US20040242464A1 - Non-pyrogenic, endotoxin-frei stroma-free tetrameric hemoglobin - Google Patents
Non-pyrogenic, endotoxin-frei stroma-free tetrameric hemoglobin Download PDFInfo
- Publication number
- US20040242464A1 US20040242464A1 US10/876,541 US87654104A US2004242464A1 US 20040242464 A1 US20040242464 A1 US 20040242464A1 US 87654104 A US87654104 A US 87654104A US 2004242464 A1 US2004242464 A1 US 2004242464A1
- Authority
- US
- United States
- Prior art keywords
- hemoglobin
- free
- endotoxin
- cross
- stroma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010054147 Hemoglobins Proteins 0.000 title claims description 203
- 102000001554 Hemoglobins Human genes 0.000 title claims description 203
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 123
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 122
- 239000001301 oxygen Substances 0.000 claims abstract description 122
- 238000002360 preparation method Methods 0.000 claims abstract description 79
- 238000000034 method Methods 0.000 claims abstract description 65
- 230000001698 pyrogenic effect Effects 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 14
- 210000003743 erythrocyte Anatomy 0.000 claims description 96
- 239000000243 solution Substances 0.000 claims description 60
- 239000002158 endotoxin Substances 0.000 claims description 50
- 210000004027 cell Anatomy 0.000 claims description 23
- 238000004132 cross linking Methods 0.000 claims description 16
- 230000002934 lysing effect Effects 0.000 claims description 11
- 241000283690 Bos taurus Species 0.000 claims description 10
- 238000005406 washing Methods 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000003633 blood substitute Substances 0.000 abstract description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 5
- 241000124008 Mammalia Species 0.000 abstract description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 3
- 210000004072 lung Anatomy 0.000 abstract description 3
- 239000001569 carbon dioxide Substances 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 32
- 210000004369 blood Anatomy 0.000 description 26
- 239000008280 blood Substances 0.000 description 26
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 238000009472 formulation Methods 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 238000001802 infusion Methods 0.000 description 12
- 239000011589 pyridoxal 5'-phosphate Substances 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 239000012528 membrane Substances 0.000 description 11
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 11
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 11
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 239000001272 nitrous oxide Substances 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 10
- 108010001708 stroma free hemoglobin Proteins 0.000 description 10
- 230000027455 binding Effects 0.000 description 9
- -1 dibromo salicyl fumarate Chemical compound 0.000 description 9
- 229960001327 pyridoxal phosphate Drugs 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 8
- 239000000539 dimer Substances 0.000 description 8
- 235000021317 phosphate Nutrition 0.000 description 8
- XOHUEYCVLUUEJJ-UHFFFAOYSA-I 2,3-Diphosphoglycerate Chemical compound [O-]P(=O)([O-])OC(C(=O)[O-])COP([O-])([O-])=O XOHUEYCVLUUEJJ-UHFFFAOYSA-I 0.000 description 7
- 238000007792 addition Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000010452 phosphate Substances 0.000 description 7
- 238000011109 contamination Methods 0.000 description 6
- 230000009089 cytolysis Effects 0.000 description 6
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 239000004971 Cross linker Substances 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000006392 deoxygenation reaction Methods 0.000 description 5
- 210000003617 erythrocyte membrane Anatomy 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000004962 physiological condition Effects 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 108010002255 deoxyhemoglobin Proteins 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 238000011067 equilibration Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229960001138 acetylsalicylic acid Drugs 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000005587 bubbling Effects 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000000644 isotonic solution Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 229940085991 phosphate ion Drugs 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000002510 pyrogen Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- XOHUEYCVLUUEJJ-UHFFFAOYSA-N 2,3-Bisphosphoglyceric acid Chemical compound OP(=O)(O)OC(C(=O)O)COP(O)(O)=O XOHUEYCVLUUEJJ-UHFFFAOYSA-N 0.000 description 2
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 208000004880 Polyuria Diseases 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 102000011016 Type 5 Cyclic Nucleotide Phosphodiesterases Human genes 0.000 description 2
- 108010037581 Type 5 Cyclic Nucleotide Phosphodiesterases Proteins 0.000 description 2
- 239000004775 Tyvek Substances 0.000 description 2
- 229920000690 Tyvek Polymers 0.000 description 2
- 206010047139 Vasoconstriction Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 208000007502 anemia Diseases 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- ZOOGRGPOEVQQDX-KHLHZJAASA-N cyclic guanosine monophosphate Chemical compound C([C@H]1O2)O[P@](O)(=O)O[C@@H]1[C@H](O)[C@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-KHLHZJAASA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000035619 diuresis Effects 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229950007919 egtazic acid Drugs 0.000 description 2
- 108010072542 endotoxin binding proteins Proteins 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 150000003278 haem Chemical class 0.000 description 2
- 230000011132 hemopoiesis Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011046 pyrogen test Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 239000012465 retentate Substances 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 239000002550 vasoactive agent Substances 0.000 description 2
- 230000025033 vasoconstriction Effects 0.000 description 2
- 229960001722 verapamil Drugs 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- XOHUEYCVLUUEJJ-UWTATZPHSA-N 2,3-bisphospho-D-glyceric acid Chemical compound OP(=O)(O)O[C@@H](C(=O)O)COP(O)(O)=O XOHUEYCVLUUEJJ-UWTATZPHSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000031104 Arterial Occlusive disease Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000006173 Good's buffer Substances 0.000 description 1
- 206010059484 Haemodilution Diseases 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 102000014702 Haptoglobin Human genes 0.000 description 1
- 108050005077 Haptoglobin Proteins 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101001009007 Homo sapiens Hemoglobin subunit alpha Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 238000011050 LAL assay Methods 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000239218 Limulus Species 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 101710098556 Lipase A Proteins 0.000 description 1
- 101710099648 Lysosomal acid lipase/cholesteryl ester hydrolase Proteins 0.000 description 1
- 102100026001 Lysosomal acid lipase/cholesteryl ester hydrolase Human genes 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010061951 Methemoglobin Proteins 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- WTBIAPVQQBCLFP-UHFFFAOYSA-N N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O Chemical compound N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O WTBIAPVQQBCLFP-UHFFFAOYSA-N 0.000 description 1
- 229940123973 Oxygen scavenger Drugs 0.000 description 1
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UQZIYBXSHAGNOE-USOSMYMVSA-N Stachyose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO[C@@H]2[C@@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O2)O1 UQZIYBXSHAGNOE-USOSMYMVSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 206010047141 Vasodilatation Diseases 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- OFHCOWSQAMBJIW-AVJTYSNKSA-N alfacalcidol Chemical class C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C OFHCOWSQAMBJIW-AVJTYSNKSA-N 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 238000012801 analytical assay Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 208000021328 arterial occlusion Diseases 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- NRIMHVFWRMABGJ-UHFFFAOYSA-N bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylic acid Chemical compound C1C2C(C(=O)O)=C(C(O)=O)C1C=C2 NRIMHVFWRMABGJ-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009146 cooperative binding Effects 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000003635 deoxygenating effect Effects 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- IWEDIXLBFLAXBO-UHFFFAOYSA-N dicamba Chemical compound COC1=C(Cl)C=CC(Cl)=C1C(O)=O IWEDIXLBFLAXBO-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000010437 erythropoiesis Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229940100601 interleukin-6 Drugs 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 108010049645 liposome-encapsulated hemoglobin Proteins 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000011147 magnesium chloride Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011555 rabbit model Methods 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229960002639 sildenafil citrate Drugs 0.000 description 1
- DEIYFTQMQPDXOT-UHFFFAOYSA-N sildenafil citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 DEIYFTQMQPDXOT-UHFFFAOYSA-N 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- UQZIYBXSHAGNOE-XNSRJBNMSA-N stachyose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)O2)O)O1 UQZIYBXSHAGNOE-XNSRJBNMSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/795—Porphyrin- or corrin-ring-containing peptides
- C07K14/805—Haemoglobins; Myoglobins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the invention relates to a blood substitute capable of being used in humans or other mammals to provide oxygen to tissue and to deliver carbon dioxide to the lung. More specifically, the invention provides a process for producing a cross-linked tetrameric hemoglobin preparation that is non-pyrogenic, endotoxin-free and stroma-free such that it is capable of in vivo use in a human or other mammals.
- red blood cell (“RBC”) substitute has long been sought after.
- an RBC substitute ideally will meet several requirements. It must be virus-free, non-toxic and non-immunogenic and it should have satisfactory oxygen carrying capacity and circulatory persistence to permit effective oxygenation of tissues.
- Perfluorcarbons are inert chemically synthesized compounds that dissolve oxygen.
- Perfluorcarbons suffer from the disadvantage that they are immiscible in aqueous solutions and thus must be emulsified with lipids before being introduced into the blood stream.
- Liposomes suffer from structural rigidity, and from a low effective hemoglobin concentration.
- Hemoglobin mediates the delivery of oxygen from the lungs to the tissues, purified hemoglobin has been extensively investigated as a possible blood substitute. Hemoglobin is reported to be approximately 97% pure inside the red blood cell. Human hemoglobin is a protein having a molecular weight of 64 kD, and it consists of four subunits, two alpha polypeptide chains and two beta polypeptide chains. Each of the subunits contains a single iron-containing heme prosthetic group that binds and releases oxygen. Hemoglobin exhibits cooperative binding of oxygen by the four subunits of the hemoglobin molecule, and this cooperatively facilitates oxygen transport.
- hemoglobin When hemoglobin binds oxygen, it shifts from the high energy “tense” or “T” state (deoxygenated) to the lower energy “relaxed” or “R” state (oxygenated).
- Human alpha and beta globin genes have been cloned and sequenced (Liebhaber et al., Proc. Natl. Acad. Sci . ( U.S.A ). 77:7054-58 (1980); Marotta et al., J. Biol. Chem. 252:5040-43 (1977); and Lawn et al., Cell 21:647 (1980), all of which are incorporated by reference in their entirety).
- stroma-free hemoglobin blood substitute therapy would offer several advantages over conventional blood replacement therapies.
- the use of stroma-free hemoglobin blood substitutes is predicted to reduce the extent and severity of undesired immune responses, and the risk of transmission of viral diseases, including hepatitis and HIV.
- stroma-free hemoglobin blood substitutes are predicted to exhibit an extended shelf life, and to require less rigorous storage facilities.
- hemoglobin was found to have such a high affinity for oxygen that it would not release it to the tissues under physiological conditions.
- SFH was also found to possess only a limited half-life in the body, and to be rapidly cleared from the blood by glomular filtration. This disrupts the ability of the kidney to concentrate urine and results in the rapid removal of hemoglobin from the intravascular volume. Excessive filtration of the alpha/beta subunit by the glomerulus in the kidney can cause osmotic diuresis. In vivo, the retention time of stroma-free human hemoglobin is on the order of 14 hours. De Venuto et al., Transfusion 17:555 (1977).
- SFH has been chemically cross-linked to form a stable tetramer.
- Several chemical agents have been used to cross-link hemoglobin alpha/beta dimers and prevent their filtration by the glomerulus into the urine, and yet maintain the oxygen transport properties of native hemoglobin.
- Bis dibromo salicyl fumarate (BDBF) is an activated diester of fumaric acid that has been used as a cross-linker to cross-link hemoglobin (Tye, U.S. Pat. No. 4,529,719, hereby incorporated by reference in its entirety).
- Fumaric acid is a four carbon straight chain unsaturated trans 2,3 dicarboxylic acid which is capable of interacting with the aspirin binding site of both alpha/beta dimers. This maintains the two dimers in proper orientation for cross-linking with lysine residues.
- the tetrameric structure of hemoglobin provides a binding site for 2,3-diphosphoglycerate.
- the binding of 2,3-diphosphoglycerate to hemoglobin decreases the hemoglobin's oxygen affinity to a level compatible with oxygen transport.
- the binding of 2,3-diphosphoglycerate to hemoglobin is very weak and requires very high concentrations (i.e., concentrations approaching 1M or more) in order to modify the affinity of hemoglobin for oxygen.
- concentrations approaching 1M or more concentrations approaching 1M or more
- SFH exhibits a higher affinity for oxygen than does hemoglobin in RBCs.
- the increased affinity of the SFH for oxygen is quite significant since, under physiological conditions, it is unable to release the bound oxygen to the tissues.
- Bovine hemoglobin does not require 2,3-DPG to maintain a p50 for oxygen in the range of 30 mm.
- the tetrameric structure of T state deoxyhemoglobin has increased stability from six ionic bonds and while in the T state, hemoglobin is effectively prevented from disassociating into dimers.
- the beta cleft contact area between the two beta chains also known as the beta pocket, phosphate pocket, and 2,3-diphosphoglycerate binding site
- the changed conformation of the beta cleft in the T state is believed to explain the decreased oxygen affinity stabilized by 2,3-diphophoglycerate.
- the T state of hemoglobin is stable and resistant to denaturation.
- cross-linking the SFH addresses both the problem of oxygen affinity and the problem of rapid filtration by the kidney.
- This invention is directed to a method for producing a purified preparation of an endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin, and to an endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin.
- the invention provides, a non-pyrogenic, endotoxin-free, oxygen-free, stroma-free, cross-linked tetrameric hemoglobin.
- the invention particularly concerns the embodiments in which the hemoglobin has been cross-linked with bis dibromo salicyl fumarate and/or has been modified by reaction with pyridoxal-5′-phosphate.
- the invention particularly concerns the embodiments in which the hemoglobin is human hemoglobin, or is bovine or porcine hemoglobin.
- Such molecules may be obtained from any of a variety of sources (for example, from animal sources, via recombinant technology, from chemical synthesis, etc.).
- the invention also provides a non-pyrogenic, endotoxin-free, oxygen-free, stroma-free, cross-linked tetrameric hemoglobin.
- the invention further provides a blood substitute composition
- a blood substitute composition comprising a preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin, and a pharmaceutically acceptable carrier.
- the invention further provides a method of supplementing the blood of a mammal which comprises administering to the mammal a blood substitute composition comprising a preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin and a pharmaceutically acceptable carrier.
- the invention further provides a preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin produced by the process comprising the steps of:
- the invention particularly concerns the sub-embodiments wherein in process step (B) or (C′), the oxygen is removed by centrifuging the red blood cells under vacuum.
- the invention additionally concerns the sub-embodiment wherein the process for preparing such non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin additionally comprises the steps of:
- process step (A) additionally comprises washing surfaces and equipment that will come into contact with the cross-linked hemoglobin with a dilute solution of hemoglobin.
- process step (B) or (C′) comprises subjecting the red blood cell preparation to a vacuum sufficient to remove oxygen from the preparation.
- process step (B) additionally comprises centrifuging a solution of the cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
- the invention particularly concerns the embodiment wherein the preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin additionally contains a pharmaceutically acceptable carrier.
- the invention also provides a method for producing a non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin comprising the steps of:
- the invention also concerns the embodiments of such methods wherein in step (B) or (C′), the oxygen is removed by centrifuging the red blood cells under vacuum.
- the invention also concerns the embodiment of such method wherein the method additionally comprises the steps of:
- the invention particularly concerns the sub-embodiment wherein method step (A) additionally comprises washing surfaces and equipment that will come into contact with the cross-linked hemoglobin with a dilute solution of hemoglobin.
- the invention particularly concerns the sub-embodiments wherein method step (B) or (C′) comprises subjecting the red blood cell preparation to a vacuum sufficient to remove oxygen from the preparation.
- the invention further concerns the sub-embodiments wherein method step (B) or (C′) additionally comprises centrifuging a solution of the cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
- the invention also provides a method of increasing the oxygen carrying capacity of an individual which comprises administering to the individual a non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin.
- the invention particularly concerns the embodiment wherein the non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin is administered by transfusion or injection.
- the invention further concerns the method for increasing an individual's oxygen carrying capacity, wherein the non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin is produced by a process comprising the steps:
- the invention particularly concerns the sub-embodiments wherein in process step (B) or (C′), the oxygen is removed by centrifuging the red blood cells under vacuum.
- the invention additionally concerns the sub-embodiment wherein the process for preparing such non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin additionally comprises the steps of:
- process step (A) comprises washing surfaces and equipment that will come into contact with the cross-linked hemoglobin with a dilute solution of hemoglobin.
- the invention particularly concerns the sub-embodiments wherein process step (B) or (C′) comprises subjecting the red blood cell preparation to a vacuum sufficient to remove oxygen from the preparation.
- process step (B) or (C′) additionally comprises centrifuging a solution of the cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
- the invention also provides a container containing a non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin composition.
- the invention particularly concerns the embodiments in which the container is an anoxic container composed of polyethylene terephthalate, or is an implantable delivery device that delivers a non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin composition to a recipient.
- the invention particularly contemplates that the non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin contained in the container is produced through the process comprising the steps of:
- the invention particularly concerns the embodiments wherein the hemoglobin of such non-pyrogenic, endotoxin-free, oxygen-free, stroma-free, cross-linked tetrameric hemoglobin has been cross-linked with bis dibromo salicyl fumarate, and/or wherein the hemoglobin has been modified by reaction with pyridoxal-5′-phosphate.
- the invention particularly concerns the embodiments wherein the hemoglobin of such non-pyrogenic, endotoxin-free, oxygen-free, stroma-free, cross-linked tetrameric hemoglobin is human, bovine or porcine hemoglobin.
- Such molecules may be obtained from any of a variety of sources (for example, from animal sources, via recombinant technology, from chemical synthesis, etc.).
- the present invention concerns a non-pyrogenic, endotoxin-free purified preparation of cross-linked, stroma-free hemoglobin.
- a preparation of hemoglobin is said to be “non-pyrogenic” if it may be administered into an individual of the same species as that from which the hemoglobin was derived (i.e., a human for human-derived hemoglobin, etc.) without causing an immunologic or pyrogenic reaction (such as inflammation, agglutination, clotting, etc.).
- Any of a variety of assays may be employed to demonstrate the non-pyrogenicity of the compositions of the present invention: interleukin-6 and other cytokine induction (Pool, E. J.
- the rabbit pyrogen test is the preferred pyrogenicity assay.
- a preparation of hemoglobin is said to be “stroma-free” if the hemoglobin has been treated to remove substantially all stromal material, such that the preparation no longer exhibits the immunoreactivity to blood type antigens characteristic of RBCs. Stroma-free hemoglobin thus substantially lacks the toxic and/or pyrogenic properties associated with preparations of hemolyzed red blood cells, and thus can be administered to an individual without causing toxicity or inflammatory reaction.
- a preparation of hemoglobin is said to be “endotoxin-free” if the hemoglobin has been treated to remove substantially all endotoxin.
- endotoxin-free hemoglobin has an amount of endotoxin ranging from 0-10%, and more preferably from 0-1%, of the amount of endotoxin present in USP water.
- the hemoglobin is deoxygenated to render it “oxygen-free.”
- a preparation of hemoglobin is said to be “oxygen-free” if the hemoglobin has been treated to remove substantially all oxygen. Oxygen-free hemoglobin thus is substantially or completely in the higher energy “tense” or “T” configuration.
- DBDF cross-linked hemoglobin appeared to be very promising based upon it's initial characterization, prior preparations of DBDF cross-linked hemoglobin were found to lack clinical efficacy.
- the present invention has identified several of properties DBDF cross-linked hemoglobin that have reduced the clinical efficacy of the molecule, and the present invention provides an improved DBDF cross-linked hemoglobin (FXSFH) for overcoming the deficiencies of the prior preparations.
- the hemoglobin derivative must be prepared in the absence of oxygen.
- Inorganic phosphate which binds tightly to the hemoglobin molecule and interferes with the cross-linking reaction, must be removed to increase yield.
- Endotoxins which bind tightly to the hemoglobin molecule and become a hepatic toxin when the hemoglobin is metabolized, must not be allowed to contact the hemoglobin.
- Hemoglobin that has been purified from the stroma in the absence of oxygen is referred to as “stroma-free deoxyhemoglobin” (“dSFH”) and is in the higher energy “tense” or “T” configuration. Hemoglobin cross-linked in the presence of oxygen binds oxygen very tightly and will not release the oxygen to the tissue under physiological conditions. Removal of oxygen from the hemoglobin solution prior to reaction with DBDF has been very difficult. Concentrated protein solutions froth and foam when oxygen is removed by bubbling nitrogen through the solution or removal of oxygen by placing a vacuum over the solution.
- One of the problems the art has faced is the lack of an endpoint to discern when all of the oxygen has been removed.
- Foaming can be controlled briefly by the addition of a surfactant, but that can introduce additional endotoxins into the final product. Foaming causes denatured protein; surfactant adds endotoxin.
- the cross-linked stroma-free hemoglobin (“FXSFH”) of the present invention can be prepared in a single working day with a properly equipped laboratory. Although the chemical reaction itself is extremely rapid, much of the time is spent concentrating hemoglobin, removing reaction products, or equilibrating with physiological buffers.
- Stroma-free hemoglobin may be obtained from a variety of mammalian sources, such as, for example, human, bovine, ovine, or porcine sources.
- the stroma-free hemoglobin of the present invention may be synthetically produced by a bacterial, or more preferably, by a yeast, mammalian cell, or insect cell expression vector system (Hoffman, S. J. et al., U.S. Pat. No. 5,028,588 and Hoffman, et al., WO 90/13645, both herein incorporated by reference.
- hemoglobin can be obtained from transgenic animals; such animals can be engineered to express non-endogenous hemoglobin (Logan, J. S. et al. PCT Application No. PCT/US92/05000; Townes, T. M. et al., PCT Application No. PCT/US/09624, both herein incorporated by reference).
- the stroma-free hemoglobin of the present invention is isolated from bovine or human source, and most preferably a human source.
- Such hemoglobin may be composed of the “naturally existing” hemoglobin protein, or may contain some or be entirely composed of, a mutant hemoglobin protein.
- Preferred mutant hemoglobin proteins include those whose mutations result in more desirable oxygen binding/release characteristics. Examples of such mutant hemoglobin proteins include those provided by Hoffman, S. L. et al. (U.S. Pat. Nos. 5,028,588 and 5,776,890) and Anderson, D. C. et al. (U.S. Pat. Nos. 5,844,090 and 5,599,907), all herein incorporated by reference.
- such cleansing is accomplished by pre-washing surfaces and equipment that will come into contact with the FXSFH of the present invention using a dilute solution of hemoglobin.
- a dilute solution of hemoglobin serves to bind endotoxin and hence to remove residual endotoxin that may be present on such membranes or equipment.
- the dilute solution of hemoglobin is preferably discarded after each use.
- the erythrocyte preparation that is to be used as the source of the hemoglobin of the present invention is treated under conditions sufficient to remove oxygen present in the preparation.
- One aspect of the present invention concerns an improved process for removing oxygen from SFH preparations. Such deoxygenation may be performed either prior to, or subsequent to erythrocyte membrane disruption.
- the extent of deoxygenation can be measured by gas chromatograph, zirconium-based detector (e.g., a “MOCON” analyzer (Mocon, Minneapolis, Minn.), by measuring pO 2 or by measuring the spectral shift that is characteristic of deoxyhemoglobin formation.
- a “MOCON” analyzer Mocon, Minneapolis, Minn.
- a preferred method is to remove the oxygen from the red blood cells that have been washed in isotonic saline prior to hypotonic lysis.
- the cells still have a large intracellular concentration of 2,3-DPG and thus a lower affinity for oxygen.
- the cell membrane prevents the hemoglobin protein from foam denaturation.
- oxygen removal is effected by subjecting the erythrocyte preparation to a vacuum sufficient to remove oxygen from the preparation.
- oxygen removal is accomplished by agitating, or even more preferably, by centrifuging, the cells while under vacuum.
- Such treatment takes advantage of the fact that oxygen has a looser affinity for hemoglobin contained within cellular membranes than it does for free hemoglobin.
- Centrifugation should be sufficiently extensive to allow deoxygenation, but sufficiently gentle to avoid unacceptable lysis of fragile erythrocytes. Heat may be provided to prevent the solution from freezing. In general, it is preferred to keep the cells at room temperature and to employ a vacuum sufficient to equal the vapor pressure of water at the solution of the temperature. After the removal of oxygen, all further steps are conducted in the absence of oxygen. In a preferred embodiment, such further steps are conducted under nitrogen (or other inert gas) positive pressure in the absence of oxygen.
- Cells that have been treated in the above manner are then lysed by addition of approximately 10 volumes of deoxygenated, endotoxin-free water.
- the water may be deoxygenated by application of a vacuum and warming of the solution, preferably to its boiling point.
- the red cell lysis is allowed to proceed and the stroma is subsequently removed by ultrafiltration. After such treatment, the temperatures are equilibrated below room temperature.
- the erythrocyte membranes are disrupted prior to the deoxygenation procedure.
- the SFH has been separated from the stroma prior to deoxygenation, and has also been separated from the high concentration of 2′3′ DPG found within red cells. Due to the lowered (or absent) 2′3′ DPG concentrations, this SFH will have a relatively high affinity for oxygen. As such, it is subject to foam denaturation during the removal of oxygen.
- the erythrocyte preparation is preferably subjected to hypotonic lysis, and the lysate or retentate is then filtered to remove the stroma. Oxygen contaminating the resulting material is removed by vacuum, and more preferably by vacuum centrifugation.
- the SFH used may be an ultrafiltrate obtained from the removal of stroma (dilute) or a retentate from the ultrafiltration of the second stage ultrafiltration conducted to concentrate the hemoglobin to approximately 10% (w/v).
- Either of these solutions of SFH can be readily deoxygenated by applying a vacuum sufficient to equal the partial pressure of water at the temperature of the solution, while the solution is centrifuged at a speed sufficient to produce a force greater than the surface tension of the solution. These are generally low speeds and can easily be met with preparatory centrifuges, or those of a continuous flow variety. It is desirable to consider the geometry of the containers of the SFH to insure that there will be adequate surface area for gas exchange, and that the temperature can be maintained and the solution not allowed to freeze.
- the dSFH prepared in the manner described above is preferably maintained in its inert environment and the pH of the preparation is preferably adjusted to a range between 6.0 and 8.5, and most preferably about pH 7.2.
- the pH of the solution is preferably adjusted using dilute 0.1 N HCl or 0.1 N NaOH that has been previously determined to be free of endotoxin.
- Hemoglobin may be released from the erythrocyte by hypotonic lysis in twenty volumes of deionized water.
- Other methods of erythrocyte lysis such as “slow hypotonic lysis” or “freeze thaw”, may also be employed. See, e.g., Chan et al., J. Cell Physiol. 85:47-57 (1975), incorporated by reference in its entirety.
- the cells are lysed by flow mixing deoxygenated red blood cells in isotonic saline with 12 volumes of deoxygenated, deionized, endotoxin-free water and subjecting the cells to gentle agitation.
- the deoxygenated blood samples are washed several times with an isotonic solution and the plasma is separated by centrifugation at 3,000 rpm.
- the isotonic solution used is a saline solution.
- the cells are washed at least three times, rinsed between each centrifugation, and resuspended in a final volume of an equal volume of isotonic solution.
- a sonicator is discouraged as it makes membrane spheres (often referred to as “dust”).
- Agitation methods suitable for use in the present invention include a magnetic stir bar and a mechanical rocker or shaker.
- the stroma may be removed by ultrafiltration of the oxygen-free hemolysate over a 0.5 ⁇ filter which retains the cellular components and passes the hemoglobin.
- the cellular debris is removed by subsequent filtration through a 0.2 ⁇ filter.
- Ultrafiltration membranes suitable for use in the present invention are commercially available from, for example, Millipore Corporation. This step is preferably performed at 4° C. as rapidly as possible after hemolysis of the erythrocyte, and in an oxygen-free environment. It is understood that other methods of removing the stroma may also be used in the present invention.
- the dSFH that has passed through the filter is then treated to exchange phosphate for chloride.
- the dSFH is passed, in the absence of oxygen, through an ion exchange column that has been previously prepared and equilibrated with chloride. Efficacy of this step is measured by total inorganic phosphate analysis.
- Suitable ionic resins are commercially available from Pharmacia and Waters. The ionic resin removes phosphate that competes for the aspirin binding site during the reaction with BDBF.
- the stroma-free hemolysate is concentrated by a membrane that does not allow for the passage of hemoglobin.
- the stroma-free hemolysate is concentrated using a filter having a 30,000 MW cut-off.
- the stroma-free hemolysate is concentrated to a 1%-20% (g/l) solution. More preferably, the stroma-free hemolysate is concentrated to about 5 to about 10%. Most preferably, the stroma-free hemolysate is concentrated to about 10%.
- the concentrated solution should be equilibrated with buffer and the pH should be adjusted.
- the pH is adjusted to a pH of 7.40.
- a pH of between about 6.5 and about 8.5 can be used in the present invention.
- the completely deoxygenated, phosphate-free SFH is cross-linked to form tetrameric hemoglobin.
- the dSFH is cross-linked with bis dibromo salicyl fumarate (BDBF) (Tye, U.S. Pat. No. 4,529,719, hereby incorporated by reference in its entirety).
- BDBF cross-linker is added, with stirring to provide mixing, to the dSFH preparation at a molar ratio of BDBF cross-linker:dSFH of greater than 1:1.
- the pH of the dSFH preparation is adjusted to match that of the BDBF
- the pH of the reaction mixture is carefully maintained by the addition of acid or base since the solution is not buffered. This reaction is very quick, taking 5 minutes or less. The reaction is permitted to go to completion (approximately 5 minutes).
- Pyridoxal 5 phosphate has the ability to modify hemoglobin by introducing a negative charge near a penultimate beta chain histidine residue and by removing a positive charge at the amino terminal end of the same chain. These charge changes stabilize a new molecular configuration that is similar to the hemoglobin-DPG (diphosphoglycerate) complex. Significantly, the hemoglobin of this new configuration has an oxygen affinity resembling that of native hemoglobin within the red cell.
- the product may have one or two PLP molecules attached per tetramer.
- pyridoxal 5 phosphate PLP
- the PLP is reduced with sodium borohydride and then permitted to react with the cross-linked dSFH and to form FXSFH-pyridoxal-5′-phosphate (FXSFH-PLP) using the methods described by Benesch et al. (Benesch et al., Biochemistry 11:3576 (1972); Benesch et al., Biochem. Biophys. Res. Commun. 63(4): 1123-9 (1975); Benesch et al., Methods Enzymol. 76:147-59 (1981); Benesch et al., J.
- deoxygenated stroma-free human hemoglobin benefit from the above-described pyridoxal 5 phosphate reaction, deoxygenated stroma-free bovine hemoglobin does not require this step.
- FXSFH can be equilibrated with lactated Ringers solution. After equilibration, the solution is sterile filtered into suitable infusion containers.
- Infusion containers suitable for use in the present invention include, but are not limited to, sterile IV bags. Preferred infusion containers prevent gas exchange (i.e., impermeable to oxygen) and the FXSFH is stored in the absence of oxygen. This is expected to prevent the heme oxidation to form methemoglobin.
- the FXSFH of the present invention can be formulated into a blood substitute.
- Such formulations can include other components in addition to the FXSFH.
- a parenteral therapeutic composition can comprise a sterile isotonic saline solution.
- the formulations can be either in a form suitable for direct administration, or in a concentrated form requiring dilution prior to administration.
- the formulations of the present invention can thus contain between 0.001% and 90% (w/v) FXSFH.
- Suitable compositions can also include 0-200 mM of one or more buffers (for example, acetate, phosphate, citrate, bicarbonate, or Good's buffers).
- compositions of the invention can include 0-2 M of one or more carbohydrates (for example, reducing carbohydrates such as glucose, maltose, lactose or non-reducing carbohydrates such as sucrose, trehalose, raffinose, mannitol, isosucrose or stachyose) and 0-2 M of one or more alcohols or poly alcohols (such as polyethylene glycols, propylene glycols, dextrans, or polyols).
- carbohydrates for example, reducing carbohydrates such as glucose, maltose, lactose or non-reducing carbohydrates such as sucrose, trehalose, raffinose, mannitol, isosucrose or stachyose
- alcohols or poly alcohols such as polyethylene glycols, propylene glycols, dextrans, or polyols.
- the FXSFH of the present invention can also contain 0.005-1% of one or more surfactants and 0-200 mM of one or more chelating agents (for example, ethylenediamine tetraacetic acid (EDTA), ethylene glycol-bis (beta-aminoethyl ether) N,N,N′,N′-tetraacetic acid (EGTA), ophenanthroline, diethylamine triamine pentaacetic acid (DTPA also known as pentaacetic acid) and the like).
- EDTA ethylenediamine tetraacetic acid
- EGTA ethylene glycol-bis (beta-aminoethyl ether) N,N,N′,N′-tetraacetic acid
- DTPA diethylamine triamine pentaacetic acid
- the compositions of the invention can also be at about pH 6.5-9.5.
- the FXSFH of the present invention may contains 0-300 mM of one or more salts, for example chloride salts, 0-100 mM of one or more non-reducing sugars, 0-100 mM of one or more buffers, 0.01-0.5% of one or more surfactants, and 0-150 mM of one or more chelating agents.
- the composition contains 0-150 mM NaCl, 0-10 mM sodium phosphate, and 0.01-0.1% surfactant, and 0-50 ⁇ M of one or more chelating agents, pH 6.6-7.8.
- the formulation may contain 5 mM sodium phosphate, 150 mM NaCl, 0.025% to 0.08% polysorbate 80, and 25 ⁇ M EDTA, pH 6.8-7.6.
- Additional additives to the formulation can include anti-bacterial agents, oncotic pressure agents (e.g. albumin or polyethylene glycols) and other formulation acceptable salts, sugars and excipients known in the art.
- oncotic pressure agents e.g. albumin or polyethylene glycols
- Each formulation according to the present invention can additionally comprise constituents including carriers, diluents, fillers, salts, and other materials well-known in the art, the selection of which depends upon the particular purpose to be achieved and the properties of such additives which can be readily determined by one skilled in the art.
- compositions of the present invention can be formulated by any method known in the art. Such formulation methods include, for example, simple mixing, sequential addition, emulsification, diafiltration and the like.
- Serum lipases such as lipase A, do not inactivate endotoxins bound to the hemoglobin molecule. Therefore, endotoxins remain active toxins when taken up by the hepatocyte metabolizing the hemoglobin. Friedman, H. I. et al. reported triad hepatoxicity in a rat model consistent with this theory (See, Friedman, H. I. et al., Lab Invest 39:167-77 (1978).
- the elimination of contamination with endotoxins is ensured by preventing the addition of endotoxins to the chemical processes of the present invention.
- endotoxins are added inadvertently by using endotoxin contaminated water.
- researchers are more concerned with sterility than endotoxins. Measurement of endotoxins is difficult, and standard LAL binding assays do not work in the presence of hemoglobin. Indeed, because endotoxin binds strongly to hemoglobin, endotoxin levels cannot be accurately measured using the LAL assay in the presence of hemoglobin.
- the water and the reagents used in the present invention must be substantially free from endotoxin contamination.
- the water and the reagents used in the present invention are completely free from endotoxin contamination.
- Preparation of FXSFH in the absence of endotoxin is extremely difficult to prepare on the bench top, but in a closed system dedicated to FXSFH manufacture, exclusion of endotoxin would be easier.
- the hemoglobin preparations are made using counter-flow or counter-current dialysis for equilibration of buffers and/or removal of reaction products.
- Counter flow dialysis methods are suitable for use in the present invention are commercially available (e.g., VariPerm M, bitop, Witten (see, e.g., Schwarz, T. et al, Electrophoresis 15:1118-1119 (1994)), Spectrum Laboratories, Inc., Website., etc.). It is estimated that the hollow fiber technique will yield a FXSFH preparation that has a 100 fold reduction in the amount of endotoxin as compared to standard synthesis techniques.
- inorganic phosphate interferes with the cross-linking reaction, it needs to be removed from the hemoglobin in order for the reaction to provide a satisfactory yield. This can be accomplished using a suitable exchange resin with chloride ion. A buffer must be provided if there is a substantial change in the exchange of the phosphate ion for the chloride ion. Preferably, phosphate buffers are not employed during any of the processing steps of the present invention.
- the dSFH solution is substantially free from inorganic phosphate.
- the dSFH solution of the present invention is free from inorganic phosphate.
- One way of removing inorganic phosphate from the dSFH solution is to pass the SFH solution over an ion exchange matrix equilibrated with chloride. Such a process removes phosphate by competing with phosphate for the aspirin binding site of hemoglobin. This is done in a nitrogen atmosphere. The solution is then concentrated to the desired 10% range and cross-linked using the BDBF cross-linker, at standard atmospheric pressure. If human hemoglobin is used, then the reaction with pyridoxal 5 phosphate and borohydride is carried out under nitrogen in the absence of oxygen.
- any ion removal or buffer equilibration is performed using counter flow dialysis so as to prevent accumulation of endotoxin in the subsequent product.
- the material is then sterile filtered into a suitable container.
- Oxygen affinity of the hemoglobin derivative of the present invention can be measure using the HemoxyalayserTM (TCS-Medical Products) or the Gill cell described by Dolman et al., Anal. Biochem. 87:127 (1978), incorporated by reference in its entirety.
- Nitrous oxide is an important regulator of the arterial perfusion of any tissue. Nitrous oxide is synthesized and released by the endothelium in the arterial wall and binds to the hemoglobin in red blood cells. When a tissue is receiving too much oxygen, nitrous oxide is not released and the arterial wall muscle contracts making the vessel diameter smaller, thus decreasing perfusion. When demand for oxygen increases, the desaturated hemoglobin releases nitrous oxide, which causes vasodilatation. The nitrous oxide control of arterial perfusion works over small distances in the arterial supply. Because nitrous oxide binds to hemoglobin inside the red blood cell, it is expected that the nitrous oxide will bind FXSFH as well.
- FXSFH infusion causes vasoconstriction of the blood vessels, resulting in extremely high blood pressures in the affected areas. This can make the affected blood vessels very porous, and the FXSFH solution can leak into the surrounding tissues causing the tissues to turn purple.
- transfusion of FXSFH through the ear vein has caused cerebral vasculature ischemia and death. Therefore, it is important to minimize the impact of administration of FXSFH on the arterial system during administration.
- nitrous oxide or a vasoactive agent such as verapamil, Atenocard, etc.
- a vasoactive agent such as verapamil, Atenocard, etc.
- the infusion rate of the FXSFH solution is slowed down to prevent substantial changes in the arterial system of the patient.
- Slow channel calcium blockers or a selective inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5 (PDE5), such as sildenafil citrate
- cGMP cyclic guanosine monophosphate
- PDE5 phosphodiesterase type 5
- sildenafil citrate may also be helpful in the prevention of the severe vasoconstriction.
- a slower infusion rate may not be preferred with respect to a trauma patient.
- the FXSFH of the present invention may be stored in conventional, and preferably oxygen impermeable containers (for example, stainless steel tanks, oxygen impermeable plastic bags, or plastic bags overwrapped with low oxygen permeably plastic bags wherein an oxygen scavenger is placed between the internal plastic bag and the overwrapped plastic bag.
- oxygen impermeable containers for example, stainless steel tanks, oxygen impermeable plastic bags, or plastic bags overwrapped with low oxygen permeably plastic bags wherein an oxygen scavenger is placed between the internal plastic bag and the overwrapped plastic bag.
- the storage stable hemoglobin solutions can be stored in oxygen permeable or oxygen impermeable (“anoxic”) containers in an oxygen controlled environment.
- oxygen controlled environments can include, for example, glove boxes, glove bags, incubators and the like.
- the oxygen content of the oxygen controlled environment is low relative to atmospheric oxygen concentrations (see, Kandler, R. L. et al., U.S. Pat. No.
- the FXSFH of the present invention will be packaged in sealed Tyvek®, or Mylar® (polyethylene terephthalate) bags or pouches.
- the FXSFH of the present invention will be lyophilized and stored as a powder.
- the preparations may be stored at room or elevated temperature (Kandler et al., PCT Publication No. WO 92/02239; Nho, PCT Publication No. WO 92/08478, both herein incorporated by reference), or more preferably under refrigeration.
- one or more antioxidants such as ascorbate (Wiesehahn, G. P. et al., U.S. Pat. No. 4,727,027; Kerwin, B. D. et al., U.S. Pat. No. 5,929,031); gluathione, acetylcsyteine, methionine, tocopherol, butyl hydroxy toluene, butyl hydroxy anisole, or pholic compounds. (Osterber et al., PCT Publication No. WO 94/26286; Kerwin, B. D. et al., U.S. Pat. No. 5,929,031) may be added to further stabilize the preparation (all such references herein incorporated by reference).
- the FXSFH of the present invention will be lyophilized and stored as a powder, or will be packaged in sealed Tyvek®, or Mylar® (polyethylene terephthalate) bags or pouches. Packaging such Kerwin, B. D. et al., U.S. Pat. No. 5,929,031, herein incorporated by reference).
- the FXSFH of such storage containers will be subjected to irradiation or other sterilization treatment sufficient to extend the shelf-life of the compositions.
- the FXSFH of the present invention may be used to form pharmaceutical compositions that may be administered to recipients, for example, by infusion, by intravenous or intra-arterial injection, or by other means.
- the FXSFH formulations of the present invention can be used in compositions useful as substitutes for red blood cells in any application that red blood cells are used. Such compositions of the present invention formulated as red blood cell substitutes can be used for the treatment of hemorrhage where blood volume is lost and both fluid volume and oxygen carrying capacity must be replaced. Moreover, because the FXSFH of the present invention can be made pharmaceutically acceptable, the formulations of the present invention can be used not only as blood substitutes that deliver oxygen but also as simple volume expanders that provide oncotic pressure due to the presence of the large hemoglobin protein molecule.
- the FXSFH of the present invention can thus be used as replacement for blood that is removed during surgical procedures where the patient's blood is removed and saved for reinfusion at the end of surgery or during recovery (e.g., acute normovolemic hemodilution or hemoaugmentation, etc.).
- a typical dose of the FXSFH of the present invention as a blood substitute is from 10 mg to 5 grams or more of extracellular hemoglobin per kilogram of patient body weight.
- a typical dose for a human patient might be from a few grams to over 350 grams.
- the unit content of active ingredients contained in an individual dose of each dosage form need not in itself constitute an effective amount since the necessary effective amount could be reached by administration of a plurality of administrations as injections, etc.
- the selection of dosage depends upon the dosage form utilized, the condition being treated, the particular purpose to be achieved according to the determination of the ordinarily skilled artisan in the field.
- Administration of the FXSFH of the present invention can occur for a period of seconds to hours depending on the purpose of the hemoglobin usage.
- the usual time course of administration is as rapid as possible.
- Typical infusion rates for hemoglobin solutions as blood replacements can be from about 100 ml to 3000 ml/hour.
- administration can last only seconds to five minutes and therefore administration rates can be slower because the dosage of the FXSFH of the present invention may be much less than dosages that can be required to treat hemorrhage.
- the FXSFH of the present invention can be used to treat anemia, by providing additional oxygen carrying capacity in a patient that is suffering from anemia, by stimulating hematopoiesis, and by serving as an adjuvant to erythropoietin therapy.
- the FXSFH of the present invention can be used to provide additional oxygen carrying capacity to an individual (such as an athelete, soldier, mountaineer, aviator, smoke victim, etc.) desiring such additional oxygen carrying capacity.
- the formulations of the present invention thus are useful in treating hypoxia and ischemia.
- compositions of the present invention can be used to deliver oxygen to areas that red blood cells cannot penetrate. These areas can include any tissue areas that are located downstream of obstructions to red blood cell flow, such as areas downstream of thrombi, sickle cell occlusions, arterial occlusions, angioplasty balloons, surgical instrumentation and the like.
- the FXSFH of the present invention can be used to treat excess nitric oxide concentrations. Excess nitric oxide has been implicated in conditions ranging from hypotension to septic shock. Because the hemoglobin of the present invention can bind nitric oxide and other non-oxygen ligands as well as oxygen, the FXSFH of the present invention can be used to effect the removal excess nitric oxide (or such non-oxygen ligands), or to attenuate the concentration of such nitric oxide and non-oxygen ligands. Such treatment can be accomplished either by administration of FXSFH to the patient, or in an ex vivo manner (as by contacting the patient's blood with immobilized FXSFH, etc.).
- the FXSFH of the present invention contains iron, and as such, may be detected via MRI (magnetic resonance imaging).
- MRI magnetic resonance imaging
- the present invention contemplates the use of FXSFH as an imaging agent.
- the present invention also concerns implantable delivery devices (such as cartridges, implants, etc.) that contain FXSFH, and that are capable of releasing FXSFH into the circulation in response to a sensed need for increased oxygen carrying capacity.
- implantable delivery devices such as cartridges, implants, etc.
- such devices will deliver FXSFH at a constant rate, so as to facilitate erythropoiesis (either alone, or in combination with erythropoietin).
- the devices will be controlled by sensing means (such as electronic probes of hemoglobin, O 2 level, CO 2 level, etc.) so as to deliver FXSFH at a rate commensurate with the patient's oxygen carrying capacity needs.
- sensing means may be themselves implantable, or part of the implanted device, or may be located extracorporeally.
- such devices may be used to accomplish or facilitate the hemo-diagnosis of individuals.
- the FXSFH of the present invention may also be used to form non-pharmaceutical compositions that can be used, for example, as reference standards for analytical instrumentation needing such reference standards, reagent solutions, control of gas content of cell cultures; for example by in vitro delivery of oxygen to a cell culture, and removal of oxygen from solutions.
- the FXSFH of the present invention may be used to oxygenate donated tissues and organs during transport.
- the FXSFH of the present invention may be used to scavenge endotoxin from surfaces or liquids.
- the invention thus contemplates devices, such as cartridges, filters, beads, columns, tubing, and the like that contain the FXSFH of the present invention.
- Liquids such as water, saline, culture medium, albumin solutions, etc., may be treated by passage over or through such devices in order to remove endotoxin that may be present in such liquids, or to lessen the concentration of endotoxin present in such liquids.
- the FXSFH of such devices is preferably immobilized (as by affinity, ionic, or covalent bonding, etc.) to solid supports present in such devices.
- the FXSFH is bound to beads that may be added to the liquids being treated, and then subsequently removed (as by filtration, or affinity immobilization).
- the beads may be of ferromagnetic or paramagnetic metal, or may be themselves magnetic, such that they may be readily separated from the treated liquid by magnetic means.
- the FXSFH of the present invention may be adsorbed or bound to toweling, air filters, etc. so that endotoxin present on surfaces or in air may be removed or its concentration lessened.
- the FXSFH of the present invention can be used to remove oxygen from solutions requiring the removal of oxygen, and as reference standards for analytical assays and instrumentation.
- the FXSFH of the present invention can also be used in vitro to enhance cell growth in cell culture by maintaining oxygen levels.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
A non-pyrogenic, endotoxin-free, stroma-free, blood substitute capable of being used in humans or other mammals to provide oxygen to tissue and to deliver carbon dioxide to the lung and a process for its preparation are described.
Description
- The invention relates to a blood substitute capable of being used in humans or other mammals to provide oxygen to tissue and to deliver carbon dioxide to the lung. More specifically, the invention provides a process for producing a cross-linked tetrameric hemoglobin preparation that is non-pyrogenic, endotoxin-free and stroma-free such that it is capable of in vivo use in a human or other mammals.
- It is not always practical or safe to transfuse a patient with donated blood. One of the limitations on the use of blood in an emergency setting is the requirement to type and cross-match the blood to minimize the risk of transfusion rejection. Saline cross-matching requires at least 10 minutes and a complete type and cross-match can take up to an hour. Furthermore, the risk of HIV transmission has been estimated to be 1 in 500,000 units of blood and the risk of hepatitis C transmission has been estimated to be 1 in 3,000 units. Schreiber et al.,N. Engl. J. Med. 334:1685-90 (1996), incorporated by reference in its entirety.
- Therefore, a red blood cell (“RBC”) substitute has long been sought after. To be effective as a substitute for red blood cells, an RBC substitute ideally will meet several requirements. It must be virus-free, non-toxic and non-immunogenic and it should have satisfactory oxygen carrying capacity and circulatory persistence to permit effective oxygenation of tissues. Preferably, the oxygen affinity should be close to that of whole blood (p50=28 mmHg at 37° C.) (Ogden, J. E. et al.,Vox Sang 69:302-308 (1995)).
- Three general classes of blood substitutes have been investigated: perfluorcarbons, liposome encapsulated hemoglobin and hemoglobin derivatives. Perfluorcarbons are inert chemically synthesized compounds that dissolve oxygen. Perfluorcarbons suffer from the disadvantage that they are immiscible in aqueous solutions and thus must be emulsified with lipids before being introduced into the blood stream. Liposomes suffer from structural rigidity, and from a low effective hemoglobin concentration.
- Because hemoglobin mediates the delivery of oxygen from the lungs to the tissues, purified hemoglobin has been extensively investigated as a possible blood substitute. Hemoglobin is reported to be approximately 97% pure inside the red blood cell. Human hemoglobin is a protein having a molecular weight of 64 kD, and it consists of four subunits, two alpha polypeptide chains and two beta polypeptide chains. Each of the subunits contains a single iron-containing heme prosthetic group that binds and releases oxygen. Hemoglobin exhibits cooperative binding of oxygen by the four subunits of the hemoglobin molecule, and this cooperatively facilitates oxygen transport. When hemoglobin binds oxygen, it shifts from the high energy “tense” or “T” state (deoxygenated) to the lower energy “relaxed” or “R” state (oxygenated). Human alpha and beta globin genes have been cloned and sequenced (Liebhaber et al.,Proc. Natl. Acad. Sci. (U.S.A). 77:7054-58 (1980); Marotta et al., J. Biol. Chem. 252:5040-43 (1977); and Lawn et al., Cell 21:647 (1980), all of which are incorporated by reference in their entirety).
- Because of its natural role in oxygen delivery, hemoglobin has long been the target of efforts to develop a blood substitute. The membranes of red blood cells, which are referred to as ghosts or stroma, contain all of the blood type antigens. Rabiner et al. first demonstrated that some of the toxic properties of hemolyzed red blood cells were related to the membrane (stroma) of red blood cells and their related lipids. Rabiner et al.,J. Exp. Med. 126:1127 (1967). The membranes are destroyed by freezing so that storage requirements for blood require climate controlled refrigeration. In addition, many of the human viral diseases transmitted through blood transfusions adhere to the stroma of red blood cells. Thus, in view of the immunogenic properties of the cell membranes of red blood cells, and the problems of viral contamination, stroma-free hemoglobin (“SFH”) was initially selected for therapeutic research.
- An effective stroma-free hemoglobin blood substitute therapy would offer several advantages over conventional blood replacement therapies. Significantly, the use of stroma-free hemoglobin blood substitutes is predicted to reduce the extent and severity of undesired immune responses, and the risk of transmission of viral diseases, including hepatitis and HIV. Moreover, in contrast to the limited storage capacity of erythrocytes, stroma-free hemoglobin blood substitutes are predicted to exhibit an extended shelf life, and to require less rigorous storage facilities.
- However, several problems plagued stromal-free hemoglobin isolation procedures. In particular, it was found that the SFH must be free of any part of the red cell membrane as it is the red cell membrane which causes the immune response. Thus complete purification from the stroma was required.
- Additionally, once outside of the red blood cell, hemoglobin was found to have such a high affinity for oxygen that it would not release it to the tissues under physiological conditions. SFH was also found to possess only a limited half-life in the body, and to be rapidly cleared from the blood by glomular filtration. This disrupts the ability of the kidney to concentrate urine and results in the rapid removal of hemoglobin from the intravascular volume. Excessive filtration of the alpha/beta subunit by the glomerulus in the kidney can cause osmotic diuresis. In vivo, the retention time of stroma-free human hemoglobin is on the order of 14 hours. De Venuto et al.,Transfusion 17:555 (1977).
- The rapid clearing of SFH by the kidney is a consequence of its quaternary molecular arrangement. As indicated above, natural hemoglobin is composed of a tetrameric arrangement of alpha and beta polypeptide chains. Within the RBC, the association of the alpha chain with its corresponding beta chain is very strong and does not disassociate under physiological conditions. The association of one alpha/beta dimer with another alpha/beta dimer, however, is fairly weak and outside of the RBC, the two dimers disassociate even under physiological conditions. Upon disassociation, the dimer is filtered through the glomerulus.
- To avoid such removal, SFH has been chemically cross-linked to form a stable tetramer. Several chemical agents have been used to cross-link hemoglobin alpha/beta dimers and prevent their filtration by the glomerulus into the urine, and yet maintain the oxygen transport properties of native hemoglobin. Bis dibromo salicyl fumarate (BDBF) is an activated diester of fumaric acid that has been used as a cross-linker to cross-link hemoglobin (Tye, U.S. Pat. No. 4,529,719, hereby incorporated by reference in its entirety). Fumaric acid is a four carbon straight chain unsaturated trans 2,3 dicarboxylic acid which is capable of interacting with the aspirin binding site of both alpha/beta dimers. This maintains the two dimers in proper orientation for cross-linking with lysine residues. A slight molar excess of BDBF cross-linker to hemoglobin (1.2:1.0), under sub-optimum conditions, has been reported to yield 70% cross-linked hemoglobin molecules.
- The tetrameric structure of hemoglobin provides a binding site for 2,3-diphosphoglycerate. Inside red blood cells, the binding of 2,3-diphosphoglycerate to hemoglobin decreases the hemoglobin's oxygen affinity to a level compatible with oxygen transport. The binding of 2,3-diphosphoglycerate to hemoglobin is very weak and requires very high concentrations (i.e., concentrations approaching 1M or more) in order to modify the affinity of hemoglobin for oxygen. Thus, when the red blood cells are ruptured to produce SFH, the 2,3-diphosphoglycerate is not retained in close proximity to the hemoglobin and disassociates from the hemoglobin. As a consequence, unless further modified, SFH exhibits a higher affinity for oxygen than does hemoglobin in RBCs. The increased affinity of the SFH for oxygen is quite significant since, under physiological conditions, it is unable to release the bound oxygen to the tissues. Bovine hemoglobin does not require 2,3-DPG to maintain a p50 for oxygen in the range of 30 mm.
- Cross-linking the alpha or beta chains of hemoglobin will prevent disassociation of the tetramer. It is the disassociation of R state hemoglobin into dimers which allows hemoglobin in the plasma to be filtered by the glomerulus into urine and removed by haptoglobin into the reticuloendothelial system.
- The tetrameric structure of T state deoxyhemoglobin has increased stability from six ionic bonds and while in the T state, hemoglobin is effectively prevented from disassociating into dimers. In this conformation, the beta cleft contact area between the two beta chains (also known as the beta pocket, phosphate pocket, and 2,3-diphosphoglycerate binding site) in deoxyhemoglobin is substantially different than in oxyhemoglobin. The changed conformation of the beta cleft in the T state is believed to explain the decreased oxygen affinity stabilized by 2,3-diphophoglycerate. The T state of hemoglobin is stable and resistant to denaturation. Thus, cross-linking the SFH addresses both the problem of oxygen affinity and the problem of rapid filtration by the kidney.
- Other blood substitutes have been described (Tye, U.S. Pat. No. 4,529,719), and may be employed in cases of acute and severe blood loss. However, a need still exists for a blood substitute that exhibits even lower pyrogenicity, and which may therefore be employed in non-acute cases or in cases of less severe need, or for chronic, long term or non-emergency transfusion use. The present invention provides such an improved blood substitute.
- This invention is directed to a method for producing a purified preparation of an endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin, and to an endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin.
- In detail, the invention provides, a non-pyrogenic, endotoxin-free, oxygen-free, stroma-free, cross-linked tetrameric hemoglobin. The invention particularly concerns the embodiments in which the hemoglobin has been cross-linked with bis dibromo salicyl fumarate and/or has been modified by reaction with pyridoxal-5′-phosphate. The invention particularly concerns the embodiments in which the hemoglobin is human hemoglobin, or is bovine or porcine hemoglobin. Such molecules may be obtained from any of a variety of sources (for example, from animal sources, via recombinant technology, from chemical synthesis, etc.).
- The invention also provides a non-pyrogenic, endotoxin-free, oxygen-free, stroma-free, cross-linked tetrameric hemoglobin.
- The invention further provides a blood substitute composition comprising a preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin, and a pharmaceutically acceptable carrier.
- The invention further provides a method of supplementing the blood of a mammal which comprises administering to the mammal a blood substitute composition comprising a preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin and a pharmaceutically acceptable carrier.
- The invention further provides a preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin produced by the process comprising the steps of:
- (A) removing endotoxin from a preparation containing red blood cells;
- (B) removing oxygen from the preparation containing red blood cells; and
- (C) lysing red blood cells;
- or the steps of
- (A′) removing endotoxin from a preparation containing red blood cells;
- (B′) lysing red blood cells; and
- (C′) removing oxygen from hemoglobin of the lysed red blood cells.
- The invention particularly concerns the sub-embodiments wherein in process step (B) or (C′), the oxygen is removed by centrifuging the red blood cells under vacuum.
- The invention additionally concerns the sub-embodiment wherein the process for preparing such non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin additionally comprises the steps of:
- (D) separating hemoglobin from the stroma of the lysed red blood cells; and
- (E) cross-linking the separated hemoglobin.
- The invention particularly concerns the sub-embodiment wherein process step (A) additionally comprises washing surfaces and equipment that will come into contact with the cross-linked hemoglobin with a dilute solution of hemoglobin.
- The invention particularly concerns the sub-embodiments wherein process step (B) or (C′) comprises subjecting the red blood cell preparation to a vacuum sufficient to remove oxygen from the preparation. The invention further concerns the sub-embodiment wherein process step (B) additionally comprises centrifuging a solution of the cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
- The invention particularly concerns the embodiment wherein the preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin additionally contains a pharmaceutically acceptable carrier.
- The invention also provides a method for producing a non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin comprising the steps of:
- (A) removing endotoxin from a preparation containing red blood cells;
- (B) removing oxygen from the preparation containing red blood cells; and
- (C) lysing red blood cells;
- or the steps of
- (A′) removing endotoxin from a preparation containing red blood cells;
- (B′) lysing red blood cells; and
- (C′) removing oxygen from hemoglobin of the lysed red blood cells.
- The invention also concerns the embodiments of such methods wherein in step (B) or (C′), the oxygen is removed by centrifuging the red blood cells under vacuum.
- The invention also concerns the embodiment of such method wherein the method additionally comprises the steps of:
- (D) separating hemoglobin from the stroma of the lysed red blood cells; and
- (E) cross-linking the separated hemoglobin.
- The invention particularly concerns the sub-embodiment wherein method step (A) additionally comprises washing surfaces and equipment that will come into contact with the cross-linked hemoglobin with a dilute solution of hemoglobin.
- The invention particularly concerns the sub-embodiments wherein method step (B) or (C′) comprises subjecting the red blood cell preparation to a vacuum sufficient to remove oxygen from the preparation. The invention further concerns the sub-embodiments wherein method step (B) or (C′) additionally comprises centrifuging a solution of the cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
- The invention also provides a method of increasing the oxygen carrying capacity of an individual which comprises administering to the individual a non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin. The invention particularly concerns the embodiment wherein the non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin is administered by transfusion or injection.
- The invention further concerns the method for increasing an individual's oxygen carrying capacity, wherein the non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin is produced by a process comprising the steps:
- (A) removing endotoxin from a preparation containing red blood cells;
- (B) removing oxygen from the preparation containing red blood cells; and
- (C) lysing red blood cells;
- or the steps of
- (A′) removing endotoxin from a preparation containing red blood cells;
- (B′) lysing red blood cells; and
- (C′) removing oxygen from hemoglobin of the lysed red blood cells.
- The invention particularly concerns the sub-embodiments wherein in process step (B) or (C′), the oxygen is removed by centrifuging the red blood cells under vacuum.
- The invention additionally concerns the sub-embodiment wherein the process for preparing such non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin additionally comprises the steps of:
- (D) separating hemoglobin from the stroma of the lysed red blood cells; and
- (E) cross-linking the separated hemoglobin.
- The invention particularly concerns the sub-embodiment wherein process step (A) comprises washing surfaces and equipment that will come into contact with the cross-linked hemoglobin with a dilute solution of hemoglobin.
- The invention particularly concerns the sub-embodiments wherein process step (B) or (C′) comprises subjecting the red blood cell preparation to a vacuum sufficient to remove oxygen from the preparation. The invention further concerns the sub-embodiments wherein process step (B) or (C′) additionally comprises centrifuging a solution of the cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
- The invention also provides a container containing a non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin composition. The invention particularly concerns the embodiments in which the container is an anoxic container composed of polyethylene terephthalate, or is an implantable delivery device that delivers a non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin composition to a recipient.
- The invention particularly contemplates that the non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin contained in the container is produced through the process comprising the steps of:
- (A) removing endotoxin from a preparation containing red blood cells;
- (B) removing oxygen from the preparation containing red blood cells;
- (C) lysing red blood cells;
- (D) separating hemoglobin from the stroma of the lysed red blood cells; and
- (E) cross-linking the separated hemoglobin;
- or
- (A′) removing endotoxin from a preparation containing red blood cells;
- (B′) lysing red blood cells;
- (C′) removing oxygen from hemoglobin of the lysed red blood cells;
- (D′) separating hemoglobin from the stroma of the lysed red blood cells; and
- (E′) cross-linking the separated hemoglobin.
- The invention particularly concerns the embodiments wherein the hemoglobin of such non-pyrogenic, endotoxin-free, oxygen-free, stroma-free, cross-linked tetrameric hemoglobin has been cross-linked with bis dibromo salicyl fumarate, and/or wherein the hemoglobin has been modified by reaction with pyridoxal-5′-phosphate.
- The invention particularly concerns the embodiments wherein the hemoglobin of such non-pyrogenic, endotoxin-free, oxygen-free, stroma-free, cross-linked tetrameric hemoglobin is human, bovine or porcine hemoglobin. Such molecules may be obtained from any of a variety of sources (for example, from animal sources, via recombinant technology, from chemical synthesis, etc.).
- The present invention concerns a non-pyrogenic, endotoxin-free purified preparation of cross-linked, stroma-free hemoglobin. As used herein, a preparation of hemoglobin is said to be “non-pyrogenic” if it may be administered into an individual of the same species as that from which the hemoglobin was derived (i.e., a human for human-derived hemoglobin, etc.) without causing an immunologic or pyrogenic reaction (such as inflammation, agglutination, clotting, etc.). Any of a variety of assays may be employed to demonstrate the non-pyrogenicity of the compositions of the present invention: interleukin-6 and other cytokine induction (Pool, E. J. et al.,J. Immunoassay 19:95-111 (1998), Poole, S. et al., Dev. Biol. Stand. 69:121-123 (1988)); human monocytoid cell line assays (Eperon, S. et al., J. Immunol. Meth. 207:135-145 (1997), Taktak, Y. S. et al., J. Pharm. Pharmacol. 43:578-582 (1991)); the Limulus Amoebocyte Lysate (LAL) test (Fujiwara, H. et al., Yakugaku Zasshi 110:332-40 (1990), Martel F. et al., Rev Fr Transfus Immunohematol 28:237-250 (1985)) and the rabbit pyrogen test (Bleeker W. K. et al., Prog Clin Biol Res 189:293-303 (1985), Simon, S. et al., Dev. Biol. Stand. 34:75-84 (1977); Allison, E. S. et al., Clin. Sci. Mol. Med. 45:449-458 (1973)); all herein incorporated by reference. The rabbit pyrogen test is the preferred pyrogenicity assay.
- As used herein, a preparation of hemoglobin is said to be “stroma-free” if the hemoglobin has been treated to remove substantially all stromal material, such that the preparation no longer exhibits the immunoreactivity to blood type antigens characteristic of RBCs. Stroma-free hemoglobin thus substantially lacks the toxic and/or pyrogenic properties associated with preparations of hemolyzed red blood cells, and thus can be administered to an individual without causing toxicity or inflammatory reaction. As used herein, a preparation of hemoglobin is said to be “endotoxin-free” if the hemoglobin has been treated to remove substantially all endotoxin. Thus, for the purposes of the present invention, endotoxin-free hemoglobin has an amount of endotoxin ranging from 0-10%, and more preferably from 0-1%, of the amount of endotoxin present in USP water. In a preferred method for forming such endotoxin-free, stroma-free cross-linked hemoglobin, the hemoglobin is deoxygenated to render it “oxygen-free.” As used herein, a preparation of hemoglobin is said to be “oxygen-free” if the hemoglobin has been treated to remove substantially all oxygen. Oxygen-free hemoglobin thus is substantially or completely in the higher energy “tense” or “T” configuration.
- Although DBDF cross-linked hemoglobin appeared to be very promising based upon it's initial characterization, prior preparations of DBDF cross-linked hemoglobin were found to lack clinical efficacy. The present invention has identified several of properties DBDF cross-linked hemoglobin that have reduced the clinical efficacy of the molecule, and the present invention provides an improved DBDF cross-linked hemoglobin (FXSFH) for overcoming the deficiencies of the prior preparations. Principally, the hemoglobin derivative must be prepared in the absence of oxygen. Inorganic phosphate, which binds tightly to the hemoglobin molecule and interferes with the cross-linking reaction, must be removed to increase yield. Endotoxins, which bind tightly to the hemoglobin molecule and become a hepatic toxin when the hemoglobin is metabolized, must not be allowed to contact the hemoglobin.
- Hemoglobin that has been purified from the stroma in the absence of oxygen is referred to as “stroma-free deoxyhemoglobin” (“dSFH”) and is in the higher energy “tense” or “T” configuration. Hemoglobin cross-linked in the presence of oxygen binds oxygen very tightly and will not release the oxygen to the tissue under physiological conditions. Removal of oxygen from the hemoglobin solution prior to reaction with DBDF has been very difficult. Concentrated protein solutions froth and foam when oxygen is removed by bubbling nitrogen through the solution or removal of oxygen by placing a vacuum over the solution. One of the problems the art has faced is the lack of an endpoint to discern when all of the oxygen has been removed. When oxygen is removed, there is a change in the pH of the solution which must be compensated for while the reaction occurs. Foaming can be controlled briefly by the addition of a surfactant, but that can introduce additional endotoxins into the final product. Foaming causes denatured protein; surfactant adds endotoxin.
- I. Preferred Method for Producing FXSFH
- A. Sources of Hemoglobin
- The cross-linked stroma-free hemoglobin (“FXSFH”) of the present invention can be prepared in a single working day with a properly equipped laboratory. Although the chemical reaction itself is extremely rapid, much of the time is spent concentrating hemoglobin, removing reaction products, or equilibrating with physiological buffers.
- Stroma-free hemoglobin may be obtained from a variety of mammalian sources, such as, for example, human, bovine, ovine, or porcine sources. Alternatively, the stroma-free hemoglobin of the present invention may be synthetically produced by a bacterial, or more preferably, by a yeast, mammalian cell, or insect cell expression vector system (Hoffman, S. J. et al., U.S. Pat. No. 5,028,588 and Hoffman, et al., WO 90/13645, both herein incorporated by reference. Alternatively, hemoglobin can be obtained from transgenic animals; such animals can be engineered to express non-endogenous hemoglobin (Logan, J. S. et al. PCT Application No. PCT/US92/05000; Townes, T. M. et al., PCT Application No. PCT/US/09624, both herein incorporated by reference).
- Preferably, the stroma-free hemoglobin of the present invention is isolated from bovine or human source, and most preferably a human source.
- Such hemoglobin, whether derived from an animal, synthetic or recombinant, may be composed of the “naturally existing” hemoglobin protein, or may contain some or be entirely composed of, a mutant hemoglobin protein. Preferred mutant hemoglobin proteins include those whose mutations result in more desirable oxygen binding/release characteristics. Examples of such mutant hemoglobin proteins include those provided by Hoffman, S. L. et al. (U.S. Pat. Nos. 5,028,588 and 5,776,890) and Anderson, D. C. et al. (U.S. Pat. Nos. 5,844,090 and 5,599,907), all herein incorporated by reference.
- B. Cleansing of Membranes and Equipment
- Since endotoxins are highly undesirable, it is preferred that all membranes, and equipment used to produce the FXSFH of the present invention be cleansed in a manner sufficient to cause the removal or elimination of endotoxin that may be present on such materials and equipment.
- Preferably, such cleansing is accomplished by pre-washing surfaces and equipment that will come into contact with the FXSFH of the present invention using a dilute solution of hemoglobin. Such a solution serves to bind endotoxin and hence to remove residual endotoxin that may be present on such membranes or equipment. The dilute solution of hemoglobin is preferably discarded after each use.
- C. Removal of Oxygen
- The erythrocyte preparation that is to be used as the source of the hemoglobin of the present invention is treated under conditions sufficient to remove oxygen present in the preparation. One aspect of the present invention concerns an improved process for removing oxygen from SFH preparations. Such deoxygenation may be performed either prior to, or subsequent to erythrocyte membrane disruption.
- The removal of contaminating oxygen during the hemoglobin isolation is probably the most critical step in the formation of FXSFH. This step is difficult to accomplish, and most investigators erroneously believe that merely by bubbling nitrogen through the solution for 15-30 minutes they will have removed substantially all of the oxygen present. Additionally, investigators do not measure the levels of oxygen in the solution nor do they estimate the amount of “T” state hemoglobin present in their reaction vessels.
- The extent of deoxygenation can be measured by gas chromatograph, zirconium-based detector (e.g., a “MOCON” analyzer (Mocon, Minneapolis, Minn.), by measuring pO2 or by measuring the spectral shift that is characteristic of deoxyhemoglobin formation.
- 1. Removal of Oxygen Prior to Erythrocyte Membrane Disruption
- A preferred method is to remove the oxygen from the red blood cells that have been washed in isotonic saline prior to hypotonic lysis. The cells still have a large intracellular concentration of 2,3-DPG and thus a lower affinity for oxygen. The cell membrane prevents the hemoglobin protein from foam denaturation.
- In this embodiment, oxygen removal is effected by subjecting the erythrocyte preparation to a vacuum sufficient to remove oxygen from the preparation. In a highly preferred embodiment, oxygen removal is accomplished by agitating, or even more preferably, by centrifuging, the cells while under vacuum. Such treatment takes advantage of the fact that oxygen has a looser affinity for hemoglobin contained within cellular membranes than it does for free hemoglobin. By conducting the oxygen removal prior to erythrocyte membrane disruption (i.e., while the hemoglobin is within intact erythrocytes) undesired side effects, such as bubbling or foaming of the protein, and/or its denaturation are avoided or minimized. Centrifugation should be sufficiently extensive to allow deoxygenation, but sufficiently gentle to avoid unacceptable lysis of fragile erythrocytes. Heat may be provided to prevent the solution from freezing. In general, it is preferred to keep the cells at room temperature and to employ a vacuum sufficient to equal the vapor pressure of water at the solution of the temperature. After the removal of oxygen, all further steps are conducted in the absence of oxygen. In a preferred embodiment, such further steps are conducted under nitrogen (or other inert gas) positive pressure in the absence of oxygen.
- Emphasis is to be made that while this embodiment provides a significantly improved method for deoxygenating hemoglobin, care must be made to be very thorough in the removal of all traces of oxygen.
- Cells that have been treated in the above manner are then lysed by addition of approximately 10 volumes of deoxygenated, endotoxin-free water. The water may be deoxygenated by application of a vacuum and warming of the solution, preferably to its boiling point. The red cell lysis is allowed to proceed and the stroma is subsequently removed by ultrafiltration. After such treatment, the temperatures are equilibrated below room temperature.
- All subsequent steps are carried out in the absence of oxygen, maintained by what ever means is desired. A preferred method is the use of a nitrogen positive pressure environmental glove box. Other inert gases (e.g., argon) may be equivalently employed in lieu of nitrogen.
- 2. Removal of Oxygen Subsequent to Erythrocyte Membrane Disruption
- In an alternate preferred embodiment, the erythrocyte membranes are disrupted prior to the deoxygenation procedure. In this embodiment, the SFH has been separated from the stroma prior to deoxygenation, and has also been separated from the high concentration of 2′3′ DPG found within red cells. Due to the lowered (or absent) 2′3′ DPG concentrations, this SFH will have a relatively high affinity for oxygen. As such, it is subject to foam denaturation during the removal of oxygen.
- Accordingly, the erythrocyte preparation is preferably subjected to hypotonic lysis, and the lysate or retentate is then filtered to remove the stroma. Oxygen contaminating the resulting material is removed by vacuum, and more preferably by vacuum centrifugation. The SFH used may be an ultrafiltrate obtained from the removal of stroma (dilute) or a retentate from the ultrafiltration of the second stage ultrafiltration conducted to concentrate the hemoglobin to approximately 10% (w/v). Either of these solutions of SFH can be readily deoxygenated by applying a vacuum sufficient to equal the partial pressure of water at the temperature of the solution, while the solution is centrifuged at a speed sufficient to produce a force greater than the surface tension of the solution. These are generally low speeds and can easily be met with preparatory centrifuges, or those of a continuous flow variety. It is desirable to consider the geometry of the containers of the SFH to insure that there will be adequate surface area for gas exchange, and that the temperature can be maintained and the solution not allowed to freeze.
- The dSFH prepared in the manner described above is preferably maintained in its inert environment and the pH of the preparation is preferably adjusted to a range between 6.0 and 8.5, and most preferably about pH 7.2. The pH of the solution is preferably adjusted using dilute 0.1 N HCl or 0.1 N NaOH that has been previously determined to be free of endotoxin.
- Where dilution, suspension, or addition of water (including buffers, etc.) for other purposes is desired, such water should be deoxygenated and be free of endotoxin. The water may be deoxygenated as described above. All subsequent steps are carried out in the absence of oxygen, maintained by what ever means is desired. As indicated above, a preferred method involves the use of a nitrogen positive pressure environmental glove box, however, other inert gases may be equivalently employed.
- D. Membrane Disruption
- Hemoglobin may be released from the erythrocyte by hypotonic lysis in twenty volumes of deionized water. Other methods of erythrocyte lysis, such as “slow hypotonic lysis” or “freeze thaw”, may also be employed. See, e.g., Chan et al.,J. Cell Physiol. 85:47-57 (1975), incorporated by reference in its entirety. Under one of the preferred embodiments of the present invention, the cells are lysed by flow mixing deoxygenated red blood cells in isotonic saline with 12 volumes of deoxygenated, deionized, endotoxin-free water and subjecting the cells to gentle agitation.
- In order to collect the erythrocytes, the deoxygenated blood samples are washed several times with an isotonic solution and the plasma is separated by centrifugation at 3,000 rpm. Preferably, the isotonic solution used is a saline solution. Preferably, the cells are washed at least three times, rinsed between each centrifugation, and resuspended in a final volume of an equal volume of isotonic solution.
- The use of a sonicator is discouraged as it makes membrane spheres (often referred to as “dust”). Agitation methods suitable for use in the present invention include a magnetic stir bar and a mechanical rocker or shaker.
- E. Separation of Stroma From Hemoglobin
- The stroma may be removed by ultrafiltration of the oxygen-free hemolysate over a 0.5μ filter which retains the cellular components and passes the hemoglobin. Alternatively, the cellular debris is removed by subsequent filtration through a 0.2μ filter. Ultrafiltration membranes suitable for use in the present invention are commercially available from, for example, Millipore Corporation. This step is preferably performed at 4° C. as rapidly as possible after hemolysis of the erythrocyte, and in an oxygen-free environment. It is understood that other methods of removing the stroma may also be used in the present invention.
- F. Removal of Phosphate Ion
- Bucci et al. (U.S. Pat. No. 5,290,919) have reported that removal of organic phosphates, e.g., 2,3-diphosphoglycerate, is necessary in human hemolysates because the site of the cross-linking reaction is the same as that occupied by 2,3-diphosphoglycerate in hemoglobin. Accordingly, in a preferred embodiment, the dSFH that has passed through the filter is then treated to exchange phosphate for chloride. For this purpose, the dSFH is passed, in the absence of oxygen, through an ion exchange column that has been previously prepared and equilibrated with chloride. Efficacy of this step is measured by total inorganic phosphate analysis. Suitable ionic resins are commercially available from Pharmacia and Waters. The ionic resin removes phosphate that competes for the aspirin binding site during the reaction with BDBF.
- G. Concentration of SFH
- After such treatment, the stroma-free hemolysate is concentrated by a membrane that does not allow for the passage of hemoglobin. Preferably, the stroma-free hemolysate is concentrated using a filter having a 30,000 MW cut-off. Preferably, the stroma-free hemolysate is concentrated to a 1%-20% (g/l) solution. More preferably, the stroma-free hemolysate is concentrated to about 5 to about 10%. Most preferably, the stroma-free hemolysate is concentrated to about 10%.
- The concentrated solution should be equilibrated with buffer and the pH should be adjusted. Preferably, the pH is adjusted to a pH of 7.40. However, a pH of between about 6.5 and about 8.5 can be used in the present invention.
- H. Cross-Linking with BDBF and Reaction with PLP
- The completely deoxygenated, phosphate-free SFH is cross-linked to form tetrameric hemoglobin. In a preferred embodiment, the dSFH is cross-linked with bis dibromo salicyl fumarate (BDBF) (Tye, U.S. Pat. No. 4,529,719, hereby incorporated by reference in its entirety). To accomplish this, BDBF cross-linker is added, with stirring to provide mixing, to the dSFH preparation at a molar ratio of BDBF cross-linker:dSFH of greater than 1:1. Prior to such addition, the pH of the dSFH preparation is adjusted to match that of the BDBF The pH of the reaction mixture is carefully maintained by the addition of acid or base since the solution is not buffered. This reaction is very quick, taking 5 minutes or less. The reaction is permitted to go to completion (approximately 5 minutes).
- Pyridoxal 5 phosphate (PLP) has the ability to modify hemoglobin by introducing a negative charge near a penultimate beta chain histidine residue and by removing a positive charge at the amino terminal end of the same chain. These charge changes stabilize a new molecular configuration that is similar to the hemoglobin-DPG (diphosphoglycerate) complex. Significantly, the hemoglobin of this new configuration has an oxygen affinity resembling that of native hemoglobin within the red cell. The product may have one or two PLP molecules attached per tetramer. Although prior PLP-hemoglobin preparations had a satisfactory oxygen affinity profile, the intravascular retention time was too short to permit such preparations to be acceptable as a resuscitation fluid. Additionally, they were found to cause osmotic diuresis.
- Accordingly, after the cross-linking reaction has been completed, pyridoxal 5 phosphate (PLP) is added to the dSFH preparation. The PLP is reduced with sodium borohydride and then permitted to react with the cross-linked dSFH and to form FXSFH-pyridoxal-5′-phosphate (FXSFH-PLP) using the methods described by Benesch et al. (Benesch et al.,Biochemistry 11:3576 (1972); Benesch et al., Biochem. Biophys. Res. Commun. 63(4): 1123-9 (1975); Benesch et al., Methods Enzymol. 76:147-59 (1981); Benesch et al., J. Biol. Chem. 257(3):13204 (1982); Schnackerz et al., J. Biol. Chem. 258(2):872-5 (1983), all of which references are incorporated by reference in their entirety) with the change that all reagents are free of endotoxin and oxygen and the reaction occurs in the absence of oxygen.
- Although the properties of deoxygenated stroma-free human hemoglobin benefit from the above-described pyridoxal 5 phosphate reaction, deoxygenated stroma-free bovine hemoglobin does not require this step.
- I. Equilibration
- FXSFH can be equilibrated with lactated Ringers solution. After equilibration, the solution is sterile filtered into suitable infusion containers. Infusion containers suitable for use in the present invention include, but are not limited to, sterile IV bags. Preferred infusion containers prevent gas exchange (i.e., impermeable to oxygen) and the FXSFH is stored in the absence of oxygen. This is expected to prevent the heme oxidation to form methemoglobin.
- J. Formulations of Blood Substitute Compositions
- The FXSFH of the present invention can be formulated into a blood substitute. Such formulations can include other components in addition to the FXSFH. For example, a parenteral therapeutic composition can comprise a sterile isotonic saline solution. The formulations can be either in a form suitable for direct administration, or in a concentrated form requiring dilution prior to administration. The formulations of the present invention can thus contain between 0.001% and 90% (w/v) FXSFH. Suitable compositions can also include 0-200 mM of one or more buffers (for example, acetate, phosphate, citrate, bicarbonate, or Good's buffers). Salts such as sodium chloride, potassium chloride, sodium acetate, calcium chloride, magnesium chloride can also be included in the compositions of the invention at concentrations of 0-2 M. In addition, the compositions of the invention can include 0-2 M of one or more carbohydrates (for example, reducing carbohydrates such as glucose, maltose, lactose or non-reducing carbohydrates such as sucrose, trehalose, raffinose, mannitol, isosucrose or stachyose) and 0-2 M of one or more alcohols or poly alcohols (such as polyethylene glycols, propylene glycols, dextrans, or polyols). The FXSFH of the present invention can also contain 0.005-1% of one or more surfactants and 0-200 mM of one or more chelating agents (for example, ethylenediamine tetraacetic acid (EDTA), ethylene glycol-bis (beta-aminoethyl ether) N,N,N′,N′-tetraacetic acid (EGTA), ophenanthroline, diethylamine triamine pentaacetic acid (DTPA also known as pentaacetic acid) and the like). The compositions of the invention can also be at about pH 6.5-9.5.
- The FXSFH of the present invention may contains 0-300 mM of one or more salts, for example chloride salts, 0-100 mM of one or more non-reducing sugars, 0-100 mM of one or more buffers, 0.01-0.5% of one or more surfactants, and 0-150 mM of one or more chelating agents. In a still further embodiment, the composition contains 0-150 mM NaCl, 0-10 mM sodium phosphate, and 0.01-0.1% surfactant, and 0-50 μM of one or more chelating agents, pH 6.6-7.8. The formulation may contain 5 mM sodium phosphate, 150 mM NaCl, 0.025% to 0.08% polysorbate 80, and 25 μM EDTA, pH 6.8-7.6.
- Additional additives to the formulation can include anti-bacterial agents, oncotic pressure agents (e.g. albumin or polyethylene glycols) and other formulation acceptable salts, sugars and excipients known in the art. Each formulation according to the present invention can additionally comprise constituents including carriers, diluents, fillers, salts, and other materials well-known in the art, the selection of which depends upon the particular purpose to be achieved and the properties of such additives which can be readily determined by one skilled in the art.
- The compositions of the present invention can be formulated by any method known in the art. Such formulation methods include, for example, simple mixing, sequential addition, emulsification, diafiltration and the like.
- II. Considerations for Production of FXSFH
- A. Elimination or Reduction of Endotoxin Contamination
- Serum lipases, such as lipase A, do not inactivate endotoxins bound to the hemoglobin molecule. Therefore, endotoxins remain active toxins when taken up by the hepatocyte metabolizing the hemoglobin. Friedman, H. I. et al. reported triad hepatoxicity in a rat model consistent with this theory (See, Friedman, H. I. et al.,Lab Invest 39:167-77 (1978).
- Rausch et al. (U.S. Pat. No. 5,084,558) have reported a substantially endotoxin-free hemoglobin blood substitute. Colpan et al. (U.S. Pat. No. 5,747,663) have reported a process for reducing or removing endotoxins from a cellular lysate solution. Wainwright et al. (U.S. Pat. No. 5,627,266) have described an endotoxin binding protein immobilized to a solid support and the use of this molecule in the removal of endotoxins from solution.
- Under one preferred embodiment, the elimination of contamination with endotoxins is ensured by preventing the addition of endotoxins to the chemical processes of the present invention. Typically, endotoxins are added inadvertently by using endotoxin contaminated water. Generally, researchers are more concerned with sterility than endotoxins. Measurement of endotoxins is difficult, and standard LAL binding assays do not work in the presence of hemoglobin. Indeed, because endotoxin binds strongly to hemoglobin, endotoxin levels cannot be accurately measured using the LAL assay in the presence of hemoglobin.
- Water is the most likely candidate for introduction of endotoxins because researchers have long recognized that increased number of steps in the preparation of hemoglobin increased the level of toxicity. Preparations using dialysis and filtration methods could easily have exposed the hemoglobin to a thousand volumes of water/buffer contaminated with endotoxin.
- The water and the reagents used in the present invention must be substantially free from endotoxin contamination. Preferably, the water and the reagents used in the present invention are completely free from endotoxin contamination. Preparation of FXSFH in the absence of endotoxin is extremely difficult to prepare on the bench top, but in a closed system dedicated to FXSFH manufacture, exclusion of endotoxin would be easier.
- One way to reduce the risk of endotoxin contamination is to reduce the amount of water and reagent buffers exposed to the hemoglobin preparation. Therefore, under one preferred embodiment of the present invention, the hemoglobin preparations are made using counter-flow or counter-current dialysis for equilibration of buffers and/or removal of reaction products. Counter flow dialysis methods are suitable for use in the present invention are commercially available (e.g., VariPerm M, bitop, Witten (see, e.g., Schwarz, T. et al,Electrophoresis 15:1118-1119 (1994)), Spectrum Laboratories, Inc., Laguna Hills, Calif., etc.). It is estimated that the hollow fiber technique will yield a FXSFH preparation that has a 100 fold reduction in the amount of endotoxin as compared to standard synthesis techniques.
- B. Reduction or Elimination of Contaminating Phosphate
- Because inorganic phosphate interferes with the cross-linking reaction, it needs to be removed from the hemoglobin in order for the reaction to provide a satisfactory yield. This can be accomplished using a suitable exchange resin with chloride ion. A buffer must be provided if there is a substantial change in the exchange of the phosphate ion for the chloride ion. Preferably, phosphate buffers are not employed during any of the processing steps of the present invention.
- Under one embodiment of the present invention, the dSFH solution is substantially free from inorganic phosphate. Preferably, the dSFH solution of the present invention is free from inorganic phosphate. One way of removing inorganic phosphate from the dSFH solution is to pass the SFH solution over an ion exchange matrix equilibrated with chloride. Such a process removes phosphate by competing with phosphate for the aspirin binding site of hemoglobin. This is done in a nitrogen atmosphere. The solution is then concentrated to the desired 10% range and cross-linked using the BDBF cross-linker, at standard atmospheric pressure. If human hemoglobin is used, then the reaction with pyridoxal 5 phosphate and borohydride is carried out under nitrogen in the absence of oxygen.
- Preferably, any ion removal or buffer equilibration is performed using counter flow dialysis so as to prevent accumulation of endotoxin in the subsequent product. The material is then sterile filtered into a suitable container.
- A second problem has been reported to occur in the preparation of cross-linked hemoglobin for infusion as the phosphate ion must be replaced prior to infusion to prevent binding a buffered species in plasma.
- Oxygen affinity of the hemoglobin derivative of the present invention can be measure using the Hemoxyalayser™ (TCS-Medical Products) or the Gill cell described by Dolman et al.,Anal. Biochem. 87:127 (1978), incorporated by reference in its entirety.
- C. Nitrous Oxide Regulation of Arterial Blood Supply
- Nitrous oxide is an important regulator of the arterial perfusion of any tissue. Nitrous oxide is synthesized and released by the endothelium in the arterial wall and binds to the hemoglobin in red blood cells. When a tissue is receiving too much oxygen, nitrous oxide is not released and the arterial wall muscle contracts making the vessel diameter smaller, thus decreasing perfusion. When demand for oxygen increases, the desaturated hemoglobin releases nitrous oxide, which causes vasodilatation. The nitrous oxide control of arterial perfusion works over small distances in the arterial supply. Because nitrous oxide binds to hemoglobin inside the red blood cell, it is expected that the nitrous oxide will bind FXSFH as well.
- It has been observed that FXSFH infusion causes vasoconstriction of the blood vessels, resulting in extremely high blood pressures in the affected areas. This can make the affected blood vessels very porous, and the FXSFH solution can leak into the surrounding tissues causing the tissues to turn purple. In rabbit models, transfusion of FXSFH through the ear vein has caused cerebral vasculature ischemia and death. Therefore, it is important to minimize the impact of administration of FXSFH on the arterial system during administration.
- Under a preferred embodiment of the present invention, nitrous oxide or a vasoactive agent such as verapamil, Atenocard, etc., is administered to the patient prior to FXSFH infusion. This is intended to ensure that the arterial system is minimally changed during infusion. Nitrous oxide and verapamil are preferred vasoactive agents.
- Under another preferred embodiment, the infusion rate of the FXSFH solution is slowed down to prevent substantial changes in the arterial system of the patient. Slow channel calcium blockers (or a selective inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5 (PDE5), such as sildenafil citrate) may also be helpful in the prevention of the severe vasoconstriction. However, a slower infusion rate may not be preferred with respect to a trauma patient.
- D. Packaging and Storage of FXSFH
- The FXSFH of the present invention may be stored in conventional, and preferably oxygen impermeable containers (for example, stainless steel tanks, oxygen impermeable plastic bags, or plastic bags overwrapped with low oxygen permeably plastic bags wherein an oxygen scavenger is placed between the internal plastic bag and the overwrapped plastic bag. In another embodiment, the storage stable hemoglobin solutions can be stored in oxygen permeable or oxygen impermeable (“anoxic”) containers in an oxygen controlled environment. Such oxygen controlled environments can include, for example, glove boxes, glove bags, incubators and the like. Preferably the oxygen content of the oxygen controlled environment is low relative to atmospheric oxygen concentrations (see, Kandler, R. L. et al., U.S. Pat. No. 5,352,773; herein incorporated by reference). In a preferred embodiment, the FXSFH of the present invention will be packaged in sealed Tyvek®, or Mylar® (polyethylene terephthalate) bags or pouches. In a second preferred embodiment, the FXSFH of the present invention will be lyophilized and stored as a powder.
- The preparations may be stored at room or elevated temperature (Kandler et al., PCT Publication No. WO 92/02239; Nho, PCT Publication No. WO 92/08478, both herein incorporated by reference), or more preferably under refrigeration.
- In one embodiment, one or more antioxidants such as ascorbate (Wiesehahn, G. P. et al., U.S. Pat. No. 4,727,027; Kerwin, B. D. et al., U.S. Pat. No. 5,929,031); gluathione, acetylcsyteine, methionine, tocopherol, butyl hydroxy toluene, butyl hydroxy anisole, or pholic compounds. (Osterber et al., PCT Publication No. WO 94/26286; Kerwin, B. D. et al., U.S. Pat. No. 5,929,031) may be added to further stabilize the preparation (all such references herein incorporated by reference).
- Alternatively, and more preferably, the FXSFH of the present invention will be lyophilized and stored as a powder, or will be packaged in sealed Tyvek®, or Mylar® (polyethylene terephthalate) bags or pouches. Packaging such Kerwin, B. D. et al., U.S. Pat. No. 5,929,031, herein incorporated by reference).
- In a preferred embodiment, the FXSFH of such storage containers will be subjected to irradiation or other sterilization treatment sufficient to extend the shelf-life of the compositions.
- III. Pharmaceutical Uses of the Compositions of the Present Invention
- The FXSFH of the present invention may be used to form pharmaceutical compositions that may be administered to recipients, for example, by infusion, by intravenous or intra-arterial injection, or by other means.
- The FXSFH formulations of the present invention can be used in compositions useful as substitutes for red blood cells in any application that red blood cells are used. Such compositions of the present invention formulated as red blood cell substitutes can be used for the treatment of hemorrhage where blood volume is lost and both fluid volume and oxygen carrying capacity must be replaced. Moreover, because the FXSFH of the present invention can be made pharmaceutically acceptable, the formulations of the present invention can be used not only as blood substitutes that deliver oxygen but also as simple volume expanders that provide oncotic pressure due to the presence of the large hemoglobin protein molecule. The FXSFH of the present invention can thus be used as replacement for blood that is removed during surgical procedures where the patient's blood is removed and saved for reinfusion at the end of surgery or during recovery (e.g., acute normovolemic hemodilution or hemoaugmentation, etc.).
- A typical dose of the FXSFH of the present invention as a blood substitute is from 10 mg to 5 grams or more of extracellular hemoglobin per kilogram of patient body weight. Thus, a typical dose for a human patient might be from a few grams to over 350 grams. It will be appreciated that the unit content of active ingredients contained in an individual dose of each dosage form need not in itself constitute an effective amount since the necessary effective amount could be reached by administration of a plurality of administrations as injections, etc. The selection of dosage depends upon the dosage form utilized, the condition being treated, the particular purpose to be achieved according to the determination of the ordinarily skilled artisan in the field.
- Administration of the FXSFH of the present invention can occur for a period of seconds to hours depending on the purpose of the hemoglobin usage. For example, as a blood delivery vehicle, the usual time course of administration is as rapid as possible. Typical infusion rates for hemoglobin solutions as blood replacements can be from about 100 ml to 3000 ml/hour. However, when used to stimulate hematopoiesis, administration can last only seconds to five minutes and therefore administration rates can be slower because the dosage of the FXSFH of the present invention may be much less than dosages that can be required to treat hemorrhage.
- In a further embodiment, the FXSFH of the present invention can be used to treat anemia, by providing additional oxygen carrying capacity in a patient that is suffering from anemia, by stimulating hematopoiesis, and by serving as an adjuvant to erythropoietin therapy. Likewise, the FXSFH of the present invention can be used to provide additional oxygen carrying capacity to an individual (such as an athelete, soldier, mountaineer, aviator, smoke victim, etc.) desiring such additional oxygen carrying capacity. The formulations of the present invention thus are useful in treating hypoxia and ischemia.
- In addition, because the distribution in the vasculature of the FXSFH of the present invention is not limited by viscosity or by the size of red blood cells, the compositions of the present invention can be used to deliver oxygen to areas that red blood cells cannot penetrate. These areas can include any tissue areas that are located downstream of obstructions to red blood cell flow, such as areas downstream of thrombi, sickle cell occlusions, arterial occlusions, angioplasty balloons, surgical instrumentation and the like.
- In a further embodiment, the FXSFH of the present invention can be used to treat excess nitric oxide concentrations. Excess nitric oxide has been implicated in conditions ranging from hypotension to septic shock. Because the hemoglobin of the present invention can bind nitric oxide and other non-oxygen ligands as well as oxygen, the FXSFH of the present invention can be used to effect the removal excess nitric oxide (or such non-oxygen ligands), or to attenuate the concentration of such nitric oxide and non-oxygen ligands. Such treatment can be accomplished either by administration of FXSFH to the patient, or in an ex vivo manner (as by contacting the patient's blood with immobilized FXSFH, etc.).
- The FXSFH of the present invention contains iron, and as such, may be detected via MRI (magnetic resonance imaging). Thus, in a further embodiment, the present invention contemplates the use of FXSFH as an imaging agent.
- Although humans have four main red cell antigens (A, B, O and Rh), accounting for 12 main blood types, non-human animals exhibit far greater blood type diversity. The existence of larger numbers of blood types has complicated the use of donated blood in non-human animal transfusions (Hale, A. S.,Vet Clin North Am Small Anim Pract 25:1323-1332 (1995); Harrell, K. A., et al., Vet Clin North Am Small Anim Pract 25:1333-1364 (1995), both references herein incorporated by reference. The FXSFH formulations of the present invention, which can be used regardless of the blood type of the recipient, thus finds additional utility as a blood substitute for non-human animals (e.g., dogs, horses, cats, etc.).
- The present invention also concerns implantable delivery devices (such as cartridges, implants, etc.) that contain FXSFH, and that are capable of releasing FXSFH into the circulation in response to a sensed need for increased oxygen carrying capacity. In one embodiment, such devices will deliver FXSFH at a constant rate, so as to facilitate erythropoiesis (either alone, or in combination with erythropoietin). In a second embodiment, the devices will be controlled by sensing means (such as electronic probes of hemoglobin, O2 level, CO2 level, etc.) so as to deliver FXSFH at a rate commensurate with the patient's oxygen carrying capacity needs. Such sensing means may be themselves implantable, or part of the implanted device, or may be located extracorporeally. In a further sub-embodiment, such devices may be used to accomplish or facilitate the hemo-diagnosis of individuals.
- IV. Non-Pharmaceutical Uses of the Compositions of the Present Invention
- The FXSFH of the present invention may also be used to form non-pharmaceutical compositions that can be used, for example, as reference standards for analytical instrumentation needing such reference standards, reagent solutions, control of gas content of cell cultures; for example by in vitro delivery of oxygen to a cell culture, and removal of oxygen from solutions.
- Additionally, the FXSFH of the present invention may be used to oxygenate donated tissues and organs during transport.
- In a preferred non-pharmaceutical use, the FXSFH of the present invention may be used to scavenge endotoxin from surfaces or liquids. The invention thus contemplates devices, such as cartridges, filters, beads, columns, tubing, and the like that contain the FXSFH of the present invention. Liquids, such as water, saline, culture medium, albumin solutions, etc., may be treated by passage over or through such devices in order to remove endotoxin that may be present in such liquids, or to lessen the concentration of endotoxin present in such liquids. The FXSFH of such devices is preferably immobilized (as by affinity, ionic, or covalent bonding, etc.) to solid supports present in such devices. In one sub-embodiment, the FXSFH is bound to beads that may be added to the liquids being treated, and then subsequently removed (as by filtration, or affinity immobilization). In a further sub-embodiment, the beads may be of ferromagnetic or paramagnetic metal, or may be themselves magnetic, such that they may be readily separated from the treated liquid by magnetic means.
- Likewise, the FXSFH of the present invention may be adsorbed or bound to toweling, air filters, etc. so that endotoxin present on surfaces or in air may be removed or its concentration lessened.
- In a similar manner, the FXSFH of the present invention can be used to remove oxygen from solutions requiring the removal of oxygen, and as reference standards for analytical assays and instrumentation.
- The FXSFH of the present invention can also be used in vitro to enhance cell growth in cell culture by maintaining oxygen levels.
- It will be apparent to those skilled in the art that various modifications may be made in the present invention without departing from the spirit and scope of the present invention. It will be additionally apparent to those skilled in the art that the basic construction of the present invention is intended to cover any variations, uses or adaptations of the invention following, in general, the principle of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. Therefore, it will be appreciated that the scope of this invention is to be defined by the claims appended hereto, rather than the specific embodiments which have been presented as examples.
Claims (31)
1-18. (canceled).
19. A preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin produced by the process comprising the steps of:
(A) removing endotoxin from a preparation containing red blood cells;
(B) removing oxygen from said preparation containing red blood cells, wherein said oxygen is removed by centrifuging the red blood cells under a vacuum sufficient to remove oxygen from the preparation;
(C) lysing the red blood cells.
20. (canceled)
21. The preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 19 , wherein said process additionally comprises the steps of:
(D) separating hemoglobin from the stroma of said lysed red blood cells; and
(E) cross-linking said separated hemoglobin.
22. The preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 21 , wherein said process step (A) additionally comprises washing surfaces and equipment that will come into contract with the cross-linked hemoglobin with a dilute solution of a hemoglobin.
23. The preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 19 , wherein said process step (B) comprises centrifuging a solution of said cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
24. The preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 21 , wherein said red blood cells are human red blood cells.
25. The preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 21 , wherein said red blood cells are bovine or porcine red blood cells.
26. The preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 21 , wherein said preparation additionally contains a pharmaceutically acceptable carrier.
27. A preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin produced by the process comprising the steps of:
(A) removing endotoxin from a preparation containing red blood cells;
(B) lysing red blood cells; and
(C) removing oxygen from hemoglobin of said lysed red blood cells, wherein said oxygen is removed by centrifuging the red blood cells under a vacuum sufficient to remove oxygen from the preparation.
28. (canceled).
29. The preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 27 , wherein said process additionally comprises the steps of:
(D) separating hemoglobin from the stroma of said lysed red blood cells; and
(E) cross-linking said separated hemoglobin.
30. The preparation of non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 27 , wherein said process step (A) additionally comprises washing surfaces and equipment that will come into contact with the cross-linked hemoglobin with a dilute solution of a hemoglobin.
31. The preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 27 , wherein said process step (C) comprises centrifuging a solution of said cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
32. The preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 27 , wherein said red blood cells are human red blood cells.
33. The preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 27 , wherein said red blood cells are bovine or porcine red blood cells.
34. The preparation of endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin of claim 27 , wherein said preparation additionally contains a pharmaceutically acceptable carrier.
35-48. (canceled).
49. A method of increasing the oxygen carrying capacity of an individual which comprises administering to said individual a non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin administered by transfusion or injection, wherein said non-pyrogenic, endotoxin-free, stroma-free, cross-linked tetrameric hemoglobin is produced by a process comprising the steps:
(A) removing endotoxin from a preparation containing red blood cells;
(B) removing oxygen from said preparation containing red blood cells, wherein said oxygen is removed by centrifuging the red blood cells under a vacuum sufficient to remove oxygen from the preparation; and
(C) lysing red blood cells.
50-52. (canceled).
53. The method of claim 49 , wherein said process additionally comprises the steps of:
(D) separating hemoglobin from the stroma of said lysed red blood cells; and
(E) cross-linking said separated hemoglobin.
54. The method of claim 49 , wherein said process step (A) additionally comprises washing surfaces and equipment that will come into contact with the cross-linked tetrameric hemoglobin with a dilute solution of hemoglobin.
55. The method of claim 49 , wherein said process step (B) additionally comprises centrifuging a solution of said cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
56. The method of claim 53 , wherein said hemoglobin is human hemoglobin.
57. The method of claim 53 , wherein said hemoglobin is bovine or porcine hemoglobin.
58-60. (canceled).
61. The method of claim 56 , wherein said process step (A) comprises washing surfaces and equipment that will come into contact with the cross-linked tetrameric hemoglobin with a dilute solution of hemoglobin.
62. The method of claim 56 , wherein said process step (C) additionally comprises centrifuging a solution of said cells under vacuum at a speed sufficient to produce a force greater than the surface tension of the solution.
63. The method of claim 53 , wherein said hemoglobin is human hemoglobin.
64. The method of claim 53 , wherein said hemoglobin is bovine or porcine hemoglobin.
65-71. (canceled).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/876,541 US20040242464A1 (en) | 1999-10-01 | 2004-06-28 | Non-pyrogenic, endotoxin-frei stroma-free tetrameric hemoglobin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/411,006 US6894150B1 (en) | 1999-10-01 | 1999-10-01 | Non-pyrogenic, endotoxin-free, stroma-free tetrameric hemoglobin |
US10/876,541 US20040242464A1 (en) | 1999-10-01 | 2004-06-28 | Non-pyrogenic, endotoxin-frei stroma-free tetrameric hemoglobin |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/411,006 Continuation US6894150B1 (en) | 1999-10-01 | 1999-10-01 | Non-pyrogenic, endotoxin-free, stroma-free tetrameric hemoglobin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040242464A1 true US20040242464A1 (en) | 2004-12-02 |
Family
ID=33449593
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/411,006 Expired - Fee Related US6894150B1 (en) | 1999-10-01 | 1999-10-01 | Non-pyrogenic, endotoxin-free, stroma-free tetrameric hemoglobin |
US10/876,541 Abandoned US20040242464A1 (en) | 1999-10-01 | 2004-06-28 | Non-pyrogenic, endotoxin-frei stroma-free tetrameric hemoglobin |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/411,006 Expired - Fee Related US6894150B1 (en) | 1999-10-01 | 1999-10-01 | Non-pyrogenic, endotoxin-free, stroma-free tetrameric hemoglobin |
Country Status (1)
Country | Link |
---|---|
US (2) | US6894150B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136641A3 (en) * | 2006-05-16 | 2008-01-17 | Univ Texas Tech | Methods of treating acute blood loss anemia with a cross-linked hemoglobin blood substitute |
EP2836215A4 (en) * | 2012-04-11 | 2016-06-08 | Jan Blumenstein | Composition for prevention of vasoactivity in the treatment of blood loss and anemia |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7964338B2 (en) * | 2005-01-12 | 2011-06-21 | Biovec Transfusion, Llc | Platelet preservation composition containing eptifibatide, a reversible factor IIa inhibitor and a hemoglobin oxygen carrier |
US8129104B2 (en) * | 2005-01-12 | 2012-03-06 | Biovec Transfusion, Llc | Platelet preservation composition comprising a short to ultra-short acting antiplatelet agent and anticoagulant with hemoglobin |
US7494974B2 (en) * | 2006-10-24 | 2009-02-24 | Ikor, Inc. | Carboxymethylated cross-linked tetrameric hemoglobin |
US7504377B2 (en) * | 2006-10-23 | 2009-03-17 | Ikor, Inc. | Nitric oxide-blocked cross-linked tetrameric hemoglobin |
EP2099463B1 (en) * | 2006-11-07 | 2014-07-16 | The General Hospital Corporation | Attenuation of vasoactive oxygen carrier-induced vasoconstriction |
US7989593B1 (en) | 2010-05-27 | 2011-08-02 | Bing Lou Wong | Method for the preparation of a high-temperature stable oxygen-carrier-containing pharmaceutical composition and the use thereof |
US8048856B1 (en) | 2010-06-23 | 2011-11-01 | Billion King, Ltd. | Treatment methods using a heat stable oxygen carrier-containing pharmaceutical composition |
US7932356B1 (en) | 2010-06-23 | 2011-04-26 | Bing Lou Wong | Method for the preparation of a heat stable oxygen carrier-containing pharmaceutical composition |
US8084581B1 (en) | 2011-04-29 | 2011-12-27 | Bing Lou Wong | Method for removing unmodified hemoglobin from cross-linked hemoglobin solutions including polymeric hemoglobin with a high temperature short time heat treatment apparatus |
US20130052232A1 (en) | 2011-08-31 | 2013-02-28 | Bing Lou Wong | Method for the preparation of a heat stable oxygen carrier-containing composition facilating beta-beta cross-linking |
JP6389125B2 (en) | 2011-11-07 | 2018-09-12 | ザ ジェネラル ホスピタル コーポレイション | How to treat red blood cells |
EP3092213B1 (en) | 2013-12-27 | 2019-10-23 | Virginia Commonwealth University | Allosteric hemoglobin modifiers with nitric oxide releasing moiety |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4473494A (en) * | 1983-05-04 | 1984-09-25 | The United States Of America As Represented By The Secretary Of The Army | Preparation of stroma-free, non-heme protein-free hemoglobin |
US4529719A (en) * | 1983-05-04 | 1985-07-16 | Tye Ross W | Modified crosslinked stroma-free tetrameric hemoglobin |
US4650786A (en) * | 1983-10-28 | 1987-03-17 | Fisons Plc | Hemoglobin compounds |
US4670417A (en) * | 1985-06-19 | 1987-06-02 | Ajinomoto Co., Inc. | Hemoglobin combined with a poly(alkylene oxide) |
US4727027A (en) * | 1983-05-02 | 1988-02-23 | Diamond Scientific Co. | Photochemical decontamination treatment of whole blood or blood components |
US5028588A (en) * | 1987-05-16 | 1991-07-02 | Somatogenetics International, Inc. | Blood substitutes |
US5084558A (en) * | 1987-10-13 | 1992-01-28 | Biopure Corporation | Extra pure semi-synthetic blood substitute |
US5189146A (en) * | 1987-05-05 | 1993-02-23 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Pasteurizable, freeze-driable hemoglobin-based blood substitute |
US5234903A (en) * | 1989-11-22 | 1993-08-10 | Enzon, Inc. | Chemically modified hemoglobin as an effective, stable non-immunogenic red blood cell substitute |
US5281579A (en) * | 1984-03-23 | 1994-01-25 | Baxter International Inc. | Purified virus-free hemoglobin solutions and method for making same |
US5290919A (en) * | 1992-08-28 | 1994-03-01 | The University Of Maryland Baltimore | Hemoglobin intramolecularly cross-linked with trivalent reagents |
US5352773A (en) * | 1990-08-06 | 1994-10-04 | Baxter International Inc. | Stable hemoglobin based composition and method to store same |
US5380824A (en) * | 1990-04-18 | 1995-01-10 | Pharmacia Aktiebolag | One-step, one-container method for the preparation of pyridoxylated hemoglobin |
US5386014A (en) * | 1989-11-22 | 1995-01-31 | Enzon, Inc. | Chemically modified hemoglobin as an effective, stable, non-immunogenic red blood cell substitute |
US5532352A (en) * | 1993-03-16 | 1996-07-02 | Hemosol Inc. | Selective crosslinking of hemoglobin by oxidized, ring-opened saccharides |
US5563047A (en) * | 1992-12-03 | 1996-10-08 | Novo Nordisk A/S | Method for crosslinking of haemoglobin |
US5599907A (en) * | 1989-05-10 | 1997-02-04 | Somatogen, Inc. | Production and use of multimeric hemoglobins |
US5627266A (en) * | 1988-06-23 | 1997-05-06 | Associates Of Cape Cod, Inc. | Endotoxin binding and neutralizing protein and uses thereof |
US5733869A (en) * | 1995-10-06 | 1998-03-31 | Baxter International, Inc. | Therapeutic administration of hemoglobin in cardiac arrest |
US5747663A (en) * | 1994-02-07 | 1998-05-05 | Qiagen Gmbh | Process for the depletion or removal of endotoxins |
US5750132A (en) * | 1993-08-13 | 1998-05-12 | Somatogen, Inc. | Treatment of adverse effects associated with administration of extracellular hemoglobin |
US5753616A (en) * | 1986-11-10 | 1998-05-19 | Biopure Corporation | Method for producing a stable polymerized hemoglobin blood-substitute |
US5776890A (en) * | 1987-05-16 | 1998-07-07 | Somatogen, Inc. | Hemoglobins with intersubunit disulfide bonds |
US5789376A (en) * | 1993-08-16 | 1998-08-04 | Hsia; Jen-Chang | Transfusions with stabilized hemoglobin covalently bound to a nitroxide or polymers thereof |
US5840701A (en) * | 1993-08-16 | 1998-11-24 | Hsia; Jen-Chang | Compositions and methods utilizing nitroxides in combination with biocompatible macromolecules |
US5844090A (en) * | 1994-05-09 | 1998-12-01 | Somatogen, Inc. | Modified hemoglobin-like compounds |
US5929031A (en) * | 1995-05-02 | 1999-07-27 | Baxter Biotech Technology Sarl | Storage stable hemoglobin solutions |
-
1999
- 1999-10-01 US US09/411,006 patent/US6894150B1/en not_active Expired - Fee Related
-
2004
- 2004-06-28 US US10/876,541 patent/US20040242464A1/en not_active Abandoned
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4727027A (en) * | 1983-05-02 | 1988-02-23 | Diamond Scientific Co. | Photochemical decontamination treatment of whole blood or blood components |
US4473494A (en) * | 1983-05-04 | 1984-09-25 | The United States Of America As Represented By The Secretary Of The Army | Preparation of stroma-free, non-heme protein-free hemoglobin |
US4529719A (en) * | 1983-05-04 | 1985-07-16 | Tye Ross W | Modified crosslinked stroma-free tetrameric hemoglobin |
US4650786A (en) * | 1983-10-28 | 1987-03-17 | Fisons Plc | Hemoglobin compounds |
US5281579A (en) * | 1984-03-23 | 1994-01-25 | Baxter International Inc. | Purified virus-free hemoglobin solutions and method for making same |
US4670417A (en) * | 1985-06-19 | 1987-06-02 | Ajinomoto Co., Inc. | Hemoglobin combined with a poly(alkylene oxide) |
US5753616A (en) * | 1986-11-10 | 1998-05-19 | Biopure Corporation | Method for producing a stable polymerized hemoglobin blood-substitute |
US5189146A (en) * | 1987-05-05 | 1993-02-23 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Pasteurizable, freeze-driable hemoglobin-based blood substitute |
US5776890A (en) * | 1987-05-16 | 1998-07-07 | Somatogen, Inc. | Hemoglobins with intersubunit disulfide bonds |
US5028588A (en) * | 1987-05-16 | 1991-07-02 | Somatogenetics International, Inc. | Blood substitutes |
US5084558A (en) * | 1987-10-13 | 1992-01-28 | Biopure Corporation | Extra pure semi-synthetic blood substitute |
US5627266A (en) * | 1988-06-23 | 1997-05-06 | Associates Of Cape Cod, Inc. | Endotoxin binding and neutralizing protein and uses thereof |
US5599907A (en) * | 1989-05-10 | 1997-02-04 | Somatogen, Inc. | Production and use of multimeric hemoglobins |
US5386014A (en) * | 1989-11-22 | 1995-01-31 | Enzon, Inc. | Chemically modified hemoglobin as an effective, stable, non-immunogenic red blood cell substitute |
US5234903A (en) * | 1989-11-22 | 1993-08-10 | Enzon, Inc. | Chemically modified hemoglobin as an effective, stable non-immunogenic red blood cell substitute |
US5380824A (en) * | 1990-04-18 | 1995-01-10 | Pharmacia Aktiebolag | One-step, one-container method for the preparation of pyridoxylated hemoglobin |
US5352773A (en) * | 1990-08-06 | 1994-10-04 | Baxter International Inc. | Stable hemoglobin based composition and method to store same |
US5290919A (en) * | 1992-08-28 | 1994-03-01 | The University Of Maryland Baltimore | Hemoglobin intramolecularly cross-linked with trivalent reagents |
US5563047A (en) * | 1992-12-03 | 1996-10-08 | Novo Nordisk A/S | Method for crosslinking of haemoglobin |
US5532352A (en) * | 1993-03-16 | 1996-07-02 | Hemosol Inc. | Selective crosslinking of hemoglobin by oxidized, ring-opened saccharides |
US5750132A (en) * | 1993-08-13 | 1998-05-12 | Somatogen, Inc. | Treatment of adverse effects associated with administration of extracellular hemoglobin |
US5789376A (en) * | 1993-08-16 | 1998-08-04 | Hsia; Jen-Chang | Transfusions with stabilized hemoglobin covalently bound to a nitroxide or polymers thereof |
US5811005A (en) * | 1993-08-16 | 1998-09-22 | Hsia; Jen-Chang | Apparatus for intravenous administration of solutions of cell-free hemoglobin including a nitroxide bound to a matrix |
US5840701A (en) * | 1993-08-16 | 1998-11-24 | Hsia; Jen-Chang | Compositions and methods utilizing nitroxides in combination with biocompatible macromolecules |
US5747663A (en) * | 1994-02-07 | 1998-05-05 | Qiagen Gmbh | Process for the depletion or removal of endotoxins |
US5844090A (en) * | 1994-05-09 | 1998-12-01 | Somatogen, Inc. | Modified hemoglobin-like compounds |
US5929031A (en) * | 1995-05-02 | 1999-07-27 | Baxter Biotech Technology Sarl | Storage stable hemoglobin solutions |
US5733869A (en) * | 1995-10-06 | 1998-03-31 | Baxter International, Inc. | Therapeutic administration of hemoglobin in cardiac arrest |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136641A3 (en) * | 2006-05-16 | 2008-01-17 | Univ Texas Tech | Methods of treating acute blood loss anemia with a cross-linked hemoglobin blood substitute |
US7759306B2 (en) | 2006-05-16 | 2010-07-20 | Simoni Jan S | Methods of treating acute blood loss |
EP2836215A4 (en) * | 2012-04-11 | 2016-06-08 | Jan Blumenstein | Composition for prevention of vasoactivity in the treatment of blood loss and anemia |
Also Published As
Publication number | Publication date |
---|---|
US6894150B1 (en) | 2005-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8129338B2 (en) | Nitric oxide-blocked cross-linked tetrameric hemoglobin | |
JP4382877B2 (en) | Stable polymerized hemoglobin blood substitute | |
US6894150B1 (en) | Non-pyrogenic, endotoxin-free, stroma-free tetrameric hemoglobin | |
ES2032802T5 (en) | SUCEDANEO OF EXTRAPUR SEMISINTETIC BLOOD. | |
US20020062007A1 (en) | Acellular red blood cell substitute | |
US5691453A (en) | Separation of polymerized hemoglobin from unpolymerized hemoglobin on hydroxyapatite using HPLC | |
KR20040081451A (en) | Methods and compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin | |
Chang | Blood substitutes based on modified hemoglobin prepared by encapsulation or crosslinking: An overview | |
CN111406737B (en) | Compositions, devices and methods for continuous organ maintenance | |
JP4581110B2 (en) | Purification method of hemoglobin | |
US20080069771A1 (en) | Oxygenated polymerized hemoglobin solutions and their uses for tissue visualization | |
Frietsch et al. | Artificial oxygen carriers | |
Swi Chang | Red blood cell substitutes: microencapsulated hemoglobin and cross-linked hemoglobin including pyridoxylated polyhemoglobin & conjugated hemoglobin | |
CZ310098A3 (en) | Process for preparing non-cellular substitution of red blood corpuscles and apparatus for making the same | |
Kossovsky et al. | Materials biotechnology and blood substitutes | |
Bunn | The role of hemoglobin based blood substitutes in transfusion medicine | |
KRISHNA et al. | A review on artificial blood: a source we need | |
Tsuchida | Perspectives of blood substitutes | |
Waschke et al. | Oxygen-carrying blood substitutes | |
Friedman et al. | Hemoglobin solutions as blood substitutes | |
Tobias et al. | 11 Recombinant haemoglobin and other blood substitutes | |
Bansal et al. | IPR and Technological Issues Regarding a Biopharmaceutical Formulation-Hemoglobin | |
Beauchesne | The Design of Blood Substitutes: Oxygen Carriers | |
Das | RP GEYER | |
Lowe | Blood Substitutes and Oxygen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IKOR LIFE SCIENCES, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TYE, ROSS WALDEN;REEL/FRAME:017369/0525 Effective date: 20060309 |
|
AS | Assignment |
Owner name: IKOR, INC., SOUTH DAKOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IKOR LIFE SCIENCES, LLC;REEL/FRAME:018408/0551 Effective date: 20061018 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |