US20050161336A1 - Electroplating apparatus with segmented anode array - Google Patents
Electroplating apparatus with segmented anode array Download PDFInfo
- Publication number
- US20050161336A1 US20050161336A1 US11/083,439 US8343905A US2005161336A1 US 20050161336 A1 US20050161336 A1 US 20050161336A1 US 8343905 A US8343905 A US 8343905A US 2005161336 A1 US2005161336 A1 US 2005161336A1
- Authority
- US
- United States
- Prior art keywords
- workpiece
- electrode
- electrodes
- electrical
- annular conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
- C25D17/12—Shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/001—Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/12—Semiconductors
- C25D7/123—Semiconductors first coated with a seed layer or a conductive layer
Definitions
- the present invention relates generally to an electroplating apparatus for plating of semiconductor components, and more particularly to an electroplating apparatus, including a segmented anode array comprising a plurality of concentrically arranged anode segments which can be independently operated to facilitate uniform deposition of electroplated metal on an associated workpiece.
- Electroplated metals typically include copper, nickel, gold and lead. Electroplating is effected by initial formation of a so-called seed layer on the wafer in the form of a very thin layer of metal, whereby the surface of the wafer is rendered electrically conductive. This electroconductivity permits subsequent formation of a so-called blanket layer of the desired metal by electroplating in a reactor vessel. Subsequent processing, such as chemical, mechanical planarization, removes unwanted portions of the metal blanket layer formed during electroplating, resulting in the desired patterned metal layer in a semiconductor integrated circuit or micro-mechanism being formed. Formation of a patterned metal layer can also be effected by electroplating.
- each metal layer is formed to a thickness which is as uniform as possible across the surface of the workpiece.
- flow-controlling devices such as diffusers and the like, positioned within the electroplating reactor vessel in order to direct and control the flow of electroplating solution against the workpiece.
- an anode of the apparatus (either consumable or non-consumable) is immersed in the electroplating solution within the reactor vessel of the apparatus for creating the desired electrical potential at the surface of the workpiece for effecting metal deposition.
- Previously employed anodes have typically been generally disk-like in configuration, with electroplating solution directed about the periphery of the anode, and through a perforate diffuser plate positioned generally above, and in spaced relationship to, the anode.
- the electroplating solution flows through the diffuser plate, and against the associated workpiece held in position above the diffuser. Uniformity of metal deposition is promoted by rotatably driving the workpiece as metal is deposited on its surface.
- the present invention is directed to an electroplating apparatus having a segmented anode array, including a plurality of anode segments which can be independently operated at different electrical potentials to promote uniformity of deposition of electroplated metal on a associated workpiece.
- An electroplating apparatus embodying the principles of the present invention includes an electroplating reactor vessel which contains a segmented anode array immersed in electroplating solution held by the vessel.
- the anode array includes differently dimensioned anode segments, preferably comprising concentrically arranged ring-like elements, with the anode segments being independently operable at different electrical potentials.
- the flow of electroplating solution about the anode segments is controlled in conjunction with independent operation of the segments, with uniformity of electroplated metal deposition on the workpiece thus promoted.
- the present electroplating apparatus includes an electroplating reactor including a alike reactor vessel for holding electroplating solution.
- a segmented anode array in accordance with the present invention is positioned in the reactor vessel for immersion in the plating solution.
- the electroplating apparatus includes an associated rotor assembly which can be positioned generally on top of the electroplating reactor, with the rotor assembly configured to receive and retain an associated workpiece such as a semiconductor wafer.
- the rotor assembly is operable to position the workpiece in generally confronting relationship with the anode array, with the surface of the workpiece in contact with the electroplating solution for effecting deposition of metal on the workpiece.
- the reactor vessel defines an axis, with the workpiece being positionable in generally transverse relationship to the axis.
- the anode array comprises a plurality of anode segments having differing dimensions, with the array being operable to facilitate uniform deposition of electroplated metal on the workpiece.
- the segmented anode array is positioned generally at the lower extent of the reactor vessel in generally perpendicular relationship to the axis defined by the vessel.
- the anode array comprises a plurality of ring-like, circular anode segments arranged in concentric relationship to each other about the axis. Thus, at least one of the anode segments having a relatively greater dimension is positioned further from the axis than another one of the anode segments having a relatively lesser dimension.
- each of the anode segments is configured to have an annular, ring-shape, with each being generally toroidal. It is presently preferred that the anode segments be generally coplanar, although it will be appreciated that the segments can be otherwise arranged.
- the anode array includes a mounting base upon which the ring-like anode segments are mounted.
- the present invention contemplates various arrangements for directing and controlling flow of the associated electroplating solution.
- the mounting base can define at least one flow passage for directing flow of electroplating solution through the mounting base.
- a central-most one of the anode segments defines an opening aligned with the reactor vessel axis, with the flow passage defined by the mounting base being aligned with the opening in the central anode segment
- flow passages defined by the mounting base are positioned generally between adjacent ones of the anode segments for directing flow of electroplating solution therebetween.
- a plurality of flow passages are provided which are arranged in a pattern of concentric circles to direct flow of electroplating solution between adjacent ones of the concentrically arranged anode segments.
- the mounting base includes a plurality of depending, flow-modulating projections, defining flow channels therebetween, with the projections arranged generally about the periphery of the mounting base.
- the present electroplating apparatus includes a control arrangement operatively connected to the segmented anode array for independently operating the plurality of anode segments. This permits the segments to be operated at different electrical potentials, and for differing periods of time, to facilitate uniform deposition of electroplated metal on the associated workpiece.
- dielectric elements can also be positioned between at least two adjacent ones of the anode segments for further facilitating uniform deposition of electroplated metal on the workpiece.
- FIG. 1 is a perspective view, in partial cross-section, of an electroplating reactor of an electroplating apparatus, including a segmented anode array, embodying the principles of the present invention
- FIG. 1 a is a diagrammatic view of a control system for the present electroplating apparatus
- FIG. 2 is an exploded perspective view of the segmented anode array illustrated in FIG. 1 ;
- FIG. 3 is a top perspective view of the assembled anode array of FIG. 2 ;
- FIG. 4 is a bottom perspective view of the anode array illustrated in FIG. 3 ;
- FIG. 5 is a cross-sectional view of the anode array illustrated in the preceding FIGURES;
- FIG. 6 is an exploded perspective view of an alternative embodiment of the present segmented anode array
- FIG. 7 is a top perspective view of the assembled segmented anode array illustrated in FIG. 6 ;
- FIG. 8 is a bottom perspective view of the anode array illustrated in FIG. 7 ;
- FIG. 9 is a cross-sectional view of the segmented anode array illustrated in FIGS. 6-8 ;
- FIG. 10 is a top perspective view of a further alternative embodiment of the present segmented anode array
- FIG. 11 is a bottom perspective view of the segmented anode array shown in FIG. 10 ;
- FIG. 12 is a cross-sectional view of the segmented anode array shown in FIGS. 11 and 12 ;
- FIG. 13 is a relatively enlarged, fragmentary cross-sectional view of the segmented anode array shown in FIG. 12 ;
- FIG. 14 is a diagrammatic view of the present electroplating apparatus, with a rotor assembly and associated reactor positioned together for workpiece processing
- FIG. 1 therein is illustrated an electroplating reactor 10 of an electroplating apparatus embodying the present invention.
- This type of electroplating apparatus is particularly suited for electroplating of semiconductor wafers or like workpieces, whereby an electrically conductive seed layer of the wafer is electroplated with a metallic blanket or patterned layer.
- the electroplating reactor 10 is that portion of the apparatus which generally contains electroplating solution, and which directs the solution against a generally downwardly facing surface of an associated workpiece, W, to be plated (see FIG. 14 ).
- the reactor 10 includes a reactor vessel or cup 12 through which electroplating solution is circulated. Attendant to solution circulation, the solution flows from the reactor vessel 12 , over the weir-like periphery of the vessel, into a lower overflow chamber 14 of the reactor 10 . Solution is drawn from the overflow chamber typically to be replenished for re-circulation through the reactor.
- Reactor 10 includes a riser tube 16 , within which an inlet conduit 18 is positioned for introduction of electroplating solution into the reactor vessel.
- a segmented anode array 20 embodying the principles of the present invention, is positioned generally at the upper extent of the inlet conduit 18 in a manner, as will be further described, which promotes flow of electroplating solution over and about the anode array 20 .
- a rotor assembly 22 FIG. 14
- the reactor vessel 12 defines an axis “A” ( FIG.
- the workpiece W positioned in generally transverse relationship to the axis.
- the anode array 20 is positioned in generally transverse relationship to the axis “A”, preferably perpendicular thereto. While the workpiece W may be positioned perpendicularly to the axis “A”, the illustrated arrangement positions the workpiece W at an acute angle (such as on the order of 2°) relative to the surface of the electroplating solution within the reactor vessel 12 to facilitate venting of gas which can accumulate at the surface of the workpiece.
- the workpiece is rotatably driven by drive motor 24 of the rotor assembly for facilitating uniformity of deposition of electroplated metal on the workpiece surface.
- the segmented anode array 20 includes a plurality of anode segments having differing dimensions, with at least one of the anode segments having a relatively greater dimension being positioned further from the axis of the reactor vessel than another one of the anode segments having a relatively lesser dimension.
- the anode segments comprise circular, ring-like elements, each of which is generally toroidal, and arranged in concentric relationship with each other.
- the anode segments may be consumable, whereby metal ions of the anode segments are transported by the electroplating solution to the electrically conductive surface of the associated workpiece, which functions as a cathode.
- the segmented anode array 20 includes four (4) anode segments, respectively designated 30 , 32 , 34 and 36 .
- the anode segments are of relatively decreasing diameters, with the segments thus fitting one-within-the-other.
- the anode segments be positioned in generally coplanar relationship with each other, with the segments coaxial with each other along axis “A”.
- the anode array 20 includes a mounting base 40 upon which each of the anode segments is mounted.
- the mounting base 40 includes a collar portion 42 which defines a flow passage for directing flow of electroplating solution through the mounting base.
- the central-most one of the concentric anode segments defines an opening aligned with the axis “A” of the reactor vessel, with the flow passage defined by the collar portion of the mounting base 40 being aligned with the opening defined by this central-most one 36 of the anode segments.
- Operation of this embodiment of the present invention contemplates that plating solution is pumped through inlet conduit 18 , through the flow passage defined by collar portion 42 of mounting base 40 , and through the center of the anode array so that the solution impinges upon the surface of the workpiece W.
- the plating rate at the surface of the workpiece ordinarily will vary radially due to the effect of the impinging solution on the hydrodynamic boundary layer. Compensation of this radial effect can be achieved by operating the anode segments at different electrical potentials.
- Such an arrangement is diagrammatically illustrated in FIG. 1 a , wherein controls of the present electroplating apparatus include suitable wiring for independently operating the plurality of segments of the anode array 20 . It is contemplated that not only can the various anode segments be operating at differing electrical potentials, they may also be operated for differing periods of time to optimize the uniformity of plating on the workpiece.
- dielectric elements 46 are positioned between each adjacent pair of the anode segments 30 , 32 , 34 and 36 .
- the geometry of the dielectric elements can be modified to provide the desired effect on plating.
- Relatively tall geometries i.e., dielectric elements which project significantly above the associated anode segments, are believed to tend to limit interaction of adjacent ones of the anode segments, and can tend to collimate solution flow to the workpiece.
- shorter or perforated geometries are believed to tend to increase anode segment interaction. While the illustrated embodiments of the present invention show the anode segments positioned in coplanar relationship with each other, and thus, in generally equidistant relationship to the workpiece W, it is believed that an increase or decrease in anode segment interaction can also be achieved by positioning the ring-like anode segments at varying distances from the surface of the workpiece.
- the segments of the anode array may be either consumable, or non-consumable.
- the anode segments can be formed from copper, such as phosphorized copper.
- nonconsumable anode segments can be formed from platinum plated titanium.
- suitable mechanical fasteners (not shown) be employed for individually securing each of the anode segments to the associated mounting base 40 .
- suitable scaled wiring (not shown) is provided for individually electrically connecting each of the anode segments with associated controls of the electroplating apparatus, whereby the electrical potential created by each anode segment can be independently varied and controlled.
- no perforate diffuser member be employed positioned between the anode array 20 and the workpiece W. Solution flow rate and current distribution can be controlled independently of one another to optimize the plating process and promote uniformity of deposition of electroplated metal. Air bubbles introduced into the plating chamber by the incoming plating solution are flushed past the workpiece surface, and thus will not interfere with the plating process.
- Venting of the workpiece surface may also be effected.
- Solution flow from the center of the anode array insures that the workpiece surface will be wetted from the center to the periphery. This prevents air from being trapped at the center of the workpiece when it first contacts the surface of the solution.
- the we of a segmented anode array having circular anode segments is particularly suited for use with circular, disk-like wafers or like workpieces.
- the anode array, including the anode segments be non-circular.
- FIGS. 6-9 therein is illustrated an alternate embodiment of the present segmented anode array.
- elements which generally correspond to those in the above-described embodiment are designated by like reference numerals in the one-hundred series.
- Segmented anode array 120 includes a plurality of ring-like anode segments. In this embodiment, five (5) of the anode segments are provided in concentric relationship with each other, including segments 130 , 132 , 134 , 136 and 138 .
- the anode array 120 includes a mounting base 140 having a plurality of divider elements 141 respectively positioned between adjacent ones of the circular anode segments. As in the previous embodiment, the anode segments are positioned in coplanar relationship with each other on the mounting base, and are positioned in coaxial relationship with the axis “A” of the associated reactor vessel.
- anode array 120 is configured such that flow of electroplating solution is directed generally about the periphery of the array.
- the mounting base 140 includes a plurality of circumferentially spaced depending flow-modulating projections 143 which define flow channels between adjacent ones of the projections.
- Electroplating solution is introduced into the reactor vessel through an inlet conduit 118 , which defines a plurality of flow passages 119 generally at the upper extent thereof, beneath mounting base 140 , and inwardly of flow-modulating projections 143 . The solution then flows between the flow-modulating projections, and upwardly generally about the anode segments.
- This embodiment illustrates a series of openings defined by mounting base 140 .
- those series of holes aligned at 120° intervals about the base portion are configured for receiving respective mechanical fasteners (not shown) for securing the anode segments to the mounting base.
- the remaining series of radially-spaced openings defined by the mounting base are provided for suitable electrical connection with each individual anode segment.
- FIGS. 10-13 another alternate embodiment of the segmented anode array embodying the principles of the present invention is illustrated. Elements of this embodiment, which generally correspond to like elements in the previously described embodiment, are so-designated by like reference numerals in the two-hundred series.
- Anode array 220 includes a plurality of circular, concentrically arranged ring-like anode segments 230 , 232 , 234 , 236 and 238 .
- the anode segments are positioned in coplanar relationship on a mounting base 240 .
- this configuration of the anode array is arranged to permit flow of electroplating solution between adjacent ones of the anode segments.
- the mounting base 240 defines a plurality of flow passages 245 arranged in a pattern of concentric circles to direct flow of electroplating solution between adjacent ones of the ring-like anode segments.
- An inlet conduit 218 defines a plurality of flow passages 219 so that plating solution can flow from the inlet conduit through the flow passages 245 .
- This embodiment also includes a flow passage 247 defined by the mounting base 240 for directing flow through an opening defined by the central-most one 238 of the anode segments.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Electroplating Methods And Accessories (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
An electroplating apparatus includes a reactor vessel having a segmented anode array positioned therein for effecting electroplating of an associated workpiece such as a semiconductor wafer. The anode array includes a plurality of ring-like anode segments which are preferably positioned in concentric, coplanar relationship with each other. The anode segments can be independently operated to create varying electrical potentials with the associated workpiece to promote uniform deposition of electroplated metal on the surface of the workpiece.
Description
- Not Applicable.
- Not applicable.
- The present invention relates generally to an electroplating apparatus for plating of semiconductor components, and more particularly to an electroplating apparatus, including a segmented anode array comprising a plurality of concentrically arranged anode segments which can be independently operated to facilitate uniform deposition of electroplated metal on an associated workpiece.
- Production of semiconductive integrated circuits and other semiconductive devices from semiconductor wafers typically requires formation of multiple metal layers on the wafer to electrically interconnect the various devices of the integrated circuit. Electroplated metals typically include copper, nickel, gold and lead. Electroplating is effected by initial formation of a so-called seed layer on the wafer in the form of a very thin layer of metal, whereby the surface of the wafer is rendered electrically conductive. This electroconductivity permits subsequent formation of a so-called blanket layer of the desired metal by electroplating in a reactor vessel. Subsequent processing, such as chemical, mechanical planarization, removes unwanted portions of the metal blanket layer formed during electroplating, resulting in the desired patterned metal layer in a semiconductor integrated circuit or micro-mechanism being formed. Formation of a patterned metal layer can also be effected by electroplating.
- Subsequent to electroplating, the typical semiconductor wafer or other workpiece is subdivided into a number of individual semiconductor components. In order to achieve the desired formation of circuitry within each component, while achieving the desired uniformity of plating from one component to the next, it is desirable to form each metal layer to a thickness which is as uniform as possible across the surface of the workpiece. However, because each workpiece is typically joined at the peripheral portion thereof in the circuit of the electroplating apparatus (with the workpiece typically functioning as the cathode), variations in current density across the surface of the workpiece are inevitable. In the past, efforts to promote uniformity of metal deposition have included flow-controlling devices, such as diffusers and the like, positioned within the electroplating reactor vessel in order to direct and control the flow of electroplating solution against the workpiece.
- In a typical electroplating apparatus, an anode of the apparatus (either consumable or non-consumable) is immersed in the electroplating solution within the reactor vessel of the apparatus for creating the desired electrical potential at the surface of the workpiece for effecting metal deposition. Previously employed anodes have typically been generally disk-like in configuration, with electroplating solution directed about the periphery of the anode, and through a perforate diffuser plate positioned generally above, and in spaced relationship to, the anode. The electroplating solution flows through the diffuser plate, and against the associated workpiece held in position above the diffuser. Uniformity of metal deposition is promoted by rotatably driving the workpiece as metal is deposited on its surface.
- The present invention is directed to an electroplating apparatus having a segmented anode array, including a plurality of anode segments which can be independently operated at different electrical potentials to promote uniformity of deposition of electroplated metal on a associated workpiece.
- An electroplating apparatus embodying the principles of the present invention includes an electroplating reactor vessel which contains a segmented anode array immersed in electroplating solution held by the vessel. The anode array includes differently dimensioned anode segments, preferably comprising concentrically arranged ring-like elements, with the anode segments being independently operable at different electrical potentials. The flow of electroplating solution about the anode segments is controlled in conjunction with independent operation of the segments, with uniformity of electroplated metal deposition on the workpiece thus promoted.
- In accordance with the illustrated embodiments, the present electroplating apparatus includes an electroplating reactor including a alike reactor vessel for holding electroplating solution. A segmented anode array in accordance with the present invention is positioned in the reactor vessel for immersion in the plating solution. The electroplating apparatus includes an associated rotor assembly which can be positioned generally on top of the electroplating reactor, with the rotor assembly configured to receive and retain an associated workpiece such as a semiconductor wafer. The rotor assembly is operable to position the workpiece in generally confronting relationship with the anode array, with the surface of the workpiece in contact with the electroplating solution for effecting deposition of metal on the workpiece. The reactor vessel defines an axis, with the workpiece being positionable in generally transverse relationship to the axis.
- The anode array comprises a plurality of anode segments having differing dimensions, with the array being operable to facilitate uniform deposition of electroplated metal on the workpiece. In accordance with the illustrated embodiment, the segmented anode array is positioned generally at the lower extent of the reactor vessel in generally perpendicular relationship to the axis defined by the vessel. The anode array comprises a plurality of ring-like, circular anode segments arranged in concentric relationship to each other about the axis. Thus, at least one of the anode segments having a relatively greater dimension is positioned further from the axis than another one of the anode segments having a relatively lesser dimension. In the illustrated embodiment, each of the anode segments is configured to have an annular, ring-shape, with each being generally toroidal. It is presently preferred that the anode segments be generally coplanar, although it will be appreciated that the segments can be otherwise arranged.
- The anode array includes a mounting base upon which the ring-like anode segments are mounted. The present invention contemplates various arrangements for directing and controlling flow of the associated electroplating solution. In particular, the mounting base can define at least one flow passage for directing flow of electroplating solution through the mounting base. In one form, a central-most one of the anode segments defines an opening aligned with the reactor vessel axis, with the flow passage defined by the mounting base being aligned with the opening in the central anode segment In another embodiment, flow passages defined by the mounting base are positioned generally between adjacent ones of the anode segments for directing flow of electroplating solution therebetween. In this embodiment, a plurality of flow passages are provided which are arranged in a pattern of concentric circles to direct flow of electroplating solution between adjacent ones of the concentrically arranged anode segments.
- In an alternate embodiment, the mounting base includes a plurality of depending, flow-modulating projections, defining flow channels therebetween, with the projections arranged generally about the periphery of the mounting base. In the preferred form, the present electroplating apparatus includes a control arrangement operatively connected to the segmented anode array for independently operating the plurality of anode segments. This permits the segments to be operated at different electrical potentials, and for differing periods of time, to facilitate uniform deposition of electroplated metal on the associated workpiece. The present invention contemplates that dielectric elements can also be positioned between at least two adjacent ones of the anode segments for further facilitating uniform deposition of electroplated metal on the workpiece.
- Other features and advantages of the present invention will become readily apparent from the following detailed description, the accompanying drawings, and the appended claims
-
FIG. 1 is a perspective view, in partial cross-section, of an electroplating reactor of an electroplating apparatus, including a segmented anode array, embodying the principles of the present invention; -
FIG. 1 a is a diagrammatic view of a control system for the present electroplating apparatus; -
FIG. 2 is an exploded perspective view of the segmented anode array illustrated inFIG. 1 ; -
FIG. 3 is a top perspective view of the assembled anode array ofFIG. 2 ; -
FIG. 4 is a bottom perspective view of the anode array illustrated inFIG. 3 ; -
FIG. 5 is a cross-sectional view of the anode array illustrated in the preceding FIGURES; -
FIG. 6 is an exploded perspective view of an alternative embodiment of the present segmented anode array; -
FIG. 7 is a top perspective view of the assembled segmented anode array illustrated inFIG. 6 ; -
FIG. 8 is a bottom perspective view of the anode array illustrated inFIG. 7 ; -
FIG. 9 is a cross-sectional view of the segmented anode array illustrated inFIGS. 6-8 ; -
FIG. 10 is a top perspective view of a further alternative embodiment of the present segmented anode array; -
FIG. 11 is a bottom perspective view of the segmented anode array shown inFIG. 10 ; -
FIG. 12 is a cross-sectional view of the segmented anode array shown inFIGS. 11 and 12 ; -
FIG. 13 is a relatively enlarged, fragmentary cross-sectional view of the segmented anode array shown inFIG. 12 ; and -
FIG. 14 is a diagrammatic view of the present electroplating apparatus, with a rotor assembly and associated reactor positioned together for workpiece processing - While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described presently preferred embodiments, with the understanding that the present disclosure is to be considered as an exemplification of the invention, and is not intended to limit the invention to the specific embodiments illustrated.
- With reference first to
FIG. 1 , therein is illustrated anelectroplating reactor 10 of an electroplating apparatus embodying the present invention. This type of electroplating apparatus is particularly suited for electroplating of semiconductor wafers or like workpieces, whereby an electrically conductive seed layer of the wafer is electroplated with a metallic blanket or patterned layer. - The electroplating
reactor 10 is that portion of the apparatus which generally contains electroplating solution, and which directs the solution against a generally downwardly facing surface of an associated workpiece, W, to be plated (seeFIG. 14 ). To this end, thereactor 10 includes a reactor vessel orcup 12 through which electroplating solution is circulated. Attendant to solution circulation, the solution flows from thereactor vessel 12, over the weir-like periphery of the vessel, into alower overflow chamber 14 of thereactor 10. Solution is drawn from the overflow chamber typically to be replenished for re-circulation through the reactor. -
Reactor 10 includes ariser tube 16, within which aninlet conduit 18 is positioned for introduction of electroplating solution into the reactor vessel. Asegmented anode array 20, embodying the principles of the present invention, is positioned generally at the upper extent of theinlet conduit 18 in a manner, as will be further described, which promotes flow of electroplating solution over and about theanode array 20. During processing, a rotor assembly 22 (FIG. 14 ) which receives and holds a workpiece W for electroplating, is positioned in cooperative association withreactor 10 such that the workpiece W is positioned in generally confronting relationship to theanode array 20. As will be observed, thereactor vessel 12 defines an axis “A” (FIG. 14 ), with the workpiece W positioned in generally transverse relationship to the axis. Similarly, theanode array 20 is positioned in generally transverse relationship to the axis “A”, preferably perpendicular thereto. While the workpiece W may be positioned perpendicularly to the axis “A”, the illustrated arrangement positions the workpiece W at an acute angle (such as on the order of 2°) relative to the surface of the electroplating solution within thereactor vessel 12 to facilitate venting of gas which can accumulate at the surface of the workpiece. During processing, the workpiece is rotatably driven bydrive motor 24 of the rotor assembly for facilitating uniformity of deposition of electroplated metal on the workpiece surface. - With particular reference to
FIGS. 2-5 , thesegmented anode array 20 includes a plurality of anode segments having differing dimensions, with at least one of the anode segments having a relatively greater dimension being positioned further from the axis of the reactor vessel than another one of the anode segments having a relatively lesser dimension. In particular, the anode segments comprise circular, ring-like elements, each of which is generally toroidal, and arranged in concentric relationship with each other. As is known in the art, the anode segments may be consumable, whereby metal ions of the anode segments are transported by the electroplating solution to the electrically conductive surface of the associated workpiece, which functions as a cathode. - In this illustrated embodiment, the
segmented anode array 20 includes four (4) anode segments, respectively designated 30, 32, 34 and 36. The anode segments are of relatively decreasing diameters, with the segments thus fitting one-within-the-other. - It is preferred that the anode segments be positioned in generally coplanar relationship with each other, with the segments coaxial with each other along axis “A”. In order to maintain the segments in this relative disposition, the
anode array 20 includes a mountingbase 40 upon which each of the anode segments is mounted. The mountingbase 40 includes acollar portion 42 which defines a flow passage for directing flow of electroplating solution through the mounting base. In this embodiment, the central-most one of the concentric anode segments defines an opening aligned with the axis “A” of the reactor vessel, with the flow passage defined by the collar portion of the mountingbase 40 being aligned with the opening defined by thiscentral-most one 36 of the anode segments. - Operation of this embodiment of the present invention contemplates that plating solution is pumped through
inlet conduit 18, through the flow passage defined bycollar portion 42 of mountingbase 40, and through the center of the anode array so that the solution impinges upon the surface of the workpiece W. The plating rate at the surface of the workpiece ordinarily will vary radially due to the effect of the impinging solution on the hydrodynamic boundary layer. Compensation of this radial effect can be achieved by operating the anode segments at different electrical potentials. Such an arrangement is diagrammatically illustrated inFIG. 1 a, wherein controls of the present electroplating apparatus include suitable wiring for independently operating the plurality of segments of theanode array 20. It is contemplated that not only can the various anode segments be operating at differing electrical potentials, they may also be operated for differing periods of time to optimize the uniformity of plating on the workpiece. - In addition to affecting plating uniformity by using different anode potentials, it is within the purview of the present invention to affect uniformity by the disposition of dielectric (insulating) elements between adjacent ones of the anode segments. This is illustrated in phantom line in
FIG. 5 , whereindielectric elements 46 are positioned between each adjacent pair of theanode segments - The geometry of the dielectric elements can be modified to provide the desired effect on plating. Relatively tall geometries, i.e., dielectric elements which project significantly above the associated anode segments, are believed to tend to limit interaction of adjacent ones of the anode segments, and can tend to collimate solution flow to the workpiece. In contrast, shorter or perforated geometries are believed to tend to increase anode segment interaction. While the illustrated embodiments of the present invention show the anode segments positioned in coplanar relationship with each other, and thus, in generally equidistant relationship to the workpiece W, it is believed that an increase or decrease in anode segment interaction can also be achieved by positioning the ring-like anode segments at varying distances from the surface of the workpiece.
- Depending upon the type of electroplating process, the segments of the anode array may be either consumable, or non-consumable. For those applications requiring a consumable anode, the anode segments can be formed from copper, such as phosphorized copper. In contrast, nonconsumable anode segments can be formed from platinum plated titanium.
- It is contemplated that suitable mechanical fasteners (not shown) be employed for individually securing each of the anode segments to the associated mounting
base 40. Additionally, suitable scaled wiring (not shown) is provided for individually electrically connecting each of the anode segments with associated controls of the electroplating apparatus, whereby the electrical potential created by each anode segment can be independently varied and controlled. In this embodiment, it is contemplated that no perforate diffuser member be employed positioned between theanode array 20 and the workpiece W. Solution flow rate and current distribution can be controlled independently of one another to optimize the plating process and promote uniformity of deposition of electroplated metal. Air bubbles introduced into the plating chamber by the incoming plating solution are flushed past the workpiece surface, and thus will not interfere with the plating process. Venting of the workpiece surface, by its angular disposition as discussed above, may also be effected. Solution flow from the center of the anode array insures that the workpiece surface will be wetted from the center to the periphery. This prevents air from being trapped at the center of the workpiece when it first contacts the surface of the solution. - As will be appreciated, the we of a segmented anode array having circular anode segments is particularly suited for use with circular, disk-like wafers or like workpieces. However, it is within the purview of the present invention that the anode array, including the anode segments, be non-circular.
- With reference now to
FIGS. 6-9 , therein is illustrated an alternate embodiment of the present segmented anode array. In this embodiment, elements which generally correspond to those in the above-described embodiment are designated by like reference numerals in the one-hundred series. -
Segmented anode array 120 includes a plurality of ring-like anode segments. In this embodiment, five (5) of the anode segments are provided in concentric relationship with each other, includingsegments - The
anode array 120 includes a mountingbase 140 having a plurality ofdivider elements 141 respectively positioned between adjacent ones of the circular anode segments. As in the previous embodiment, the anode segments are positioned in coplanar relationship with each other on the mounting base, and are positioned in coaxial relationship with the axis “A” of the associated reactor vessel. - In distinction from the previous embodiment,
anode array 120 is configured such that flow of electroplating solution is directed generally about the periphery of the array. In particular, the mountingbase 140 includes a plurality of circumferentially spaced depending flow-modulatingprojections 143 which define flow channels between adjacent ones of the projections. Electroplating solution is introduced into the reactor vessel through an inlet conduit 118, which defines a plurality offlow passages 119 generally at the upper extent thereof, beneath mountingbase 140, and inwardly of flow-modulatingprojections 143. The solution then flows between the flow-modulating projections, and upwardly generally about the anode segments. - This embodiment illustrates a series of openings defined by mounting
base 140. With particular reference toFIG. 8 , those series of holes aligned at 120° intervals about the base portion are configured for receiving respective mechanical fasteners (not shown) for securing the anode segments to the mounting base. The remaining series of radially-spaced openings defined by the mounting base are provided for suitable electrical connection with each individual anode segment. - With reference to
FIGS. 10-13 , another alternate embodiment of the segmented anode array embodying the principles of the present invention is illustrated. Elements of this embodiment, which generally correspond to like elements in the previously described embodiment, are so-designated by like reference numerals in the two-hundred series. -
Anode array 220 includes a plurality of circular, concentrically arranged ring-like anode segments base 240. Notably, this configuration of the anode array is arranged to permit flow of electroplating solution between adjacent ones of the anode segments. To this end, the mountingbase 240 defines a plurality offlow passages 245 arranged in a pattern of concentric circles to direct flow of electroplating solution between adjacent ones of the ring-like anode segments. An inlet conduit 218 defines a plurality offlow passages 219 so that plating solution can flow from the inlet conduit through theflow passages 245. This embodiment also includes aflow passage 247 defined by the mountingbase 240 for directing flow through an opening defined by thecentral-most one 238 of the anode segments. - From the foregoing, it will be observed that numerous modifications and variations can be effected without departing from the true spirit and scope of the novel concept of the present invention. It will be understood that no limitation with respect to the specific embodiments illustrated herein is intended or should be inferred. The disclosure is intended to cover, by the appended claims, all such modifications as fall within the scope of the claims.
Claims (25)
1-16. (canceled)
17. A method for electrochemically processing a microelectronic workpiece, comprising:
contacting a surface of a workpiece with a liquid processing solution as the processing solution flows through a reactor vessel;
controlling electrical potentials applied independently to a plurality of separate electrodes such that individual electrodes establish field components of an electrical field in the processing solution; and
differing the electrical field in the processing solution over time to electrochemically process the surface of the workpiece.
18. The method of claim 17 wherein the plurality of electrodes comprise a first annular conductive element and a second annular conductive element concentric with the first annular conductive element, and wherein controlling the electrical potentials comprises applying a first electrical potential to the first annular conductive element and a second electrical potential to the second annular conductive element that is different than the first electrical potential.
19. The method of claim 18 wherein differing the electrical field comprises differing at least one of the first and second electrical potentials over the time of electrochemically processing the surface of the workpiece.
20. The method of claim 17 wherein controlling the electrical potentials comprises applying different electrical potentials to different electrodes and differing the electrical field comprises applying the different electrical potentials to the different electrodes at differing times over the time of electrochemically processing surface of the workpiece.
21. The method of claim 20 wherein the plurality of electrodes comprise a circular first conductive element and a circular second conductive element concentrically surrounding the first conductive element, and wherein controlling the electrical potentials comprises generating concentric field components in the electrical field.
22. A method for electrochemically processing a microelectronic workpiece, comprising:
contacting a surface of a workpiece with a liquid processing solution as the processing solution flows through a reactor vessel;
applying electrical potentials independently to a plurality of separate electrodes such that individual electrodes establish field components of an electrical field in the processing solution; and
compensating for radial affects on the workpiece by differing at least one of the field components over a time of electrochemically processing the surface of the workpiece.
23. The method of claim 22 wherein applying electrical potentials independently to the plurality of electrodes comprises applying different electrical potentials to different electrodes.
24. The method of claim 22 wherein differing at least one of the field components over the time of electrochemically processing the surface of the workpiece comprises differing at least one of the electrical potentials applied to one of the electrodes.
25. A method for electrochemically processing a microelectronic workpiece, comprising:
passing a liquid processing solution through a reactor vessel;
contacting a surface of the workpiece with the liquid processing solution;
establishing an electrical field in the liquid processing solution by independently operating a first electrode and a second electrode separate from the first electrode, wherein the first and second electrodes are in the reactor vessel; and
applying different electrical potentials to the first and second electrodes for different periods of time to electrochemically process the surface of the workpiece.
26. The method of claim 25 wherein applying different electrical potentials to the first and second electrodes for different periods of time comprises changing an electrical potential to at least one of the first and second electrodes over the time of electrochemically processing the surface of the workpiece.
27. A method for electrochemically processing a microelectronic workpiece, comprising:
contacting a surface of the workpiece with a liquid processing solution while passing the liquid processing solution through a reactor vessel;
independently operating a first electrode and a second electrode separate from the first electrode, wherein the first and second electrodes are in the reactor vessel and spaced apart from the workpiece; and
changing electrical potentials applied to the first and second electrodes to electrochemically process the surface of the workpiece.
28. A method for electrochemically processing a microelectronic workpiece, comprising:
contacting a surface of the workpiece with a liquid processing solution while passing the liquid processing solution through a reactor vessel;
applying a first electrical potential to a first electrode located in the reactor vessel and spaced apart from the workpiece;
applying a second electrical potential to a second electrode located in the reactor vessel and spaced apart from the workpiece, the second electrode being separate from the first electrode, and the second electrical potential being different than the first electrical potential; and
changing the first electrical potential and/or the second electrical potential to electrochemically process the surface of the workpiece.
29. An apparatus for electrochemically processing a microelectronic workpiece, comprising:
a reactor vessel having a container for holding a liquid processing solution;
an electrode array in the reactor vessel, the electrode array including a first electrode and a second electrode separate from the first electrode; and
a control arrangement operatively coupled to the electrode array, wherein the control arrangement is configured to (a) independently apply different electrical potentials to the first and second electrodes such that the first and second electrodes establish individual field components of an electrical field in the processing solution, and (b) differ the electrical field in the processing solution over time to electrochemically process the workpiece.
30. The apparatus of claim 29 wherein the first electrode comprises a first annular conductive member and the second electrode comprises a second annular conductive member concentric with the first annular conductive member to establish concentric field components in the electrical field.
31. The apparatus of claim 29 wherein the first electrode comprises a first annular conductive member, the second electrode comprises a second annular conductive member concentric with the first annular conductive member, and the electrode array further comprises an annular wall between the first and second annular conductive members.
32. The apparatus of claim 29 wherein the control arrangement is configured to differ the electrical field by differing at least one of the electrical potentials applied to one of the first and second electrodes over the time to electrochemically process the surface of the workpiece.
33. An apparatus for electrochemically processing a microelectronic workpiece, comprising:
a reactor vessel configured to contain a processing solution;
an electrode array having a plurality of separate electrodes in the reactor vessel;
electrical wiring connected to the separate electrodes and configured to independently provide electrical potentials to the separate electrodes; and
a controller operatively connected to the electrical wiring, the controller being configured to apply different electrical potentials to the separate electrodes at different periods of time via the electrical wiring to electrochemically process the workpiece.
34. The apparatus of claim 33 wherein the electrode array comprises a first annular conductive member and a second annular conductive member concentric with the first annular conductive member.
35. The apparatus of claim 34 further comprising an annular wall between the first annular conductive member and the second annular conductive member.
36. The apparatus of claim 34 wherein the controller is configured to change the electrical potentials applied to the first and second annular conductive members at different periods of time to plate onto the workpiece.
37. An apparatus for electrochemically processing a microelectronic workpiece, comprising:
a reactor vessel having a container for holding a liquid processing solution;
an electrode array in the reactor vessel, the electrode array including a first electrode and a second electrode separate from the first electrode; and
a control arrangement operatively coupled to the electrode array, wherein the control arrangement is configured to operate the first and second electrodes independently at differing electrical potentials to electrochemically process the workpiece.
38. The apparatus of claim 37 wherein the control arrangement is configured to apply different electrical potentials to the first and second electrodes.
39. The apparatus of claim 37 wherein the first electrode comprises a first annular conductive member and the second electrode comprises a second annular conductive member concentric with the first annular conductive member.
40. The apparatus of claim 37 wherein the first electrode comprises a first annular conductive member, the second electrode comprises a second annular conductive member concentric with the first annular conductive member, and the electrode array further comprises an annular wall between the first and second annular conductive members.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/083,439 US20050161336A1 (en) | 1998-07-10 | 2005-03-17 | Electroplating apparatus with segmented anode array |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/113,418 US6497801B1 (en) | 1998-07-10 | 1998-07-10 | Electroplating apparatus with segmented anode array |
US10/234,638 US7357850B2 (en) | 1998-07-10 | 2002-09-03 | Electroplating apparatus with segmented anode array |
US11/083,439 US20050161336A1 (en) | 1998-07-10 | 2005-03-17 | Electroplating apparatus with segmented anode array |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/234,638 Continuation US7357850B2 (en) | 1998-07-10 | 2002-09-03 | Electroplating apparatus with segmented anode array |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050161336A1 true US20050161336A1 (en) | 2005-07-28 |
Family
ID=22349292
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/113,418 Expired - Lifetime US6497801B1 (en) | 1998-07-10 | 1998-07-10 | Electroplating apparatus with segmented anode array |
US10/084,962 Abandoned US20030102210A1 (en) | 1998-07-10 | 2002-02-27 | Electroplating apparatus with segmented anode array |
US10/234,638 Expired - Fee Related US7357850B2 (en) | 1998-07-10 | 2002-09-03 | Electroplating apparatus with segmented anode array |
US10/974,359 Abandoned US20050109612A1 (en) | 1998-07-10 | 2004-10-27 | Electroplating apparatus with segmented anode array |
US10/974,083 Expired - Lifetime US7147760B2 (en) | 1998-07-10 | 2004-10-27 | Electroplating apparatus with segmented anode array |
US11/083,707 Abandoned US20050161320A1 (en) | 1998-07-10 | 2005-03-17 | Electroplating apparatus with segmented anode array |
US11/083,439 Abandoned US20050161336A1 (en) | 1998-07-10 | 2005-03-17 | Electroplating apparatus with segmented anode array |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/113,418 Expired - Lifetime US6497801B1 (en) | 1998-07-10 | 1998-07-10 | Electroplating apparatus with segmented anode array |
US10/084,962 Abandoned US20030102210A1 (en) | 1998-07-10 | 2002-02-27 | Electroplating apparatus with segmented anode array |
US10/234,638 Expired - Fee Related US7357850B2 (en) | 1998-07-10 | 2002-09-03 | Electroplating apparatus with segmented anode array |
US10/974,359 Abandoned US20050109612A1 (en) | 1998-07-10 | 2004-10-27 | Electroplating apparatus with segmented anode array |
US10/974,083 Expired - Lifetime US7147760B2 (en) | 1998-07-10 | 2004-10-27 | Electroplating apparatus with segmented anode array |
US11/083,707 Abandoned US20050161320A1 (en) | 1998-07-10 | 2005-03-17 | Electroplating apparatus with segmented anode array |
Country Status (1)
Country | Link |
---|---|
US (7) | US6497801B1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120000786A1 (en) * | 2010-07-02 | 2012-01-05 | Mayer Steven T | Control of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US9449808B2 (en) | 2013-05-29 | 2016-09-20 | Novellus Systems, Inc. | Apparatus for advanced packaging applications |
US9523155B2 (en) | 2012-12-12 | 2016-12-20 | Novellus Systems, Inc. | Enhancement of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US9624592B2 (en) | 2010-07-02 | 2017-04-18 | Novellus Systems, Inc. | Cross flow manifold for electroplating apparatus |
US10094034B2 (en) | 2015-08-28 | 2018-10-09 | Lam Research Corporation | Edge flow element for electroplating apparatus |
US10233556B2 (en) | 2010-07-02 | 2019-03-19 | Lam Research Corporation | Dynamic modulation of cross flow manifold during electroplating |
US10364505B2 (en) | 2016-05-24 | 2019-07-30 | Lam Research Corporation | Dynamic modulation of cross flow manifold during elecroplating |
US10781527B2 (en) | 2017-09-18 | 2020-09-22 | Lam Research Corporation | Methods and apparatus for controlling delivery of cross flowing and impinging electrolyte during electroplating |
US11001934B2 (en) | 2017-08-21 | 2021-05-11 | Lam Research Corporation | Methods and apparatus for flow isolation and focusing during electroplating |
WO2021142187A1 (en) * | 2020-01-09 | 2021-07-15 | Lam Research Corporation | High-speed 3d metal printing of semiconductor metal interconnects |
US20220228285A1 (en) * | 2019-05-17 | 2022-07-21 | Ebara Corporation | Plating method, insoluble anode for plating, and plating apparatus |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1222641C (en) * | 1998-02-12 | 2005-10-12 | Acm研究公司 | Plating apparatus and method |
TWI223678B (en) * | 1998-03-20 | 2004-11-11 | Semitool Inc | Process for applying a metal structure to a workpiece, the treated workpiece and a solution for electroplating copper |
US6497801B1 (en) * | 1998-07-10 | 2002-12-24 | Semitool Inc | Electroplating apparatus with segmented anode array |
US6773571B1 (en) | 2001-06-28 | 2004-08-10 | Novellus Systems, Inc. | Method and apparatus for uniform electroplating of thin metal seeded wafers using multiple segmented virtual anode sources |
US6919010B1 (en) | 2001-06-28 | 2005-07-19 | Novellus Systems, Inc. | Uniform electroplating of thin metal seeded wafers using rotationally asymmetric variable anode correction |
US6402923B1 (en) * | 2000-03-27 | 2002-06-11 | Novellus Systems Inc | Method and apparatus for uniform electroplating of integrated circuits using a variable field shaping element |
US6916412B2 (en) * | 1999-04-13 | 2005-07-12 | Semitool, Inc. | Adaptable electrochemical processing chamber |
US7264698B2 (en) * | 1999-04-13 | 2007-09-04 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
KR100695660B1 (en) * | 1999-04-13 | 2007-03-19 | 세미툴 인코포레이티드 | Workpiece Processor Having Processing Chamber With Improved Processing Fluid Flow |
US7160421B2 (en) * | 1999-04-13 | 2007-01-09 | Semitool, Inc. | Turning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
US7189318B2 (en) * | 1999-04-13 | 2007-03-13 | Semitool, Inc. | Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
US8475636B2 (en) | 2008-11-07 | 2013-07-02 | Novellus Systems, Inc. | Method and apparatus for electroplating |
US8308931B2 (en) | 2006-08-16 | 2012-11-13 | Novellus Systems, Inc. | Method and apparatus for electroplating |
US7622024B1 (en) * | 2000-05-10 | 2009-11-24 | Novellus Systems, Inc. | High resistance ionic current source |
US6527920B1 (en) | 2000-05-10 | 2003-03-04 | Novellus Systems, Inc. | Copper electroplating apparatus |
US7273535B2 (en) * | 2003-09-17 | 2007-09-25 | Applied Materials, Inc. | Insoluble anode with an auxiliary electrode |
US20050284751A1 (en) * | 2004-06-28 | 2005-12-29 | Nicolay Kovarsky | Electrochemical plating cell with a counter electrode in an isolated anolyte compartment |
US20060011487A1 (en) * | 2001-05-31 | 2006-01-19 | Surfect Technologies, Inc. | Submicron and nano size particle encapsulation by electrochemical process and apparatus |
US7682498B1 (en) | 2001-06-28 | 2010-03-23 | Novellus Systems, Inc. | Rotationally asymmetric variable electrode correction |
US20030168344A1 (en) * | 2002-03-08 | 2003-09-11 | Applied Materials, Inc. | Selective metal deposition for electrochemical plating |
US7854828B2 (en) * | 2006-08-16 | 2010-12-21 | Novellus Systems, Inc. | Method and apparatus for electroplating including remotely positioned second cathode |
US6893505B2 (en) * | 2002-05-08 | 2005-05-17 | Semitool, Inc. | Apparatus and method for regulating fluid flows, such as flows of electrochemical processing fluids |
US6776885B2 (en) * | 2002-11-14 | 2004-08-17 | International Business Machines Corporation | Integrated plating and planarization apparatus having a variable-diameter counterelectrode |
US20040099534A1 (en) * | 2002-11-27 | 2004-05-27 | James Powers | Method and apparatus for electroplating a semiconductor wafer |
AU2003298904A1 (en) * | 2002-12-05 | 2004-06-30 | Surfect Technologies, Inc. | Coated and magnetic particles and applications thereof |
US20060049038A1 (en) * | 2003-02-12 | 2006-03-09 | Surfect Technologies, Inc. | Dynamic profile anode |
DE10327578A1 (en) * | 2003-06-18 | 2005-01-13 | Micronas Gmbh | Method and device for filtering a signal |
WO2005076977A2 (en) * | 2004-02-04 | 2005-08-25 | Surfect Technologies, Inc. | Plating apparatus and method |
US8623193B1 (en) | 2004-06-16 | 2014-01-07 | Novellus Systems, Inc. | Method of electroplating using a high resistance ionic current source |
US7214297B2 (en) * | 2004-06-28 | 2007-05-08 | Applied Materials, Inc. | Substrate support element for an electrochemical plating cell |
TWI414639B (en) * | 2005-05-25 | 2013-11-11 | Applied Materials Inc | Electroplating apparatus based on an array of anodes |
US8029653B2 (en) * | 2006-02-21 | 2011-10-04 | Ebara Corporation | Electroplating apparatus and electroplating method |
US7655126B2 (en) | 2006-03-27 | 2010-02-02 | Federal Mogul World Wide, Inc. | Fabrication of topical stopper on MLS gasket by active matrix electrochemical deposition |
JP4976120B2 (en) * | 2006-06-14 | 2012-07-18 | 日本エレクトロプレイテイング・エンジニヤース株式会社 | Wafer plating method |
US9822461B2 (en) | 2006-08-16 | 2017-11-21 | Novellus Systems, Inc. | Dynamic current distribution control apparatus and method for wafer electroplating |
US7842173B2 (en) * | 2007-01-29 | 2010-11-30 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microfeature wafers |
US7799684B1 (en) | 2007-03-05 | 2010-09-21 | Novellus Systems, Inc. | Two step process for uniform across wafer deposition and void free filling on ruthenium coated wafers |
US20080289764A1 (en) * | 2007-05-25 | 2008-11-27 | International Business Machines Corporation | End point detection electrode system and etch station |
US8197660B2 (en) * | 2007-09-10 | 2012-06-12 | Infineon Technologies Ag | Electro chemical deposition systems and methods of manufacturing using the same |
US20090114542A1 (en) * | 2007-11-06 | 2009-05-07 | Spansion Llc | Process of forming an electronic device including depositing a conductive layer over a seed layer |
US8703615B1 (en) | 2008-03-06 | 2014-04-22 | Novellus Systems, Inc. | Copper electroplating process for uniform across wafer deposition and void free filling on ruthenium coated wafers |
US8513124B1 (en) | 2008-03-06 | 2013-08-20 | Novellus Systems, Inc. | Copper electroplating process for uniform across wafer deposition and void free filling on semi-noble metal coated wafers |
US7964506B1 (en) | 2008-03-06 | 2011-06-21 | Novellus Systems, Inc. | Two step copper electroplating process with anneal for uniform across wafer deposition and void free filling on ruthenium coated wafers |
US20120261254A1 (en) | 2011-04-15 | 2012-10-18 | Reid Jonathan D | Method and apparatus for filling interconnect structures |
US8858774B2 (en) | 2008-11-07 | 2014-10-14 | Novellus Systems, Inc. | Electroplating apparatus for tailored uniformity profile |
US8475637B2 (en) | 2008-12-17 | 2013-07-02 | Novellus Systems, Inc. | Electroplating apparatus with vented electrolyte manifold |
US8262871B1 (en) | 2008-12-19 | 2012-09-11 | Novellus Systems, Inc. | Plating method and apparatus with multiple internally irrigated chambers |
DE102009023769A1 (en) | 2009-05-22 | 2010-11-25 | Hübel, Egon, Dipl.-Ing. (FH) | Method and device for the controlled electrolytic treatment of thin layers |
US9714474B2 (en) | 2010-04-06 | 2017-07-25 | Tel Nexx, Inc. | Seed layer deposition in microscale features |
CN102383174B (en) * | 2010-09-01 | 2014-09-24 | 中芯国际集成电路制造(上海)有限公司 | Electroplating anode |
US8496790B2 (en) * | 2011-05-18 | 2013-07-30 | Applied Materials, Inc. | Electrochemical processor |
US10224182B2 (en) | 2011-10-17 | 2019-03-05 | Novellus Systems, Inc. | Mechanical suppression of parasitic plasma in substrate processing chamber |
CN102492971B (en) * | 2011-12-28 | 2014-09-17 | 无锡科硅电子技术有限公司 | Electroplating apparatus for semiconductor substrate surface |
CN102560587B (en) * | 2012-02-08 | 2015-03-18 | 南通富士通微电子股份有限公司 | Electroplating device |
US8968533B2 (en) * | 2012-05-10 | 2015-03-03 | Applied Materials, Inc | Electroplating processor with geometric electrolyte flow path |
US9909228B2 (en) | 2012-11-27 | 2018-03-06 | Lam Research Corporation | Method and apparatus for dynamic current distribution control during electroplating |
EP2754735B1 (en) * | 2013-01-11 | 2020-07-22 | Elsyca N.V. | A device suitable for the electrochemical processing of an object, and a method for the electrochemical processing of an object |
US9677191B2 (en) | 2013-01-17 | 2017-06-13 | Elsyca N.V. | Device suitable for the electrochemical processing of an object, a holder suitable for such a device, and a method for the electrochemical processing of an object |
US9670588B2 (en) | 2013-05-01 | 2017-06-06 | Lam Research Corporation | Anisotropic high resistance ionic current source (AHRICS) |
US20150090599A1 (en) * | 2013-10-02 | 2015-04-02 | Tel Nexx, Inc. | Insoluble Anode With a Plurality of Switchable Conductive Elements Used to Control Current Density in a Plating Bath |
US9677190B2 (en) | 2013-11-01 | 2017-06-13 | Lam Research Corporation | Membrane design for reducing defects in electroplating systems |
CN104947172B (en) * | 2014-03-28 | 2018-05-29 | 通用电气公司 | Plating tool and the method using the plating tool |
US9752248B2 (en) | 2014-12-19 | 2017-09-05 | Lam Research Corporation | Methods and apparatuses for dynamically tunable wafer-edge electroplating |
US9567685B2 (en) | 2015-01-22 | 2017-02-14 | Lam Research Corporation | Apparatus and method for dynamic control of plated uniformity with the use of remote electric current |
US9816194B2 (en) | 2015-03-19 | 2017-11-14 | Lam Research Corporation | Control of electrolyte flow dynamics for uniform electroplating |
US10014170B2 (en) | 2015-05-14 | 2018-07-03 | Lam Research Corporation | Apparatus and method for electrodeposition of metals with the use of an ionically resistive ionically permeable element having spatially tailored resistivity |
US9988733B2 (en) | 2015-06-09 | 2018-06-05 | Lam Research Corporation | Apparatus and method for modulating azimuthal uniformity in electroplating |
US10704156B2 (en) * | 2015-12-17 | 2020-07-07 | Texas Instruments Incorporated | Method and system for electroplating a MEMS device |
CN108048887A (en) * | 2018-01-16 | 2018-05-18 | 昆山成功环保科技有限公司 | A kind of wafer electroplate jig |
IT201800005533A1 (en) * | 2018-05-21 | 2019-11-21 | Electroplating equipment, particularly for coating or forming by electrodeposition of pieces made of conductive materials. | |
CN110512248B (en) | 2018-05-21 | 2022-04-12 | 盛美半导体设备(上海)股份有限公司 | Electroplating apparatus and electroplating method |
US11174564B2 (en) | 2018-10-31 | 2021-11-16 | Unison Industries, Llc | Electroforming system and method |
US11142840B2 (en) | 2018-10-31 | 2021-10-12 | Unison Industries, Llc | Electroforming system and method |
CA3141101C (en) | 2021-08-23 | 2023-10-17 | Unison Industries, Llc | Electroforming system and method |
Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1526644A (en) * | 1922-10-25 | 1925-02-17 | Williams Brothers Mfg Company | Process of electroplating and apparatus therefor |
US3309263A (en) * | 1964-12-03 | 1967-03-14 | Kimberly Clark Co | Web pickup and transfer for a papermaking machine |
US3716462A (en) * | 1970-10-05 | 1973-02-13 | D Jensen | Copper plating on zinc and its alloys |
US3798003A (en) * | 1972-02-14 | 1974-03-19 | E Ensley | Differential microcalorimeter |
US3798033A (en) * | 1971-05-11 | 1974-03-19 | Spectral Data Corp | Isoluminous additive color multispectral display |
US3930963A (en) * | 1971-07-29 | 1976-01-06 | Photocircuits Division Of Kollmorgen Corporation | Method for the production of radiant energy imaged printed circuit boards |
US4072557A (en) * | 1974-12-23 | 1978-02-07 | J. M. Voith Gmbh | Method and apparatus for shrinking a travelling web of fibrous material |
US4132567A (en) * | 1977-10-13 | 1979-01-02 | Fsi Corporation | Apparatus for and method of cleaning and removing static charges from substrates |
US4134802A (en) * | 1977-10-03 | 1979-01-16 | Oxy Metal Industries Corporation | Electrolyte and method for electrodepositing bright metal deposits |
US4137867A (en) * | 1977-09-12 | 1979-02-06 | Seiichiro Aigo | Apparatus for bump-plating semiconductor wafers |
US4246088A (en) * | 1979-01-24 | 1981-01-20 | Metal Box Limited | Method and apparatus for electrolytic treatment of containers |
US4259166A (en) * | 1980-03-31 | 1981-03-31 | Rca Corporation | Shield for plating substrate |
US4378283A (en) * | 1981-07-30 | 1983-03-29 | National Semiconductor Corporation | Consumable-anode selective plating apparatus |
US4431361A (en) * | 1980-09-02 | 1984-02-14 | Heraeus Quarzschmelze Gmbh | Methods of and apparatus for transferring articles between carrier members |
US4437943A (en) * | 1980-07-09 | 1984-03-20 | Olin Corporation | Method and apparatus for bonding metal wire to a base metal substrate |
US4439243A (en) * | 1982-08-03 | 1984-03-27 | Texas Instruments Incorporated | Apparatus and method of material removal with fluid flow within a slot |
US4439244A (en) * | 1982-08-03 | 1984-03-27 | Texas Instruments Incorporated | Apparatus and method of material removal having a fluid filled slot |
US4495153A (en) * | 1981-06-12 | 1985-01-22 | Nissan Motor Company, Limited | Catalytic converter for treating engine exhaust gases |
US4495453A (en) * | 1981-06-26 | 1985-01-22 | Fujitsu Fanuc Limited | System for controlling an industrial robot |
US4500394A (en) * | 1984-05-16 | 1985-02-19 | At&T Technologies, Inc. | Contacting a surface for plating thereon |
US4566847A (en) * | 1982-03-01 | 1986-01-28 | Kabushiki Kaisha Daini Seikosha | Industrial robot |
US4576689A (en) * | 1979-06-19 | 1986-03-18 | Makkaev Almaxud M | Process for electrochemical metallization of dielectrics |
US4576685A (en) * | 1985-04-23 | 1986-03-18 | Schering Ag | Process and apparatus for plating onto articles |
US4634503A (en) * | 1984-06-27 | 1987-01-06 | Daniel Nogavich | Immersion electroplating system |
US4639028A (en) * | 1984-11-13 | 1987-01-27 | Economic Development Corporation | High temperature and acid resistant wafer pick up device |
US4648944A (en) * | 1985-07-18 | 1987-03-10 | Martin Marietta Corporation | Apparatus and method for controlling plating induced stress in electroforming and electroplating processes |
US4732785A (en) * | 1986-09-26 | 1988-03-22 | Motorola, Inc. | Edge bead removal process for spin on films |
US4800818A (en) * | 1985-11-02 | 1989-01-31 | Hitachi Kiden Kogyo Kabushiki Kaisha | Linear motor-driven conveyor means |
US4898647A (en) * | 1985-12-24 | 1990-02-06 | Gould, Inc. | Process and apparatus for electroplating copper foil |
US4902398A (en) * | 1988-04-27 | 1990-02-20 | American Thim Film Laboratories, Inc. | Computer program for vacuum coating systems |
US4903717A (en) * | 1987-11-09 | 1990-02-27 | Sez Semiconductor-Equipment Zubehoer Fuer die Halbleiterfertigung Gesellschaft m.b.H | Support for slice-shaped articles and device for etching silicon wafers with such a support |
US4906341A (en) * | 1987-09-24 | 1990-03-06 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor device and apparatus therefor |
US4982215A (en) * | 1988-08-31 | 1991-01-01 | Kabushiki Kaisha Toshiba | Method and apparatus for creation of resist patterns by chemical development |
US4982753A (en) * | 1983-07-26 | 1991-01-08 | National Semiconductor Corporation | Wafer etching, cleaning and stripping apparatus |
US4988533A (en) * | 1988-05-27 | 1991-01-29 | Texas Instruments Incorporated | Method for deposition of silicon oxide on a wafer |
US5000827A (en) * | 1990-01-02 | 1991-03-19 | Motorola, Inc. | Method and apparatus for adjusting plating solution flow characteristics at substrate cathode periphery to minimize edge effect |
US5078852A (en) * | 1990-10-12 | 1992-01-07 | Microelectronics And Computer Technology Corporation | Plating rack |
US5083364A (en) * | 1987-10-20 | 1992-01-28 | Convac Gmbh | System for manufacturing semiconductor substrates |
US5096550A (en) * | 1990-10-15 | 1992-03-17 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for spatially uniform electropolishing and electrolytic etching |
US5178512A (en) * | 1991-04-01 | 1993-01-12 | Equipe Technologies | Precision robot apparatus |
US5178639A (en) * | 1990-06-28 | 1993-01-12 | Tokyo Electron Sagami Limited | Vertical heat-treating apparatus |
US5180273A (en) * | 1989-10-09 | 1993-01-19 | Kabushiki Kaisha Toshiba | Apparatus for transferring semiconductor wafers |
US5183377A (en) * | 1988-05-31 | 1993-02-02 | Mannesmann Ag | Guiding a robot in an array |
US5186594A (en) * | 1990-04-19 | 1993-02-16 | Applied Materials, Inc. | Dual cassette load lock |
US5377708A (en) * | 1989-03-27 | 1995-01-03 | Semitool, Inc. | Multi-station semiconductor processor with volatilization |
US5388945A (en) * | 1992-08-04 | 1995-02-14 | International Business Machines Corporation | Fully automated and computerized conveyor based manufacturing line architectures adapted to pressurized sealable transportable containers |
US5389496A (en) * | 1987-03-06 | 1995-02-14 | Rohm And Haas Company | Processes and compositions for electroless metallization |
US5391285A (en) * | 1994-02-25 | 1995-02-21 | Motorola, Inc. | Adjustable plating cell for uniform bump plating of semiconductor wafers |
US5391517A (en) * | 1993-09-13 | 1995-02-21 | Motorola Inc. | Process for forming copper interconnect structure |
US5393624A (en) * | 1988-07-29 | 1995-02-28 | Tokyo Electron Limited | Method and apparatus for manufacturing a semiconductor device |
US5489341A (en) * | 1993-08-23 | 1996-02-06 | Semitool, Inc. | Semiconductor processing with non-jetting fluid stream discharge array |
US5500081A (en) * | 1990-05-15 | 1996-03-19 | Bergman; Eric J. | Dynamic semiconductor wafer processing using homogeneous chemical vapors |
US5501768A (en) * | 1992-04-17 | 1996-03-26 | Kimberly-Clark Corporation | Method of treating papermaking fibers for making tissue |
US5591262A (en) * | 1994-03-24 | 1997-01-07 | Tazmo Co., Ltd. | Rotary chemical treater having stationary cleaning fluid nozzle |
US5593545A (en) * | 1995-02-06 | 1997-01-14 | Kimberly-Clark Corporation | Method for making uncreped throughdried tissue products without an open draw |
US5597836A (en) * | 1991-09-03 | 1997-01-28 | Dowelanco | N-(4-pyridyl) (substituted phenyl) acetamide pesticides |
US5597460A (en) * | 1995-11-13 | 1997-01-28 | Reynolds Tech Fabricators, Inc. | Plating cell having laminar flow sparger |
US5600532A (en) * | 1994-04-11 | 1997-02-04 | Ngk Spark Plug Co., Ltd. | Thin-film condenser |
US5609239A (en) * | 1994-03-21 | 1997-03-11 | Thyssen Aufzuege Gmbh | Locking system |
US5711646A (en) * | 1994-10-07 | 1998-01-27 | Tokyo Electron Limited | Substrate transfer apparatus |
US5719495A (en) * | 1990-12-31 | 1998-02-17 | Texas Instruments Incorporated | Apparatus for semiconductor device fabrication diagnosis and prognosis |
US5718763A (en) * | 1994-04-04 | 1998-02-17 | Tokyo Electron Limited | Resist processing apparatus for a rectangular substrate |
US5723028A (en) * | 1990-08-01 | 1998-03-03 | Poris; Jaime | Electrodeposition apparatus with virtual anode |
US5731678A (en) * | 1996-07-15 | 1998-03-24 | Semitool, Inc. | Processing head for semiconductor processing machines |
US5860640A (en) * | 1995-11-29 | 1999-01-19 | Applied Materials, Inc. | Semiconductor wafer alignment member and clamp ring |
US5868866A (en) * | 1995-03-03 | 1999-02-09 | Ebara Corporation | Method of and apparatus for cleaning workpiece |
US5871626A (en) * | 1995-09-27 | 1999-02-16 | Intel Corporation | Flexible continuous cathode contact circuit for electrolytic plating of C4, TAB microbumps, and ultra large scale interconnects |
US5872633A (en) * | 1996-07-26 | 1999-02-16 | Speedfam Corporation | Methods and apparatus for detecting removal of thin film layers during planarization |
US5871805A (en) * | 1996-04-08 | 1999-02-16 | Lemelson; Jerome | Computer controlled vapor deposition processes |
US5882498A (en) * | 1997-10-16 | 1999-03-16 | Advanced Micro Devices, Inc. | Method for reducing oxidation of electroplating chamber contacts and improving uniform electroplating of a substrate |
US5882433A (en) * | 1995-05-23 | 1999-03-16 | Tokyo Electron Limited | Spin cleaning method |
US5885755A (en) * | 1997-04-30 | 1999-03-23 | Kabushiki Kaisha Toshiba | Developing treatment apparatus used in the process for manufacturing a semiconductor device, and method for the developing treatment |
US6017820A (en) * | 1998-07-17 | 2000-01-25 | Cutek Research, Inc. | Integrated vacuum and plating cluster system |
US6017437A (en) * | 1997-08-22 | 2000-01-25 | Cutek Research, Inc. | Process chamber and method for depositing and/or removing material on a substrate |
US6025600A (en) * | 1998-05-29 | 2000-02-15 | International Business Machines Corporation | Method for astigmatism correction in charged particle beam systems |
US6028986A (en) * | 1995-11-10 | 2000-02-22 | Samsung Electronics Co., Ltd. | Methods of designing and fabricating intergrated circuits which take into account capacitive loading by the intergrated circuit potting material |
US6027631A (en) * | 1997-11-13 | 2000-02-22 | Novellus Systems, Inc. | Electroplating system with shields for varying thickness profile of deposited layer |
US6168695B1 (en) * | 1999-07-12 | 2001-01-02 | Daniel J. Woodruff | Lift and rotate assembly for use in a workpiece processing station and a method of attaching the same |
US6168693B1 (en) * | 1998-01-22 | 2001-01-02 | International Business Machines Corporation | Apparatus for controlling the uniformity of an electroplated workpiece |
US6174796B1 (en) * | 1998-01-30 | 2001-01-16 | Fujitsu Limited | Semiconductor device manufacturing method |
US6174425B1 (en) * | 1997-05-14 | 2001-01-16 | Motorola, Inc. | Process for depositing a layer of material over a substrate |
US6179983B1 (en) * | 1997-11-13 | 2001-01-30 | Novellus Systems, Inc. | Method and apparatus for treating surface including virtual anode |
US6184068B1 (en) * | 1994-06-02 | 2001-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor device |
US6187072B1 (en) * | 1995-09-25 | 2001-02-13 | Applied Materials, Inc. | Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions |
US6190234B1 (en) * | 1999-01-25 | 2001-02-20 | Applied Materials, Inc. | Endpoint detection with light beams of different wavelengths |
US6194628B1 (en) * | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Method and apparatus for cleaning a vacuum line in a CVD system |
US6193859B1 (en) * | 1997-11-13 | 2001-02-27 | Novellus Systems, Inc. | Electric potential shaping apparatus for holding a semiconductor wafer during electroplating |
US6193802B1 (en) * | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment |
US6334937B1 (en) * | 1998-12-31 | 2002-01-01 | Semitool, Inc. | Apparatus for high deposition rate solder electroplating on a microelectronic workpiece |
US20020008036A1 (en) * | 1998-02-12 | 2002-01-24 | Hui Wang | Plating apparatus and method |
US20020008037A1 (en) * | 1999-04-13 | 2002-01-24 | Wilson Gregory J. | System for electrochemically processing a workpiece |
US20020022363A1 (en) * | 1998-02-04 | 2002-02-21 | Thomas L. Ritzdorf | Method for filling recessed micro-structures with metallization in the production of a microelectronic device |
US6350319B1 (en) * | 1998-03-13 | 2002-02-26 | Semitool, Inc. | Micro-environment reactor for processing a workpiece |
US20030020928A1 (en) * | 2000-07-08 | 2003-01-30 | Ritzdorf Thomas L. | Methods and apparatus for processing microelectronic workpieces using metrology |
US20030038035A1 (en) * | 2001-05-30 | 2003-02-27 | Wilson Gregory J. | Methods and systems for controlling current in electrochemical processing of microelectronic workpieces |
US6672820B1 (en) * | 1996-07-15 | 2004-01-06 | Semitool, Inc. | Semiconductor processing apparatus having linear conveyer system |
US6678055B2 (en) * | 2001-11-26 | 2004-01-13 | Tevet Process Control Technologies Ltd. | Method and apparatus for measuring stress in semiconductor wafers |
US20040031693A1 (en) * | 1998-03-20 | 2004-02-19 | Chen Linlin | Apparatus and method for electrochemically depositing metal on a semiconductor workpiece |
Family Cites Families (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2004A (en) * | 1841-03-12 | Improvement in the manner of constructing and propelling steam-vessels | ||
US2001A (en) * | 1841-03-12 | Sawmill | ||
US2002A (en) * | 1841-03-12 | Tor and planter for plowing | ||
US2003A (en) * | 1841-03-12 | Improvement in horizontal windivhlls | ||
US1881713A (en) * | 1928-12-03 | 1932-10-11 | Arthur K Laukel | Flexible and adjustable anode |
US2256274A (en) * | 1938-06-30 | 1941-09-16 | Firm J D Riedel E De Haen A G | Salicylic acid sulphonyl sulphanilamides |
US3616284A (en) * | 1968-08-21 | 1971-10-26 | Bell Telephone Labor Inc | Processing arrays of junction devices |
US3664933A (en) * | 1969-06-19 | 1972-05-23 | Udylite Corp | Process for acid copper plating of zinc |
US3706651A (en) * | 1970-12-30 | 1972-12-19 | Us Navy | Apparatus for electroplating a curved surface |
BE791401A (en) * | 1971-11-15 | 1973-05-14 | Monsanto Co | ELECTROCHEMICAL COMPOSITIONS AND PROCESSES |
DE2244434C3 (en) * | 1972-09-06 | 1982-02-25 | Schering Ag, 1000 Berlin Und 4619 Bergkamen | Aqueous bath for the galvanic deposition of gold and gold alloys |
US4022679A (en) * | 1973-05-10 | 1977-05-10 | C. Conradty | Coated titanium anode for amalgam heavy duty cells |
US3968885A (en) * | 1973-06-29 | 1976-07-13 | International Business Machines Corporation | Method and apparatus for handling workpieces |
US3880725A (en) * | 1974-04-10 | 1975-04-29 | Rca Corp | Predetermined thickness profiles through electroplating |
US4001094A (en) * | 1974-09-19 | 1977-01-04 | Jumer John F | Method for incremental electro-processing of large areas |
US4000046A (en) * | 1974-12-23 | 1976-12-28 | P. R. Mallory & Co., Inc. | Method of electroplating a conductive layer over an electrolytic capacitor |
US4046105A (en) * | 1975-06-16 | 1977-09-06 | Xerox Corporation | Laminar deep wave generator |
US4032422A (en) * | 1975-10-03 | 1977-06-28 | National Semiconductor Corporation | Apparatus for plating semiconductor chip headers |
US4030015A (en) * | 1975-10-20 | 1977-06-14 | International Business Machines Corporation | Pulse width modulated voltage regulator-converter/power converter having push-push regulator-converter means |
US4165252A (en) * | 1976-08-30 | 1979-08-21 | Burroughs Corporation | Method for chemically treating a single side of a workpiece |
US4170959A (en) * | 1978-04-04 | 1979-10-16 | Seiichiro Aigo | Apparatus for bump-plating semiconductor wafers |
US4341629A (en) * | 1978-08-28 | 1982-07-27 | Sand And Sea Industries, Inc. | Means for desalination of water through reverse osmosis |
US4222834A (en) * | 1979-06-06 | 1980-09-16 | Western Electric Company, Inc. | Selectively treating an article |
JPS56102590A (en) * | 1979-08-09 | 1981-08-17 | Koichi Shimamura | Method and device for plating of microarea |
US4422915A (en) * | 1979-09-04 | 1983-12-27 | Battelle Memorial Institute | Preparation of colored polymeric film-like coating |
US4238310A (en) * | 1979-10-03 | 1980-12-09 | United Technologies Corporation | Apparatus for electrolytic etching |
US4323433A (en) * | 1980-09-22 | 1982-04-06 | The Boeing Company | Anodizing process employing adjustable shield for suspended cathode |
US4443117A (en) * | 1980-09-26 | 1984-04-17 | Terumo Corporation | Measuring apparatus, method of manufacture thereof, and method of writing data into same |
US4304641A (en) * | 1980-11-24 | 1981-12-08 | International Business Machines Corporation | Rotary electroplating cell with controlled current distribution |
SE8101046L (en) * | 1981-02-16 | 1982-08-17 | Europafilm | DEVICE FOR PLANTS, Separate for the matrices of gramophone discs and the like |
US4360410A (en) * | 1981-03-06 | 1982-11-23 | Western Electric Company, Inc. | Electroplating processes and equipment utilizing a foam electrolyte |
US4384930A (en) * | 1981-08-21 | 1983-05-24 | Mcgean-Rohco, Inc. | Electroplating baths, additives therefor and methods for the electrodeposition of metals |
US4463503A (en) * | 1981-09-29 | 1984-08-07 | Driall, Inc. | Grain drier and method of drying grain |
JPS58154842A (en) * | 1982-02-03 | 1983-09-14 | Konishiroku Photo Ind Co Ltd | Silver halide color photographic sensitive material |
US4440597A (en) * | 1982-03-15 | 1984-04-03 | The Procter & Gamble Company | Wet-microcontracted paper and concomitant process |
US4475823A (en) * | 1982-04-09 | 1984-10-09 | Piezo Electric Products, Inc. | Self-calibrating thermometer |
US4449885A (en) * | 1982-05-24 | 1984-05-22 | Varian Associates, Inc. | Wafer transfer system |
US4451197A (en) * | 1982-07-26 | 1984-05-29 | Advanced Semiconductor Materials Die Bonding, Inc. | Object detection apparatus and method |
US4514269A (en) * | 1982-08-06 | 1985-04-30 | Alcan International Limited | Metal production by electrolysis of a molten electrolyte |
US4585539A (en) * | 1982-08-17 | 1986-04-29 | Technic, Inc. | Electrolytic reactor |
US4541895A (en) * | 1982-10-29 | 1985-09-17 | Scapa Inc. | Papermakers fabric of nonwoven layers in a laminated construction |
JPS59150094A (en) * | 1983-02-14 | 1984-08-28 | Teichiku Kk | Disc type rotary plating device |
US4529480A (en) | 1983-08-23 | 1985-07-16 | The Procter & Gamble Company | Tissue paper |
US4469566A (en) * | 1983-08-29 | 1984-09-04 | Dynamic Disk, Inc. | Method and apparatus for producing electroplated magnetic memory disk, and the like |
US4864239A (en) * | 1983-12-05 | 1989-09-05 | General Electric Company | Cylindrical bearing inspection |
US4466864A (en) * | 1983-12-16 | 1984-08-21 | At&T Technologies, Inc. | Methods of and apparatus for electroplating preselected surface regions of electrical articles |
DE8430403U1 (en) * | 1984-10-16 | 1985-04-25 | Gebr. Steimel, 5202 Hennef | CENTERING DEVICE |
DE3500005A1 (en) | 1985-01-02 | 1986-07-10 | ESB Elektrostatische Sprüh- und Beschichtungsanlagen G.F. Vöhringer GmbH, 7758 Meersburg | COATING CABIN FOR COATING THE SURFACE OF WORKPIECES WITH COATING POWDER |
US4604178A (en) * | 1985-03-01 | 1986-08-05 | The Dow Chemical Company | Anode |
US4685414A (en) * | 1985-04-03 | 1987-08-11 | Dirico Mark A | Coating printed sheets |
US4760671A (en) * | 1985-08-19 | 1988-08-02 | Owens-Illinois Television Products Inc. | Method of and apparatus for automatically grinding cathode ray tube faceplates |
FR2587915B1 (en) * | 1985-09-27 | 1987-11-27 | Omya Sa | DEVICE FOR CONTACTING FLUIDS IN THE FORM OF DIFFERENT PHASES |
US4949671A (en) * | 1985-10-24 | 1990-08-21 | Texas Instruments Incorporated | Processing apparatus and method |
US4715934A (en) * | 1985-11-18 | 1987-12-29 | Lth Associates | Process and apparatus for separating metals from solutions |
US4761214A (en) * | 1985-11-27 | 1988-08-02 | Airfoil Textron Inc. | ECM machine with mechanisms for venting and clamping a workpart shroud |
US4687552A (en) * | 1985-12-02 | 1987-08-18 | Tektronix, Inc. | Rhodium capped gold IC metallization |
US4849054A (en) * | 1985-12-04 | 1989-07-18 | James River-Norwalk, Inc. | High bulk, embossed fiber sheet material and apparatus and method of manufacturing the same |
US4696729A (en) * | 1986-02-28 | 1987-09-29 | International Business Machines | Electroplating cell |
US4670126A (en) * | 1986-04-28 | 1987-06-02 | Varian Associates, Inc. | Sputter module for modular wafer processing system |
US4924890A (en) * | 1986-05-16 | 1990-05-15 | Eastman Kodak Company | Method and apparatus for cleaning semiconductor wafers |
US4770590A (en) * | 1986-05-16 | 1988-09-13 | Silicon Valley Group, Inc. | Method and apparatus for transferring wafers between cassettes and a boat |
US4951601A (en) * | 1986-12-19 | 1990-08-28 | Applied Materials, Inc. | Multi-chamber integrated process system |
US5024746A (en) | 1987-04-13 | 1991-06-18 | Texas Instruments Incorporated | Fixture and a method for plating contact bumps for integrated circuits |
DD260260A1 (en) * | 1987-05-04 | 1988-09-21 | Polygraph Leipzig | ROTATION HEADING DEVICE WITH SEPARATELY DRIVEN HEADING HEAD |
DE3719952A1 (en) | 1987-06-15 | 1988-12-29 | Convac Gmbh | DEVICE FOR TREATING WAFERS IN THE PRODUCTION OF SEMICONDUCTOR ELEMENTS |
US4781800A (en) * | 1987-09-29 | 1988-11-01 | President And Fellows Of Harvard College | Deposition of metal or alloy film |
JP2508540B2 (en) * | 1987-11-02 | 1996-06-19 | 三菱マテリアル株式会社 | Wafer position detector |
JPH01125821A (en) * | 1987-11-10 | 1989-05-18 | Matsushita Electric Ind Co Ltd | Vapor growth device |
US4828654A (en) * | 1988-03-23 | 1989-05-09 | Protocad, Inc. | Variable size segmented anode array for electroplating |
US4868992A (en) * | 1988-04-22 | 1989-09-26 | Intel Corporation | Anode cathode parallelism gap gauge |
US5048589A (en) | 1988-05-18 | 1991-09-17 | Kimberly-Clark Corporation | Non-creped hand or wiper towel |
US4959278A (en) * | 1988-06-16 | 1990-09-25 | Nippon Mining Co., Ltd. | Tin whisker-free tin or tin alloy plated article and coating technique thereof |
US5054988A (en) | 1988-07-13 | 1991-10-08 | Tel Sagami Limited | Apparatus for transferring semiconductor wafers |
EP0358443B1 (en) | 1988-09-06 | 1997-11-26 | Canon Kabushiki Kaisha | Mask cassette loading device |
US5061144A (en) | 1988-11-30 | 1991-10-29 | Tokyo Electron Limited | Resist process apparatus |
US5146136A (en) * | 1988-12-19 | 1992-09-08 | Hitachi, Ltd. | Magnetron having identically shaped strap rings separated by a gap and connecting alternate anode vane groups |
US4913035A (en) * | 1989-08-16 | 1990-04-03 | Duh Gabri C B | Apparatus for mist prevention in car windshields |
GB9002839D0 (en) * | 1990-02-08 | 1990-04-04 | Lucas Ind Plc | Fuel injection nozzle |
US5069548A (en) | 1990-08-08 | 1991-12-03 | Industrial Technology Institute | Field shift moire system |
US5055036A (en) | 1991-02-26 | 1991-10-08 | Tokyo Electron Sagami Limited | Method of loading and unloading wafer boat |
EP0502475B1 (en) * | 1991-03-04 | 1997-06-25 | Toda Kogyo Corporation | Method of plating a bonded magnet and a bonded magnet carrying a metal coating |
US5306895A (en) * | 1991-03-26 | 1994-04-26 | Ngk Insulators, Ltd. | Corrosion-resistant member for chemical apparatus using halogen series corrosive gas |
JPH04311591A (en) * | 1991-04-08 | 1992-11-04 | Sumitomo Metal Ind Ltd | Device and method for plating |
US5156730A (en) * | 1991-06-25 | 1992-10-20 | International Business Machines | Electrode array and use thereof |
US5217586A (en) * | 1992-01-09 | 1993-06-08 | International Business Machines Corporation | Electrochemical tool for uniform metal removal during electropolishing |
US5301700A (en) * | 1992-03-05 | 1994-04-12 | Tokyo Electron Limited | Washing system |
US5316642A (en) * | 1993-04-22 | 1994-05-31 | Digital Equipment Corporation | Oscillation device for plating system |
ES2115884T3 (en) * | 1993-11-16 | 1998-07-01 | Scapa Group Plc | FELT FOR PAPER MAKING MACHINES. |
US5405518A (en) * | 1994-04-26 | 1995-04-11 | Industrial Technology Research Institute | Workpiece holder apparatus |
US5512319A (en) * | 1994-08-22 | 1996-04-30 | Basf Corporation | Polyurethane foam composite |
JP3610606B2 (en) * | 1994-12-27 | 2005-01-19 | オイレス工業株式会社 | Cam type for press |
US6042712A (en) * | 1995-05-26 | 2000-03-28 | Formfactor, Inc. | Apparatus for controlling plating over a face of a substrate |
US5670034A (en) * | 1995-07-11 | 1997-09-23 | American Plating Systems | Reciprocating anode electrolytic plating apparatus and method |
US5620581A (en) * | 1995-11-29 | 1997-04-15 | Aiwa Research And Development, Inc. | Apparatus for electroplating metal films including a cathode ring, insulator ring and thief ring |
JPH09157846A (en) * | 1995-12-01 | 1997-06-17 | Teisan Kk | Temperature controller |
US6709562B1 (en) * | 1995-12-29 | 2004-03-23 | International Business Machines Corporation | Method of making electroplated interconnection structures on integrated circuit chips |
US6051284A (en) * | 1996-05-08 | 2000-04-18 | Applied Materials, Inc. | Chamber monitoring and adjustment by plasma RF metrology |
AUPO473297A0 (en) * | 1997-01-22 | 1997-02-20 | Industrial Automation Services Pty Ltd | Coating thickness control |
US6221230B1 (en) * | 1997-05-15 | 2001-04-24 | Hiromitsu Takeuchi | Plating method and apparatus |
US6053687A (en) * | 1997-09-05 | 2000-04-25 | Applied Materials, Inc. | Cost effective modular-linear wafer processing |
US6921468B2 (en) * | 1997-09-30 | 2005-07-26 | Semitool, Inc. | Electroplating system having auxiliary electrode exterior to main reactor chamber for contact cleaning operations |
US6024856A (en) * | 1997-10-10 | 2000-02-15 | Enthone-Omi, Inc. | Copper metallization of silicon wafers using insoluble anodes |
KR100616198B1 (en) * | 1998-04-21 | 2006-08-25 | 어플라이드 머티어리얼스, 인코포레이티드 | Electro-chemical deposition system and method of electroplating on substrates |
EP0965574B1 (en) * | 1998-06-19 | 2004-10-13 | Degussa AG | Process for enantioselective hydrogenation |
US6303010B1 (en) * | 1999-07-12 | 2001-10-16 | Semitool, Inc. | Methods and apparatus for processing the surface of a microelectronic workpiece |
US6497801B1 (en) * | 1998-07-10 | 2002-12-24 | Semitool Inc | Electroplating apparatus with segmented anode array |
DE19840109A1 (en) * | 1998-09-03 | 2000-03-09 | Agfa Gevaert Ag | Color photographic material, e.g. film or paper, contains anilino pyrazolone magenta coupler and alpha-benzoyl-alpha-tetrazolylthio-acetamide development inhibitor releasing coupler |
US7020537B2 (en) * | 1999-04-13 | 2006-03-28 | Semitool, Inc. | Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
US6277607B1 (en) * | 1999-05-24 | 2001-08-21 | Sanjay Tyagi | High specificity primers, amplification methods and kits |
US6344491B1 (en) * | 1999-09-16 | 2002-02-05 | Syntroleum Corporation | Method for operating a fischer-tropsch process using a high pressure autothermal reactor as the pressure source for the process |
US7090751B2 (en) * | 2001-08-31 | 2006-08-15 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
-
1998
- 1998-07-10 US US09/113,418 patent/US6497801B1/en not_active Expired - Lifetime
-
2002
- 2002-02-27 US US10/084,962 patent/US20030102210A1/en not_active Abandoned
- 2002-09-03 US US10/234,638 patent/US7357850B2/en not_active Expired - Fee Related
-
2004
- 2004-10-27 US US10/974,359 patent/US20050109612A1/en not_active Abandoned
- 2004-10-27 US US10/974,083 patent/US7147760B2/en not_active Expired - Lifetime
-
2005
- 2005-03-17 US US11/083,707 patent/US20050161320A1/en not_active Abandoned
- 2005-03-17 US US11/083,439 patent/US20050161336A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1526644A (en) * | 1922-10-25 | 1925-02-17 | Williams Brothers Mfg Company | Process of electroplating and apparatus therefor |
US3309263A (en) * | 1964-12-03 | 1967-03-14 | Kimberly Clark Co | Web pickup and transfer for a papermaking machine |
US3716462A (en) * | 1970-10-05 | 1973-02-13 | D Jensen | Copper plating on zinc and its alloys |
US3798033A (en) * | 1971-05-11 | 1974-03-19 | Spectral Data Corp | Isoluminous additive color multispectral display |
US3930963A (en) * | 1971-07-29 | 1976-01-06 | Photocircuits Division Of Kollmorgen Corporation | Method for the production of radiant energy imaged printed circuit boards |
US3798003A (en) * | 1972-02-14 | 1974-03-19 | E Ensley | Differential microcalorimeter |
US4072557A (en) * | 1974-12-23 | 1978-02-07 | J. M. Voith Gmbh | Method and apparatus for shrinking a travelling web of fibrous material |
US4137867A (en) * | 1977-09-12 | 1979-02-06 | Seiichiro Aigo | Apparatus for bump-plating semiconductor wafers |
US4134802A (en) * | 1977-10-03 | 1979-01-16 | Oxy Metal Industries Corporation | Electrolyte and method for electrodepositing bright metal deposits |
US4132567A (en) * | 1977-10-13 | 1979-01-02 | Fsi Corporation | Apparatus for and method of cleaning and removing static charges from substrates |
US4246088A (en) * | 1979-01-24 | 1981-01-20 | Metal Box Limited | Method and apparatus for electrolytic treatment of containers |
US4576689A (en) * | 1979-06-19 | 1986-03-18 | Makkaev Almaxud M | Process for electrochemical metallization of dielectrics |
US4259166A (en) * | 1980-03-31 | 1981-03-31 | Rca Corporation | Shield for plating substrate |
US4437943A (en) * | 1980-07-09 | 1984-03-20 | Olin Corporation | Method and apparatus for bonding metal wire to a base metal substrate |
US4431361A (en) * | 1980-09-02 | 1984-02-14 | Heraeus Quarzschmelze Gmbh | Methods of and apparatus for transferring articles between carrier members |
US4495153A (en) * | 1981-06-12 | 1985-01-22 | Nissan Motor Company, Limited | Catalytic converter for treating engine exhaust gases |
US4495453A (en) * | 1981-06-26 | 1985-01-22 | Fujitsu Fanuc Limited | System for controlling an industrial robot |
US4378283A (en) * | 1981-07-30 | 1983-03-29 | National Semiconductor Corporation | Consumable-anode selective plating apparatus |
US4566847A (en) * | 1982-03-01 | 1986-01-28 | Kabushiki Kaisha Daini Seikosha | Industrial robot |
US4439244A (en) * | 1982-08-03 | 1984-03-27 | Texas Instruments Incorporated | Apparatus and method of material removal having a fluid filled slot |
US4439243A (en) * | 1982-08-03 | 1984-03-27 | Texas Instruments Incorporated | Apparatus and method of material removal with fluid flow within a slot |
US4982753A (en) * | 1983-07-26 | 1991-01-08 | National Semiconductor Corporation | Wafer etching, cleaning and stripping apparatus |
US4500394A (en) * | 1984-05-16 | 1985-02-19 | At&T Technologies, Inc. | Contacting a surface for plating thereon |
US4634503A (en) * | 1984-06-27 | 1987-01-06 | Daniel Nogavich | Immersion electroplating system |
US4639028A (en) * | 1984-11-13 | 1987-01-27 | Economic Development Corporation | High temperature and acid resistant wafer pick up device |
US4576685A (en) * | 1985-04-23 | 1986-03-18 | Schering Ag | Process and apparatus for plating onto articles |
US4648944A (en) * | 1985-07-18 | 1987-03-10 | Martin Marietta Corporation | Apparatus and method for controlling plating induced stress in electroforming and electroplating processes |
US4800818A (en) * | 1985-11-02 | 1989-01-31 | Hitachi Kiden Kogyo Kabushiki Kaisha | Linear motor-driven conveyor means |
US4898647A (en) * | 1985-12-24 | 1990-02-06 | Gould, Inc. | Process and apparatus for electroplating copper foil |
US4732785A (en) * | 1986-09-26 | 1988-03-22 | Motorola, Inc. | Edge bead removal process for spin on films |
US5389496A (en) * | 1987-03-06 | 1995-02-14 | Rohm And Haas Company | Processes and compositions for electroless metallization |
US4906341A (en) * | 1987-09-24 | 1990-03-06 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor device and apparatus therefor |
US5083364A (en) * | 1987-10-20 | 1992-01-28 | Convac Gmbh | System for manufacturing semiconductor substrates |
US4903717A (en) * | 1987-11-09 | 1990-02-27 | Sez Semiconductor-Equipment Zubehoer Fuer die Halbleiterfertigung Gesellschaft m.b.H | Support for slice-shaped articles and device for etching silicon wafers with such a support |
US4902398A (en) * | 1988-04-27 | 1990-02-20 | American Thim Film Laboratories, Inc. | Computer program for vacuum coating systems |
US4988533A (en) * | 1988-05-27 | 1991-01-29 | Texas Instruments Incorporated | Method for deposition of silicon oxide on a wafer |
US5183377A (en) * | 1988-05-31 | 1993-02-02 | Mannesmann Ag | Guiding a robot in an array |
US5393624A (en) * | 1988-07-29 | 1995-02-28 | Tokyo Electron Limited | Method and apparatus for manufacturing a semiconductor device |
US4982215A (en) * | 1988-08-31 | 1991-01-01 | Kabushiki Kaisha Toshiba | Method and apparatus for creation of resist patterns by chemical development |
US5377708A (en) * | 1989-03-27 | 1995-01-03 | Semitool, Inc. | Multi-station semiconductor processor with volatilization |
US5180273A (en) * | 1989-10-09 | 1993-01-19 | Kabushiki Kaisha Toshiba | Apparatus for transferring semiconductor wafers |
US5000827A (en) * | 1990-01-02 | 1991-03-19 | Motorola, Inc. | Method and apparatus for adjusting plating solution flow characteristics at substrate cathode periphery to minimize edge effect |
US5186594A (en) * | 1990-04-19 | 1993-02-16 | Applied Materials, Inc. | Dual cassette load lock |
US5500081A (en) * | 1990-05-15 | 1996-03-19 | Bergman; Eric J. | Dynamic semiconductor wafer processing using homogeneous chemical vapors |
US5178639A (en) * | 1990-06-28 | 1993-01-12 | Tokyo Electron Sagami Limited | Vertical heat-treating apparatus |
US5723028A (en) * | 1990-08-01 | 1998-03-03 | Poris; Jaime | Electrodeposition apparatus with virtual anode |
US5078852A (en) * | 1990-10-12 | 1992-01-07 | Microelectronics And Computer Technology Corporation | Plating rack |
US5096550A (en) * | 1990-10-15 | 1992-03-17 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for spatially uniform electropolishing and electrolytic etching |
US5719495A (en) * | 1990-12-31 | 1998-02-17 | Texas Instruments Incorporated | Apparatus for semiconductor device fabrication diagnosis and prognosis |
US5178512A (en) * | 1991-04-01 | 1993-01-12 | Equipe Technologies | Precision robot apparatus |
US5597836A (en) * | 1991-09-03 | 1997-01-28 | Dowelanco | N-(4-pyridyl) (substituted phenyl) acetamide pesticides |
US5501768A (en) * | 1992-04-17 | 1996-03-26 | Kimberly-Clark Corporation | Method of treating papermaking fibers for making tissue |
US5388945A (en) * | 1992-08-04 | 1995-02-14 | International Business Machines Corporation | Fully automated and computerized conveyor based manufacturing line architectures adapted to pressurized sealable transportable containers |
US5489341A (en) * | 1993-08-23 | 1996-02-06 | Semitool, Inc. | Semiconductor processing with non-jetting fluid stream discharge array |
US5391517A (en) * | 1993-09-13 | 1995-02-21 | Motorola Inc. | Process for forming copper interconnect structure |
US5391285A (en) * | 1994-02-25 | 1995-02-21 | Motorola, Inc. | Adjustable plating cell for uniform bump plating of semiconductor wafers |
US5609239A (en) * | 1994-03-21 | 1997-03-11 | Thyssen Aufzuege Gmbh | Locking system |
US5591262A (en) * | 1994-03-24 | 1997-01-07 | Tazmo Co., Ltd. | Rotary chemical treater having stationary cleaning fluid nozzle |
US5718763A (en) * | 1994-04-04 | 1998-02-17 | Tokyo Electron Limited | Resist processing apparatus for a rectangular substrate |
US5600532A (en) * | 1994-04-11 | 1997-02-04 | Ngk Spark Plug Co., Ltd. | Thin-film condenser |
US6184068B1 (en) * | 1994-06-02 | 2001-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor device |
US5711646A (en) * | 1994-10-07 | 1998-01-27 | Tokyo Electron Limited | Substrate transfer apparatus |
US5593545A (en) * | 1995-02-06 | 1997-01-14 | Kimberly-Clark Corporation | Method for making uncreped throughdried tissue products without an open draw |
US5868866A (en) * | 1995-03-03 | 1999-02-09 | Ebara Corporation | Method of and apparatus for cleaning workpiece |
US5882433A (en) * | 1995-05-23 | 1999-03-16 | Tokyo Electron Limited | Spin cleaning method |
US6193802B1 (en) * | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment |
US6194628B1 (en) * | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Method and apparatus for cleaning a vacuum line in a CVD system |
US6187072B1 (en) * | 1995-09-25 | 2001-02-13 | Applied Materials, Inc. | Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions |
US5871626A (en) * | 1995-09-27 | 1999-02-16 | Intel Corporation | Flexible continuous cathode contact circuit for electrolytic plating of C4, TAB microbumps, and ultra large scale interconnects |
US6028986A (en) * | 1995-11-10 | 2000-02-22 | Samsung Electronics Co., Ltd. | Methods of designing and fabricating intergrated circuits which take into account capacitive loading by the intergrated circuit potting material |
US5597460A (en) * | 1995-11-13 | 1997-01-28 | Reynolds Tech Fabricators, Inc. | Plating cell having laminar flow sparger |
US5860640A (en) * | 1995-11-29 | 1999-01-19 | Applied Materials, Inc. | Semiconductor wafer alignment member and clamp ring |
US5871805A (en) * | 1996-04-08 | 1999-02-16 | Lemelson; Jerome | Computer controlled vapor deposition processes |
US5731678A (en) * | 1996-07-15 | 1998-03-24 | Semitool, Inc. | Processing head for semiconductor processing machines |
US6672820B1 (en) * | 1996-07-15 | 2004-01-06 | Semitool, Inc. | Semiconductor processing apparatus having linear conveyer system |
US5872633A (en) * | 1996-07-26 | 1999-02-16 | Speedfam Corporation | Methods and apparatus for detecting removal of thin film layers during planarization |
US5885755A (en) * | 1997-04-30 | 1999-03-23 | Kabushiki Kaisha Toshiba | Developing treatment apparatus used in the process for manufacturing a semiconductor device, and method for the developing treatment |
US6174425B1 (en) * | 1997-05-14 | 2001-01-16 | Motorola, Inc. | Process for depositing a layer of material over a substrate |
US6017437A (en) * | 1997-08-22 | 2000-01-25 | Cutek Research, Inc. | Process chamber and method for depositing and/or removing material on a substrate |
US5882498A (en) * | 1997-10-16 | 1999-03-16 | Advanced Micro Devices, Inc. | Method for reducing oxidation of electroplating chamber contacts and improving uniform electroplating of a substrate |
US6027631A (en) * | 1997-11-13 | 2000-02-22 | Novellus Systems, Inc. | Electroplating system with shields for varying thickness profile of deposited layer |
US6179983B1 (en) * | 1997-11-13 | 2001-01-30 | Novellus Systems, Inc. | Method and apparatus for treating surface including virtual anode |
US6193859B1 (en) * | 1997-11-13 | 2001-02-27 | Novellus Systems, Inc. | Electric potential shaping apparatus for holding a semiconductor wafer during electroplating |
US6168693B1 (en) * | 1998-01-22 | 2001-01-02 | International Business Machines Corporation | Apparatus for controlling the uniformity of an electroplated workpiece |
US6174796B1 (en) * | 1998-01-30 | 2001-01-16 | Fujitsu Limited | Semiconductor device manufacturing method |
US20020022363A1 (en) * | 1998-02-04 | 2002-02-21 | Thomas L. Ritzdorf | Method for filling recessed micro-structures with metallization in the production of a microelectronic device |
US20020008036A1 (en) * | 1998-02-12 | 2002-01-24 | Hui Wang | Plating apparatus and method |
US6350319B1 (en) * | 1998-03-13 | 2002-02-26 | Semitool, Inc. | Micro-environment reactor for processing a workpiece |
US20040031693A1 (en) * | 1998-03-20 | 2004-02-19 | Chen Linlin | Apparatus and method for electrochemically depositing metal on a semiconductor workpiece |
US6025600A (en) * | 1998-05-29 | 2000-02-15 | International Business Machines Corporation | Method for astigmatism correction in charged particle beam systems |
US6017820A (en) * | 1998-07-17 | 2000-01-25 | Cutek Research, Inc. | Integrated vacuum and plating cluster system |
US6334937B1 (en) * | 1998-12-31 | 2002-01-01 | Semitool, Inc. | Apparatus for high deposition rate solder electroplating on a microelectronic workpiece |
US6190234B1 (en) * | 1999-01-25 | 2001-02-20 | Applied Materials, Inc. | Endpoint detection with light beams of different wavelengths |
US20020008037A1 (en) * | 1999-04-13 | 2002-01-24 | Wilson Gregory J. | System for electrochemically processing a workpiece |
US6342137B1 (en) * | 1999-07-12 | 2002-01-29 | Semitool, Inc. | Lift and rotate assembly for use in a workpiece processing station and a method of attaching the same |
US6168695B1 (en) * | 1999-07-12 | 2001-01-02 | Daniel J. Woodruff | Lift and rotate assembly for use in a workpiece processing station and a method of attaching the same |
US20030020928A1 (en) * | 2000-07-08 | 2003-01-30 | Ritzdorf Thomas L. | Methods and apparatus for processing microelectronic workpieces using metrology |
US20030038035A1 (en) * | 2001-05-30 | 2003-02-27 | Wilson Gregory J. | Methods and systems for controlling current in electrochemical processing of microelectronic workpieces |
US6678055B2 (en) * | 2001-11-26 | 2004-01-13 | Tevet Process Control Technologies Ltd. | Method and apparatus for measuring stress in semiconductor wafers |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9464361B2 (en) | 2010-07-02 | 2016-10-11 | Novellus Systems, Inc. | Control of electrolyte hydrodynamics for efficient mass transfer during electroplating |
CN102330140A (en) * | 2010-07-02 | 2012-01-25 | 诺发系统有限公司 | Control of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US8795480B2 (en) * | 2010-07-02 | 2014-08-05 | Novellus Systems, Inc. | Control of electrolyte hydrodynamics for efficient mass transfer during electroplating |
TWI504786B (en) * | 2010-07-02 | 2015-10-21 | Novellus Systems Inc | Control of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US9394620B2 (en) | 2010-07-02 | 2016-07-19 | Novellus Systems, Inc. | Control of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US20120000786A1 (en) * | 2010-07-02 | 2012-01-05 | Mayer Steven T | Control of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US10190230B2 (en) | 2010-07-02 | 2019-01-29 | Novellus Systems, Inc. | Cross flow manifold for electroplating apparatus |
US9624592B2 (en) | 2010-07-02 | 2017-04-18 | Novellus Systems, Inc. | Cross flow manifold for electroplating apparatus |
CN106637363A (en) * | 2010-07-02 | 2017-05-10 | 诺发系统有限公司 | Control of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US10233556B2 (en) | 2010-07-02 | 2019-03-19 | Lam Research Corporation | Dynamic modulation of cross flow manifold during electroplating |
US9523155B2 (en) | 2012-12-12 | 2016-12-20 | Novellus Systems, Inc. | Enhancement of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US9834852B2 (en) | 2012-12-12 | 2017-12-05 | Novellus Systems, Inc. | Enhancement of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US10662545B2 (en) | 2012-12-12 | 2020-05-26 | Novellus Systems, Inc. | Enhancement of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US9449808B2 (en) | 2013-05-29 | 2016-09-20 | Novellus Systems, Inc. | Apparatus for advanced packaging applications |
US9899230B2 (en) | 2013-05-29 | 2018-02-20 | Novellus Systems, Inc. | Apparatus for advanced packaging applications |
US10094034B2 (en) | 2015-08-28 | 2018-10-09 | Lam Research Corporation | Edge flow element for electroplating apparatus |
US10364505B2 (en) | 2016-05-24 | 2019-07-30 | Lam Research Corporation | Dynamic modulation of cross flow manifold during elecroplating |
US11047059B2 (en) | 2016-05-24 | 2021-06-29 | Lam Research Corporation | Dynamic modulation of cross flow manifold during elecroplating |
US11001934B2 (en) | 2017-08-21 | 2021-05-11 | Lam Research Corporation | Methods and apparatus for flow isolation and focusing during electroplating |
US10781527B2 (en) | 2017-09-18 | 2020-09-22 | Lam Research Corporation | Methods and apparatus for controlling delivery of cross flowing and impinging electrolyte during electroplating |
US20220228285A1 (en) * | 2019-05-17 | 2022-07-21 | Ebara Corporation | Plating method, insoluble anode for plating, and plating apparatus |
WO2021142187A1 (en) * | 2020-01-09 | 2021-07-15 | Lam Research Corporation | High-speed 3d metal printing of semiconductor metal interconnects |
Also Published As
Publication number | Publication date |
---|---|
US20050161320A1 (en) | 2005-07-28 |
US20030062258A1 (en) | 2003-04-03 |
US6497801B1 (en) | 2002-12-24 |
US20030102210A1 (en) | 2003-06-05 |
US20050109611A1 (en) | 2005-05-26 |
US20050109612A1 (en) | 2005-05-26 |
US7147760B2 (en) | 2006-12-12 |
US7357850B2 (en) | 2008-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7147760B2 (en) | Electroplating apparatus with segmented anode array | |
US6660137B2 (en) | System for electrochemically processing a workpiece | |
US5443707A (en) | Apparatus for electroplating the main surface of a substrate | |
US6916412B2 (en) | Adaptable electrochemical processing chamber | |
US6210554B1 (en) | Method of plating semiconductor wafer and plated semiconductor wafer | |
US6482300B2 (en) | Cup shaped plating apparatus with a disc shaped stirring device having an opening in the center thereof | |
US5514258A (en) | Substrate plating device having laminar flow | |
US20030038035A1 (en) | Methods and systems for controlling current in electrochemical processing of microelectronic workpieces | |
US20070131542A1 (en) | Apparatus and methods for electrochemical processing of microelectronic workpieces | |
US6802947B2 (en) | Apparatus and method for electro chemical plating using backside electrical contacts | |
JP2001064795A (en) | Cup-shaped plating device | |
US6544391B1 (en) | Reactor for electrochemically processing a microelectronic workpiece including improved electrode assembly | |
US20050173241A1 (en) | Apparatus having plating solution container with current applying anodes | |
US20040104119A1 (en) | Small volume electroplating cell | |
US20050061676A1 (en) | System for electrochemically processing a workpiece | |
JP2002146593A (en) | Cup type plating equipment | |
JPH07169714A (en) | Method and device for plating | |
JPH11135462A (en) | Semiconductor manufacturing device | |
US7438788B2 (en) | Apparatus and methods for electrochemical processing of microelectronic workpieces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |