US20050025993A1 - Materials and structures for enhancing the performance of organic light emitting devices - Google Patents
Materials and structures for enhancing the performance of organic light emitting devices Download PDFInfo
- Publication number
- US20050025993A1 US20050025993A1 US10/785,287 US78528704A US2005025993A1 US 20050025993 A1 US20050025993 A1 US 20050025993A1 US 78528704 A US78528704 A US 78528704A US 2005025993 A1 US2005025993 A1 US 2005025993A1
- Authority
- US
- United States
- Prior art keywords
- organic layer
- substitution
- cathode
- aromatic hydrocarbon
- hydrocarbon material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 195
- 230000002708 enhancing effect Effects 0.000 title 1
- 239000012044 organic layer Substances 0.000 claims abstract description 84
- 125000003118 aryl group Chemical group 0.000 claims abstract description 65
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 55
- 125000001424 substituent group Chemical group 0.000 claims abstract description 36
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 29
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 27
- 125000004404 heteroalkyl group Chemical group 0.000 claims abstract description 27
- 125000003107 substituted aryl group Chemical group 0.000 claims abstract description 27
- 125000000304 alkynyl group Chemical group 0.000 claims abstract description 24
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 15
- 125000001072 heteroaryl group Chemical group 0.000 claims abstract description 5
- 238000006467 substitution reaction Methods 0.000 claims description 62
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 41
- -1 heterocyclic hydrocarbon Chemical class 0.000 claims description 22
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 22
- 239000004215 Carbon black (E152) Substances 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 17
- 229930195733 hydrocarbon Natural products 0.000 claims description 17
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 239000010410 layer Substances 0.000 description 252
- 238000002347 injection Methods 0.000 description 42
- 239000007924 injection Substances 0.000 description 42
- 101100232347 Mus musculus Il11ra1 gene Proteins 0.000 description 39
- 201000001366 familial temporal lobe epilepsy 2 Diseases 0.000 description 39
- 230000000903 blocking effect Effects 0.000 description 38
- 230000032258 transport Effects 0.000 description 31
- 239000000758 substrate Substances 0.000 description 27
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 26
- 0 C1=CC2=C(C=C1)C1(C3=CC(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)=CC=C3C3=CC=C(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)C=C31)C1=C2C=CC=C1.C1=CC=C(C2=C(C3=CC=CC=C3)C(C3=CC=CC=C3)=C(C3=CC=CC=C3)C3=CC=CC=C32)C=C1.C1=CC=C(C2=CC=C(C3=C(C4=CC=CC=C4)C=C(C4=CC=CC=C4)C=C3C3=CC=CC=C3)C=C2)C=C1.C1=CC=C2C(=C1)C1=CC=CC=C1/C1=C/C=C/C=C\21.C1=CC=C2C=C3C=CC=CC3=CC2=C1.C1=CC=C2C=CC=CC2=C1.CC1=CC=C(C)C=C1.CC1=CC=C2C(=C1)CC1=C2C=CC(C)=C1.[1*]C.[10*]C.[11*]C.[12*]C.[13*]C.[14*]C.[15*]C.[16*]C.[17*]C.[18*]C.[19*]C.[2*]C.[20*]C.[21*]C.[22*]C.[23*]C.[24*]C.[25*]C.[26*]C.[27*]C.[28*]C.[29*]C.[3*]C.[30*]C.[31*]C.[32*]C.[33*]C.[34*]C.[4*]C.[5*]C.[6*]C.[7*]C.[8*]C.[9*]C Chemical compound C1=CC2=C(C=C1)C1(C3=CC(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)=CC=C3C3=CC=C(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)C=C31)C1=C2C=CC=C1.C1=CC=C(C2=C(C3=CC=CC=C3)C(C3=CC=CC=C3)=C(C3=CC=CC=C3)C3=CC=CC=C32)C=C1.C1=CC=C(C2=CC=C(C3=C(C4=CC=CC=C4)C=C(C4=CC=CC=C4)C=C3C3=CC=CC=C3)C=C2)C=C1.C1=CC=C2C(=C1)C1=CC=CC=C1/C1=C/C=C/C=C\21.C1=CC=C2C=C3C=CC=CC3=CC2=C1.C1=CC=C2C=CC=CC2=C1.CC1=CC=C(C)C=C1.CC1=CC=C2C(=C1)CC1=C2C=CC(C)=C1.[1*]C.[10*]C.[11*]C.[12*]C.[13*]C.[14*]C.[15*]C.[16*]C.[17*]C.[18*]C.[19*]C.[2*]C.[20*]C.[21*]C.[22*]C.[23*]C.[24*]C.[25*]C.[26*]C.[27*]C.[28*]C.[29*]C.[3*]C.[30*]C.[31*]C.[32*]C.[33*]C.[34*]C.[4*]C.[5*]C.[6*]C.[7*]C.[8*]C.[9*]C 0.000 description 24
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 21
- 230000005525 hole transport Effects 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 17
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 16
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 150000003384 small molecules Chemical class 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000007983 Tris buffer Substances 0.000 description 11
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 11
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 11
- 239000011241 protective layer Substances 0.000 description 11
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000002800 charge carrier Substances 0.000 description 8
- 239000011368 organic material Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- RSWOJEDGRFCGFR-UHFFFAOYSA-N 2,3,6,7,10,11-hexakis-phenyltriphenylene Chemical group C1=CC=CC=C1C1=CC(C2=CC(=C(C=3C=CC=CC=3)C=C2C2=CC(=C(C=3C=CC=CC=3)C=C22)C=3C=CC=CC=3)C=3C=CC=CC=3)=C2C=C1C1=CC=CC=C1 RSWOJEDGRFCGFR-UHFFFAOYSA-N 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 230000005281 excited state Effects 0.000 description 7
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000010406 cathode material Substances 0.000 description 6
- 238000001194 electroluminescence spectrum Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000005693 optoelectronics Effects 0.000 description 6
- ONMUDZAFRCWNJD-UHFFFAOYSA-N 1,3,5-triphenyl-2-(4-phenylphenyl)benzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C(=CC(=CC=2C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C=CC=CC=2)C=C1 ONMUDZAFRCWNJD-UHFFFAOYSA-N 0.000 description 5
- 239000000412 dendrimer Substances 0.000 description 5
- 229920000736 dendritic polymer Polymers 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 4
- YXVFYQXJAXKLAK-UHFFFAOYSA-M 4-phenylphenolate Chemical compound C1=CC([O-])=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-M 0.000 description 4
- UCTTYTFENYGAPP-UHFFFAOYSA-N C1=CC=C(C2=C(C3=CC=CC=C3)C(C3=CC=CC=C3)=C(C3=CC=CC=C3)C3=CC=CC=C32)C=C1 Chemical compound C1=CC=C(C2=C(C3=CC=CC=C3)C(C3=CC=CC=C3)=C(C3=CC=CC=C3)C3=CC=CC=C32)C=C1 UCTTYTFENYGAPP-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 4
- 239000010405 anode material Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000002207 thermal evaporation Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 3
- GLHQUXLCQLQNPZ-UHFFFAOYSA-N 2,3,6,7,10,11-hexabromotriphenylene Chemical group C12=CC(Br)=C(Br)C=C2C2=CC(Br)=C(Br)C=C2C2=C1C=C(Br)C(Br)=C2 GLHQUXLCQLQNPZ-UHFFFAOYSA-N 0.000 description 3
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 3
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical group CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 3
- SCZWJXTUYYSKGF-UHFFFAOYSA-N 5,12-dimethylquinolino[2,3-b]acridine-7,14-dione Chemical compound CN1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3N(C)C1=C2 SCZWJXTUYYSKGF-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- BFDFHGPJXDFXBA-UHFFFAOYSA-N C1=CC2=C(C=C1)C1(C3=CC(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)=CC=C3C3=CC=C(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)C=C31)C1=C2C=CC=C1 Chemical compound C1=CC2=C(C=C1)C1(C3=CC(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)=CC=C3C3=CC=C(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)C=C31)C1=C2C=CC=C1 BFDFHGPJXDFXBA-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 3
- 238000005284 basis set Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- CSHWQDPOILHKBI-UHFFFAOYSA-N c(cc1-c2cccc3cccc-4c23)cc2c1c-4ccc2 Chemical compound c(cc1-c2cccc3cccc-4c23)cc2c1c-4ccc2 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- 238000004776 molecular orbital Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- 150000003738 xylenes Chemical class 0.000 description 3
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 description 2
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 2
- FSEXLNMNADBYJU-UHFFFAOYSA-N 2-phenylquinoline Chemical compound C1=CC=CC=C1C1=CC=C(C=CC=C2)C2=N1 FSEXLNMNADBYJU-UHFFFAOYSA-N 0.000 description 2
- 102100026816 DNA-dependent metalloprotease SPRTN Human genes 0.000 description 2
- 101710175461 DNA-dependent metalloprotease SPRTN Proteins 0.000 description 2
- 229920000144 PEDOT:PSS Polymers 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N c(cc1)cc2c1cc(cccc1)c1c2 Chemical compound c(cc1)cc2c1cc(cccc1)c1c2 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N c(cc1ccc2ccc3)cc4c1c2c3cc4 Chemical compound c(cc1ccc2ccc3)cc4c1c2c3cc4 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N c1ccc2c(cccc3)c3ccc2c1 Chemical compound c1ccc2c(cccc3)c3ccc2c1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- MILUBEOXRNEUHS-UHFFFAOYSA-N iridium(3+) Chemical compound [Ir+3] MILUBEOXRNEUHS-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229960002796 polystyrene sulfonate Drugs 0.000 description 2
- 239000011970 polystyrene sulfonate Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- KUSPPLCAVNXGDA-UHFFFAOYSA-M sodium;2-(4-phenylphenyl)acetate Chemical compound [Na+].C1=CC(CC(=O)[O-])=CC=C1C1=CC=CC=C1 KUSPPLCAVNXGDA-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000002061 vacuum sublimation Methods 0.000 description 2
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 1
- BTRDWDAOMAEINJ-UHFFFAOYSA-J 2-carboxyquinolin-8-olate hafnium(4+) Chemical compound [Hf+4].C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1 BTRDWDAOMAEINJ-UHFFFAOYSA-J 0.000 description 1
- OLLHYWBEIYJYTK-UHFFFAOYSA-J 2-carboxyquinolin-8-olate zirconium(4+) Chemical compound [Zr+4].C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1 OLLHYWBEIYJYTK-UHFFFAOYSA-J 0.000 description 1
- AZFHXIBNMPIGOD-UHFFFAOYSA-N 4-hydroxypent-3-en-2-one iridium Chemical compound [Ir].CC(O)=CC(C)=O.CC(O)=CC(C)=O.CC(O)=CC(C)=O AZFHXIBNMPIGOD-UHFFFAOYSA-N 0.000 description 1
- UHBIKXOBLZWFKM-UHFFFAOYSA-N 8-hydroxy-2-quinolinecarboxylic acid Chemical compound C1=CC=C(O)C2=NC(C(=O)O)=CC=C21 UHBIKXOBLZWFKM-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- AMPCUVUVMXSOLL-UHFFFAOYSA-N C1=C2/C=C\C=C3\C=C/C4=C/C=C\C(=C1)C4=C23.C1=CC2=C(C=C1)C1=C(C=CC=C1)C1=C2C=CC=C1.C1=CC2=C(C=C1)C1=C(C=CC=C1)C=C2.C1=CC2=CC=CC3=C2C(=C1)/C1=C/C=C\C2=CC=CC3=C21.C1=CC=C2C=C3C=CC=CC3=CC2=C1.C1=CC=C2C=CC=CC2=C1.CC1=CC=C(C)C=C1.CC1=CC=C2C(=C1)CC1=C2C=CC(C)=C1 Chemical compound C1=C2/C=C\C=C3\C=C/C4=C/C=C\C(=C1)C4=C23.C1=CC2=C(C=C1)C1=C(C=CC=C1)C1=C2C=CC=C1.C1=CC2=C(C=C1)C1=C(C=CC=C1)C=C2.C1=CC2=CC=CC3=C2C(=C1)/C1=C/C=C\C2=CC=CC3=C21.C1=CC=C2C=C3C=CC=CC3=CC2=C1.C1=CC=C2C=CC=CC2=C1.CC1=CC=C(C)C=C1.CC1=CC=C2C(=C1)CC1=C2C=CC(C)=C1 AMPCUVUVMXSOLL-UHFFFAOYSA-N 0.000 description 1
- DPVQPQSSAYKLAZ-UHFFFAOYSA-N C1=C2/C=C\C=C3\C=C/C4=C/C=C\C(=C1)C4=C23.C1=CC2=C(C=C1)C1=C(C=CC=C1)C=C2.C1=CC2=CC=CC3=C2C(=C1)/C1=C/C=C\C2=CC=CC3=C21.C1=CC=C2C=C3C=CC=CC3=CC2=C1 Chemical compound C1=C2/C=C\C=C3\C=C/C4=C/C=C\C(=C1)C4=C23.C1=CC2=C(C=C1)C1=C(C=CC=C1)C=C2.C1=CC2=CC=CC3=C2C(=C1)/C1=C/C=C\C2=CC=CC3=C21.C1=CC=C2C=C3C=CC=CC3=CC2=C1 DPVQPQSSAYKLAZ-UHFFFAOYSA-N 0.000 description 1
- UVWIDGTYKDUPSX-UHFFFAOYSA-N C1=CC2=C(C=C1)C1(C3=CC(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)=CC=C3C3=CC=C(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)C=C31)C1=C2C=CC=C1.C1=CC2=C(C=C1)C1=C(C=CC=C1)C1=C2C=CC=C1.C1=CC=C(C2=C(C3=CC=CC=C3)C(C3=CC=CC=C3)=C(C3=CC=CC=C3)C3=CC=CC=C32)C=C1.C1=CC=C(C2=C(C3=CC=CC=C3)C=C3C(=C2)C2=CC(C4=CC=CC=C4)=C(C4=CC=CC=C4)C=C2/C2=C\C(C4=CC=CC=C4)=C(C4=CC=CC=C4)/C=C\32)C=C1.C1=CC=C(C2=CC=C(C3=C(C4=CC=CC=C4)C=C(C4=CC=CC=C4)C=C3C3=CC=CC=C3)C=C2)C=C1.C1=CC=C2C=CC=CC2=C1.CC1=CC=C(C)C=C1.CC1=CC=C2C(=C1)CC1=C2C=CC(C)=C1 Chemical compound C1=CC2=C(C=C1)C1(C3=CC(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)=CC=C3C3=CC=C(C4=CC=C5C(=C4)C4(C6=C5C=CC=C6)C5=C(C=CC=C5)C5=C4C=CC=C5)C=C31)C1=C2C=CC=C1.C1=CC2=C(C=C1)C1=C(C=CC=C1)C1=C2C=CC=C1.C1=CC=C(C2=C(C3=CC=CC=C3)C(C3=CC=CC=C3)=C(C3=CC=CC=C3)C3=CC=CC=C32)C=C1.C1=CC=C(C2=C(C3=CC=CC=C3)C=C3C(=C2)C2=CC(C4=CC=CC=C4)=C(C4=CC=CC=C4)C=C2/C2=C\C(C4=CC=CC=C4)=C(C4=CC=CC=C4)/C=C\32)C=C1.C1=CC=C(C2=CC=C(C3=C(C4=CC=CC=C4)C=C(C4=CC=CC=C4)C=C3C3=CC=CC=C3)C=C2)C=C1.C1=CC=C2C=CC=CC2=C1.CC1=CC=C(C)C=C1.CC1=CC=C2C(=C1)CC1=C2C=CC(C)=C1 UVWIDGTYKDUPSX-UHFFFAOYSA-N 0.000 description 1
- YMHNGXYASXOBGC-UHFFFAOYSA-N C1=CC=C(C2=C(C3=CC=CC=C3)C=CC=C2)C=C1.C1=CC=C(C2=CC3=C(C=CC=C3)C=C2)C=C1.C1=CC=C(C2=CC=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C(C2=CC=CC(C3=CC=CC=C3)=C2)C=C1.C1=CC=C(C2=CC=CC3=CC=CC=C32)C=C1.C1=CC=C2C(=C1)C1=C(C=CC=C1)C1=C2C=CC=C1.C1=CC=C2C(=C1)C=CC1=C2C=CC=C1.C1=CC=C2C=C3C=CC=CC3=CC2=C1 Chemical compound C1=CC=C(C2=C(C3=CC=CC=C3)C=CC=C2)C=C1.C1=CC=C(C2=CC3=C(C=CC=C3)C=C2)C=C1.C1=CC=C(C2=CC=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C(C2=CC=CC(C3=CC=CC=C3)=C2)C=C1.C1=CC=C(C2=CC=CC3=CC=CC=C32)C=C1.C1=CC=C2C(=C1)C1=C(C=CC=C1)C1=C2C=CC=C1.C1=CC=C2C(=C1)C=CC1=C2C=CC=C1.C1=CC=C2C=C3C=CC=CC3=CC2=C1 YMHNGXYASXOBGC-UHFFFAOYSA-N 0.000 description 1
- UAPMHVCFJJOFBP-UHFFFAOYSA-N C1=CC=C(C2=CC=C3[Ir]N4=C(C=CC=C4)C3=C2)C=C1 Chemical compound C1=CC=C(C2=CC=C3[Ir]N4=C(C=CC=C4)C3=C2)C=C1 UAPMHVCFJJOFBP-UHFFFAOYSA-N 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N C1=CC=C2C=CC=CC2=C1 Chemical compound C1=CC=C2C=CC=CC2=C1 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- FHZBWBMKZHNKFS-UHFFFAOYSA-N CC1=CC2=C(C=CC=C2)N2=C1C1=CC=CC=C1[Ir]21OC(C)CC(C)O1 Chemical compound CC1=CC2=C(C=CC=C2)N2=C1C1=CC=CC=C1[Ir]21OC(C)CC(C)O1 FHZBWBMKZHNKFS-UHFFFAOYSA-N 0.000 description 1
- URLKBWYHVLBVBO-UHFFFAOYSA-N CC1=CC=C(C)C=C1 Chemical compound CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 1
- KRPHZIRPXLJJIZ-UHFFFAOYSA-N CC1=CC=C2C(=C1)CC1=C2C=CC(C)=C1 Chemical compound CC1=CC=C2C(=C1)CC1=C2C=CC(C)=C1 KRPHZIRPXLJJIZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XEPMXWGXLQIFJN-UHFFFAOYSA-K aluminum;2-carboxyquinolin-8-olate Chemical compound [Al+3].C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1 XEPMXWGXLQIFJN-UHFFFAOYSA-K 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- QRZAKQDHEVVFRX-UHFFFAOYSA-N biphenyl-4-ylacetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1C1=CC=CC=C1 QRZAKQDHEVVFRX-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- KWQNQSDKCINQQP-UHFFFAOYSA-K tri(quinolin-8-yloxy)gallane Chemical compound C1=CN=C2C(O[Ga](OC=3C4=NC=CC=C4C=CC=3)OC=3C4=NC=CC=C4C=CC=3)=CC=CC2=C1 KWQNQSDKCINQQP-UHFFFAOYSA-K 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- BVCOUFNFHBBWFR-UHFFFAOYSA-N tris(2,3,5,6-tetramethylphenyl)borane Chemical compound CC1=CC(C)=C(C)C(B(C=2C(=C(C)C=C(C)C=2C)C)C=2C(=C(C)C=C(C)C=2C)C)=C1C BVCOUFNFHBBWFR-UHFFFAOYSA-N 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C13/00—Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
- C07C13/28—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
- C07C13/32—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
- C07C13/54—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
- C07C13/547—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
- C07C13/567—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C13/00—Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
- C07C13/28—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
- C07C13/32—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
- C07C13/62—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
- C07C13/66—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/20—Polycyclic condensed hydrocarbons
- C07C15/24—Polycyclic condensed hydrocarbons containing two rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/20—Polycyclic condensed hydrocarbons
- C07C15/38—Polycyclic condensed hydrocarbons containing four rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/115—Polyfluorene; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/917—Electroluminescent
Definitions
- the present invention relates to efficient organic light emitting devices (OLEDs), and more specifically to phosphorescent aromatic organic non-heterocyclic hydrocarbon materials with improved stability and efficiency used in such devices.
- Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
- OLEDs organic light emitting devices
- the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
- organic includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices.
- Small molecule refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety.
- the core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter.
- a dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.
- OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.
- OLED devices are generally (but not always) intended to emit light through at least one of the electrodes, and one or more transparent electrodes may be useful in an organic opto-electronic device.
- a transparent electrode material such as indium tin oxide (ITO)
- ITO indium tin oxide
- a transparent top electrode such as disclosed in U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, may also be used.
- the top electrode does not need to be transparent, and may be comprised of a thick and reflective metal layer having a high electrical conductivity.
- the bottom electrode may be opaque and/or reflective.
- using a thicker layer may provide better conductivity, and using a reflective electrode may increase the amount of light emitted through the other electrode, by reflecting light back towards the transparent electrode.
- Fully transparent devices may also be fabricated, where both electrodes are transparent. Side emitting OLEDs may also be fabricated, and one or both electrodes may be opaque or reflective in such devices.
- top means furthest away from the substrate
- bottom means closest to the substrate.
- the bottom electrode is the electrode closest to the substrate, and is generally the first electrode fabricated.
- the bottom electrode has two surfaces, a bottom surface closest to the substrate, and a top surface further away from the substrate.
- a first layer is described as “disposed over” a second layer
- the first layer is disposed further away from substrate.
- a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.
- a device having an anode, a cathode, and a first organic layer disposed between the anode and the cathode.
- the first organic layer comprises a material that produces phosphorescent emission when a voltage is applied between the anode and the cathode.
- a second organic layer disposed between the first organic layer and the cathode is also provided. The second organic layer is in direct contact with the first organic layer.
- the second organic layer may comprise an aromatic non-heterocyclic hydrocarbon compound.
- Particularly suitable aromatic hydrocarbon materials include materials having the following structures: Each aromatic ring may optionally be substituted.
- Particularly suitable aromatic non-heterocyclic hydrocarbon materials with substituted rings include materials having the following structures: wherein:
- the second organic layer may comprise a material having a molecular dipole moment less than about 2.0 debyes, such that the device has an unmodified external quantum efficiency of at least about 3%, and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m 2 .
- the second organic layer may be in direct contact with the cathode, or there may be a separate organic layer between the second organic layer and the cathode.
- Other aromatic hydrocarbon materials may be used.
- FIG. 1 shows an organic light emitting device having separate electron transport, hole transport, and emissive layers, as well as other layers.
- FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.
- FIG. 3 shows a device having an organic enhancement layer that is not in direct contact with the cathode.
- FIG. 4 shows current-voltage characteristics for examples 8-10 and comparative example 11.
- FIG. 5 shows luminous efficiency vs. brightness for examples 8-10 and comparative example 11.
- FIG. 6 shows external quantum efficiency vs. current density for examples 8-10 and comparative example 11.
- FIG. 7 shows normalized electroluminescence spectra for examples 8-10 using HPT as the ETL2.
- FIG. 8 operational stability for examples 8-10 using HPT as the ETL2 at room temperature under constant direct current of 40 mA/cm 2 and at initial luminance (L 0 ) of 955 nits.
- FIG. 10 shows the current-voltage characteristics for example 12.
- FIG. 11 shows luminous efficiency vs. brightness for example 12.
- FIG. 12 and external quantum efficiency vs. current density for example 12.
- FIG. 13 shows the current-voltage characteristics for examples 13 and comparative example 14.
- FIG. 14 luminous efficiency vs. brightness for example 13 and comparative example 14.
- FIG. 15 external quantum efficiency vs. current density for example 13 and comparative example 14 using HPT as the ETL2.
- FIG. 16 shows the normalized electroluminescence spectra of example 13 using HPT as the ETL2.
- FIG. 17 shows operational stability for examples 13 using HPT as the ETL2 at room temperature under constant direct current of 40 mA/cm 2 .
- FIG. 18 shows the current-voltage characteristics for examples 15-17.
- FIG. 19 shows luminous efficiency vs. brightness for examples 15-17.
- FIG. 20 shows external quantum efficiency vs. current density for examples 15-17.
- FIG. 21 shows the normalized electroluminescence spectra for example 15-17 using TSBF as the ETL2.
- FIG. 22 shows the operational stability of examples 15-17 using TSBF as the ETL2 at room temperature under constant direct current of 40 mA/cm 2 .
- an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode.
- the anode injects holes and the cathode injects electrons into the organic layer(s).
- the injected holes and electrons each migrate toward the oppositely charged electrode.
- an “exciton,” which is a localized electron-hole pair having an excited energy state is formed.
- Light is emitted when the exciton relaxes via a photoemissive mechanism.
- the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.
- the initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.
- Phosphorescence may be referred to as a “forbidden” transition because the transition requires a change in spin states, and quantum mechanics indicates that such a transition is not favored.
- phosphorescence generally occurs in a time frame exceeding at least 10 nanoseconds, and typically greater than 100 nanoseconds. If the natural radiative lifetime of phosphorescence is too long, triplets may decay by a non-radiative mechanism, such that no light is emitted.
- Organic phosphorescence is also often observed in molecules containing heteroatoms with unshared pairs of electrons at very low temperatures. 2,2′-bipyridine is such a molecule.
- Non-radiative decay mechanisms are typically temperature dependent, such that a material that exhibits phosphorescence at liquid nitrogen temperatures may not exhibit phosphorescence at room temperature. But, as demonstrated by Baldo, this problem may be addressed by selecting phosphorescent compounds that do phosphoresce at room temperature.
- Representative emissive layers include doped or un-doped phosphorescent organo-metallic materials such as disclosed in U.S. Pat. Nos. 6,303,238 and 6,310,360; U.S. patent application Publication Nos. 2002-0034656; 2002-0182441; amd 2003-0072964; and WO-02/074015.
- the excitons in an OLED are believed to be created in a ratio of about 3:1, i.e., approximately 75% triplets and 25% singlets. See, Adachi et al., “Nearly 100% Internal Phosphorescent Efficiency In An Organic Light Emitting Device,” J. Appl. Phys., 90, 5048 (2001), which is incorporated by reference in its entirety.
- singlet excitons may readily transfer their energy to triplet excited states via “intersystem crossing,” whereas triplet excitons may not readily transfer their energy to singlet excited states.
- 100% internal quantum efficiency is theoretically possible with phosphorescent OLEDs.
- Phosphorescence may be preceded by a transition from a triplet excited state to an intermediate non-triplet state from which the emissive decay occurs.
- organic molecules coordinated to lanthanide elements often phosphoresce from excited states localized on the lanthanide metal.
- such materials do not phosphoresce directly from a triplet excited state but instead emit from an atomic excited state centered on the lanthanide metal ion.
- the europium diketonate complexes illustrate one group of these types of species.
- Phosphorescence from triplets can be enhanced over fluorescence by confining, preferably through bonding, the organic molecule in close proximity to an atom of high atomic number. This phenomenon, called the heavy atom effect, is created by a mechanism known as spin-orbit coupling. Such a phosphorescent transition may be observed from an excited metal-to-ligand charge transfer (MLCT) state of an organometallic molecule such as tris(2-phenylpyridine)iridium(III).
- MLCT excited metal-to-ligand charge transfer
- FIG. 1 shows an organic light emitting device 100 .
- Device 100 may include a substrate 110 , an anode 115 , a hole injection layer 120 , a hole transport layer 125 , an electron blocking layer 130 , an emissive layer 135 , a hole blocking layer 140 , an electron transport layer 145 , an electron injection layer 150 , a protective layer 155 , and a cathode 160 .
- Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164 .
- Device 100 may be fabricated by depositing the layers described, in order.
- Substrate 110 may be any suitable substrate that provides desired structural properties.
- Substrate 110 may be flexible or rigid.
- Substrate 110 may be transparent, translucent or opaque.
- Plastic and glass are examples of preferred rigid substrate materials.
- Plastic and metal foils are examples of preferred flexible substrate materials.
- Substrate 110 may be a semiconductor material in order to facilitate the fabrication of circuitry.
- substrate 110 may be a silicon wafer upon which circuits are fabricated, capable of controlling OLEDs subsequently deposited on the substrate. Other substrates may be used.
- the material and thickness of substrate 110 may be chosen to obtain desired structural and optical properties.
- Anode 115 may be any suitable anode that is sufficiently conductive to transport holes to the organic layers.
- the material of anode 115 preferably has a work function higher than about 4 eV (a “high work function material”).
- Preferred anode materials include conductive metal oxides, such as indium tin oxide (ITO) and indium zinc oxide (IZO), aluminum zinc oxide (AlZnO), and metals.
- Anode 115 (and substrate 110 ) may be sufficiently transparent to create a bottom-emitting device.
- a preferred transparent substrate and anode combination is commercially available ITO (anode) deposited on glass or plastic (substrate).
- a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No.
- Anode 115 may be opaque and/or reflective. A reflective anode 115 may be preferred for some top-emitting devices, to increase the amount of light emitted from the top of the device.
- the material and thickness of anode 115 may be chosen to obtain desired conductive and optical properties. Where anode 115 is transparent, there may be a range of thickness for a particular material that is thick enough to provide the desired conductivity, yet thin enough to provide the desired degree of transparency. Other anode materials and structures may be used.
- Hole transport layer 125 may include a material capable of transporting holes. Hole transport layer 125 may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. ⁇ -NPD and TPD are examples of intrinsic hole transport layers. An example of a p-doped hole transport layer is m-MTDATA doped with F 4 -TCNQ at a molar ratio of 50:1, as disclosed in U.S. patent application Ser. No. 10/173,682 to Forrest et al., which is incorporated by reference in its entirety. Other hole transport layer materials and structures may be used.
- Emissive layer 135 may include an organic material capable of emitting light when a current is passed between anode 115 and cathode 160 .
- emissive layer 135 contains a phosphorescent emissive material, although fluorescent emissive materials may also be used. Phosphorescent materials are preferred because of the higher luminescent efficiencies associated with such materials.
- Emissive layer 135 may also comprise a host material capable of transporting electrons and/or holes, doped with an emissive material that may trap electrons, holes, and/or excitons, such that excitons relax from the emissive material via a photoemissive mechanism.
- Emissive layer 135 may comprise a single material that combines transport and emissive properties.
- emissive layer 135 may comprise other materials, such as dopants that tune the emission of the emissive material.
- Emissive layer 135 may include a plurality of emissive materials capable of, in combination, emitting a desired spectrum of light. Examples of phosphorescent emissive materials include Ir(ppy) 3 . Examples of fluorescent emissive materials include DCM and DMQA. Examples of host materials include Alq 3 , CBP and mCP. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. Emissive material may be included in emissive layer 135 in a number of ways. For example, an emissive small molecule may be incorporated into a polymer. Other emissive layer materials and structures may be used.
- Electron transport layer 140 may include a material capable of transporting electrons. Electron transport layer 140 may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Alq 3 is an example of an intrinsic electron transport layer material. An example of an n-doped electron transport layer material is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. patent application Ser. No. 10/173,682 to Forrest et al., which is incorporated by reference in its entirety. Other electron transport layer materials and structures may be used.
- the charge carrying component of the electron transport layer may be selected such that electrons can be efficiently injected from the cathode into the LUMO (Lowest Unoccupied Molecular Orbital) level of the electron transport layer.
- the “charge carrying component” is the material responsible for the LUMO that actually transports electrons. This component may be the base material, or it may be a dopant.
- the LUMO level of an organic material may be generally characterized by the electron affinity of that material while relative electron injection efficiency of a cathode may be generally characterized in terms of the work function of the cathode material. This means that the preferred properties of an electron transport layer and the adjacent cathode may be specified in terms of the electron affinity of the charge carrying component of the ETL and the work function of the cathode material.
- the work function of the cathode material is preferably not greater than the electron affinity of the charge carrying component of the electron transport layer by more than about 0.75 eV, more preferably, by not more than about 0.5 eV.
- the electron affinity of the charge carrying component of the electron transport layer is greater than the work function of the cathode material. Similar considerations apply to any layer into which electrons are being injected.
- Cathode 160 may be any suitable material or combination of materials known to the art, such that cathode 160 is capable of conducting electrons and injecting them into the organic layers of device 100 .
- Cathode 160 may be transparent or opaque, and may be reflective.
- Metals and metal oxides are examples of suitable cathode materials.
- Cathode 160 may be a single layer, or may have a compound structure.
- FIG. 1 shows a compound cathode 160 having a thin metal layer 162 and a thicker conductive metal oxide layer 164 .
- preferred materials for the thicker layer 164 include ITO, IZO, and other materials known to the art.
- cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer.
- the part of cathode 160 that is in contact with the underlying organic layer, whether it is a single layer cathode 160 , the thin metal layer 162 of a compound cathode, or some other part, is preferably made of a material having a work function lower than about 4 eV (a “low work function material”). Other cathode materials and structures may be used.
- Blocking layers may be used to reduce the number of charge carriers (electrons or holes) and/or excitons that leave the emissive layer.
- An electron blocking layer 130 may be disposed between emissive layer 135 and the hole transport layer 125 , to block electrons from leaving emissive layer 135 in the direction of hole transport layer 125 .
- a hole blocking layer 140 may be disposed between emissive layer 135 and electron transport layer 145 , to block holes from leaving emissive layer 135 in the direction of electron transport layer 140 .
- Blocking layers may also be used to block excitons from diffusing out of the emissive layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S.
- the conventional “blocking layer” is generally believed to reduce the number of charge carriers and/or excitons that leave the emissive layer by presenting an energy barrier that the charge carrier or exciton has difficulty surmounting.
- hole transport is generally thought to be related to the Highest Occupied Molecular Orbital (HOMO) of an organic semiconductor.
- HOMO Highest Occupied Molecular Orbital
- a “hole blocking” material may therefore be generally considered as a material that has a HOMO energy level significantly less than that of the material from which the holes are being blocked.
- a first HOMO energy level is considered “less than” a second HOMO energy level if it is lower on a conventional energy level diagram, which means that the first HOMO energy level would have a value that is more negative than the second HOMO energy level.
- Ir(ppy) 3 has a HOMO energy level of ⁇ 4.85 eV (data is based on the density function calculation using the B3LYP 6-31 G* basis set, Spartan 02 software package, with the pseudopetential option for materials containing heavy metals such as Ir(ppy) 3 ).
- Boron 1 has a HOMO energy level of ⁇ 6.49 eV, which is 1.64 eV less than that of Ir(Ppy) 3 , making it an excellent hole blocker.
- ZrQ 4 has a HOMO energy level of ⁇ 5.00, only 0.15 eV less than that of Ir(ppy) 3 , such that little or no hole blocking is expected.
- mer-GaQ 3 has a HOMO energy level of ⁇ 4.63 eV, which is greater than that of Ir(ppy) 3 , such that no hole blocking at all is expected.
- the emissive layer includes different materials with different energy levels, the effectiveness of these various materials as hole blocking layers may be different, because it is the difference in HOMO energy levels between the blocking layer and the blocked layer that is significant, not the absolute HOMO energy level. But, the absolute HOMO level may be useful in determining whether a compound will be a good hole blocker for particular emissive layers.
- a material having a HOMO energy level of about ⁇ 5.15 eV or less may be considered a reasonable hole blocking material for Ir(ppy) 3 , which is a representative emissive material.
- a layer having a HOMO energy level that is at least 0.25 eV less than that of an adjacent layer may be considered as having some hole blocking properties.
- An energy level difference of at least 0.3 eV is preferred, and an energy level difference of at least 0.7 eV is more preferred.
- the energy of an exciton is generally believed to be related to the band gap of a material.
- An “exciton blocking” material may generally be thought of as a material having a band gap significantly larger than the material from which excitons are being blocked.
- a material having a band gap that is about 0.1 eV or more, larger than that of an adjacent material may be considered a good exciton blocking material.
- blocking layer means that the layer provides a barrier that significantly inhibits transport of charge carriers and/or excitons through the device, without suggesting that the layer necessarily completely blocks the charge carriers and/or excitons.
- the presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer.
- a blocking layer may be used to confine emission to a desired region of an OLED.
- injection layers are comprised of a material that may improve the injection of charge carriers from one layer, such as an electrode or an organic layer, into an adjacent organic layer. Injection layers may also perform a charge transport function.
- hole injection layer 120 may be any layer comprising a material that improves the injection of holes from anode 115 into hole transport layer 125 .
- Exemplary materials include CuPc.
- electron injection layer 150 may be any layer comprising a material that facilitates or enhances the injection of electrons into electron transport layer 145 .
- Exemplary materials include LiF/Al. Other materials or combinations of materials may be used for injection layers.
- injection layers may be disposed at locations different than those shown in device 100 .
- a hole injection layer may comprise a solution deposited material, such as a spin-coated polymer, e.g., PEDOT:PSS, or it may be a vapor deposited small molecule material, e.g., CuPc or MTDATA.
- a solution deposited material such as a spin-coated polymer, e.g., PEDOT:PSS, or it may be a vapor deposited small molecule material, e.g., CuPc or MTDATA.
- a hole injection layer may planarize or wet the anode surface so as to provide efficient hole injection from the anode into the hole injecting material.
- a hole injection layer may also have a charge carrying component having HOMO (Highest Occupied Molecular Orbital) energy levels that favorably match up, as defined by their herein-described relative ionization potential (IP) energies, with the adjacent anode layer on one side of the HIL and the hole transporting layer on the opposite side of the HIL.
- the “charge carrying component” is the material responsible for the HOMO that actually transports holes. This component may be the base material of the HIL, or it may be a dopant.
- a doped HIL allows the dopant to be selected for its electrical properties, and the host to be selected for morphological properties such as wetting, flexibility, toughness, etc.
- Preferred properties for the HIL material are such that holes can be efficiently injected from the anode into the HIL material.
- the charge carrying component of the HIL preferably has an IP not more than about 0.7 eV greater that the IP of the anode material. More preferably, the charge carrying component has an IP not more than about 0.5 eV greater than the anode material. Similar considerations apply to any layer into which holes are being injected.
- HIL materials are distinguished from conventional hole transporting materials that are typically used in the hole transporting layer of an OLED in that such HIL materials may have a hole conductivity that is substantially less than the hole conductivity of conventional hole transporting materials.
- the thickness of the HIL of the present invention may be thick enough to help planarize or wet the surface of the anode layer. For example, an HIL thickness of as little as 10 nm may be acceptable for a very smooth anode surface. However, since anode surfaces tend to be very rough, a thickness for the HIL of up to 50 nm may be desired in some cases.
- a protective layer may be used to protect underlying layers during subsequent fabrication processes.
- the processes used to fabricate metal or metal oxide top electrodes may damage organic layers, and a protective layer may be used to reduce or eliminate such damage.
- protective layer 155 may reduce damage to underlying organic layers during the fabrication of cathode 160 .
- a protective layer has a high carrier mobility for the type of carrier that it transports (electrons in device 100 ), such that it does not significantly increase the operating voltage of device 100 .
- CuPc, BCP, and various metal phthalocyanines are examples of materials that may be used in protective layers. Other materials or combinations of materials may be used.
- protective layer 155 is preferably thick enough that there is little or no damage to underlying layers due to fabrication processes that occur after organic protective layer 160 is deposited, yet not so thick as to significantly increase the operating voltage of device 100 .
- Protective layer 155 may be doped to increase its conductivity.
- a CuPc or BCP protective layer 160 may be doped with Li.
- FIG. 2 shows an inverted OLED 200 .
- the device includes a substrate 210 , a cathode 215 , an emissive layer 220 , a hole transport layer 225 , and an anode 230 .
- Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230 , device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200 .
- FIG. 2 provides one example of how some layers may be omitted from the structure of device 100 .
- FIGS. 1 and 2 The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures.
- the specific materials and structures described are exemplary in nature, and other materials and structures may be used.
- Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers.
- hole transport layer 225 transports holes and injects holes into emissive layer 220 , and may be described as a hole transport layer or a hole injection layer.
- an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2 .
- OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190, Friend et al., which is incorporated by reference in its entirety.
- PLEDs polymeric materials
- OLEDs having a single organic layer may be used.
- OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety.
- the OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2 .
- the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.
- any of the layers of the various embodiments may be deposited by any suitable method.
- preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application No. 10/233,470, which is incorporated by reference in its entirety.
- OVPD organic vapor phase deposition
- OJP organic vapor jet printing
- Other suitable deposition methods include spin coating and other solution based processes.
- Solution based processes are preferably carried out in nitrogen or an inert atmosphere.
- preferred methods include thermal evaporation.
- Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used.
- the materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing.
- Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution.
- Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign.
- PDAs personal digital assistants
- Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18° C. to 30° C., and more preferably at room temperature (20° -25° C.).
- the materials and structures described herein may have applications in devices other than OLEDs.
- other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures.
- organic devices such as organic transistors, may employ the materials and structures.
- solution processible means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.
- an organic enhancement layer is provided that is disposed between the cathode and the first organic emissive layer of an organic light emitting device.
- the organic enhancement layer is in direct contact with the emissive layer.
- the organic enhancement layer may also be in direct contact with the cathode.
- FIG. 3 shows a device 300 having an organic enhancement layer that is not in direct contact with the cathode, because there is a separate electron transport layer.
- Device 300 includes a substrate 310 , an anode 315 , a hole injection layer 320 , a hole transport layer 325 , an organic emissive layer 335 , an organic enhancement layer 340 , an electron transport layer 345 , and a cathode 360 .
- Cathode 360 includes a first conductive layer 362 and a second conductive layer 364 .
- layers operate analogously to substrate 110 , anode 115 , hole injection layer 120 , hole transport layer 125 , emissive layer 135 , electron transport layer 145 , and cathode 160 of FIG. 1 .
- the organic enhancement layer 340 may improve device performance.
- the organic enhancement layer 340 is not necessarily a hole blocking layer, and may have a HOMO energy level that is greater than that of emissive layer 335 , not more than 0.3 eV less than that of emissive layer 335 , or not more than 0.7 eV less than that of emissive layer 335 .
- the HOMO energy level of the emissive layer is considered to be that of the component that transports holes, which is generally the component having the highest HOMO energy level, provided that the component is present in an appreciable amount, for example about 3% or higher.
- the HOMO level of Ir(ppy) 3 which is ⁇ 4.85 eV, is the HOMO level relevant to charge transport, because it is higher than the HOMO level of CBP, ⁇ 5.32 eV.
- the organic enhancement layer 340 improves device performance by improving electron injection into emissive layer 335 .
- Factors that may assist in achieving these properties include the use of a material in organic enhancement layer 340 having a low molecular dipole moment.
- organic enhancement layer 340 may act as a hole blocking layer, which may further enhance device performance, but this is not necessary.
- the organic enhancement layer may include an aromatic hydrocarbon material comprising an aromatic hydrocarbon core optionally substituted with any suitable substituent.
- the aromatic hydrocarbon core is an aromatic system containing no heterocyclic atoms in its rings.
- Suitable substituents are attached to the aromatic hydrocarbon core.
- Such suitable substituents may include elements other than hydrogen and carbon.
- Preferred substituents may be selected independently from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, substituted aryl groups. Other substituents include substituted heteroaryl and heterocyclic groups.
- two or more of the same or different aromatic cores may be linked together to form a new core, which may be optionally substituted by alkyl, alkenyl, alkynyl, aryl, heteroalkyl, substituted aryl, substituted heteroaryl, and substituted heterocyclic groups.
- the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure:
- the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure:
- the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure:
- the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure:
- the organic enhancement layer may an aromatic non-heterocyclic hydrocarbon having the following structures:
- the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure: such that R 1 —R 5 each represent no substitution, mono-, di-, or tri- substitution, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl.
- the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure: such that R 6 —R 10 each represent no substitution, mono-, di-, or tri- substitution, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl
- the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure: such that R 11 —R 13 each represents no substitution, mono-, di-, or tri- substitution, and wherein R 11 —R 13 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl;
- the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure: such that R 14 , R 19 , and R 20 —R 25 each represents no substitution, mono-, di-, or tri- or tetra- substitution, and R 15 —R 18 each represent no substitution, mono-, di-, tri- substitution, and R 14 —R 25 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl.
- the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structures: such that R 26 —R 28 each represents no substitution, mono-, di-, or tri- or tetra- substitution, and R 29 —R 45 each represent no substitution, mono-, di-, tri- substitution, and R 26 —R 45 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl.
- the organic enhancement layer may include an aromatic hydrocarbon material having the following structures: wherein R 1 —R 10 each represent no substitution, mono-, di-, or tri- substitution, R 11 —R 13 , R 15 —R 18 , each represents no substitution, mono-, di-, or tri- substitution, and R 14 , R 19 , and R 20 —R 25 each represents no substitution, mono-, di-, or tri- or tetra- substitution, and
- the organic enhancement layer may include an aromatic hydrocarbon material having a core comprising at least 3 phenyl rings, wherein each phenyl ring in the core is fused or attached by a single C—C bond to at least one other phenyl ring in the core, and wherein the core is contiguous.
- each phenyl ring in the core is connected to every other phenyl ring in the core either directly, or by a chain of phenyl rings that are either fused or attached by a single C—C bond. Examples of ways that phenyl rings may be attached to other phenyl rings in a contiguous core are provided below:
- the organic enhancement layer may include an aromatic hydrocarbon material having a core comprising at least 6 phenyl rings, wherein each phenyl ring in the core is fused or attached by a single C—C bond to at least one other phenyl ring in the core, and wherein the core is contiguous.
- a “core” may be defined as a group of least three phenyl rings, where each phenyl ring is ⁇ -conjugated to every other phenyl ring in the group.
- a broader range of connections may be used between the phenyl rings, such as a chain of unsaturated carbon bonds.
- phosphorescent emissive materials may have superior hole transport properties, such that a phosphorescent emissive layer has a higher hole mobility than electron mobility, and holes are quickly transported across the emissive layer, as compared to electrons, which are more slowly transported.
- holes may be injected into the emissive layer more readily than electrons. “Hole blocking” layers may be used to prevent holes from leaving the emissive layer.
- Some degree of hole blocking may occur where the hole blocking layer has a HOMO energy level lower than that of the adjacent layer, usually an emissive layer, from which holes are being blocked.
- Effective hole blocking layers generally have a HOMO energy level significantly lower than that of the adjacent layer, such as 0.25 eV lower, preferably 0.3 eV lower or more preferably 0.7 eV lower.
- DFT density function calculations
- the organic enhancement layer may allow for efficient injection of electrons into the emissive layer.
- the organic enhancement layer may result in a flood of electrons that recombine with holes before they can reach the edge of the emissive layer. Superior electron injection properties may result from one of several properties of the organic enhancement layer material or materials.
- the organic enhancement layer acts as both a hole blocking layer and provides superior electron injection.
- compounds I and II have a HOMO that is 0.81 eV less than the HOMO of Ir(ppy) 3 , a desirable phosphorescent emissive material.
- an organic enhancement layer of compound I or II may block holes due to the large HOMO level difference of 0.81 eV, and may also provide superior electron injection.
- other HOMO energy level differences may be utilized in accordance with embodiments of the invention to achieve both hole blocking and superior electron injection.
- an organic enhancement layer including an aromatic hydrocarbon material having a low molecular dipole moment may result in superior device performance. Without intending to limit all embodiments with a particular theory of how the invention works, it is believed that a low molecular dipole moment may improve electron injection from the organic layer into the emissive layer, because the presence of a significant molecular dipole moment may lead to a local electric field that can trap or slow down charge migration. As a result, the material may inject electrons into the emissive layer rapidly enough that a significant proportion of holes in the organic emissive layer encounter an electron and recombine before reaching the interface between the organic enhancement layer and the emissive layer.
- the second organic layer does not have energetics suitable for hole blocking, because hole blocking may not be needed due to superior electron injection.
- the organic enhancement layer may have a HOMO energy level that is not generally considered effective as a hole blocking layer.
- the HOMO energy level of the second organic layer may be greater than that of the emissive layer, in which case no hole blocking at all would be expected.
- the HOMO energy level of the organic enhancement layer may be less than that of the emissive layer, but the difference may be so small that significant hole blocking is not expected.
- the difference in energy levels may be less than about 0.25 eV, about 0.3 eV, or about 0.7 eV.
- an organic enhancement layer including an aromatic hydrocarbon having a zero or low molecular dipole moment may result in superior device performance.
- this symmetric energy structure may improve electron injection from the organic enhancement layer into the emissive layer because the symmetry in the HOMO and LUMO of the aromatic hydrocarbon molecules may lead to reduce dipole induced charge trap sites, thus better charge hopping between the molecules as compared to heterocyclic analogs which may have localized electron density associated with heterocyclic systems.
- the lack of heteroatoms and delocalized electron density in the core structures of the aromatic hydrocarbons of the present invention lead to a better delocalization and stabilization when the aromatic hydrocarbon is oxidized (cation radical) or reduced (anion radical). This results in a lower susceptibility to bond breaking in the aromatic hydrocarbons, and thus higher stability in devices incorporating these materials compared to heterocyclic aromatics.
- the lack of polar substituents such as halogen (I, Br, Cl, and F), and CN on the aromatic hydrocarbon may serve the same purpose since polar groups tend to perturb the electron density distribution on the aromatic ring, making the bonds on the ring more susceptible to rupture. Superior electron injection may enable superior device performance without necessarily using a blocking layer, as described above with respect to low molecular dipole moment materials.
- “Stability” may be measured in a number of ways.
- One stability measurement is the operational stability of the electroluminescent device.
- the operational half-life is the time required for the luminance of the device to decay from the initial luminance (Lo) to 50% of its initial luminance (L 0.5 ) under constant direct current drive and at room temperature unless otherwise noted. Operational half-life depends upon luminance at which the device is operated, because a higher luminance generally corresponds to a faster decay in a particular device.
- Devices in accordance with embodiments of the present invention can advantageously have an operational half-life in excess of about 1000 hours at an initial luminance of about 100 to about 1000 cd/m 2 .
- the organic enhancement layer may comprise a material having a low molecular dipole moment, wherein a low molecular dipole moment means a molecular dipole moment of less than about 2.0 debyes, such that the device has an unmodified external quantum efficiency of at least about 3%; a highest unoccupied molecular orbital that is not more than 0.8 eV less than the highest unoccupied molecular orbital of the hole transporting material in the adjacent organic layer; and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m 2 .
- the organic enhancement layer may comprise a material having a highest unoccupied molecular orbital that is at least about 0.8 eV greater than the highest occupied molecular orbital of the hole transporting material in the adjacent first organic layer, such that the device has an unmodified external quantum efficiency of at least about 5% and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m 2 .
- the organic enhancement layer may comprise a material having a molecular dipole moment less than about 2.0 debyes, such that the device has an external quantum efficiency of at least about 5% at from about 100 to about 1000 cd/m 2 .
- the organic enhancement layer may be in direct contact with the cathode, or there may be a separate organic layer between the organic enhancement layer and the cathode. Other aromatic hydrocarbon materials may be used.
- the term “external quantum efficiency” refers to the percentage of charge carriers injected into a device that result in the emission of a photon from the device in the forward direction. A number of factors can affect the external quantum efficiency, including the “internal quantum efficiency,” which is the percentage of charge carriers injected into a device that result in the creation of a photon, and the “outcoupling efficiency,” which is the percentage of photons created that are emitted from a device towards a viewer. Many embodiments of the present invention are directed to an organic layer comprising an aromatic hydrocarbon layer that is in direct contact with an emissive layer, which may enhance the internal quantum efficiency and thus the external quantum efficiency of the device.
- unmodified external quantum efficiency refers to the external quantum efficiency of a device, after multiplication by a factor to account for any differences in the outcoupling efficiency of that device and the outcoupling efficiency of the devices described experimentally herein. For example, a device having an external quantum efficiency of 5%, but having an outcoupling efficiency 3 times better than the devices described herein, would have an “unmodified external quantum efficiency” of 1.33% (one third of 5%).
- a typical outcoupling efficiency for the types of devices described herein is about 20-30%.
- molecules with higher symmetry may show greater delocalization of the negative charge over the molecule.
- the enhanced delocalization of charge may increase the bulk conductivity, electron mobility and operational stability properties in a device.
- All devices were fabricated using thermal evaporation at a pressure of ⁇ 1 ⁇ 10 ⁇ 7 Torr.
- the devices were fabricated on a glass substrate precoated with a 120 nm thick anode of indium tin oxide (ITO), commercially available from Applied Films of Longmont, Colo.
- ITO indium tin oxide
- the cathode was 1 nm of LiF followed by 100 nm of aluminum.
- All devices were encapsulated with a glass lid sealed with an epoxy resin under nitrogen ( ⁇ 1 ppm H 2 O and O 2 ) immediately after fabrication, and a moisture getter was incorporated inside each device.
- Device lifetime is defined as the time required for the luminance to decrease from its initial value to 50% of the initial value, at room temperature under constant DC drive.
- the organic stack was fabricated to consist of CuPc as a hole injection layer at a thickness of 10 nm; NPD as a hole transport layer at a thickness of 30 nm; CBP doped with 6 wt % Ir(ppy) 3 as the emissive layer at a thickness of 30 nm.
- Adjacent to the emissive layer was an electron transport layer, ETL2, consisting of 10 nm of an aromatic hydrocarbon (Compounds I and II described above) or, for the comparative examples, a heterocyclic aromatic hydrocarbon.
- Adjacent to layer ETL2 was an electron transport layer consisting of Alq 3 at a thickness of 40 nm.
- 2,3,6,7,10,11-Hexabromotriphenylene was prepared according to the literature method (Breslow et al, Tetrahedron, 1982, 38, 863).
- Triphenylene (3.0 g, 13.2 mmol) was dissolved in 70 mL of nitrobenzene. 0.27 g of Fe powder was added.
- bromine (18.6 g, 120 mmol) in 20 mL of nitrobenzene was added via a dropping funnel. The mixture was stirred at room temperature for 12 hours and brought to reflux for 2 hours. After cooling, the solid was filtered, washed with ethanol and dried. 8.9 g (96%) of crude product was obtained. Recrystallization in boiling 1,2-dichlorobenzene ( ⁇ 180° C.) yielded the product as off-white needles (8.64 g, 94%). The product was confirmed by mass spectrometry.
- 2,3,6,7,10,11-hexabromotriphenylene (8.64 g, 12.3 mmol), phenylboronic acid (13.5 g, 111 mmol), triphenylphosphine (0.64 g, 2.46 mmol), Pd(OAc) 2 (0.14 g, 0.615 mmol), K 2 CO 3 (20.4 g, 147.6 mmol) were in 600 mL of xylenes and 50 mL of water. The mixture was purged with nitrogen for 5 minutes and slowly brought to reflux under nitrogen.
- TSBF was synthesized according to Wong, et. al. J. Am. Chem. Soc., 2002, 124, 11576-11577. The product was purified by vacuum sublimation.
- All devices were fabricated by high vacuum ( ⁇ 10 ⁇ 7 Torr) thermal evaporation.
- the anode electrode was ⁇ 1200 ⁇ of indium tin oxide (ITO).
- the cathode consisted of 10 ⁇ of LiF followed by 1,000 ⁇ of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box ( ⁇ 1 ppm of H 2 O and O 2 ) immediately after fabrication, and a moisture getter was incorporated inside the package.
- the current-voltage-luminance (IVL) characteristics were measured.
- the luminous efficiency and operational lifetime are summarized in the Table III.
- a typical display brightness level of 600 cd/m 2 is chosen for the comparison between different devices.
- the halflife (T 1/2 ) is defined as the time required for the Lo to drop to 50% of L 0 .
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy) 3 as the emissive layer (EML).
- the ETL2 was 100 ⁇ of HPT.
- the ETL1 was 400 ⁇ of tris(8-hydroxyquinolinato)aluminum (Alq 3 ).
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 6 wt % of Ir(5-Phppy) 3 as the emissive layer (EML).
- the ETL2 was 100 ⁇ of HPT.
- the ETL1 was 400 ⁇ of tris(8-hydroxyquinolinato)aluminum (Alq 3 ).
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of Ir(5-Phppy) 3 as the emissive layer (EML).
- the ETL2 was 100 ⁇ of HPT.
- the ETL1 was 400 ⁇ of tris(8-hydroxyquinolinato)aluminum (Alq 3 ).
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy) 3 as the emissive layer (EML).
- the ETL2 was 100 ⁇ of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq).
- BAlq aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate
- the ETL1 was 400 ⁇ of tris(8-hydroxyquinolinato)aluminum (Alq 3 ).
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of Ir(5-Phppy) 3 as the emissive layer (EML).
- the ETL2 was 400 ⁇ of HPT. There was no ETL1.
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 400 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of Ir(3′-Mepq) 2 (acac) as the emissive layer (EML).
- the ETL2 was 100 ⁇ of HPT.
- the ETL1 was 400 ⁇ of tris(8-hydroxyquinolinato)aluminum (Alq 3 ).
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 400 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of Ir(3′-Mepq) 2 (acac) as the emissive layer (EML).
- the ETL2 was 150 ⁇ of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq).
- BAlq aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate
- the ETL1 was 400 ⁇ of tris(8-hydroxyquinolinato)aluminum (Alq 3 ).
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy) 3 as the emissive layer (EML).
- the ETL2 was 400 ⁇ of TSBF. There was no ETL1.
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy) 3 as the emissive layer (EML).
- the ETL2 was 100 ⁇ of TSBF.
- the ETL1 was 300 ⁇ of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq).
- the organic stack consisted of 100 ⁇ thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 ⁇ of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD), as the hole transporting layer (HTL), 300 ⁇ of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy) 3 as the emissive layer (EML).
- the ETL2 was 100 ⁇ of TSBF.
- the ETL1 was 300 ⁇ of tris(8-hydroxyquinolinato)aluminum (Alq 3 ).
- FIG. 5 shows luminous efficiency vs. brightness for examples 8-10 and comparative example 11.
- FIG. 6 shows external quantum efficiency vs. current density for examples 8-10 and comparative example 11. Higher efficiencies are demonstrated by examples 8-10 which utilize HPT as the ETL2 compared to example 11 which utilizes BAlq as the ETL2.
- FIG. 7 shows the normalized electroluminescence spectra for examples 8-10 which utilize HPT as the ETL2. There is no change in the spectra upon varying the dopant concentration of Ir(5-Phppy) 3 in the EML from 4.5% to 12%.
- FIG. 8 shows the operational stability for examples 8-10 which utilize HPT as the ETL2 at room temperature under constant direct current of 40 mA/cm 2 and at initial luminance (L 0 ) of 955 nits.
- FIG. 10 shows the current-voltage characteristics for example 12. Higher voltage is required to operate compared to examples 8-10.
- FIG. 11 shows the luminous efficiency vs. brightness for example 12.
- FIG. 12 shows the external quantum efficiency vs. current density for example 12. Lower efficiencies are obtained compared to examples 8-10.
- FIG. 13 shows the current-voltage characteristics for examples 13 and comparative example 14. Lower voltage is required to operate example 13 which utilize HPT as the ETL2 compared to example 14 which utilizes BAlq as the ETL2.
- FIG. 14 shows luminous efficiency vs. brightness for example 13 and comparative example 14.
- FIG. 15 shows external quantum efficiency vs. current density for example 13 and comparative example 14. Higher efficiencies are demonstrated by example 13 which utilize HPT as the ETL2 compared to example 14 which utilizes BAlq as the ETL2.
- FIG. 16 shows the normalized electroluminescence spectra of example 13 which utilize HPT as the ETL2.
- FIG. 17 shows the operational stability of examples 13 which utilize HPT as the ETL2 at room temperature under constant direct current of 40 mA/cm 2 .
- FIG. 18 shows the current-voltage characteristics of examples 15-17. Lowest voltage is required to operate example 17 which utilizes TSBF as the ETL2 and Alq as the ETL1. Highest voltage is required to operate example 15 which utilize TSBF as the ETL2 and there is no ETL1.
- FIG. 19 shows luminous efficiency vs. brightness for examples 15-17.
- FIG. 20 shows external quantum efficiency vs. current density for examples 15-17. Similar efficiency is obtained in example 17 which utilizes TSBF as the ETL2 compared to example 11 which utilizes BAlq as the ETL2.
- FIG. 21 shows the normalized electroluminescence spectra of examples 15-17 which utilize TSBF as the ETL2.
- FIG. 22 shows the operational stability of examples 15-17 which utilizes TSBF as the ETL2 at room temperature under constant direct current of 40 mA/cm 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
A device is provided, having an anode, a cathode, and a first organic layer disposed between the anode and the cathode. The first organic layer comprises a material that produces phosphorescent emission when a voltage is applied between the anode and the cathode. A second organic layer is disposed between the first organic layer and the cathode. The second organic layer is in direct contact with the first organic layer. The second organic layer may comprise an aromatic hydrocarbon material, comprising an aromatic non-heterocyclic hydrocarbon core optionally substituted, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, substituted aryl, substituted heteroaryl and heterocyclic groups. The second organic layer may comprise a material having a molecular dipole moment less than about 2.0 debyes, such that the device has an unmodified external quantum efficiency of at least about 3% and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m2. The second organic layer may be in direct contact with the cathode, or there may be a separate organic layer between the second organic layer and the cathode.
Description
- This application is a continuation-in-part of U.S. application Ser. No. 10/626,579, filed Jul. 25, 2003, and which is incorporated by reference in its entirety.
- The present invention relates to efficient organic light emitting devices (OLEDs), and more specifically to phosphorescent aromatic organic non-heterocyclic hydrocarbon materials with improved stability and efficiency used in such devices.
- Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
- As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.
- OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.
- OLED devices are generally (but not always) intended to emit light through at least one of the electrodes, and one or more transparent electrodes may be useful in an organic opto-electronic device. For example, a transparent electrode material, such as indium tin oxide (ITO), may be used as the bottom electrode. A transparent top electrode, such as disclosed in U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, may also be used. For a device intended to emit light only through the bottom electrode, the top electrode does not need to be transparent, and may be comprised of a thick and reflective metal layer having a high electrical conductivity. Similarly, for a device intended to emit light only through the top electrode, the bottom electrode may be opaque and/or reflective. Where an electrode does not need to be transparent, using a thicker layer may provide better conductivity, and using a reflective electrode may increase the amount of light emitted through the other electrode, by reflecting light back towards the transparent electrode. Fully transparent devices may also be fabricated, where both electrodes are transparent. Side emitting OLEDs may also be fabricated, and one or both electrodes may be opaque or reflective in such devices.
- As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. For example, for a device having two electrodes, the bottom electrode is the electrode closest to the substrate, and is generally the first electrode fabricated. The bottom electrode has two surfaces, a bottom surface closest to the substrate, and a top surface further away from the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in physical contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.
- A device is provided, having an anode, a cathode, and a first organic layer disposed between the anode and the cathode. The first organic layer comprises a material that produces phosphorescent emission when a voltage is applied between the anode and the cathode. A second organic layer disposed between the first organic layer and the cathode is also provided. The second organic layer is in direct contact with the first organic layer. The second organic layer may comprise an aromatic non-heterocyclic hydrocarbon compound. Particularly suitable aromatic hydrocarbon materials include materials having the following structures:
Each aromatic ring may optionally be substituted. Particularly suitable aromatic non-heterocyclic hydrocarbon materials with substituted rings include materials having the following structures:
wherein: -
- R1—R10 each represent no substitution, mono-, di-, or tri- substitution, and wherein R1—R10 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, aryl, heteroalkyl and substituted aryl groups;
- R11—R13, R15—R18, R29—R45 each represents no substitution, mono-, di-, or tri- substitution, and wherein R11—R13, R15—R18, R29—R45 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl;
- R14, R19, and R20—R28 each represents no substitution, mono-, di-, or tri- or tetra- substitution and R14, R19, and R20—R28 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl, and
- substituent R of each hydrocarbon structure may be linked together to form cyclic substituents such as cycloalkyl or aromatic non-heterocyclic rings.
- The second organic layer may comprise a material having a molecular dipole moment less than about 2.0 debyes, such that the device has an unmodified external quantum efficiency of at least about 3%, and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m2. The second organic layer may be in direct contact with the cathode, or there may be a separate organic layer between the second organic layer and the cathode. Other aromatic hydrocarbon materials may be used.
-
FIG. 1 shows an organic light emitting device having separate electron transport, hole transport, and emissive layers, as well as other layers. -
FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer. -
FIG. 3 shows a device having an organic enhancement layer that is not in direct contact with the cathode. -
FIG. 4 shows current-voltage characteristics for examples 8-10 and comparative example 11. -
FIG. 5 shows luminous efficiency vs. brightness for examples 8-10 and comparative example 11. -
FIG. 6 shows external quantum efficiency vs. current density for examples 8-10 and comparative example 11. -
FIG. 7 shows normalized electroluminescence spectra for examples 8-10 using HPT as the ETL2. -
FIG. 8 operational stability for examples 8-10 using HPT as the ETL2 at room temperature under constant direct current of 40 mA/cm2 and at initial luminance (L0) of 955 nits. -
FIG. 9 shows the operational stability for examples 8-10 using HPT as the ETL2 at 60° C. under constant direct current at L0=955 cd/m2. -
FIG. 10 shows the current-voltage characteristics for example 12. -
FIG. 11 shows luminous efficiency vs. brightness for example 12. -
FIG. 12 and external quantum efficiency vs. current density for example 12. -
FIG. 13 shows the current-voltage characteristics for examples 13 and comparative example 14. -
FIG. 14 luminous efficiency vs. brightness for example 13 and comparative example 14. -
FIG. 15 external quantum efficiency vs. current density for example 13 and comparative example 14 using HPT as the ETL2. -
FIG. 16 shows the normalized electroluminescence spectra of example 13 using HPT as the ETL2. -
FIG. 17 shows operational stability for examples 13 using HPT as the ETL2 at room temperature under constant direct current of 40 mA/cm2. -
FIG. 18 shows the current-voltage characteristics for examples 15-17. -
FIG. 19 shows luminous efficiency vs. brightness for examples 15-17. -
FIG. 20 shows external quantum efficiency vs. current density for examples 15-17. -
FIG. 21 shows the normalized electroluminescence spectra for example 15-17 using TSBF as the ETL2. -
FIG. 22 shows the operational stability of examples 15-17 using TSBF as the ETL2 at room temperature under constant direct current of 40 mA/cm2. - Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.
- The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.
- More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), which are incorporated by reference in their entireties. Phosphorescence may be referred to as a “forbidden” transition because the transition requires a change in spin states, and quantum mechanics indicates that such a transition is not favored. As a result, phosphorescence generally occurs in a time frame exceeding at least 10 nanoseconds, and typically greater than 100 nanoseconds. If the natural radiative lifetime of phosphorescence is too long, triplets may decay by a non-radiative mechanism, such that no light is emitted. Organic phosphorescence is also often observed in molecules containing heteroatoms with unshared pairs of electrons at very low temperatures. 2,2′-bipyridine is such a molecule. Non-radiative decay mechanisms are typically temperature dependent, such that a material that exhibits phosphorescence at liquid nitrogen temperatures may not exhibit phosphorescence at room temperature. But, as demonstrated by Baldo, this problem may be addressed by selecting phosphorescent compounds that do phosphoresce at room temperature. Representative emissive layers include doped or un-doped phosphorescent organo-metallic materials such as disclosed in U.S. Pat. Nos. 6,303,238 and 6,310,360; U.S. patent application Publication Nos. 2002-0034656; 2002-0182441; amd 2003-0072964; and WO-02/074015.
- Generally, the excitons in an OLED are believed to be created in a ratio of about 3:1, i.e., approximately 75% triplets and 25% singlets. See, Adachi et al., “Nearly 100% Internal Phosphorescent Efficiency In An Organic Light Emitting Device,” J. Appl. Phys., 90, 5048 (2001), which is incorporated by reference in its entirety. In many cases, singlet excitons may readily transfer their energy to triplet excited states via “intersystem crossing,” whereas triplet excitons may not readily transfer their energy to singlet excited states. As a result, 100% internal quantum efficiency is theoretically possible with phosphorescent OLEDs. In a fluorescent device, the energy of triplet excitons is generally lost to radiationless decay processes that heat-up the device, resulting in much lower internal quantum efficiencies. OLEDs utilizing phosphorescent materials that emit from triplet excited states are disclosed, for example, in U.S. Pat. No. 6,303,238, which is incorporated by reference in its entirety.
- Phosphorescence may be preceded by a transition from a triplet excited state to an intermediate non-triplet state from which the emissive decay occurs. For example, organic molecules coordinated to lanthanide elements often phosphoresce from excited states localized on the lanthanide metal. However, such materials do not phosphoresce directly from a triplet excited state but instead emit from an atomic excited state centered on the lanthanide metal ion. The europium diketonate complexes illustrate one group of these types of species.
- Phosphorescence from triplets can be enhanced over fluorescence by confining, preferably through bonding, the organic molecule in close proximity to an atom of high atomic number. This phenomenon, called the heavy atom effect, is created by a mechanism known as spin-orbit coupling. Such a phosphorescent transition may be observed from an excited metal-to-ligand charge transfer (MLCT) state of an organometallic molecule such as tris(2-phenylpyridine)iridium(III).
-
FIG. 1 shows an organiclight emitting device 100. The figures are not necessarily drawn to scale.Device 100 may include asubstrate 110, ananode 115, ahole injection layer 120, ahole transport layer 125, anelectron blocking layer 130, anemissive layer 135, ahole blocking layer 140, anelectron transport layer 145, anelectron injection layer 150, aprotective layer 155, and acathode 160.Cathode 160 is a compound cathode having a firstconductive layer 162 and a secondconductive layer 164.Device 100 may be fabricated by depositing the layers described, in order. -
Substrate 110 may be any suitable substrate that provides desired structural properties.Substrate 110 may be flexible or rigid.Substrate 110 may be transparent, translucent or opaque. Plastic and glass are examples of preferred rigid substrate materials. Plastic and metal foils are examples of preferred flexible substrate materials.Substrate 110 may be a semiconductor material in order to facilitate the fabrication of circuitry. For example,substrate 110 may be a silicon wafer upon which circuits are fabricated, capable of controlling OLEDs subsequently deposited on the substrate. Other substrates may be used. The material and thickness ofsubstrate 110 may be chosen to obtain desired structural and optical properties. -
Anode 115 may be any suitable anode that is sufficiently conductive to transport holes to the organic layers. The material ofanode 115 preferably has a work function higher than about 4 eV (a “high work function material”). Preferred anode materials include conductive metal oxides, such as indium tin oxide (ITO) and indium zinc oxide (IZO), aluminum zinc oxide (AlZnO), and metals. Anode 115 (and substrate 110) may be sufficiently transparent to create a bottom-emitting device. A preferred transparent substrate and anode combination is commercially available ITO (anode) deposited on glass or plastic (substrate). A flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety.Anode 115 may be opaque and/or reflective. Areflective anode 115 may be preferred for some top-emitting devices, to increase the amount of light emitted from the top of the device. The material and thickness ofanode 115 may be chosen to obtain desired conductive and optical properties. Whereanode 115 is transparent, there may be a range of thickness for a particular material that is thick enough to provide the desired conductivity, yet thin enough to provide the desired degree of transparency. Other anode materials and structures may be used. -
Hole transport layer 125 may include a material capable of transporting holes.Hole transport layer 125 may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. α-NPD and TPD are examples of intrinsic hole transport layers. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. patent application Ser. No. 10/173,682 to Forrest et al., which is incorporated by reference in its entirety. Other hole transport layer materials and structures may be used. -
Emissive layer 135 may include an organic material capable of emitting light when a current is passed betweenanode 115 andcathode 160. Preferably,emissive layer 135 contains a phosphorescent emissive material, although fluorescent emissive materials may also be used. Phosphorescent materials are preferred because of the higher luminescent efficiencies associated with such materials.Emissive layer 135 may also comprise a host material capable of transporting electrons and/or holes, doped with an emissive material that may trap electrons, holes, and/or excitons, such that excitons relax from the emissive material via a photoemissive mechanism.Emissive layer 135 may comprise a single material that combines transport and emissive properties. Whether the emissive material is a dopant or a major constituent,emissive layer 135 may comprise other materials, such as dopants that tune the emission of the emissive material.Emissive layer 135 may include a plurality of emissive materials capable of, in combination, emitting a desired spectrum of light. Examples of phosphorescent emissive materials include Ir(ppy)3. Examples of fluorescent emissive materials include DCM and DMQA. Examples of host materials include Alq3, CBP and mCP. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. Emissive material may be included inemissive layer 135 in a number of ways. For example, an emissive small molecule may be incorporated into a polymer. Other emissive layer materials and structures may be used. -
Electron transport layer 140 may include a material capable of transporting electrons.Electron transport layer 140 may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Alq3 is an example of an intrinsic electron transport layer material. An example of an n-doped electron transport layer material is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. patent application Ser. No. 10/173,682 to Forrest et al., which is incorporated by reference in its entirety. Other electron transport layer materials and structures may be used. - The charge carrying component of the electron transport layer may be selected such that electrons can be efficiently injected from the cathode into the LUMO (Lowest Unoccupied Molecular Orbital) level of the electron transport layer. The “charge carrying component” is the material responsible for the LUMO that actually transports electrons. This component may be the base material, or it may be a dopant. The LUMO level of an organic material may be generally characterized by the electron affinity of that material while relative electron injection efficiency of a cathode may be generally characterized in terms of the work function of the cathode material. This means that the preferred properties of an electron transport layer and the adjacent cathode may be specified in terms of the electron affinity of the charge carrying component of the ETL and the work function of the cathode material. In particular, to achieve high electron injection efficiency, the work function of the cathode material is preferably not greater than the electron affinity of the charge carrying component of the electron transport layer by more than about 0.75 eV, more preferably, by not more than about 0.5 eV. Most preferably, the electron affinity of the charge carrying component of the electron transport layer is greater than the work function of the cathode material. Similar considerations apply to any layer into which electrons are being injected.
-
Cathode 160 may be any suitable material or combination of materials known to the art, such thatcathode 160 is capable of conducting electrons and injecting them into the organic layers ofdevice 100.Cathode 160 may be transparent or opaque, and may be reflective. Metals and metal oxides are examples of suitable cathode materials.Cathode 160 may be a single layer, or may have a compound structure.FIG. 1 shows acompound cathode 160 having athin metal layer 162 and a thicker conductivemetal oxide layer 164. In a compound cathode, preferred materials for thethicker layer 164 include ITO, IZO, and other materials known to the art. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The part ofcathode 160 that is in contact with the underlying organic layer, whether it is asingle layer cathode 160, thethin metal layer 162 of a compound cathode, or some other part, is preferably made of a material having a work function lower than about 4 eV (a “low work function material”). Other cathode materials and structures may be used. - Blocking layers may be used to reduce the number of charge carriers (electrons or holes) and/or excitons that leave the emissive layer. An
electron blocking layer 130 may be disposed betweenemissive layer 135 and thehole transport layer 125, to block electrons from leavingemissive layer 135 in the direction ofhole transport layer 125. Similarly, ahole blocking layer 140 may be disposed betweenemissive layer 135 andelectron transport layer 145, to block holes from leavingemissive layer 135 in the direction ofelectron transport layer 140. Blocking layers may also be used to block excitons from diffusing out of the emissive layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. patent application Ser. No. 10/173,682 to Forrest et al., which are incorporated by reference in their entireties. The conventional “blocking layer” is generally believed to reduce the number of charge carriers and/or excitons that leave the emissive layer by presenting an energy barrier that the charge carrier or exciton has difficulty surmounting. For example hole transport is generally thought to be related to the Highest Occupied Molecular Orbital (HOMO) of an organic semiconductor. A “hole blocking” material may therefore be generally considered as a material that has a HOMO energy level significantly less than that of the material from which the holes are being blocked. A first HOMO energy level is considered “less than” a second HOMO energy level if it is lower on a conventional energy level diagram, which means that the first HOMO energy level would have a value that is more negative than the second HOMO energy level. For example, Ir(ppy)3 has a HOMO energy level of −4.85 eV (data is based on the density function calculation using the B3LYP 6-31 G* basis set, Spartan 02 software package, with the pseudopetential option for materials containing heavy metals such as Ir(ppy)3).Boron 1 has a HOMO energy level of −6.49 eV, which is 1.64 eV less than that of Ir(Ppy)3, making it an excellent hole blocker. ZrQ4 has a HOMO energy level of −5.00, only 0.15 eV less than that of Ir(ppy)3, such that little or no hole blocking is expected. mer-GaQ3 has a HOMO energy level of −4.63 eV, which is greater than that of Ir(ppy)3, such that no hole blocking at all is expected. If the emissive layer includes different materials with different energy levels, the effectiveness of these various materials as hole blocking layers may be different, because it is the difference in HOMO energy levels between the blocking layer and the blocked layer that is significant, not the absolute HOMO energy level. But, the absolute HOMO level may be useful in determining whether a compound will be a good hole blocker for particular emissive layers. For example, a material having a HOMO energy level of about −5.15 eV or less may be considered a reasonable hole blocking material for Ir(ppy)3, which is a representative emissive material. Generally, a layer having a HOMO energy level that is at least 0.25 eV less than that of an adjacent layer may be considered as having some hole blocking properties. An energy level difference of at least 0.3 eV is preferred, and an energy level difference of at least 0.7 eV is more preferred. Similarly, the energy of an exciton is generally believed to be related to the band gap of a material. An “exciton blocking” material may generally be thought of as a material having a band gap significantly larger than the material from which excitons are being blocked. For example, a material having a band gap that is about 0.1 eV or more, larger than that of an adjacent material, may be considered a good exciton blocking material. - As used herein, the term “blocking layer” means that the layer provides a barrier that significantly inhibits transport of charge carriers and/or excitons through the device, without suggesting that the layer necessarily completely blocks the charge carriers and/or excitons. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED.
- Generally, injection layers are comprised of a material that may improve the injection of charge carriers from one layer, such as an electrode or an organic layer, into an adjacent organic layer. Injection layers may also perform a charge transport function. In
device 100, for example,hole injection layer 120 may be any layer comprising a material that improves the injection of holes fromanode 115 intohole transport layer 125. Exemplary materials include CuPc. Indevice 100,electron injection layer 150 may be any layer comprising a material that facilitates or enhances the injection of electrons intoelectron transport layer 145. Exemplary materials include LiF/Al. Other materials or combinations of materials may be used for injection layers. Depending upon the configuration of a particular device, injection layers may be disposed at locations different than those shown indevice 100. More examples of injection layers are provided in U.S. patent application Ser. No. 09/931,948 to Lu et al., which is incorporated by reference in its entirety. A hole injection layer may comprise a solution deposited material, such as a spin-coated polymer, e.g., PEDOT:PSS, or it may be a vapor deposited small molecule material, e.g., CuPc or MTDATA. - A hole injection layer (HIL) may planarize or wet the anode surface so as to provide efficient hole injection from the anode into the hole injecting material. A hole injection layer may also have a charge carrying component having HOMO (Highest Occupied Molecular Orbital) energy levels that favorably match up, as defined by their herein-described relative ionization potential (IP) energies, with the adjacent anode layer on one side of the HIL and the hole transporting layer on the opposite side of the HIL. The “charge carrying component” is the material responsible for the HOMO that actually transports holes. This component may be the base material of the HIL, or it may be a dopant. Using a doped HIL allows the dopant to be selected for its electrical properties, and the host to be selected for morphological properties such as wetting, flexibility, toughness, etc. Preferred properties for the HIL material are such that holes can be efficiently injected from the anode into the HIL material. In particular, the charge carrying component of the HIL preferably has an IP not more than about 0.7 eV greater that the IP of the anode material. More preferably, the charge carrying component has an IP not more than about 0.5 eV greater than the anode material. Similar considerations apply to any layer into which holes are being injected. HIL materials are distinguished from conventional hole transporting materials that are typically used in the hole transporting layer of an OLED in that such HIL materials may have a hole conductivity that is substantially less than the hole conductivity of conventional hole transporting materials. The thickness of the HIL of the present invention may be thick enough to help planarize or wet the surface of the anode layer. For example, an HIL thickness of as little as 10 nm may be acceptable for a very smooth anode surface. However, since anode surfaces tend to be very rough, a thickness for the HIL of up to 50 nm may be desired in some cases.
- A protective layer may be used to protect underlying layers during subsequent fabrication processes. For example, the processes used to fabricate metal or metal oxide top electrodes may damage organic layers, and a protective layer may be used to reduce or eliminate such damage. In
device 100,protective layer 155 may reduce damage to underlying organic layers during the fabrication ofcathode 160. Preferably, a protective layer has a high carrier mobility for the type of carrier that it transports (electrons in device 100), such that it does not significantly increase the operating voltage ofdevice 100. CuPc, BCP, and various metal phthalocyanines are examples of materials that may be used in protective layers. Other materials or combinations of materials may be used. The thickness ofprotective layer 155 is preferably thick enough that there is little or no damage to underlying layers due to fabrication processes that occur after organicprotective layer 160 is deposited, yet not so thick as to significantly increase the operating voltage ofdevice 100.Protective layer 155 may be doped to increase its conductivity. For example, a CuPc or BCPprotective layer 160 may be doped with Li. A more detailed description of protective layers may be found in U.S. patent application Ser. No. 09/931,948 to Lu et al., which is incorporated by reference in its entirety. -
FIG. 2 shows aninverted OLED 200. The device includes asubstrate 210, acathode 215, anemissive layer 220, ahole transport layer 225, and ananode 230.Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, anddevice 200 hascathode 215 disposed underanode 230,device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect todevice 100 may be used in the corresponding layers ofdevice 200.FIG. 2 provides one example of how some layers may be omitted from the structure ofdevice 100. - The simple layered structure illustrated in
FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, indevice 200,hole transport layer 225 transports holes and injects holes intoemissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect toFIGS. 1 and 2 . - Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190, Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in
FIGS. 1 and 2 . For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties. - Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application No. 10/233,470, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution.
- Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18° C. to 30° C., and more preferably at room temperature (20° -25° C.).
- The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.
- As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.
- In an embodiment of the invention, an organic enhancement layer is provided that is disposed between the cathode and the first organic emissive layer of an organic light emitting device. The organic enhancement layer is in direct contact with the emissive layer. In one embodiment, the organic enhancement layer may also be in direct contact with the cathode.
-
FIG. 3 shows adevice 300 having an organic enhancement layer that is not in direct contact with the cathode, because there is a separate electron transport layer.Device 300 includes asubstrate 310, ananode 315, ahole injection layer 320, ahole transport layer 325, an organicemissive layer 335, anorganic enhancement layer 340, anelectron transport layer 345, and acathode 360.Cathode 360 includes a firstconductive layer 362 and a secondconductive layer 364. Similarly named layers operate analogously tosubstrate 110,anode 115,hole injection layer 120,hole transport layer 125,emissive layer 135,electron transport layer 145, andcathode 160 ofFIG. 1 . - The
organic enhancement layer 340 may improve device performance. Theorganic enhancement layer 340 is not necessarily a hole blocking layer, and may have a HOMO energy level that is greater than that ofemissive layer 335, not more than 0.3 eV less than that ofemissive layer 335, or not more than 0.7 eV less than that ofemissive layer 335. Where the organic emissive layer includes multiple materials, such as a host and a dopant, the HOMO energy level of the emissive layer is considered to be that of the component that transports holes, which is generally the component having the highest HOMO energy level, provided that the component is present in an appreciable amount, for example about 3% or higher. For example, in a device having an emissive layer comprising CBP doped with Ir(ppy)3, the HOMO level of Ir(ppy)3, which is −4.85 eV, is the HOMO level relevant to charge transport, because it is higher than the HOMO level of CBP, −5.32 eV. Without being bound to any particular theory of how the invention works, it is believed that theorganic enhancement layer 340 improves device performance by improving electron injection intoemissive layer 335. Factors that may assist in achieving these properties include the use of a material inorganic enhancement layer 340 having a low molecular dipole moment. In some embodiments,organic enhancement layer 340 may act as a hole blocking layer, which may further enhance device performance, but this is not necessary. - In one embodiment of the invention, the organic enhancement layer may include an aromatic hydrocarbon material comprising an aromatic hydrocarbon core optionally substituted with any suitable substituent. The aromatic hydrocarbon core is an aromatic system containing no heterocyclic atoms in its rings. Suitable substituents are attached to the aromatic hydrocarbon core. Such suitable substituents may include elements other than hydrogen and carbon. Preferred substituents may be selected independently from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, substituted aryl groups. Other substituents include substituted heteroaryl and heterocyclic groups. In addition, two or more of the same or different aromatic cores may be linked together to form a new core, which may be optionally substituted by alkyl, alkenyl, alkynyl, aryl, heteroalkyl, substituted aryl, substituted heteroaryl, and substituted heterocyclic groups.
-
-
-
-
-
- In a preferred embodiment of the invention, the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure:
such that R1—R5 each represent no substitution, mono-, di-, or tri- substitution, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl. - In another preferred embodiment of the invention, the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure:
such that R6—R10 each represent no substitution, mono-, di-, or tri- substitution, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl - In another preferred embodiment of the invention, the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure:
such that R11—R13 each represents no substitution, mono-, di-, or tri- substitution, and wherein R11—R13 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl; - In another preferred embodiment of the invention, the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structure:
such that R14, R19, and R20—R25 each represents no substitution, mono-, di-, or tri- or tetra- substitution, and R15—R18 each represent no substitution, mono-, di-, tri- substitution, and R14—R25 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl. - In other embodiments of the invention, the organic enhancement layer may include an aromatic non-heterocyclic hydrocarbon having the following structures:
such that R26—R28 each represents no substitution, mono-, di-, or tri- or tetra- substitution, and R29—R45 each represent no substitution, mono-, di-, tri- substitution, and R26—R45 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl. - In other embodiments, the organic enhancement layer may include an aromatic hydrocarbon material having the following structures:
wherein R1—R10 each represent no substitution, mono-, di-, or tri- substitution, R11—R13, R15—R18, each represents no substitution, mono-, di-, or tri- substitution, and R14, R19, and R20—R25 each represents no substitution, mono-, di-, or tri- or tetra- substitution, and -
- and wherein R11—R25 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, aryl, heteroalkyl, substituted aryl, substituted heteroaryl and heterocyclic groups.
- In another embodiment of the invention, the organic enhancement layer may include an aromatic hydrocarbon material having a core comprising at least 3 phenyl rings, wherein each phenyl ring in the core is fused or attached by a single C—C bond to at least one other phenyl ring in the core, and wherein the core is contiguous. In a contiguous core, each phenyl ring in the core is connected to every other phenyl ring in the core either directly, or by a chain of phenyl rings that are either fused or attached by a single C—C bond. Examples of ways that phenyl rings may be attached to other phenyl rings in a contiguous core are provided below:
- In another embodiment, the organic enhancement layer may include an aromatic hydrocarbon material having a core comprising at least 6 phenyl rings, wherein each phenyl ring in the core is fused or attached by a single C—C bond to at least one other phenyl ring in the core, and wherein the core is contiguous.
- In another embodiment, a “core” may be defined as a group of least three phenyl rings, where each phenyl ring is π-conjugated to every other phenyl ring in the group. In this embodiment, a broader range of connections may be used between the phenyl rings, such as a chain of unsaturated carbon bonds.
- In a typical phosphorescent device, it is believed that excitons are formed when electrons and holes meet and recombine in the emissive layer. It is also believed that this recombination generally occurs very close to where the electrons are injected into the emissive region. There are several possible reasons for this phenomenon. First, phosphorescent emissive materials may have superior hole transport properties, such that a phosphorescent emissive layer has a higher hole mobility than electron mobility, and holes are quickly transported across the emissive layer, as compared to electrons, which are more slowly transported. Second, holes may be injected into the emissive layer more readily than electrons. “Hole blocking” layers may be used to prevent holes from leaving the emissive layer. Some degree of hole blocking may occur where the hole blocking layer has a HOMO energy level lower than that of the adjacent layer, usually an emissive layer, from which holes are being blocked. Effective hole blocking layers generally have a HOMO energy level significantly lower than that of the adjacent layer, such as 0.25 eV lower, preferably 0.3 eV lower or more preferably 0.7 eV lower. The following table lists density function calculations (DFT) performed using the Spartan 02 software package with B31LYP/CEP-31G* basis set, with the pseudopotential option for materials containing heavy metals such as Ir(ppy)3 or the Gaussian 98 software package with the B31LYP/CEP-31G* basis set where indicated by the symbol “#”.
TABLE I DFT Compound HOMO (eV) LUMO (eV) Dipole (D) I −5.66 −1.01 0.24 II −5.66 −1.05 0.13 HPT −5.54 −1.29 0.01 TSBF −5.21 −1.37 0.28 CBP −5.32 −1.23 0.00 fac-Ir(ppy)3 −4.85 −1.21 6.14 fac-Ir(ppy)3# −4.93 −1.43 6.53 fac-Ir(5-Phppy)3# −4.96 −1.56 7.49 TPBi −5.70 −1.25 5.63 BCP −5.87 −1.17 2.89 - Without necessarily being limited as to any particular theory as to how the invention works, it is believed that the organic enhancement layer may allow for efficient injection of electrons into the emissive layer. Instead of or in addition to “blocking” holes which then wait for electrons to trickle into the emissive layer, the organic enhancement layer may result in a flood of electrons that recombine with holes before they can reach the edge of the emissive layer. Superior electron injection properties may result from one of several properties of the organic enhancement layer material or materials.
- In a preferred embodiment, the organic enhancement layer acts as both a hole blocking layer and provides superior electron injection. For example, compounds I and II have a HOMO that is 0.81 eV less than the HOMO of Ir(ppy)3, a desirable phosphorescent emissive material. In a device where Ir(ppy)3 is both the emissive material and provides the hole transport function in the emissive layer, for example, an organic enhancement layer of compound I or II may block holes due to the large HOMO level difference of 0.81 eV, and may also provide superior electron injection. Depending upon the hole transport properties of the emissive layer, other HOMO energy level differences may be utilized in accordance with embodiments of the invention to achieve both hole blocking and superior electron injection.
- In one embodiment, the use of an organic enhancement layer including an aromatic hydrocarbon material having a low molecular dipole moment may result in superior device performance. Without intending to limit all embodiments with a particular theory of how the invention works, it is believed that a low molecular dipole moment may improve electron injection from the organic layer into the emissive layer, because the presence of a significant molecular dipole moment may lead to a local electric field that can trap or slow down charge migration. As a result, the material may inject electrons into the emissive layer rapidly enough that a significant proportion of holes in the organic emissive layer encounter an electron and recombine before reaching the interface between the organic enhancement layer and the emissive layer. In some embodiments of the invention, the second organic layer does not have energetics suitable for hole blocking, because hole blocking may not be needed due to superior electron injection. The organic enhancement layer may have a HOMO energy level that is not generally considered effective as a hole blocking layer. For example, the HOMO energy level of the second organic layer may be greater than that of the emissive layer, in which case no hole blocking at all would be expected. By way of further example, the HOMO energy level of the organic enhancement layer may be less than that of the emissive layer, but the difference may be so small that significant hole blocking is not expected. For example, the difference in energy levels may be less than about 0.25 eV, about 0.3 eV, or about 0.7 eV.
- In one embodiment, it is believed that the use of an organic enhancement layer including an aromatic hydrocarbon having a zero or low molecular dipole moment may result in superior device performance. Without intending to limit all embodiments with a particular theory of how the invention works, it is believed that this symmetric energy structure may improve electron injection from the organic enhancement layer into the emissive layer because the symmetry in the HOMO and LUMO of the aromatic hydrocarbon molecules may lead to reduce dipole induced charge trap sites, thus better charge hopping between the molecules as compared to heterocyclic analogs which may have localized electron density associated with heterocyclic systems. In addition, it is also believed that the lack of heteroatoms and delocalized electron density in the core structures of the aromatic hydrocarbons of the present invention lead to a better delocalization and stabilization when the aromatic hydrocarbon is oxidized (cation radical) or reduced (anion radical). This results in a lower susceptibility to bond breaking in the aromatic hydrocarbons, and thus higher stability in devices incorporating these materials compared to heterocyclic aromatics. Further, the lack of polar substituents such as halogen (I, Br, Cl, and F), and CN on the aromatic hydrocarbon may serve the same purpose since polar groups tend to perturb the electron density distribution on the aromatic ring, making the bonds on the ring more susceptible to rupture. Superior electron injection may enable superior device performance without necessarily using a blocking layer, as described above with respect to low molecular dipole moment materials.
- “Stability” may be measured in a number of ways. One stability measurement is the operational stability of the electroluminescent device. The operational half-life is the time required for the luminance of the device to decay from the initial luminance (Lo) to 50% of its initial luminance (L0.5) under constant direct current drive and at room temperature unless otherwise noted. Operational half-life depends upon luminance at which the device is operated, because a higher luminance generally corresponds to a faster decay in a particular device. Devices in accordance with embodiments of the present invention can advantageously have an operational half-life in excess of about 1000 hours at an initial luminance of about 100 to about 1000 cd/m2.
- In another embodiment, the organic enhancement layer may comprise a material having a low molecular dipole moment, wherein a low molecular dipole moment means a molecular dipole moment of less than about 2.0 debyes, such that the device has an unmodified external quantum efficiency of at least about 3%; a highest unoccupied molecular orbital that is not more than 0.8 eV less than the highest unoccupied molecular orbital of the hole transporting material in the adjacent organic layer; and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m2. In another embodiment, the organic enhancement layer may comprise a material having a highest unoccupied molecular orbital that is at least about 0.8 eV greater than the highest occupied molecular orbital of the hole transporting material in the adjacent first organic layer, such that the device has an unmodified external quantum efficiency of at least about 5% and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m2. In yet another embodiment, the organic enhancement layer may comprise a material having a molecular dipole moment less than about 2.0 debyes, such that the device has an external quantum efficiency of at least about 5% at from about 100 to about 1000 cd/m2. The organic enhancement layer may be in direct contact with the cathode, or there may be a separate organic layer between the organic enhancement layer and the cathode. Other aromatic hydrocarbon materials may be used.
- As used herein, the term “external quantum efficiency” refers to the percentage of charge carriers injected into a device that result in the emission of a photon from the device in the forward direction. A number of factors can affect the external quantum efficiency, including the “internal quantum efficiency,” which is the percentage of charge carriers injected into a device that result in the creation of a photon, and the “outcoupling efficiency,” which is the percentage of photons created that are emitted from a device towards a viewer. Many embodiments of the present invention are directed to an organic layer comprising an aromatic hydrocarbon layer that is in direct contact with an emissive layer, which may enhance the internal quantum efficiency and thus the external quantum efficiency of the device. Because external quantum efficiency is more readily and directly measured than internal quantum efficiency, it may be desirable to describe certain aspects of the invention with respect to external quantum efficiency. But, in order to determine whether an enhanced external quantum efficiency is due to the use of an aromatic hydrocarbon, it is preferable to account for other factors that affect external quantum efficiency. The term “unmodified external quantum efficiency” as used herein refers to the external quantum efficiency of a device, after multiplication by a factor to account for any differences in the outcoupling efficiency of that device and the outcoupling efficiency of the devices described experimentally herein. For example, a device having an external quantum efficiency of 5%, but having an outcoupling efficiency 3 times better than the devices described herein, would have an “unmodified external quantum efficiency” of 1.33% (one third of 5%). A typical outcoupling efficiency for the types of devices described herein is about 20-30%. There are device structures having better outcoupling efficiencies than the devices described herein, and it is anticipated that improvements to outcoupling efficiency will be made over time. Such improvements would enhance external quantum efficiency, but should not affect “unmodified” external quantum efficiency, and devices having such improvements may fall within the scope of the present invention.
- As electrons are expected to reside primarily on the LUMO, molecules with higher symmetry may show greater delocalization of the negative charge over the molecule. The enhanced delocalization of charge may increase the bulk conductivity, electron mobility and operational stability properties in a device.
- It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. It is understood that various theories as to why the invention works are not intended to be limiting. For example, theories relating to charge transfer are not intended to be limiting. While many embodiments of the invention allow for superior device performance in the absence of hole blocking, it is understood that some embodiments of the invention may be combined with hole blocking.
- Material Definitions:
- As used herein, abbreviations refer to materials as follows:
- CBP: 4,4′-N,N-dicarbazole-biphenyl
- m-
MTDATA - Alq3: aluminum(III) tris(8-hydroxyquinolate)
- Bphen: 4,7-diphenyl-1,10-phenanthroline
- n-BPhen: n-doped BPhen (doped with lithium)
- F4-TCNQ: tetrafluoro-tetracyano-quinodimethane
- p-MTDATA: p-doped m-MTDATA (doped with F4-TCNQ)
- Ir(pPY)3: tris(2-phenylpyridine)-iridium
- Ir(ppz)3: tris(1-phenylpyrazoloto,N,C(2′)iridium(III)
- BCP: 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
- TAZ: 3-phenyl-4-(1′-naphthyl)-5-phenyl-1,2,4-triazole
- CuPc: copper phthalocyanine.
- ITO: indium tin oxide
- NPD: N,N′-diphenyl-N-N′-di(1-naphthyl)-benzidine
- TPD: N,N′-diphenyl-N,N′-di(3-toly)-benzidine
- BAlq: aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate
- mCP: 1,3-N,N-dicarbazole-benzene
- DCM: 4-(dicyanoethylene)-6-(4-dimethylaminostyryl-2-methyl)-4H-pyran
- DMQA: N,N′-dimethylquinacridone
- PEDOT:PSS: an aqueous dispersion of poly(3,4-ethylenedioxythiophene) with polystyrenesulfonate (PSS)
- ZrQ4: zirconium(IV) tetrakis(8-hydroxyquinolate)
- HfQ4: hafnium(IV) tetrakis(8-hydroxyquinolate)
- GaQ3: gallium(III) tris(8-hydroxyquinolate)
- PBD: 2-(4-biphenylyl)-5-phenyl-1,3,4-oxidiazole
- TPBi: 2,2′,2″-(1,3,5-benzenetriyl)tris-(1-phenyl-1H-benzimidazole)
- Boron 1: 1,4-Bis(diphenylboronyl)benzene
- Boron 2: Tris(2,3,5,6-tetramethylphenyl)borane
- HPT: 2,3,6,7,10,11-hexaphenyltriphenylene
- TSBF: ter-2,7-spirobifluorene
- Ir(5-Phppy)3: tris[5-phenyl(2-phenylpyridine)]iridium(III)
- Ir(3′-Mepq)2(acac) bis[3′-methyl(2-phenylquinoline)]iridium(III) acetylacetonate
- Specific representative embodiments of the invention will now be described, including how such embodiments may be made. It is understood that the specific methods, materials, conditions, process parameters, apparatus and the like do not necessarily limit the scope of the invention.
-
Step 1 - 4-Biphenylacetic acid (25.0 g, 0.1177 mol.) and sodium hydroxide (4.71 g, 0.1177 mol.) were dissolved in 50 mL of water and stirred at room temperature for 2 hours. The product was isolated by evaporating off the water.
-
Step 2 - Sodium 4-biphenylacetate (25.0 g, 0.106 mol.) was placed in a suspension of 2,4,6-triphenylpyrylium tetrafluoroborate (41.0 g, 0.106 mol.) in 80 mL of acetic anhydride under nitrogen atmosphere and refluxed for 24 hours. The crude product was extracted with a 7:3 ratio mixture of hexane/dichloromethane. The solvent was stripped, and the crude product sublimed 4 times to achieve 99% purity. The practical yield following sublimations was 20%.
- Experimental Device Fabrication
- All devices were fabricated using thermal evaporation at a pressure of <1×10−7 Torr. The devices were fabricated on a glass substrate precoated with a 120 nm thick anode of indium tin oxide (ITO), commercially available from Applied Films of Longmont, Colo. The cathode was 1 nm of LiF followed by 100 nm of aluminum. All devices were encapsulated with a glass lid sealed with an epoxy resin under nitrogen (<1 ppm H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside each device. Device lifetime is defined as the time required for the luminance to decrease from its initial value to 50% of the initial value, at room temperature under constant DC drive.
- Current-voltage-luminance characteristics and operational lifetime were measured and are summarized in Table II, below. A typical display brightness level of 600 cd/m2 for green emitting devices was chosen for purposes of comparison between devices.
- The organic stack was fabricated to consist of CuPc as a hole injection layer at a thickness of 10 nm; NPD as a hole transport layer at a thickness of 30 nm; CBP doped with 6 wt % Ir(ppy)3 as the emissive layer at a thickness of 30 nm. Adjacent to the emissive layer was an electron transport layer, ETL2, consisting of 10 nm of an aromatic hydrocarbon (Compounds I and II described above) or, for the comparative examples, a heterocyclic aromatic hydrocarbon. Adjacent to layer ETL2 was an electron transport layer consisting of Alq3 at a thickness of 40 nm.
TABLE II Efficiency % luminance retained (cd/A, %) at at 100 hours at initial Example ETL2 material 600 cd/m2 luminance of 600 cd/ m 22 Compound I 21, 6.0 95 3 Compound II 29, 8.2 90 4 TPBi 22, 6.1 75 5 BCP 35, 9.7 85
Additional testing of the device of example 3 yielded a retention of 70% of the initial luminance at 650 hours (initial luminance was 600 cd/m2). -
Step 1 - 2,3,6,7,10,11-Hexabromotriphenylene was prepared according to the literature method (Breslow et al, Tetrahedron, 1982, 38, 863). Triphenylene (3.0 g, 13.2 mmol) was dissolved in 70 mL of nitrobenzene. 0.27 g of Fe powder was added. To this mixture, bromine (18.6 g, 120 mmol) in 20 mL of nitrobenzene was added via a dropping funnel. The mixture was stirred at room temperature for 12 hours and brought to reflux for 2 hours. After cooling, the solid was filtered, washed with ethanol and dried. 8.9 g (96%) of crude product was obtained. Recrystallization in boiling 1,2-dichlorobenzene (˜180° C.) yielded the product as off-white needles (8.64 g, 94%). The product was confirmed by mass spectrometry.
-
Step 2 - 2,3,6,7,10,11-hexabromotriphenylene (8.64 g, 12.3 mmol), phenylboronic acid (13.5 g, 111 mmol), triphenylphosphine (0.64 g, 2.46 mmol), Pd(OAc)2 (0.14 g, 0.615 mmol), K2CO3 (20.4 g, 147.6 mmol) were in 600 mL of xylenes and 50 mL of water. The mixture was purged with nitrogen for 5 minutes and slowly brought to reflux under nitrogen. TLC (CH2Cl2:hexane ˜1:2 v/v, the starting hexabromo compound did not move) showed the appearance of a new spot (xylenes also showed up on the TLC but it eluted up faster than the product) within hours. The mixture was refluxed for 12 hours. After cooling, the solid was filtered, washed with ethanol and dried. The crude yield was higher than 90%. Recrystallization in xylenes (˜100 mL per 3-4 g of product) yield white crystals. Vacuum sublimation yielded the product (˜4.5 g) which was confirmed by NMR and mass spectrometry.
- TSBF was synthesized according to Wong, et. al. J. Am. Chem. Soc., 2002, 124, 11576-11577. The product was purified by vacuum sublimation.
- Device Fabrication and Measurement
- All devices were fabricated by high vacuum (<10−7 Torr) thermal evaporation. The anode electrode was ˜1200 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiF followed by 1,000 Å of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package.
- The current-voltage-luminance (IVL) characteristics were measured. The luminous efficiency and operational lifetime are summarized in the Table III. A typical display brightness level of 600 cd/m2 is chosen for the comparison between different devices. Device operational stability was measured at room temperature under constant direct current of 40 mA/cm2 or at initial luminance (L0) of 955 nits; or at 60° C. under constant direct current at L0=955 cd/m2. The halflife (T1/2) is defined as the time required for the Lo to drop to 50% of L0.
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy)3 as the emissive layer (EML). The ETL2 was 100 Å of HPT. The ETL1 was 400 Å of tris(8-hydroxyquinolinato)aluminum (Alq3).
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl(α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 6 wt % of Ir(5-Phppy)3 as the emissive layer (EML). The ETL2 was 100 Å of HPT. The ETL1 was 400 Å of tris(8-hydroxyquinolinato)aluminum (Alq3).
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of Ir(5-Phppy)3 as the emissive layer (EML). The ETL2 was 100 Å of HPT. The ETL1 was 400 Å of tris(8-hydroxyquinolinato)aluminum (Alq3).
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy)3 as the emissive layer (EML). The ETL2 was 100 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq). The ETL1 was 400 Å of tris(8-hydroxyquinolinato)aluminum (Alq3).
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of Ir(5-Phppy)3 as the emissive layer (EML). The ETL2 was 400 Å of HPT. There was no ETL1.
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 400 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of Ir(3′-Mepq)2(acac) as the emissive layer (EML). The ETL2 was 100 Å of HPT. The ETL1 was 400 Å of tris(8-hydroxyquinolinato)aluminum (Alq3).
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 400 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of Ir(3′-Mepq)2(acac) as the emissive layer (EML). The ETL2 was 150 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq). The ETL1 was 400 Å of tris(8-hydroxyquinolinato)aluminum (Alq3).
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy)3 as the emissive layer (EML). The ETL2 was 400 Å of TSBF. There was no ETL1.
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy)3 as the emissive layer (EML). The ETL2 was 100 Å of TSBF. The ETL1 was 300 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq).
- The organic stack consisted of 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD), as the hole transporting layer (HTL), 300 Å of 4,4′-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5-Phppy)3 as the emissive layer (EML). The ETL2 was 100 Å of TSBF. The ETL1 was 300 Å of tris(8-hydroxyquinolinato)aluminum (Alq3).
TABLE III Luminous ETL2 ETL1 Efficiency (cd/A) T1/2 (hour) at Example Material Material at 600 cd/m2 J = 40 mA/ cm 28 HPT Alq 37.4 350 9 HPT Alq 40.3 377 10 HPT Alq 43.4 234 Comparative 11BAlq Alq 28.1 350 12 HPT none 18.3 not tested 13 HPT Alq 14.3 100 Comparative 14BAlq Alq 13.6 250 15 TSBF none 18.2 14 16 TSBF BAlq 16.7 300 17 TSBF Alq 26.7 140 -
FIG. 5 shows luminous efficiency vs. brightness for examples 8-10 and comparative example 11.FIG. 6 shows external quantum efficiency vs. current density for examples 8-10 and comparative example 11. Higher efficiencies are demonstrated by examples 8-10 which utilize HPT as the ETL2 compared to example 11 which utilizes BAlq as the ETL2. -
FIG. 7 shows the normalized electroluminescence spectra for examples 8-10 which utilize HPT as the ETL2. There is no change in the spectra upon varying the dopant concentration of Ir(5-Phppy)3 in the EML from 4.5% to 12%. -
FIG. 8 shows the operational stability for examples 8-10 which utilize HPT as the ETL2 at room temperature under constant direct current of 40 mA/cm2 and at initial luminance (L0) of 955 nits. -
FIG. 9 shows the operational stability for examples 8-10 which utilize HPT as the ETL2 at 60° C. under constant direct current at L0=955 cd/m2. -
FIG. 10 shows the current-voltage characteristics for example 12. Higher voltage is required to operate compared to examples 8-10. -
FIG. 11 shows the luminous efficiency vs. brightness for example 12.FIG. 12 shows the external quantum efficiency vs. current density for example 12. Lower efficiencies are obtained compared to examples 8-10. -
FIG. 13 shows the current-voltage characteristics for examples 13 and comparative example 14. Lower voltage is required to operate example 13 which utilize HPT as the ETL2 compared to example 14 which utilizes BAlq as the ETL2. -
FIG. 14 shows luminous efficiency vs. brightness for example 13 and comparative example 14.FIG. 15 shows external quantum efficiency vs. current density for example 13 and comparative example 14. Higher efficiencies are demonstrated by example 13 which utilize HPT as the ETL2 compared to example 14 which utilizes BAlq as the ETL2. -
FIG. 16 shows the normalized electroluminescence spectra of example 13 which utilize HPT as the ETL2. -
FIG. 17 shows the operational stability of examples 13 which utilize HPT as the ETL2 at room temperature under constant direct current of 40 mA/cm2. -
FIG. 18 shows the current-voltage characteristics of examples 15-17. Lowest voltage is required to operate example 17 which utilizes TSBF as the ETL2 and Alq as the ETL1. Highest voltage is required to operate example 15 which utilize TSBF as the ETL2 and there is no ETL1. -
FIG. 19 shows luminous efficiency vs. brightness for examples 15-17.FIG. 20 shows external quantum efficiency vs. current density for examples 15-17. Similar efficiency is obtained in example 17 which utilizes TSBF as the ETL2 compared to example 11 which utilizes BAlq as the ETL2. -
FIG. 21 shows the normalized electroluminescence spectra of examples 15-17 which utilize TSBF as the ETL2. -
FIG. 22 shows the operational stability of examples 15-17 which utilizes TSBF as the ETL2 at room temperature under constant direct current of 40 mA/cm2. - While the present invention is described with respect to particular examples and preferred embodiments, it is understood that the present invention is not limited to these examples and embodiments. The present invention as claimed therefore includes variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art.
Claims (53)
1. A device, comprising:
an anode;
a cathode;
a first organic layer disposed between the anode and the cathode, wherein the first organic layer comprises a material that produces phosphorescent emission when a voltage is applied between the anode and the cathode; and
a second organic layer disposed between the first organic layer and the cathode, wherein the second organic layer is in direct contact with the first organic layer, and wherein the second organic layer comprises an aromatic non-heterocyclic hydrocarbon material.
2. The device of claim 1 , wherein the aromatic hydrocarbon material has a molecular dipole moment of less than about 2.0 debyes.
3. The device of claim 2 , wherein the aromatic hydrocarbon material has a molecular dipole moment of zero.
4. The device of claim 1 , wherein the aromatic hydrocarbon material comprises a material having the structure:
wherein:
R1—R5 each represent no substitution, mono-, di-, or tri- substitution, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl.
6. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure:
wherein:
R6—R10 each represent no substitution, mono-, di-, or tri- substitution, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl.
8. The device of claim 1 , wherein the second organic layer is in direct contact with the cathode.
9. The device of claim 1 , further comprising a third organic layer disposed between the second organic layer and the cathode.
10. The device of claim 1 , wherein the aromatic hydrocarbon material has a highest occupied molecular orbital that is not more than 0.81 eV less than the highest occupied molecular orbital of the hole transporting material in the first organic layer.
11. The device of claim 10 , wherein the aromatic hydrocarbon material has a molecular dipole moment less than about 2.0 debyes.
12. A device, comprising:
an anode;
a cathode;
an first organic layer disposed between the anode and the cathode, wherein the first organic layer comprises a material that produces phosphorescent emission when a voltage is applied between the anode and the cathode;
a second organic layer disposed between the first organic layer and the cathode, wherein the second organic layer is in direct contact with the first organic layer, and wherein the second organic layer comprises an aromatic non-heterocyclic hydrocarbon material having a highest occupied molecular orbital that is at least 0.81 eV less than the highest occupied molecular orbital of the hole transporting material in the first organic layer.
13. The device of claim 12 , wherein the aromatic hydrocarbon material has a molecular dipole moment less than about 2.0 debyes.
14. A device, comprising:
an anode;
a cathode;
an first organic layer disposed between the anode and the cathode, wherein the first organic layer is comprises a material that produces phosphorescent emission when a voltage is applied between the anode and the cathode;
a second organic layer disposed between the first organic layer and the cathode, wherein the second organic layer is in direct contact with the first organic layer, and wherein the second organic layer comprises an aromatic non-heterocyclic hydrocarbon material, and wherein the device has an unmodified external quantum efficiency of at least about 3% and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m2.
15. The device of claim 14 , wherein the device has an unmodified external quantum efficiency of at least about 5% and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m2.
16. The device of claim 14 , wherein the aromatic hydrocarbon material has a molecular dipole moment less than about 2.0 debyes.
17. The device of claim 14 , wherein the aromatic hydrocarbon material has a zero molecular dipole moment.
18. The device of claim 14 , wherein the aromatic hydrocarbon material has the structure:
wherein:
R1—R5 each represent no substitution, mono-, di-, or tri- substitution, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl.
20. The device of claim 14 , wherein after 100 hours of operation at an initial luminance of 600 cd/m2 at least about 90% of initial luminance is retained.
21. The device of claim 14 , wherein after 1000 hours of operation at an initial luminance of 1000 cd/m2 at least about 70% of initial luminance is retained.
22. The device of claim 14 , wherein the aromatic hydrocarbon material has the structure:
wherein:
R6—R10 each represent no substitution, mono-, di-, or tri- substitution, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl.
24. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure:
wherein:
R11—R13 each represents no substitution, mono-, di-, or tri- substitution, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, and substituted aryl.
25. The device of claim 24 , wherein R11, R12, and R13 are each phenyl.
28. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure:
wherein:
R14, R19, and R20—R25 each represents no substitution, mono-, di-, or tri- or tetra- substitution, and R15—R18 each represent no substitution, mono-, di-, tri- substitution, and
each R substituent is the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl.
30. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure:
wherein
R26 represents no substitution, mono-, di-, tri-, or tetra substitution, and wherein each R is the same or different substituent, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl, and
each R may be linked together to form cyclic substituents such as cycloalkyl or aromatic non-heterocyclic rings.
32. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure
wherein
R27 and R28 each represents no substitution, mono-, di-, tri-, or tetra substitution, and wherein R27 and R28 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl, and
each R may be linked together to form cyclic substituents such as cycloalkyl or aromatic non-heterocyclic rings.
34. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure
wherein
R29—R31 each represents no substitution, mono-, di-, or tri- substitution, and wherein R29—R31 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl, and
each R may be linked together to form cyclic substituents such as cycloalkyl or aromatic non-heterocyclic rings.
36. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure
wherein
R32—R34 each represents no substitution, mono-, di-, or tri- substitution, and wherein R32—R34 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl, and
each R may be linked together to form cyclic substituents such as cycloalkyl or aromatic non-heterocyclic rings.
38. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure
wherein
R35—R37 each represents no substitution, mono-, di-, or tri- substitution, and wherein R35—R37 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl, and
each R may be linked together to form cyclic substituents such as cycloalkyl or aromatic non-heterocyclic rings.
40. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure
wherein
R38—R41 each represents no substitution, mono-, di-, or tri- substitution, and wherein R38—R41 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl, and
each R may be linked together to form cyclic substituents such as cycloalkyl or aromatic non-heterocyclic rings.
42. The device of claim 1 , wherein the aromatic hydrocarbon material has the structure
wherein
R42—R45 each represents no substitution, mono-, di-, or tri- substitution, and wherein R42—R45 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl and substituted aryl, and
each R may be linked together to form cyclic substituents such as cycloalkyl or aromatic non-heterocyclic rings.
44. The device of claim 1 , wherein the second organic layer is in direct contact with the cathode.
45. A device, comprising:
an anode;
a cathode;
a first organic layer disposed between the anode and the cathode, wherein the first organic layer comprises a material that produces phosphorescent emission when a voltage is applied between the anode and the cathode; and
a second organic layer disposed between the first organic layer and the cathode, wherein the second organic layer is in direct contact with the first organic layer, and wherein the second organic layer comprises aromatic material selected from the group consisting of:
wherein:
R1—R10 each represent no substitution, mono-, di-, or tri- substitution, R11—R13, R15—R18, each represents no substitution, mono-, di-, or tri- substitution, and R14, R19, and R20—R25 each represents no substitution, mono-, di-, or tri- or tetra- substitution, and
and wherein R1—R25 are the same or different substituents, and each is selected from the group consisting of alkyl, alkenyl, aryl, heteroalkyl, substituted aryl, substituted heteroaryl and heterocyclic groups.
46. The device of claim 45 , wherein the aromatic material has a molecular dipole moment of less than about 2.0 debyes.
47. The device of claim 46 , wherein the aromatic material has a molecular dipole moment of zero.
48. The device of claim 45 , wherein the aromatic material includes only C and H atoms.
49. A device, comprising:
an anode;
a cathode;
a first organic layer disposed between the anode and the cathode, wherein the first organic layer comprises a material that produces phosphorescent emission when a voltage is applied between the anode and the cathode; and
a second organic layer disposed between the first organic layer and the cathode, wherein the second organic layer is in direct contact with the first organic layer, and wherein the second organic layer comprises an aromatic material wherein the aromatic material includes a core comprising at least 3 phenyl rings, wherein each phenyl ring in the core is connected to every other phenyl ring in the core either directly, or by a chain of phenyl rings that are either fused or attached by a single C—C bond.
50. The device of claim 49 , wherein the aromatic material includes a core comprising at least 6 phenyl rings.
52. The compound of claim 51 , wherein R11, R12, and R13 are each phenyl.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/785,287 US20050025993A1 (en) | 2003-07-25 | 2004-02-23 | Materials and structures for enhancing the performance of organic light emitting devices |
PCT/US2004/023349 WO2005013388A2 (en) | 2003-07-25 | 2004-07-21 | Materials and structures for enhancing the performance of organic light emitting devices |
US11/974,020 US8105700B2 (en) | 2003-07-25 | 2007-10-10 | Materials and structures for enhancing the performance of organic light emitting devices |
US13/334,498 US8465851B2 (en) | 2003-07-25 | 2011-12-22 | Materials and structures for enhancing the performance of organic light emitting devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/626,579 US7018723B2 (en) | 2003-07-25 | 2003-07-25 | Materials and structures for enhancing the performance of organic light emitting devices |
US10/785,287 US20050025993A1 (en) | 2003-07-25 | 2004-02-23 | Materials and structures for enhancing the performance of organic light emitting devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/626,579 Continuation-In-Part US7018723B2 (en) | 2003-07-25 | 2003-07-25 | Materials and structures for enhancing the performance of organic light emitting devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/974,020 Division US8105700B2 (en) | 2003-07-25 | 2007-10-10 | Materials and structures for enhancing the performance of organic light emitting devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050025993A1 true US20050025993A1 (en) | 2005-02-03 |
Family
ID=34119204
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/785,287 Abandoned US20050025993A1 (en) | 2003-07-25 | 2004-02-23 | Materials and structures for enhancing the performance of organic light emitting devices |
US11/974,020 Expired - Fee Related US8105700B2 (en) | 2003-07-25 | 2007-10-10 | Materials and structures for enhancing the performance of organic light emitting devices |
US13/334,498 Expired - Lifetime US8465851B2 (en) | 2003-07-25 | 2011-12-22 | Materials and structures for enhancing the performance of organic light emitting devices |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/974,020 Expired - Fee Related US8105700B2 (en) | 2003-07-25 | 2007-10-10 | Materials and structures for enhancing the performance of organic light emitting devices |
US13/334,498 Expired - Lifetime US8465851B2 (en) | 2003-07-25 | 2011-12-22 | Materials and structures for enhancing the performance of organic light emitting devices |
Country Status (2)
Country | Link |
---|---|
US (3) | US20050025993A1 (en) |
WO (1) | WO2005013388A2 (en) |
Cited By (547)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060008673A1 (en) * | 2004-07-07 | 2006-01-12 | Raymond Kwong | Electroluminescent efficiency |
US20060280965A1 (en) * | 2005-05-31 | 2006-12-14 | Raymond Kwong | Triphenylene hosts in phosphorescent light emitting diodes |
US20070003789A1 (en) * | 2005-05-19 | 2007-01-04 | Raymond Kwong | Stable and efficient electroluminescent materials |
US20070104431A1 (en) * | 2005-07-29 | 2007-05-10 | Aculight Corporation | Multi-segment photonic-crystal-rod waveguides for amplification of high-power pulsed optical radiation and associated method |
WO2007105884A1 (en) | 2006-03-10 | 2007-09-20 | Lg Chem, Ltd. | Tetraphenylnaphthalene derivatives and organic light emitting diode using the same |
US20070241676A1 (en) * | 2006-04-13 | 2007-10-18 | Park Sang T | Organic electroluminescence device and method for fabricating the same |
US20070252516A1 (en) * | 2006-04-27 | 2007-11-01 | Eastman Kodak Company | Electroluminescent devices including organic EIL layer |
US20070252522A1 (en) * | 2005-11-30 | 2007-11-01 | Eastman Kodak Company | Electroluminescent device including an anthracene derivative |
JP2008050529A (en) * | 2006-08-28 | 2008-03-06 | Kyoto Univ | Organic light emission transistor material, organic light emission transistor element and display device |
US7379237B1 (en) | 2005-07-29 | 2008-05-27 | Aculight Corporation | Photonic-crystal-rod amplifiers for high-power pulsed optical radiation and associated method |
WO2009021107A1 (en) | 2007-08-08 | 2009-02-12 | Universal Display Corporation | Single triphenylene chromophores in phosphorescent light emitting diodes |
US20090134784A1 (en) * | 2004-10-21 | 2009-05-28 | Universal Display Corporation | Carbazole-containing materials in phosphorescent light emitting diodes |
US20090153034A1 (en) * | 2007-12-13 | 2009-06-18 | Universal Display Corporation | Carbazole-containing materials in phosphorescent light emittinig diodes |
US20090200927A1 (en) * | 2008-02-09 | 2009-08-13 | Universal Display Corporation | Organic light emitting device architecture |
US20100084647A1 (en) * | 2006-04-27 | 2010-04-08 | Kondakova Marina E | Electroluminescent devices including organic eil layer |
US20100090591A1 (en) * | 2008-09-16 | 2010-04-15 | Universal Display Corporation | Phosphorescent materials |
JP2010515255A (en) * | 2006-12-28 | 2010-05-06 | ユニバーサル ディスプレイ コーポレイション | Long-life phosphorescent organic light-emitting device (OLED) structure |
US20100141127A1 (en) * | 2008-11-11 | 2010-06-10 | Universal Display Corporation | Phosphorescent emitters |
US20100148663A1 (en) * | 2008-12-12 | 2010-06-17 | Universal Display Corporation | Blue Emitter with High Efficiency Based on Imidazo[1,2-f] Phenanthridine Iridium Complexes |
US20100170395A1 (en) * | 2008-10-10 | 2010-07-08 | Farha Omar K | Tetratopic Phenyl Compounds, Related Metal-Organic Framework Materials and Post-Assembly Elaboration |
US20100187984A1 (en) * | 2009-01-16 | 2010-07-29 | Universal Display Corporation | Materials with aza-dibenzothiophene or aza-dibenzofuran core for pholed |
US20100207104A1 (en) * | 2007-04-23 | 2010-08-19 | Guenter Schmid | Electrical Organic Component and a Method for its Production |
US20100244004A1 (en) * | 2009-03-23 | 2010-09-30 | Universal Display Corporation | Heteroleptic iridium complex |
US20100270916A1 (en) * | 2009-04-28 | 2010-10-28 | Universal Display Corporation | Iridium complex with methyl-d3 substitution |
US20100277060A1 (en) * | 2007-09-20 | 2010-11-04 | Basf Se | Electroluminescent device |
US20100289406A1 (en) * | 2009-05-12 | 2010-11-18 | Universal Display Corporation | 2-azatriphenylene materials for organic light emitting diodes |
JP2011504492A (en) * | 2007-11-22 | 2011-02-10 | グラセル・ディスプレイ・インコーポレーテッド | Highly efficient blue electroluminescent compound and display device using the same |
US20110049120A1 (en) * | 2008-05-17 | 2011-03-03 | Electrolux Home Products Corporation N.V. | cooking oven with an illumination-equipment and an illumination-equipment for a cavity of a cooking oven |
US20110057559A1 (en) * | 2007-12-28 | 2011-03-10 | Universal Display Corporation | Phosphorescent emitters and host materials with improved stability |
US20110177641A1 (en) * | 2010-01-20 | 2011-07-21 | Universal Display Corporation | Electroluminescent devices for lighting applications |
US20110204333A1 (en) * | 2010-02-25 | 2011-08-25 | Universal Display Corporation | Phosphorescent emitters |
US8007927B2 (en) | 2007-12-28 | 2011-08-30 | Universal Display Corporation | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
US20110215710A1 (en) * | 2010-03-03 | 2011-09-08 | Universal Display Corporation | Phosphorescent materials |
US20110215309A1 (en) * | 2008-09-04 | 2011-09-08 | Universal Display Corporation | White phosphorescent organic light emitting devices |
US20110227049A1 (en) * | 2008-09-03 | 2011-09-22 | Universal Display Corporation | Phosphorescent materials |
US8053770B2 (en) | 2008-10-14 | 2011-11-08 | Universal Display Corporation | Emissive layer patterning for OLED |
US20120168735A1 (en) * | 2009-09-16 | 2012-07-05 | Merck Patent Gmbh | Organic electroluminescent device |
US8269317B2 (en) | 2010-11-11 | 2012-09-18 | Universal Display Corporation | Phosphorescent materials |
EP2503618A1 (en) * | 2011-03-23 | 2012-09-26 | Semiconductor Energy Laboratory Co., Ltd. | Composite material, light-emitting element, light-emitting device, electronic device, and lighting device |
EP2514736A1 (en) | 2006-07-28 | 2012-10-24 | Basf Se | Intermediates for Polymers |
US8409729B2 (en) | 2011-07-28 | 2013-04-02 | Universal Display Corporation | Host materials for phosphorescent OLEDs |
US8415031B2 (en) | 2011-01-24 | 2013-04-09 | Universal Display Corporation | Electron transporting compounds |
US8432095B2 (en) | 2011-05-11 | 2013-04-30 | Universal Display Corporation | Process for fabricating metal bus lines for OLED lighting panels |
US8440326B2 (en) | 2008-06-30 | 2013-05-14 | Universal Display Corporation | Hole transport materials containing triphenylene |
JP2013102006A (en) * | 2011-11-08 | 2013-05-23 | Konica Minolta Holdings Inc | Organic el element |
US8492006B2 (en) | 2011-02-24 | 2013-07-23 | Universal Display Corporation | Germanium-containing red emitter materials for organic light emitting diode |
EP2623508A1 (en) | 2012-02-02 | 2013-08-07 | Konica Minolta Advanced Layers, Inc. | Iridium complex compound, organic electroluminescent element material, organic electroluminescent element, illumination device and display device |
US8545996B2 (en) | 2009-11-02 | 2013-10-01 | The University Of Southern California | Ion-pairing soft salts based on organometallic complexes and their applications in organic light emitting diodes |
US8552420B2 (en) | 2011-08-09 | 2013-10-08 | Universal Display Corporation | OLED light panel with controlled brightness variation |
US8564192B2 (en) | 2011-05-11 | 2013-10-22 | Universal Display Corporation | Process for fabricating OLED lighting panels |
US8563737B2 (en) | 2011-02-23 | 2013-10-22 | Universal Display Corporation | Methods of making bis-tridentate carbene complexes of ruthenium and osmium |
US8580399B2 (en) | 2011-04-08 | 2013-11-12 | Universal Display Corporation | Substituted oligoazacarbazoles for light emitting diodes |
US8580394B2 (en) | 2009-11-19 | 2013-11-12 | Universal Display Corporation | 3-coordinate copper(I)-carbene complexes |
US8652656B2 (en) | 2011-11-14 | 2014-02-18 | Universal Display Corporation | Triphenylene silane hosts |
US8659036B2 (en) | 2011-06-17 | 2014-02-25 | Universal Display Corporation | Fine tuning of emission spectra by combination of multiple emitter spectra |
WO2014030666A1 (en) | 2012-08-24 | 2014-02-27 | コニカミノルタ株式会社 | Transparent electrode, electronic device, and method for manufacturing transparent electrode |
US8673458B2 (en) | 2010-06-11 | 2014-03-18 | Universal Display Corporation | Delayed fluorescence OLED |
US8692241B1 (en) | 2012-11-08 | 2014-04-08 | Universal Display Corporation | Transition metal complexes containing triazole and tetrazole carbene ligands |
US8709615B2 (en) | 2011-07-28 | 2014-04-29 | Universal Display Corporation | Heteroleptic iridium complexes as dopants |
US8716484B1 (en) | 2012-12-05 | 2014-05-06 | Universal Display Corporation | Hole transporting materials with twisted aryl groups |
US8723209B2 (en) | 2012-04-27 | 2014-05-13 | Universal Display Corporation | Out coupling layer containing particle polymer composite |
US8742657B2 (en) | 2010-06-11 | 2014-06-03 | Universal Display Corporation | Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications |
US8748011B2 (en) | 2011-02-23 | 2014-06-10 | Universal Display Corporation | Ruthenium carbene complexes for OLED material |
US8748012B2 (en) | 2011-05-25 | 2014-06-10 | Universal Display Corporation | Host materials for OLED |
US8778511B2 (en) | 2008-12-12 | 2014-07-15 | Universal Display Corporation | OLED stability via doped hole transport layer |
US8795850B2 (en) | 2011-05-19 | 2014-08-05 | Universal Display Corporation | Phosphorescent heteroleptic phenylbenzimidazole dopants and new synthetic methodology |
US8822708B2 (en) | 2007-08-08 | 2014-09-02 | Universal Display Corporation | Benzo-fused thiophene / triphenylene hybrid materials |
WO2014157618A1 (en) | 2013-03-29 | 2014-10-02 | コニカミノルタ株式会社 | Organic electroluminescent element, and lighting device and display device which are provided with same |
WO2014157610A1 (en) | 2013-03-29 | 2014-10-02 | コニカミノルタ株式会社 | Organic electroluminescent element, lighting device, display device, light-emitting thin film and composition for organic electroluminescent element, and light-emitting method |
US8871361B2 (en) | 2011-02-23 | 2014-10-28 | Universal Display Corporation | Tetradentate platinum complexes |
US8883322B2 (en) | 2011-03-08 | 2014-11-11 | Universal Display Corporation | Pyridyl carbene phosphorescent emitters |
US8884316B2 (en) | 2011-06-17 | 2014-11-11 | Universal Display Corporation | Non-common capping layer on an organic device |
US8889864B2 (en) | 2006-02-10 | 2014-11-18 | Universal Display Corporation | Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof |
US8927308B2 (en) | 2011-05-12 | 2015-01-06 | Universal Display Corporation | Method of forming bus line designs for large-area OLED lighting |
US8927749B2 (en) | 2013-03-07 | 2015-01-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8926119B2 (en) | 2011-08-04 | 2015-01-06 | Universal Display Corporation | Extendable light source with variable light emitting area |
US8932734B2 (en) | 2010-10-08 | 2015-01-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8946697B1 (en) | 2012-11-09 | 2015-02-03 | Universal Display Corporation | Iridium complexes with aza-benzo fused ligands |
US8952362B2 (en) | 2012-08-31 | 2015-02-10 | The Regents Of The University Of Michigan | High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion |
US8963132B2 (en) | 2010-03-25 | 2015-02-24 | Universal Display Corporation | Solution processable doped triarylamine hole injection materials |
US8968887B2 (en) | 2010-04-28 | 2015-03-03 | Universal Display Corporation | Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings |
US8969592B2 (en) | 2012-01-10 | 2015-03-03 | Universal Display Corporation | Heterocyclic host materials |
US8987451B2 (en) | 2012-01-03 | 2015-03-24 | Universal Display Corporation | Synthesis of cyclometallated platinum(II) complexes |
US9005772B2 (en) | 2011-02-23 | 2015-04-14 | Universal Display Corporation | Thioazole and oxazole carbene metal complexes as phosphorescent OLED materials |
US9040962B2 (en) | 2010-04-28 | 2015-05-26 | Universal Display Corporation | Depositing premixed materials |
US9054323B2 (en) | 2012-03-15 | 2015-06-09 | Universal Display Corporation | Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds |
US9059412B2 (en) | 2012-07-19 | 2015-06-16 | Universal Display Corporation | Transition metal complexes containing substituted imidazole carbene as ligands and their application in OLEDs |
US9118017B2 (en) | 2012-02-27 | 2015-08-25 | Universal Display Corporation | Host compounds for red phosphorescent OLEDs |
US9130177B2 (en) | 2011-01-13 | 2015-09-08 | Universal Display Corporation | 5-substituted 2 phenylquinoline complexes materials for light emitting diode |
US9142786B2 (en) | 2007-03-08 | 2015-09-22 | Universal Display Corporation | Phosphorescent materials |
US9166175B2 (en) | 2012-11-27 | 2015-10-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9163174B2 (en) | 2012-01-04 | 2015-10-20 | Universal Display Corporation | Highly efficient phosphorescent materials |
US9184399B2 (en) | 2012-05-04 | 2015-11-10 | Universal Display Corporation | Asymmetric hosts with triaryl silane side chains |
US9181270B2 (en) | 2014-02-28 | 2015-11-10 | Universal Display Corporation | Method of making sulfide compounds |
US9190623B2 (en) | 2012-11-20 | 2015-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9190621B2 (en) | 2007-03-08 | 2015-11-17 | Universal Display Corporation | Materials for organic light emitting diode |
US9190620B2 (en) | 2014-03-01 | 2015-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9196860B2 (en) | 2012-12-04 | 2015-11-24 | Universal Display Corporation | Compounds for triplet-triplet annihilation upconversion |
US9193745B2 (en) | 2011-11-15 | 2015-11-24 | Universal Display Corporation | Heteroleptic iridium complex |
US9196857B2 (en) * | 2009-01-13 | 2015-11-24 | Samsung Display Co., Ltd. | Organic light emitting diode and method of manufacturing the same |
US9209411B2 (en) | 2012-12-07 | 2015-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9212197B2 (en) | 2011-05-19 | 2015-12-15 | Universal Display Corporation | Phosphorescent heteroleptic phenylbenzimidazole dopants |
US9217004B2 (en) | 2011-11-21 | 2015-12-22 | Universal Display Corporation | Organic light emitting materials |
US9224958B2 (en) | 2013-07-19 | 2015-12-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9231218B2 (en) | 2012-07-10 | 2016-01-05 | Universal Display Corporation | Phosphorescent emitters containing dibenzo[1,4]azaborinine structure |
US9252377B2 (en) | 2011-07-14 | 2016-02-02 | Universal Display Corporation | Inorganic hosts in OLEDs |
US9252363B2 (en) | 2012-10-04 | 2016-02-02 | Universal Display Corporation | Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers |
US9287513B2 (en) | 2012-09-24 | 2016-03-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9293712B2 (en) | 2013-10-11 | 2016-03-22 | Universal Display Corporation | Disubstituted pyrene compounds with amino group containing ortho aryl group and devices containing the same |
US9306179B2 (en) | 2013-11-08 | 2016-04-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9312505B2 (en) | 2012-09-25 | 2016-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9312499B1 (en) | 2015-01-05 | 2016-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9318710B2 (en) | 2012-07-30 | 2016-04-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9324949B2 (en) | 2013-07-16 | 2016-04-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9348092B1 (en) * | 2014-11-10 | 2016-05-24 | Tyco Electronics Corporation | Mode size converters for reducing a modal profile of incoming light |
US9359549B2 (en) | 2009-04-06 | 2016-06-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9386657B2 (en) | 2012-03-15 | 2016-07-05 | Universal Display Corporation | Organic Electroluminescent materials and devices |
US9397310B2 (en) | 2011-07-14 | 2016-07-19 | Universal Display Corporation | Organice electroluminescent materials and devices |
US9397302B2 (en) | 2014-10-08 | 2016-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9397309B2 (en) | 2014-03-13 | 2016-07-19 | Universal Display Corporation | Organic electroluminescent devices |
US9406892B2 (en) | 2015-01-07 | 2016-08-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9419225B2 (en) | 2013-03-14 | 2016-08-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9435021B2 (en) | 2010-07-29 | 2016-09-06 | University Of Southern California | Co-deposition methods for the fabrication of organic optoelectronic devices |
US9444075B2 (en) | 2014-11-26 | 2016-09-13 | Universal Display Corporation | Emissive display with photo-switchable polarization |
US9450195B2 (en) | 2014-12-17 | 2016-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9450198B2 (en) | 2014-04-15 | 2016-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9455417B2 (en) | 2011-12-13 | 2016-09-27 | Universal Display Corporation | Split electrode for organic devices |
US9455411B2 (en) | 2008-09-25 | 2016-09-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9461254B2 (en) | 2012-01-03 | 2016-10-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9478758B1 (en) | 2015-05-08 | 2016-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9484541B2 (en) | 2014-10-20 | 2016-11-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9493698B2 (en) | 2011-08-31 | 2016-11-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9502672B2 (en) | 2012-06-21 | 2016-11-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9502656B2 (en) | 2014-02-24 | 2016-11-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9512136B2 (en) | 2012-11-26 | 2016-12-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9512355B2 (en) | 2011-12-09 | 2016-12-06 | Universal Display Corporation | Organic light emitting materials |
US9537106B2 (en) | 2013-05-09 | 2017-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9540329B2 (en) | 2012-07-19 | 2017-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9553274B2 (en) | 2013-07-16 | 2017-01-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9590194B2 (en) | 2014-02-14 | 2017-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9590195B2 (en) | 2014-02-28 | 2017-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9634264B2 (en) | 2012-11-09 | 2017-04-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9647227B2 (en) | 2005-04-13 | 2017-05-09 | Universal Display Corporation | Organic light emitting devices |
US9647221B2 (en) | 2011-07-14 | 2017-05-09 | Universal Display Corporation | Organic light-emitting devices |
US9647217B2 (en) | 2014-02-24 | 2017-05-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9647228B2 (en) | 2011-05-13 | 2017-05-09 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element and light-emitting device |
US9647218B2 (en) | 2013-11-14 | 2017-05-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9653691B2 (en) | 2012-12-12 | 2017-05-16 | Universal Display Corporation | Phosphorescence-sensitizing fluorescence material system |
US9663544B2 (en) | 2012-07-25 | 2017-05-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9673401B2 (en) | 2013-06-28 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9673406B2 (en) | 2009-05-20 | 2017-06-06 | Universal Display Corporation | Metal complexes with boron-nitrogen heterocycle containing ligands |
US9673407B2 (en) | 2014-02-28 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9670404B2 (en) | 2012-06-06 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9685617B2 (en) | 2012-11-09 | 2017-06-20 | Universal Display Corporation | Organic electronuminescent materials and devices |
EP3182478A1 (en) | 2015-12-18 | 2017-06-21 | Novaled GmbH | Electron injection layer for an organic light-emitting diode (oled) |
US9691993B2 (en) | 2014-04-09 | 2017-06-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9711730B2 (en) | 2015-01-25 | 2017-07-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3200255A2 (en) | 2016-01-06 | 2017-08-02 | Konica Minolta, Inc. | Organic electroluminescent element, method for producing organic electroluminescent element, display, and lighting device |
US9725476B2 (en) | 2012-07-09 | 2017-08-08 | Universal Display Corporation | Silylated metal complexes |
US9735373B2 (en) | 2013-06-10 | 2017-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9735378B2 (en) | 2013-09-09 | 2017-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9741941B2 (en) | 2014-04-29 | 2017-08-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3208861A1 (en) | 2016-02-19 | 2017-08-23 | Novaled GmbH | Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled) |
US9748500B2 (en) | 2015-01-15 | 2017-08-29 | Universal Display Corporation | Organic light emitting materials |
US9748503B2 (en) | 2013-09-13 | 2017-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9748504B2 (en) | 2014-03-25 | 2017-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9755164B2 (en) | 2011-06-08 | 2017-09-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9755159B2 (en) | 2014-01-23 | 2017-09-05 | Universal Display Corporation | Organic materials for OLEDs |
US9761814B2 (en) | 2014-11-18 | 2017-09-12 | Universal Display Corporation | Organic light-emitting materials and devices |
US9761807B2 (en) | 2013-07-15 | 2017-09-12 | Universal Display Corporation | Organic light emitting diode materials |
US9773985B2 (en) | 2012-05-21 | 2017-09-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9780316B2 (en) | 2015-03-16 | 2017-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9783564B2 (en) | 2011-07-25 | 2017-10-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3232490A1 (en) | 2016-04-12 | 2017-10-18 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
US9831447B2 (en) | 2013-10-08 | 2017-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9831437B2 (en) | 2013-08-20 | 2017-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3252837A1 (en) | 2016-05-30 | 2017-12-06 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
EP3252841A1 (en) | 2016-05-30 | 2017-12-06 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
US9847498B2 (en) | 2014-04-14 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9847497B2 (en) | 2014-02-18 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9847496B2 (en) | 2013-12-23 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9853229B2 (en) | 2013-10-23 | 2017-12-26 | University Of Southern California | Organic electroluminescent materials and devices |
US9859510B2 (en) | 2015-05-15 | 2018-01-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9871212B2 (en) | 2014-11-14 | 2018-01-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9871214B2 (en) | 2015-03-23 | 2018-01-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9876173B2 (en) | 2013-12-09 | 2018-01-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9882151B2 (en) | 2014-11-14 | 2018-01-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9899612B2 (en) | 2006-12-08 | 2018-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9905784B2 (en) | 2013-11-15 | 2018-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9911931B2 (en) | 2014-06-26 | 2018-03-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9911928B2 (en) | 2015-03-19 | 2018-03-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929360B2 (en) | 2016-07-08 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929357B2 (en) | 2014-07-22 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929361B2 (en) | 2015-02-16 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929353B2 (en) | 2014-04-02 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9935276B2 (en) | 2013-02-21 | 2018-04-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9932359B2 (en) | 2013-08-30 | 2018-04-03 | University Of Southern California | Organic electroluminescent materials and devices |
US9935277B2 (en) | 2014-01-30 | 2018-04-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9954180B2 (en) | 2010-08-20 | 2018-04-24 | Universal Display Corporation | Bicarbazole compounds for OLEDs |
US9978956B2 (en) | 2015-07-15 | 2018-05-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9978961B2 (en) | 2014-01-08 | 2018-05-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9978958B2 (en) | 2012-08-24 | 2018-05-22 | Universal Display Corporation | Phosphorescent emitters with phenylimidazole ligands |
US9997716B2 (en) | 2014-05-27 | 2018-06-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9997712B2 (en) | 2013-03-27 | 2018-06-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10003034B2 (en) | 2013-09-30 | 2018-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10003033B2 (en) | 2014-02-18 | 2018-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10008679B2 (en) | 2014-04-14 | 2018-06-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10008677B2 (en) | 2011-01-13 | 2018-06-26 | Universal Display Corporation | Materials for organic light emitting diode |
US10033004B2 (en) | 2015-06-01 | 2018-07-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10038151B2 (en) | 2014-11-12 | 2018-07-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10043987B2 (en) | 2014-09-29 | 2018-08-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10056565B2 (en) | 2013-11-20 | 2018-08-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10069090B2 (en) | 2012-11-20 | 2018-09-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10074806B2 (en) | 2013-08-20 | 2018-09-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10079349B2 (en) | 2011-05-27 | 2018-09-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10109799B2 (en) | 2015-05-21 | 2018-10-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10121975B2 (en) | 2013-07-03 | 2018-11-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10135008B2 (en) | 2014-01-07 | 2018-11-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10135006B2 (en) | 2016-01-04 | 2018-11-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10135007B2 (en) | 2014-09-29 | 2018-11-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10144867B2 (en) | 2015-02-13 | 2018-12-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10147892B2 (en) | 2010-12-07 | 2018-12-04 | The University Of Southern California | Organic electroluminescent materials and devices |
US10153445B2 (en) | 2016-11-21 | 2018-12-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10153443B2 (en) | 2016-07-19 | 2018-12-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10158089B2 (en) | 2011-05-27 | 2018-12-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR101910677B1 (en) * | 2010-07-09 | 2018-12-28 | 유디씨 아일랜드 리미티드 | Organic electroluminescent element |
US10177318B2 (en) | 2015-10-29 | 2019-01-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10177316B2 (en) | 2015-02-09 | 2019-01-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10181564B2 (en) | 2015-08-26 | 2019-01-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10199581B2 (en) | 2013-07-01 | 2019-02-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10199582B2 (en) | 2013-09-03 | 2019-02-05 | University Of Southern California | Organic electroluminescent materials and devices |
US10205105B2 (en) | 2016-08-15 | 2019-02-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10211413B2 (en) | 2012-01-17 | 2019-02-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10208026B2 (en) | 2014-03-18 | 2019-02-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10236456B2 (en) | 2016-04-11 | 2019-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10236458B2 (en) | 2016-10-24 | 2019-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10256427B2 (en) | 2014-04-15 | 2019-04-09 | Universal Display Corporation | Efficient organic electroluminescent devices |
US10256411B2 (en) | 2015-05-21 | 2019-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10253252B2 (en) | 2014-12-30 | 2019-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10256419B2 (en) | 2014-05-08 | 2019-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10270046B2 (en) | 2015-03-06 | 2019-04-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10276809B2 (en) | 2016-04-05 | 2019-04-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10297770B2 (en) | 2015-03-27 | 2019-05-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10297762B2 (en) | 2014-07-09 | 2019-05-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10301338B2 (en) | 2014-05-08 | 2019-05-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10340464B2 (en) | 2016-11-10 | 2019-07-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10355227B2 (en) | 2013-12-16 | 2019-07-16 | Universal Display Corporation | Metal complex for phosphorescent OLED |
US10355222B2 (en) | 2015-02-06 | 2019-07-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10361375B2 (en) | 2014-10-06 | 2019-07-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10361381B2 (en) | 2015-09-03 | 2019-07-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10381579B2 (en) | 2005-05-06 | 2019-08-13 | Universal Display Corporation | Stability OLED materials and devices |
US10388892B2 (en) | 2015-10-29 | 2019-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10388893B2 (en) | 2015-10-29 | 2019-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403830B2 (en) | 2014-05-08 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403825B2 (en) | 2014-02-27 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10400163B2 (en) | 2013-02-08 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403826B2 (en) | 2015-05-07 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10411200B2 (en) | 2014-08-07 | 2019-09-10 | Universal Display Corporation | Electroluminescent (2-phenylpyridine)iridium complexes and devices |
US10411201B2 (en) | 2014-11-12 | 2019-09-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10418569B2 (en) | 2015-01-25 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10418562B2 (en) | 2015-02-06 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10418568B2 (en) | 2015-06-01 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10461260B2 (en) | 2014-06-03 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10457699B2 (en) | 2014-05-02 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10457864B2 (en) | 2016-02-09 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10468609B2 (en) | 2016-06-02 | 2019-11-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10476010B2 (en) | 2015-11-30 | 2019-11-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10490753B2 (en) | 2016-12-15 | 2019-11-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10505127B2 (en) | 2016-09-19 | 2019-12-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10522769B2 (en) | 2015-08-18 | 2019-12-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10529931B2 (en) | 2015-03-24 | 2020-01-07 | Universal Display Corporation | Organic Electroluminescent materials and devices |
US10566552B2 (en) | 2016-04-13 | 2020-02-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10566546B2 (en) | 2014-07-14 | 2020-02-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10566547B2 (en) | 2016-07-11 | 2020-02-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10593892B2 (en) | 2015-10-01 | 2020-03-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10593890B2 (en) | 2015-04-06 | 2020-03-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10600967B2 (en) | 2016-02-18 | 2020-03-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10600966B2 (en) | 2015-02-27 | 2020-03-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10608188B2 (en) | 2017-09-11 | 2020-03-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10608186B2 (en) | 2016-09-14 | 2020-03-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10608185B2 (en) | 2016-10-17 | 2020-03-31 | Univeral Display Corporation | Organic electroluminescent materials and devices |
US10629820B2 (en) | 2017-01-18 | 2020-04-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10636983B2 (en) | 2014-05-08 | 2020-04-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10636978B2 (en) | 2014-12-30 | 2020-04-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10644251B2 (en) | 2013-12-04 | 2020-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10644247B2 (en) | 2015-02-06 | 2020-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10651403B2 (en) | 2016-06-20 | 2020-05-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10662196B2 (en) | 2016-11-17 | 2020-05-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10672998B2 (en) | 2017-03-23 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10672997B2 (en) | 2016-06-20 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680183B2 (en) | 2015-02-15 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680187B2 (en) | 2016-09-23 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680188B2 (en) | 2016-11-11 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN111279507A (en) * | 2017-11-02 | 2020-06-12 | 住友化学株式会社 | Organic electroluminescent element |
US10686143B2 (en) | 2015-03-05 | 2020-06-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10686140B2 (en) | 2016-06-20 | 2020-06-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
DE102013200085B4 (en) | 2012-01-06 | 2020-06-18 | Universal Display Corporation | Highly efficient phosphorescent materials |
US10707423B2 (en) | 2014-02-21 | 2020-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10707427B2 (en) | 2016-02-09 | 2020-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10720587B2 (en) | 2016-07-19 | 2020-07-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10727423B2 (en) | 2016-06-20 | 2020-07-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10741780B2 (en) | 2017-03-10 | 2020-08-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10745431B2 (en) | 2017-03-08 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10749113B2 (en) | 2014-09-29 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10770664B2 (en) | 2015-09-21 | 2020-09-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10777749B2 (en) | 2015-05-07 | 2020-09-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10777754B2 (en) | 2017-04-11 | 2020-09-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10790455B2 (en) | 2017-05-18 | 2020-09-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10804475B2 (en) | 2017-01-11 | 2020-10-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10811618B2 (en) | 2016-12-19 | 2020-10-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10825997B2 (en) | 2015-06-25 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10822362B2 (en) | 2017-05-11 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10822361B2 (en) | 2017-02-22 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10833276B2 (en) | 2016-11-21 | 2020-11-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10840459B2 (en) | 2017-05-18 | 2020-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10840458B2 (en) | 2016-05-25 | 2020-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10844085B2 (en) | 2017-03-29 | 2020-11-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10847728B2 (en) | 2015-10-01 | 2020-11-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10854826B2 (en) | 2014-10-08 | 2020-12-01 | Universal Display Corporation | Organic electroluminescent compounds, compositions and devices |
US10862046B2 (en) | 2017-03-30 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10862054B2 (en) | 2016-06-20 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10862055B2 (en) | 2017-05-05 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10868261B2 (en) | 2014-11-10 | 2020-12-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10873036B2 (en) | 2015-07-07 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10870668B2 (en) | 2017-05-05 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10873037B2 (en) | 2017-03-28 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10897016B2 (en) | 2016-11-14 | 2021-01-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10910570B2 (en) | 2017-04-28 | 2021-02-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10910577B2 (en) | 2017-03-28 | 2021-02-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10930864B2 (en) | 2017-05-10 | 2021-02-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10930862B2 (en) | 2017-06-01 | 2021-02-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10930866B2 (en) | 2013-07-25 | 2021-02-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10934293B2 (en) | 2017-05-18 | 2021-03-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10944060B2 (en) | 2017-05-11 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10944062B2 (en) | 2017-05-18 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10941170B2 (en) | 2017-05-03 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10950803B2 (en) | 2014-10-13 | 2021-03-16 | Universal Display Corporation | Compounds and uses in devices |
US10957870B2 (en) | 2012-09-07 | 2021-03-23 | Universal Display Corporation | Organic light emitting device |
US10957861B2 (en) | 2015-12-29 | 2021-03-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10957866B2 (en) | 2016-06-30 | 2021-03-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10964904B2 (en) | 2017-01-20 | 2021-03-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10964893B2 (en) | 2016-11-17 | 2021-03-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10968226B2 (en) | 2017-06-23 | 2021-04-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10971687B2 (en) | 2017-12-14 | 2021-04-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10975113B2 (en) | 2017-04-21 | 2021-04-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10978647B2 (en) | 2017-02-15 | 2021-04-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10991895B2 (en) | 2015-10-06 | 2021-04-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10998507B2 (en) | 2015-11-23 | 2021-05-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11011709B2 (en) | 2016-10-07 | 2021-05-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11018309B2 (en) | 2015-08-03 | 2021-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11024808B2 (en) | 2015-12-29 | 2021-06-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11038115B2 (en) | 2017-05-18 | 2021-06-15 | Universal Display Corporation | Organic electroluminescent materials and device |
US11038137B2 (en) | 2017-04-28 | 2021-06-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11038117B2 (en) | 2017-04-11 | 2021-06-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11050028B2 (en) | 2017-01-24 | 2021-06-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11053268B2 (en) | 2017-01-20 | 2021-07-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11056657B2 (en) | 2015-02-27 | 2021-07-06 | University Display Corporation | Organic electroluminescent materials and devices |
US11056658B2 (en) | 2017-03-29 | 2021-07-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11081659B2 (en) | 2018-01-10 | 2021-08-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11081658B2 (en) | 2016-10-03 | 2021-08-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11081647B2 (en) | 2016-04-22 | 2021-08-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11084838B2 (en) | 2017-04-21 | 2021-08-10 | Universal Display Corporation | Organic electroluminescent materials and device |
US11094891B2 (en) | 2016-03-16 | 2021-08-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11101434B2 (en) | 2017-04-21 | 2021-08-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11108000B2 (en) | 2014-08-07 | 2021-08-31 | Unniversal Display Corporation | Organic electroluminescent materials and devices |
US11117897B2 (en) | 2017-05-01 | 2021-09-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11127906B2 (en) | 2016-10-03 | 2021-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11127905B2 (en) | 2015-07-29 | 2021-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11139443B2 (en) | 2017-03-31 | 2021-10-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11142538B2 (en) | 2018-03-12 | 2021-10-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11152579B2 (en) | 2016-12-28 | 2021-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11158820B2 (en) | 2017-03-29 | 2021-10-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11165028B2 (en) | 2018-03-12 | 2021-11-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11168103B2 (en) | 2017-11-17 | 2021-11-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN113646916A (en) * | 2019-02-06 | 2021-11-12 | 诺瓦尔德股份有限公司 | Method for preparing organic semiconductor layer, composition for the method, and organic electronic device |
US11174259B2 (en) | 2017-06-23 | 2021-11-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11183642B2 (en) | 2016-10-03 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11183646B2 (en) | 2017-11-07 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11180519B2 (en) | 2018-02-09 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11189804B2 (en) | 2016-10-03 | 2021-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11196010B2 (en) | 2016-10-03 | 2021-12-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11201299B2 (en) | 2017-05-04 | 2021-12-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11201298B2 (en) | 2017-01-09 | 2021-12-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11214587B2 (en) | 2017-11-07 | 2022-01-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11217757B2 (en) | 2018-03-12 | 2022-01-04 | Universal Display Corporation | Host materials for electroluminescent devices |
US11228010B2 (en) | 2017-07-26 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228002B2 (en) | 2016-04-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228003B2 (en) | 2016-04-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228004B2 (en) | 2018-06-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11233205B2 (en) | 2017-12-14 | 2022-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11233204B2 (en) | 2017-12-14 | 2022-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11233203B2 (en) | 2018-09-06 | 2022-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11239433B2 (en) | 2017-07-26 | 2022-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11239432B2 (en) | 2016-10-14 | 2022-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11239434B2 (en) | 2018-02-09 | 2022-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11261207B2 (en) | 2018-06-25 | 2022-03-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11271177B2 (en) | 2018-01-11 | 2022-03-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11276829B2 (en) | 2017-03-31 | 2022-03-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11279722B2 (en) | 2018-03-12 | 2022-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11296283B2 (en) | 2018-06-04 | 2022-04-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11302872B2 (en) | 2015-09-09 | 2022-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11322691B2 (en) | 2017-07-26 | 2022-05-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11325932B2 (en) | 2019-02-08 | 2022-05-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11339182B2 (en) | 2018-06-07 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11342513B2 (en) | 2018-05-04 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11342509B2 (en) | 2018-02-09 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11349083B2 (en) | 2017-08-10 | 2022-05-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11367840B2 (en) | 2018-01-26 | 2022-06-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11370809B2 (en) | 2019-02-08 | 2022-06-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11374181B2 (en) | 2019-08-14 | 2022-06-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11390639B2 (en) | 2018-04-13 | 2022-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11417843B2 (en) * | 2018-10-12 | 2022-08-16 | Samsung Display Co., Ltd. | Organic electroluminescence device and amine compound for organic electroluminescence device |
US11424420B2 (en) | 2017-09-07 | 2022-08-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11437591B2 (en) | 2017-08-24 | 2022-09-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11444249B2 (en) | 2017-09-07 | 2022-09-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11450822B2 (en) | 2018-05-25 | 2022-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11459349B2 (en) | 2018-05-25 | 2022-10-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11462697B2 (en) | 2017-08-22 | 2022-10-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11469384B2 (en) | 2018-11-02 | 2022-10-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11469383B2 (en) | 2018-10-08 | 2022-10-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11469382B2 (en) | 2017-07-12 | 2022-10-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11476430B2 (en) | 2018-10-15 | 2022-10-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11482683B2 (en) | 2016-06-20 | 2022-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11485706B2 (en) | 2018-09-11 | 2022-11-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495756B2 (en) | 2019-05-07 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495752B2 (en) | 2018-10-08 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495757B2 (en) | 2017-06-23 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495749B2 (en) | 2015-04-06 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11508913B2 (en) | 2017-08-10 | 2022-11-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11512093B2 (en) | 2019-03-04 | 2022-11-29 | Universal Display Corporation | Compound used for organic light emitting device (OLED), consumer product and formulation |
US11515494B2 (en) | 2018-05-04 | 2022-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11515493B2 (en) | 2018-01-11 | 2022-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11515489B2 (en) | 2018-11-28 | 2022-11-29 | Universal Display Corporation | Host materials for electroluminescent devices |
US11515482B2 (en) | 2018-10-23 | 2022-11-29 | Universal Display Corporation | Deep HOMO (highest occupied molecular orbital) emitter device structures |
US11522140B2 (en) | 2015-08-17 | 2022-12-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11545637B2 (en) | 2017-01-13 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11542289B2 (en) | 2018-01-26 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11545636B2 (en) | 2016-12-15 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11552261B2 (en) | 2017-06-23 | 2023-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11548905B2 (en) | 2016-12-15 | 2023-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11555048B2 (en) | 2016-12-01 | 2023-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11557733B2 (en) | 2018-03-12 | 2023-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11557738B2 (en) | 2019-02-22 | 2023-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11560398B2 (en) | 2019-05-07 | 2023-01-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11569480B2 (en) | 2019-03-12 | 2023-01-31 | Universal Display Corporation | Plasmonic OLEDs and vertical dipole emitters |
US11600787B2 (en) | 2019-08-30 | 2023-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11605791B2 (en) | 2017-09-01 | 2023-03-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11608321B2 (en) | 2017-06-23 | 2023-03-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11613550B2 (en) | 2019-04-30 | 2023-03-28 | Universal Display Corporation | Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes |
US11616203B2 (en) | 2018-04-17 | 2023-03-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11623936B2 (en) | 2018-12-11 | 2023-04-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11637261B2 (en) | 2019-03-12 | 2023-04-25 | Universal Display Corporation | Nanopatch antenna outcoupling structure for use in OLEDs |
US11634445B2 (en) | 2019-05-21 | 2023-04-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11639363B2 (en) | 2019-04-22 | 2023-05-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11647667B2 (en) | 2019-06-14 | 2023-05-09 | Universal Display Corporation | Organic electroluminescent compounds and organic light emitting devices using the same |
US11672165B2 (en) | 2018-11-28 | 2023-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11672176B2 (en) | 2018-11-28 | 2023-06-06 | Universal Display Corporation | Host materials for electroluminescent devices |
US11678565B2 (en) | 2017-06-23 | 2023-06-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11690285B2 (en) | 2018-11-28 | 2023-06-27 | Universal Display Corporation | Electroluminescent devices |
US11685754B2 (en) | 2019-07-22 | 2023-06-27 | Universal Display Corporation | Heteroleptic organic electroluminescent materials |
US11696492B2 (en) | 2017-09-07 | 2023-07-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11700765B2 (en) | 2018-01-10 | 2023-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11697653B2 (en) | 2019-10-21 | 2023-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11706972B2 (en) | 2015-09-08 | 2023-07-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11708355B2 (en) | 2019-08-01 | 2023-07-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11716900B2 (en) | 2018-05-30 | 2023-08-01 | Universal Display Corporation | Host materials for electroluminescent devices |
US11716899B2 (en) | 2018-11-28 | 2023-08-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11718634B2 (en) | 2018-09-14 | 2023-08-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11723269B2 (en) | 2017-08-22 | 2023-08-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11725022B2 (en) | 2017-06-23 | 2023-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11737349B2 (en) | 2018-12-12 | 2023-08-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11739081B2 (en) | 2019-03-11 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11744141B2 (en) | 2017-08-09 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11744142B2 (en) | 2017-08-10 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11753425B2 (en) | 2018-07-11 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11758804B2 (en) | 2017-06-23 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11753427B2 (en) | 2018-05-04 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765968B2 (en) | 2017-01-23 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765965B2 (en) | 2019-10-30 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765970B2 (en) | 2017-07-26 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11778895B2 (en) | 2020-01-13 | 2023-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11778897B2 (en) | 2017-09-20 | 2023-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11773320B2 (en) | 2019-02-21 | 2023-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11780865B2 (en) | 2017-01-09 | 2023-10-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11780829B2 (en) | 2019-01-30 | 2023-10-10 | The University Of Southern California | Organic electroluminescent materials and devices |
US11793073B2 (en) | 2018-05-06 | 2023-10-17 | Universal Display Corporation | Host materials for electroluminescent devices |
US11802136B2 (en) | 2017-06-23 | 2023-10-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4271160A2 (en) | 2015-02-13 | 2023-11-01 | Merck Patent GmbH | Aromatic heterocyclic derivative, and organic electroluminescent element, illumination device, and display device using aromatic heterocyclic derivative |
US11812622B2 (en) | 2015-09-25 | 2023-11-07 | Universal Display Corporation | Organic electroluminescent compounds and devices |
US11812624B2 (en) | 2019-01-30 | 2023-11-07 | The University Of Southern California | Organic electroluminescent materials and devices |
US11814403B2 (en) | 2017-06-23 | 2023-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11818949B2 (en) | 2015-04-06 | 2023-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11820783B2 (en) | 2019-09-06 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11825736B2 (en) | 2018-11-19 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11825735B2 (en) | 2017-11-28 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11827651B2 (en) | 2019-05-13 | 2023-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11832510B2 (en) | 2017-06-23 | 2023-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11834459B2 (en) | 2018-12-12 | 2023-12-05 | Universal Display Corporation | Host materials for electroluminescent devices |
US11845764B2 (en) | 2018-01-26 | 2023-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11864458B2 (en) | 2019-10-08 | 2024-01-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11871653B2 (en) | 2019-02-22 | 2024-01-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11882759B2 (en) | 2018-04-13 | 2024-01-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11889708B2 (en) | 2019-11-14 | 2024-01-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11903305B2 (en) | 2018-09-24 | 2024-02-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11910702B2 (en) | 2017-11-07 | 2024-02-20 | Universal Display Corporation | Organic electroluminescent devices |
US11910700B2 (en) | 2009-03-23 | 2024-02-20 | Universal Display Corporation | Heteroleptic iridium complexes as dopants |
US11910699B2 (en) | 2017-08-10 | 2024-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11917900B2 (en) | 2020-01-28 | 2024-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11917843B2 (en) | 2017-07-26 | 2024-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11925103B2 (en) | 2018-06-05 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11925102B2 (en) | 2015-06-04 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11920070B2 (en) | 2019-07-12 | 2024-03-05 | The University Of Southern California | Luminescent janus-type, two-coordinated metal complexes |
US11919914B2 (en) | 2019-10-25 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11925105B2 (en) | 2019-08-26 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11930699B2 (en) | 2019-08-15 | 2024-03-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11926638B2 (en) | 2019-07-22 | 2024-03-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11937494B2 (en) | 2019-08-28 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11932660B2 (en) | 2020-01-29 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11937503B2 (en) | 2017-11-30 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11944000B2 (en) | 2013-10-29 | 2024-03-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11950493B2 (en) | 2019-10-15 | 2024-04-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11957050B2 (en) | 2018-02-09 | 2024-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11963441B2 (en) | 2018-11-26 | 2024-04-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11963438B2 (en) | 2019-03-26 | 2024-04-16 | The University Of Southern California | Organic electroluminescent materials and devices |
US11968883B2 (en) | 2017-07-26 | 2024-04-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11970508B2 (en) | 2020-04-22 | 2024-04-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11985888B2 (en) | 2019-08-12 | 2024-05-14 | The Regents Of The University Of Michigan | Organic electroluminescent device |
US11999886B2 (en) | 2019-09-26 | 2024-06-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12010859B2 (en) | 2019-05-24 | 2024-06-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12018035B2 (en) | 2020-03-23 | 2024-06-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12029055B2 (en) | 2018-01-30 | 2024-07-02 | The University Of Southern California | OLED with hybrid emissive layer |
US12035613B2 (en) | 2020-05-26 | 2024-07-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12048237B2 (en) | 2016-05-05 | 2024-07-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12058929B2 (en) | 2015-06-04 | 2024-08-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12065451B2 (en) | 2020-08-19 | 2024-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12075690B2 (en) | 2017-12-14 | 2024-08-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12075691B2 (en) | 2019-04-30 | 2024-08-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12077550B2 (en) | 2019-07-02 | 2024-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12084465B2 (en) | 2020-02-24 | 2024-09-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12089486B2 (en) | 2017-02-08 | 2024-09-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12098157B2 (en) | 2017-06-23 | 2024-09-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12103942B2 (en) | 2019-05-13 | 2024-10-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12122793B2 (en) | 2019-03-27 | 2024-10-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12129269B2 (en) | 2020-04-13 | 2024-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12137606B2 (en) | 2020-10-20 | 2024-11-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12137605B2 (en) | 2019-02-08 | 2024-11-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12144244B2 (en) | 2020-08-07 | 2024-11-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100786865B1 (en) * | 2005-12-26 | 2007-12-20 | 삼성에스디아이 주식회사 | Photovoltaic device |
EP2075306A3 (en) * | 2007-12-25 | 2009-08-12 | Yamagata Promotional Organization for Industrial Technology | Organic electroluminescence material and element using the same |
WO2012122387A1 (en) * | 2011-03-10 | 2012-09-13 | Marshall Cox | Graphene electrodes for electronic devices |
JP2013103918A (en) | 2011-11-15 | 2013-05-30 | Udc Ireland Ltd | Charge-transporting material, organic electroluminescent element, and light-emitting device, display device and illumination device characterized by using the element |
JP5981770B2 (en) | 2012-01-23 | 2016-08-31 | ユー・ディー・シー アイルランド リミテッド | Organic electroluminescence device, charge transport material for organic electroluminescence device, and light emitting device, display device and illumination device using the device |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US34656A (en) * | 1862-03-11 | Improvement in liquids for exciting galvanic batteries | ||
US72964A (en) * | 1868-01-07 | Improved fire-kindling and fuel | ||
US182441A (en) * | 1876-09-19 | Improvement in gold-foil condensers for dental use | ||
US230980A (en) * | 1880-08-10 | Thomas e wobthlngto | ||
US4769292A (en) * | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US5077142A (en) * | 1989-04-20 | 1991-12-31 | Ricoh Company, Ltd. | Electroluminescent devices |
US5247190A (en) * | 1989-04-20 | 1993-09-21 | Cambridge Research And Innovation Limited | Electroluminescent devices |
US5281489A (en) * | 1990-03-16 | 1994-01-25 | Asashi Kasei Kogyo Kabushiki Kaisha | Electroluminescent element |
US5703436A (en) * | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US5707745A (en) * | 1994-12-13 | 1998-01-13 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5834893A (en) * | 1996-12-23 | 1998-11-10 | The Trustees Of Princeton University | High efficiency organic light emitting devices with light directing structures |
US5844363A (en) * | 1997-01-23 | 1998-12-01 | The Trustees Of Princeton Univ. | Vacuum deposited, non-polymeric flexible organic light emitting devices |
US5989737A (en) * | 1997-02-27 | 1999-11-23 | Xerox Corporation | Organic electroluminescent devices |
US6013982A (en) * | 1996-12-23 | 2000-01-11 | The Trustees Of Princeton University | Multicolor display devices |
US6087196A (en) * | 1998-01-30 | 2000-07-11 | The Trustees Of Princeton University | Fabrication of organic semiconductor devices using ink jet printing |
US6091195A (en) * | 1997-02-03 | 2000-07-18 | The Trustees Of Princeton University | Displays having mesa pixel configuration |
US6097147A (en) * | 1998-09-14 | 2000-08-01 | The Trustees Of Princeton University | Structure for high efficiency electroluminescent device |
US6150042A (en) * | 1996-12-09 | 2000-11-21 | Toyo Ink Manufacturing Co., Ltd. | Material for organoelectro-luminescence device and use thereof |
US6294398B1 (en) * | 1999-11-23 | 2001-09-25 | The Trustees Of Princeton University | Method for patterning devices |
US6303238B1 (en) * | 1997-12-01 | 2001-10-16 | The Trustees Of Princeton University | OLEDs doped with phosphorescent compounds |
US6310238B1 (en) * | 1997-09-24 | 2001-10-30 | Siemens Aktiengesellschaft | O-amino(thio)phenolcarboxylic acids, and their preparation |
US6310360B1 (en) * | 1999-07-21 | 2001-10-30 | The Trustees Of Princeton University | Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices |
US6337102B1 (en) * | 1997-11-17 | 2002-01-08 | The Trustees Of Princeton University | Low pressure vapor phase deposition of organic thin films |
US20020038860A1 (en) * | 2000-07-19 | 2002-04-04 | Akira Tsuboyama | Luminescence device |
US20020064679A1 (en) * | 1997-12-25 | 2002-05-30 | Hitoshi Ishiskawa | Organic electroluminescent device having high efficient luminance |
US20020177009A1 (en) * | 2001-02-22 | 2002-11-28 | Koichi Suzuki | Fused polynuclear compound and organic luminescence device |
US20030039858A1 (en) * | 2001-07-11 | 2003-02-27 | Fuji Photo Film Co., Ltd. | Light-emitting device |
US20040076853A1 (en) * | 2002-04-24 | 2004-04-22 | Eastman Kodak Company | Organic light-emitting diode devices with improved operational stability |
US20040155238A1 (en) * | 2001-03-14 | 2004-08-12 | Thompson Mark E. | Materials and devices for blue phosphorescence based organic light emitting diodes |
US20060134456A1 (en) * | 2002-08-12 | 2006-06-22 | Idemitsu Kosan Co., Ltd | Oligoarylene derivatives and organic electroluminescent devices made by using the same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01192420A (en) | 1988-01-26 | 1989-08-02 | Hashimoto Forming Ind Co Ltd | Method for straightening axial bending of lengthy metallic member |
JP3955366B2 (en) | 1997-09-25 | 2007-08-08 | 富士フイルム株式会社 | Triphenylene derivative, composition containing the same, and optically anisotropic material containing the same |
FR2779729B1 (en) | 1998-06-12 | 2000-09-01 | Thomson Csf | HOLES INJECTOR POLYMERS |
US6830828B2 (en) | 1998-09-14 | 2004-12-14 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
US6939624B2 (en) | 2000-08-11 | 2005-09-06 | Universal Display Corporation | Organometallic compounds and emission-shifting organic electrophosphorescence |
US6893743B2 (en) * | 2000-10-04 | 2005-05-17 | Mitsubishi Chemical Corporation | Organic electroluminescent device |
WO2003007658A2 (en) * | 2001-07-11 | 2003-01-23 | Fuji Photo Film Co., Ltd. | Light-emitting device and aromatic compound |
US7071615B2 (en) | 2001-08-20 | 2006-07-04 | Universal Display Corporation | Transparent electrodes |
US7431968B1 (en) | 2001-09-04 | 2008-10-07 | The Trustees Of Princeton University | Process and apparatus for organic vapor jet deposition |
US6835469B2 (en) | 2001-10-17 | 2004-12-28 | The University Of Southern California | Phosphorescent compounds and devices comprising the same |
US20030230980A1 (en) | 2002-06-18 | 2003-12-18 | Forrest Stephen R | Very low voltage, high efficiency phosphorescent oled in a p-i-n structure |
WO2005011334A1 (en) * | 2003-07-21 | 2005-02-03 | Covion Organic Semiconductors Gmbh | Organic electroluminescent element |
US7018723B2 (en) * | 2003-07-25 | 2006-03-28 | The University Of Southern California | Materials and structures for enhancing the performance of organic light emitting devices |
EP2592905B1 (en) * | 2003-07-31 | 2014-11-12 | Mitsubishi Chemical Corporation | Compound, charge transporting material and organic electroluminescent element |
-
2004
- 2004-02-23 US US10/785,287 patent/US20050025993A1/en not_active Abandoned
- 2004-07-21 WO PCT/US2004/023349 patent/WO2005013388A2/en active Application Filing
-
2007
- 2007-10-10 US US11/974,020 patent/US8105700B2/en not_active Expired - Fee Related
-
2011
- 2011-12-22 US US13/334,498 patent/US8465851B2/en not_active Expired - Lifetime
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US34656A (en) * | 1862-03-11 | Improvement in liquids for exciting galvanic batteries | ||
US72964A (en) * | 1868-01-07 | Improved fire-kindling and fuel | ||
US182441A (en) * | 1876-09-19 | Improvement in gold-foil condensers for dental use | ||
US230980A (en) * | 1880-08-10 | Thomas e wobthlngto | ||
US4769292A (en) * | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US5077142A (en) * | 1989-04-20 | 1991-12-31 | Ricoh Company, Ltd. | Electroluminescent devices |
US5247190A (en) * | 1989-04-20 | 1993-09-21 | Cambridge Research And Innovation Limited | Electroluminescent devices |
US5281489A (en) * | 1990-03-16 | 1994-01-25 | Asashi Kasei Kogyo Kabushiki Kaisha | Electroluminescent element |
US5703436A (en) * | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US5707745A (en) * | 1994-12-13 | 1998-01-13 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US6245449B1 (en) * | 1996-12-09 | 2001-06-12 | Toyo Ink Manufacturing Co., Ltd. | Material for organoelectroluminescence device and use thereof |
US6150042A (en) * | 1996-12-09 | 2000-11-21 | Toyo Ink Manufacturing Co., Ltd. | Material for organoelectro-luminescence device and use thereof |
US5834893A (en) * | 1996-12-23 | 1998-11-10 | The Trustees Of Princeton University | High efficiency organic light emitting devices with light directing structures |
US6013982A (en) * | 1996-12-23 | 2000-01-11 | The Trustees Of Princeton University | Multicolor display devices |
US5844363A (en) * | 1997-01-23 | 1998-12-01 | The Trustees Of Princeton Univ. | Vacuum deposited, non-polymeric flexible organic light emitting devices |
US6091195A (en) * | 1997-02-03 | 2000-07-18 | The Trustees Of Princeton University | Displays having mesa pixel configuration |
US5989737A (en) * | 1997-02-27 | 1999-11-23 | Xerox Corporation | Organic electroluminescent devices |
US6310238B1 (en) * | 1997-09-24 | 2001-10-30 | Siemens Aktiengesellschaft | O-amino(thio)phenolcarboxylic acids, and their preparation |
US6337102B1 (en) * | 1997-11-17 | 2002-01-08 | The Trustees Of Princeton University | Low pressure vapor phase deposition of organic thin films |
US6303238B1 (en) * | 1997-12-01 | 2001-10-16 | The Trustees Of Princeton University | OLEDs doped with phosphorescent compounds |
US6492041B2 (en) * | 1997-12-25 | 2002-12-10 | Nec Corporation | Organic electroluminescent device having high efficient luminance |
US20020064679A1 (en) * | 1997-12-25 | 2002-05-30 | Hitoshi Ishiskawa | Organic electroluminescent device having high efficient luminance |
US6087196A (en) * | 1998-01-30 | 2000-07-11 | The Trustees Of Princeton University | Fabrication of organic semiconductor devices using ink jet printing |
US6097147A (en) * | 1998-09-14 | 2000-08-01 | The Trustees Of Princeton University | Structure for high efficiency electroluminescent device |
US6310360B1 (en) * | 1999-07-21 | 2001-10-30 | The Trustees Of Princeton University | Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices |
US6468819B1 (en) * | 1999-11-23 | 2002-10-22 | The Trustees Of Princeton University | Method for patterning organic thin film devices using a die |
US6294398B1 (en) * | 1999-11-23 | 2001-09-25 | The Trustees Of Princeton University | Method for patterning devices |
US20020038860A1 (en) * | 2000-07-19 | 2002-04-04 | Akira Tsuboyama | Luminescence device |
US20020177009A1 (en) * | 2001-02-22 | 2002-11-28 | Koichi Suzuki | Fused polynuclear compound and organic luminescence device |
US20040155238A1 (en) * | 2001-03-14 | 2004-08-12 | Thompson Mark E. | Materials and devices for blue phosphorescence based organic light emitting diodes |
US20030039858A1 (en) * | 2001-07-11 | 2003-02-27 | Fuji Photo Film Co., Ltd. | Light-emitting device |
US20040076853A1 (en) * | 2002-04-24 | 2004-04-22 | Eastman Kodak Company | Organic light-emitting diode devices with improved operational stability |
US20060134456A1 (en) * | 2002-08-12 | 2006-06-22 | Idemitsu Kosan Co., Ltd | Oligoarylene derivatives and organic electroluminescent devices made by using the same |
Cited By (832)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100176390A1 (en) * | 2004-07-07 | 2010-07-15 | Raymond Kwong | Electroluminescent efficiency |
US7709100B2 (en) | 2004-07-07 | 2010-05-04 | Universal Display Corporation | Electroluminescent efficiency |
US20060008673A1 (en) * | 2004-07-07 | 2006-01-12 | Raymond Kwong | Electroluminescent efficiency |
US8449990B2 (en) | 2004-07-07 | 2013-05-28 | Universal Display Corporation | Electroluminescent efficiency |
US20090134784A1 (en) * | 2004-10-21 | 2009-05-28 | Universal Display Corporation | Carbazole-containing materials in phosphorescent light emitting diodes |
US9871219B2 (en) | 2005-04-13 | 2018-01-16 | Universal Display Corporation | Organic light emitting devices |
US9647227B2 (en) | 2005-04-13 | 2017-05-09 | Universal Display Corporation | Organic light emitting devices |
US11404650B2 (en) | 2005-05-06 | 2022-08-02 | Universal Display Corporation | Stability OLED materials and devices |
US10381579B2 (en) | 2005-05-06 | 2019-08-13 | Universal Display Corporation | Stability OLED materials and devices |
US9735377B2 (en) | 2005-05-06 | 2017-08-15 | Universal Display Corporation | Phosphorescent emitters and host materials with improved stability |
US8603645B2 (en) | 2005-05-19 | 2013-12-10 | Universal Display Corporation | Stable and efficient electroluminescent materials |
US7851072B2 (en) | 2005-05-19 | 2010-12-14 | Universal Display Corporation | Stable and efficient electroluminescent materials |
US20110060143A1 (en) * | 2005-05-19 | 2011-03-10 | Raymond Kwong | Stable and Efficient Electroluminescent Materials |
US20070003789A1 (en) * | 2005-05-19 | 2007-01-04 | Raymond Kwong | Stable and efficient electroluminescent materials |
US8092924B2 (en) | 2005-05-31 | 2012-01-10 | Universal Display Corporation | Triphenylene hosts in phosphorescent light emitting diodes |
JP2008543086A (en) * | 2005-05-31 | 2008-11-27 | ユニバーサル ディスプレイ コーポレイション | Triphenylene host in phosphorescent light-emitting diodes |
EP3064563A1 (en) | 2005-05-31 | 2016-09-07 | Universal Display Corporation | Triphenylene hosts in phosphorescent light emitting diodes |
CN103746080A (en) * | 2005-05-31 | 2014-04-23 | 通用显示公司 | Triphenylene hosts in phosphorescent light emitting diodes |
US9139494B2 (en) | 2005-05-31 | 2015-09-22 | Universal Display Corporation | Triphenylene hosts in phosphorescent light emitting diodes |
EP2277978A3 (en) * | 2005-05-31 | 2011-05-04 | Universal Display Corporation | Triphenylene hosts in phosphorescent light emitting diodes |
US20060280965A1 (en) * | 2005-05-31 | 2006-12-14 | Raymond Kwong | Triphenylene hosts in phosphorescent light emitting diodes |
EP2277978A2 (en) | 2005-05-31 | 2011-01-26 | Universal Display Corporation | Triphenylene hosts in phosphorescent light emitting diodes |
KR101357475B1 (en) * | 2005-05-31 | 2014-02-03 | 유니버셜 디스플레이 코포레이션 | Triphenylene hosts in phosphorescent light emitting diodes |
CN103435436A (en) * | 2005-05-31 | 2013-12-11 | 通用显示公司 | Triphenylene hosts in phosphorescent light emitting diodes |
US8580404B2 (en) | 2005-05-31 | 2013-11-12 | Universal Display Corporation | Triphenylene hosts in phosphorescent light emitting diodes |
WO2006130598A3 (en) * | 2005-05-31 | 2007-07-05 | Universal Display Corp | Triphenylene hosts in phosphorescent light emitting diodes |
US7379237B1 (en) | 2005-07-29 | 2008-05-27 | Aculight Corporation | Photonic-crystal-rod amplifiers for high-power pulsed optical radiation and associated method |
US20070104431A1 (en) * | 2005-07-29 | 2007-05-10 | Aculight Corporation | Multi-segment photonic-crystal-rod waveguides for amplification of high-power pulsed optical radiation and associated method |
US9666826B2 (en) | 2005-11-30 | 2017-05-30 | Global Oled Technology Llc | Electroluminescent device including an anthracene derivative |
US20070252522A1 (en) * | 2005-11-30 | 2007-11-01 | Eastman Kodak Company | Electroluminescent device including an anthracene derivative |
US9548462B2 (en) | 2006-02-10 | 2017-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9893306B2 (en) | 2006-02-10 | 2018-02-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9065063B2 (en) | 2006-02-10 | 2015-06-23 | Universal Display Corporation | Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof |
US10978649B2 (en) | 2006-02-10 | 2021-04-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403831B2 (en) | 2006-02-10 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10749121B2 (en) | 2006-02-10 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9281483B2 (en) | 2006-02-10 | 2016-03-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10158090B2 (en) | 2006-02-10 | 2018-12-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8889864B2 (en) | 2006-02-10 | 2014-11-18 | Universal Display Corporation | Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof |
CN101400643B (en) * | 2006-03-10 | 2013-03-27 | Lg化学株式会社 | Tetraphenylnaphthalene derivatives and organic light emitting diode using the same |
JP2013053151A (en) * | 2006-03-10 | 2013-03-21 | Lg Chem Ltd | Tetraphenylnaphthalene derivative and organic light-emitting device using the same |
US8329316B2 (en) | 2006-03-10 | 2012-12-11 | Lg Chem, Ltd. | Tetraphenylnaphalene derivatives and organic light emitting diode using the same |
JP2009529526A (en) * | 2006-03-10 | 2009-08-20 | エルジー・ケム・リミテッド | Tetraphenylnaphthalene derivative and organic light emitting device using the same |
WO2007105884A1 (en) | 2006-03-10 | 2007-09-20 | Lg Chem, Ltd. | Tetraphenylnaphthalene derivatives and organic light emitting diode using the same |
US20090174312A1 (en) * | 2006-03-10 | 2009-07-09 | Yeon-Hwan Kim | Tetraphenylnaphalene Derivatives and Organic Light Emitting Diode Using the Same |
US8420228B2 (en) * | 2006-04-13 | 2013-04-16 | Lg Display Co., Ltd. | Organic electroluminescence display with intermediate layer and method for fabricating the same |
US20070241676A1 (en) * | 2006-04-13 | 2007-10-18 | Park Sang T | Organic electroluminescence device and method for fabricating the same |
US9118020B2 (en) | 2006-04-27 | 2015-08-25 | Global Oled Technology Llc | Electroluminescent devices including organic eil layer |
US20100084647A1 (en) * | 2006-04-27 | 2010-04-08 | Kondakova Marina E | Electroluminescent devices including organic eil layer |
US20070252516A1 (en) * | 2006-04-27 | 2007-11-01 | Eastman Kodak Company | Electroluminescent devices including organic EIL layer |
WO2007127063A2 (en) | 2006-04-27 | 2007-11-08 | Eastman Kodak Company | Electroluminescent devices including organic eil layer |
EP2514736A1 (en) | 2006-07-28 | 2012-10-24 | Basf Se | Intermediates for Polymers |
JP2008050529A (en) * | 2006-08-28 | 2008-03-06 | Kyoto Univ | Organic light emission transistor material, organic light emission transistor element and display device |
US9899612B2 (en) | 2006-12-08 | 2018-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20110057171A1 (en) * | 2006-12-28 | 2011-03-10 | Universal Display Corporation | Long lifetime Phosphorescent Organic Light Emitting Device (OLED) Structures |
JP2010515255A (en) * | 2006-12-28 | 2010-05-06 | ユニバーサル ディスプレイ コーポレイション | Long-life phosphorescent organic light-emitting device (OLED) structure |
JP2014041846A (en) * | 2006-12-28 | 2014-03-06 | Universal Display Corp | Long life phosphorescent organic light emitting device (oled) structure |
US8866377B2 (en) | 2006-12-28 | 2014-10-21 | Universal Display Corporation | Long lifetime phosphorescent organic light emitting device (OLED) structures |
US10230060B2 (en) | 2007-03-08 | 2019-03-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10600975B2 (en) | 2007-03-08 | 2020-03-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9911930B2 (en) | 2007-03-08 | 2018-03-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9853227B2 (en) | 2007-03-08 | 2017-12-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9142786B2 (en) | 2007-03-08 | 2015-09-22 | Universal Display Corporation | Phosphorescent materials |
US11495755B2 (en) | 2007-03-08 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9577201B2 (en) | 2007-03-08 | 2017-02-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9190621B2 (en) | 2007-03-08 | 2015-11-17 | Universal Display Corporation | Materials for organic light emitting diode |
US20100207104A1 (en) * | 2007-04-23 | 2010-08-19 | Guenter Schmid | Electrical Organic Component and a Method for its Production |
JP2010530610A (en) * | 2007-04-23 | 2010-09-09 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | ORGANIC ELECTRIC ELEMENT AND MANUFACTURING METHOD THEREOF |
US8829493B2 (en) * | 2007-04-23 | 2014-09-09 | Osram Opto Semiconductors Gmbh | Electrical organic component polymeric rhenium compounds and a method for its production |
US9590180B2 (en) | 2007-06-23 | 2017-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20110084599A1 (en) * | 2007-08-08 | 2011-04-14 | Universal Display Corporation | Single triphenylene chromophores in phosphorescent light emitting diodes |
US8652652B2 (en) | 2007-08-08 | 2014-02-18 | Universal Display Corporation | Single triphenylene chromophores in phosphorescent light emitting diodes |
EP2511254A2 (en) | 2007-08-08 | 2012-10-17 | Universal Display Corporation | Single triphenylene chromophores in phosphorescent light emitting diodes |
US10957858B2 (en) | 2007-08-08 | 2021-03-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9153786B2 (en) | 2007-08-08 | 2015-10-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8822708B2 (en) | 2007-08-08 | 2014-09-02 | Universal Display Corporation | Benzo-fused thiophene / triphenylene hybrid materials |
US9997727B2 (en) | 2007-08-08 | 2018-06-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12082493B2 (en) | 2007-08-08 | 2024-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9608206B2 (en) | 2007-08-08 | 2017-03-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3424918A1 (en) | 2007-08-08 | 2019-01-09 | Universal Display Corporation | Single triphenylene chromophores in phosphorescent light emitting diodes |
US11690286B2 (en) | 2007-08-08 | 2023-06-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10312450B2 (en) | 2007-08-08 | 2019-06-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2009021107A1 (en) | 2007-08-08 | 2009-02-12 | Universal Display Corporation | Single triphenylene chromophores in phosphorescent light emitting diodes |
US10374171B2 (en) | 2007-08-08 | 2019-08-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9577200B2 (en) | 2007-08-08 | 2017-02-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8628862B2 (en) | 2007-09-20 | 2014-01-14 | Basf Se | Electroluminescent device |
US20100277060A1 (en) * | 2007-09-20 | 2010-11-04 | Basf Se | Electroluminescent device |
JP2011504492A (en) * | 2007-11-22 | 2011-02-10 | グラセル・ディスプレイ・インコーポレーテッド | Highly efficient blue electroluminescent compound and display device using the same |
US20090153034A1 (en) * | 2007-12-13 | 2009-06-18 | Universal Display Corporation | Carbazole-containing materials in phosphorescent light emittinig diodes |
US8586204B2 (en) | 2007-12-28 | 2013-11-19 | Universal Display Corporation | Phosphorescent emitters and host materials with improved stability |
US20110057559A1 (en) * | 2007-12-28 | 2011-03-10 | Universal Display Corporation | Phosphorescent emitters and host materials with improved stability |
US8007927B2 (en) | 2007-12-28 | 2011-08-30 | Universal Display Corporation | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
US8580402B2 (en) | 2007-12-28 | 2013-11-12 | Universal Display Corporation | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
US9123903B2 (en) | 2007-12-28 | 2015-09-01 | Universal Display Corporation | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
US9997726B2 (en) | 2007-12-28 | 2018-06-12 | Universal Display Corporation | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
US8221905B2 (en) | 2007-12-28 | 2012-07-17 | Universal Display Corporation | Carbazole-containing materials in phosphorescent light emitting diodes |
US20090200927A1 (en) * | 2008-02-09 | 2009-08-13 | Universal Display Corporation | Organic light emitting device architecture |
US8040053B2 (en) | 2008-02-09 | 2011-10-18 | Universal Display Corporation | Organic light emitting device architecture for reducing the number of organic materials |
US8628204B2 (en) | 2008-05-17 | 2014-01-14 | Electrolux Home Products Corporation N.V. | Cooking oven with an illumination-equipment and an illumination-equipment for a cavity of a cooking oven |
US20110049120A1 (en) * | 2008-05-17 | 2011-03-03 | Electrolux Home Products Corporation N.V. | cooking oven with an illumination-equipment and an illumination-equipment for a cavity of a cooking oven |
US8440326B2 (en) | 2008-06-30 | 2013-05-14 | Universal Display Corporation | Hole transport materials containing triphenylene |
US10186672B2 (en) | 2008-09-03 | 2019-01-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8519384B2 (en) | 2008-09-03 | 2013-08-27 | Universal Display Corporation | Phosphorescent materials |
US12127470B2 (en) | 2008-09-03 | 2024-10-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11482685B2 (en) | 2008-09-03 | 2022-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10593896B2 (en) | 2008-09-03 | 2020-03-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9630983B2 (en) | 2008-09-03 | 2017-04-25 | Universal Display Corporation | Organic electroluminescent material and devices |
US10892426B2 (en) | 2008-09-03 | 2021-01-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9076973B2 (en) | 2008-09-03 | 2015-07-07 | Universal Display Corporation | Phosphorescent materials |
US20110227049A1 (en) * | 2008-09-03 | 2011-09-22 | Universal Display Corporation | Phosphorescent materials |
US20110215309A1 (en) * | 2008-09-04 | 2011-09-08 | Universal Display Corporation | White phosphorescent organic light emitting devices |
US8513658B2 (en) | 2008-09-04 | 2013-08-20 | Universal Display Corporation | White phosphorescent organic light emitting devices |
US10084143B2 (en) | 2008-09-16 | 2018-09-25 | Universal Display Corporation | Phosphorescent materials |
US9034483B2 (en) | 2008-09-16 | 2015-05-19 | Universal Display Corporation | Phosphorescent materials |
US20100090591A1 (en) * | 2008-09-16 | 2010-04-15 | Universal Display Corporation | Phosphorescent materials |
US9455411B2 (en) | 2008-09-25 | 2016-09-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20100170395A1 (en) * | 2008-10-10 | 2010-07-08 | Farha Omar K | Tetratopic Phenyl Compounds, Related Metal-Organic Framework Materials and Post-Assembly Elaboration |
US8262775B2 (en) * | 2008-10-10 | 2012-09-11 | Northwestern University | Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration |
US8470075B2 (en) | 2008-10-10 | 2013-06-25 | Northwestern University | Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration |
US8053770B2 (en) | 2008-10-14 | 2011-11-08 | Universal Display Corporation | Emissive layer patterning for OLED |
US8367223B2 (en) | 2008-11-11 | 2013-02-05 | Universal Display Corporation | Heteroleptic phosphorescent emitters |
US20100141127A1 (en) * | 2008-11-11 | 2010-06-10 | Universal Display Corporation | Phosphorescent emitters |
US10008678B2 (en) | 2008-12-12 | 2018-06-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8778511B2 (en) | 2008-12-12 | 2014-07-15 | Universal Display Corporation | OLED stability via doped hole transport layer |
US20100148663A1 (en) * | 2008-12-12 | 2010-06-17 | Universal Display Corporation | Blue Emitter with High Efficiency Based on Imidazo[1,2-f] Phenanthridine Iridium Complexes |
US8815415B2 (en) | 2008-12-12 | 2014-08-26 | Universal Display Corporation | Blue emitter with high efficiency based on imidazo[1,2-f] phenanthridine iridium complexes |
US9196857B2 (en) * | 2009-01-13 | 2015-11-24 | Samsung Display Co., Ltd. | Organic light emitting diode and method of manufacturing the same |
US9067947B2 (en) | 2009-01-16 | 2015-06-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8952363B2 (en) | 2009-01-16 | 2015-02-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20100187984A1 (en) * | 2009-01-16 | 2010-07-29 | Universal Display Corporation | Materials with aza-dibenzothiophene or aza-dibenzofuran core for pholed |
US9518063B2 (en) | 2009-01-16 | 2016-12-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9831442B2 (en) | 2009-01-16 | 2017-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20100244004A1 (en) * | 2009-03-23 | 2010-09-30 | Universal Display Corporation | Heteroleptic iridium complex |
US11637251B2 (en) | 2009-03-23 | 2023-04-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9184397B2 (en) | 2009-03-23 | 2015-11-10 | Universal Display Corporation | Heteroleptic iridium complexes as dopants |
US10056566B2 (en) | 2009-03-23 | 2018-08-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11910701B2 (en) | 2009-03-23 | 2024-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8722205B2 (en) | 2009-03-23 | 2014-05-13 | Universal Display Corporation | Heteroleptic iridium complex |
US10312458B2 (en) | 2009-03-23 | 2019-06-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11910700B2 (en) | 2009-03-23 | 2024-02-20 | Universal Display Corporation | Heteroleptic iridium complexes as dopants |
US11380854B2 (en) | 2009-03-23 | 2022-07-05 | Universal Display Corporation | Heteroleptic iridium complexes as dopants |
US9359549B2 (en) | 2009-04-06 | 2016-06-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8557400B2 (en) | 2009-04-28 | 2013-10-15 | Universal Display Corporation | Iridium complex with methyl-D3 substitution |
US9634265B2 (en) | 2009-04-28 | 2017-04-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20100270916A1 (en) * | 2009-04-28 | 2010-10-28 | Universal Display Corporation | Iridium complex with methyl-d3 substitution |
US10374173B2 (en) | 2009-04-28 | 2019-08-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20100289406A1 (en) * | 2009-05-12 | 2010-11-18 | Universal Display Corporation | 2-azatriphenylene materials for organic light emitting diodes |
US9005771B2 (en) | 2009-05-12 | 2015-04-14 | Universal Display Corporation | 2-azatriphenylene materials for organic light emitting diodes |
US9673406B2 (en) | 2009-05-20 | 2017-06-06 | Universal Display Corporation | Metal complexes with boron-nitrogen heterocycle containing ligands |
US20120168735A1 (en) * | 2009-09-16 | 2012-07-05 | Merck Patent Gmbh | Organic electroluminescent device |
US8545996B2 (en) | 2009-11-02 | 2013-10-01 | The University Of Southern California | Ion-pairing soft salts based on organometallic complexes and their applications in organic light emitting diodes |
US8580394B2 (en) | 2009-11-19 | 2013-11-12 | Universal Display Corporation | 3-coordinate copper(I)-carbene complexes |
US9773986B2 (en) | 2009-11-19 | 2017-09-26 | The University Of Southern California | Copper(I)-carbene complexes and organic electroluminescent devices |
US9054344B2 (en) | 2010-01-20 | 2015-06-09 | Universal Display Corporation | Electroluminescent devices for lighting applications |
US8288187B2 (en) | 2010-01-20 | 2012-10-16 | Universal Display Corporation | Electroluminescent devices for lighting applications |
US20110177641A1 (en) * | 2010-01-20 | 2011-07-21 | Universal Display Corporation | Electroluminescent devices for lighting applications |
US20110204333A1 (en) * | 2010-02-25 | 2011-08-25 | Universal Display Corporation | Phosphorescent emitters |
US9156870B2 (en) | 2010-02-25 | 2015-10-13 | Universal Display Corporation | Phosphorescent emitters |
US20110215710A1 (en) * | 2010-03-03 | 2011-09-08 | Universal Display Corporation | Phosphorescent materials |
US9175211B2 (en) | 2010-03-03 | 2015-11-03 | Universal Display Corporation | Phosphorescent materials |
US8963132B2 (en) | 2010-03-25 | 2015-02-24 | Universal Display Corporation | Solution processable doped triarylamine hole injection materials |
US9040962B2 (en) | 2010-04-28 | 2015-05-26 | Universal Display Corporation | Depositing premixed materials |
US8968887B2 (en) | 2010-04-28 | 2015-03-03 | Universal Display Corporation | Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings |
US9140428B2 (en) | 2010-06-11 | 2015-09-22 | Universal Display Corporation | Triplet-triplet annihilation up-conversation for display and lighting applications |
US9543532B2 (en) | 2010-06-11 | 2017-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8673458B2 (en) | 2010-06-11 | 2014-03-18 | Universal Display Corporation | Delayed fluorescence OLED |
US8742657B2 (en) | 2010-06-11 | 2014-06-03 | Universal Display Corporation | Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications |
KR101910677B1 (en) * | 2010-07-09 | 2018-12-28 | 유디씨 아일랜드 리미티드 | Organic electroluminescent element |
US9435021B2 (en) | 2010-07-29 | 2016-09-06 | University Of Southern California | Co-deposition methods for the fabrication of organic optoelectronic devices |
US9954180B2 (en) | 2010-08-20 | 2018-04-24 | Universal Display Corporation | Bicarbazole compounds for OLEDs |
US11316113B2 (en) | 2010-08-20 | 2022-04-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11289659B2 (en) | 2010-08-20 | 2022-03-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9401482B2 (en) | 2010-10-08 | 2016-07-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8932734B2 (en) | 2010-10-08 | 2015-01-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8269317B2 (en) | 2010-11-11 | 2012-09-18 | Universal Display Corporation | Phosphorescent materials |
US10147892B2 (en) | 2010-12-07 | 2018-12-04 | The University Of Southern California | Organic electroluminescent materials and devices |
US11997918B2 (en) | 2011-01-13 | 2024-05-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680189B2 (en) | 2011-01-13 | 2020-06-09 | Universal Display Corporation | Materials for organic light emitting diodes |
US11374180B2 (en) | 2011-01-13 | 2022-06-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10008677B2 (en) | 2011-01-13 | 2018-06-26 | Universal Display Corporation | Materials for organic light emitting diode |
US9130177B2 (en) | 2011-01-13 | 2015-09-08 | Universal Display Corporation | 5-substituted 2 phenylquinoline complexes materials for light emitting diode |
US8415031B2 (en) | 2011-01-24 | 2013-04-09 | Universal Display Corporation | Electron transporting compounds |
US8871361B2 (en) | 2011-02-23 | 2014-10-28 | Universal Display Corporation | Tetradentate platinum complexes |
US10381580B2 (en) | 2011-02-23 | 2019-08-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8754232B2 (en) | 2011-02-23 | 2014-06-17 | Universal Display Corporation | Methods of making bis-tridentate carbene complexes of ruthenium and osmium |
US10388890B2 (en) | 2011-02-23 | 2019-08-20 | Universal Display Corporation | Organic electroluminescent heterocyclic carbene metal complexes and devices containing the same |
US9005772B2 (en) | 2011-02-23 | 2015-04-14 | Universal Display Corporation | Thioazole and oxazole carbene metal complexes as phosphorescent OLED materials |
US8563737B2 (en) | 2011-02-23 | 2013-10-22 | Universal Display Corporation | Methods of making bis-tridentate carbene complexes of ruthenium and osmium |
US8748011B2 (en) | 2011-02-23 | 2014-06-10 | Universal Display Corporation | Ruthenium carbene complexes for OLED material |
US9947880B2 (en) | 2011-02-23 | 2018-04-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8492006B2 (en) | 2011-02-24 | 2013-07-23 | Universal Display Corporation | Germanium-containing red emitter materials for organic light emitting diode |
US9972793B2 (en) | 2011-03-08 | 2018-05-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8883322B2 (en) | 2011-03-08 | 2014-11-11 | Universal Display Corporation | Pyridyl carbene phosphorescent emitters |
US10873038B2 (en) | 2011-03-08 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11600791B2 (en) | 2011-03-08 | 2023-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10535823B2 (en) | 2011-03-23 | 2020-01-14 | Semiconductor Energy Laboratory Co., Ltd. | Composite material, light-emitting element, light-emitting device, electronic device, and lighting device |
US9385328B2 (en) | 2011-03-23 | 2016-07-05 | Semiconductor Energy Laboratory Co., Ltd. | Composite material, light-emitting element, light-emitting device, electronic device, and lighting device |
EP2503618A1 (en) * | 2011-03-23 | 2012-09-26 | Semiconductor Energy Laboratory Co., Ltd. | Composite material, light-emitting element, light-emitting device, electronic device, and lighting device |
US10121972B2 (en) | 2011-03-23 | 2018-11-06 | Semiconductor Energy Laboratory Co., Ltd. | Composite material, light-emitting element, light-emitting device, electronic device, and lighting device |
US9831435B2 (en) | 2011-03-23 | 2017-11-28 | Semiconductor Energy Laboratory Co., Ltd. | Composite material, light-emitting element, light-emitting device, electronic device, and lighting device |
US8580399B2 (en) | 2011-04-08 | 2013-11-12 | Universal Display Corporation | Substituted oligoazacarbazoles for light emitting diodes |
US8564192B2 (en) | 2011-05-11 | 2013-10-22 | Universal Display Corporation | Process for fabricating OLED lighting panels |
US9397312B2 (en) | 2011-05-11 | 2016-07-19 | Universal Display Corporation | Process for fabricating metal bus lines for OLED lighting panels |
US8432095B2 (en) | 2011-05-11 | 2013-04-30 | Universal Display Corporation | Process for fabricating metal bus lines for OLED lighting panels |
US9450027B2 (en) | 2011-05-12 | 2016-09-20 | Universal Display Corporation | Method of forming bus line designs for large-area OLED lighting |
US8927308B2 (en) | 2011-05-12 | 2015-01-06 | Universal Display Corporation | Method of forming bus line designs for large-area OLED lighting |
US9647228B2 (en) | 2011-05-13 | 2017-05-09 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element and light-emitting device |
US9257658B2 (en) | 2011-05-19 | 2016-02-09 | Universal Display Corporation | Method of making organic electroluminescent materials |
US8795850B2 (en) | 2011-05-19 | 2014-08-05 | Universal Display Corporation | Phosphorescent heteroleptic phenylbenzimidazole dopants and new synthetic methodology |
US9212197B2 (en) | 2011-05-19 | 2015-12-15 | Universal Display Corporation | Phosphorescent heteroleptic phenylbenzimidazole dopants |
DE112012002237B4 (en) | 2011-05-25 | 2022-12-22 | Universal Display Corporation | Host Materials for OLEDS |
US8748012B2 (en) | 2011-05-25 | 2014-06-10 | Universal Display Corporation | Host materials for OLED |
US11189805B2 (en) | 2011-05-27 | 2021-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10158089B2 (en) | 2011-05-27 | 2018-12-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10079349B2 (en) | 2011-05-27 | 2018-09-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9755164B2 (en) | 2011-06-08 | 2017-09-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11063229B2 (en) | 2011-06-08 | 2021-07-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10297769B2 (en) | 2011-06-08 | 2019-05-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10978648B2 (en) | 2011-06-08 | 2021-04-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9812656B2 (en) | 2011-06-08 | 2017-11-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9847495B2 (en) | 2011-06-08 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11751455B2 (en) | 2011-06-17 | 2023-09-05 | Universal Display Corporation | Non-common capping layer on an organic device |
US8659036B2 (en) | 2011-06-17 | 2014-02-25 | Universal Display Corporation | Fine tuning of emission spectra by combination of multiple emitter spectra |
US9054343B2 (en) | 2011-06-17 | 2015-06-09 | Universal Display Corporation | Fine tuning of emission spectra by combination of multiple emitter spectra |
US10340313B2 (en) | 2011-06-17 | 2019-07-02 | Universal Display Corporation | Non-common capping layer on an organic device |
US8884316B2 (en) | 2011-06-17 | 2014-11-11 | Universal Display Corporation | Non-common capping layer on an organic device |
US9647221B2 (en) | 2011-07-14 | 2017-05-09 | Universal Display Corporation | Organic light-emitting devices |
US9252377B2 (en) | 2011-07-14 | 2016-02-02 | Universal Display Corporation | Inorganic hosts in OLEDs |
US9397310B2 (en) | 2011-07-14 | 2016-07-19 | Universal Display Corporation | Organice electroluminescent materials and devices |
US10214551B2 (en) | 2011-07-25 | 2019-02-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9783564B2 (en) | 2011-07-25 | 2017-10-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8409729B2 (en) | 2011-07-28 | 2013-04-02 | Universal Display Corporation | Host materials for phosphorescent OLEDs |
US8709615B2 (en) | 2011-07-28 | 2014-04-29 | Universal Display Corporation | Heteroleptic iridium complexes as dopants |
US8926119B2 (en) | 2011-08-04 | 2015-01-06 | Universal Display Corporation | Extendable light source with variable light emitting area |
US9313857B2 (en) | 2011-08-04 | 2016-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8552420B2 (en) | 2011-08-09 | 2013-10-08 | Universal Display Corporation | OLED light panel with controlled brightness variation |
US9493698B2 (en) | 2011-08-31 | 2016-11-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP2013102006A (en) * | 2011-11-08 | 2013-05-23 | Konica Minolta Holdings Inc | Organic el element |
US8652656B2 (en) | 2011-11-14 | 2014-02-18 | Universal Display Corporation | Triphenylene silane hosts |
US9142788B2 (en) | 2011-11-14 | 2015-09-22 | Universal Display Corporation | Host materials for OLEDs |
US9193745B2 (en) | 2011-11-15 | 2015-11-24 | Universal Display Corporation | Heteroleptic iridium complex |
US9217004B2 (en) | 2011-11-21 | 2015-12-22 | Universal Display Corporation | Organic light emitting materials |
US10454046B2 (en) | 2011-12-09 | 2019-10-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9512355B2 (en) | 2011-12-09 | 2016-12-06 | Universal Display Corporation | Organic light emitting materials |
US11482684B2 (en) | 2011-12-09 | 2022-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9455417B2 (en) | 2011-12-13 | 2016-09-27 | Universal Display Corporation | Split electrode for organic devices |
US8987451B2 (en) | 2012-01-03 | 2015-03-24 | Universal Display Corporation | Synthesis of cyclometallated platinum(II) complexes |
US9461254B2 (en) | 2012-01-03 | 2016-10-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9163174B2 (en) | 2012-01-04 | 2015-10-20 | Universal Display Corporation | Highly efficient phosphorescent materials |
DE102013200085B4 (en) | 2012-01-06 | 2020-06-18 | Universal Display Corporation | Highly efficient phosphorescent materials |
US9447113B2 (en) | 2012-01-10 | 2016-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8969592B2 (en) | 2012-01-10 | 2015-03-03 | Universal Display Corporation | Heterocyclic host materials |
US10211413B2 (en) | 2012-01-17 | 2019-02-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP2623508A1 (en) | 2012-02-02 | 2013-08-07 | Konica Minolta Advanced Layers, Inc. | Iridium complex compound, organic electroluminescent element material, organic electroluminescent element, illumination device and display device |
US9118017B2 (en) | 2012-02-27 | 2015-08-25 | Universal Display Corporation | Host compounds for red phosphorescent OLEDs |
US9548459B2 (en) | 2012-03-15 | 2017-01-17 | Universal Display Corporation | Organic materials for organic light emitting devices |
US9054323B2 (en) | 2012-03-15 | 2015-06-09 | Universal Display Corporation | Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds |
DE102013003605B4 (en) | 2012-03-15 | 2023-08-17 | Universal Display Corporation | Secondary hole transport layer with tricarbazole compounds |
US9386657B2 (en) | 2012-03-15 | 2016-07-05 | Universal Display Corporation | Organic Electroluminescent materials and devices |
US8723209B2 (en) | 2012-04-27 | 2014-05-13 | Universal Display Corporation | Out coupling layer containing particle polymer composite |
US9184399B2 (en) | 2012-05-04 | 2015-11-10 | Universal Display Corporation | Asymmetric hosts with triaryl silane side chains |
US9773985B2 (en) | 2012-05-21 | 2017-09-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9670404B2 (en) | 2012-06-06 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9502672B2 (en) | 2012-06-21 | 2016-11-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9725476B2 (en) | 2012-07-09 | 2017-08-08 | Universal Display Corporation | Silylated metal complexes |
US9231218B2 (en) | 2012-07-10 | 2016-01-05 | Universal Display Corporation | Phosphorescent emitters containing dibenzo[1,4]azaborinine structure |
DE102013214144B4 (en) | 2012-07-19 | 2023-02-16 | Universal Display Corp. | Diarylamino-substituted metal complexes |
US9059412B2 (en) | 2012-07-19 | 2015-06-16 | Universal Display Corporation | Transition metal complexes containing substituted imidazole carbene as ligands and their application in OLEDs |
US9540329B2 (en) | 2012-07-19 | 2017-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9663544B2 (en) | 2012-07-25 | 2017-05-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9318710B2 (en) | 2012-07-30 | 2016-04-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9627631B2 (en) | 2012-07-30 | 2017-04-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9978958B2 (en) | 2012-08-24 | 2018-05-22 | Universal Display Corporation | Phosphorescent emitters with phenylimidazole ligands |
WO2014030666A1 (en) | 2012-08-24 | 2014-02-27 | コニカミノルタ株式会社 | Transparent electrode, electronic device, and method for manufacturing transparent electrode |
US8952362B2 (en) | 2012-08-31 | 2015-02-10 | The Regents Of The University Of Michigan | High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion |
US10957870B2 (en) | 2012-09-07 | 2021-03-23 | Universal Display Corporation | Organic light emitting device |
US11696459B2 (en) | 2012-09-07 | 2023-07-04 | Universal Display Corporation | Phosphorescence-sensitized delayed fluorescence light emitting system |
US9287513B2 (en) | 2012-09-24 | 2016-03-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9312505B2 (en) | 2012-09-25 | 2016-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10388894B2 (en) | 2012-09-25 | 2019-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11917902B2 (en) | 2012-09-25 | 2024-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9252363B2 (en) | 2012-10-04 | 2016-02-02 | Universal Display Corporation | Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers |
US8692241B1 (en) | 2012-11-08 | 2014-04-08 | Universal Display Corporation | Transition metal complexes containing triazole and tetrazole carbene ligands |
US9685617B2 (en) | 2012-11-09 | 2017-06-20 | Universal Display Corporation | Organic electronuminescent materials and devices |
US9634264B2 (en) | 2012-11-09 | 2017-04-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10510968B2 (en) | 2012-11-09 | 2019-12-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11380855B2 (en) | 2012-11-09 | 2022-07-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8946697B1 (en) | 2012-11-09 | 2015-02-03 | Universal Display Corporation | Iridium complexes with aza-benzo fused ligands |
US10033002B2 (en) | 2012-11-09 | 2018-07-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9190623B2 (en) | 2012-11-20 | 2015-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11145831B2 (en) | 2012-11-20 | 2021-10-12 | Universal Display Corporation | Osmium(IV) complexes for OLED materials |
US10847729B2 (en) | 2012-11-20 | 2020-11-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10069090B2 (en) | 2012-11-20 | 2018-09-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9512136B2 (en) | 2012-11-26 | 2016-12-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9166175B2 (en) | 2012-11-27 | 2015-10-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9196860B2 (en) | 2012-12-04 | 2015-11-24 | Universal Display Corporation | Compounds for triplet-triplet annihilation upconversion |
US8716484B1 (en) | 2012-12-05 | 2014-05-06 | Universal Display Corporation | Hole transporting materials with twisted aryl groups |
US11716902B2 (en) | 2012-12-07 | 2023-08-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9209411B2 (en) | 2012-12-07 | 2015-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10069081B2 (en) | 2012-12-07 | 2018-09-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10910564B2 (en) | 2012-12-07 | 2021-02-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9670185B2 (en) | 2012-12-07 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9653691B2 (en) | 2012-12-12 | 2017-05-16 | Universal Display Corporation | Phosphorescence-sensitizing fluorescence material system |
DE102014001468B4 (en) | 2013-02-08 | 2024-08-08 | Universal Display Corporation | HETEROLEPTIC PHENYLBENZIMIDAZOLE COMPLEX |
US10400163B2 (en) | 2013-02-08 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11871652B2 (en) | 2013-02-21 | 2024-01-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9935276B2 (en) | 2013-02-21 | 2018-04-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10367154B2 (en) | 2013-02-21 | 2019-07-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8927749B2 (en) | 2013-03-07 | 2015-01-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9419225B2 (en) | 2013-03-14 | 2016-08-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9997712B2 (en) | 2013-03-27 | 2018-06-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2014157618A1 (en) | 2013-03-29 | 2014-10-02 | コニカミノルタ株式会社 | Organic electroluminescent element, and lighting device and display device which are provided with same |
WO2014157610A1 (en) | 2013-03-29 | 2014-10-02 | コニカミノルタ株式会社 | Organic electroluminescent element, lighting device, display device, light-emitting thin film and composition for organic electroluminescent element, and light-emitting method |
US9537106B2 (en) | 2013-05-09 | 2017-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9735373B2 (en) | 2013-06-10 | 2017-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9673401B2 (en) | 2013-06-28 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10199581B2 (en) | 2013-07-01 | 2019-02-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10991896B2 (en) | 2013-07-01 | 2021-04-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10121975B2 (en) | 2013-07-03 | 2018-11-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9761807B2 (en) | 2013-07-15 | 2017-09-12 | Universal Display Corporation | Organic light emitting diode materials |
US9324949B2 (en) | 2013-07-16 | 2016-04-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9553274B2 (en) | 2013-07-16 | 2017-01-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9224958B2 (en) | 2013-07-19 | 2015-12-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10930866B2 (en) | 2013-07-25 | 2021-02-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10074806B2 (en) | 2013-08-20 | 2018-09-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11611042B2 (en) | 2013-08-20 | 2023-03-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10749114B2 (en) | 2013-08-20 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9831437B2 (en) | 2013-08-20 | 2017-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9932359B2 (en) | 2013-08-30 | 2018-04-03 | University Of Southern California | Organic electroluminescent materials and devices |
US10199582B2 (en) | 2013-09-03 | 2019-02-05 | University Of Southern California | Organic electroluminescent materials and devices |
US9735378B2 (en) | 2013-09-09 | 2017-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9748503B2 (en) | 2013-09-13 | 2017-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10003034B2 (en) | 2013-09-30 | 2018-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9831447B2 (en) | 2013-10-08 | 2017-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9293712B2 (en) | 2013-10-11 | 2016-03-22 | Universal Display Corporation | Disubstituted pyrene compounds with amino group containing ortho aryl group and devices containing the same |
US10128450B2 (en) | 2013-10-23 | 2018-11-13 | University Of Southern California | Organic electroluminescent materials and devices |
US9853229B2 (en) | 2013-10-23 | 2017-12-26 | University Of Southern California | Organic electroluminescent materials and devices |
US11944000B2 (en) | 2013-10-29 | 2024-03-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9306179B2 (en) | 2013-11-08 | 2016-04-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9647218B2 (en) | 2013-11-14 | 2017-05-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10033000B2 (en) | 2013-11-15 | 2018-07-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9905784B2 (en) | 2013-11-15 | 2018-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10056565B2 (en) | 2013-11-20 | 2018-08-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10644251B2 (en) | 2013-12-04 | 2020-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9876173B2 (en) | 2013-12-09 | 2018-01-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11653558B2 (en) | 2013-12-16 | 2023-05-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10355227B2 (en) | 2013-12-16 | 2019-07-16 | Universal Display Corporation | Metal complex for phosphorescent OLED |
US9847496B2 (en) | 2013-12-23 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10135008B2 (en) | 2014-01-07 | 2018-11-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10749122B2 (en) | 2014-01-07 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10985331B2 (en) | 2014-01-07 | 2021-04-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11943999B2 (en) | 2014-01-07 | 2024-03-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9978961B2 (en) | 2014-01-08 | 2018-05-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11005051B2 (en) | 2014-01-08 | 2021-05-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9755159B2 (en) | 2014-01-23 | 2017-09-05 | Universal Display Corporation | Organic materials for OLEDs |
US9935277B2 (en) | 2014-01-30 | 2018-04-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9590194B2 (en) | 2014-02-14 | 2017-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9847497B2 (en) | 2014-02-18 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11024816B2 (en) | 2014-02-18 | 2021-06-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10003033B2 (en) | 2014-02-18 | 2018-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10707423B2 (en) | 2014-02-21 | 2020-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9647217B2 (en) | 2014-02-24 | 2017-05-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9502656B2 (en) | 2014-02-24 | 2016-11-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11600782B2 (en) | 2014-02-27 | 2023-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403825B2 (en) | 2014-02-27 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9181270B2 (en) | 2014-02-28 | 2015-11-10 | Universal Display Corporation | Method of making sulfide compounds |
US9590195B2 (en) | 2014-02-28 | 2017-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9673407B2 (en) | 2014-02-28 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9190620B2 (en) | 2014-03-01 | 2015-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9397309B2 (en) | 2014-03-13 | 2016-07-19 | Universal Display Corporation | Organic electroluminescent devices |
US10208026B2 (en) | 2014-03-18 | 2019-02-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9748504B2 (en) | 2014-03-25 | 2017-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929353B2 (en) | 2014-04-02 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9691993B2 (en) | 2014-04-09 | 2017-06-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11793066B2 (en) | 2014-04-14 | 2023-10-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9847498B2 (en) | 2014-04-14 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10825998B2 (en) | 2014-04-14 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10008679B2 (en) | 2014-04-14 | 2018-06-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9905785B2 (en) | 2014-04-14 | 2018-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11005052B2 (en) | 2014-04-14 | 2021-05-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9450198B2 (en) | 2014-04-15 | 2016-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10256427B2 (en) | 2014-04-15 | 2019-04-09 | Universal Display Corporation | Efficient organic electroluminescent devices |
US9741941B2 (en) | 2014-04-29 | 2017-08-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10457699B2 (en) | 2014-05-02 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11919916B2 (en) | 2014-05-02 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11427607B2 (en) | 2014-05-02 | 2022-08-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10263198B2 (en) | 2014-05-08 | 2019-04-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10256419B2 (en) | 2014-05-08 | 2019-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403830B2 (en) | 2014-05-08 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495754B2 (en) | 2014-05-08 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10636983B2 (en) | 2014-05-08 | 2020-04-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10276805B2 (en) | 2014-05-08 | 2019-04-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10301338B2 (en) | 2014-05-08 | 2019-05-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9997716B2 (en) | 2014-05-27 | 2018-06-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10461260B2 (en) | 2014-06-03 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9911931B2 (en) | 2014-06-26 | 2018-03-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10700293B2 (en) | 2014-06-26 | 2020-06-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10297762B2 (en) | 2014-07-09 | 2019-05-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11456423B2 (en) | 2014-07-09 | 2022-09-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11024811B2 (en) | 2014-07-09 | 2021-06-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11957047B2 (en) | 2014-07-09 | 2024-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10566546B2 (en) | 2014-07-14 | 2020-02-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929357B2 (en) | 2014-07-22 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10411200B2 (en) | 2014-08-07 | 2019-09-10 | Universal Display Corporation | Electroluminescent (2-phenylpyridine)iridium complexes and devices |
US12029108B2 (en) | 2014-08-07 | 2024-07-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11108000B2 (en) | 2014-08-07 | 2021-08-31 | Unniversal Display Corporation | Organic electroluminescent materials and devices |
US10749113B2 (en) | 2014-09-29 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11641774B2 (en) | 2014-09-29 | 2023-05-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10043987B2 (en) | 2014-09-29 | 2018-08-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10135007B2 (en) | 2014-09-29 | 2018-11-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11342510B2 (en) | 2014-10-06 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10361375B2 (en) | 2014-10-06 | 2019-07-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9397302B2 (en) | 2014-10-08 | 2016-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10854826B2 (en) | 2014-10-08 | 2020-12-01 | Universal Display Corporation | Organic electroluminescent compounds, compositions and devices |
US10998508B2 (en) | 2014-10-08 | 2021-05-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11342516B2 (en) | 2014-10-08 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9799838B2 (en) | 2014-10-08 | 2017-10-24 | Universal Display Corporation | Fluorinated organic electroluminescent materials and devices |
US12082485B2 (en) | 2014-10-08 | 2024-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10950803B2 (en) | 2014-10-13 | 2021-03-16 | Universal Display Corporation | Compounds and uses in devices |
US9484541B2 (en) | 2014-10-20 | 2016-11-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9348092B1 (en) * | 2014-11-10 | 2016-05-24 | Tyco Electronics Corporation | Mode size converters for reducing a modal profile of incoming light |
US10868261B2 (en) | 2014-11-10 | 2020-12-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10038151B2 (en) | 2014-11-12 | 2018-07-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10411201B2 (en) | 2014-11-12 | 2019-09-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11832507B2 (en) | 2014-11-12 | 2023-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11043641B2 (en) | 2014-11-12 | 2021-06-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9882151B2 (en) | 2014-11-14 | 2018-01-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9871212B2 (en) | 2014-11-14 | 2018-01-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9761814B2 (en) | 2014-11-18 | 2017-09-12 | Universal Display Corporation | Organic light-emitting materials and devices |
US9444075B2 (en) | 2014-11-26 | 2016-09-13 | Universal Display Corporation | Emissive display with photo-switchable polarization |
US9825260B2 (en) | 2014-11-26 | 2017-11-21 | Universal Display Corporation | Emissive display with photo-switchable polarization |
US9450195B2 (en) | 2014-12-17 | 2016-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9680113B2 (en) | 2014-12-17 | 2017-06-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10000517B2 (en) | 2014-12-17 | 2018-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10636978B2 (en) | 2014-12-30 | 2020-04-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10253252B2 (en) | 2014-12-30 | 2019-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9312499B1 (en) | 2015-01-05 | 2016-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9406892B2 (en) | 2015-01-07 | 2016-08-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9748500B2 (en) | 2015-01-15 | 2017-08-29 | Universal Display Corporation | Organic light emitting materials |
US10418569B2 (en) | 2015-01-25 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9711730B2 (en) | 2015-01-25 | 2017-07-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10644247B2 (en) | 2015-02-06 | 2020-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11245081B2 (en) | 2015-02-06 | 2022-02-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10418562B2 (en) | 2015-02-06 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10355222B2 (en) | 2015-02-06 | 2019-07-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10177316B2 (en) | 2015-02-09 | 2019-01-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11795385B2 (en) | 2015-02-13 | 2023-10-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10889754B2 (en) | 2015-02-13 | 2021-01-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10144867B2 (en) | 2015-02-13 | 2018-12-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11535797B2 (en) | 2015-02-13 | 2022-12-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP4271160A2 (en) | 2015-02-13 | 2023-11-01 | Merck Patent GmbH | Aromatic heterocyclic derivative, and organic electroluminescent element, illumination device, and display device using aromatic heterocyclic derivative |
US10680183B2 (en) | 2015-02-15 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929361B2 (en) | 2015-02-16 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11056657B2 (en) | 2015-02-27 | 2021-07-06 | University Display Corporation | Organic electroluminescent materials and devices |
US11678567B2 (en) | 2015-02-27 | 2023-06-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10600966B2 (en) | 2015-02-27 | 2020-03-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10686143B2 (en) | 2015-03-05 | 2020-06-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10270046B2 (en) | 2015-03-06 | 2019-04-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9780316B2 (en) | 2015-03-16 | 2017-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9911928B2 (en) | 2015-03-19 | 2018-03-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9871214B2 (en) | 2015-03-23 | 2018-01-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10529931B2 (en) | 2015-03-24 | 2020-01-07 | Universal Display Corporation | Organic Electroluminescent materials and devices |
US10297770B2 (en) | 2015-03-27 | 2019-05-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495749B2 (en) | 2015-04-06 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11672175B2 (en) | 2015-04-06 | 2023-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10593890B2 (en) | 2015-04-06 | 2020-03-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10693082B2 (en) | 2015-04-06 | 2020-06-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11818949B2 (en) | 2015-04-06 | 2023-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11245080B2 (en) | 2015-04-06 | 2022-02-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403826B2 (en) | 2015-05-07 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10777749B2 (en) | 2015-05-07 | 2020-09-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11744151B2 (en) | 2015-05-07 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9478758B1 (en) | 2015-05-08 | 2016-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
USRE48809E1 (en) | 2015-05-15 | 2021-11-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11335864B2 (en) | 2015-05-15 | 2022-05-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10547013B2 (en) | 2015-05-15 | 2020-01-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12035614B2 (en) | 2015-05-15 | 2024-07-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9859510B2 (en) | 2015-05-15 | 2018-01-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10256411B2 (en) | 2015-05-21 | 2019-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10109799B2 (en) | 2015-05-21 | 2018-10-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10418568B2 (en) | 2015-06-01 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10033004B2 (en) | 2015-06-01 | 2018-07-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12058929B2 (en) | 2015-06-04 | 2024-08-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11925102B2 (en) | 2015-06-04 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10825997B2 (en) | 2015-06-25 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10873036B2 (en) | 2015-07-07 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9978956B2 (en) | 2015-07-15 | 2018-05-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11127905B2 (en) | 2015-07-29 | 2021-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11018309B2 (en) | 2015-08-03 | 2021-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11522140B2 (en) | 2015-08-17 | 2022-12-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10522769B2 (en) | 2015-08-18 | 2019-12-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10181564B2 (en) | 2015-08-26 | 2019-01-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10361381B2 (en) | 2015-09-03 | 2019-07-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11605789B2 (en) | 2015-09-03 | 2023-03-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10672996B2 (en) | 2015-09-03 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11626563B2 (en) | 2015-09-03 | 2023-04-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11706972B2 (en) | 2015-09-08 | 2023-07-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11302872B2 (en) | 2015-09-09 | 2022-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10770664B2 (en) | 2015-09-21 | 2020-09-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11812622B2 (en) | 2015-09-25 | 2023-11-07 | Universal Display Corporation | Organic electroluminescent compounds and devices |
US11889747B2 (en) | 2015-10-01 | 2024-01-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10593892B2 (en) | 2015-10-01 | 2020-03-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10847728B2 (en) | 2015-10-01 | 2020-11-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12063853B2 (en) | 2015-10-01 | 2024-08-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10991895B2 (en) | 2015-10-06 | 2021-04-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11349087B2 (en) | 2015-10-29 | 2022-05-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10388893B2 (en) | 2015-10-29 | 2019-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10177318B2 (en) | 2015-10-29 | 2019-01-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10388892B2 (en) | 2015-10-29 | 2019-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10998507B2 (en) | 2015-11-23 | 2021-05-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11832456B2 (en) | 2015-11-23 | 2023-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10476010B2 (en) | 2015-11-30 | 2019-11-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3182478A1 (en) | 2015-12-18 | 2017-06-21 | Novaled GmbH | Electron injection layer for an organic light-emitting diode (oled) |
US10957861B2 (en) | 2015-12-29 | 2021-03-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11818948B2 (en) | 2015-12-29 | 2023-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11024808B2 (en) | 2015-12-29 | 2021-06-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10135006B2 (en) | 2016-01-04 | 2018-11-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3200255A2 (en) | 2016-01-06 | 2017-08-02 | Konica Minolta, Inc. | Organic electroluminescent element, method for producing organic electroluminescent element, display, and lighting device |
US11716898B2 (en) | 2016-02-09 | 2023-08-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11098245B2 (en) | 2016-02-09 | 2021-08-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10457864B2 (en) | 2016-02-09 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11692132B2 (en) | 2016-02-09 | 2023-07-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10707427B2 (en) | 2016-02-09 | 2020-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10600967B2 (en) | 2016-02-18 | 2020-03-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2017140780A1 (en) | 2016-02-19 | 2017-08-24 | Novaled Gmbh | Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled) |
EP3208861A1 (en) | 2016-02-19 | 2017-08-23 | Novaled GmbH | Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled) |
US11094891B2 (en) | 2016-03-16 | 2021-08-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10276809B2 (en) | 2016-04-05 | 2019-04-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10236456B2 (en) | 2016-04-11 | 2019-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3232490A1 (en) | 2016-04-12 | 2017-10-18 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
WO2017178392A1 (en) | 2016-04-12 | 2017-10-19 | Novaled Gmbh | Organic light emitting diode comprising an organic semiconductor layer |
US11825734B2 (en) | 2016-04-13 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10566552B2 (en) | 2016-04-13 | 2020-02-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11342515B2 (en) | 2016-04-13 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11081647B2 (en) | 2016-04-22 | 2021-08-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228002B2 (en) | 2016-04-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228003B2 (en) | 2016-04-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12048237B2 (en) | 2016-05-05 | 2024-07-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10840458B2 (en) | 2016-05-25 | 2020-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10985328B2 (en) | 2016-05-25 | 2021-04-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11711977B2 (en) | 2016-05-25 | 2023-07-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3252837A1 (en) | 2016-05-30 | 2017-12-06 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
EP3252841A1 (en) | 2016-05-30 | 2017-12-06 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
US10468609B2 (en) | 2016-06-02 | 2019-11-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10651403B2 (en) | 2016-06-20 | 2020-05-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11482683B2 (en) | 2016-06-20 | 2022-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11588121B2 (en) | 2016-06-20 | 2023-02-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11839139B2 (en) | 2016-06-20 | 2023-12-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11690284B2 (en) | 2016-06-20 | 2023-06-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11424419B2 (en) | 2016-06-20 | 2022-08-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12101999B2 (en) | 2016-06-20 | 2024-09-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11683981B2 (en) | 2016-06-20 | 2023-06-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10862054B2 (en) | 2016-06-20 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10672997B2 (en) | 2016-06-20 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10727423B2 (en) | 2016-06-20 | 2020-07-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11903306B2 (en) | 2016-06-20 | 2024-02-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11114624B2 (en) | 2016-06-20 | 2021-09-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10686140B2 (en) | 2016-06-20 | 2020-06-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10957866B2 (en) | 2016-06-30 | 2021-03-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929360B2 (en) | 2016-07-08 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10566547B2 (en) | 2016-07-11 | 2020-02-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680184B2 (en) | 2016-07-11 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10720587B2 (en) | 2016-07-19 | 2020-07-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10153443B2 (en) | 2016-07-19 | 2018-12-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10205105B2 (en) | 2016-08-15 | 2019-02-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11024807B2 (en) | 2016-09-14 | 2021-06-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10608186B2 (en) | 2016-09-14 | 2020-03-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10505127B2 (en) | 2016-09-19 | 2019-12-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680187B2 (en) | 2016-09-23 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11081658B2 (en) | 2016-10-03 | 2021-08-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11183642B2 (en) | 2016-10-03 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11189804B2 (en) | 2016-10-03 | 2021-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11127906B2 (en) | 2016-10-03 | 2021-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11196010B2 (en) | 2016-10-03 | 2021-12-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11711969B2 (en) | 2016-10-03 | 2023-07-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11711968B2 (en) | 2016-10-07 | 2023-07-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11011709B2 (en) | 2016-10-07 | 2021-05-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11239432B2 (en) | 2016-10-14 | 2022-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10608185B2 (en) | 2016-10-17 | 2020-03-31 | Univeral Display Corporation | Organic electroluminescent materials and devices |
US10236458B2 (en) | 2016-10-24 | 2019-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10340464B2 (en) | 2016-11-10 | 2019-07-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680188B2 (en) | 2016-11-11 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11069864B2 (en) | 2016-11-11 | 2021-07-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10897016B2 (en) | 2016-11-14 | 2021-01-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11980094B2 (en) | 2016-11-14 | 2024-05-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10964893B2 (en) | 2016-11-17 | 2021-03-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10662196B2 (en) | 2016-11-17 | 2020-05-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10833276B2 (en) | 2016-11-21 | 2020-11-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10153445B2 (en) | 2016-11-21 | 2018-12-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11555048B2 (en) | 2016-12-01 | 2023-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11545636B2 (en) | 2016-12-15 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11548905B2 (en) | 2016-12-15 | 2023-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10490753B2 (en) | 2016-12-15 | 2019-11-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10811618B2 (en) | 2016-12-19 | 2020-10-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11152579B2 (en) | 2016-12-28 | 2021-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11201298B2 (en) | 2017-01-09 | 2021-12-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11780865B2 (en) | 2017-01-09 | 2023-10-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10804475B2 (en) | 2017-01-11 | 2020-10-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11545637B2 (en) | 2017-01-13 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10629820B2 (en) | 2017-01-18 | 2020-04-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10964904B2 (en) | 2017-01-20 | 2021-03-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11566034B2 (en) | 2017-01-20 | 2023-01-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11053268B2 (en) | 2017-01-20 | 2021-07-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765968B2 (en) | 2017-01-23 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765966B2 (en) | 2017-01-24 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11050028B2 (en) | 2017-01-24 | 2021-06-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12089486B2 (en) | 2017-02-08 | 2024-09-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10978647B2 (en) | 2017-02-15 | 2021-04-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11254697B2 (en) | 2017-02-22 | 2022-02-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10844084B2 (en) | 2017-02-22 | 2020-11-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11697661B2 (en) | 2017-02-22 | 2023-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10822361B2 (en) | 2017-02-22 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10745431B2 (en) | 2017-03-08 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10741780B2 (en) | 2017-03-10 | 2020-08-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10672998B2 (en) | 2017-03-23 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10873037B2 (en) | 2017-03-28 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10910577B2 (en) | 2017-03-28 | 2021-02-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12041846B2 (en) | 2017-03-29 | 2024-07-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10844085B2 (en) | 2017-03-29 | 2020-11-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11192910B2 (en) | 2017-03-29 | 2021-12-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11056658B2 (en) | 2017-03-29 | 2021-07-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11725021B2 (en) | 2017-03-29 | 2023-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11678563B2 (en) | 2017-03-29 | 2023-06-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11158820B2 (en) | 2017-03-29 | 2021-10-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10862046B2 (en) | 2017-03-30 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11139443B2 (en) | 2017-03-31 | 2021-10-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11276829B2 (en) | 2017-03-31 | 2022-03-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11038117B2 (en) | 2017-04-11 | 2021-06-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10777754B2 (en) | 2017-04-11 | 2020-09-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11566035B2 (en) | 2017-04-21 | 2023-01-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11084838B2 (en) | 2017-04-21 | 2021-08-10 | Universal Display Corporation | Organic electroluminescent materials and device |
US10975113B2 (en) | 2017-04-21 | 2021-04-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11101434B2 (en) | 2017-04-21 | 2021-08-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11591356B2 (en) | 2017-04-21 | 2023-02-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10910570B2 (en) | 2017-04-28 | 2021-02-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11038137B2 (en) | 2017-04-28 | 2021-06-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11117897B2 (en) | 2017-05-01 | 2021-09-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11702420B2 (en) | 2017-05-01 | 2023-07-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10941170B2 (en) | 2017-05-03 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11201299B2 (en) | 2017-05-04 | 2021-12-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10870668B2 (en) | 2017-05-05 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10862055B2 (en) | 2017-05-05 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11377459B2 (en) | 2017-05-05 | 2022-07-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10930864B2 (en) | 2017-05-10 | 2021-02-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10822362B2 (en) | 2017-05-11 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10944060B2 (en) | 2017-05-11 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10790455B2 (en) | 2017-05-18 | 2020-09-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10944062B2 (en) | 2017-05-18 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10934293B2 (en) | 2017-05-18 | 2021-03-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11038115B2 (en) | 2017-05-18 | 2021-06-15 | Universal Display Corporation | Organic electroluminescent materials and device |
US10840459B2 (en) | 2017-05-18 | 2020-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10930862B2 (en) | 2017-06-01 | 2021-02-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11731975B2 (en) | 2017-06-23 | 2023-08-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495757B2 (en) | 2017-06-23 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11832510B2 (en) | 2017-06-23 | 2023-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11608321B2 (en) | 2017-06-23 | 2023-03-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10968226B2 (en) | 2017-06-23 | 2021-04-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11758804B2 (en) | 2017-06-23 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11174259B2 (en) | 2017-06-23 | 2021-11-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11725022B2 (en) | 2017-06-23 | 2023-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11958825B2 (en) | 2017-06-23 | 2024-04-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11678565B2 (en) | 2017-06-23 | 2023-06-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11552261B2 (en) | 2017-06-23 | 2023-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12098157B2 (en) | 2017-06-23 | 2024-09-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11814403B2 (en) | 2017-06-23 | 2023-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11802136B2 (en) | 2017-06-23 | 2023-10-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11469382B2 (en) | 2017-07-12 | 2022-10-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11322691B2 (en) | 2017-07-26 | 2022-05-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228010B2 (en) | 2017-07-26 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11917843B2 (en) | 2017-07-26 | 2024-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11239433B2 (en) | 2017-07-26 | 2022-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12096681B2 (en) | 2017-07-26 | 2024-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11968883B2 (en) | 2017-07-26 | 2024-04-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765970B2 (en) | 2017-07-26 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11744141B2 (en) | 2017-08-09 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11508913B2 (en) | 2017-08-10 | 2022-11-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11349083B2 (en) | 2017-08-10 | 2022-05-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11910699B2 (en) | 2017-08-10 | 2024-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11744142B2 (en) | 2017-08-10 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11462697B2 (en) | 2017-08-22 | 2022-10-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11723269B2 (en) | 2017-08-22 | 2023-08-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11437591B2 (en) | 2017-08-24 | 2022-09-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11605791B2 (en) | 2017-09-01 | 2023-03-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11696492B2 (en) | 2017-09-07 | 2023-07-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12069949B2 (en) | 2017-09-07 | 2024-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11424420B2 (en) | 2017-09-07 | 2022-08-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11444249B2 (en) | 2017-09-07 | 2022-09-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10964895B2 (en) | 2017-09-11 | 2021-03-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10608188B2 (en) | 2017-09-11 | 2020-03-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11778897B2 (en) | 2017-09-20 | 2023-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN111279507A (en) * | 2017-11-02 | 2020-06-12 | 住友化学株式会社 | Organic electroluminescent element |
US11214587B2 (en) | 2017-11-07 | 2022-01-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11183646B2 (en) | 2017-11-07 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11910702B2 (en) | 2017-11-07 | 2024-02-20 | Universal Display Corporation | Organic electroluminescent devices |
US11685756B2 (en) | 2017-11-07 | 2023-06-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11168103B2 (en) | 2017-11-17 | 2021-11-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11825735B2 (en) | 2017-11-28 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11937503B2 (en) | 2017-11-30 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10971687B2 (en) | 2017-12-14 | 2021-04-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12075690B2 (en) | 2017-12-14 | 2024-08-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11233205B2 (en) | 2017-12-14 | 2022-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11233204B2 (en) | 2017-12-14 | 2022-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11081659B2 (en) | 2018-01-10 | 2021-08-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11700765B2 (en) | 2018-01-10 | 2023-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11515493B2 (en) | 2018-01-11 | 2022-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11818946B2 (en) | 2018-01-11 | 2023-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11271177B2 (en) | 2018-01-11 | 2022-03-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11367840B2 (en) | 2018-01-26 | 2022-06-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11542289B2 (en) | 2018-01-26 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11845764B2 (en) | 2018-01-26 | 2023-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12029055B2 (en) | 2018-01-30 | 2024-07-02 | The University Of Southern California | OLED with hybrid emissive layer |
US11910708B2 (en) | 2018-02-09 | 2024-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11957050B2 (en) | 2018-02-09 | 2024-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12122794B2 (en) | 2018-02-09 | 2024-10-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11180519B2 (en) | 2018-02-09 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11697662B2 (en) | 2018-02-09 | 2023-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11239434B2 (en) | 2018-02-09 | 2022-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11342509B2 (en) | 2018-02-09 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11279722B2 (en) | 2018-03-12 | 2022-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11746122B2 (en) | 2018-03-12 | 2023-09-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11700766B2 (en) | 2018-03-12 | 2023-07-11 | Universal Display Corporation | Host materials for electroluminescent devices |
US11557733B2 (en) | 2018-03-12 | 2023-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11217757B2 (en) | 2018-03-12 | 2022-01-04 | Universal Display Corporation | Host materials for electroluminescent devices |
US12108668B2 (en) | 2018-03-12 | 2024-10-01 | Universal Display Corporation | Host materials for electroluminescent devices |
US11165028B2 (en) | 2018-03-12 | 2021-11-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11142538B2 (en) | 2018-03-12 | 2021-10-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11882759B2 (en) | 2018-04-13 | 2024-01-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11390639B2 (en) | 2018-04-13 | 2022-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11616203B2 (en) | 2018-04-17 | 2023-03-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11753427B2 (en) | 2018-05-04 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11839142B2 (en) | 2018-05-04 | 2023-12-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11342513B2 (en) | 2018-05-04 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11515494B2 (en) | 2018-05-04 | 2022-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11793073B2 (en) | 2018-05-06 | 2023-10-17 | Universal Display Corporation | Host materials for electroluminescent devices |
US11450822B2 (en) | 2018-05-25 | 2022-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11459349B2 (en) | 2018-05-25 | 2022-10-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11844267B2 (en) | 2018-05-25 | 2023-12-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11716900B2 (en) | 2018-05-30 | 2023-08-01 | Universal Display Corporation | Host materials for electroluminescent devices |
US11404653B2 (en) | 2018-06-04 | 2022-08-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11296283B2 (en) | 2018-06-04 | 2022-04-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12022727B2 (en) | 2018-06-04 | 2024-06-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11925103B2 (en) | 2018-06-05 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11339182B2 (en) | 2018-06-07 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228004B2 (en) | 2018-06-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11261207B2 (en) | 2018-06-25 | 2022-03-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11753425B2 (en) | 2018-07-11 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11233203B2 (en) | 2018-09-06 | 2022-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11939293B2 (en) | 2018-09-11 | 2024-03-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11485706B2 (en) | 2018-09-11 | 2022-11-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11718634B2 (en) | 2018-09-14 | 2023-08-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11903305B2 (en) | 2018-09-24 | 2024-02-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495752B2 (en) | 2018-10-08 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11469383B2 (en) | 2018-10-08 | 2022-10-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11417843B2 (en) * | 2018-10-12 | 2022-08-16 | Samsung Display Co., Ltd. | Organic electroluminescence device and amine compound for organic electroluminescence device |
US11476430B2 (en) | 2018-10-15 | 2022-10-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11515482B2 (en) | 2018-10-23 | 2022-11-29 | Universal Display Corporation | Deep HOMO (highest occupied molecular orbital) emitter device structures |
US11469384B2 (en) | 2018-11-02 | 2022-10-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11839141B2 (en) | 2018-11-02 | 2023-12-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11825736B2 (en) | 2018-11-19 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11963441B2 (en) | 2018-11-26 | 2024-04-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12048246B2 (en) | 2018-11-28 | 2024-07-23 | Universal Display Corporation | Host materials for electroluminescent devices |
US11672165B2 (en) | 2018-11-28 | 2023-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12035618B2 (en) | 2018-11-28 | 2024-07-09 | Universal Display Corporation | Electroluminescent devices |
US11672176B2 (en) | 2018-11-28 | 2023-06-06 | Universal Display Corporation | Host materials for electroluminescent devices |
US11690285B2 (en) | 2018-11-28 | 2023-06-27 | Universal Display Corporation | Electroluminescent devices |
US11515489B2 (en) | 2018-11-28 | 2022-11-29 | Universal Display Corporation | Host materials for electroluminescent devices |
US11716899B2 (en) | 2018-11-28 | 2023-08-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11706980B2 (en) | 2018-11-28 | 2023-07-18 | Universal Display Corporation | Host materials for electroluminescent devices |
US11623936B2 (en) | 2018-12-11 | 2023-04-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11737349B2 (en) | 2018-12-12 | 2023-08-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11834459B2 (en) | 2018-12-12 | 2023-12-05 | Universal Display Corporation | Host materials for electroluminescent devices |
US11812624B2 (en) | 2019-01-30 | 2023-11-07 | The University Of Southern California | Organic electroluminescent materials and devices |
US11780829B2 (en) | 2019-01-30 | 2023-10-10 | The University Of Southern California | Organic electroluminescent materials and devices |
CN113646916A (en) * | 2019-02-06 | 2021-11-12 | 诺瓦尔德股份有限公司 | Method for preparing organic semiconductor layer, composition for the method, and organic electronic device |
US11370809B2 (en) | 2019-02-08 | 2022-06-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11325932B2 (en) | 2019-02-08 | 2022-05-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12137605B2 (en) | 2019-02-08 | 2024-11-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11773320B2 (en) | 2019-02-21 | 2023-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11871653B2 (en) | 2019-02-22 | 2024-01-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11758807B2 (en) | 2019-02-22 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11557738B2 (en) | 2019-02-22 | 2023-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11512093B2 (en) | 2019-03-04 | 2022-11-29 | Universal Display Corporation | Compound used for organic light emitting device (OLED), consumer product and formulation |
US11739081B2 (en) | 2019-03-11 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11637261B2 (en) | 2019-03-12 | 2023-04-25 | Universal Display Corporation | Nanopatch antenna outcoupling structure for use in OLEDs |
US11963389B2 (en) | 2019-03-12 | 2024-04-16 | Universal Display Corporation | Plasmonic OLEDs and vertical dipole emitters |
US11968851B2 (en) | 2019-03-12 | 2024-04-23 | Universal Display Corporation | Organic electroluminescent devices |
US11569480B2 (en) | 2019-03-12 | 2023-01-31 | Universal Display Corporation | Plasmonic OLEDs and vertical dipole emitters |
US11963438B2 (en) | 2019-03-26 | 2024-04-16 | The University Of Southern California | Organic electroluminescent materials and devices |
US12122793B2 (en) | 2019-03-27 | 2024-10-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11639363B2 (en) | 2019-04-22 | 2023-05-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11613550B2 (en) | 2019-04-30 | 2023-03-28 | Universal Display Corporation | Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes |
US12075691B2 (en) | 2019-04-30 | 2024-08-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12006333B2 (en) | 2019-04-30 | 2024-06-11 | Universal Display Corporation | Organic electroluminescent materials and devices comprising imidazole-containing metal complexes |
US11560398B2 (en) | 2019-05-07 | 2023-01-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495756B2 (en) | 2019-05-07 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12103942B2 (en) | 2019-05-13 | 2024-10-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11827651B2 (en) | 2019-05-13 | 2023-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11634445B2 (en) | 2019-05-21 | 2023-04-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12010859B2 (en) | 2019-05-24 | 2024-06-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11647667B2 (en) | 2019-06-14 | 2023-05-09 | Universal Display Corporation | Organic electroluminescent compounds and organic light emitting devices using the same |
US12077550B2 (en) | 2019-07-02 | 2024-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11920070B2 (en) | 2019-07-12 | 2024-03-05 | The University Of Southern California | Luminescent janus-type, two-coordinated metal complexes |
US11926638B2 (en) | 2019-07-22 | 2024-03-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12018036B2 (en) | 2019-07-22 | 2024-06-25 | Universal Display Corporation | Heteroleptic organic electroluminescent materials and devices |
US11685754B2 (en) | 2019-07-22 | 2023-06-27 | Universal Display Corporation | Heteroleptic organic electroluminescent materials |
US11708355B2 (en) | 2019-08-01 | 2023-07-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11985888B2 (en) | 2019-08-12 | 2024-05-14 | The Regents Of The University Of Michigan | Organic electroluminescent device |
US11374181B2 (en) | 2019-08-14 | 2022-06-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11930699B2 (en) | 2019-08-15 | 2024-03-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11925105B2 (en) | 2019-08-26 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11937494B2 (en) | 2019-08-28 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11600787B2 (en) | 2019-08-30 | 2023-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11820783B2 (en) | 2019-09-06 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11999886B2 (en) | 2019-09-26 | 2024-06-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11864458B2 (en) | 2019-10-08 | 2024-01-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11950493B2 (en) | 2019-10-15 | 2024-04-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11697653B2 (en) | 2019-10-21 | 2023-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11919914B2 (en) | 2019-10-25 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765965B2 (en) | 2019-10-30 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11889708B2 (en) | 2019-11-14 | 2024-01-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11778895B2 (en) | 2020-01-13 | 2023-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11917900B2 (en) | 2020-01-28 | 2024-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11932660B2 (en) | 2020-01-29 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12084465B2 (en) | 2020-02-24 | 2024-09-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12018035B2 (en) | 2020-03-23 | 2024-06-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12129269B2 (en) | 2020-04-13 | 2024-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11970508B2 (en) | 2020-04-22 | 2024-04-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12035613B2 (en) | 2020-05-26 | 2024-07-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12139501B2 (en) | 2020-07-28 | 2024-11-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12144244B2 (en) | 2020-08-07 | 2024-11-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12065451B2 (en) | 2020-08-19 | 2024-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12137606B2 (en) | 2020-10-20 | 2024-11-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
Also Published As
Publication number | Publication date |
---|---|
US20120133276A1 (en) | 2012-05-31 |
US8105700B2 (en) | 2012-01-31 |
WO2005013388A2 (en) | 2005-02-10 |
US8465851B2 (en) | 2013-06-18 |
US20080309222A1 (en) | 2008-12-18 |
WO2005013388A3 (en) | 2005-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8105700B2 (en) | Materials and structures for enhancing the performance of organic light emitting devices | |
US8148891B2 (en) | Electron impeding layer for high efficiency phosphorescent OLEDs | |
US7279232B2 (en) | Electroluminescent stability | |
US8092924B2 (en) | Triphenylene hosts in phosphorescent light emitting diodes | |
US7709100B2 (en) | Electroluminescent efficiency | |
US20060222886A1 (en) | Arylpyrene compounds | |
US7018723B2 (en) | Materials and structures for enhancing the performance of organic light emitting devices | |
US20060088728A1 (en) | Arylcarbazoles as hosts in PHOLEDs | |
US20060008670A1 (en) | Organic light emitting materials and devices | |
US20050170206A1 (en) | OLEDs utilizing multidentate ligand systems | |
US20050260447A1 (en) | Cyclometallated iridium carbene complexes for use as hosts | |
US7790298B2 (en) | Organic electronic devices using phthalimide compounds | |
US6902833B2 (en) | Materials and structures for enhancing the performance or organic light emitting devices | |
WO2006115700A2 (en) | Non-blocked phosphorescent oleds | |
US20060008671A1 (en) | Electroluminescent efficiency | |
US8330351B2 (en) | Multiple dopant emissive layer OLEDs | |
US7198859B2 (en) | Materials and structures for enhancing the performance of organic light emitting devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSAL DISPLAY CORPORATION, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KWONG, RAYMOND;TUNG, YEH-JIUN;BROOKS, JASON;REEL/FRAME:015465/0615;SIGNING DATES FROM 20040525 TO 20040601 Owner name: UNIVERSITY OF SOUTHERN CALIFORNIA, THE, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THOMPSON, MARK E.;REEL/FRAME:015465/0244 Effective date: 20040602 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |