US20050074215A1 - Fabrication of high air fraction photonic band gap fibers - Google Patents
Fabrication of high air fraction photonic band gap fibers Download PDFInfo
- Publication number
- US20050074215A1 US20050074215A1 US10/904,062 US90406204A US2005074215A1 US 20050074215 A1 US20050074215 A1 US 20050074215A1 US 90406204 A US90406204 A US 90406204A US 2005074215 A1 US2005074215 A1 US 2005074215A1
- Authority
- US
- United States
- Prior art keywords
- fiber
- glass
- preform
- central opening
- microstructured region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02319—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
- G02B6/02323—Core having lower refractive index than cladding, e.g. photonic band gap guiding
- G02B6/02328—Hollow or gas filled core
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
- C03B37/0122—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01265—Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
- C03B37/01274—Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by extrusion or drawing
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/027—Fibres composed of different sorts of glass, e.g. glass optical fibres
- C03B37/02781—Hollow fibres, e.g. holey fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C11/00—Multi-cellular glass ; Porous or hollow glass or glass particles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/041—Non-oxide glass compositions
- C03C13/043—Chalcogenide glass compositions
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02347—Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02361—Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02371—Cross section of longitudinal structures is non-circular
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/60—Silica-free oxide glasses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/60—Silica-free oxide glasses
- C03B2201/62—Silica-free oxide glasses containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/60—Silica-free oxide glasses
- C03B2201/70—Silica-free oxide glasses containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/60—Silica-free oxide glasses
- C03B2201/78—Silica-free oxide glasses containing germanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/80—Non-oxide glasses or glass-type compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/80—Non-oxide glasses or glass-type compositions
- C03B2201/84—Halide glasses other than fluoride glasses, i.e. Cl, Br or I glasses, e.g. AgCl-AgBr "glass"
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/80—Non-oxide glasses or glass-type compositions
- C03B2201/86—Chalcogenide glasses, i.e. S, Se or Te glasses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/80—Non-oxide glasses or glass-type compositions
- C03B2201/88—Chalcohalide glasses, i.e. containing one or more of S, Se, Te and one or more of F, Cl, Br, I
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/12—Non-circular or non-elliptical cross-section, e.g. planar core
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/14—Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/14—Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
- C03B2203/16—Hollow core
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/42—Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/10—Fibre drawing or extruding details pressurised
Definitions
- the invention relates generally to high air-fraction non-silica-based glass fibers.
- HC-PBG fibers have been fabricated from silica glass and reported in the literature (Cregan et al., “Single-mode photonic band gap guidance of light in air,” Science, 285(5433), 1537-1539 (1999); Barkou et al., “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Optics Letters, 24(1), 46-48 (1999); Venkataraman et al., “Low loss (13 dB/km) air core photonic band-gap fibre,” ECOC, Postdeadline Paper PD 1.1, September, 2002. All referenced publications and patents are incorporated herein by reference).
- FIG. 1 shows a schematic of the cross-section of a HC-PBG fiber.
- the periodic layered structure of holes and glass creates a photonic band gap that prevents light from propagating in the structured region (analogous to a 2D grating) and so light is confined to the hollow core.
- the periodicity of the holes is on the scale of the wavelength of light and the outer glass is used for providing mechanical integrity to the fiber.
- the fact that light travels in the hollow core also means that the losses will be lower so longer path lengths can be used.
- non-linear effects will be negligible and damage thresholds will be higher so that higher power laser energy can be transmitted through the fiber for military and commercial applications.
- an analyte disposed therein will have maximum interaction with light, unlike traditional evanescent sensors.
- the periodicity of the holes, the air fill fraction and the refractive index of the glass dictate the position of the photonic band gap or gaps, namely the transmission wavelengths guided through the hollow core.
- PBG fibers are obtained by first making a microstructured preform and then drawing this into fiber with the correct overall dimensions.
- the air fraction needed in the fiber, and therefore preform is as high as 90% or even higher to provide a photonic band gap.
- An example includes chalcogenide glass PBG fiber for transmission in the infrared region beyond 2 ⁇ m. Irrespective of the technique used to make the preform, it is very difficult to make high air fraction preforms, especially from specialty glasses such as chalcogenides, halides, chalcohalides, and the like.
- specialty oxide and non-oxide glasses may be weaker and become difficult to fabricate, and moreover, difficult to handle when the air fraction is so high. Consequently, there needs to be a technique suitable for making high air fraction fiber, from specialty glasses.
- a preform comprising a non-silica-based glass is provided.
- the preform is cylindrical, having a longitudinal central opening and a microstructured region comprising a plurality of longitudinal surrounding openings disposed around the central opening.
- the diameter of the central opening is larger than the diameter of any surrounding opening that is adjacent to the central opening.
- the surrounding openings are pressurized with a gas.
- the preform is drawn into a fiber at an elevated temperature while maintaining the gas pressure to retain the longitudinal central opening and the microstructured region.
- the air fill fraction of the microstructured region of the fiber is different from the air fill fraction of the microstructured region of the preform.
- the fiber comprising non-silica-based glass.
- the fiber comprises a longitudinal central opening, a microstructured region comprising a plurality of longitudinal surrounding openings disposed around the central opening, and a jacket surrounding the microstructured region.
- the air fill fraction of the microstructured region is at least about 40%.
- FIG. 1 shows a cross-section of a PBG fiber.
- FIG. 2 shows a cross-section of a preform.
- FIG. 3 schematically illustrates an apparatus for drawing a fiber.
- FIG. 4 shows the cross-section of fibers drawn at different gas pressures.
- Silica PBG fibers are typically drawn from a preform made by stacking tubes. Before fiber drawing, the tube ends are sealed through fusion or placement of some blocking agent. During fiber drawing, the gas inside the sealed tubes gets hot and builds up pressure. However, the gas pressure increases continuously with time as the preform gets shorter. Consequently, the hole diameters increase continuously in size without control. This is not a good situation for making uniform quality PBG fiber since the band gap, and therefore the transmitted wavelength, will vary along the length of the fiber.
- the holes open before and during fiber drawing, it is possible to apply a constant pressure above the holes using gas flow to maintain a constant hole diameter, and moreover, the hole size can be increased in a controlled manner by increasing the gas pressure.
- the air fraction can be increased to over 90% in the fiber starting with a microstructured preform with considerably less air fraction (for example, 30%). From a practical perspective, it is relatively easier to make and handle a microstructured preform with only 30% air fraction.
- a preform comprising a non-silica-based glass, also known a specialty glass.
- Suitable glasses include, but are not limited to, chalcogenide glass, germanate glass, phosphate glass, tellurite glass, borate glass, antimonate glass, and halide glass.
- the preform is cylindrical.
- the term “cylindrical” is not limited to round structures, but also refers to preforms having substantially the same perpendicular outside cross-section along the entire length of the preform, or along the length of the preform that is to be drawn into a fiber.
- the preform may include head or tail portions that do not have the same cross-section, or any other stated characteristic, that is otherwise stated to run the length of the preform, as long as the characteristic is present in the portion of the preform that is to be drawn into a desired fiber.
- Example cylinders include, but are not limited to, a normal round cylinder and a hexagonal cylinder, with smooth sides or with sides made of half circles.
- the preform has a longitudinal central opening or hole that runs the length of the preform, which is hollow.
- the central opening may or may not be centered in the preform.
- Surrounding the central opening and running the length of the preform is a microstructured region comprising a plurality of hollow, longitudinal central openings.
- the microstructured region may or may not be radially symmetrical.
- Certain surrounding openings are adjacent to the central opening in that they are in a first layer of openings around the central opening. This layer is between the central opening and any non-adjacent surrounding openings. For example, when the microstructured region is a hexagonal arrangement of surrounding openings, the adjacent openings are those in the hexagon immediately surrounding the central opening.
- the preform is constructed so that the central opening is larger in diameter than that of any of the adjacent surrounding openings.
- all the surrounding openings are approximately the same size.
- they may be made from the same kind of tubing, which inherently has a certain range in its size from point to point due to imperfect manufacturing, but is considered to be approximately the same size at all points.
- the central opening has at least two times the diameter of the surrounding openings.
- the preform also comprises a jacket material comprising the non-silica-based glass.
- the jacket can help to protect the potentially fragile microstructured region of both the preform and the fiber and provide mechanical integrity.
- FIG. 2 A cross-section of a suitable preform is shown in FIG. 2 .
- the preform 10 can be made by stacking tubes 20 of the same size in a hexagonal structure, leaving seven tubes missing in the center to form the central opening 30 .
- a larger tube may also be inserted into the central opening to define a round opening or an opening of another shape.
- the entire stack is placed inside a hollow jacket 40 , and the entire assembly fused together.
- the fusing can substantially eliminate the interstitial voids between tubes with a circular outer diameter.
- tubes with a hexagonal outer diameter may be used so that there are no voids between the tubes.
- the adjacent openings are indicated by the “+” symbols.
- FIG. 1 shows the cross-section of a fiber that may be made from the preform of FIG. 2 .
- the air faction of the preform may be 41% compared to an 87% air fraction of the fiber. It is to be understood that fabrication of the PBG preforms using the tube stacking technique is only one example of fabricating these microstructured preforms. Other techniques could be used to fabricate the PBG preforms.
- the central opening and surrounding openings are pressurized with a gas.
- a gas can be the same or different gases in different openings. Suitable gases include, but are not limited to, inert gases, nitrogen, argon, and helium.
- An inert gas can be used to maintain a passive environment during processing.
- a reactive gas can be used to purify the surface of the openings or modify the composition on the inside surface of the openings, thereby adjusting properties such as refractive index, and/or the physical and thermal properties.
- the gas pressure in the central opening may be controlled independently from and may be less than the gas pressure in the surrounding openings. Consequently, the ratio of the respective hole diameters can be modified in a controlled manner.
- the preform is drawn into a fiber.
- the drawing is done at an elevated temperature so that the glass is softened.
- the gas pressure maintains and prevents the collapse of the central opening and the surrounding openings of the microstructured region.
- the gas pressure can be controlled at a substantially constant pressure during the drawing step, so that the resulting fiber has substantially the same cross-section along its length.
- the whole fiber drawing furnace can be located inside an inert atmosphere if drawing specialty glasses where atmospheric control is important (e.g. chalcogenides and halides). Furthermore, the fiber drawing assembly can be isolated from environmental contaminants such as dust and other extraneous particles, which might have a detrimental impact on fiber strength and/or optical properties.
- the preform can be lowered into the furnace at a known rate while the temperature is gradually increased from a predetermined temperature to prevent thermal shock of the preform. Once the temperature is sufficiently high, for example corresponding to a glass viscosity in the range of about 10 4 to 10 6 Poises, the preform will soften and be drawn into fiber with considerably smaller dimensions than the starting preform.
- FIG. 3 schematically illustrates a pressurizing and drawing apparatus.
- the preform 110 has gas pressure 120 flowing directly into the central opening, and another source of gas pressure 130 over the microstructured region.
- the gas pressure 120 may flow through a tube inserted into the central opening, without any need to enlarge the openings.
- the preform 110 is lowered into a fiber draw furnace 140 , from which it emerges as a fiber 150 .
- the gas pressure or pressures are chosen so that the air fill fraction of the microstructured region is different in the fiber from what it is in the preform, as opposed to merely maintaining the same air fill fraction and preventing collapse of the openings.
- the air fill fraction can be increased by the drawing step and may be raised to at least as high as 40%, 70%, or 90%, depending on the air fill fraction of the preform. It is also possible to apply pressure to the preform before the fiber drawing to modify the size of the holes in the preform. The required air pressure to change the air fill fraction or even just to prevent collapse of the holes can be different than it would be if the glass were silica, as the surface tension and viscosity of the non-silica glasses can be different.
- the resulting fiber has a structure similar to the preform, with a central opening, a microstructured region, and a jacket.
- the microstructured region can have an air fill fraction of at least as 40%, 70%, or 90%.
- the diameter of the fiber may be, but is not limited to, in a range of 80-1000 ⁇ m in diameter.
- the diameter of the microstructured preform could be greater than 10 mm whereas the fiber diameter could be less than 200 ⁇ m.
- the structure of the fiber can cause it to have the properties of a photonic bandgap fiber.
- Light of a wavelength in the band gap can propagate through the fiber, while being confined to the central opening.
- the microstructured region can prevent all or most of the light from passing through the glass, including any layer of glass that may be between the central opening and the adjacent surrounding openings.
- the band gap may be centered at a wavelength that is in the infrared, such as longer than 2 microns and as long as 15 microns.
- the exact air fraction and periodicity in the final fiber will be controlled by the temperature, viscosity of the glass, fiber draw rate, and gas pressure. This assumes that the feed rate of the preform into the hot zone is fixed at a predetermined rate, which is typical in fiber drawing. It is possible to modify and control the air fraction and periodicity along with the overall fiber diameter, thereby controlling the photonic band gap. Another consequence at high air fraction is that the holes may no longer be round, but instead more hexagonal. This does not necessarily have a detrimental impact on the PBG properties.
- Example uses of the fiber include, but are not limited to, facility clean up, biomedical analysis (e.g. glucose, blood, breath), CBW agent detection, toxic and hazardous chemical detection, and environmental pollution monitoring and process control.
- biomedical analysis e.g. glucose, blood, breath
- CBW agent detection e.g. glucose, blood, breath
- toxic and hazardous chemical detection e.g., and environmental pollution monitoring and process control.
- the PBG fibers can be used for very high laser power delivery since the light is predominantly guided in the hollow core, unlike in traditional fibers, which possess a solid core that can be damaged at high powers. This may have a positive and enabling impact in next generation high power infrared missile warning systems.
- Further benefits of PBG fibers include reducing system complexity, weight and cost as well as enabling remoting of high power lasers for cutting, welding, and metrology, as well as laser surgery, cancer removal and glaucoma treatment.
- Infrared lasers for biomedical applications include the CO 2 laser where powers including
- Single tube A single glass tube made from AS 39 S 61 glass was drawn to a fiber under 2.8 in H 2 O gas pressure inside the tube.
- the ratio of the hole diameter to the outer diameter of the tube was increased considerably in the fiber by increasing the pressure in the hole during drawing.
- the air fraction was increased from 32% to 85% in this example. It can be even larger (>90%) depending upon the viscosity, temperature, draw rate, and pressure. The uniformity and concentricity was not compromised by this process.
- Preform This example pertains to a microstructured preform made from AS 39 S 61 glass having a large central opening and 12 surrounding openings in a single hexagonal configuration (3 openings per edge of the hexagon).
- the preform was placed on the fiber draw tower and attached to gas pressurizing assembly.
- the preform was heated up to 310° C. when it softened and fiber drawing was initiated.
- the pressure above the microstructured preform was changed and this caused changes to the hole diameters.
- the central core was open to the atmosphere. Increasing the pressure increased the hole size and therefore air fraction in the fiber.
- the microholes in the fiber were about 6 ⁇ m in diameter.
- the application of a nitrogen gas pressure equivalent to 2 in H 2 O increased the micro-hole diameter to about 23 ⁇ m.
- the initial size of the microholes in the preform was about 1 mm diameter.
- This preform did not possess an optimized photonic band gap structure, but nevertheless, this example highlights that real time changes to the hole diameters, and therefore air fraction, was made during fiber
- FIGS. 4 ( a )-( c ) show pictures of microstructured fibers that were drawn using different pressures.
- FIG. 4 ( a ) was generated with no gas pressure and resulted in an air fill fraction of 47%.
- FIG. 4 ( b ) was generated with 1 in H 2 O of N 2 in both the microstructured region and the central opening, and resulted in an air fill fraction of 58%.
- FIG. 4 ( c ) was generated with 4 in H 2 O of N 2 and resulted in an air fill fraction of 78%. It is clearly evident that increasing the pressure to 4 in H 2 O increased the air fraction as noted by the thinner webbing between the holes. It is estimated that a pressure of 3.4 in H 2 O would result in no change to the air fill fraction. Even though this is not an optimized PBG design, it is quite clear that gas pressure can be used to increase the air fraction in the fiber.
- This example pertains to a microstructured preform made from an arsenic selenide-based glass having a large central opening and 84 surrounding openings in a hexagonal configuration, surrounded by a jacket tube.
- the air fraction of the microstructured region of the preform was 19% and the ratio of the central opening diameter to the surrounding opening pitch was 2.3.
- separate gas pressures were applied to the central opening and the group of 84 surrounding openings, during the fiber draw. Pressures of 0 and 15 in H 2 O of N 2 applied to the central and surrounding openings respectively generated a fiber with air fraction of 14% and a ratio of central opening diameter to surrounding opening pitch of 2.2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
- This application is a continuation-in-part application of U.S. patent application Ser. No. 10/632,210, filed on Jan. 8, 2003, incorporated herein by reference.
- 1. Field of the Invention
- The invention relates generally to high air-fraction non-silica-based glass fibers.
- 2. Description of the Prior Art
- Hollow core photonic band gap (HC-PBG) fibers have been fabricated from silica glass and reported in the literature (Cregan et al., “Single-mode photonic band gap guidance of light in air,” Science, 285(5433), 1537-1539 (1999); Barkou et al., “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Optics Letters, 24(1), 46-48 (1999); Venkataraman et al., “Low loss (13 dB/km) air core photonic band-gap fibre,” ECOC, Postdeadline Paper PD 1.1, September, 2002. All referenced publications and patents are incorporated herein by reference).
FIG. 1 shows a schematic of the cross-section of a HC-PBG fiber. The periodic layered structure of holes and glass creates a photonic band gap that prevents light from propagating in the structured region (analogous to a 2D grating) and so light is confined to the hollow core. Typically, the periodicity of the holes is on the scale of the wavelength of light and the outer glass is used for providing mechanical integrity to the fiber. The fact that light travels in the hollow core also means that the losses will be lower so longer path lengths can be used. Also, non-linear effects will be negligible and damage thresholds will be higher so that higher power laser energy can be transmitted through the fiber for military and commercial applications. Also, since light is guided in the hollow core, an analyte disposed therein will have maximum interaction with light, unlike traditional evanescent sensors. - The periodicity of the holes, the air fill fraction and the refractive index of the glass dictate the position of the photonic band gap or gaps, namely the transmission wavelengths guided through the hollow core. PBG fibers are obtained by first making a microstructured preform and then drawing this into fiber with the correct overall dimensions. In some cases, the air fraction needed in the fiber, and therefore preform, is as high as 90% or even higher to provide a photonic band gap. An example includes chalcogenide glass PBG fiber for transmission in the infrared region beyond 2 μm. Irrespective of the technique used to make the preform, it is very difficult to make high air fraction preforms, especially from specialty glasses such as chalcogenides, halides, chalcohalides, and the like. Unlike silica, which is a relatively strong material, specialty oxide and non-oxide glasses may be weaker and become difficult to fabricate, and moreover, difficult to handle when the air fraction is so high. Consequently, there needs to be a technique suitable for making high air fraction fiber, from specialty glasses.
- One aspect of the invention provides a method of making a fiber. A preform comprising a non-silica-based glass is provided. The preform is cylindrical, having a longitudinal central opening and a microstructured region comprising a plurality of longitudinal surrounding openings disposed around the central opening. The diameter of the central opening is larger than the diameter of any surrounding opening that is adjacent to the central opening. The surrounding openings are pressurized with a gas. The preform is drawn into a fiber at an elevated temperature while maintaining the gas pressure to retain the longitudinal central opening and the microstructured region. The air fill fraction of the microstructured region of the fiber is different from the air fill fraction of the microstructured region of the preform.
- Another aspect of the invention provides a fiber comprising non-silica-based glass. The fiber comprises a longitudinal central opening, a microstructured region comprising a plurality of longitudinal surrounding openings disposed around the central opening, and a jacket surrounding the microstructured region. The air fill fraction of the microstructured region is at least about 40%.
- A more complete appreciation of the invention will be readily obtained by reference to the following Description of the Example Embodiments and the accompanying drawings.
-
FIG. 1 shows a cross-section of a PBG fiber. -
FIG. 2 shows a cross-section of a preform. -
FIG. 3 schematically illustrates an apparatus for drawing a fiber. -
FIG. 4 shows the cross-section of fibers drawn at different gas pressures. - In the absence of any gas pressure above the holes, the hole diameters can collapse slightly or completely depending upon the fiber draw temperature and draw rate. For example, at higher temperatures, the viscosity may be sufficiently low so that surface tension dominates and leads to a reduction in the hole diameter. Silica PBG fibers are typically drawn from a preform made by stacking tubes. Before fiber drawing, the tube ends are sealed through fusion or placement of some blocking agent. During fiber drawing, the gas inside the sealed tubes gets hot and builds up pressure. However, the gas pressure increases continuously with time as the preform gets shorter. Consequently, the hole diameters increase continuously in size without control. This is not a good situation for making uniform quality PBG fiber since the band gap, and therefore the transmitted wavelength, will vary along the length of the fiber.
- However, leaving the holes open before and during fiber drawing, it is possible to apply a constant pressure above the holes using gas flow to maintain a constant hole diameter, and moreover, the hole size can be increased in a controlled manner by increasing the gas pressure. Hence, the air fraction can be increased to over 90% in the fiber starting with a microstructured preform with considerably less air fraction (for example, 30%). From a practical perspective, it is relatively easier to make and handle a microstructured preform with only 30% air fraction.
- In the first step in the method of the invention, a preform comprising a non-silica-based glass, also known a specialty glass, is provided. Suitable glasses include, but are not limited to, chalcogenide glass, germanate glass, phosphate glass, tellurite glass, borate glass, antimonate glass, and halide glass.
- The preform is cylindrical. As used herein, the term “cylindrical” is not limited to round structures, but also refers to preforms having substantially the same perpendicular outside cross-section along the entire length of the preform, or along the length of the preform that is to be drawn into a fiber. The preform may include head or tail portions that do not have the same cross-section, or any other stated characteristic, that is otherwise stated to run the length of the preform, as long as the characteristic is present in the portion of the preform that is to be drawn into a desired fiber. Example cylinders include, but are not limited to, a normal round cylinder and a hexagonal cylinder, with smooth sides or with sides made of half circles.
- The preform has a longitudinal central opening or hole that runs the length of the preform, which is hollow. The central opening may or may not be centered in the preform. Surrounding the central opening and running the length of the preform is a microstructured region comprising a plurality of hollow, longitudinal central openings. The microstructured region may or may not be radially symmetrical. Certain surrounding openings are adjacent to the central opening in that they are in a first layer of openings around the central opening. This layer is between the central opening and any non-adjacent surrounding openings. For example, when the microstructured region is a hexagonal arrangement of surrounding openings, the adjacent openings are those in the hexagon immediately surrounding the central opening.
- The preform is constructed so that the central opening is larger in diameter than that of any of the adjacent surrounding openings. In some embodiments, all the surrounding openings are approximately the same size. For example, they may be made from the same kind of tubing, which inherently has a certain range in its size from point to point due to imperfect manufacturing, but is considered to be approximately the same size at all points. In some of these embodiments, the central opening has at least two times the diameter of the surrounding openings.
- In some embodiments, the preform also comprises a jacket material comprising the non-silica-based glass. The jacket can help to protect the potentially fragile microstructured region of both the preform and the fiber and provide mechanical integrity.
- A cross-section of a suitable preform is shown in
FIG. 2 . Thepreform 10 can be made by stackingtubes 20 of the same size in a hexagonal structure, leaving seven tubes missing in the center to form thecentral opening 30. A larger tube may also be inserted into the central opening to define a round opening or an opening of another shape. The entire stack is placed inside ahollow jacket 40, and the entire assembly fused together. The fusing can substantially eliminate the interstitial voids between tubes with a circular outer diameter. Alternatively, tubes with a hexagonal outer diameter may be used so that there are no voids between the tubes. The adjacent openings are indicated by the “+” symbols.FIG. 1 shows the cross-section of a fiber that may be made from the preform ofFIG. 2 . The air faction of the preform may be 41% compared to an 87% air fraction of the fiber. It is to be understood that fabrication of the PBG preforms using the tube stacking technique is only one example of fabricating these microstructured preforms. Other techniques could be used to fabricate the PBG preforms. - In the second step, the central opening and surrounding openings are pressurized with a gas. This can be done with a gas supply assembly attached to one end of the preform and the other end of the preform positioned above a fiber draw furnace. The gas can be the same or different gases in different openings. Suitable gases include, but are not limited to, inert gases, nitrogen, argon, and helium. An inert gas can be used to maintain a passive environment during processing. Alternatively, a reactive gas can be used to purify the surface of the openings or modify the composition on the inside surface of the openings, thereby adjusting properties such as refractive index, and/or the physical and thermal properties. The gas pressure in the central opening may be controlled independently from and may be less than the gas pressure in the surrounding openings. Consequently, the ratio of the respective hole diameters can be modified in a controlled manner.
- In the third step of the invention, the preform is drawn into a fiber. Note that the steps of pressuring and drawing occur concurrently, with the possibility that either step can begin first. The drawing is done at an elevated temperature so that the glass is softened. The gas pressure maintains and prevents the collapse of the central opening and the surrounding openings of the microstructured region. The gas pressure can be controlled at a substantially constant pressure during the drawing step, so that the resulting fiber has substantially the same cross-section along its length.
- The whole fiber drawing furnace can be located inside an inert atmosphere if drawing specialty glasses where atmospheric control is important (e.g. chalcogenides and halides). Furthermore, the fiber drawing assembly can be isolated from environmental contaminants such as dust and other extraneous particles, which might have a detrimental impact on fiber strength and/or optical properties. The preform can be lowered into the furnace at a known rate while the temperature is gradually increased from a predetermined temperature to prevent thermal shock of the preform. Once the temperature is sufficiently high, for example corresponding to a glass viscosity in the range of about 104 to 106 Poises, the preform will soften and be drawn into fiber with considerably smaller dimensions than the starting preform.
-
FIG. 3 schematically illustrates a pressurizing and drawing apparatus. Thepreform 110 hasgas pressure 120 flowing directly into the central opening, and another source ofgas pressure 130 over the microstructured region. Thegas pressure 120 may flow through a tube inserted into the central opening, without any need to enlarge the openings. Thepreform 110 is lowered into afiber draw furnace 140, from which it emerges as afiber 150. - The gas pressure or pressures are chosen so that the air fill fraction of the microstructured region is different in the fiber from what it is in the preform, as opposed to merely maintaining the same air fill fraction and preventing collapse of the openings. The air fill fraction can be increased by the drawing step and may be raised to at least as high as 40%, 70%, or 90%, depending on the air fill fraction of the preform. It is also possible to apply pressure to the preform before the fiber drawing to modify the size of the holes in the preform. The required air pressure to change the air fill fraction or even just to prevent collapse of the holes can be different than it would be if the glass were silica, as the surface tension and viscosity of the non-silica glasses can be different.
- The resulting fiber has a structure similar to the preform, with a central opening, a microstructured region, and a jacket. The microstructured region can have an air fill fraction of at least as 40%, 70%, or 90%. The diameter of the fiber may be, but is not limited to, in a range of 80-1000 μm in diameter. For example, the diameter of the microstructured preform could be greater than 10 mm whereas the fiber diameter could be less than 200 μm.
- The structure of the fiber can cause it to have the properties of a photonic bandgap fiber. Light of a wavelength in the band gap can propagate through the fiber, while being confined to the central opening. The microstructured region can prevent all or most of the light from passing through the glass, including any layer of glass that may be between the central opening and the adjacent surrounding openings. The band gap may be centered at a wavelength that is in the infrared, such as longer than 2 microns and as long as 15 microns.
- The exact air fraction and periodicity in the final fiber will be controlled by the temperature, viscosity of the glass, fiber draw rate, and gas pressure. This assumes that the feed rate of the preform into the hot zone is fixed at a predetermined rate, which is typical in fiber drawing. It is possible to modify and control the air fraction and periodicity along with the overall fiber diameter, thereby controlling the photonic band gap. Another consequence at high air fraction is that the holes may no longer be round, but instead more hexagonal. This does not necessarily have a detrimental impact on the PBG properties.
- Example uses of the fiber include, but are not limited to, facility clean up, biomedical analysis (e.g. glucose, blood, breath), CBW agent detection, toxic and hazardous chemical detection, and environmental pollution monitoring and process control. In addition to chemical sensing, the PBG fibers can be used for very high laser power delivery since the light is predominantly guided in the hollow core, unlike in traditional fibers, which possess a solid core that can be damaged at high powers. This may have a positive and enabling impact in next generation high power infrared missile warning systems. Further benefits of PBG fibers include reducing system complexity, weight and cost as well as enabling remoting of high power lasers for cutting, welding, and metrology, as well as laser surgery, cancer removal and glaucoma treatment. Infrared lasers for biomedical applications include the CO2 laser where powers including, but not limited to, 10 to 50 W are needed and cannot be transmitted using current solid core fibers.
- Having described the invention, the following examples are given to illustrate specific applications of the invention. These specific examples are not intended to limit the scope of the invention described in this application.
- Single tube—A single glass tube made from AS39S61 glass was drawn to a fiber under 2.8 in H2O gas pressure inside the tube. The ratio of the hole diameter to the outer diameter of the tube was increased considerably in the fiber by increasing the pressure in the hole during drawing. The air fraction was increased from 32% to 85% in this example. It can be even larger (>90%) depending upon the viscosity, temperature, draw rate, and pressure. The uniformity and concentricity was not compromised by this process.
- Preform—This example pertains to a microstructured preform made from AS39S61 glass having a large central opening and 12 surrounding openings in a single hexagonal configuration (3 openings per edge of the hexagon). The preform was placed on the fiber draw tower and attached to gas pressurizing assembly. The preform was heated up to 310° C. when it softened and fiber drawing was initiated. The pressure above the microstructured preform was changed and this caused changes to the hole diameters. The central core was open to the atmosphere. Increasing the pressure increased the hole size and therefore air fraction in the fiber. For example, without gas pressure, the microholes in the fiber were about 6 μm in diameter. However, the application of a nitrogen gas pressure equivalent to 2 in H2O increased the micro-hole diameter to about 23 μm. The initial size of the microholes in the preform was about 1 mm diameter. This preform did not possess an optimized photonic band gap structure, but nevertheless, this example highlights that real time changes to the hole diameters, and therefore air fraction, was made during fiber drawing.
- Increased gas pressure—This example shows how the air fraction of a microstructured preform, containing several layers of holes, can be increased by using gas pressure applied uniformly to the central opening and surrounding openings during fiber drawing. The glass was AS39S61 and the air fill fraction of the microstructured region of the preform was 74%. FIGS. 4(a)-(c) show pictures of microstructured fibers that were drawn using different pressures.
FIG. 4 (a) was generated with no gas pressure and resulted in an air fill fraction of 47%.FIG. 4 (b) was generated with 1 in H2O of N2 in both the microstructured region and the central opening, and resulted in an air fill fraction of 58%. Pressure of 2 and 3 in H2O of N2 resulted in air fill fractions of 67% and 69% respectively.FIG. 4 (c) was generated with 4 in H2O of N2 and resulted in an air fill fraction of 78%. It is clearly evident that increasing the pressure to 4 in H2O increased the air fraction as noted by the thinner webbing between the holes. It is estimated that a pressure of 3.4 in H2O would result in no change to the air fill fraction. Even though this is not an optimized PBG design, it is quite clear that gas pressure can be used to increase the air fraction in the fiber. - Separate gas pressures—This example pertains to a microstructured preform made from an arsenic selenide-based glass having a large central opening and 84 surrounding openings in a hexagonal configuration, surrounded by a jacket tube. The air fraction of the microstructured region of the preform was 19% and the ratio of the central opening diameter to the surrounding opening pitch was 2.3. In this example, separate gas pressures were applied to the central opening and the group of 84 surrounding openings, during the fiber draw. Pressures of 0 and 15 in H2O of N2 applied to the central and surrounding openings respectively generated a fiber with air fraction of 14% and a ratio of central opening diameter to surrounding opening pitch of 2.2. Pressures of 0 and 25 in H2O of N2 applied to the central and surrounding openings respectively generated a fiber with air fraction of 24% and a ratio of central opening diameter to surrounding opening pitch of 2.4. This fiber did not possess an optimized photonic bandgap structure, but nevertheless, this example highlights that the diameters of the surrounding openings, and therefore air fraction, can be changed separately from the diameter of the central opening by applying separate gas pressures to the surrounding openings as a group, and the central opening during fiber drawing.
- Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that the claimed invention may be practiced otherwise than as specifically described.
Claims (24)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/904,062 US20050074215A1 (en) | 2003-08-01 | 2004-10-21 | Fabrication of high air fraction photonic band gap fibers |
PCT/US2005/037956 WO2006047316A2 (en) | 2004-10-21 | 2005-10-21 | Fabrication of high air fraction photonic band gap fibers |
US11/623,359 US7295740B2 (en) | 2003-08-01 | 2007-01-16 | High air fraction photonic band gap fibers |
US11/934,946 US20080060387A1 (en) | 2003-08-01 | 2007-11-05 | Fabrication of high air fraction photonic band gap (pbg) fibers |
US12/765,910 US7873251B2 (en) | 2003-08-01 | 2010-04-23 | Photonic band gap germanate glass fibers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/632,210 US6993230B2 (en) | 2003-08-01 | 2003-08-01 | Hollow core photonic band gap infrared fibers |
US10/904,062 US20050074215A1 (en) | 2003-08-01 | 2004-10-21 | Fabrication of high air fraction photonic band gap fibers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/632,210 Continuation-In-Part US6993230B2 (en) | 2003-08-01 | 2003-08-01 | Hollow core photonic band gap infrared fibers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/623,359 Division US7295740B2 (en) | 2003-08-01 | 2007-01-16 | High air fraction photonic band gap fibers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050074215A1 true US20050074215A1 (en) | 2005-04-07 |
Family
ID=36228289
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/904,062 Abandoned US20050074215A1 (en) | 2003-08-01 | 2004-10-21 | Fabrication of high air fraction photonic band gap fibers |
US11/623,359 Expired - Fee Related US7295740B2 (en) | 2003-08-01 | 2007-01-16 | High air fraction photonic band gap fibers |
US11/934,946 Abandoned US20080060387A1 (en) | 2003-08-01 | 2007-11-05 | Fabrication of high air fraction photonic band gap (pbg) fibers |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/623,359 Expired - Fee Related US7295740B2 (en) | 2003-08-01 | 2007-01-16 | High air fraction photonic band gap fibers |
US11/934,946 Abandoned US20080060387A1 (en) | 2003-08-01 | 2007-11-05 | Fabrication of high air fraction photonic band gap (pbg) fibers |
Country Status (2)
Country | Link |
---|---|
US (3) | US20050074215A1 (en) |
WO (1) | WO2006047316A2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050226578A1 (en) * | 2004-04-08 | 2005-10-13 | Mangan Brian J | An Optical Fiber And Method For Making An Optical Fiber |
US7099533B1 (en) | 2005-11-08 | 2006-08-29 | Chenard Francois | Fiber optic infrared laser beam delivery system |
US20070014528A1 (en) * | 2005-07-18 | 2007-01-18 | Lynda Busse | Optical fiber clad-protective terminations |
US7295740B2 (en) | 2003-08-01 | 2007-11-13 | The United States Of America As Represented By The Secretary Of The Navy | High air fraction photonic band gap fibers |
US20080148777A1 (en) * | 2006-12-22 | 2008-06-26 | Fitel Usa Corp. | Optical fiber preform with improved air/glass interface structure |
US20090260397A1 (en) * | 2008-04-21 | 2009-10-22 | Cornejo Ivan A | Glass Structure Having Sub-Micron and Nano-Size Bandgap Structures and Method For Producing Same |
US20100202743A1 (en) * | 2003-08-01 | 2010-08-12 | Bayya Shyam S | Photonic band gap germanate glass fibers |
US20100237255A1 (en) * | 2007-07-24 | 2010-09-23 | Adelaide Research & Innovation Pty Ltd | Optical fiber sensor |
US20100303429A1 (en) * | 2009-05-26 | 2010-12-02 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Microstructured Optical Fiber Draw Method with In-Situ Vacuum Assisted Preform Consolidation |
US20120141079A1 (en) * | 2010-12-06 | 2012-06-07 | The Government Of The Us, As Represented By The Secretary Of The Navy | Photonic band gap fibers using a jacket with a depressed softening temperature |
US8571371B2 (en) | 2011-06-15 | 2013-10-29 | The United States Of America As Represented By The Secretary Of The Navy | Direct extrusion method for the fabrication of photonic band gap (PBG) fibers and fiber preforms |
US9416042B2 (en) | 2010-12-06 | 2016-08-16 | The United States Of America, As Represented By The Secretary Of The Navy | Hexagonal tube stacking method for the fabrication of hollow core photonic band gap fibers and preforms |
US20170045682A1 (en) * | 2014-02-17 | 2017-02-16 | Schott Ag | Photonic crystal fiber, in particular single-mode fiber for the IR wavelength range, and process for the production thereof |
CN106704037A (en) * | 2015-11-16 | 2017-05-24 | 上海新力动力设备研究所 | End socket structure used for guided missile engine and provided with seam allowance bottom locking part |
GB2563758B (en) * | 2013-09-20 | 2019-09-04 | Univ Southampton | Hollow-core photonic bandgap fibers |
US20200024178A1 (en) * | 2018-07-23 | 2020-01-23 | Ofs Fitel, Llc | Hollow Core Optical Fiber With Controlled Diameter Hollow Regions And Method Of Making The Same |
US11034607B2 (en) * | 2013-09-20 | 2021-06-15 | University Of Southampton | Hollow-core photonic bandgap fibers and methods of manufacturing the same |
US20220373733A1 (en) * | 2009-03-04 | 2022-11-24 | Nkt Photonics A/S | Optical fiber with improvements relating to loss and its use, method of its production and use thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7376315B2 (en) | 2003-07-01 | 2008-05-20 | Hitachi Cable, Ltd. | Optical fiber, optical fiber connecting method, and optical connector |
JP5242582B2 (en) * | 2007-09-26 | 2013-07-24 | 古河電気工業株式会社 | Photonic bandgap fiber |
GB0719376D0 (en) | 2007-10-03 | 2007-11-14 | Univ Bath | Hollow-core photonic crystal fibre |
US8165441B2 (en) * | 2008-03-26 | 2012-04-24 | Imra America, Inc. | Ultra small core fiber with dispersion tailoring |
CN105731785B (en) * | 2016-04-26 | 2018-08-21 | 江苏师范大学 | A kind of atmosphere protection type chalcogenide glass fiber prick-drawing device and application method |
CN106249441B (en) * | 2016-09-22 | 2019-01-11 | 北京大学 | Graphene porous optical fiber electrooptic modulator |
CN109298481B (en) * | 2018-10-09 | 2019-09-10 | 东北大学 | The metallic silver filling photonic crystal fiber and its preparation method of spontaneous generation SPR effect |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5802236A (en) * | 1997-02-14 | 1998-09-01 | Lucent Technologies Inc. | Article comprising a micro-structured optical fiber, and method of making such fiber |
US6444133B1 (en) * | 2000-04-28 | 2002-09-03 | Corning Incorporated | Method of making photonic band gap fibers |
US20020150367A1 (en) * | 2001-04-17 | 2002-10-17 | Gallagher Michael T. | Thin walled core band-gap waveguides |
US6539155B1 (en) * | 1998-06-09 | 2003-03-25 | Jes Broeng | Microstructured optical fibres |
US20030161599A1 (en) * | 2000-08-14 | 2003-08-28 | Broderick Neil Gregory Raphael | Holey optical fibres of non-silica based glass |
US6631234B1 (en) * | 1999-02-19 | 2003-10-07 | Blazephotonics Limited | Photonic crystal fibers |
US20030230118A1 (en) * | 2002-06-12 | 2003-12-18 | Dawes Steven B. | Methods and preforms for drawing microstructured optical fibers |
US6705126B2 (en) * | 2000-04-18 | 2004-03-16 | Samsung Electronics Co, Ltd. | Method for fabricating holey optical fiber |
US20040050110A1 (en) * | 2002-08-29 | 2004-03-18 | Berkey George E. | Methods for fabricating optical fibers and optical fiber preforms |
US20040071423A1 (en) * | 2000-11-20 | 2004-04-15 | Libori Stig Eigil Barkou | Micro-structured optical fibre |
US20040096173A1 (en) * | 2002-11-18 | 2004-05-20 | Fekety Curtis R. | Methods for manufacturing microstructured optical fibers with arbitrary core size |
US20040105641A1 (en) * | 1999-02-19 | 2004-06-03 | Blazephotonics Limited | Photonic crystal fibres |
US20040151454A1 (en) * | 2003-01-31 | 2004-08-05 | Fajardo James C. | Multiple core microstructured optical fibers and methods using said fibers |
US20040228592A1 (en) * | 2003-04-01 | 2004-11-18 | Gaeta Alexander L. | Photonic band gap optical fiber |
US6847771B2 (en) * | 2002-06-12 | 2005-01-25 | Corning Incorporated | Microstructured optical fibers and preforms and methods for fabricating microstructured optical fibers |
US20050025965A1 (en) * | 2003-08-01 | 2005-02-03 | Jasbinder Sanghera | Hollow core photonic band gap infrared fibers |
US7099533B1 (en) * | 2005-11-08 | 2006-08-29 | Chenard Francois | Fiber optic infrared laser beam delivery system |
US20060251369A1 (en) * | 2005-05-03 | 2006-11-09 | Shaw L B | Gas filled hollow core chalcogenide photonic bandgap fiber raman device and method |
US20070014528A1 (en) * | 2005-07-18 | 2007-01-18 | Lynda Busse | Optical fiber clad-protective terminations |
US20070110377A1 (en) * | 2003-08-01 | 2007-05-17 | United States Government As Represented By The Secretary Of The Navy | High Air Fraction Photonic Band Gap Fibers |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6766088B2 (en) * | 2000-05-01 | 2004-07-20 | Sumitomo Electric Industries, Ltd. | Optical fiber and method for making the same |
GB0027399D0 (en) * | 2000-11-09 | 2000-12-27 | Univ Southampton | Dispersion tailoring using holey optical fibres |
JP2004307250A (en) * | 2003-04-04 | 2004-11-04 | Sumitomo Electric Ind Ltd | Optical fiber and method of manufacture the same |
-
2004
- 2004-10-21 US US10/904,062 patent/US20050074215A1/en not_active Abandoned
-
2005
- 2005-10-21 WO PCT/US2005/037956 patent/WO2006047316A2/en active Application Filing
-
2007
- 2007-01-16 US US11/623,359 patent/US7295740B2/en not_active Expired - Fee Related
- 2007-11-05 US US11/934,946 patent/US20080060387A1/en not_active Abandoned
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5802236A (en) * | 1997-02-14 | 1998-09-01 | Lucent Technologies Inc. | Article comprising a micro-structured optical fiber, and method of making such fiber |
US6539155B1 (en) * | 1998-06-09 | 2003-03-25 | Jes Broeng | Microstructured optical fibres |
US6631234B1 (en) * | 1999-02-19 | 2003-10-07 | Blazephotonics Limited | Photonic crystal fibers |
US20040105641A1 (en) * | 1999-02-19 | 2004-06-03 | Blazephotonics Limited | Photonic crystal fibres |
US6705126B2 (en) * | 2000-04-18 | 2004-03-16 | Samsung Electronics Co, Ltd. | Method for fabricating holey optical fiber |
US6444133B1 (en) * | 2000-04-28 | 2002-09-03 | Corning Incorporated | Method of making photonic band gap fibers |
US20030161599A1 (en) * | 2000-08-14 | 2003-08-28 | Broderick Neil Gregory Raphael | Holey optical fibres of non-silica based glass |
US20040071423A1 (en) * | 2000-11-20 | 2004-04-15 | Libori Stig Eigil Barkou | Micro-structured optical fibre |
US20020150367A1 (en) * | 2001-04-17 | 2002-10-17 | Gallagher Michael T. | Thin walled core band-gap waveguides |
US6847771B2 (en) * | 2002-06-12 | 2005-01-25 | Corning Incorporated | Microstructured optical fibers and preforms and methods for fabricating microstructured optical fibers |
US20030230118A1 (en) * | 2002-06-12 | 2003-12-18 | Dawes Steven B. | Methods and preforms for drawing microstructured optical fibers |
US20040050110A1 (en) * | 2002-08-29 | 2004-03-18 | Berkey George E. | Methods for fabricating optical fibers and optical fiber preforms |
US20040096173A1 (en) * | 2002-11-18 | 2004-05-20 | Fekety Curtis R. | Methods for manufacturing microstructured optical fibers with arbitrary core size |
US20040151454A1 (en) * | 2003-01-31 | 2004-08-05 | Fajardo James C. | Multiple core microstructured optical fibers and methods using said fibers |
US20040228592A1 (en) * | 2003-04-01 | 2004-11-18 | Gaeta Alexander L. | Photonic band gap optical fiber |
US20050025965A1 (en) * | 2003-08-01 | 2005-02-03 | Jasbinder Sanghera | Hollow core photonic band gap infrared fibers |
US6993230B2 (en) * | 2003-08-01 | 2006-01-31 | The United States Of America As Represented By The Secretary Of The Navy | Hollow core photonic band gap infrared fibers |
US20070110377A1 (en) * | 2003-08-01 | 2007-05-17 | United States Government As Represented By The Secretary Of The Navy | High Air Fraction Photonic Band Gap Fibers |
US20060251369A1 (en) * | 2005-05-03 | 2006-11-09 | Shaw L B | Gas filled hollow core chalcogenide photonic bandgap fiber raman device and method |
US20070147757A1 (en) * | 2005-05-03 | 2007-06-28 | The Government Of The Us, As Represented By The Secretary Of The Navy | Gas filled hollow core chalcogenide photonic bandgap fiber raman device and method |
US20070014528A1 (en) * | 2005-07-18 | 2007-01-18 | Lynda Busse | Optical fiber clad-protective terminations |
US7242835B2 (en) * | 2005-07-18 | 2007-07-10 | The United States Of America As Represented By The Secretary Of The Navy | Optical fiber clad-protective terminations |
US7099533B1 (en) * | 2005-11-08 | 2006-08-29 | Chenard Francois | Fiber optic infrared laser beam delivery system |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100202743A1 (en) * | 2003-08-01 | 2010-08-12 | Bayya Shyam S | Photonic band gap germanate glass fibers |
US7295740B2 (en) | 2003-08-01 | 2007-11-13 | The United States Of America As Represented By The Secretary Of The Navy | High air fraction photonic band gap fibers |
US20080060387A1 (en) * | 2003-08-01 | 2008-03-13 | Sanghera Jasbinder S | Fabrication of high air fraction photonic band gap (pbg) fibers |
US7873251B2 (en) * | 2003-08-01 | 2011-01-18 | Bayya Shyam S | Photonic band gap germanate glass fibers |
US7245807B2 (en) * | 2004-04-08 | 2007-07-17 | Crystal Fibre A/S | Optical fiber and method for making an optical fiber |
US20050226578A1 (en) * | 2004-04-08 | 2005-10-13 | Mangan Brian J | An Optical Fiber And Method For Making An Optical Fiber |
US20070014528A1 (en) * | 2005-07-18 | 2007-01-18 | Lynda Busse | Optical fiber clad-protective terminations |
US7242835B2 (en) * | 2005-07-18 | 2007-07-10 | The United States Of America As Represented By The Secretary Of The Navy | Optical fiber clad-protective terminations |
US7099533B1 (en) | 2005-11-08 | 2006-08-29 | Chenard Francois | Fiber optic infrared laser beam delivery system |
US7854143B2 (en) * | 2006-12-22 | 2010-12-21 | Ofs Fitel Llc | Optical fiber preform with improved air/glass interface structure |
US20080148777A1 (en) * | 2006-12-22 | 2008-06-26 | Fitel Usa Corp. | Optical fiber preform with improved air/glass interface structure |
US20100237255A1 (en) * | 2007-07-24 | 2010-09-23 | Adelaide Research & Innovation Pty Ltd | Optical fiber sensor |
US8338799B2 (en) | 2007-07-24 | 2012-12-25 | Adelaide Research & Innovation Pty Ltd. | Optical fiber sensor |
US20090260397A1 (en) * | 2008-04-21 | 2009-10-22 | Cornejo Ivan A | Glass Structure Having Sub-Micron and Nano-Size Bandgap Structures and Method For Producing Same |
US20220373733A1 (en) * | 2009-03-04 | 2022-11-24 | Nkt Photonics A/S | Optical fiber with improvements relating to loss and its use, method of its production and use thereof |
US11947160B2 (en) | 2009-03-04 | 2024-04-02 | Nkt Photonics A/S | Laser system using low-chlorine hollow core optical fiber |
US11573366B2 (en) * | 2009-03-04 | 2023-02-07 | Nkt Photonics A/S | Optical fiber with low chlorine concentration improvements relating to loss and its use, method of its production and use thereof |
US20100303429A1 (en) * | 2009-05-26 | 2010-12-02 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Microstructured Optical Fiber Draw Method with In-Situ Vacuum Assisted Preform Consolidation |
US20120141079A1 (en) * | 2010-12-06 | 2012-06-07 | The Government Of The Us, As Represented By The Secretary Of The Navy | Photonic band gap fibers using a jacket with a depressed softening temperature |
US9416042B2 (en) | 2010-12-06 | 2016-08-16 | The United States Of America, As Represented By The Secretary Of The Navy | Hexagonal tube stacking method for the fabrication of hollow core photonic band gap fibers and preforms |
US9904007B2 (en) * | 2010-12-06 | 2018-02-27 | The United States Of America, As Represented By The Secretary Of The Navy | Photonic band gap fibers using a jacket with a depressed softening temperature |
US20160041333A1 (en) * | 2010-12-06 | 2016-02-11 | Daniel J. Gibson | Photonic band gap fibers using a jacket with a depressed softening temperature |
US9096455B2 (en) * | 2010-12-06 | 2015-08-04 | The United States Of America, As Represented By The Secretary Of The Navy | Photonic band gap fibers using a jacket with a depressed softening temperature |
US8571371B2 (en) | 2011-06-15 | 2013-10-29 | The United States Of America As Represented By The Secretary Of The Navy | Direct extrusion method for the fabrication of photonic band gap (PBG) fibers and fiber preforms |
GB2563758B (en) * | 2013-09-20 | 2019-09-04 | Univ Southampton | Hollow-core photonic bandgap fibers |
US11034607B2 (en) * | 2013-09-20 | 2021-06-15 | University Of Southampton | Hollow-core photonic bandgap fibers and methods of manufacturing the same |
US20170045682A1 (en) * | 2014-02-17 | 2017-02-16 | Schott Ag | Photonic crystal fiber, in particular single-mode fiber for the IR wavelength range, and process for the production thereof |
US9977180B2 (en) * | 2014-02-17 | 2018-05-22 | Schott Ag | Photonic crystal fiber, in particular single-mode fiber for the IR wavelength range, and process for the production thereof |
CN106704037A (en) * | 2015-11-16 | 2017-05-24 | 上海新力动力设备研究所 | End socket structure used for guided missile engine and provided with seam allowance bottom locking part |
US20200024178A1 (en) * | 2018-07-23 | 2020-01-23 | Ofs Fitel, Llc | Hollow Core Optical Fiber With Controlled Diameter Hollow Regions And Method Of Making The Same |
US11203547B2 (en) * | 2018-07-23 | 2021-12-21 | Ofs Fitel, Llc | Hollow core optical fiber with controlled diameter hollow regions and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
US20080060387A1 (en) | 2008-03-13 |
WO2006047316A2 (en) | 2006-05-04 |
WO2006047316A3 (en) | 2006-08-17 |
US7295740B2 (en) | 2007-11-13 |
US20070110377A1 (en) | 2007-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7295740B2 (en) | High air fraction photonic band gap fibers | |
JP3306847B2 (en) | Products containing microstructured optical fiber and manufacturing method for microstructured optical fiber | |
US5802236A (en) | Article comprising a micro-structured optical fiber, and method of making such fiber | |
EP1949153B1 (en) | Microstructured optical fiber and its manufacturing method | |
JP5074427B2 (en) | How to enable dual pressure control in fiber preforms during fiber production | |
US7873251B2 (en) | Photonic band gap germanate glass fibers | |
EP3234665B1 (en) | A photonic crystal fiber, a method of production thereof and a supercontinuum light source | |
US20040179796A1 (en) | Fabrication of microstructured fibres | |
US9904007B2 (en) | Photonic band gap fibers using a jacket with a depressed softening temperature | |
US20100303429A1 (en) | Microstructured Optical Fiber Draw Method with In-Situ Vacuum Assisted Preform Consolidation | |
US20090052853A1 (en) | Holey fiber and method of manufacturing the same | |
KR20090027744A (en) | Microstructured transmission optical fiber | |
US20060153512A1 (en) | Fused array preform fabrication of holey optical fibers | |
CA2534696A1 (en) | Hollow core photonic band gap infrared fibers | |
US11912606B2 (en) | Infrared-transmitting, polarization-maintaining optical fiber and method for making | |
US20120321263A1 (en) | Direct extrusion method for the fabrication of photonic band gap (pbg) fibers and fiber preforms | |
JP2010526756A (en) | Method for manufacturing a microstructured optical fiber including a cavity | |
CA1323195C (en) | Method of reproducibly making fiber optic coupler | |
WO2003093884A2 (en) | A method and apparatus relating to optical fibres | |
Kim et al. | The fabrication of a photonic crystal fiber and measurement of its properties | |
GB2386435A (en) | Microstructured optical fibre | |
Buczynski et al. | 3D glass printing of preforms for development of highly nonlinear microstructured fibers | |
Petrovich | Optical fibers | |
Tao | Multimaterial fibers in photonics and nanotechnology | |
Monro | Progress in non-silica microstructured fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNITED STATES OF AMERICA AS REPRESENTED BY THE SEC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANGHERA, JASBINDER S;SHAW, L BRANDON;AGGARWAL, ISHWAR D;REEL/FRAME:015274/0072 Effective date: 20041012 |
|
AS | Assignment |
Owner name: THE GOVERNMENT OF THE UNITED STATES, AS RESPRESENT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PUREZA, PABLO C;KUNG, FREDERIC H;GIBSON, DANIEL H;REEL/FRAME:017508/0205;SIGNING DATES FROM 20041012 TO 20041115 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |