/T]GAACCGCTCT N C T R *
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u10 WIAF-14200 HT2199 1437 calcium channel, CAGATATCGT[A/G]GCTGAAGAGG S A G V V
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u11 WIAF-14201 HT2199 2567 calcium channel, ACCAAGCGCA[G/T]CACCTTTGAC M G T S I
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u12 WIAF-14202 HT2199 4464 calcium channel, TCACCTTTTT[C/T]CGTCTTTTCC S C T F F
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u13 WIAF-14215 HT2199 6927 calcium channel, GCTACAGCGA[C/T]GAAGAGCCAG S C T F F
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G956u14 WIAF-14216 HT2199 6858 calcium channel, CCCGAGCCAA[C/T]GCGGATGTGG S C T N N
    voltage-gated,
    alpha 1D subunit,
    DHP-sensitive
    G957u1 WIAF-12306 HT4229 915 calcium channel, TACATCGAGC[G/A]TGCTTCATGA M G A ? R
    voltage-gated,
    alpha 1E subunit,
    alt. transcript 2
    G957u2 WIAF-12309 HT4229 3555 calcium channel, GCCACTACAT[C/T]GTGAACCTGC S C T I I
    voltage-gated,
    alpha 1E subunit,
    alt. transcript 2
    G957u3 WIAF-12310 HT4229 4116 calcium channel, ATGTAGATCA[C/T]GAGAAAAACA S C T H H
    voltage-gated,
    alpha 1E subunit,
    alt. transcript 2
    G957u4 WIAF-12313 HT4229 5181 calcium channel, AGAACGACAA[T/C]GAACGCTGCG S T C N N
    voltage-gated,
    alpha 1E subunit,
    alt. transcript
    G957u5 WIAF-12314 HT4229 5971 calcium channel, TATGGACCCC[C/A]CCCATGACGG S G A T T
    voltage-gated,
    alpha 1E subunit,
    alt. transcript 2
    G957u6 WIAF-12315 HT4229 5985 calcium channel, ATGACGGACA[G/T]TTCCAACAAC M G T Q H
    voltage-gated,
    alpha 1E subunit,
    alt. transcript 2
    G957u7 WIAF-12329 HT4229 3100 calcium channel, GCTGGCAGCA[C/A]GCCTTGATGA M G A G S
    voltage-gated,
    alpha 1E subunit,
    alt. transcript 2
    G957u8 WIAF-12331 HT4229 6492 calcium channel, CCCTCCTTTC[C/T]TACAGCTCCC M C T ? R
    voltage-gated,
    alpha 1E subunit,
    alt. transcript 2
    G957u9 WIAF-12354 HT4229 3839 calcium channel, AACGCTTTGC[G/C]AACCAACAAA M G C G A
    voltage-gated,
    alpha 1E subunit,
    alt. transcript 2
    G957u10 WIAF-12357 HT4229 4753 calcium channel, TGACTTCATC[A/G]CCCTCATTCG M A G T A
    voltage-gated,
    alpha 1E subunit,
    alt. transcript 2
    G960u1 WIAF-12305 HT3336 1246 CACNB3, calcium TTGATCCCCT[C/T]TCATGAGCCC M C T S F
    channel, voltage
    dependent, beta
    3 subunit
    G960u2 WIAF-12340 HT3336 1288 CACNB3, calcium TGGACAGGAT[C/T]TTCACAGCGT M C T S F
    channel, voltage
    dependent, beta
    3 subunit
    G960u3 WIAF-12345 HT3336 641 CACNB3, calcium AGGCTCTCTT[C/T]CACTTCCTCA S C T F F
    channel, voltage
    dependent, beta
    3 subunit
    G960u4 WIAF-12346 HT3336 576 CACNB3, calcium CATCCCGCCT[G/A]TGGTCCTCCT M G A V M
    channel, voltage
    dependent, beta
    3 subunit
    C961u1 WIAF-12322 U95019 2037 CACNB2, calcium ACTCTCCCTA[C/T]GTAGAGCCAA S C T Y Y
    channel, voltage
    dependent, beta
    2 subunit
    G961u2 WIAF-12347 U95019 2007 CACNB2, calcium CATTTGACTC[G/A]GAAACCCAGG S G A S S
    channel, voltage
    dependent, beta
    2 subunit
    G962u1 WIAF-12324 U95020 1423 CACNB4, calcium CCAATTGAAA[G/A]ACGAAGTCTA M G A R K
    channel, voltage
    dependent, beta
    4 subunit
    G962u2 WIAF-12342 U95020 167 CACNB4, calcium GGACCAGGTT[G/T]AAAAGATCCG M G T L F
    channel, voltage
    dependent, beta
    4 subunit
    G962u3 WIAF-12350 U95020 1571 CACNB4, calcium ACACTTACAA[A/C]CCCCATAGGA S A G K K
    channel, voltage
    dependent, beta
    4 subunit
    G965u1 WIAF-12312 U40583 1276 CHRNA7, cholinergic TCCTGCACGC[T/C]GGCCAACCCC S T C G G
    receptor,
    nicotinic, alpha
    polypeptide 7
    G968a1 WIAF-12119 HT27592 1008 CHRNA1, cholinergic ACACACACCA[C/T]CGCTCACCCA S C T H H
    receptor,
    nicotinic, alpha
    polypeptide 1
    (muscle)
    G968u2 WIAF-12368 HT27592 1136 CHRNA1, cholinergic AAGATTTTTA[C/T]AGAACACATT M C T T I
    receptor,
    nicotinic, alpha
    polypeptide 1
    (muscle)
    G973a1 WIAF-13172 HT48774 800 CHRNA2, cholinergic ACACTTCAGA[C/t]GTGGTGATTG S C t D D
    receptor,
    nicotinic, alpha
    polypeptide 2
    (neuronal)
    G973a2 WIAF-13173 HT48774 927 CHRNA2, cholinergic CTGGAACCCC[G/a]CTCATTTTGC M G a A T
    receptor,
    nicotinic, alpha
    polypeptide 2
    (neuronal)
    G977u1 WIAF-13949 Y08419 366 CHRNA5, cholinergic AACTTATACC[T/C]CTTCCTTCAC S T C R R
    receptor,
    nicotinic, alpha
    polypeptide
    5
    G978a1 WIAF-13179 Y08417 1331 CHRNB3, cholinergic CCATTAGATA[C/a]ATTTCCACAC N C a Y *
    receptor,
    nicotinic, beta
    polypeptide
    3
    G983a1 WIAF-13214 HT0374 236 NPY, neuropeptide Y CATACTACTC[C/A]CCCCTCCGAC S G A S S
    G983a2 WIAF-13215 HT0374 290 NPY, neuropeptide Y CAAAACGATC[C/T]AGCCCAGAGA S C T S S
    G983a3 WIAF-13216 HT0374 111 NPY, neuropeptide Y GCCACTCCCC[C/T]TCTCCGCACT S C T L L
    G987a1 WIAF-13174 HT27830 159 PPYR1, pancreatic TGGTCTTCAT[C/T]GTCACTTCCT S C T I I
    polypeptide
    receptor
    1
    G987a2 WIAF-13175 HT27830 222 PPYR1, pancreatic TGATCTGTGT[G/A]ACTGTGAGGC S G A V V
    polypeptide
    receptor
    1
    G987a3 WIAF-13176 HT27830 322 PPYR1, pancreatic GCCGCTGACC[C/T]CCCTCTACAC M G T A S
    polypeptide
    receptor
    1
    G987a4 WIAF-13177 HT27830 1074 PPYR1, pancreatic TGGACGACTC[G/A]GACCATCTCC S G A S S
    polypeptide,
    receptor 1
    G987a5 WIAF-13178 HT27830 975 PPYR1, pancreatic CCTCCACCTG[C/T]GTCAACCCAT S C T C C
    polypeptide
    receptor
    1
    G987a6 WIAF-13180 HT27830 615 PPYR1, pancreatic AGTTCCTCCC[A/g]GATAAGCTGC S A g A A
    polypeptide
    receptor
    1
