US20050021706A1 - Method for checking the functionality of a content delivery network related system and computer product - Google Patents
Method for checking the functionality of a content delivery network related system and computer product Download PDFInfo
- Publication number
- US20050021706A1 US20050021706A1 US10/496,223 US49622302A US2005021706A1 US 20050021706 A1 US20050021706 A1 US 20050021706A1 US 49622302 A US49622302 A US 49622302A US 2005021706 A1 US2005021706 A1 US 2005021706A1
- Authority
- US
- United States
- Prior art keywords
- pop
- contents
- fictitious
- cdn
- surrogate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 27
- 102100035475 Blood vessel epicardial substance Human genes 0.000 claims abstract description 15
- 101001094636 Homo sapiens Blood vessel epicardial substance Proteins 0.000 claims abstract description 15
- 101000942586 Homo sapiens CCR4-NOT transcription complex subunit 8 Proteins 0.000 claims abstract description 15
- 101001094629 Homo sapiens Popeye domain-containing protein 2 Proteins 0.000 claims abstract description 15
- 101001094649 Homo sapiens Popeye domain-containing protein 3 Proteins 0.000 claims abstract description 15
- 101000608194 Homo sapiens Pyrin domain-containing protein 1 Proteins 0.000 claims abstract description 15
- 101000608230 Homo sapiens Pyrin domain-containing protein 2 Proteins 0.000 claims abstract description 15
- 101000608234 Homo sapiens Pyrin domain-containing protein 5 Proteins 0.000 claims abstract description 15
- 101000595404 Homo sapiens Ribonucleases P/MRP protein subunit POP1 Proteins 0.000 claims abstract description 15
- 101000578693 Homo sapiens Target of rapamycin complex subunit LST8 Proteins 0.000 claims abstract description 15
- 102100035482 Popeye domain-containing protein 2 Human genes 0.000 claims abstract description 15
- 102100035477 Popeye domain-containing protein 3 Human genes 0.000 claims abstract description 15
- 230000004044 response Effects 0.000 claims description 16
- 230000015654 memory Effects 0.000 claims description 7
- 238000012795 verification Methods 0.000 claims description 7
- 238000007726 management method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 230000004807 localization Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 15
- 238000005259 measurement Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012956 testing procedure Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/61—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
- H04L65/612—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1095—Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1101—Session protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/564—Enhancement of application control based on intercepted application data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/568—Storing data temporarily at an intermediate stage, e.g. caching
- H04L67/5682—Policies or rules for updating, deleting or replacing the stored data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
- H04L69/322—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/329—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/40—Network security protocols
Definitions
- the present invention relates to the checking of the functionality of a Content Delivery Network, or CDN.
- the contents made available by the various Content Providers are distributed to a plurality of sites, usually called “surrogate” sites, accessible to the users.
- the purpose of this is to locate the aforesaid contents as close to the final users as possible, in order to reduce access times.
- U.S. Pat. No. 6,144,996 discloses a solution aimed at assuring a minimum performance level in the delivery of contents on a network.
- the related system offers connection services together with accessory services, called acceleration services, aimed at providing an accelerated distribution of the contents whilst guaranteeing a minimum level of service.
- the related components are able to manage and monitor the use of processing resource in such a way as to prevent performance from dropping below a minimum level.
- This solution essentially entails readying intermediate level computers that communicate through a first network with the local user computers and through a second network with remote computers destined to provide the required information.
- the purpose of the intermediate level computers is essentially to meet, to the extent possible, demand at the local level.
- the aim of the present invention is to provide a solution that is able to meet the requirement of performing an effective monitoring/testing function on a CDN.
- the invention also refers to the related system, as well as to the corresponding computer product, i.e. to the product that can be directly loaded into the memory of a digital computer and that comprises software code portions able to carry out the method according to the invention when the product is run on a digital computer.
- the solution according to the invention provides for the use of particular testing procedures based on the use of fictitious contents (dummy content), i.e. control elements created for example by the network operator and inserted in the network itself to perform the role of sentinel on the functionalities of the network.
- fictitious contents i.e. control elements created for example by the network operator and inserted in the network itself to perform the role of sentinel on the functionalities of the network.
- fictitious contents in the field of telecommunication systems is known in itself from documents such as U.S. Pat. No. 6,038,623 or U.S. Pat. No. 6,222,752.
- These prior solutions are intrinsically different from the solution of the present invention both in their application context and in their specific implementation procedures.
- the solution according to the invention provides for the fictitious contents destined to perform the aforesaid sentinel role to be subjected to all operations normally undergone by any content provided by any Content Provider, when said content is distributed over a CDN.
- the presence of the fictitious contents therefore is perceived neither by the final user requesting contents, nor by the Content Provider making them available; the presence of the aforesaid fictitious contents therefore does not influence the performance of the network and of its devices. Nor is said presence intrusive, since the dimension of the fictitious contents can be maintained extremely small.
- FIG. 1 shows, in the form of a functional diagram, the general operating criteria of a system according to the invention
- FIGS. 2 through 6 show, also in the form of functional diagrams, various functionalities implemented in such a system
- FIG. 7 shows, again in the form of a functional diagram, a possible architectural arrangement of a system according to the invention.
- references POP 1 , POP 2 , POP 3 , etc. indicate a plurality of surrogate sites inserted in a CDN type of network.
- the POP acronym was selected to take into account the name “Point Of Presence” currently adopted to indicate such sites.
- FIG. 1 shows three sites corresponds to a mere indication, since in fact any number of surrogate sites may be included in a network of the type described.
- the solution according to the invention is based on the fact that it comprises a measurement system MS able to operate on fictitious contents distributed in each of the surrogate sites constituting the CDN.
- the measurement system MS can be located in any geographical position. At least in principle, it can also be physically located in a position that does not coincide with any node in the network. All this even though, naturally, the location in a network node is seen as a preferential selection because it makes it easier to provide the measurement system MS with good “visibility” with respect to the surrogate sites it controls.
- the fictitious contents can be configured as HTML or text pages.
- said pages are preferably created according to specific criteria aimed at allowing to test determined functionalities of the CDN, such as the delivery of fresh contents by the cache memories and the geographic distribution of the contents.
- size is the same for all contents to allow—according to procedures described more in detail hereafter—a correct assessment of the response time and it is also globally small, to render the presence of the aforesaid additional contents in fact unperceived in terms of the operation of the network.
- the fictitious contents made available at the various surrogate sites POP 1 , POP 2 , POP 3 , . . . are arranged in at least two sets.
- a first set comprises fictitious contents whereto location information, for instance of the geographic type, is in some way associated. This result can be achieved (with reference to the possible configuration of the fictitious contents as HTML pages) operating both on the so-called URL (Uniform Resource Locator), and on the content of the pages.
- URL Uniform Resource Locator
- said first set of fictitious contents can comprise pages ⁇ (a), ⁇ (b), ⁇ (c), . . . —i.e., in general, ⁇ (i)—identified by the same URL but with different contents, together with contents ⁇ 1 , ⁇ 2 , ⁇ 3 , . . . (i.e., in general, ⁇ n ) associated to different URLs.
- a second set of fictitious contents is instead made uniformly available to all surrogate sites, such uniformity extending even in the presence of a single URL, hence without differentiation of any sort relative to the various sites whereto said second set of contents is addressed.
- fictitious contents ⁇ , ⁇ (i), ⁇ n provides for their positioning in the different caching devices of the surrogate sites—according to the same procedures adopted by the CDN to position “normal” contents—and the subsequent periodic request for said contents by the measurement system MS to verify the operation of the CDN.
- the fictitious contents can have within them such differences that they can be defined as contents provided with markings that distinguish them from each other. For some tests, during analysis operations, the need emerges to identify the site whereto the returned contents belong or their area of origin.
- the fictitious contents are used to test the functionalities currently called Content Routing, Content Caching and, more in general, all the functionalities involving the geographic characteristics of the CDN.
- the three steps considered above are usually carried out with a periodic cadence suited to the typical times required by the operation of the network and by the evolution of its characteristics.
- the specific functionalities of the cache of each site are:
- the availability of the contents can be verified by periodically fulfilling content requests effected in cyclical fashion by the measurement system MS. 10
- requests relating to the contents themselves are effected and it is verified that the content previously made available is correctly returned by the cache.
- the checking procedure provides for verifying that the returned content is in fact the updated one. Supposing that the cache of a surrogate site contains a certain fictitious content responding to a determined URL and that its TTL life time has expired, the cache—before forwarding its content—will have to draw an updated copy thereof.
- marked fictitious contents i.e. contents with particular characteristics such as to make it possible to recognise the successful outcome of the operation.
- ⁇ n type fictitious contents are preferably used, employing, to check content freshness, the mechanisms already present at the native http level or time markings effected ad hoc at the content level.
- the reference SC identifies the site of the fictitious contents starting from which the new content is made available, by way of update, to any one of the surrogate sites, generically indicated as POP.
- the content request effected by the measurement system MS, therefore enables to verify whether the new content has been correctly loaded in the POP site.
- FIG. 3 shows the criteria for testing the Content Distribution functionality.
- this functionality is to distribute the contents to the surrogate sites, in particular on the cache memories of said sites.
- the testing procedure provides for the use of the marked fictitious contents ⁇ n seen previously.
- jobs are created in which the contents to be distributed are defined, as well as the time and date of the distribution along with the recipient caching apparatuses.
- FIG. 4 illustrates the criteria for testing the Content Routing functionalities.
- Content Routing is aimed at determining the best site whereto the content request is to be re-routed according to a determined rule.
- CDN determines the “best site”.
- the criteria or rules for determining the best site can be the following:
- site selection is to be oriented according to the time required to respond to a request, the method schematically illustrated in FIG. 5 can be adopted.
- Content Routing selects the site that, on average, responds in the shortest time.
- the response times affected by network parameters and the response times of each individual device the content must traverse are therefore determining factors.
- the fictitious contents are distributed in each of the surrogate sites constituting the CDN, providing for distributing to the surrogate sites respective ⁇ 1 , ⁇ 2 , ⁇ 3 , . . . , ⁇ n contents corresponding to different URLs for each site.
- the measurement system MS then requests the ⁇ type content and the Content Routing of the CDN, according to its selection algorithms, selects the site considered best and forwards the request thereto.
- the measurement system stores the response time T of the site that returned the requested content, whichever it is.
- the system MS processes the collected times t n and determines the mean of the expired times T n ⁇ for each individual site.
- t n,k is the response time of the n th surrogate site in the sampling instant k
- test is conducted according to the same criterion described above for verifying content availability (see for instance the diagram of FIG. 3 ).
- the Content Routing element determines the best site as the site that—at the network organisation level—is the closest site to the user whereat the requested content is available, reference can be made to two possible approaches.
- the first approach provides for referring to the user's local DNS (Domain Name Server).
- the second approach instead provides for directly referring to the user's IP address.
- the Content Routing function determines, in both cases, the closest surrogate site (at the network organisation level) using proximity tables or “proxy tables”where, given an IP address, the closest surrogate site can be determined immediately.
- the measurement system MS can operate, so to speak, positioning itself on the territory effecting different requests from different geographic locations of the territory, as schematically shown in FIG. 6 .
- the figure shows that the centre for managing the system according to the invention, indicated as MC, operates emulating requests made from different geographic locations, thus reproducing the behaviour of corresponding users accessing the network from different points of the territory.
- the system then verifies whether the delivered content belongs to the area near the one where the content request originated. This verification is made possible by the availability of the information and can be deduced by the analysis of the marker present in the content which identifies in unequivocal fashion the area of origin.
- FIG. 7 shows in even greater detail a possible architectural solution which can be adopted to implement the system according to the invention.
- the system according to the invention can be implemented using one or more distributed elements, usually located in correspondence with the surrogate nodes and/or in points located within the Internet. Said distributed elements, with “agent” function, are essentially tasked with measuring the correct operation of the algorithms and with collecting data.
- a centralised element serving as management centre (or “manager”) MC, is usually located in the CDN management centre as the centralised element dedicated to processing and analysing the data collected by the various elements serving as agents.
- Said function can be integrated with the CDN management centre.
- the purpose of the network is the distribution of the contents to the cache memories of the various surrogate nodes and their utilisation by the final users; it is in fact on the content, the fundamental element of the CDN, that the principles for testing the functionalities and for checking the distribution implemented by the elements that serve as agents are based.
- the solution according to the invention can thus be seen as such as to give rise to a sort of additional Content Provider, indicated as CPI, which is provided in such a way that the CDN in practice treats it in the same manner as all the content providers that employ the service of the CDN itself.
- CPI additional Content Provider
- the “additional” Content Provider CPI therefore serves as element tasked with distributing the fictitious contents in the sites of the CDN through the Content Distributor thereof.
- the manager-agent measurement system described above instead is tasked with cyclically verifying the status of the contents distributed by the additional Content Provider CPI.
- each agent serves as an interrogation and measurement device, implementing the verification procedures and managing the request for fictitious contents towards the apparatuses constituting the CDN.
- the request for fictitious contents depending on the verification procedure to be carried out can be programmed and effected cyclically.
- the physical location of the elements serving as agents, distributed in different points of the network, identifies the point of generation of the measurement destined to be taken into consideration during the analysis step.
- the function of the MC module serving as manager instead is to process the collected fictitious content data. It analyses the collected data, for instance searching for particular markers whose presence or absence can indicate the successful outcome of the procedure or else notify the malfunction of the tested functionalities.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computer Security & Cryptography (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Information Transfer Between Computers (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Computer And Data Communications (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- General Factory Administration (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Photoreceptors In Electrophotography (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
- The present invention relates to the checking of the functionality of a Content Delivery Network, or CDN.
- In a CDN, the contents made available by the various Content Providers (CP) are distributed to a plurality of sites, usually called “surrogate” sites, accessible to the users. The purpose of this is to locate the aforesaid contents as close to the final users as possible, in order to reduce access times.
- U.S. Pat. No. 6,144,996 discloses a solution aimed at assuring a minimum performance level in the delivery of contents on a network. The related system offers connection services together with accessory services, called acceleration services, aimed at providing an accelerated distribution of the contents whilst guaranteeing a minimum level of service. The related components are able to manage and monitor the use of processing resource in such a way as to prevent performance from dropping below a minimum level. This solution essentially entails readying intermediate level computers that communicate through a first network with the local user computers and through a second network with remote computers destined to provide the required information. The purpose of the intermediate level computers is essentially to meet, to the extent possible, demand at the local level.
- Various solutions for managing traffic at the level of networks of various nature are known, for instance, from WO-A-01/39000, WO-A-01/65402, WO-A-01/61966, WO-A-01/59647, WO-A-01/55879, WO-A-01/52483.
- However, at the moment there is no complete solution allowing to manage a CDN, in particular in regard to the checking/verification of the following aspects and/or functionalities:
-
- actual availability of the contents and their updating at the level of the cache memories of the surrogate sites (Content Caching),
- testing for the presence of the distributed contents on the caching devices (Content Distributor),
- testing the algorithms for re-routing content requests towards the surrogate site with the best performance (Content Routing).
- The aim of the present invention is to provide a solution that is able to meet the requirement of performing an effective monitoring/testing function on a CDN.
- According to the present invention, said aim is achieved thanks to a method having the characteristics specifically set out in the claims that follow. The invention also refers to the related system, as well as to the corresponding computer product, i.e. to the product that can be directly loaded into the memory of a digital computer and that comprises software code portions able to carry out the method according to the invention when the product is run on a digital computer.
- In brief, the solution according to the invention provides for the use of particular testing procedures based on the use of fictitious contents (dummy content), i.e. control elements created for example by the network operator and inserted in the network itself to perform the role of sentinel on the functionalities of the network.
- The possible use of fictitious contents in the field of telecommunication systems is known in itself from documents such as U.S. Pat. No. 6,038,623 or U.S. Pat. No. 6,222,752. These prior solutions, however, are intrinsically different from the solution of the present invention both in their application context and in their specific implementation procedures. In particular, the solution according to the invention provides for the fictitious contents destined to perform the aforesaid sentinel role to be subjected to all operations normally undergone by any content provided by any Content Provider, when said content is distributed over a CDN. The presence of the fictitious contents therefore is perceived neither by the final user requesting contents, nor by the Content Provider making them available; the presence of the aforesaid fictitious contents therefore does not influence the performance of the network and of its devices. Nor is said presence intrusive, since the dimension of the fictitious contents can be maintained extremely small.
- The invention shall now be described, purely by way of non limiting example, with reference to the accompanying drawings, in which:
-
FIG. 1 shows, in the form of a functional diagram, the general operating criteria of a system according to the invention, -
FIGS. 2 through 6 show, also in the form of functional diagrams, various functionalities implemented in such a system, and -
FIG. 7 shows, again in the form of a functional diagram, a possible architectural arrangement of a system according to the invention. - In the diagram of
FIG. 1 , the references POP1, POP2, POP3, etc. indicate a plurality of surrogate sites inserted in a CDN type of network. - The POP acronym was selected to take into account the name “Point Of Presence” currently adopted to indicate such sites.
- Naturally, the fact that
FIG. 1 shows three sites corresponds to a mere indication, since in fact any number of surrogate sites may be included in a network of the type described. - The solution according to the invention is based on the fact that it comprises a measurement system MS able to operate on fictitious contents distributed in each of the surrogate sites constituting the CDN. It will be appreciated in this regard that the measurement system MS can be located in any geographical position. At least in principle, it can also be physically located in a position that does not coincide with any node in the network. All this even though, naturally, the location in a network node is seen as a preferential selection because it makes it easier to provide the measurement system MS with good “visibility” with respect to the surrogate sites it controls.
- The fictitious contents can be configured as HTML or text pages. As will become more readily apparent hereafter, said pages are preferably created according to specific criteria aimed at allowing to test determined functionalities of the CDN, such as the delivery of fresh contents by the cache memories and the geographic distribution of the contents.
- Preferably, size is the same for all contents to allow—according to procedures described more in detail hereafter—a correct assessment of the response time and it is also globally small, to render the presence of the aforesaid additional contents in fact unperceived in terms of the operation of the network.
- In the currently preferred embodiment of the invention, the fictitious contents made available at the various surrogate sites POP1, POP2, POP3, . . . are arranged in at least two sets.
- A first set comprises fictitious contents whereto location information, for instance of the geographic type, is in some way associated. This result can be achieved (with reference to the possible configuration of the fictitious contents as HTML pages) operating both on the so-called URL (Uniform Resource Locator), and on the content of the pages.
- For example said first set of fictitious contents can comprise pages φ(a), φ(b), φ(c), . . . —i.e., in general, φ(i)—identified by the same URL but with different contents, together with contents φ1, φ2, φ3, . . . (i.e., in general, φn) associated to different URLs.
- A second set of fictitious contents, generally indicated as φ, is instead made uniformly available to all surrogate sites, such uniformity extending even in the presence of a single URL, hence without differentiation of any sort relative to the various sites whereto said second set of contents is addressed.
- In practice, use of the fictitious contents φ, φ(i), φn provides for their positioning in the different caching devices of the surrogate sites—according to the same procedures adopted by the CDN to position “normal” contents—and the subsequent periodic request for said contents by the measurement system MS to verify the operation of the CDN.
- The fictitious contents can have within them such differences that they can be defined as contents provided with markings that distinguish them from each other. For some tests, during analysis operations, the need emerges to identify the site whereto the returned contents belong or their area of origin.
- In the currently preferred embodiment of the invention, the fictitious contents are used to test the functionalities currently called Content Routing, Content Caching and, more in general, all the functionalities involving the geographic characteristics of the CDN.
- In general terms, the implementation of the solution according to the invention provides for three basic functional steps, i.e.:
-
- making the fictitious contents available in the various surrogate sites,
- requesting the fictitious contents, and
- analysing the returned contents.
- The three steps considered above are usually carried out with a periodic cadence suited to the typical times required by the operation of the network and by the evolution of its characteristics.
- It will appreciated that carrying out the aforesaid steps does not necessarily require an isochronous type of evolution.
- In the currently preferred embodiment of the invention, three testing actions are mainly performed, corresponding to the following functional areas of CDNs:
-
- Content Caching, testing the functionalities dedicated to the temporary storage of the contents within the sites;
- Content Distribution, testing the functionalities dedicated to the distribution of the contents in the surrogate sites and specifically on the cache of such sites, and
- Content Routing, testing the functionalities dedicated to the determination of the site considered “best” (according to a given preference law) whereto the content requests are to be addressed.
- In regard to the Content Caching area, the specific functionalities of the cache of each site are:
-
- the storage of the contents and the delivery thereof on request, and
- the delivery of the updated content if made available by the Content Provider.
- The availability of the contents can be verified by periodically fulfilling content requests effected in cyclical fashion by the measurement system MS. 10 In particular, after making available fictitious contents (for instance of the φn type) in the various caches, requests relating to the contents themselves are effected and it is verified that the content previously made available is correctly returned by the cache.
- In regard, instead, to the verification of the freshness of the delivered contents, the checking procedure provides for verifying that the returned content is in fact the updated one. Supposing that the cache of a surrogate site contains a certain fictitious content responding to a determined URL and that its TTL life time has expired, the cache—before forwarding its content—will have to draw an updated copy thereof.
- For this purpose, marked fictitious contents are used, i.e. contents with particular characteristics such as to make it possible to recognise the successful outcome of the operation.
- To this end, φn type fictitious contents are preferably used, employing, to check content freshness, the mechanisms already present at the native http level or time markings effected ad hoc at the content level.
- This manner of proceeding is schematically shown in
FIG. 2 and essentially translates into the following steps: -
- periodically creating the marked update contents,
- making available the contents thus created on the server whereto the devices refer, to retrieve the contents to be renewed,
- periodically effecting a content request with a sampling period T that exceeds the life time of the page (TTL), and
- final check, examining the returned page in order to search for the marking element that identified whether its content is the updated or the expired one.
- In the diagram of
FIG. 2 the reference SC identifies the site of the fictitious contents starting from which the new content is made available, by way of update, to any one of the surrogate sites, generically indicated as POP. The content request, effected by the measurement system MS, therefore enables to verify whether the new content has been correctly loaded in the POP site. - The diagram of
FIG. 3 shows the criteria for testing the Content Distribution functionality. - It will be recalled that the main purpose of this functionality is to distribute the contents to the surrogate sites, in particular on the cache memories of said sites.
- In this case as well, the testing procedure provides for the use of the marked fictitious contents φn seen previously. In particular, through the Content Distribution element of the CDN, jobs are created in which the contents to be distributed are defined, as well as the time and date of the distribution along with the recipient caching apparatuses.
- The procedure consists of:
-
- distributing different contents φ1, φ2, φ3, . . . φn on the cache memories of the various surrogate sites POP1, POP2, POP3, etc. starting from a content distributor CD,
- once the distribution is complete, through the measurement system MS, cyclically performing sample requests, verifying the availability of the aforesaid contents on each cache involved in the distributive event.
- The diagram of
FIG. 4 illustrates the criteria for testing the Content Routing functionalities. - As is well known, Content Routing is aimed at determining the best site whereto the content request is to be re-routed according to a determined rule. There can be several criteria for determining the surrogate site in question: for instance, they can be based on the response time of the individual surrogate sites, according to their workload or according to the geographic distance.
- There are several rules whereby the CDN determines the “best site”.
- By way of example (the list provided herein does not exhaust all possible solutions) the criteria or rules for determining the best site can be the following:
-
- selecting the site with the shortest response time,
- selecting the site according to the presence of the content, and
- selecting the site geographically closest to the final customer.
- If site selection is to be oriented according to the time required to respond to a request, the method schematically illustrated in
FIG. 5 can be adopted. - To re-route the request, Content Routing selects the site that, on average, responds in the shortest time. In this functionality, the response times affected by network parameters and the response times of each individual device the content must traverse are therefore determining factors.
- In this case, referring to
FIG. 5 , the fictitious contents are distributed in each of the surrogate sites constituting the CDN, providing for distributing to the surrogate sites respective φ1, φ2, φ3, . . . , φn contents corresponding to different URLs for each site. - Also distributed among all surrogate sites considered is a content of the φ—or possibly of the φ(i)—type having a single identifying URL.
- Once the distribution is complete, the measurement system MS requires first the contents of the φn type, storing also the response times tn(n=1,2,3 . . . ) for each of them.
- The measurement system MS then requests the φ type content and the Content Routing of the CDN, according to its selection algorithms, selects the site considered best and forwards the request thereto. The measurement system stores the response time T of the site that returned the requested content, whichever it is.
- At this point, the system MS processes the collected times tn and determines the mean of the expired times Tn − for each individual site.
- This is achieved according to the relationship
T n −=ΣM k=1 t n , k/M, ∀n=1, . . . , N
where tn,k is the response time of the nth surrogate site in the sampling instant k, -
- M is the number of collected data,
- N is the number of surrogate sites present.
-
-
- If, instead, site selection takes place according to content availability, the test is conducted according to the same criterion described above for verifying content availability (see for instance the diagram of
FIG. 3 ). - If the Content Routing element determines the best site as the site that—at the network organisation level—is the closest site to the user whereat the requested content is available, reference can be made to two possible approaches.
- The first approach provides for referring to the user's local DNS (Domain Name Server). The second approach instead provides for directly referring to the user's IP address.
- The Content Routing function determines, in both cases, the closest surrogate site (at the network organisation level) using proximity tables or “proxy tables”where, given an IP address, the closest surrogate site can be determined immediately.
- The principles whereon the method for testing said functionality are based are substantially similar to those described heretofore, in particular in regard to the use of marked fictitious contents of the φ(i) type: geographic areas are marked with a same fictitious content always having the same URL, but providing for marking each content in such a way as to enable to determine, when verifying the returned content, the area whereto it belongs.
- In this case, the measurement system MS can operate, so to speak, positioning itself on the territory effecting different requests from different geographic locations of the territory, as schematically shown in
FIG. 6 . The figure shows that the centre for managing the system according to the invention, indicated as MC, operates emulating requests made from different geographic locations, thus reproducing the behaviour of corresponding users accessing the network from different points of the territory. - The system then verifies whether the delivered content belongs to the area near the one where the content request originated. This verification is made possible by the availability of the information and can be deduced by the analysis of the marker present in the content which identifies in unequivocal fashion the area of origin.
- The diagram of
FIG. 7 shows in even greater detail a possible architectural solution which can be adopted to implement the system according to the invention. - The system according to the invention can be implemented using one or more distributed elements, usually located in correspondence with the surrogate nodes and/or in points located within the Internet. Said distributed elements, with “agent” function, are essentially tasked with measuring the correct operation of the algorithms and with collecting data.
- A centralised element, serving as management centre (or “manager”) MC, is usually located in the CDN management centre as the centralised element dedicated to processing and analysing the data collected by the various elements serving as agents.
- Said function can be integrated with the CDN management centre.
- The purpose of the network is the distribution of the contents to the cache memories of the various surrogate nodes and their utilisation by the final users; it is in fact on the content, the fundamental element of the CDN, that the principles for testing the functionalities and for checking the distribution implemented by the elements that serve as agents are based.
- The solution according to the invention can thus be seen as such as to give rise to a sort of additional Content Provider, indicated as CPI, which is provided in such a way that the CDN in practice treats it in the same manner as all the content providers that employ the service of the CDN itself. The “additional” Content Provider CPI therefore serves as element tasked with distributing the fictitious contents in the sites of the CDN through the Content Distributor thereof.
- The manager-agent measurement system described above instead is tasked with cyclically verifying the status of the contents distributed by the additional Content Provider CPI.
- In particular, each agent serves as an interrogation and measurement device, implementing the verification procedures and managing the request for fictitious contents towards the apparatuses constituting the CDN. The request for fictitious contents, depending on the verification procedure to be carried out can be programmed and effected cyclically. The physical location of the elements serving as agents, distributed in different points of the network, identifies the point of generation of the measurement destined to be taken into consideration during the analysis step.
- The function of the MC module serving as manager instead is to process the collected fictitious content data. It analyses the collected data, for instance searching for particular markers whose presence or absence can indicate the successful outcome of the procedure or else notify the malfunction of the tested functionalities.
- Naturally, without changing the principle of the invention, implementation details and embodiments may vary widely relative to what is described and illustrated herein, without thereby departing from the scope of the present invention.
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DETO2001A001082 | 2001-11-19 | ||
IT2001TO001082A ITTO20011082A1 (en) | 2001-11-19 | 2001-11-19 | PROCEDURE TO CHECK THE FUNCTIONALITY OF A CDN NETWORK, ITS SYSTEM AND IT PRODUCT. |
PCT/EP2002/012695 WO2003045029A1 (en) | 2001-11-19 | 2002-11-13 | Method for checking the functionality of a content delivery network, related system and computer product |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050021706A1 true US20050021706A1 (en) | 2005-01-27 |
US8195788B2 US8195788B2 (en) | 2012-06-05 |
Family
ID=11459304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/496,223 Expired - Fee Related US8195788B2 (en) | 2001-11-19 | 2002-11-13 | Method for checking the functionality of a content delivery network related system and computer product |
Country Status (11)
Country | Link |
---|---|
US (1) | US8195788B2 (en) |
EP (1) | EP1446933B1 (en) |
CN (1) | CN1589560B (en) |
AT (1) | ATE336132T1 (en) |
AU (1) | AU2002356593A1 (en) |
BR (1) | BR0206607A8 (en) |
CA (1) | CA2467639C (en) |
DE (1) | DE60213846T2 (en) |
ES (1) | ES2269819T3 (en) |
IT (1) | ITTO20011082A1 (en) |
WO (1) | WO2003045029A1 (en) |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090248697A1 (en) * | 2008-03-31 | 2009-10-01 | Richardson David R | Cache optimization |
US20100128918A1 (en) * | 2008-11-24 | 2010-05-27 | At&T Corp. | Method and System for Content Distribution Network Performance and Quality Measurement |
US20110072134A1 (en) * | 2008-03-31 | 2011-03-24 | Swaminathan Sivasubramanian | Content management |
US20110138467A1 (en) * | 2009-12-08 | 2011-06-09 | At&T Intellectual Property I, L.P. | Method and System for Content Distribution Network Security |
US8275874B2 (en) | 2008-03-31 | 2012-09-25 | Amazon Technologies, Inc. | Locality based content distribution |
US8321588B2 (en) | 2008-11-17 | 2012-11-27 | Amazon Technologies, Inc. | Request routing utilizing client location information |
US8331371B2 (en) | 2009-12-17 | 2012-12-11 | Amazon Technologies, Inc. | Distributed routing architecture |
US8331370B2 (en) | 2009-12-17 | 2012-12-11 | Amazon Technologies, Inc. | Distributed routing architecture |
US8386596B2 (en) | 2008-03-31 | 2013-02-26 | Amazon Technologies, Inc. | Request routing based on class |
US8397073B1 (en) * | 2009-09-04 | 2013-03-12 | Amazon Technologies, Inc. | Managing secure content in a content delivery network |
US8412823B1 (en) | 2009-03-27 | 2013-04-02 | Amazon Technologies, Inc. | Managing tracking information entries in resource cache components |
US8423667B2 (en) | 2008-11-17 | 2013-04-16 | Amazon Technologies, Inc. | Updating routing information based on client location |
US8447831B1 (en) | 2008-03-31 | 2013-05-21 | Amazon Technologies, Inc. | Incentive driven content delivery |
US8452874B2 (en) | 2010-11-22 | 2013-05-28 | Amazon Technologies, Inc. | Request routing processing |
US8458250B2 (en) | 2008-06-30 | 2013-06-04 | Amazon Technologies, Inc. | Request routing using network computing components |
US8463877B1 (en) | 2009-03-27 | 2013-06-11 | Amazon Technologies, Inc. | Dynamically translating resource identifiers for request routing using popularitiy information |
US8468247B1 (en) | 2010-09-28 | 2013-06-18 | Amazon Technologies, Inc. | Point of presence management in request routing |
US8495220B2 (en) | 2008-11-17 | 2013-07-23 | Amazon Technologies, Inc. | Managing CDN registration by a storage provider |
US8510448B2 (en) | 2008-11-17 | 2013-08-13 | Amazon Technologies, Inc. | Service provider registration by a content broker |
US8521851B1 (en) | 2009-03-27 | 2013-08-27 | Amazon Technologies, Inc. | DNS query processing using resource identifiers specifying an application broker |
US8521880B1 (en) | 2008-11-17 | 2013-08-27 | Amazon Technologies, Inc. | Managing content delivery network service providers |
US8533293B1 (en) | 2008-03-31 | 2013-09-10 | Amazon Technologies, Inc. | Client side cache management |
US8543702B1 (en) | 2009-06-16 | 2013-09-24 | Amazon Technologies, Inc. | Managing resources using resource expiration data |
US8549531B2 (en) | 2008-09-29 | 2013-10-01 | Amazon Technologies, Inc. | Optimizing resource configurations |
US8577992B1 (en) | 2010-09-28 | 2013-11-05 | Amazon Technologies, Inc. | Request routing management based on network components |
US8583776B2 (en) | 2008-11-17 | 2013-11-12 | Amazon Technologies, Inc. | Managing content delivery network service providers |
US8601090B1 (en) | 2008-03-31 | 2013-12-03 | Amazon Technologies, Inc. | Network resource identification |
US8626950B1 (en) | 2010-12-03 | 2014-01-07 | Amazon Technologies, Inc. | Request routing processing |
US8667127B2 (en) | 2009-03-24 | 2014-03-04 | Amazon Technologies, Inc. | Monitoring web site content |
US8732309B1 (en) | 2008-11-17 | 2014-05-20 | Amazon Technologies, Inc. | Request routing utilizing cost information |
US8756341B1 (en) | 2009-03-27 | 2014-06-17 | Amazon Technologies, Inc. | Request routing utilizing popularity information |
US8762526B2 (en) | 2008-09-29 | 2014-06-24 | Amazon Technologies, Inc. | Optimizing content management |
US8788671B2 (en) | 2008-11-17 | 2014-07-22 | Amazon Technologies, Inc. | Managing content delivery network service providers by a content broker |
US8819283B2 (en) | 2010-09-28 | 2014-08-26 | Amazon Technologies, Inc. | Request routing in a networked environment |
US8843625B2 (en) | 2008-09-29 | 2014-09-23 | Amazon Technologies, Inc. | Managing network data display |
US8924528B1 (en) | 2010-09-28 | 2014-12-30 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US8930513B1 (en) | 2010-09-28 | 2015-01-06 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US8938526B1 (en) | 2010-09-28 | 2015-01-20 | Amazon Technologies, Inc. | Request routing management based on network components |
US9003035B1 (en) | 2010-09-28 | 2015-04-07 | Amazon Technologies, Inc. | Point of presence management in request routing |
US9083743B1 (en) | 2012-03-21 | 2015-07-14 | Amazon Technologies, Inc. | Managing request routing information utilizing performance information |
US9088460B2 (en) | 2008-09-29 | 2015-07-21 | Amazon Technologies, Inc. | Managing resource consolidation configurations |
US9135048B2 (en) | 2012-09-20 | 2015-09-15 | Amazon Technologies, Inc. | Automated profiling of resource usage |
US9154551B1 (en) | 2012-06-11 | 2015-10-06 | Amazon Technologies, Inc. | Processing DNS queries to identify pre-processing information |
US9160641B2 (en) | 2008-09-29 | 2015-10-13 | Amazon Technologies, Inc. | Monitoring domain allocation performance |
US9246776B2 (en) | 2009-10-02 | 2016-01-26 | Amazon Technologies, Inc. | Forward-based resource delivery network management techniques |
US9294391B1 (en) | 2013-06-04 | 2016-03-22 | Amazon Technologies, Inc. | Managing network computing components utilizing request routing |
US9323577B2 (en) | 2012-09-20 | 2016-04-26 | Amazon Technologies, Inc. | Automated profiling of resource usage |
US9391949B1 (en) | 2010-12-03 | 2016-07-12 | Amazon Technologies, Inc. | Request routing processing |
US9407681B1 (en) | 2010-09-28 | 2016-08-02 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US9479476B2 (en) | 2008-03-31 | 2016-10-25 | Amazon Technologies, Inc. | Processing of DNS queries |
US9495338B1 (en) | 2010-01-28 | 2016-11-15 | Amazon Technologies, Inc. | Content distribution network |
US9525659B1 (en) | 2012-09-04 | 2016-12-20 | Amazon Technologies, Inc. | Request routing utilizing point of presence load information |
US9628554B2 (en) | 2012-02-10 | 2017-04-18 | Amazon Technologies, Inc. | Dynamic content delivery |
US9712484B1 (en) | 2010-09-28 | 2017-07-18 | Amazon Technologies, Inc. | Managing request routing information utilizing client identifiers |
US9742795B1 (en) | 2015-09-24 | 2017-08-22 | Amazon Technologies, Inc. | Mitigating network attacks |
US9774619B1 (en) | 2015-09-24 | 2017-09-26 | Amazon Technologies, Inc. | Mitigating network attacks |
US9787775B1 (en) | 2010-09-28 | 2017-10-10 | Amazon Technologies, Inc. | Point of presence management in request routing |
US9794281B1 (en) | 2015-09-24 | 2017-10-17 | Amazon Technologies, Inc. | Identifying sources of network attacks |
US9819567B1 (en) | 2015-03-30 | 2017-11-14 | Amazon Technologies, Inc. | Traffic surge management for points of presence |
US9832141B1 (en) | 2015-05-13 | 2017-11-28 | Amazon Technologies, Inc. | Routing based request correlation |
US9887931B1 (en) | 2015-03-30 | 2018-02-06 | Amazon Technologies, Inc. | Traffic surge management for points of presence |
US9887932B1 (en) | 2015-03-30 | 2018-02-06 | Amazon Technologies, Inc. | Traffic surge management for points of presence |
US9912740B2 (en) | 2008-06-30 | 2018-03-06 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US9992086B1 (en) | 2016-08-23 | 2018-06-05 | Amazon Technologies, Inc. | External health checking of virtual private cloud network environments |
US10021179B1 (en) | 2012-02-21 | 2018-07-10 | Amazon Technologies, Inc. | Local resource delivery network |
US10033627B1 (en) | 2014-12-18 | 2018-07-24 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
US10033691B1 (en) | 2016-08-24 | 2018-07-24 | Amazon Technologies, Inc. | Adaptive resolution of domain name requests in virtual private cloud network environments |
US10049051B1 (en) | 2015-12-11 | 2018-08-14 | Amazon Technologies, Inc. | Reserved cache space in content delivery networks |
US10075551B1 (en) | 2016-06-06 | 2018-09-11 | Amazon Technologies, Inc. | Request management for hierarchical cache |
US10091096B1 (en) | 2014-12-18 | 2018-10-02 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
US10097448B1 (en) | 2014-12-18 | 2018-10-09 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
US10097566B1 (en) | 2015-07-31 | 2018-10-09 | Amazon Technologies, Inc. | Identifying targets of network attacks |
US10110694B1 (en) | 2016-06-29 | 2018-10-23 | Amazon Technologies, Inc. | Adaptive transfer rate for retrieving content from a server |
US10205698B1 (en) | 2012-12-19 | 2019-02-12 | Amazon Technologies, Inc. | Source-dependent address resolution |
US10225326B1 (en) | 2015-03-23 | 2019-03-05 | Amazon Technologies, Inc. | Point of presence based data uploading |
US10257307B1 (en) | 2015-12-11 | 2019-04-09 | Amazon Technologies, Inc. | Reserved cache space in content delivery networks |
US10270878B1 (en) | 2015-11-10 | 2019-04-23 | Amazon Technologies, Inc. | Routing for origin-facing points of presence |
US10348639B2 (en) | 2015-12-18 | 2019-07-09 | Amazon Technologies, Inc. | Use of virtual endpoints to improve data transmission rates |
US10372499B1 (en) | 2016-12-27 | 2019-08-06 | Amazon Technologies, Inc. | Efficient region selection system for executing request-driven code |
US10447648B2 (en) | 2017-06-19 | 2019-10-15 | Amazon Technologies, Inc. | Assignment of a POP to a DNS resolver based on volume of communications over a link between client devices and the POP |
US10462025B2 (en) | 2008-09-29 | 2019-10-29 | Amazon Technologies, Inc. | Monitoring performance and operation of data exchanges |
US10469513B2 (en) | 2016-10-05 | 2019-11-05 | Amazon Technologies, Inc. | Encrypted network addresses |
US10503613B1 (en) | 2017-04-21 | 2019-12-10 | Amazon Technologies, Inc. | Efficient serving of resources during server unavailability |
US10592578B1 (en) | 2018-03-07 | 2020-03-17 | Amazon Technologies, Inc. | Predictive content push-enabled content delivery network |
US10616179B1 (en) | 2015-06-25 | 2020-04-07 | Amazon Technologies, Inc. | Selective routing of domain name system (DNS) requests |
US10623408B1 (en) | 2012-04-02 | 2020-04-14 | Amazon Technologies, Inc. | Context sensitive object management |
US10831549B1 (en) | 2016-12-27 | 2020-11-10 | Amazon Technologies, Inc. | Multi-region request-driven code execution system |
US10862852B1 (en) | 2018-11-16 | 2020-12-08 | Amazon Technologies, Inc. | Resolution of domain name requests in heterogeneous network environments |
US10938884B1 (en) | 2017-01-30 | 2021-03-02 | Amazon Technologies, Inc. | Origin server cloaking using virtual private cloud network environments |
US10958501B1 (en) | 2010-09-28 | 2021-03-23 | Amazon Technologies, Inc. | Request routing information based on client IP groupings |
US11025747B1 (en) | 2018-12-12 | 2021-06-01 | Amazon Technologies, Inc. | Content request pattern-based routing system |
US11075987B1 (en) | 2017-06-12 | 2021-07-27 | Amazon Technologies, Inc. | Load estimating content delivery network |
US11290418B2 (en) | 2017-09-25 | 2022-03-29 | Amazon Technologies, Inc. | Hybrid content request routing system |
US11604667B2 (en) | 2011-04-27 | 2023-03-14 | Amazon Technologies, Inc. | Optimized deployment based upon customer locality |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100461712C (en) * | 2003-07-24 | 2009-02-11 | 华为技术有限公司 | A network signalling test method |
US8612622B2 (en) * | 2009-10-02 | 2013-12-17 | Limelight Networks, Inc. | Real-time message queuing for a processing ring |
US10951501B1 (en) * | 2014-11-14 | 2021-03-16 | Amazon Technologies, Inc. | Monitoring availability of content delivery networks |
CN106357792B (en) * | 2016-10-10 | 2019-09-06 | 网宿科技股份有限公司 | Node route selecting method and system |
CN107807997A (en) * | 2017-11-08 | 2018-03-16 | 北京奇虎科技有限公司 | User's portrait building method, device and computing device based on big data |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6038623A (en) * | 1997-01-30 | 2000-03-14 | U.S. Philips Corporation | Electronic network allowing multi-speed communication |
US6108703A (en) * | 1998-07-14 | 2000-08-22 | Massachusetts Institute Of Technology | Global hosting system |
US6144996A (en) * | 1998-05-13 | 2000-11-07 | Compaq Computer Corporation | Method and apparatus for providing a guaranteed minimum level of performance for content delivery over a network |
US6222752B1 (en) * | 1998-02-17 | 2001-04-24 | International Business Machines Corporation | Dynamic word line driver for cache |
US20020169868A1 (en) * | 2001-04-20 | 2002-11-14 | Lopke Michael S. | Interactive remote monitoring of client page render times on a per user basis |
US20030093523A1 (en) * | 2001-11-15 | 2003-05-15 | Cranor Charles D. | Method for associating clients with domain name servers |
US20050021862A1 (en) * | 2000-03-31 | 2005-01-27 | Dickens Coal Llc | Automatic selection of content-delivery provider using link mapping database |
US6996616B1 (en) * | 2000-04-17 | 2006-02-07 | Akamai Technologies, Inc. | HTML delivery from edge-of-network servers in a content delivery network (CDN) |
US7010578B1 (en) * | 2000-09-21 | 2006-03-07 | Akamai Technologies, Inc. | Internet content delivery service with third party cache interface support |
US7010590B1 (en) * | 1999-09-15 | 2006-03-07 | Datawire Communications Networks, Inc. | System and method for secure transactions over a network |
US7240100B1 (en) * | 2000-04-14 | 2007-07-03 | Akamai Technologies, Inc. | Content delivery network (CDN) content server request handling mechanism with metadata framework support |
US20080222291A1 (en) * | 2001-04-02 | 2008-09-11 | Weller Timothy N | Content delivery network service provider (CDNSP)-managed content delivery network (CDN) for network service provider (NSP) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPQ504100A0 (en) | 2000-01-11 | 2000-02-03 | Notron (No. 325) Pty Limited | A method for distribution of streamed data packets on a switched network utilising an intelligent distribution network |
SE469865B (en) * | 1992-02-17 | 1993-09-27 | Ericsson Telefon Ab L M | Ways of establishing cooperation with a functionality and device for practicing the method |
US6286058B1 (en) * | 1997-04-14 | 2001-09-04 | Scientific-Atlanta, Inc. | Apparatus and methods for automatically rerouting packets in the event of a link failure |
AU1800701A (en) | 1999-11-22 | 2001-06-04 | Speedera Networks, Inc. | A user device and system for traffic management and content distribution over a world wide area network |
AU2001239732A1 (en) | 2000-01-28 | 2001-08-07 | Ibeam Broadcasting Corporation | A system and method for determining optimal server in a distributed network for serving content streams |
AU4248800A (en) | 2000-02-09 | 2001-08-20 | Websidestory, Inc. | Intelligent delivery system for directed content |
US6725272B1 (en) | 2000-02-18 | 2004-04-20 | Netscaler, Inc. | Apparatus, method and computer program product for guaranteed content delivery incorporating putting a client on-hold based on response time |
US20020116444A1 (en) | 2000-02-29 | 2002-08-22 | Imran Chaudhri | Method and system for providing intelligent network content delivery |
-
2001
- 2001-11-19 IT IT2001TO001082A patent/ITTO20011082A1/en unknown
-
2002
- 2002-11-13 CN CN028229274A patent/CN1589560B/en not_active Expired - Fee Related
- 2002-11-13 DE DE60213846T patent/DE60213846T2/en not_active Expired - Lifetime
- 2002-11-13 AU AU2002356593A patent/AU2002356593A1/en not_active Abandoned
- 2002-11-13 BR BRPI0206607A patent/BR0206607A8/en not_active IP Right Cessation
- 2002-11-13 ES ES02803367T patent/ES2269819T3/en not_active Expired - Lifetime
- 2002-11-13 CA CA2467639A patent/CA2467639C/en not_active Expired - Lifetime
- 2002-11-13 AT AT02803367T patent/ATE336132T1/en not_active IP Right Cessation
- 2002-11-13 EP EP02803367A patent/EP1446933B1/en not_active Expired - Lifetime
- 2002-11-13 WO PCT/EP2002/012695 patent/WO2003045029A1/en active IP Right Grant
- 2002-11-13 US US10/496,223 patent/US8195788B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6038623A (en) * | 1997-01-30 | 2000-03-14 | U.S. Philips Corporation | Electronic network allowing multi-speed communication |
US6222752B1 (en) * | 1998-02-17 | 2001-04-24 | International Business Machines Corporation | Dynamic word line driver for cache |
US6144996A (en) * | 1998-05-13 | 2000-11-07 | Compaq Computer Corporation | Method and apparatus for providing a guaranteed minimum level of performance for content delivery over a network |
US6108703A (en) * | 1998-07-14 | 2000-08-22 | Massachusetts Institute Of Technology | Global hosting system |
US7010590B1 (en) * | 1999-09-15 | 2006-03-07 | Datawire Communications Networks, Inc. | System and method for secure transactions over a network |
US20050021862A1 (en) * | 2000-03-31 | 2005-01-27 | Dickens Coal Llc | Automatic selection of content-delivery provider using link mapping database |
US7240100B1 (en) * | 2000-04-14 | 2007-07-03 | Akamai Technologies, Inc. | Content delivery network (CDN) content server request handling mechanism with metadata framework support |
US6996616B1 (en) * | 2000-04-17 | 2006-02-07 | Akamai Technologies, Inc. | HTML delivery from edge-of-network servers in a content delivery network (CDN) |
US7293093B2 (en) * | 2000-04-17 | 2007-11-06 | Akamai Technologies, Inc. | HTML delivery from edge-of-network servers in a content delivery network (CDN) |
US7010578B1 (en) * | 2000-09-21 | 2006-03-07 | Akamai Technologies, Inc. | Internet content delivery service with third party cache interface support |
US20080222291A1 (en) * | 2001-04-02 | 2008-09-11 | Weller Timothy N | Content delivery network service provider (CDNSP)-managed content delivery network (CDN) for network service provider (NSP) |
US20020169868A1 (en) * | 2001-04-20 | 2002-11-14 | Lopke Michael S. | Interactive remote monitoring of client page render times on a per user basis |
US20030093523A1 (en) * | 2001-11-15 | 2003-05-15 | Cranor Charles D. | Method for associating clients with domain name servers |
Cited By (237)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9992303B2 (en) | 2007-06-29 | 2018-06-05 | Amazon Technologies, Inc. | Request routing utilizing client location information |
US9021127B2 (en) | 2007-06-29 | 2015-04-28 | Amazon Technologies, Inc. | Updating routing information based on client location |
US9021129B2 (en) | 2007-06-29 | 2015-04-28 | Amazon Technologies, Inc. | Request routing utilizing client location information |
US10027582B2 (en) | 2007-06-29 | 2018-07-17 | Amazon Technologies, Inc. | Updating routing information based on client location |
US10554748B2 (en) | 2008-03-31 | 2020-02-04 | Amazon Technologies, Inc. | Content management |
US10511567B2 (en) | 2008-03-31 | 2019-12-17 | Amazon Technologies, Inc. | Network resource identification |
US10645149B2 (en) | 2008-03-31 | 2020-05-05 | Amazon Technologies, Inc. | Content delivery reconciliation |
US10797995B2 (en) | 2008-03-31 | 2020-10-06 | Amazon Technologies, Inc. | Request routing based on class |
US9479476B2 (en) | 2008-03-31 | 2016-10-25 | Amazon Technologies, Inc. | Processing of DNS queries |
US8275874B2 (en) | 2008-03-31 | 2012-09-25 | Amazon Technologies, Inc. | Locality based content distribution |
US9332078B2 (en) | 2008-03-31 | 2016-05-03 | Amazon Technologies, Inc. | Locality based content distribution |
US9888089B2 (en) | 2008-03-31 | 2018-02-06 | Amazon Technologies, Inc. | Client side cache management |
US9544394B2 (en) | 2008-03-31 | 2017-01-10 | Amazon Technologies, Inc. | Network resource identification |
US8346937B2 (en) | 2008-03-31 | 2013-01-01 | Amazon Technologies, Inc. | Content management |
US8352615B2 (en) | 2008-03-31 | 2013-01-08 | Amazon Technologies, Inc. | Content management |
US8352613B2 (en) | 2008-03-31 | 2013-01-08 | Amazon Technologies, Inc. | Content management |
US8352614B2 (en) | 2008-03-31 | 2013-01-08 | Amazon Technologies, Inc. | Content management |
US8386596B2 (en) | 2008-03-31 | 2013-02-26 | Amazon Technologies, Inc. | Request routing based on class |
US9954934B2 (en) | 2008-03-31 | 2018-04-24 | Amazon Technologies, Inc. | Content delivery reconciliation |
US9887915B2 (en) | 2008-03-31 | 2018-02-06 | Amazon Technologies, Inc. | Request routing based on class |
US8402137B2 (en) | 2008-03-31 | 2013-03-19 | Amazon Technologies, Inc. | Content management |
US10530874B2 (en) | 2008-03-31 | 2020-01-07 | Amazon Technologies, Inc. | Locality based content distribution |
US8930544B2 (en) | 2008-03-31 | 2015-01-06 | Amazon Technologies, Inc. | Network resource identification |
US8438263B2 (en) | 2008-03-31 | 2013-05-07 | Amazon Technologies, Inc. | Locality based content distribution |
US8447831B1 (en) | 2008-03-31 | 2013-05-21 | Amazon Technologies, Inc. | Incentive driven content delivery |
US11909639B2 (en) | 2008-03-31 | 2024-02-20 | Amazon Technologies, Inc. | Request routing based on class |
US9407699B2 (en) | 2008-03-31 | 2016-08-02 | Amazon Technologies, Inc. | Content management |
US11194719B2 (en) | 2008-03-31 | 2021-12-07 | Amazon Technologies, Inc. | Cache optimization |
US9621660B2 (en) | 2008-03-31 | 2017-04-11 | Amazon Technologies, Inc. | Locality based content distribution |
US9571389B2 (en) | 2008-03-31 | 2017-02-14 | Amazon Technologies, Inc. | Request routing based on class |
US9009286B2 (en) | 2008-03-31 | 2015-04-14 | Amazon Technologies, Inc. | Locality based content distribution |
US20110072140A1 (en) * | 2008-03-31 | 2011-03-24 | Swaminathan Sivasubramanian | Content management |
US9894168B2 (en) | 2008-03-31 | 2018-02-13 | Amazon Technologies, Inc. | Locality based content distribution |
US9210235B2 (en) | 2008-03-31 | 2015-12-08 | Amazon Technologies, Inc. | Client side cache management |
US20110078240A1 (en) * | 2008-03-31 | 2011-03-31 | Swaminathan Sivasubramanian | Content management |
US20090248697A1 (en) * | 2008-03-31 | 2009-10-01 | Richardson David R | Cache optimization |
US8533293B1 (en) | 2008-03-31 | 2013-09-10 | Amazon Technologies, Inc. | Client side cache management |
US10305797B2 (en) | 2008-03-31 | 2019-05-28 | Amazon Technologies, Inc. | Request routing based on class |
US8756325B2 (en) | 2008-03-31 | 2014-06-17 | Amazon Technologies, Inc. | Content management |
US11451472B2 (en) | 2008-03-31 | 2022-09-20 | Amazon Technologies, Inc. | Request routing based on class |
US10771552B2 (en) | 2008-03-31 | 2020-09-08 | Amazon Technologies, Inc. | Content management |
US8601090B1 (en) | 2008-03-31 | 2013-12-03 | Amazon Technologies, Inc. | Network resource identification |
US8606996B2 (en) | 2008-03-31 | 2013-12-10 | Amazon Technologies, Inc. | Cache optimization |
US9026616B2 (en) | 2008-03-31 | 2015-05-05 | Amazon Technologies, Inc. | Content delivery reconciliation |
US8639817B2 (en) | 2008-03-31 | 2014-01-28 | Amazon Technologies, Inc. | Content management |
US20110072134A1 (en) * | 2008-03-31 | 2011-03-24 | Swaminathan Sivasubramanian | Content management |
US11245770B2 (en) | 2008-03-31 | 2022-02-08 | Amazon Technologies, Inc. | Locality based content distribution |
US10157135B2 (en) | 2008-03-31 | 2018-12-18 | Amazon Technologies, Inc. | Cache optimization |
US8713156B2 (en) | 2008-03-31 | 2014-04-29 | Amazon Technologies, Inc. | Request routing based on class |
US9208097B2 (en) | 2008-03-31 | 2015-12-08 | Amazon Technologies, Inc. | Cache optimization |
US10158729B2 (en) | 2008-03-31 | 2018-12-18 | Amazon Technologies, Inc. | Locality based content distribution |
US9021128B2 (en) | 2008-06-30 | 2015-04-28 | Amazon Technologies, Inc. | Request routing using network computing components |
US9608957B2 (en) | 2008-06-30 | 2017-03-28 | Amazon Technologies, Inc. | Request routing using network computing components |
US8458250B2 (en) | 2008-06-30 | 2013-06-04 | Amazon Technologies, Inc. | Request routing using network computing components |
US9912740B2 (en) | 2008-06-30 | 2018-03-06 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US8549531B2 (en) | 2008-09-29 | 2013-10-01 | Amazon Technologies, Inc. | Optimizing resource configurations |
US8762526B2 (en) | 2008-09-29 | 2014-06-24 | Amazon Technologies, Inc. | Optimizing content management |
US9160641B2 (en) | 2008-09-29 | 2015-10-13 | Amazon Technologies, Inc. | Monitoring domain allocation performance |
US9088460B2 (en) | 2008-09-29 | 2015-07-21 | Amazon Technologies, Inc. | Managing resource consolidation configurations |
US8843625B2 (en) | 2008-09-29 | 2014-09-23 | Amazon Technologies, Inc. | Managing network data display |
US10462025B2 (en) | 2008-09-29 | 2019-10-29 | Amazon Technologies, Inc. | Monitoring performance and operation of data exchanges |
US9210099B2 (en) | 2008-09-29 | 2015-12-08 | Amazon Technologies, Inc. | Optimizing resource configurations |
US9985927B2 (en) | 2008-11-17 | 2018-05-29 | Amazon Technologies, Inc. | Managing content delivery network service providers by a content broker |
US8458360B2 (en) | 2008-11-17 | 2013-06-04 | Amazon Technologies, Inc. | Request routing utilizing client location information |
US11115500B2 (en) | 2008-11-17 | 2021-09-07 | Amazon Technologies, Inc. | Request routing utilizing client location information |
US9515949B2 (en) | 2008-11-17 | 2016-12-06 | Amazon Technologies, Inc. | Managing content delivery network service providers |
US8788671B2 (en) | 2008-11-17 | 2014-07-22 | Amazon Technologies, Inc. | Managing content delivery network service providers by a content broker |
US9734472B2 (en) | 2008-11-17 | 2017-08-15 | Amazon Technologies, Inc. | Request routing utilizing cost information |
US8732309B1 (en) | 2008-11-17 | 2014-05-20 | Amazon Technologies, Inc. | Request routing utilizing cost information |
US9251112B2 (en) | 2008-11-17 | 2016-02-02 | Amazon Technologies, Inc. | Managing content delivery network service providers |
US11283715B2 (en) | 2008-11-17 | 2022-03-22 | Amazon Technologies, Inc. | Updating routing information based on client location |
US8583776B2 (en) | 2008-11-17 | 2013-11-12 | Amazon Technologies, Inc. | Managing content delivery network service providers |
US9787599B2 (en) | 2008-11-17 | 2017-10-10 | Amazon Technologies, Inc. | Managing content delivery network service providers |
US8521880B1 (en) | 2008-11-17 | 2013-08-27 | Amazon Technologies, Inc. | Managing content delivery network service providers |
US10742550B2 (en) | 2008-11-17 | 2020-08-11 | Amazon Technologies, Inc. | Updating routing information based on client location |
US10116584B2 (en) | 2008-11-17 | 2018-10-30 | Amazon Technologies, Inc. | Managing content delivery network service providers |
US8510448B2 (en) | 2008-11-17 | 2013-08-13 | Amazon Technologies, Inc. | Service provider registration by a content broker |
US9451046B2 (en) | 2008-11-17 | 2016-09-20 | Amazon Technologies, Inc. | Managing CDN registration by a storage provider |
US9444759B2 (en) | 2008-11-17 | 2016-09-13 | Amazon Technologies, Inc. | Service provider registration by a content broker |
US8495220B2 (en) | 2008-11-17 | 2013-07-23 | Amazon Technologies, Inc. | Managing CDN registration by a storage provider |
US11811657B2 (en) | 2008-11-17 | 2023-11-07 | Amazon Technologies, Inc. | Updating routing information based on client location |
US9590946B2 (en) | 2008-11-17 | 2017-03-07 | Amazon Technologies, Inc. | Managing content delivery network service providers |
US8423667B2 (en) | 2008-11-17 | 2013-04-16 | Amazon Technologies, Inc. | Updating routing information based on client location |
US10523783B2 (en) | 2008-11-17 | 2019-12-31 | Amazon Technologies, Inc. | Request routing utilizing client location information |
US8321588B2 (en) | 2008-11-17 | 2012-11-27 | Amazon Technologies, Inc. | Request routing utilizing client location information |
US8117259B2 (en) | 2008-11-24 | 2012-02-14 | At&T Intellectual Property I, Lp | Method and system for content distribution network performance and quality measurement |
US20110196941A1 (en) * | 2008-11-24 | 2011-08-11 | At&T Intellectual Property I, L.P. | Method and System for Content Distribution Network Performance and Quality Measurement |
US7953792B2 (en) | 2008-11-24 | 2011-05-31 | At&T Intellectual Property I, Lp | Method and system for content distribution network performance and quality measurement |
US20100128918A1 (en) * | 2008-11-24 | 2010-05-27 | At&T Corp. | Method and System for Content Distribution Network Performance and Quality Measurement |
US8667127B2 (en) | 2009-03-24 | 2014-03-04 | Amazon Technologies, Inc. | Monitoring web site content |
US8521851B1 (en) | 2009-03-27 | 2013-08-27 | Amazon Technologies, Inc. | DNS query processing using resource identifiers specifying an application broker |
US8521885B1 (en) | 2009-03-27 | 2013-08-27 | Amazon Technologies, Inc. | Dynamically translating resource identifiers for request routing using popularity information |
US9237114B2 (en) | 2009-03-27 | 2016-01-12 | Amazon Technologies, Inc. | Managing resources in resource cache components |
US8412823B1 (en) | 2009-03-27 | 2013-04-02 | Amazon Technologies, Inc. | Managing tracking information entries in resource cache components |
US8463877B1 (en) | 2009-03-27 | 2013-06-11 | Amazon Technologies, Inc. | Dynamically translating resource identifiers for request routing using popularitiy information |
US9191458B2 (en) | 2009-03-27 | 2015-11-17 | Amazon Technologies, Inc. | Request routing using a popularity identifier at a DNS nameserver |
US10491534B2 (en) | 2009-03-27 | 2019-11-26 | Amazon Technologies, Inc. | Managing resources and entries in tracking information in resource cache components |
US8688837B1 (en) | 2009-03-27 | 2014-04-01 | Amazon Technologies, Inc. | Dynamically translating resource identifiers for request routing using popularity information |
US8756341B1 (en) | 2009-03-27 | 2014-06-17 | Amazon Technologies, Inc. | Request routing utilizing popularity information |
US10574787B2 (en) | 2009-03-27 | 2020-02-25 | Amazon Technologies, Inc. | Translation of resource identifiers using popularity information upon client request |
US10601767B2 (en) | 2009-03-27 | 2020-03-24 | Amazon Technologies, Inc. | DNS query processing based on application information |
US10230819B2 (en) | 2009-03-27 | 2019-03-12 | Amazon Technologies, Inc. | Translation of resource identifiers using popularity information upon client request |
US8996664B2 (en) | 2009-03-27 | 2015-03-31 | Amazon Technologies, Inc. | Translation of resource identifiers using popularity information upon client request |
US9083675B2 (en) | 2009-03-27 | 2015-07-14 | Amazon Technologies, Inc. | Translation of resource identifiers using popularity information upon client request |
US10264062B2 (en) | 2009-03-27 | 2019-04-16 | Amazon Technologies, Inc. | Request routing using a popularity identifier to identify a cache component |
US10521348B2 (en) | 2009-06-16 | 2019-12-31 | Amazon Technologies, Inc. | Managing resources using resource expiration data |
US8782236B1 (en) | 2009-06-16 | 2014-07-15 | Amazon Technologies, Inc. | Managing resources using resource expiration data |
US9176894B2 (en) | 2009-06-16 | 2015-11-03 | Amazon Technologies, Inc. | Managing resources using resource expiration data |
US10783077B2 (en) | 2009-06-16 | 2020-09-22 | Amazon Technologies, Inc. | Managing resources using resource expiration data |
US8543702B1 (en) | 2009-06-16 | 2013-09-24 | Amazon Technologies, Inc. | Managing resources using resource expiration data |
US20130191645A1 (en) * | 2009-09-04 | 2013-07-25 | Amazon Technologies, Inc. | Managing secure content in a content delivery network |
US8397073B1 (en) * | 2009-09-04 | 2013-03-12 | Amazon Technologies, Inc. | Managing secure content in a content delivery network |
US9712325B2 (en) * | 2009-09-04 | 2017-07-18 | Amazon Technologies, Inc. | Managing secure content in a content delivery network |
US20150319194A1 (en) * | 2009-09-04 | 2015-11-05 | Amazon Technologies, Inc. | Managing secure content in a content delivery network |
US10135620B2 (en) * | 2009-09-04 | 2018-11-20 | Amazon Technologis, Inc. | Managing secure content in a content delivery network |
US9130756B2 (en) * | 2009-09-04 | 2015-09-08 | Amazon Technologies, Inc. | Managing secure content in a content delivery network |
US10785037B2 (en) * | 2009-09-04 | 2020-09-22 | Amazon Technologies, Inc. | Managing secure content in a content delivery network |
US10218584B2 (en) | 2009-10-02 | 2019-02-26 | Amazon Technologies, Inc. | Forward-based resource delivery network management techniques |
US9246776B2 (en) | 2009-10-02 | 2016-01-26 | Amazon Technologies, Inc. | Forward-based resource delivery network management techniques |
US9893957B2 (en) | 2009-10-02 | 2018-02-13 | Amazon Technologies, Inc. | Forward-based resource delivery network management techniques |
US20110138467A1 (en) * | 2009-12-08 | 2011-06-09 | At&T Intellectual Property I, L.P. | Method and System for Content Distribution Network Security |
US8397298B2 (en) | 2009-12-08 | 2013-03-12 | At&T Intellectual Property I, L.P. | Method and system for content distribution network security |
US8902897B2 (en) | 2009-12-17 | 2014-12-02 | Amazon Technologies, Inc. | Distributed routing architecture |
US8971328B2 (en) | 2009-12-17 | 2015-03-03 | Amazon Technologies, Inc. | Distributed routing architecture |
US8331370B2 (en) | 2009-12-17 | 2012-12-11 | Amazon Technologies, Inc. | Distributed routing architecture |
US8331371B2 (en) | 2009-12-17 | 2012-12-11 | Amazon Technologies, Inc. | Distributed routing architecture |
US10506029B2 (en) | 2010-01-28 | 2019-12-10 | Amazon Technologies, Inc. | Content distribution network |
US11205037B2 (en) | 2010-01-28 | 2021-12-21 | Amazon Technologies, Inc. | Content distribution network |
US9495338B1 (en) | 2010-01-28 | 2016-11-15 | Amazon Technologies, Inc. | Content distribution network |
US9787775B1 (en) | 2010-09-28 | 2017-10-10 | Amazon Technologies, Inc. | Point of presence management in request routing |
US9712484B1 (en) | 2010-09-28 | 2017-07-18 | Amazon Technologies, Inc. | Managing request routing information utilizing client identifiers |
US8468247B1 (en) | 2010-09-28 | 2013-06-18 | Amazon Technologies, Inc. | Point of presence management in request routing |
US11632420B2 (en) | 2010-09-28 | 2023-04-18 | Amazon Technologies, Inc. | Point of presence management in request routing |
US8577992B1 (en) | 2010-09-28 | 2013-11-05 | Amazon Technologies, Inc. | Request routing management based on network components |
US11336712B2 (en) | 2010-09-28 | 2022-05-17 | Amazon Technologies, Inc. | Point of presence management in request routing |
US8676918B2 (en) | 2010-09-28 | 2014-03-18 | Amazon Technologies, Inc. | Point of presence management in request routing |
US8819283B2 (en) | 2010-09-28 | 2014-08-26 | Amazon Technologies, Inc. | Request routing in a networked environment |
US10015237B2 (en) | 2010-09-28 | 2018-07-03 | Amazon Technologies, Inc. | Point of presence management in request routing |
US8924528B1 (en) | 2010-09-28 | 2014-12-30 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US8930513B1 (en) | 2010-09-28 | 2015-01-06 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US9800539B2 (en) | 2010-09-28 | 2017-10-24 | Amazon Technologies, Inc. | Request routing management based on network components |
US11108729B2 (en) | 2010-09-28 | 2021-08-31 | Amazon Technologies, Inc. | Managing request routing information utilizing client identifiers |
US10958501B1 (en) | 2010-09-28 | 2021-03-23 | Amazon Technologies, Inc. | Request routing information based on client IP groupings |
US10931738B2 (en) | 2010-09-28 | 2021-02-23 | Amazon Technologies, Inc. | Point of presence management in request routing |
US8938526B1 (en) | 2010-09-28 | 2015-01-20 | Amazon Technologies, Inc. | Request routing management based on network components |
US10079742B1 (en) | 2010-09-28 | 2018-09-18 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US9003035B1 (en) | 2010-09-28 | 2015-04-07 | Amazon Technologies, Inc. | Point of presence management in request routing |
US10778554B2 (en) | 2010-09-28 | 2020-09-15 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US10097398B1 (en) | 2010-09-28 | 2018-10-09 | Amazon Technologies, Inc. | Point of presence management in request routing |
US9106701B2 (en) | 2010-09-28 | 2015-08-11 | Amazon Technologies, Inc. | Request routing management based on network components |
US9160703B2 (en) | 2010-09-28 | 2015-10-13 | Amazon Technologies, Inc. | Request routing management based on network components |
US9794216B2 (en) | 2010-09-28 | 2017-10-17 | Amazon Technologies, Inc. | Request routing in a networked environment |
US9185012B2 (en) | 2010-09-28 | 2015-11-10 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US9191338B2 (en) | 2010-09-28 | 2015-11-17 | Amazon Technologies, Inc. | Request routing in a networked environment |
US9253065B2 (en) | 2010-09-28 | 2016-02-02 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US9407681B1 (en) | 2010-09-28 | 2016-08-02 | Amazon Technologies, Inc. | Latency measurement in resource requests |
US9497259B1 (en) | 2010-09-28 | 2016-11-15 | Amazon Technologies, Inc. | Point of presence management in request routing |
US10225322B2 (en) | 2010-09-28 | 2019-03-05 | Amazon Technologies, Inc. | Point of presence management in request routing |
US10951725B2 (en) | 2010-11-22 | 2021-03-16 | Amazon Technologies, Inc. | Request routing processing |
US8452874B2 (en) | 2010-11-22 | 2013-05-28 | Amazon Technologies, Inc. | Request routing processing |
US9003040B2 (en) | 2010-11-22 | 2015-04-07 | Amazon Technologies, Inc. | Request routing processing |
US9930131B2 (en) | 2010-11-22 | 2018-03-27 | Amazon Technologies, Inc. | Request routing processing |
US8626950B1 (en) | 2010-12-03 | 2014-01-07 | Amazon Technologies, Inc. | Request routing processing |
US9391949B1 (en) | 2010-12-03 | 2016-07-12 | Amazon Technologies, Inc. | Request routing processing |
US11604667B2 (en) | 2011-04-27 | 2023-03-14 | Amazon Technologies, Inc. | Optimized deployment based upon customer locality |
US9628554B2 (en) | 2012-02-10 | 2017-04-18 | Amazon Technologies, Inc. | Dynamic content delivery |
US10021179B1 (en) | 2012-02-21 | 2018-07-10 | Amazon Technologies, Inc. | Local resource delivery network |
US9172674B1 (en) | 2012-03-21 | 2015-10-27 | Amazon Technologies, Inc. | Managing request routing information utilizing performance information |
US9083743B1 (en) | 2012-03-21 | 2015-07-14 | Amazon Technologies, Inc. | Managing request routing information utilizing performance information |
US10623408B1 (en) | 2012-04-02 | 2020-04-14 | Amazon Technologies, Inc. | Context sensitive object management |
US10225362B2 (en) | 2012-06-11 | 2019-03-05 | Amazon Technologies, Inc. | Processing DNS queries to identify pre-processing information |
US11729294B2 (en) | 2012-06-11 | 2023-08-15 | Amazon Technologies, Inc. | Processing DNS queries to identify pre-processing information |
US9154551B1 (en) | 2012-06-11 | 2015-10-06 | Amazon Technologies, Inc. | Processing DNS queries to identify pre-processing information |
US11303717B2 (en) | 2012-06-11 | 2022-04-12 | Amazon Technologies, Inc. | Processing DNS queries to identify pre-processing information |
US9525659B1 (en) | 2012-09-04 | 2016-12-20 | Amazon Technologies, Inc. | Request routing utilizing point of presence load information |
US9323577B2 (en) | 2012-09-20 | 2016-04-26 | Amazon Technologies, Inc. | Automated profiling of resource usage |
US10015241B2 (en) | 2012-09-20 | 2018-07-03 | Amazon Technologies, Inc. | Automated profiling of resource usage |
US9135048B2 (en) | 2012-09-20 | 2015-09-15 | Amazon Technologies, Inc. | Automated profiling of resource usage |
US10542079B2 (en) | 2012-09-20 | 2020-01-21 | Amazon Technologies, Inc. | Automated profiling of resource usage |
US10205698B1 (en) | 2012-12-19 | 2019-02-12 | Amazon Technologies, Inc. | Source-dependent address resolution |
US10645056B2 (en) | 2012-12-19 | 2020-05-05 | Amazon Technologies, Inc. | Source-dependent address resolution |
US9294391B1 (en) | 2013-06-04 | 2016-03-22 | Amazon Technologies, Inc. | Managing network computing components utilizing request routing |
US10374955B2 (en) | 2013-06-04 | 2019-08-06 | Amazon Technologies, Inc. | Managing network computing components utilizing request routing |
US9929959B2 (en) | 2013-06-04 | 2018-03-27 | Amazon Technologies, Inc. | Managing network computing components utilizing request routing |
US10728133B2 (en) | 2014-12-18 | 2020-07-28 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
US11863417B2 (en) | 2014-12-18 | 2024-01-02 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
US11381487B2 (en) | 2014-12-18 | 2022-07-05 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
US10033627B1 (en) | 2014-12-18 | 2018-07-24 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
US10091096B1 (en) | 2014-12-18 | 2018-10-02 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
US10097448B1 (en) | 2014-12-18 | 2018-10-09 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
US10225326B1 (en) | 2015-03-23 | 2019-03-05 | Amazon Technologies, Inc. | Point of presence based data uploading |
US11297140B2 (en) | 2015-03-23 | 2022-04-05 | Amazon Technologies, Inc. | Point of presence based data uploading |
US9887931B1 (en) | 2015-03-30 | 2018-02-06 | Amazon Technologies, Inc. | Traffic surge management for points of presence |
US10469355B2 (en) | 2015-03-30 | 2019-11-05 | Amazon Technologies, Inc. | Traffic surge management for points of presence |
US9819567B1 (en) | 2015-03-30 | 2017-11-14 | Amazon Technologies, Inc. | Traffic surge management for points of presence |
US9887932B1 (en) | 2015-03-30 | 2018-02-06 | Amazon Technologies, Inc. | Traffic surge management for points of presence |
US9832141B1 (en) | 2015-05-13 | 2017-11-28 | Amazon Technologies, Inc. | Routing based request correlation |
US10691752B2 (en) | 2015-05-13 | 2020-06-23 | Amazon Technologies, Inc. | Routing based request correlation |
US10180993B2 (en) | 2015-05-13 | 2019-01-15 | Amazon Technologies, Inc. | Routing based request correlation |
US11461402B2 (en) | 2015-05-13 | 2022-10-04 | Amazon Technologies, Inc. | Routing based request correlation |
US10616179B1 (en) | 2015-06-25 | 2020-04-07 | Amazon Technologies, Inc. | Selective routing of domain name system (DNS) requests |
US10097566B1 (en) | 2015-07-31 | 2018-10-09 | Amazon Technologies, Inc. | Identifying targets of network attacks |
US9742795B1 (en) | 2015-09-24 | 2017-08-22 | Amazon Technologies, Inc. | Mitigating network attacks |
US9774619B1 (en) | 2015-09-24 | 2017-09-26 | Amazon Technologies, Inc. | Mitigating network attacks |
US10200402B2 (en) | 2015-09-24 | 2019-02-05 | Amazon Technologies, Inc. | Mitigating network attacks |
US9794281B1 (en) | 2015-09-24 | 2017-10-17 | Amazon Technologies, Inc. | Identifying sources of network attacks |
US10270878B1 (en) | 2015-11-10 | 2019-04-23 | Amazon Technologies, Inc. | Routing for origin-facing points of presence |
US11134134B2 (en) | 2015-11-10 | 2021-09-28 | Amazon Technologies, Inc. | Routing for origin-facing points of presence |
US10049051B1 (en) | 2015-12-11 | 2018-08-14 | Amazon Technologies, Inc. | Reserved cache space in content delivery networks |
US10257307B1 (en) | 2015-12-11 | 2019-04-09 | Amazon Technologies, Inc. | Reserved cache space in content delivery networks |
US10348639B2 (en) | 2015-12-18 | 2019-07-09 | Amazon Technologies, Inc. | Use of virtual endpoints to improve data transmission rates |
US11463550B2 (en) | 2016-06-06 | 2022-10-04 | Amazon Technologies, Inc. | Request management for hierarchical cache |
US10075551B1 (en) | 2016-06-06 | 2018-09-11 | Amazon Technologies, Inc. | Request management for hierarchical cache |
US10666756B2 (en) | 2016-06-06 | 2020-05-26 | Amazon Technologies, Inc. | Request management for hierarchical cache |
US11457088B2 (en) | 2016-06-29 | 2022-09-27 | Amazon Technologies, Inc. | Adaptive transfer rate for retrieving content from a server |
US10110694B1 (en) | 2016-06-29 | 2018-10-23 | Amazon Technologies, Inc. | Adaptive transfer rate for retrieving content from a server |
US9992086B1 (en) | 2016-08-23 | 2018-06-05 | Amazon Technologies, Inc. | External health checking of virtual private cloud network environments |
US10516590B2 (en) | 2016-08-23 | 2019-12-24 | Amazon Technologies, Inc. | External health checking of virtual private cloud network environments |
US10033691B1 (en) | 2016-08-24 | 2018-07-24 | Amazon Technologies, Inc. | Adaptive resolution of domain name requests in virtual private cloud network environments |
US10469442B2 (en) | 2016-08-24 | 2019-11-05 | Amazon Technologies, Inc. | Adaptive resolution of domain name requests in virtual private cloud network environments |
US10616250B2 (en) | 2016-10-05 | 2020-04-07 | Amazon Technologies, Inc. | Network addresses with encoded DNS-level information |
US11330008B2 (en) | 2016-10-05 | 2022-05-10 | Amazon Technologies, Inc. | Network addresses with encoded DNS-level information |
US10469513B2 (en) | 2016-10-05 | 2019-11-05 | Amazon Technologies, Inc. | Encrypted network addresses |
US10505961B2 (en) | 2016-10-05 | 2019-12-10 | Amazon Technologies, Inc. | Digitally signed network address |
US10831549B1 (en) | 2016-12-27 | 2020-11-10 | Amazon Technologies, Inc. | Multi-region request-driven code execution system |
US10372499B1 (en) | 2016-12-27 | 2019-08-06 | Amazon Technologies, Inc. | Efficient region selection system for executing request-driven code |
US11762703B2 (en) | 2016-12-27 | 2023-09-19 | Amazon Technologies, Inc. | Multi-region request-driven code execution system |
US10938884B1 (en) | 2017-01-30 | 2021-03-02 | Amazon Technologies, Inc. | Origin server cloaking using virtual private cloud network environments |
US12052310B2 (en) | 2017-01-30 | 2024-07-30 | Amazon Technologies, Inc. | Origin server cloaking using virtual private cloud network environments |
US10503613B1 (en) | 2017-04-21 | 2019-12-10 | Amazon Technologies, Inc. | Efficient serving of resources during server unavailability |
US11075987B1 (en) | 2017-06-12 | 2021-07-27 | Amazon Technologies, Inc. | Load estimating content delivery network |
US10447648B2 (en) | 2017-06-19 | 2019-10-15 | Amazon Technologies, Inc. | Assignment of a POP to a DNS resolver based on volume of communications over a link between client devices and the POP |
US11290418B2 (en) | 2017-09-25 | 2022-03-29 | Amazon Technologies, Inc. | Hybrid content request routing system |
US10592578B1 (en) | 2018-03-07 | 2020-03-17 | Amazon Technologies, Inc. | Predictive content push-enabled content delivery network |
US11362986B2 (en) | 2018-11-16 | 2022-06-14 | Amazon Technologies, Inc. | Resolution of domain name requests in heterogeneous network environments |
US10862852B1 (en) | 2018-11-16 | 2020-12-08 | Amazon Technologies, Inc. | Resolution of domain name requests in heterogeneous network environments |
US11025747B1 (en) | 2018-12-12 | 2021-06-01 | Amazon Technologies, Inc. | Content request pattern-based routing system |
Also Published As
Publication number | Publication date |
---|---|
CN1589560B (en) | 2010-05-26 |
WO2003045029A1 (en) | 2003-05-30 |
AU2002356593A1 (en) | 2003-06-10 |
DE60213846T2 (en) | 2007-09-06 |
EP1446933B1 (en) | 2006-08-09 |
US8195788B2 (en) | 2012-06-05 |
ATE336132T1 (en) | 2006-09-15 |
BRPI0206607B1 (en) | 2017-03-14 |
ES2269819T3 (en) | 2007-04-01 |
CN1589560A (en) | 2005-03-02 |
WO2003045029A8 (en) | 2004-06-17 |
CA2467639A1 (en) | 2003-05-30 |
BR0206607A8 (en) | 2018-03-06 |
EP1446933A1 (en) | 2004-08-18 |
DE60213846D1 (en) | 2006-09-21 |
CA2467639C (en) | 2012-04-24 |
ITTO20011082A1 (en) | 2003-05-19 |
BR0206607A (en) | 2004-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8195788B2 (en) | Method for checking the functionality of a content delivery network related system and computer product | |
US11283715B2 (en) | Updating routing information based on client location | |
Sivasubramanian et al. | Replication for web hosting systems | |
US6654807B2 (en) | Internet content delivery network | |
US7054935B2 (en) | Internet content delivery network | |
US8060613B2 (en) | Resource invalidation in a content delivery network | |
EP3567881B1 (en) | Request routing and updating routing information utilizing client location information | |
US20160094471A1 (en) | Handling long-tail content in a content delivery network | |
CN102025595A (en) | Flow optimization method and system | |
US11442960B2 (en) | Edge key value store for a distributed platform | |
CN114697201B (en) | Data processing method and device based on application client agent request | |
JP2004297494A (en) | Name resolution method and its apparatus in a plurality of network connection | |
JP3842624B2 (en) | Route information collection method, apparatus, and program | |
WO2013004268A1 (en) | Caching content | |
US20050097205A1 (en) | System, method and terminal for measuring the quality of service in a telecommunications network | |
Szymaniak | Latency-driven replication for globally distributed systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TELECOM ITALIA S.P.A., ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAGGI, NATASCIA;NASUTO, ANTONIO;REEL/FRAME:015694/0366 Effective date: 20040702 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240605 |