    G987a7 WIAF-13181 HT27830 718 PPYR1, pancreatic GGGCTTCATC[C/T]TGGTCTGTTA S C T L L
    polypeptide
    receptor
    1
    G987a8 WIAF-13182 HT27830 745 PPYR1, pancreatic CATCTACCGG[C/t]GCCTGCAGAG M C t R C
    polypeptide
    receptor
    1
    G987a9 WIAF-13183 HT27830 842 PPYR1, pancreatic GTGATGCTCC[T/A]GGCCTTTGCC M T A V E
    polypeptide
    receptor
    1
    G987a10 WIAF-13184 HT27830 852 PPYR1, pancreatic TCGCCTTTGC[C/T]GTGCTCTGGC S C T A A
    polypeptide
    receptor
    1
    G987a11 WIAF-13185 HT27830 889 PPYR1, pancreatic CAACAGCCTG[G/a]AACACTCGCA M G a E K
    polypeptide
    receptor
    1
    G987a12 WIAF-13186 HT27830 924 PPYR1, pancreatic CCATCTGCCA[C/T]CCGAACCTCA S C T H H
    polypeptide
    receptor
    1
    G989u1 WIAF-13573 D86519 891 NPY6R, neuro- TGACTCATGC[C/T]TACTGGGCCA S C T A A
    peptide Y receptor
    Y6
    G989u2 WIAF-13588 D86519 465 NPY6R, neuro- ACCACCCAGC[A/C]TCTAATACAA S A G A A
    peptide Y receptor
    Y6
    G989u3 WIAF-13591 D86519 980 NPY6R, neuro- GAGCCCTTCC[G/A]CAACCTCTCT M G A R H
    peptide Y receptor
    Y6
    G991u1 WIAF-12390 HT97376 336 Notch2 AAGCTACTTG[C/T]GTTCAGAAAA S C T C C
    G993u1 WIAF-12359 U95299 1343 NOTCH4, Notch TCCACACTCT[G/T]CCTGTGTCAG H G T C F
    (Drosophila)
    homolog 4
    G993u2 WIAF-12361 U95299 2020 NOTCH4, Notch TAACCACCAC[A/C]AACACAACCC H A G K E
    (Drosophila)
    homolog 4
    G993u3 WIAF-12384 U95299 5775 NOTCH4, Notch CCGCCTATTC[G/T]CATTGCCGGA S C T S S
    (Drosophila)
    homolog 4
    G996a1 WIAF-13213 HT3329 356 OPRM1, opioid CTTAGATCCC[A/G]ACCTCTCCCA M A G N D
    receptor, mu 1
    LPLa4 WIAF-13314 HT1320 443 LPL, lipoprotein ATGTATGACA[C/T]TTGCCTGCCA M C T S I
    lipase
    LPLa5 WIAF-13315 HT1320 579 LPL, lipoprotein GACAGCATCT[G/A]GCCCGGTTTA S G A V V
    lipase
    LPLa6 WIAF-13316 HT1320 609 LPL, lipoprotein TGGACGAGCA[C/A]TTTAACTACC S C A E E
    lipase
    LPLa7 WIAF-13317 HT1320 1338 LPL, lipoprotein CAAATAAGAC[C/A]TACTCCTTCC S C A T V
    lipase
    LPLa8 WIAF-13318 HT1320 1117 LPL, lipoprotein CAATCTGCCC[T/C]ATGAGATCAA M T C Y D
    lipase
    LPLa9 WIAF-13319 HT1320 715 LPL, lipoprotein CAGAATTACT[G/A]GCCTCCATCC M C A C S
    lipase
    LPLa10 WIAF-13320 HT1320 834 LPL, lipoprotein CTGGTCGAAC[C/A]ATTGGAATCC M C A S R
    lipase
    LPLa11 WIAF-13321 HT1320 951 LPL, lipoprotein GACTTGCACA[T/A]CTCCACCAGC M T A D E
    lipase
    LPLa12 WIAF-13322 HT1320 1595 LPL, lipoprotein AATAACAACT[C/C]AGCCTCAAAC N C G S *
    lipase
    LPLa13 WIAF-13323 HT1320 1597 LPL, lipoprotein TAAGAAGTCA[G/A]GCTGAAACTG M G A G S
    lipase
    LPLa14 WIAF-13324 HT1320 1606 LPL, lipoprotein AGGCTGAAAC[T/C]CGGCGAATCT T C
    lipase
    LPLa15 WIAF-13325 HT1320 1611 LPL, lipoprotein GAAACTGGGC[G/A]AATcTACAGA G A
    lipase
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims (33)

1. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
a) obtaining a nucleic acid sample from the individual; and
b) determining the nucleotide present at nucleotide position 2210 of the thrombospondin-1 gene,
wherein presence of a G at nucleotide position 2210 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having an A at nucleotide position 2210, and wherein presence of an A at nucleotide position 2210 is indicative of decreased likelihood of a vascular disease in the individual as compared with an individual having a G at nucleotide position 2210.
2. The method of claim 1, wherein the thrombospondin-1 gene has the nucleotide sequence of SEQ ID NO: 1.
3. The method of claim 1, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
4. A method for predicting the likelihood that an individual will have a vascular disease, comprising the steps of:
a) obtaining a DNA sample from an individual to be assessed; and
b) determining the nucleotide present at nucleotide position 2210 of the thrombospondin-1 gene,
wherein presence of a G at nucleotide position 2210 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having an A at nucleotide position 2210.
5. The method according to claim 4, wherein the thrombospondin-I gene has the nucleotide sequence of SEQ ID NO: 1.
6. The method according to claim 4, wherein the individual is an individual at risk for development of a vascular disease.
7. The method according to claim 4, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
8. A nucleic acid molecule comprising all or a portion of the nucleic acid sequence of SEQ ID NO: 1 wherein said nucleic acid molecule is at least 10 nucleotides in length and wherein the nucleic acid sequence comprises a polymorphic site at nucleotide position 2210 of SEQ ID NO: 1.
9. The nucleic acid molecule according to claim 8, wherein the nucleotide at the polymorphic site is different from a nucleotide at the polymorphic site in a corresponding reference allele.
10. An allele-specific oligonucleotide that hybridizes to the nucleic acid molecule of claim 8.
11. A peptide of SEQ ID NO: 2 which is at least ten contiguous amino acids, wherein the peptide comprises the serine at amino acid position 700 of SEQ ID NO: 2.
12. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
a) obtaining a biological sample comprising thrombospondin-1 protein or relevant portion thereof from the individual; and
b) determining the amino acid present at amino acid position 700 of the thrombospondin-1 protein,
wherein presence of an asparagine at amino acid position 700 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having a serine at amino acid position 700, and wherein presence of a serine at amino acid position 700 is indicative of reduced likelihood of a vascular disease in the individual as compared with an individual having an asparagine at amino acid position 700.
13. The method of claim 12, wherein the thrombospondin-1 protein has the amino acid sequence of SEQ ID NO: 2.
14. The method of claim 12, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
15. A nucleic acid molecule comprising all or a portion of the nucleic acid sequence of SEQ ID NO: 3 wherein said nucleic acid molecule is at least 10 nucleotides in length and wherein the nucleic acid sequence comprises a polymorphic site at nucleotide position 1186 of SEQ ID NO: 3.
16. The nucleic acid molecule according to claim 15, wherein the nucleotide at the polymorphic site is different from a nucleotide at the polymorphic site in a corresponding reference allele.
17. An allele-specific oligonucleotide that hybridizes to the nucleic acid molecule of claim 15.
18. A peptide of SEQ ID NO: 4 which is at least ten contiguous amino acids, wherein the peptide comprises the proline at amino acid position 387 of SEQ ID NO: 4.
19. A method of diagnosing or aiding in the diagnosis of a vascular disease in an individual comprising
a) obtaining a biological sample comprising thrombospondin-4 protein or relevant portion thereof from the individual; and
b) determining the amino acid present at amino acid position 387 of the thrombospondin-4 protein,
wherein presence of an alanine at amino acid position 387 is indicative of increased likelihood of a vascular disease in the individual as compared with an individual having a proline at amino acid position 387, and wherein presence of a proline at amino acid position 387 is indicative of reduced likelihood of a vascular disease in the individual as compared with an individual having an alanine at amino acid position 387.
20. The method of claim 19, wherein the thrombospondin-4 protein has the amino acid sequence of SEQ ID NO: 4.
21. The method of claim 19, wherein the vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
22. A nucleic acid molecule selected from the group consisting of the genes listed in the Table, wherein said nucleic acid molecule is at least 10 nucleotides in length and comprises a polymorphic site identified in the Table, wherein a nucleotide at the polymorphic site is different from a nucleotide at the polymorphic site in a corresponding reference allele.
23. A nucleic acid molecule according to claim 22, wherein said nucleic acid molecule is at least 15 nucleotides in length.
24. A nucleic acid molecule according to claim 22, wherein said nucleic acid molecule is at least 20 nucleotides in length.
25. A nucleic acid molecule according to claim 22, wherein the nucleotide at the polymorphic site is the variant nucleotide for the gene listed in the Table.
26. An allele-specific oligonucleotide that hybridizes to a portion of a gene selected from the group consisting of the genes listed in the Table, wherein said portion is at least 10 nucleotides in length and comprises a polymorphic site identified in the Table, wherein a nucleotide at the polymorphic site is different from a nucleotide at the polymorphic site in a corresponding reference allele.
27. An allele-specific oligonucleotide according to claim 26 that is a probe.
28. An allele-specific oligonucleotide according to claim 26, wherein a central position of the probe aligns with the polymorphic site of the portion.
29. An allele-specific oligonucleotide according to claim 26 that is a primer.
30. An allele-specific oligonucleotide according to claim 29, wherein the 3′ end of the primer aligns with the polymorphic site of the portion.
31. An isolated gene product encoded by a nucleic acid molecule according to claim 22.
32. A method of analyzing a nucleic acid sample, comprising obtaining the nucleic acid sample from an individual; and determining a base occupying any one of the polymorphic sites shown in the Table.
33. A method according to claim 32, wherein the nucleic acid sample is obtained from a plurality of individuals, and a base occupying one of the polymorphic positions is determined in each of the individuals, and wherein the method further comprising testing each individual for the presence of a disease phenotype, and correlating the presence of the disease phenotype with the base.
US10/831,997 1999-09-10 2004-04-26 Single nucleotide polymorphisms in genes Abandoned US20050244834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/831,997 US20050244834A1 (en) 1999-09-10 2004-04-26 Single nucleotide polymorphisms in genes

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15335799P 1999-09-10 1999-09-10
US22094700P 2000-07-26 2000-07-26
US22572400P 2000-08-16 2000-08-16
US09/657,472 US6727063B1 (en) 1999-09-10 2000-09-07 Single nucleotide polymorphisms in genes
US10/831,997 US20050244834A1 (en) 1999-09-10 2004-04-26 Single nucleotide polymorphisms in genes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/657,472 Division US6727063B1 (en) 1999-09-10 2000-09-07 Single nucleotide polymorphisms in genes

Publications (1)

Publication Number Publication Date
US20050244834A1 true US20050244834A1 (en) 2005-11-03

Family

ID=32111002

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/657,472 Expired - Fee Related US6727063B1 (en) 1999-09-10 2000-09-07 Single nucleotide polymorphisms in genes
US10/831,997 Abandoned US20050244834A1 (en) 1999-09-10 2004-04-26 Single nucleotide polymorphisms in genes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/657,472 Expired - Fee Related US6727063B1 (en) 1999-09-10 2000-09-07 Single nucleotide polymorphisms in genes

Country Status (1)

Country Link
US (2) US6727063B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099214A1 (en) * 2005-09-01 2007-05-03 Philadelphia Health & Education Corporation D/B/A Drexel University College Of Medicine Identification of a pin specific gene and protein (PIN-1) useful as a diagnostic treatment for prostate cancer
WO2007085087A1 (en) * 2006-01-24 2007-08-02 The University Of British Columbia Vasopressin pathway polymorphisms as indicators of subject outcome in critically ill subjects
WO2009055805A2 (en) * 2007-10-25 2009-04-30 Newsham Genetics, Lc Genetic markers and methods for improving swine genetics
US20090298711A1 (en) * 2006-01-24 2009-12-03 The University Of British Columbia Vasopressin pathway polymorphisms as indicators of subject outcome in critically ill subjects

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568766B2 (en) 2000-08-24 2013-10-29 Gattadahalli M. Anantharamaiah Peptides and peptide mimetics to treat pathologies associated with eye disease
US7723303B2 (en) * 2000-08-24 2010-05-25 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US7148197B2 (en) * 2000-08-24 2006-12-12 The Regents Of The University Of California Orally administered small peptides synergize statin activity
US7199102B2 (en) * 2000-08-24 2007-04-03 The Regents Of The University Of California Orally administered peptides synergize statin activity
US20040142325A1 (en) * 2001-09-14 2004-07-22 Liat Mintz Methods and systems for annotating biomolecular sequences
US7655411B2 (en) * 2002-08-23 2010-02-02 W2 Holdings, Inc. Thrombospondin fragments and binding agents in the detection, diagnosis and evaluation of cancer
EP1716227A4 (en) * 2004-01-27 2010-01-06 Compugen Ltd Methods of identifying putative gene products by interspecies sequence comparison and biomolecular sequences uncovered thereby
US20060147946A1 (en) * 2004-01-27 2006-07-06 Pinchas Akiva Novel calcium channel variants and methods of use thereof
US7608458B2 (en) * 2004-02-05 2009-10-27 Medtronic, Inc. Identifying patients at risk for life threatening arrhythmias
US8027791B2 (en) * 2004-06-23 2011-09-27 Medtronic, Inc. Self-improving classification system
US20050287574A1 (en) * 2004-06-23 2005-12-29 Medtronic, Inc. Genetic diagnostic method for SCD risk stratification
US8335652B2 (en) * 2004-06-23 2012-12-18 Yougene Corp. Self-improving identification method
WO2006034056A2 (en) * 2004-09-16 2006-03-30 The Regents Of The University Of California G-type peptides and other agents to ameliorate atherosclerosis and other pathologies
WO2006055927A2 (en) * 2004-11-17 2006-05-26 The Cleveland Clinic Foundation Pathogenic gene and protein associated with paroxysmal dyskinesia and epilepsy
KR20070089996A (en) 2004-12-06 2007-09-04 더 리전트 오브 더 유니버시티 오브 캘리포니아 Methods for improving the structure and function of arterioles
FR2883298B1 (en) * 2005-03-17 2009-07-24 Univ Aix Marseille Ii NUCLEIC ACID FRAGMENTS AND METHOD OF SPECIFIC DETECTION BY MOLECULAR IDENTIFICATION OF DIFFERENT SPECIES OF BACTERIA OF THE GENUS ACINETOBACTER
WO2006118805A2 (en) * 2005-04-29 2006-11-09 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US20080293639A1 (en) * 2005-04-29 2008-11-27 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
US9273356B2 (en) * 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
CA2665287C (en) 2006-10-06 2022-08-30 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Prevention of tissue ischemia, related methods and compositions
WO2008085898A2 (en) * 2007-01-04 2008-07-17 President And Fellows Of Harvard College Methods for identifying essential proteins and therapeutic agents
EP2682400B1 (en) 2007-08-28 2017-09-20 Uab Research Foundation Synthetic apolipoprotein E mimicking polypeptides and methods of use
EP2195340A4 (en) 2007-08-28 2011-05-11 Uab Research Foundation Synthetic apolipoprotein e mimicking polypeptides and methods of use
US20110143956A1 (en) * 2007-11-14 2011-06-16 Medtronic, Inc. Diagnostic Kits and Methods for SCD or SCA Therapy Selection
WO2009064970A1 (en) * 2007-11-14 2009-05-22 Medtronic, Inc. Genetic markers for scd or sca therapy selection
CA2713667A1 (en) * 2008-01-31 2009-08-06 Compugen Ltd. Cd55 isoform and uses therof in cancer detection, monitoring and therapy
EP2093566A1 (en) * 2008-02-21 2009-08-26 Pangaea Biotech, S.A. Method for the prognosis of non-small cell lung cancer
EP2093567A1 (en) * 2008-02-21 2009-08-26 Pangaea Biotech, S.A. Brca1 mRNA expression levels predict survival in breast cancer patients treated with neoadjuvant chemotherapy
US20100317006A1 (en) * 2009-05-12 2010-12-16 Medtronic, Inc. Sca risk stratification by predicting patient response to anti-arrhythmics
US20110237537A1 (en) * 2009-05-29 2011-09-29 Lombard Jay L Methods for assessment and treatment of mood disorders via single nucleotide polymorphisms analysis
US20100304391A1 (en) * 2009-05-29 2010-12-02 Lombard Jay L Methods for assessment and treatment of depression via utilization of single nucleotide polymorphisms analysis
US8355927B2 (en) 2010-11-05 2013-01-15 Genomind, Llc Neuropsychiatric test reports
EP3189069B1 (en) 2014-07-31 2024-10-23 UAB Research Foundation Apoe mimetic peptides and higher potency to clear plasma cholesterol
US9932631B1 (en) * 2017-09-11 2018-04-03 Omniome, Inc. Genotyping by polymerase binding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279966A (en) 1992-04-02 1994-01-18 The Trustees Of Columbia University In The City Of New York Cloning, expression and uses of a novel secreted protein, F-spondin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099214A1 (en) * 2005-09-01 2007-05-03 Philadelphia Health & Education Corporation D/B/A Drexel University College Of Medicine Identification of a pin specific gene and protein (PIN-1) useful as a diagnostic treatment for prostate cancer
US7666584B2 (en) 2005-09-01 2010-02-23 Philadelphia Health & Education Coporation Identification of a pin specific gene and protein (PIN-1) useful as a diagnostic treatment for prostate cancer
US20100184843A1 (en) * 2005-09-01 2010-07-22 Philadelphia Health & Education Corporation Identification of a pin specific gene and protein (pin-1) useful as a diagnostic treatment for prostate cancer
WO2007085087A1 (en) * 2006-01-24 2007-08-02 The University Of British Columbia Vasopressin pathway polymorphisms as indicators of subject outcome in critically ill subjects
US20090298711A1 (en) * 2006-01-24 2009-12-03 The University Of British Columbia Vasopressin pathway polymorphisms as indicators of subject outcome in critically ill subjects
WO2009055805A2 (en) * 2007-10-25 2009-04-30 Newsham Genetics, Lc Genetic markers and methods for improving swine genetics
WO2009055805A3 (en) * 2007-10-25 2010-01-21 Newsham Genetics, Lc Genetic markers and methods for improving swine genetics

Also Published As

Publication number Publication date
US6727063B1 (en) 2004-04-27

Similar Documents

Publication Publication Date Title
US6727063B1 (en) Single nucleotide polymorphisms in genes
US5856104A (en) Polymorphisms in the glucose-6 phosphate dehydrogenase locus
US5879884A (en) Diagnosis of depression by linkage of a polymorphic marker to a segment of chromosome 19P13 bordered by D19S247 and D19S394
US20060188875A1 (en) Human genomic polymorphisms
US20020037508A1 (en) Human single nucleotide polymorphisms
US20020032319A1 (en) Human single nucleotide polymorphisms
EP1240354A2 (en) Single nucleotide polymorphisms in genes
US10144979B2 (en) Identification of a DNA variant associated with adult type hypolactasia
EP1235936A2 (en) Nucleic acids containing single nucleotide polymorphisms and methods of use thereof
US6562574B2 (en) Association of protein kinase C zeta polymorphisms with diabetes
KR20060119737A (en) Multiple snp for diagnosing cardiovascular disease, microarray and kit comprising the same, and method for diagnosing cardiovascular disease using the same
US20030039973A1 (en) Human single nucleotide polymorphisms
JP4242590B2 (en) Disease susceptibility genes for rheumatoid arthritis and use thereof
US20030008301A1 (en) Association between schizophrenia and a two-marker haplotype near PILB gene
US20040191774A1 (en) Endothelin-1 promoter polymorphism
EP1024200A2 (en) Genetic compositions and methods
CA2547033A1 (en) Ntrk1 genetic markers associated with progression of alzheimer's disease
US20040235041A1 (en) Nucleic acids containing single nucleotide polymorphisms and methods of use thereof
WO2001034840A2 (en) Genetic compositions and methods
EP1880026B1 (en) Genetic polymorphisms associated with myocardial infarction and uses thereof
EP1417305B1 (en) Identification of a dna variant associated with adult type hypolactasia
JP4317376B2 (en) Method for detecting diabetic nephropathy gene
US20040235026A1 (en) Nucleic acids containing single nucleotide polymorphisms and methods of use thereof
US20060263817A1 (en) Genetic polymorphism associated with myocardial infarction and uses thereof
US20080153084A1 (en) Obesity Markers And Uses Thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION