[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20040198953A1 - Method for producing rapamycin-specific antibodies - Google Patents

Method for producing rapamycin-specific antibodies Download PDF

Info

Publication number
US20040198953A1
US20040198953A1 US10/757,555 US75755504A US2004198953A1 US 20040198953 A1 US20040198953 A1 US 20040198953A1 US 75755504 A US75755504 A US 75755504A US 2004198953 A1 US2004198953 A1 US 2004198953A1
Authority
US
United States
Prior art keywords
rapamycin
rapa
antibody
dvs
hsa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/757,555
Inventor
Randall Yatscoff
Andrew Malcolm
Selvaraj Naicker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/757,555 priority Critical patent/US20040198953A1/en
Publication of US20040198953A1 publication Critical patent/US20040198953A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/14Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from fungi, algea or lichens

Definitions

  • This invention relates to the production of polyclonal and monoclonal antibodies to specific sites of rapamycin and/or rapamycin metabolites, derivatives and analogues.
  • the reactivity of these polyclonal and monoclonal antibodies makes them particularly useful for immunoassays for therapeutic drug monitoring (TDM).
  • TDM therapeutic drug monitoring
  • kits may include polyclonal or monoclonal antibodies to specific sites of Rapamycin (Rapa) and/or metabolites, derivatives and analogues of rapamycin. These kits may also include various combinations of polyclonal antibodies, polyclonal and monoclonal antibodies or a panel of monoclonal antibodies.
  • This invention relates to the production of polyclonal and monoclonal antibodies to specific sites of rapamycin (Sirolimus).
  • rapamycin rapamycin
  • the reactivity of these poly and monoclonal antibodies make them particularly useful for immunoassays for therapeutic drug monitoring (TDM).
  • TDM therapeutic drug monitoring
  • kits may include polyclonal or monoclonal antibodies to specific sites of rapamycin. These kits may also include various combinations of polyclonal antibodies, polyclonal and monoclonal antibodies or a panel of monoclonal antibodies.
  • Rapamycin is a macrocyclic antibiotic (macrolide lactone), which was originally isolated in soil samples from Easter Island from a Streptomyces hygroscopicus strain 1 . Rapamycin is structurally related to the immunosuppressant FK-506 (Tacrolimus) but mechanistically different. Rapamycin has anti-candidal, anti-proliferative and anti-tumor activity. Rapamycin also dampens autoimmune reactions (SLE, adjuvant arthritis, allergic encephalomyelitis). Rapamycin is also a potent immunosuppressant that inhibits T and B cell activation by blocking cytokine-mediated events, and inhibits growth factor mediated cell proliferation. The structure of rapamycin is given in FIG. 1.
  • Cytochrome P 450 3A4 enzyme metabolizes rapamycin to a number of demethylated and hydroxylated metabolites.
  • the exact pathways of rapamycin metabolism in humans have not been completely elucidated since only a few of the metabolites have been structurally identified. Therefore, no consensus has been established concerning the identity or steady state concentrations in whole blood after oral administration. A summary of the current reported knowledge of rapamycin metabolism follows.
  • Streit et. al. structurally identified four rapamycin metabolites from rabbit liver microsom 2 . These include 41-demethyl rapamycin, 7-demethyl rapamycin, 11-hydroxy rapamycin, and a 24-hydroxy ester hydrolysis degradation product of rapamycin. It has also been shown that the metabolites of rapamycin can undergo this ester hydrolysis. Streit also partially identified di, tri, and tetra hydroxylated rapamycin metabolites. Wang et. al. found 16 hydroxylated and/or demethylated metabolites in the bile of rapamycin treated rats 3 . Nickmilder et. al.
  • Rapamycin metabolites can be isolated from a number of various sources, including but not limited to blood, urine or feces samples, from liver microsomes or from microorganism cultures.
  • the current invention is drawn to methods for the preparation of immunogenic conjugates which elicit antibodies with specificity for rapamycin related compounds.
  • rapamycin related compound is meant to include any or all of the rapamycin molecule itself and/or various rapamycin metabolites and derivatives. Rapamycin and rapamycin metabolite and/or derivative conjugate immunogens are prepared and used for the immunization of a host animal to produce antibodies directed against specific regions of the rapamycin or metabolite and/or derivative molecules.
  • the invention provides antibodies which are capable of binding to a rapamycin related compound.
  • Such antibodies which recognize a specific region of said rapamycin related compound, the Rapa derivative RAD or the Rapa metabolites M1 to M5 are preferred.
  • Monoclonal antibodies are most preferred.
  • Also provided are methods for producing an antibody which is capable of recognizing a specific region of rapamycin related compound comprising: a) administering an immunogen comprising a rapamycin related compound, a linker arm molecule and a protein carrier to an animal so as to effect a specific immunogenic response to the rapamycin related compound; b) recovering an antibody to said rapamycin related compound from said animal; and c) identifying the antibody binding region by measuring the reactivity of the antibody to at least one rapamycin related compound.
  • Such methods wherein said linker arm molecule is divinyl sulfone and where the rapamycin related compound is linked to the carrier at the 27, 31, 41 or 42 position are preferred.
  • the protein carrier may preferably be keyhole limpet hemocyanin or human serum albumin.
  • the invention provides immunoassay methods for measuring the level of a rapamycin related compound in a mammal, comprising: a) incubating a biological sample from said mammal with at least one antibody which is capable of binding to a rapamycin related compound; and b) measuring the binding of rapamycin related compound to said antibody.
  • a biological sample from said mammal with at least one antibody which is capable of binding to a rapamycin related compound
  • b) measuring the binding of rapamycin related compound to said antibody Use of antibodies which recognize a specific region of said rapamycin related compound, the Rapa derivative RAD or the Rapa metabolites M1 to M5 in these assays is preferred. Use of monoclonal antibodies is most preferred.
  • Immunoassay kits for measuring the level of a rapamycin related compound in a sample said kits comprising an antibody as described above are also provided.
  • FIG. 1 shows the structure of Rapamycin (Sirolimus).
  • FIGS. 2A-2C illustrate titration curves of several monoclonal antibodies (MoAbs) to the rapamycin immunogen Rapa42-KLH.
  • FIG. 3A-3B illustrate the inhibition of MoAbs R4-1 and R-5-3 by rapamycin and a 42-0-(2-hydroxy-ethyl) derivative of rapamycin (RAD).
  • FIG. 4 illustrates the inhibition of MoAb R-5-3 by a 0-15 ng range of rapamycin.
  • Rapamycin conjugate immunogens are prepared for the immunization of a host animal to produce antibodies directed against specific regions of the rapamycin molecule. By determining the specific binding region of particular antibody, immunoassays which are capable of distinguishing between the parent molecule, active metabolites, inactive metabolites and other structurally similar immunosuppressant compounds are developed. The use of divinyl sulfone (DVS) as the linker arm molecule for forming rapamycin-protein conjugate immunogens is described. DVS-linked rapamycin-protein conjugates were found to elicit antibodies with greater specificity to the rapamycin molecule than succinate linked conjugates.
  • DVDS divinyl sulfone
  • the following examples describe the best mode for carrying out the invention.
  • the examples describe isolation Rapa metabolites, preparation of haptens, immunization of animals to elicit antibody responses, characterization of antibody reactivity, production and selection of polyclonal and monoclonal antibodies to Rapa and Rapa metabolites or derivatives and assays using the antibodies provided by the present invention.
  • Rapamycin (0.5 mmol) (Calbiochem-Novabiochem, San Diego, Cat.#553210) was dissolved in dichloromethane and treated with 10 equivalents of 2-t-Boc aminoethylchloroimidate and the reaction mixture is cooled to 0° C. To this solution, 4 mL of trimethylsilyl triflate was added-in one addition. The reaction mixture was stirred at 0° C. for 24 hours. Then the reaction mixture was diluted with dichloromethane (100 mL and washed with water (50 mL ⁇ 3)).
  • the organic solution was dried and concentrated and the mixture subjected to column chromatography to remove the excess of chloroimidate reagent. This material was analyzed using MS-flow injection electrospray mass spectrometry.
  • the derivatized rapamycin was then treated with trifluoroacetic acid to remove the amino protecting group.
  • the reaction mixture was then diluted with dichloromethane (50 mL) and washed in warm water.
  • the organic solution was dried and concentrated to get the aminoethyl derivative of rapamycin. Without further purification, the reaction mixture was treated with an excess of divinylsulfone in dichloromethane solution using anhydrous potassium carbonate as the catalyst.
  • the reaction mixture was stirred for 24 hours and then diluted with dichloromethane and washed with water to remove the carbonate.
  • the organic solution was dried and concentrated and the crude project subjected to column chromatography to remove the excess of divinyl sulfone.
  • the isolated product was used for conjugation without further purification.
  • rapamycin-42 divinyl sulfone conjugate Conjugation of the rapamycin-42-divinyl sulfone derivative was performed by preparing a solution of the rapamycin-42-divinyl sulfone derivative in dimethyl sulfoxide which was then slowly added to a rapidly stirred solution of keyhole limpet hemocyanin (KLH) or human serum albumin (HSA) in 0.2M phosphate. buffer (pH 7.6). Stirring of the mixture was continued at room temperature for 24 hours followed by isolation of the rapamycin-42-divinyl sulfone protein conjugate by dialysis.
  • KLH keyhole limpet hemocyanin
  • HSA human serum albumin
  • rapamycin-42-O-hemisuccinate Dimethylaminopyridine (11.8 mg, 97 ⁇ mol) was added to a solution of rapamycin (80.0 mg, 88 ⁇ mol) and succine anhydride (30.7 mg, 307 ⁇ mol) in 2 mL dry pyridine and the mixture stirred at room temperature for 23 hours. The pyridine was evaporated and the residue dissolved in ethyl acetate. The ethyl acetate solution was washed twice with water and finally with brine before drying over magnesium sulfate and evaporating the solvent.
  • rapamycin-42-O-hemisuccinate Purified rapamycin-42-O-hemisuccinate (1013.5 daltons) was identified as the sodium adduct (1036.5 daltons) by electrospray ionization mass spectrometry and structurally characterized by fragmentation in the negative-ion mode. Purified 42-0-succinimidooxysuccinyl rapamycin (1110.5 daltons) was identified as the sodium adduct (1133.5 daltons) by electrospray ionization mass spectrometry.
  • rapamycin42-O-succinate conjugates A solution of 42-O-succinimidooxysuccinyl rapamycin (2.0 mg) in 500 mL of dimethyl sulfoxide was slowly added into a rapidly stirred solution of keyhole limpet hemocyanin (KLH) (3.0 mg) or human serum albumin (HSA) in 2 mL of 0.1 M aqueous sodium bicarbonate adjusted to pH 7.7 with acetic acid. Stirring of the mixture was continued at room temperature for 24 hours followed by isolation of the rapamycin-42-divinyl sulfone protein conjugate by dialysis.
  • KLH keyhole limpet hemocyanin
  • HSA human serum albumin
  • rapamycin-27-oxime Hydroxylamine hydrochloride (3.0 mg, 44 ⁇ mol) in 100 mL of water was added to a solution of rapamycin (20.0 mg, 22 ⁇ mol) and pyridine (40 mL) in 4 mL of ethanol and the reaction mixture stirred at room temperature for 24 hours. The reaction mixture was diluted with ethyl acetate and washed sequentially with water, dilute aqueous hydrochloric acid, and brine. The organic phase was dried over magnesium sulfate and the solvent evaporated to give 20 mg of crude product.
  • the clear solution was then decanted off from the remaining potassium carbonate granules and the solution concentrated.
  • the residue was passed through a silica gel column using a gradient of methanol/chloroform (1% to 5% methanol) as eluent to separate the reaction products from excess vinyl sulfone.
  • the UV signal was monitored at 276 nm) into 3 major rapamycin-Ox-DVS species; Rapa-Ox-DVS (species X) Rapa-Ox-DVS (species 2); Rapa-Ox-DVS (species 3) which were identified by electrospray ionization mass spectrometry. Under the gradient conditions specified both Rapa-Ox-DVS (species X) and Rapa-Ox-DVS (species 2) elute as pure product while Rapa-Ox-DVS (species 3) was further purified using a 35/15/50 water/acetonitrile/methanol isocyanic mixture and identical chromatographic conditions as above.
  • Rapa-Ox-DVS (species 2) (0.3 mg) in 300 mL of dimethyl sulfoxide was slowly added into a rapidly stirred solution of keyhole limpet hemocyanin (KLH) (1.0 mg) in 1 mL of 0.2M phosphate buffer (pH 7.6) and the mixture stirred at room temperature for 24 hours. The reaction mixture was then dialyzed to recover the rapamycin-oxime-divinyl sulfone protein conjugate.
  • KLH keyhole limpet hemocyanin
  • a Rapa-Ox-DVS (species 2)-HSA conjugate was prepared in the same manner.
  • the residue was passed through a silica gel column using a gradient of methanol/chloroform (1% to 2% methanol) as eluent to separate the reaction products from excess vinyl sulfone.
  • the combined reaction products were then purified and analyzed as follows.
  • Rapa-DVS was purified using an isocyanic mobile phase of 40/10/50 water/acetonitrile/methanol (containing 10% Tert-butyl methyl ether) and identical chromatographic conditions as above. The LC/MS profile and mass spectrum of purified Rapa-DVS was obtained. The positive-ion fragmentation pattern for Rapa-DVS is consistent with rapamycin modification through the 31-OH position. The obtained yield was 0.1 mg (2%).
  • Rapa-31-DVS-KLH and HSA conjugates were prepared as described in Example 3.
  • a fresh or frozen rabbit liver (not induced) was washed with approximately 750 mL of 1.15 % KCl (w/v) and cut into small pieces (approximately 5mm 3 ). These were placed into a small conical 50 mL centrifuge tube with 15 mL of 1.15% KCl and stored on ice. After the whole liver was processed, the pieces were homogenized using a Beckman PolytronTM homogenizer into a microsomal suspension that was centrifuged at 10,000 ⁇ g for 20 min. Following centrifugation the supernatant was decanted into specialized centrifuge tubes and placed on ice. These were centrifuged again, using an ultracentrifuge, for 60 min at 100,000 ⁇ g.
  • microsomal pellet which contains the cytochrome p450 enzymes required for the metabolism of rapamycin.
  • the microsomes were then re-suspended in 1.15% KCl, tested for protein concentration using the Lowry method, and stored at ⁇ 70° C.
  • Incubation mixtures have a final volume of 45 mL, and contained 22.5 mg of rapamycin dissolved in 1.8 mL DMSO.
  • the reaction mixture also contained 0.1 M sodium phosphate buffer (pH 7.4), 0.5 mM EDTA, 5.0 mM MgCl 2 , 3.5 mM NADPH, 1.5 mM NADP, 50 mM glucose-6-phosphate, 10 units per mL of glucose-6-phosphate dehydrogenase, and 10 mg/mL of microsomal protein.
  • the biotransformation reaction was carried out in 250 mL Erlenmeyer flasks.
  • the microsomal solution, without drug, was allowed to incubate at 37° C. for 5 min in an environmentally controlled incubator shaker.
  • the reaction was initiated by adding the drug and allowing the reaction to proceed for two hours. At this time, the reaction was stopped by removing the flasks from the incubator, transferring their contents into 50 mL centrifuge tubes, and storing them at ⁇ 20° C.
  • the metabolites were isolated by thawing the stored reaction mixtures and transferring them to 500 mL glass bottles (100 mL of reaction mixture per bottle). This solution was acidified with an equal volume of 0.2 M acetic acid (pH 3.0) and extracted two times with 200 mL MTBE (methyl-tert-butyl ether). The solvent was recovered and evaporated to dryness using a rotary evaporator. The residue was reconstituted in methanol and stored at ⁇ 70° C.
  • a Waters chromatographic system comprised of a 600E gradient controller plus pump, 717 autosampler, 486 UV detector, and Millenium workstation was used to separate and purify the rapamycin metabolites.
  • the column utilized for initial separation was a Waters C8 reverse phase (10 ⁇ 250 mm) SPHERISORBTM C-8 (octyl bonded spherical silica packing, Waters) semi-prep HPLC column.
  • the metabolites were separated using a column temperature of 60° C. and a flow of 2.5 mL/min.
  • the initial mobile phase consisted of 40% water and 60% methanol.
  • this composition was programmed to change over 50 min as indicated in the following table: Time Flow Water Acetonitrile Methanol (min) (mL/min) (%) (%) (%) (%) (%) Comment 0.00 2.5 40 0 60 Gradient 40.00 2.5 20 60 20 40.01 2.5 20 40 40 Wash 50.00 2.5 40 0 60 Equilibrate
  • Rapamvcin Metabolite Species Identified from Microsome Preparations: Molecular Adduct Peak Metabolite Mass Species Designation Designation 922 7-O-Demethyl Rapa D4 M3 922 41-O-Demethyl Rapa F1 M4 922 32-O-Demethyl Rapa 908 32, 41-Demethyl Rapa C5 M5 908 Didemethyl Rapa 952 C9-C23 Hydroxy Rapa D1 M1 952 C1-C8 or C32-C36 D3 M2 Hydroxy Rapa 952 Hydroxy Rapa 938 41-O-Demethyl, C1-C8 or C1 C32-C36 Hydroxy Rapa 894 7, 32, 41 Tridemethyl Rapa 954 demethyl, Dihydroxy A8 Rapa or Ester Hydrolysis 970 demethyl, Trihydroxy A3 + A4 Rapa or Dihydrodiol Rapa 968 Dihydroxy Rapa B or C
  • mice are immunized on day 0 (1°—primary immunization), day 7 (2°—secondary immunization), and day 28 (3°—tertiary immunization) by subcutaneous or intraperitoneal injection with rapamycin—conjugate immunogens at doses of 5, 10, 15, or 20 ⁇ g based on protein content. Mice were bled 7-10 days post 2° and 3° immunization to collect serum to assay antibody responses. Various other immunization schedules are effective, including day 0 (1°), day 7 (2°) and days 14, 21 or 30 (3° ); day 0 (1°), day 14 (2°), and days 28 or 44 (3°); and day 0 (1°), day 30 (2°) and day 60 (3°). Thirty days post-tertiary immunization a booster may be injected, subsequent monthly boosters may be administered.
  • Immunized mice are I.V. or I.P. injected with immunogen in PBS as a final boost 3-5 days before the fision procedure. This increases the sensitization and number of immunogen specific. B-lymphocytes in the spleen (or lymph node tissues). This final boost is administered 2 to 3 weeks after the previous injection to allow circulating antibody levels to drop off.
  • Such immunization schedules are useful to immunize mice with rapamycin immunogen conjugates to elicit specific polyclonal antiserum and for the preparation of specific monoclonal antibodies.
  • the immunogen compositions are also useful for immunizing any animal capable of eliciting rapamycin specific antibodies, such as bovine, ovine, caprine, equine, leporine, porcine, canine, feline, avian and simian species. Both domestic and wild animals may be immunized.
  • the route of administration may be any convenient route, and may vary depending on the animal to be immunized, and other factors. Parental administration, such as subcutaneous, intramuscular, intraperitoneal or intravenous administration, is preferred. Oral or nasal administration may also be used, including oral dosage forms, which are enteric coated.
  • Exact formulation of the compositions will depend on the species to be immunized and the route of administration.
  • the immunogens of the invention can be injected in solutions such as 0.9% NaCl (w/v), PBS. or tissue culture media or in various adjuvant formulations.
  • Such adjuvants could include, but are not limited to, Freund's complete adjuvant, Freund's incomplete adjuvant, aluminum hydroxide, dimethyldioctadecylammonium bromide, Adjuvaxm (Alpha-Beta Technology), Imject AlumTM (Pierce), Monophosphoryl Lipid A (Ribi Immunochem Research), TitermaxTM (CytRx), toxins, toxoids, glycoproteins, lipids, glycolipids, bacterial cell walls, subunits (bacterial or viral), carbohydrate moieties (mono-, di-, tri-, tetra-, oligo- and polysaccharide), dextran sulfate, various liposome formulations or saponins.
  • Combinations of various adjuvants may be used with the immunogen conjugates of the invention to prepare a pharmaceutical composition.
  • the conjugates of this invention may be used as immunogens to elicit rapamycin or rapamycin metabolite specific polyclonal antibody, and to stimulate B-cells for specific monoclonal antibody production. They may also be utilized as development and/or research tools, as diagnostic reagents in immunoassay kit development, as prophylactic agents (for example, to block cell receptors) and as therapeutic modalities as immunomodulators and as drug delivery compositions.
  • [0078] Prepare 1:2 dilution of EIA grade mouse type (rabbit anti-mouse IgM, IgG1, IgG2a, IgG2b, IgG3 and IgA, Bio-Rad) in dilution buffer (PBS/0.1% Tween (v/v)). Add 100 ⁇ L per well into appropriate wells and incubate 60 min at 37° C.
  • EIA grade mouse type rabbit anti-mouse IgM, IgG1, IgG2a, IgG2b, IgG3 and IgA, Bio-Rad
  • Absorbance readings may be converted to ⁇ g antibody per ml serum using dose-response curves generated from ELISA responses of the rabbit anti-mouse isotype antibodies to various concentrations of mouse class and subclass specific immunoglobulins (Zymed Labs. Inc.).
  • Buffers used in the direct, isotyping and inhibition ELISA protocols were: Coating buffer (sodium carbonate/bicarbonate 0.05 M, pH 9.6) Sodium carbonate (Fisher, cat # S-233-500) 2.93 g Sodium bicarbonate (Fisher, cat # S-263-500) 1.59 g adjust pH to 9.6 using 1 M HCl or 1 M NaOH store at 4° C.
  • Dilution buffer (1 ⁇ PBS/0.1% Tween) 10x PBS 50.0 mL distilled water 450 mL TWEEN-20 TM (Polyoxyethylene-sorbitol monolaurate Sigma, cat # P-1379) 0.5 mL adjust pH to 7.2 and store at room temperature
  • Wash buffer (1x PBS/0.05% Tween) 10x PBS 200 mL distilled water 1800 mL TWEEN-20 TM (Polyoxyethylene-sorbitol monolaurate 1.0 mL Sigma, cat # P-1379) adjust pH to 7.2 and store at room temperature
  • Substrate buffer (10% diethanolamine) Diethanolamine (Fisher, cat # D-45-500) 97.0 mL Magnesium chloride (Fisher, cat # M-33-500) 100.0 mg adjust pH to 9.8 and store at 4° C. (protect from light)
  • Rabbits #1 and #2 showed good antibody reactivity to the Rapa antigen with O.D.'s at 405 nm of 1.634 and 2.528 respectively.
  • the serum dilution from rabbit #1 showed low cross-reactivity to the FK antigen (2.3 %) and low non-specific reactivity to the HSA carrier molecule (7.8%)
  • the serum dilution from rabbit #2 however, displayed substantial cross-reactivity with the FK antigen (58.5%), non-specific reactivity to the HSA carrier was low (4.8%).
  • the IgY recovered from eggs (PEG isolation method) of a Rapa immunized chicken had good reactivity to the Rapa antigen and showed a 41 % cross-reactivity with the FK antigen.
  • Non-specific reactivity to the HSA carrier was low at 11.5%.
  • Rapa metabolites 1-5 showed marginal inhibition from 15-28% (metabolite specificities listed in Table 3).
  • CSA, FK or FK metabolites 1-5 showed no inhibition, the KLH and HSA proteins did not inhibit antibody binding to the Rapa antigen coated ELISA plate.
  • the chicken IgY prep demonstrated less inhibition with Rapa or the five Rapa metabolites and no inhibition with FK, CSA, KLH or HSA proteins or four of the FK metabolites (FK metabolite #4 showed a low level of inhibition).
  • Rapamycin and FK Metabolites Used in Inhibition ELISA Assays Functional Group Identification Rapa Metabolites* M1 Hydroxy Rapamycin (Hydroxylation is between C9 and C23) M2 Hydroxy Rapamycin (Hydroxylation is between C1 and C8 or C32 and C36) M3 7-O-Demethyl Rapamycin M4 41-O-Demethyl Rapamycin M5 32, 41-Demethyl Rapamycin FK Metabolites** M1 13-O-Demethyl M2 15-O-Demethyl M3 31-O-Demethyl M4 13, 31-Didemethyl M5 15, 31-O-Didemethyl
  • mice immunized (1°, 2°, 3° and 2 booster injections) with the Rapa-DVS-KLH immunogen (as described in Example 1) or with the Rapa-suc-KLH immunogen (as described in Example 2) showed good reactivity to the Rapa antigen (direct ELISA results shown in Table 4), with low non-specific reactivity to the HSA carrier molecule.
  • the sera from mice immunized with the Rapa-suc-KLH immunogen showed high cross-reactivity with the FK antigen, displaying 92.5%, 57.4% and 60.2% FK cross-reactivity with sera from mouse #1, 2 and 3, respectively.
  • Table 5 shows the sera reactivity from four Balb/c (Rapa-DVS-KLH immunogen; 1°, 2°, 3° and booster injections).mice used in fusion procedures of the invention. All four mice had good antibody levels (high O.D.'s by direct ELISA to Rapa-HSA) with little or no non-specific reactivity to the carrier protein HSA. As was shown with the results in Table 4, the cross-reactivity to the FK antigen was very low, mice 7, 8, 9 and 10 having only 12.4%, 13.9%, 15.6% and 19.9% FK cross-reactivity respectively. This result again demonstrates the utility of a DVS-immunogen for eliciting rapamycin specific antibodies.
  • Rapa-DVS immunogen elicited high titer antibody to the Rapa antigen, as demonstrated in Table 6 which shows that the Rapa-DVS mouse #7 had substantial antibody reactivity to the Rapa antigen at a 1:800 serum dilution and that mouse #10 had good antibody reactivity to Rapa-antigen at a 1:6400 serum dilution.
  • Table 6 which shows that the Rapa-DVS mouse #7 had substantial antibody reactivity to the Rapa antigen at a 1:800 serum dilution and that mouse #10 had good antibody reactivity to Rapa-antigen at a 1:6400 serum dilution.
  • TABLE 4 Mouse Polyclonal Antibody (Rapa-suc-KLH or Rapa-DVS-KLH Immunogens) Reactivity to Rapa and FK (O.D. at 405 nm).
  • DMEM Dulbecco's Modified Eagles Medium
  • HAT supplement 100 ⁇ 10 mM sodium hypoxanthine, 40 mM aminopterin, 1.6 mM thymidine
  • Myeloma cells should be thawed and expanded one week before fusion and split the day before the fusion. Do not keep the myeloma cell line in continuous culture. This prevents the cells from becoming infected with mycoplasma and also from any changes, which may result from repeated passaging.
  • SP2/0 can be split back to 1 ⁇ 10 4 cells/mL, freeze at least 5 ⁇ 10 6 cells/vial
  • NS-1 can be split back to 1 ⁇ 10 4 cells/mL, freeze at least 5 ⁇ 10 6 cells/vial
  • P3X63-Ag8.653 can be split back to 1 ⁇ 10 4 cells/ml, freeze at least 5 ⁇ 10 6 cell/vial
  • Serum should be tested for its ability to support growth of the parental myeloma cell line.
  • FCS Place fresh medium, FCS to be used in fusion in water bath.
  • spleen (lymph node cells may also be used) from immunized mouse; resterilize instruments or use new sterile instruments between each step, i.e. cutting skin, cutting abdominal muscle, removing spleen.
  • NS-1, SP2/0 and P3X63Ag8 myeloma cell lines are most preferred, however other myeloma cell lines known in the art may be utilized. These include, but are not limited to, the mouse cell lines: X63Ag8.653, FO, NSO/1, FOX-NY; rat cell lines; Y3-Ag1.2.3, YB2/0 and IR983F and various rabbit and human cell lines.
  • Hybridoma cells myeloma:spleen cell hybrids
  • Myeloma:spleen hybrid cells can survive by use of the salvage pathway.
  • Unfused myeloma cells and myeloma:myeloma fusion products have a defect in an enzyme of the salvage pathway and will die.
  • Unfused spleen cells from the immunized mouse do not grow in tissue culture.
  • Other drugs known in the art may be used to select myeloma:spleen cell hybrids, such as methotrexate or azaserine.
  • Feed fusion products 100 ⁇ L medium+HAT+spleen/thymus feeder layer if necessary on day 5 (1 ⁇ 10 5 cells/well). Fibroblasts, RBC's or other cell types may also be used as feeder layers.
  • Thymocytes die in about 3 days, non-fused spleen cells in about 6 days.
  • Hybrids are fairly large and almost always round and iridescent.
  • T-cell and granulocyte colonies may also grow. They are smaller cells.
  • Row 1 Plate 8 wells (200 ⁇ l/well)-100 cells/well. To the remaining 1.2-mL add 1.2-mL medium.
  • Row 2 Plate 8 wells (200 ⁇ L/well) ⁇ 50 cells/well. To the remainder add 2.0-mL medium.
  • Row 3 Plate 8 wells (200 ⁇ L/well) ⁇ 10 cells/well To the remainder add 1.2-mL medium.
  • Row 4 Plate 8 wells (200 ⁇ L well) ⁇ 5 cells/well. To the remainder add 2.8-mL medium.
  • Row 5 & 6 Plate 16 wells (200 ⁇ l/well) ⁇ 1 cell/well.
  • Monoclonal antibodies can be readily recovered from tissue culture supernatants. Hybrid cells can be grown in tissue culture media with FCS supplements or in serum-free media known in the art. Large-scale amounts of monoclonal antibodies can be produced using hollow fibre or bioreactor technology. The concentration, affinity and avidity of specific monoclonal antibodies can be increased when produced as ascitic fluid.
  • mice by injecting (I.P.) 0.5-mL pristane (2, 6, 10, 14-tetramethypentadecane) at least 5 days before hybrid cell are injected.
  • Mice should be genotypically compatible with cells injected, i.e., Balb/c mice should be used with NS-1 or SP2/0 fusion products. Mice of non-compatible genotype may be used if irradiated before cells are injected. However, Balb/c pristane treated mice are the best to use.
  • mice will be ready to tap in about 7-14 days. Use an 18-1 ⁇ 2 G needle to harvest ascites cells and fluid.
  • Ascites cells can be frozen in 10% DMSO (v/v), 20% FCS (v/v), DMEM medium. Freeze about 5 ⁇ 10 6 cells per vial.
  • Monoclonal antibodies prepared in tissue culture or by ascitic fluid may be purified using methods known in the art.
  • tissue culture supernatants were further characterized for rapamycin reactivity by the direct, isotyping and inhibition ELISA assays as described in Example 7.
  • Various automated assays known in the art could also be utilized to screen parent fusion products.
  • Tissue culture supernatants from clones (3 ⁇ ) of rapamycin positive parent fusion products were then characterized by isotyping ELISA to isolate IgG producing clones, by direct ELISA to determine FK and HSA cross-reactivity and by inhibition ELISA using Rapa, CSA, FK and Rapa and FX metabolites to determine specificity and rapamycin site reactivity.
  • Automated assay systems could also be used to determine specificity and site reactivity.
  • the monoclonal antibody reactivity to the Rapa42 antigen varies from 0.440 to 3.122 O.D. units in these 13 examples. Non-specific reactivity to the carrier HSA protein is negligible. Monoclonal antibody cross-reactivity to the FK antigen of these clones varies considerably.
  • the clones R-1-4, R-1-5, R-2-1, R-2-2, R-2-6, R-3-1 and R-3-2 show little or only marginal binding to the FK antigen; clones R-1-1 and R-2-4 have approximately 50% cross-reactivity to the FK antigen; clones R-1-2, R-1-3 and R-24 show significant cross-reactivity to FK and clone R-2-3 demonstrates almost equivalent affinity and reactivity for the FK and Rapa antigens.
  • TDM therapeutic drug monitoring assays
  • the clones secreting antibodies with low or little cross-reactivity to the FK antigen would be preferred.
  • Rapa and Rapa metabolite #2 significantly inhibited antibody binding. There was no inhibition with the Rapa metabolite #1, again suggesting that the specific site of this anti-Rapa antibody is located in the C9 to C23 region.
  • the inhibition noted with Rapa metabolites #3-5 is again believed to be due to conformational changes in the antibody binding site caused by demethylation of residues 7, 32 and 41. This monoclonal showed some cross-reactivity with the FK antigen, a cross-reactivity that was also observed with all FK metabolites. Cross-reactivity to FK antigen as measured by direct ELISA was only marginal (Table 9).
  • the R-1-5 MoAb did not bind to CSA, KLH or HSA proteins.
  • Rapa and Rapa metabolite #2 inhibited R-2-2 MoAb binding to Rapa antigen coated ELISA plates.
  • Rapa metabolites #1, #3 and #5 did not significantly inhibit binding, however metabolite #4 showed significant inhibition at 71 %.
  • metabolite #4 showed significant inhibition at 71 %.
  • metabolites #3 and #5 have less inhibitory effect than with MoAbs R-1-1 and R-1-5, may be due to a greater affinitys of MoAb R-2-2 for the antibody binding site (specific antibody epitope) or possibly that the R-2-2 MoAb recognizes a slightly different antibody binding epitope in the C9-C23 region than the R-1-1 or R-1-5 MoAbs.
  • tissue culture supernatants of R-2-2 showed the highest O.D. reactivity with the Rapa antigen by direct ELISA (Table 9) indicating good antibody affinity/avidity.
  • Three dimensional structure plays an important role in epitope presentation and recognition by the immune system, therefore a MoAb with high affinity, avidity and specificity for a specific three dimensional epitope site of Rapamycin, would not necessarily cross-react with molecules of similar chemical structure, such as FK.
  • R-2-2 did not react with CSA, KLH or HSA.
  • Rapa and Rapa metabolites #2-5 significantly inhibited antibody binding to sites on the Rapa molecule.
  • Rapa metabolite #1 marginally inhibited antibody binding (38%) and FK and FK metabolites #1-5, CSA, KLH or HSA showed no inhibition to this MoAb's specific site on Rapa.
  • the specific antibody binding epitope may be in the C9-C23 region, however unlike previous monoclonal antibody epitope mapping results, the demethylation (M3, 4, 5) did not reduce inhibiting capacity (i.e. inhibited similar to the parent Rapa molecule).
  • R-3-1 may recognize an epitope in the C9-C23 region, or alternately recognize an epitope in the opposite face of the molecule, for example between C24-C36.
  • Identification of the specific site of R-3-1 on the Rapa molecule can be done using various other minor metabolite peaks isolated as described in Example 5.
  • R-3-1 may recognize a different binding site than R-1-1, R-1-5 or R-2-2 was elucidated from results of experiments using various dilution buffers in our inhibition assay.
  • Rapamycin which had been diluted in only aqueous buffer did not inhibit the binding of MoAbs R-1-1, R-1-5 or R-2-2, while Rapamycin diluted in aqueous buffer containing 10% FCS (v/v) did inhibit binding, possibly indicating that a modification to Rapamycin, such as hydrolysis in aqueous buffer, modifies the antibody binding site and no longer binds the MoAbs.
  • Rapamycin maintained in a buffer less likely to cause hydrolysis (i.e.
  • MoAb R-3-1 was inhibited by Rapamycin diluted in either aqueous buffer or aqueous buffer containing 10% FCS (v/v). This finding indicates that MoAb R-3-1 recognizes a specific site of Rapamycin which is not affected by hydrolysis, a site different from the hydrolysis-sensitive binding site of MoAbs R-1-1, R-1-5 and R-2-2.
  • mice were immunized (1°, 2°, and 3°) as described in Example 6, and then administered several monthly boosters. Numerous additional clones were derived using this immunization procedure.
  • the R-4-1 and R-5-3 MoAbs have high titers and reactivity to epitopes of the Rapa-42 and Rapa-27-HSA conjugates, while the MoAb R-4-7 shows less reactivity to the Rapa-27-HSA than Rapa42-HSA conjugate.
  • a similar reduction in reactivity to Rapa-27-HSA was observed with R4-7 tissue culture supernatant (Table 11).
  • These MoAbs are inhibited by rapamycin and by RAD, a 42-0-(2-hydroxy-ethyl) derivative of Rapa 7 .
  • FIGS. 3A and 3B show the inhibition ELISA results of purified R-4-1 and R-5-3 MoAbs with increasing concentrations of Rapa or RAD.
  • FIG. 4 shows inhibition ELISA results of MoAb R-5-3 inhibited by a 0-15 ng range of rapamycin. TABLE 11 Reactivity of MoAbs R-4-1, R-4-7 and R-5-3 (Rapa-42-KLH immunogen) to Rapa, FK, CSA and HSA ELISA Antigen Panel IgG Producing Clone#/ Rapa-42- Rapa-27- FK-32- Ref.
  • the monoclonal antibodies from R-4-1, R-4-7 and R-5-3 clones are significantly inhibited by Rapa and do not cross-react with FK or CSA epitopes.
  • These MoAbs have varied binding activity to the hydroxy Rapa metabolite Ml and the M3, M4 and M5 demethylated Rapa Metabolites but exhibit a significant reduction in binding activity to the M2 hydroxy metabolite. This indicates that the antibody binding site of these MoAbs may be in the M2 modified region, C1-C8 or C32-C36.
  • MoAbs can be used to develop TDMs to determine rapamycin or RAD levels in patient samples.
  • MoAb dilutions can be optimized to measure patient peak or trough drug levels or for monitoring drug levels in the therapeutic range (0-60 ⁇ g/L).
  • the MoAbs of this invention can be used for therapeutic drug monitoring of patient samples in immunoassays or automated assay systems.
  • the poly- and monoclonal antibodies elicited to the Rapa-42-DVS-KLH immunogen of this invention can be used for development of immunoassays or TDM tests to measure parent drug (Raga or RAD) levels.
  • assays could include, but not limited to, direct, inhibition, competitive or sandwich immunoassays (ELISA or other assay systems), RIA, solid or liquid phase assays or automated assay systems.
  • Inhibition ELISA data demonstrated that the parent Rapa molecule blocked anti-Rapa-27 antibody binding to Rapa-27-HSA (93%); CSA, KLH and HSA showed no inhibition. Rapa metabolite #1 showed significant inhibition at 69%, indicating that the G9-C23 region of the molecule was not involved with antibody recognition. Hydroxylation in the region between C1-C8 or C32-C36 (metabolite #2) caused significant loss of inhibiting activity (inhibition only 36%), indicating that this region may play a role in antibody recognition. The inhibition observed with the parent molecule was decreased with demethylation at residues 7 and 41 (metabolites #3 and #4) from 93 % to 42% and 37 % respectively.
  • Rapa metabolite #5 (demethylated at residues 32 and 41) completely abrogated antibody binding to the parent molecule. This demonstrates that demethylation of the 32, 41 sites completely inhibit antibody binding to the epitope recognition site. However, as demethylation at the 41 site (metabolite #4) or hydroxylation between the C1-C8 or C32-C36 did not completely inhibit antibody binding, we postulate that the methyl group at the 32 site may play a significant role in maintaining the three dimensional structure of the antibody binding epitope recognition site. The reduction in inhibiting capacity seen with metabolites #3 and #4 may be due to three-dimensional conformational changes with the antibody binding site.
  • HSA HSA HSA CSA-HSA HSA R-6-1/4G2 2.178 0.127 0.151 0.103 0.095 R-6-2/8B4 3.426 0.657 3.234 0.159 0.103 R-6-3/11A4 2.407 0.123 3.267 0.121 0.090 R-6-4/14H10 3.454 0.461 3.306 0.139 0.116
  • the data in this example indicates that the R-6-1 MoAb is specific for the Rapa-27 epitope and does not cross-react with Rapa-42, FK-32 or CSA epitopes.
  • the R-6-2, 3 and 4 MoAbs are specific for Rapa and cross-react with the RAD and FK moieties. They do not cross-react with the CSA molecule.
  • the Rapa-42-DVS conjugate (Example 1) may be utilized to elicit poly- or monoclonal antibodies to one region of rapamycin, and the Rapa-27-oxime-DVS conjugate (Example 3) or Rapa-3 1 -DVS conjugate (Example 4) to elicit poly- or monoclonal antibodies to other regions of the rapamycin parent molecule.
  • an immunoassay to measure rapamycin, RAD, and/or metabolites may be developed. Most preferred would be a TDM assay to specifically measure biologically active rapamycin molecules.
  • Poly- and monoclonal antibodies with reactivity to various specific sites of rapamycin can be elicited with the conjugates of the invention.
  • the MLR assay is useful for identifying rapamycin metabolites with biological (immunosupressive) activity and to quantify this activity relative to the immunosuppressive activity of the parent rapamycin molecule.
  • the IC 50 values of Rapa and M1-M5 is shown in Table 18.
  • the parent drug has a mean IC50 value of 0.48 ⁇ g/L.
  • the demethylated metabolites (M3-5) had IC 50 values of 5 to 10 times greater, indicating relatively low immunosuppressive activity.
  • the hydroxy metabolites (M1, M2) have insignificant immunosuppressive activity.
  • Table 19 shows the relative concentrations of these metabolites in pooled whole blood patient samples (determined by LC/MS). No individual metabolite is found at a concentration greater than 20% of the Rapa parent level.
  • Rapa 1 M-1 (C9-C23) 0.2 M-2 (C1-C8 OR C32-C36) 0.2 M-3 (7-O-Demethyl) 0.10 M-4 (41-O-Demethyl) 0.10 M-5 (32, 41-O-Didemethyl 0.02
  • the MLR assay can be utilized to select antibodies of the invention which bind biologically active Rapa metabolites and the parent Rapa molecule. Antibodies could to also be selected for reactivity to biologically inactive metabolites.
  • polyclonal and monoclonal antibodies to specific sites of rapamycin of the invention may be used for development of immunoassays or TDM kits.
  • immunoassays could include, but are not limited to, direct, inhibition, competitive or sandwich immunoassays (ELISA or other assay systems), RIA, solid or liquid phase assays or automated assay systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

This invention relates to the production of polyclonal and monoclonal antibodies to specific sites of rapamycin (Sirolimus). The reactivity of these poly and monoclonal antibodies make them particularly useful for immunoassays for therapeutic drug monitoring (TDM). These immunoassays or TDM kits may include polyclonal or monoclonal antibodies to specific sites of rapamycin. These kits may also include various combinations of polyclonal antibodies, polyclonal and monoclonal antibodies or a panel of monoclonal antibodies. Rapamycin conjugate immunogens are prepared for the immunization of a host animal to produce antibodies directed against specific regions of the rapamycin molecule. By determining the specific binding region of particular antibody, immunoassays which are capable of distinguishing between the parent molecule, active metabolites, inactive metabolites and other structurally similar immunosuppressant compounds are developed. The use of divinyl sulfone (DVS) as the linker arm molecule for forming rapamycin-protein conjugate immunogens is described. DVS-linked rapamycin-protein conjugates were found to elicit antibodies with greater specificity to the rapamycin molecule than succinate linked conjugates.

Description

  • This application is a divisional application of U.S. patent application Ser. No. 09/419,877, filed Oct. 15, 1999, now co-pending, which application is a continuation-in-part of U.S. patent application Ser. No. 09/325,994 filed Jun. 4, 1999, now abandoned, which application is a continuation of U.S. patent application Ser. No. 09/101,309 filed Jul. 7, 1998, now abandoned, which application was filed as international patent application PCT/CA98/00361 on Apr. 9, 1998 which claims priority to U.S. provisional patent application 60/043,215 filed Apr. 9, 1997. The disclosure of each of the above-referenced applications is incorporated herein by reference in its entirety.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to the production of polyclonal and monoclonal antibodies to specific sites of rapamycin and/or rapamycin metabolites, derivatives and analogues. The reactivity of these polyclonal and monoclonal antibodies makes them particularly useful for immunoassays for therapeutic drug monitoring (TDM). These immunoassays or TDM kits may include polyclonal or monoclonal antibodies to specific sites of Rapamycin (Rapa) and/or metabolites, derivatives and analogues of rapamycin. These kits may also include various combinations of polyclonal antibodies, polyclonal and monoclonal antibodies or a panel of monoclonal antibodies. [0002]
  • INTRODUCTION AND BACKGROUND
  • This invention relates to the production of polyclonal and monoclonal antibodies to specific sites of rapamycin (Sirolimus). The reactivity of these poly and monoclonal antibodies make them particularly useful for immunoassays for therapeutic drug monitoring (TDM). These immunoassays or TDM kits may include polyclonal or monoclonal antibodies to specific sites of rapamycin. These kits may also include various combinations of polyclonal antibodies, polyclonal and monoclonal antibodies or a panel of monoclonal antibodies. [0003]
  • Rapamycin (Rapa) is a macrocyclic antibiotic (macrolide lactone), which was originally isolated in soil samples from Easter Island from a [0004] Streptomyces hygroscopicus strain1. Rapamycin is structurally related to the immunosuppressant FK-506 (Tacrolimus) but mechanistically different. Rapamycin has anti-candidal, anti-proliferative and anti-tumor activity. Rapamycin also dampens autoimmune reactions (SLE, adjuvant arthritis, allergic encephalomyelitis). Rapamycin is also a potent immunosuppressant that inhibits T and B cell activation by blocking cytokine-mediated events, and inhibits growth factor mediated cell proliferation. The structure of rapamycin is given in FIG. 1.
  • Currently, the two most commonly administered immunosuppressive drugs to prevent organ rejection in transplant patients are Cyclosporine (CSA) and FK-506 (FK). Therapeutic monitoring of concentrations of these drugs in blood is required to optimize dosing regimes to ensure maximal immunosuppression with minimal toxicity. Recent clinical data indicates that Rapamycin will be a widely used immunosuppressant to prevent organ rejection in transplant patients. Specific TDM monitoring kits for Rapamycin will therefore be required. The polyclonal and monoclonal antibodies to specific sites of Rapamycin of this invention are ideally suited for developing Rapamycin TDM kits. [0005]
  • Cytochrome P[0006] 4503A4 enzyme metabolizes rapamycin to a number of demethylated and hydroxylated metabolites. The exact pathways of rapamycin metabolism in humans have not been completely elucidated since only a few of the metabolites have been structurally identified. Therefore, no consensus has been established concerning the identity or steady state concentrations in whole blood after oral administration. A summary of the current reported knowledge of rapamycin metabolism follows.
  • Streit et. al. structurally identified four rapamycin metabolites from rabbit liver microsom[0007] 2. These include 41-demethyl rapamycin, 7-demethyl rapamycin, 11-hydroxy rapamycin, and a 24-hydroxy ester hydrolysis degradation product of rapamycin. It has also been shown that the metabolites of rapamycin can undergo this ester hydrolysis. Streit also partially identified di, tri, and tetra hydroxylated rapamycin metabolites. Wang et. al. found 16 hydroxylated and/or demethylated metabolites in the bile of rapamycin treated rats3. Nickmilder et. al. identified a 3,4 and 5,6 dihydrodiol rapamycin metabolite in rat liver microsomes.4 In trough whole blood, Streit et. al. have identified 41-demethyl, dihydroxy, and didemethyl rapamycin metabolites.5 These metabolites accounted for 56% of total rapamycin derivatives measured. Finally, Leung et. al. looked at the disposition of [14C]-rapamycin in healthy male volunteers.6 They found that rapamycin represented approximately 35% of the total radioactivity in blood and that 41-demethyl, 7-demethyl, and several hydroxy, hydroxydemethyl, and didemethyl rapamycin metabolites individually represented between 1 and 12% of the total radioactivity. They also found there was no notable presence of glucuronide or sulfate conjugates in blood, feces, or urine and that most of an oral dose was eliminated in feces. Rapamycin metabolites can be isolated from a number of various sources, including but not limited to blood, urine or feces samples, from liver microsomes or from microorganism cultures.
  • There is a need for improved methods of monitoring levels of rapamycin and/or rapamycin metabolites and derivatives. [0008]
  • SUMMARY OF THE INVENTION
  • The current invention is drawn to methods for the preparation of immunogenic conjugates which elicit antibodies with specificity for rapamycin related compounds. For the purposes of this application, the term rapamycin related compound is meant to include any or all of the rapamycin molecule itself and/or various rapamycin metabolites and derivatives. Rapamycin and rapamycin metabolite and/or derivative conjugate immunogens are prepared and used for the immunization of a host animal to produce antibodies directed against specific regions of the rapamycin or metabolite and/or derivative molecules. By determining the specific binding region of a particular antibody, immunoassays which are capable of distinguishing between the parent molecule, active metabolites, inactive metabolites and other rapamycin derivatives/analogues are developed. The use of divinyl sulfone (DVS) as the linker arm molecule for forming rapamycin/metabolite/derivative-protein conjugate immunogen is described. [0009]
  • In a first aspect, the invention provides antibodies which are capable of binding to a rapamycin related compound. Such antibodies which recognize a specific region of said rapamycin related compound, the Rapa derivative RAD or the Rapa metabolites M1 to M5 are preferred. Monoclonal antibodies (MoAbs) are most preferred. Also provided are methods for producing an antibody which is capable of recognizing a specific region of rapamycin related compound, said methods comprising: a) administering an immunogen comprising a rapamycin related compound, a linker arm molecule and a protein carrier to an animal so as to effect a specific immunogenic response to the rapamycin related compound; b) recovering an antibody to said rapamycin related compound from said animal; and c) identifying the antibody binding region by measuring the reactivity of the antibody to at least one rapamycin related compound. Such methods wherein said linker arm molecule is divinyl sulfone and where the rapamycin related compound is linked to the carrier at the 27, 31, 41 or 42 position are preferred. The protein carrier may preferably be keyhole limpet hemocyanin or human serum albumin. Use of hybridoma cells to accomplish the above methods is also provided. [0010]
  • In another aspect, the invention provides immunoassay methods for measuring the level of a rapamycin related compound in a mammal, comprising: a) incubating a biological sample from said mammal with at least one antibody which is capable of binding to a rapamycin related compound; and b) measuring the binding of rapamycin related compound to said antibody. Use of antibodies which recognize a specific region of said rapamycin related compound, the Rapa derivative RAD or the Rapa metabolites M1 to M5 in these assays is preferred. Use of monoclonal antibodies is most preferred. Immunoassay kits for measuring the level of a rapamycin related compound in a sample, said kits comprising an antibody as described above are also provided.[0011]
  • BRIEF DESCRIPTION OF THE DRAWING FIGURES
  • FIG. 1 shows the structure of Rapamycin (Sirolimus). [0012]
  • FIGS. 2A-2C illustrate titration curves of several monoclonal antibodies (MoAbs) to the rapamycin immunogen Rapa42-KLH. [0013]
  • FIG. 3A-3B illustrate the inhibition of MoAbs R4-1 and R-5-3 by rapamycin and a 42-0-(2-hydroxy-ethyl) derivative of rapamycin (RAD). [0014]
  • FIG. 4 illustrates the inhibition of MoAb R-5-3 by a 0-15 ng range of rapamycin.[0015]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Rapamycin conjugate immunogens are prepared for the immunization of a host animal to produce antibodies directed against specific regions of the rapamycin molecule. By determining the specific binding region of particular antibody, immunoassays which are capable of distinguishing between the parent molecule, active metabolites, inactive metabolites and other structurally similar immunosuppressant compounds are developed. The use of divinyl sulfone (DVS) as the linker arm molecule for forming rapamycin-protein conjugate immunogens is described. DVS-linked rapamycin-protein conjugates were found to elicit antibodies with greater specificity to the rapamycin molecule than succinate linked conjugates. [0016]
  • The following examples describe the best mode for carrying out the invention. The examples describe isolation Rapa metabolites, preparation of haptens, immunization of animals to elicit antibody responses, characterization of antibody reactivity, production and selection of polyclonal and monoclonal antibodies to Rapa and Rapa metabolites or derivatives and assays using the antibodies provided by the present invention. [0017]
  • The following Examples are not intended to limit the scope of the invention in any manner. [0018]
  • EXAMPLE 1 Synthesis of Rapamycin-42-Divinyl Sulfone and Conjugation to a Protein Carrier
  • Preparation of rapamycin-42 divinyl sulfone hapten: Rapamycin (0.5 mmol) (Calbiochem-Novabiochem, San Diego, Cat.#553210) was dissolved in dichloromethane and treated with 10 equivalents of 2-t-Boc aminoethylchloroimidate and the reaction mixture is cooled to 0° C. To this solution, 4 mL of trimethylsilyl triflate was added-in one addition. The reaction mixture was stirred at 0° C. for 24 hours. Then the reaction mixture was diluted with dichloromethane (100 mL and washed with water (50 mL×3)). The organic solution was dried and concentrated and the mixture subjected to column chromatography to remove the excess of chloroimidate reagent. This material was analyzed using MS-flow injection electrospray mass spectrometry. The derivatized rapamycin was then treated with trifluoroacetic acid to remove the amino protecting group. The reaction mixture was then diluted with dichloromethane (50 mL) and washed in warm water. The organic solution was dried and concentrated to get the aminoethyl derivative of rapamycin. Without further purification, the reaction mixture was treated with an excess of divinylsulfone in dichloromethane solution using anhydrous potassium carbonate as the catalyst. The reaction mixture was stirred for 24 hours and then diluted with dichloromethane and washed with water to remove the carbonate. The organic solution was dried and concentrated and the crude project subjected to column chromatography to remove the excess of divinyl sulfone. The isolated product was used for conjugation without further purification. [0019]
  • Preparation of rapamycin-42 divinyl sulfone conjugate: Conjugation of the rapamycin-42-divinyl sulfone derivative was performed by preparing a solution of the rapamycin-42-divinyl sulfone derivative in dimethyl sulfoxide which was then slowly added to a rapidly stirred solution of keyhole limpet hemocyanin (KLH) or human serum albumin (HSA) in 0.2M phosphate. buffer (pH 7.6). Stirring of the mixture was continued at room temperature for 24 hours followed by isolation of the rapamycin-42-divinyl sulfone protein conjugate by dialysis. [0020]
  • EXAMPLE 2 Synthesis of Rapamycin-42-succinate and Conjugation to a Protein Carrier
  • Preparation of rapamycin-42-O-hemisuccinate: Dimethylaminopyridine (11.8 mg, 97 μmol) was added to a solution of rapamycin (80.0 mg, 88 μmol) and succine anhydride (30.7 mg, 307 μmol) in 2 mL dry pyridine and the mixture stirred at room temperature for 23 hours. The pyridine was evaporated and the residue dissolved in ethyl acetate. The ethyl acetate solution was washed twice with water and finally with brine before drying over magnesium sulfate and evaporating the solvent. The residue was eluted through a silica gel column using methanol/chloroform (1:19) and then methanol/chloroform (1:9) as eluent to give 20.0 mg (23%) of the product as a colorless solid. [0021]
  • Preparation of 42-O-succinimidooxysuccinyl rapamycin: N-hydroxysuccinimide (2.3 mg 19.7 μmol) was added to a solution of rapamycin-42-0-hemisuccinate (20.0 mg, 19.7 μmol) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) (3.8 mg, 19.7 μmol) in 5 mL of dry dichloromethane and the mixture stirred overnight at room temperature. The solvent was evaporated and the residue eluted through a silica gel column using ethyl acetate as eluent to give 5.7 mg (26%) of the product as a colorless solid. [0022]
  • Analysis of rapamycin-42-O-hemisuccinate and 42-0-succinim-idooxysuccinyl rapamycin: Purified rapamycin-42-O-hemisuccinate (1013.5 daltons) was identified as the sodium adduct (1036.5 daltons) by electrospray ionization mass spectrometry and structurally characterized by fragmentation in the negative-ion mode. Purified 42-0-succinimidooxysuccinyl rapamycin (1110.5 daltons) was identified as the sodium adduct (1133.5 daltons) by electrospray ionization mass spectrometry. [0023]
  • Preparation of rapamycin42-O-succinate conjugates: A solution of 42-O-succinimidooxysuccinyl rapamycin (2.0 mg) in 500 mL of dimethyl sulfoxide was slowly added into a rapidly stirred solution of keyhole limpet hemocyanin (KLH) (3.0 mg) or human serum albumin (HSA) in 2 mL of 0.1 M aqueous sodium bicarbonate adjusted to pH 7.7 with acetic acid. Stirring of the mixture was continued at room temperature for 24 hours followed by isolation of the rapamycin-42-divinyl sulfone protein conjugate by dialysis. [0024]
  • EXAMPLE 3 Synthesis of Rapamycin-27-Oxime-Divinyl Sulfone and Conjugation to a Protein Carrier
  • Preparation of rapamycin-27-oxime: Hydroxylamine hydrochloride (3.0 mg, 44 μmol) in 100 mL of water was added to a solution of rapamycin (20.0 mg, 22 μmol) and pyridine (40 mL) in 4 mL of ethanol and the reaction mixture stirred at room temperature for 24 hours. The reaction mixture was diluted with ethyl acetate and washed sequentially with water, dilute aqueous hydrochloric acid, and brine. The organic phase was dried over magnesium sulfate and the solvent evaporated to give 20 mg of crude product. [0025]
  • Analysis of rapamycin-27-oxime-divinyl: LC/MS analysis (Gradient condition: 25/25/50 water/acetonitrile/methanol at 0 minutes up to 20/30/50 water/acetonitrile/methanol at 18 minutes. Column: SPHERISORB™ C-8 (octyl bonded spherical silica packing, Waters) semi-prep. Temperature was 35° C. and the flow rate set at 3.5 mL/min. The UV signal was monitored at 276 nm) of the crude residue indicated that there were two isomeric forms of the oxime as well as a small amount of unreacted rapamycin. Negative-ion fragmentation of Rapa-Oxime is consistent with oxime formation at C-27. The mixture was used without purification for further reaction. [0026]
  • Preparation of the rapamycin-27-oxime-divinyl sulfone hapten (Rapa-Ox-DVS): Vinyl sulfone (203 mg, 1.72 μmol) was added to a mixture of the crude rapamycin-27-oxime (20mg, 22 μmol) and dried anhydrous potassium carbonate (80 mg) in 10 mL dry dichloromethane at room temperature and under a nitrogen atmosphere. The mixture was stirred for 17 hours. Passing a stream of nitrogen through the flask evaporated the solvent and the resulting residue was immediately quenched with 10 mL of a solution of 10 drops acetic acid in 10 mL methanol. The clear solution was then decanted off from the remaining potassium carbonate granules and the solution concentrated. The residue was passed through a silica gel column using a gradient of methanol/chloroform (1% to 5% methanol) as eluent to separate the reaction products from excess vinyl sulfone. [0027]
  • Analysis of rapamycin-27-oxime-divinyl-sulfone hapten (Rapa-Ox-DVS): The crude reaction residue was resolved by reversed-phase HPLC (Gradient condition: 40/10/50 water/acetonitrile/methanol from 0 to 5 minutes, up to 25/25/50 water/acetonitrile/methanol from 5 to 40 minutes, followed by 50/50 acetonitrile/water from 40 to 45 minutes. Column: SPHERISORB™ C-8 (octyl bonded spherical silica packing, Waters) semi-prep. Temperature was 35° C. and the flow rate set at 3.5 mL/min. The UV signal was monitored at 276 nm) into 3 major rapamycin-Ox-DVS species; Rapa-Ox-DVS (species X) Rapa-Ox-DVS (species 2); Rapa-Ox-DVS (species 3) which were identified by electrospray ionization mass spectrometry. Under the gradient conditions specified both Rapa-Ox-DVS (species X) and Rapa-Ox-DVS (species 2) elute as pure product while Rapa-Ox-DVS (species 3) was further purified using a 35/15/50 water/acetonitrile/methanol isocyanic mixture and identical chromatographic conditions as above. [0028]
  • The positive-ion fragmentation pattern for Rapa-Ox-DVS (species 2) is consistent with rapamycin modification through the C-27 position. The LC/MS profile and mass spectrum was obtained for purified Rapa-Ox-DVS (species 3). The positive-ion fragmentation pattern for Rapa-Ox-DVS (species 3) was again consistent with rapamycin modification through the C-27 position. The yields for each species were as follows: [0029]
  • Rapa-Ox-DVS-(X): 2.4 mg (10%) [0030]
  • Rapa-Ox-DVS-(2): 3.4 mg (15%) [0031]
  • Rapa-Ox-DVS-(3): 0.5 mg (2%) [0032]
  • Preparation of rapamycin-oxime-Divinyl Sulfone Conjugates: A solution of Rapa-Ox-DVS (species 2) (0.3 mg) in 300 mL of dimethyl sulfoxide was slowly added into a rapidly stirred solution of keyhole limpet hemocyanin (KLH) (1.0 mg) in 1 mL of 0.2M phosphate buffer (pH 7.6) and the mixture stirred at room temperature for 24 hours. The reaction mixture was then dialyzed to recover the rapamycin-oxime-divinyl sulfone protein conjugate. A Rapa-Ox-DVS (species 2)-HSA conjugate was prepared in the same manner. [0033]
  • EXAMPLE 4 Synthesis of Rapamvcin-3 1-Divinyl Sulfone and Conjugation to a Protein Carrier
  • Preparation of a rapamycin-31-divinyl sulfone hapten (Rapa-DVS): Vinyl sulfone (82.6 mg, 0.7 μmol) was added to a mixture of rapamycin (5.0 mg, 5.5 μmol) and dried anhydrous potassium carbonate (30 mg) in 3 mL of dry acetone at room temperature under a. nitrogen atmosphere. The mixture was stirred for 19 hours. Passing a stream of nitrogen through the flask evaporated the solvent and the resulting residue was immediately quenched with 5 mL of a solution of 10 drops of acetic acid in 10 mL methanol. The clear solution was then decanted off the potassium carbonate granules and the solution concentrated. The residue was passed through a silica gel column using a gradient of methanol/chloroform (1% to 2% methanol) as eluent to separate the reaction products from excess vinyl sulfone. The combined reaction products were then purified and analyzed as follows. [0034]
  • Analysis of a rapamycin-31-divinyl sulfone hapten (Rapa-DVS): The crude reaction residue was analyzed by LC/MS (Gradient condition: 25/25/50 water/acetonitrile/methanol at 0 minutes up to 20/30/50 water/acetonitrile/methanol at 18 minutes. Column: SPHERISORB[0035] 1υ C-8 (octyl bonded spherical silica packing, Waters) semi-prep. Temperature was 35° C. and the flow rate set at 3.5 mL/min. The UV signal was monitored at 276 nm and found to contain 1 major species of Rapa-DVS along with its isomer. Rapa-DVS was purified using an isocyanic mobile phase of 40/10/50 water/acetonitrile/methanol (containing 10% Tert-butyl methyl ether) and identical chromatographic conditions as above. The LC/MS profile and mass spectrum of purified Rapa-DVS was obtained. The positive-ion fragmentation pattern for Rapa-DVS is consistent with rapamycin modification through the 31-OH position. The obtained yield was 0.1 mg (2%).
  • Preparation of rapamycin-31-divinylsulfone conjugates: Rapa-31-DVS-KLH and HSA conjugates were prepared as described in Example 3. [0036]
  • EXAMPLE 5 Isolation and Characterization of Rapamycin Metabolites Biosynthesis of Rapamvcin metabolites Utilizing Rabbit Liver Microsomes
  • The basic procedure utilized for isolating rapamycin metabolites was as follows: [0037]
  • 1. Preparation of Rabbit Liver Microsomes [0038]
  • A fresh or frozen rabbit liver (not induced) was washed with approximately 750 mL of 1.15 % KCl (w/v) and cut into small pieces (approximately 5mm[0039] 3). These were placed into a small conical 50 mL centrifuge tube with 15 mL of 1.15% KCl and stored on ice. After the whole liver was processed, the pieces were homogenized using a Beckman Polytron™ homogenizer into a microsomal suspension that was centrifuged at 10,000×g for 20 min. Following centrifugation the supernatant was decanted into specialized centrifuge tubes and placed on ice. These were centrifuged again, using an ultracentrifuge, for 60 min at 100,000×g. This process yielded a microsomal pellet which contains the cytochrome p450 enzymes required for the metabolism of rapamycin. The microsomes were then re-suspended in 1.15% KCl, tested for protein concentration using the Lowry method, and stored at −70° C.
  • 2. Biosynthesis of Rapamycin Metabolites [0040]
  • Incubation mixtures have a final volume of 45 mL, and contained 22.5 mg of rapamycin dissolved in 1.8 mL DMSO. The reaction mixture also contained 0.1 M sodium phosphate buffer (pH 7.4), 0.5 mM EDTA, 5.0 mM MgCl[0041] 2, 3.5 mM NADPH, 1.5 mM NADP, 50 mM glucose-6-phosphate, 10 units per mL of glucose-6-phosphate dehydrogenase, and 10 mg/mL of microsomal protein.
  • The biotransformation reaction was carried out in 250 mL Erlenmeyer flasks. The microsomal solution, without drug, was allowed to incubate at 37° C. for 5 min in an environmentally controlled incubator shaker. The reaction was initiated by adding the drug and allowing the reaction to proceed for two hours. At this time, the reaction was stopped by removing the flasks from the incubator, transferring their contents into 50 mL centrifuge tubes, and storing them at −20° C. [0042]
  • 3. Metabolite Isolation [0043]
  • The metabolites were isolated by thawing the stored reaction mixtures and transferring them to 500 mL glass bottles (100 mL of reaction mixture per bottle). This solution was acidified with an equal volume of 0.2 M acetic acid (pH 3.0) and extracted two times with 200 mL MTBE (methyl-tert-butyl ether). The solvent was recovered and evaporated to dryness using a rotary evaporator. The residue was reconstituted in methanol and stored at −70° C. [0044]
  • 4. Metabolite Purification [0045]
  • A Waters chromatographic system comprised of a 600E gradient controller plus pump, 717 autosampler, 486 UV detector, and Millenium workstation was used to separate and purify the rapamycin metabolites. The column utilized for initial separation was a Waters C8 reverse phase (10×250 mm) SPHERISORB™ C-8 (octyl bonded spherical silica packing, Waters) semi-prep HPLC column. The metabolites were separated using a column temperature of 60° C. and a flow of 2.5 mL/min. The initial mobile phase consisted of 40% water and 60% methanol. To achieve the best separation, this composition was programmed to change over 50 min as indicated in the following table: [0046]
    Time Flow Water Acetonitrile Methanol
    (min) (mL/min) (%) (%) (%) Comment
    0.00 2.5 40 0 60 Gradient
    40.00 2.5 20 60 20
    40.01 2.5 20 40 40 Wash
    50.00 2.5 40 0 60 Equilibrate
  • Individual peaks were collected, pooled, and labeled. Each of these peaks represents a rapamycin metabolite(s). Using the same chromatographic system, the peaks collected were subjected to further purification using a Waters C18 (octadecyl bonded spherical silica packing) reverse phase (3.6×150 mm) Symmetry column. The column temperature utilized was 60° C., the flow was 1.0 mL/min, and the mobile phase consisted of a water/methanol gradient that was specific for each metabolite purified. [0047]
  • Rapamvcin Metabolite Species Identified from Microsome Preparations: [0048]
    Molecular
    Adduct Peak Metabolite
    Mass Species Designation Designation
    922 7-O-Demethyl Rapa D4 M3
    922 41-O-Demethyl Rapa F1 M4
    922 32-O-Demethyl Rapa
    908 32, 41-Demethyl Rapa C5 M5
    908 Didemethyl Rapa
    952 C9-C23 Hydroxy Rapa D1 M1
    952 C1-C8 or C32-C36 D3 M2
    Hydroxy Rapa
    952 Hydroxy Rapa
    938 41-O-Demethyl, C1-C8 or C1
    C32-C36 Hydroxy Rapa
    894 7, 32, 41 Tridemethyl Rapa
    954 demethyl, Dihydroxy A8
    Rapa or Ester Hydrolysis
    970 demethyl, Trihydroxy A3 + A4
    Rapa or Dihydrodiol Rapa
    968 Dihydroxy Rapa B or C
  • EXAMPLE 6 Immunization to Elicit Rapamycin specific Antibody Responses
  • The basic immunization protocols are as follows: [0049]
  • Typically, mice are immunized on day 0 (1°—primary immunization), day 7 (2°—secondary immunization), and day 28 (3°—tertiary immunization) by subcutaneous or intraperitoneal injection with rapamycin—conjugate immunogens at doses of 5, 10, 15, or 20 μg based on protein content. Mice were bled 7-10 days post 2° and 3° immunization to collect serum to assay antibody responses. Various other immunization schedules are effective, including day 0 (1°), day 7 (2°) and [0050] days 14, 21 or 30 (3° ); day 0 (1°), day 14 (2°), and days 28 or 44 (3°); and day 0 (1°), day 30 (2°) and day 60 (3°). Thirty days post-tertiary immunization a booster may be injected, subsequent monthly boosters may be administered.
  • Immunized mice are I.V. or I.P. injected with immunogen in PBS as a final boost 3-5 days before the fision procedure. This increases the sensitization and number of immunogen specific. B-lymphocytes in the spleen (or lymph node tissues). This final boost is administered 2 to 3 weeks after the previous injection to allow circulating antibody levels to drop off. [0051]
  • Such immunization schedules are useful to immunize mice with rapamycin immunogen conjugates to elicit specific polyclonal antiserum and for the preparation of specific monoclonal antibodies. The immunogen compositions are also useful for immunizing any animal capable of eliciting rapamycin specific antibodies, such as bovine, ovine, caprine, equine, leporine, porcine, canine, feline, avian and simian species. Both domestic and wild animals may be immunized. The route of administration may be any convenient route, and may vary depending on the animal to be immunized, and other factors. Parental administration, such as subcutaneous, intramuscular, intraperitoneal or intravenous administration, is preferred. Oral or nasal administration may also be used, including oral dosage forms, which are enteric coated. [0052]
  • Exact formulation of the compositions will depend on the species to be immunized and the route of administration. The immunogens of the invention can be injected in solutions such as 0.9% NaCl (w/v), PBS. or tissue culture media or in various adjuvant formulations. Such adjuvants could include, but are not limited to, Freund's complete adjuvant, Freund's incomplete adjuvant, aluminum hydroxide, dimethyldioctadecylammonium bromide, Adjuvaxm (Alpha-Beta Technology), Imject Alum™ (Pierce), Monophosphoryl Lipid A (Ribi Immunochem Research), Titermax™ (CytRx), toxins, toxoids, glycoproteins, lipids, glycolipids, bacterial cell walls, subunits (bacterial or viral), carbohydrate moieties (mono-, di-, tri-, tetra-, oligo- and polysaccharide), dextran sulfate, various liposome formulations or saponins. [0053]
  • Combinations of various adjuvants may be used with the immunogen conjugates of the invention to prepare a pharmaceutical composition. [0054]
  • The conjugates of this invention may be used as immunogens to elicit rapamycin or rapamycin metabolite specific polyclonal antibody, and to stimulate B-cells for specific monoclonal antibody production. They may also be utilized as development and/or research tools, as diagnostic reagents in immunoassay kit development, as prophylactic agents (for example, to block cell receptors) and as therapeutic modalities as immunomodulators and as drug delivery compositions. [0055]
  • EXAMPLE 7 Assays to Determine Antibody Reactivity to Rapamycin Immunogens
  • The basic direct ELISA protocol for determining antibody reactivity to rapamycin used in the invention was as follows: [0056]
  • Direct ELISA Protocol: [0057]
  • 1. Use Falcon Pro-bind immunoplate. [0058]
  • 2. Dilute coating antigen to 1.0 μg/mL in carbonate-bicarbonate buffer. Use glass tubes. [0059]
  • 3. Add 100 μL to each well of plate. Store overnight at 4° C. [0060]
  • 4. Shake out wells and wash 3× with 200 μL PBS/0.05% TWEEN™ (polyoxyethylene-sorbitol) (v/v) per well. [0061]
  • 5. Add blocking buffer, 100 μL per well (PBS/2% BSA (w/v)). Incubate for 60 min at 37° C. [0062]
  • 6. [0063] Wash 3× as in step 4.
  • 7. Add 100 μL per well of test antibody appropriately diluted in PBS/0.1% TWEEN™ (polyoxyethylene-sorbitol) (v/v). Incubate 60 min at 37° C. [0064]
  • 8. [0065] Wash 3× as in step 4.
  • 9. Dilute alkaline phosphatase conjugated anti-mouse IgG (Tago cat #AMI 4405) in PBS/0.1% TWEEN™ (polyoxyethylene-sorbitol) (v/v) to 1: 2000 concentration. Add 100 μL per well and incubate at 37° C. for 60 min. [0066]
  • 10. [0067] Wash 3× as in step 4.
  • 11. Prepare enzyme substrate using Sigma #104 alkaline phosphatase substrate tablets (1 mg/mL in 10% diethanolamine (v/v) substrate buffer). Add 100 μL per well and incubate in the dark at room temperature. Absorbance can be read at 405 nm at approximately 15-min intervals. [0068]
  • To measure antibody isotype levels (IgM, IgG and IgA isotypes) elicited to rapamycin immunogens the following basic procedure was used: [0069]
  • Isotyping ELISA Protocol: [0070]
  • 1. Use Falcon® Pro-bind™ immunoplates. [0071]
  • 2. Dilute coating antigen to 1 μg/mL in carbonate-bicarbonate buffer. Add 100 μL per well and incubate overnight at 4° C. [0072]
  • 3. Shake out wells and wash 3× with 200 μL PBS/0.05% TWEEN™ (polyoxyethylene-sorbitol) (v/v) per well. [0073]
  • 4. Add 200 μL blocking buffer per well (PBS-2% BSA (w/v)). Incubate 60 min at room temperature. [0074]
  • 5. Wash as in [0075] step 3.
  • 6. Add 100 μL per well of tissue culture supernatant undiluted or mouse serum diluted to 1/100 in PBS/0.1% TWEEN™ (polyoxyethylene-sorbitol) (v/v). Incubate for 60 min at 37° C. [0076]
  • 7. Wash as in [0077] step 3.
  • 8. Prepare 1:2 dilution of EIA grade mouse type (rabbit anti-mouse IgM, IgG1, IgG2a, IgG2b, IgG3 and IgA, Bio-Rad) in dilution buffer (PBS/0.1% Tween (v/v)). Add 100 μL per well into appropriate wells and incubate 60 min at 37° C. [0078]
  • 9. Wash as in [0079] step 3.
  • 10. Dilute alkaline phosphatase conjugated anti-rabbit IgG (Tago cat #4620) in PBS/0.1% TWEEN™ (polyoxyethylene-sorbitol) (v/v) to 1:2000 concentration. Add 100 μL per well and incubate at 37° C. for 60 min. [0080]
  • 11. Wash as in [0081] step 3.
  • 12. Prepare enzyme substrate using Sigma #104 alkaline phosphatase substrate tablets (1 mg/mL in 10% diethanolamine (v/v) substrate buffer). Add 100 μL per well and incubate in the dark at room temperature. Absorbance can be read at 405 nm at approximately 15-min intervals. [0082]
  • 13. Absorbance readings may be converted to μg antibody per ml serum using dose-response curves generated from ELISA responses of the rabbit anti-mouse isotype antibodies to various concentrations of mouse class and subclass specific immunoglobulins (Zymed Labs. Inc.). [0083]
  • The procedure used to determine antibody binding to specific sites of rapamycin and to quantify antibody cross-reactivity to FK-506, cyclosporine, and KLH or HSA proteins was as follows: [0084]
  • Inhibition ELISA Protocol: [0085]
  • 1. Use Falcon® Pro-bind™ immunoplates. [0086]
  • 2. Dilute coating antigen to 1 μg/mL in carbonate-bicarbonate buffer. Add 100 μL per well and incubate overnight at 4° C. [0087]
  • 3. On the same day prepare inhibiting antigen tubes. Aliquot antibodies into glass test tubes. Prepare appropriate antigen concentration in ethanol and add to aliquoted antibody at 10 μL ethanol solution/250 μL antibody. Vortex tubes and incubate overnight at 4° C. [0088]
  • 4. Shake out wells and wash 3× with 200 μL PBS/0.05% TWEEN™ (polyoxyethylene-sorbitol) (v/v) per well. [0089]
  • 5. Add 200 μL blocking buffer per well (PBS/2% BSA (w/v)). Incubate 60 min at room temperature. [0090]
  • 6. Wash as in [0091] step 4.
  • 7. Transfer contents of inhibition tubes to antigen-coated plate, 100 μL per well. Incubate 60 min at 37° C. [0092]
  • 8. Wash as in [0093] step 4.
  • 9. Dilute alkaline phosphatase conjugated anti-mouse IgG (Tago cat #AMI 4405) in PBS/0.1% TWEEN™ (polyoxyethylene-sorbitol) (v/v) to 1:2000 concentration. Add 100 μL per well and incubate at 37° C. for 60 min. [0094]
  • 10. Wash as in [0095] step 4.
  • 11. Prepare enzyme substrate using Sigma #104 alkaline phosphatase substrate tablets (1 mg/mL in 10% diethanolamine (v/v) substrate buffer). Add 100 μL per well and incubate in the dark at room temperature. Absorbance can be read at 405 nm at approximately 15-min intervals. [0096]
  • Buffers used in the direct, isotyping and inhibition ELISA protocols were: [0097]
    Coating buffer (sodium carbonate/bicarbonate 0.05 M, pH 9.6)
    Sodium carbonate (Fisher, cat # S-233-500) 2.93 g
    Sodium bicarbonate (Fisher, cat # S-263-500) 1.59 g
    adjust pH to 9.6 using 1 M HCl or 1 M NaOH
    store at 4° C.
  • [0098]
    10x PBS buffer
    Potassium phosphate, mono-basic (Fisher, cat P-284B-500)  8.00 g
    Sodium phosphate, di-basic (Fisher, cat # S-373-1)  46.00 g
    Sodium chloride (Fisher, cat # S-671-3) 320.00 g
    Potassium chloride (Fisher, cat # P-217-500)  8.00 g
    dissolve in 4 L distilled water
    store at room temperature
  • [0099]
    Dilution buffer (1 × PBS/0.1% Tween)
    10x PBS 50.0 mL
    distilled water 450 mL
    TWEEN-20 ™ (Polyoxyethylene-sorbitol
    monolaurate Sigma, cat # P-1379) 0.5 mL
    adjust pH to 7.2 and store at room temperature
  • [0100]
    Wash buffer (1x PBS/0.05% Tween)
    10x PBS 200 mL
    distilled water 1800 mL
    TWEEN-20 ™ (Polyoxyethylene-sorbitol monolaurate 1.0 mL
    Sigma, cat # P-1379)
    adjust pH to 7.2 and store at room temperature
  • [0101]
    Blocking buffer (1x PBS/2% BSA)
    1x PBS 100 mL
    Bovine Serum Albumin (Sigma, cat # A-7030) 2.0 g
    store at 4° C.
  • [0102]
    Substrate buffer (10% diethanolamine)
    Diethanolamine (Fisher, cat # D-45-500) 97.0 mL
    Magnesium chloride (Fisher, cat # M-33-500) 100.0 mg
    adjust pH to 9.8 and store at 4° C. (protect from light)
  • The direct ELISA, isotyping and inhibition ELISA procedures have been described to detect mouse antibodies (poly- and monoclonal antibodies), however these procedures can be modified for other species, including but not limited to antibodies of rat, rabbit, chicken, guinea pig, donkey, pig, goat, cow, horse, dog, cat, monkey or baboon. Other procedures known in the art, including but not limited to various automated assay systems and RIA may be used to screen, characterize, test specificity and reactivity of poly- and/or monoclonal antibodies. [0103]
  • EXAMPLE 8 Polyclonal Antibody Responses to the Rapa-42-DVS Immunogen
  • Polyclonal antiserum was prepared in mice, chicken and rabbits using the Rapa-42 immunogen described in Example 1 and the immunization regimes described in Example 6. The ELISA reactivity of rabbit and chicken serum (7 days post-tertiary injection) to Rapa and FK-HSA conjugates is shown in Table 1. [0104]
    TABLE 1
    Rabbit and Chicken Polyclonal Antibody (Rapa-42-DVS-KLH
    Immunogen) Reactivity to Rapa and FK (O.D. at 405 nm).
    ELISA antigens Rabbit # 1 Rabbit #2 Chicken
    Rapa-HSA 1.634 2.528 1.537
    FK-HSA 0.039 1.478 0.632
    HSA 0.128 0.122 0.176
  • [0105] Rabbits #1 and #2 showed good antibody reactivity to the Rapa antigen with O.D.'s at 405 nm of 1.634 and 2.528 respectively. The serum dilution from rabbit #1 showed low cross-reactivity to the FK antigen (2.3 %) and low non-specific reactivity to the HSA carrier molecule (7.8%) The serum dilution from rabbit #2 however, displayed substantial cross-reactivity with the FK antigen (58.5%), non-specific reactivity to the HSA carrier was low (4.8%).
  • The IgY recovered from eggs (PEG isolation method) of a Rapa immunized chicken had good reactivity to the Rapa antigen and showed a 41 % cross-reactivity with the FK antigen. Non-specific reactivity to the HSA carrier was low at 11.5%. [0106]
  • The serum from [0107] rabbit #1, having the best specificity to the Rapa antigen, was used in an inhibition ELISA assay, the results are shown in Table 2.
    TABLE 2
    Percent Inhibition of Rabbit and Chicken Polyclonal Antibodies
    by Rapa, FK, CSA, Rapa and FK Metabolites.
    Inhibiting antigens Rabbit # 1 Chicken
    Rapa 48 30
    Met 1 18 34
    Met 2 22 0
    Met 3 15 35
    Met 4 28 18
    Met 5 16 35
    FK 0 0
    Met 1 0 0
    Met 2 0 0
    Met 3 0 0
    Met 4 0 13
    Met 5 0 0
    CSA 0 0
    KLH 0 0
    HSA 0 0
  • This serum was inhibited 48% by Rapa. Rapa metabolites 1-5 showed marginal inhibition from 15-28% (metabolite specificities listed in Table 3). CSA, FK or FK metabolites 1-5 showed no inhibition, the KLH and HSA proteins did not inhibit antibody binding to the Rapa antigen coated ELISA plate. The chicken IgY prep demonstrated less inhibition with Rapa or the five Rapa metabolites and no inhibition with FK, CSA, KLH or HSA proteins or four of the FK metabolites ([0108] FK metabolite #4 showed a low level of inhibition).
    TABLE 3
    List of Rapamycin and FK Metabolites Used in
    Inhibition ELISA Assays
    Functional Group Identification
    Rapa Metabolites*
    M1 Hydroxy Rapamycin (Hydroxylation is between C9
    and C23)
    M2 Hydroxy Rapamycin (Hydroxylation is between C1
    and C8 or C32 and C36)
    M3 7-O-Demethyl Rapamycin
    M4 41-O-Demethyl Rapamycin
    M5
    32, 41-Demethyl Rapamycin
    FK Metabolites**
    M1 13-O-Demethyl
    M2 15-O-Demethyl
    M3 31-O-Demethyl
    M4 13, 31-Didemethyl
    M5
    15, 31-O-Didemethyl
  • Balb/c female mice immunized (1°, 2°, 3° and 2 booster injections) with the Rapa-DVS-KLH immunogen (as described in Example 1) or with the Rapa-suc-KLH immunogen (as described in Example 2) showed good reactivity to the Rapa antigen (direct ELISA results shown in Table 4), with low non-specific reactivity to the HSA carrier molecule. However, the sera from mice immunized with the Rapa-suc-KLH immunogen showed high cross-reactivity with the FK antigen, displaying 92.5%, 57.4% and 60.2% FK cross-reactivity with sera from [0109] mouse # 1, 2 and 3, respectively. With sera from mice immunized with the Rapa-DVS-KLH immunogen, the FK cross-reactivity was much less, at only 11.6%, 33.4% and 6.7% for mice # 4, 5 and 6, respectively. These results demonstrate that the Rapa-DVS conjugates elicit Rapa-specific antibody, while the Rapa-suc conjugate elicits antibody with marked cross-reactivity to the FK antigen. Thus, the DVS conjugates of this invention are preferred for producing Rapa-specific. antibodies.
  • Table 5 shows the sera reactivity from four Balb/c (Rapa-DVS-KLH immunogen; 1°, 2°, 3° and booster injections).mice used in fusion procedures of the invention. All four mice had good antibody levels (high O.D.'s by direct ELISA to Rapa-HSA) with little or no non-specific reactivity to the carrier protein HSA. As was shown with the results in Table 4, the cross-reactivity to the FK antigen was very low, [0110] mice 7, 8, 9 and 10 having only 12.4%, 13.9%, 15.6% and 19.9% FK cross-reactivity respectively. This result again demonstrates the utility of a DVS-immunogen for eliciting rapamycin specific antibodies. The Rapa-DVS immunogen elicited high titer antibody to the Rapa antigen, as demonstrated in Table 6 which shows that the Rapa-DVS mouse #7 had substantial antibody reactivity to the Rapa antigen at a 1:800 serum dilution and that mouse #10 had good antibody reactivity to Rapa-antigen at a 1:6400 serum dilution.
    TABLE 4
    Mouse Polyclonal Antibody (Rapa-suc-KLH or Rapa-DVS-KLH
    Immunogens) Reactivity to Rapa and FK (O.D. at 405 nm).
    Rapa- Rapa- Rapa-
    ELISA Rapa-suc Rapa-suc Rapa-suc DVS DVS DVS
    antigens # 1 #2 #3 #4 #5 #6
    Rapa-HSA 1.518 1.817 1.781 1.891 1.808 1.606
    FK- 1.405 1.043 1.072 0.220 0.603 0.108
    HSA
    HSA 0.019 0.009 0.005 0.013 0.011 0.016
  • [0111]
    TABLE 5
    Mouse Polyclonal Antibody Reactivity (Rapa-DVS-KLH
    immunogen pre-fusion bleeds) to Rapa and FK
    ELISA Rapa-DVS Rapa-DVS Rapa-DVS Rapa-DVS
    antigens #
    7 #8 #9 #10
    Rapa-HSA 2.403 1.279 2.061 1.707
    FK-HSA 0.298 0.179 0.322 0.340
    HSA 0.033 0.006 0.050 0.010
  • [0112]
    TABLE 6
    Titration of Mouse Polyclonal Sera to Rapamycin
    (O.D. at 405 nm)
    Dilution Rapa-DVS #7 Rapa-DVS #10
    1:100 3.265 3.120
    1:200 3.161 3.216
    1:400 2.201 3.090
    1:800 1.369 3.153
    1:1600 0.674 2.635
    1:3200 0.388 1.872
    1:6400 0.219 1.090
  • Mouse polyclonal sera to the Rapa-DVS immunogen had little or no cross-reactivity to FK (confirming result in Table 5), CSA, KLH or HSA epitopes as demonstrated by inhibition ELISA results shown in Table 7. These sera showed significant inhibition with the Rapa antigen (approximately 50%) with varying levels of inhibition with the Rapamycin metabolites (M1-M5). [0113]
  • The results of Table 8 demonstrate that this inhibition was Rapa concentration dependent. Rapa significantly inhibited antibody binding at 2.5-0.15 ug concentrations, little inhibition was seen at the 0.04 μg Rapa concentration. The Rapa -HSA inhibitor showed a similar dose-dependent inhibition of anti-Rapa antibody binding. No inhibition occurred when HSA or KLH protein was used as inhibitor antigens in this assay. [0114]
    TABLE 7
    Percent Inhibition of Mouse Polyclonal Antibody by Rapa,
    FK, CSA and Rapa Metabolites
    Inhibiting antigens Rapa-DVS #7 Rapa-DVS #9
    Rapa 50.8 45.6
    Met 1 29.1 34.9
    Met 2 14.0 27.4
    Met 3 28.3 30.8
    Met 4 40.1 28.6
    Met 5 39.8 37.3
    FK 5.6 13.0
    CSA 3.4 7.5
    KLH 7.8 12.5
    HSA 6.8 10.4
  • [0115]
    TABLE 8
    Rapa Concentration Dependent Inhibition of Mouse Polyclonal
    Antibody (Rapa-DVS-KLH immunized pre-fusion bleed)
    Inhibiting Ag
    Concentration Percent Inhibition Percent Inhibition
    (μg) Rapa Rapa-42-HSA
    2.5 78 97
    1.25 67 94
    0.62 57 86
    0.31 44 83
    0.15 37 74
    0.08 21 64
    0.04 13 50
  • EXAMPLE 9 A Method for Monoclonal Antibody Production (MoAb)
  • [0116]
    Figure US20040198953A1-20041007-C00001
  • The procedure used to produce the monoclonal antibodies of the invention is as follows: [0117]
  • Although there are many suitable reagent suppliers, we have found the following to be most preferred for obtaining a high yield of fusion products, for isolating stable clones and for the production of monoclonal antibodies (MoAb). [0118]
  • Dulbecco's Modified Eagles Medium (DMEM) [0119]
  • from JRH BIOSCIENCES, Cat #56499-10L+3.7 g/L NaHCO3 [0120]
  • HAT supplement (100×−10 mM sodium hypoxanthine, 40 mM aminopterin, 1.6 mM thymidine) [0121]
  • from CANADIAN LIFE TECHNOLOGIES, Cat #31062-037 [0122]
  • HT stock (100×−10 mM sodium hypozanthine, 1.0 mM thymidine) [0123]
  • from CANADIAN LIFE TECHNOLOGIES, Cat #11067-030 [0124]
  • FCS [0125]
  • CPSR-3 Hybrid-MAX from SIGMA, Cat #C-9155 [0126]
  • Poylethylene glycol (PEG) [0127]
  • Use PEG 4000, SERVA #33136. Autoclave PEG, cool slightly and dilute to 50% w/v with serum free DMEM. Make fresh PEG the day before the fusion, and place in 37° C. incubator. [0128]
  • Fusion Procedure: [0129]
  • Myeloma cells should be thawed and expanded one week before fusion and split the day before the fusion. Do not keep the myeloma cell line in continuous culture. This prevents the cells from becoming infected with mycoplasma and also from any changes, which may result from repeated passaging. [0130]
  • For Example: [0131]
  • SP2/0 can be split back to 1∴10[0132] 4 cells/mL, freeze at least 5×106 cells/vial
  • NS-1 can be split back to 1×10[0133] 4 cells/mL, freeze at least 5×106 cells/vial
  • P3X63-Ag8.653 can be split back to 1×10[0134] 4 cells/ml, freeze at least 5×106 cell/vial
  • Culture the myeloma cell line so that you will have at least 0.5×10[0135] 7 cells (in log phase growth) on the day of the fusion. Three to five days prior to fusion, boost the immunized mouse. The mouse must be genotypically compatible with the myeloma cell line. Myeloma cell drug sensitivity should be confirmed.
  • Serum should be tested for its ability to support growth of the parental myeloma cell line. To test batches of serum, clone the parental myeloma cells (as outlined under cloning) in 10%, 5%, 2.5%, and 1% FCS. No feeder layer is required. Check growth and cell viability daily for 5 days. [0136]
  • Fusion Day [0137]
  • 1. Place fresh medium, FCS to be used in fusion in water bath. [0138]
  • 2. Harvest myeloma cells and wash 3× with serum-free medium (DMEM, RPMI or other commercially available tissue culture media may be used). [0139]
  • 3. Remove spleen (lymph node cells may also be used) from immunized mouse; resterilize instruments or use new sterile instruments between each step, i.e. cutting skin, cutting abdominal muscle, removing spleen. [0140]
  • 4. Rinse outside of [0141] spleen 3× by transferring to plastic petri plates containing sterile medium; use sterile forceps between each step.
  • 5. Place spleen in plastic petri dish with serum-free medium in it, cut into 4 pieces and push gently through screen with sterile glass plunger to obtain a single cell suspension. [0142]
  • 6. Centrifuge spleen cells in 50-ml conical centrifuge tubes at 300×g (1200 rpm in silencer) for 10 minutes. [0143]
  • 7. Resuspend in 10-mL medium. Dilute an [0144] aliquot 100× and count cells.
  • 8. Centrifuge rest of spleen cells, resuspend and recentrifuge. Myeloma cells can be washed at the same time. The NS-1, SP2/0 and P3X63Ag8 myeloma cell lines are most preferred, however other myeloma cell lines known in the art may be utilized. These include, but are not limited to, the mouse cell lines: X63Ag8.653, FO, NSO/1, FOX-NY; rat cell lines; Y3-Ag1.2.3, YB2/0 and IR983F and various rabbit and human cell lines. [0145]
  • 9. Add myeloma and spleen cells together in 5:1 or 10:1 ratio with spleen cells in excess. [0146]
  • 10. Recentrifuge: spleen cells and myeloma have now been washed 3×. [0147]
  • 11. Gently flick pellet and place in incubator for 15 minutes to reach 37° C. [0148]
  • Fusion Protocol: [0149]
  • 1. Add 1-ml of 50% PEG (w/v) solution over 1 minute stirring (add 0.25 mL1/15 sec) holding tube in 37° C. water bath (beaker with warm water). PEG fuses membranes of myeloma with antibody secreting (B) cells. [0150]
  • 2. Stir 1-minute holding in 37° C. water bath. Solution will turn lumpy. [0151]
  • 3. Add 1-ml medium at 37° C. over 1-minute stirring. [0152]
  • 4. Add another mL medium over 1-minute stirring. [0153]
  • 5. Add 8-mL medium over 2 minutes stirring. [0154]
  • 6. Centrifuge for 10 minutes at 300×g (1200 rpm in silencer) and pipet off supernatant. [0155]
  • 7. Add 10 mL medium +20% FCS (v/v) to cells in tube and pour into plastic petri dish. [0156]
  • 8. Leave in incubator with 5% CO[0157] 2 at 37° C. for 1-3 hours. This enhances stability of fusion products.
  • 9. Plate cells out at a concentration of 2×10[0158] 5 cells per well in medium (100 μl/well).
  • 10. [0159] Feed cells 100 μl of 2×HAT in medium the next day.
  • No feeder layer is necessary at this time [0160]
  • Feed-[0161] fusion products 100 μL medium+HAT selection additive on day 3. Hybridoma cells (myeloma:spleen cell hybrids) are selected by the addition of the drug aminopterin which blocks the de novo synthesis pathway of nucleotides. Myeloma:spleen hybrid cells can survive by use of the salvage pathway. Unfused myeloma cells and myeloma:myeloma fusion products have a defect in an enzyme of the salvage pathway and will die. Unfused spleen cells from the immunized mouse do not grow in tissue culture. Other drugs known in the art may be used to select myeloma:spleen cell hybrids, such as methotrexate or azaserine.
  • [0162] Feed fusion products 100 μL medium+HAT+spleen/thymus feeder layer if necessary on day 5 (1×105 cells/well). Fibroblasts, RBC's or other cell types may also be used as feeder layers.
  • Continue to feed cells medium+HAT for 1 week, by [0163] day 7 post-fusion, change to medium+HT. Clones should appear 10-14 days after fusion.
  • Note: [0164]
  • 1. Washing of the spleen cells, myeloma cells and steps 1-6 of the fusion protocol are performed with serum-free medium. [0165]
  • 2. Thymocytes die in about 3 days, non-fused spleen cells in about 6 days. [0166]
  • 3. Hybrids are fairly large and almost always round and iridescent. [0167]
  • 4. T-cell and granulocyte colonies may also grow. They are smaller cells. [0168]
  • To Clone Hybrid Cells: [0169]
  • 1. Resuspend the 200 μl in the well with a sterile eppendorf pipet tip and transfer to a small 5-mL sterile tube. [0170]
  • 2. Add 200, ul medium (20% FCS v/v) to the original well. This is a safety precaution of the cloning procedure. Parent cells may also be transferred to 24 well plates as a precaution. [0171]
  • 3. Take 20 μl of the hybrid cell suspension from [0172] step 1 and add 20 μl of eosin or trypan blue solution. Under 40× magnification hybrid cells appear to be approximately the same size and morphology as the myeloma cell line.
  • 4. Clone viable cells by limiting dilution with: [0173]
  • 20% FCS (v/v) used in fusion medium [0174]
  • 1×HT [0175]
  • 1×10[0176] 6 thymocytes per ml
  • clone 1400 cels per cloning protocol [0177]
  • Dilution Cloning Procedure: [0178]
  • Make 10 mL of thymocyte cloning suspension in DMEM with 20% FCS (v/v). Take 1440 hybrid cells and dilute to 2.8 mL. [0179]
  • Row 1: Plate 8 wells (200 μl/well)-100 cells/well. To the remaining 1.2-mL add 1.2-mL medium. [0180]
  • Row 2: Plate 8 wells (200 μL/well)→50 cells/well. To the remainder add 2.0-mL medium. [0181]
  • Row 3: Plate 8 wells (200 μL/well)→10 cells/well To the remainder add 1.2-mL medium. [0182]
  • Row 4: Plate 8 wells (200 μL well)→5 cells/well. To the remainder add 2.8-mL medium. [0183]
  • [0184] Row 5 & 6: Plate 16 wells (200 μl/well)→1 cell/well.
  • After cloning and screening for positive wells, re-clone the faster growing, stronger reacting clones. To ensure that a hybridoma is stable and single-cell cloned, this cloning is repeated 3 times until every well tested is positive. Cells can then be grown up and the tissue culture supernatants collected for the monoclonal antibody. Other limiting dilution cloning procedures known in the art, single-cell cloning procedures to pick single cells, and single-cell cloning by growth in soft agar may also be employed. [0185]
  • Monoclonal Antibody Production: [0186]
  • Monoclonal antibodies can be readily recovered from tissue culture supernatants. Hybrid cells can be grown in tissue culture media with FCS supplements or in serum-free media known in the art. Large-scale amounts of monoclonal antibodies can be produced using hollow fibre or bioreactor technology. The concentration, affinity and avidity of specific monoclonal antibodies can be increased when produced as ascitic fluid. [0187]
  • Ascitic Fluid Production: [0188]
  • 1. Condition mice by injecting (I.P.) 0.5-mL pristane (2, 6, 10, 14-tetramethypentadecane) at least 5 days before hybrid cell are injected. Mice should be genotypically compatible with cells injected, i.e., Balb/c mice should be used with NS-1 or SP2/0 fusion products. Mice of non-compatible genotype may be used if irradiated before cells are injected. However, Balb/c pristane treated mice are the best to use. [0189]
  • 2. Inject (I.P.) 10[0190] 6 (or more) hybrid cells in PBS. Wash cells 3× prior to injection to remove the FCS.
  • 3. Mice will be ready to tap in about 7-14 days. Use an 18-½ G needle to harvest ascites cells and fluid. [0191]
  • 4. Transfer at least 10[0192] 6 ascites cells from these mice to more pristane treated mice.
  • 5. Ascites cells can be frozen in 10% DMSO (v/v), 20% FCS (v/v), DMEM medium. Freeze about 5×10[0193] 6 cells per vial.
  • Monoclonal antibodies prepared in tissue culture or by ascitic fluid may be purified using methods known in the art. [0194]
  • EXAMPLE 10 Isolation and Characterization of Monoclonal Antibodies to Specific Sites of Rapamycin
  • The steps to isolate and characterize monoclonal antibodies with reactivity to a specific site(s) of rapamycin are outlined below: [0195]
  • Steps to Identify MoAb to Specific Sites of Rapamycin
  • [0196]
    Figure US20040198953A1-20041007-C00002
  • Parent fusion products from myeloma:spleen cells were initially screened by an immunodot assay as follows: [0197]
  • Immunodot Assay [0198]
  • 1. Dot 5-10 μL of antibody onto nitrocellulose paper, which has been gridded for reference. [0199]
  • 2. Air-dry and immerse nitrocellulose in PBS/0.1% TWEEN™ (polyoxyethylene-sorbitol) (v/v)/5% Milk (w/v) to block non-specific binding sites. Incubate at room temperature for 60 min with shaking. [0200]
  • 3. Rinse twice with PBS/0.05% TWEEN™ (polyoxyethylene-sorbitol) (v/v) and wash with shaking for 10 min. [0201]
  • 4. Dilute alkaline phosphatase conjugated anti-mouse IgG (Tago cat #AMI 4405) in PBS/0.1% TWEEN™ (polyoxyethylene-sorbitol) (v/v) to 1:2000. Place nitrocellulose on parafilm or saran wrap and add diluted conjugated antibody until nitrocellulose is covered. Incubate covered at 37° C. for 60 min. Do not allow nitrocellulose to dry out between steps. [0202]
  • 5. Wash as in [0203] step 3.
  • 6. Prepare enzyme substrate using BCIP (5-bromo-4-chloro-3-indolyl phosphate)/NBT (nitrobenzyl tetrazolium) (Canadian Life Technologies, cat #18280-016; 88 μL NBT and 66 μL BCIP in 20 mLs substrate buffer, 100 mM Tris, 5 mM MgCl[0204] 2, 100 mM NaCl). Place nitrocellulose in substrate solution and shake at room temperature for 10-30 min, watching for color development.
  • 7. Rinse nitrocellulose with water to stop reaction. [0205]
  • Once antibody secreting parent fusion products were identified, the tissue culture supernatants were further characterized for rapamycin reactivity by the direct, isotyping and inhibition ELISA assays as described in Example 7. Various automated assays known in the art could also be utilized to screen parent fusion products. Tissue culture supernatants from clones (3×) of rapamycin positive parent fusion products were then characterized by isotyping ELISA to isolate IgG producing clones, by direct ELISA to determine FK and HSA cross-reactivity and by inhibition ELISA using Rapa, CSA, FK and Rapa and FX metabolites to determine specificity and rapamycin site reactivity. Automated assay systems could also be used to determine specificity and site reactivity. [0206]
  • Using the immunodot and direct ELISA assays over 600 parent fusion products were identified which have strong reactivity to the Rapa antigen. Of these parent products, over 200 have been cloned, tested for reactivity to Rapa by direct ELISA, and 100 positive clones were then re-cloned (2×). We have now isolated many IgM and IgG secreting clones with reactivity to the Rapa antigen by direct, inhibition and isotyping ELISA assays. Table 9 illustrates examples of ELISA reactivity using IgG monoclonal antibodies (Rapa-42-DVS-KLH immunogen) from clones of various fusion procedures (R-1, R-2 and R-3). [0207]
    TABLE 9
    Monoclonal Antibody (Rapa-42-DVS-KLH immunogen) Reactivity
    to Rapa, FK and HSA (O.D. at 405 nm)
    IgG Producing
    Clone #/ FK Cross
    ref. name Rapa-42-HSA FK-32-HSA Reactivity (%) HSA
    R-1-1/1H3 1.929 0.899 46.6 0.005
    R-1-2/1D3-1 1.533 0.933 60.9 0.001
    R-1-3/1D3-2 1.581 1.041 65.8 0.002
    R-1-4/5C4 2.424 0.372 15.3 0.003
    R-1-5/2A10 0.654 0.117 17.9 0.001
    R-2-1/7H8 0.881 0.166 18.8 0.003
    R-2-2/8C3 3.122 0.037 1.2 0.036
    R-2-3/2H5 0.655 0.609 92.9 0.033
    R-2-4/3E5 0.535 0.298 55.7 0.027
    R-2-5-/1F7 1.603 1.151 71.8 0.001
    R-2-6/7H1 0.440 0.116 26.4 0.001
    R-3-1/7G1 2.825 0.002 0.1 0.005
    R-3-2/11B8 0.579 0.003 0.5 0.002
  • The monoclonal antibody reactivity to the Rapa42 antigen varies from 0.440 to 3.122 O.D. units in these 13 examples. Non-specific reactivity to the carrier HSA protein is negligible. Monoclonal antibody cross-reactivity to the FK antigen of these clones varies considerably. The clones R-1-4, R-1-5, R-2-1, R-2-2, R-2-6, R-3-1 and R-3-2 show little or only marginal binding to the FK antigen; clones R-1-1 and R-2-4 have approximately 50% cross-reactivity to the FK antigen; clones R-1-2, R-1-3 and R-24 show significant cross-reactivity to FK and clone R-2-3 demonstrates almost equivalent affinity and reactivity for the FK and Rapa antigens. For development of therapeutic drug monitoring assays (TDM) with specificity for Rapa, the clones secreting antibodies with low or little cross-reactivity to the FK antigen would be preferred. Most preferred would be clones which secrete high levels of anti-Rapa IgG monoclonal antibodies with a low level of anti-FK cross-reactivity. Examples of such clones listed in Table 9 would be R-1-4, R-2-2 and R-3-1. [0208]
  • EXAMPLE 11 Mapping of Anti-Rapa-42 Monoclonal Antibody Binding Region
  • To further characterize the reactivity of monoclonal antibodies from various clones, inhibition ELISA were performed. Table 10 shows example inhibitions from monoclonal antibodies of 4 clones. The monoclonal antibody from the R-1-1 clone is significantly inhibited by Rapa (85%) and by Rapa metabolite #2 (77%). The antibody binding is not inhibited by Rapa metabolite #1(15%) and moderately inhibited by [0209] Rapa metabolites #3, #4 and #5 (32%, 30% and 29% respectively). The mapping of reactivity of this monoclonal antibody with the metabolite M1-5 inhibitors, would indicate that the specific site for antibody binding is between C9 and C23. Hydroxylation in metabolite #1 between C9 and C23 changed a significant epitope in this region #3-5 is most probably due to conformational changes of the parent Rapamycin molecule with demethylation of residues 7, 32 and 41. This monoclonal antibody was found to be 46% cross-reactive with the FK antigen by direct ELISA. The binding of R-1-1 MoAb was also found to be cross-reactive with FK by inhibition ELISA, where FK inhibited antibody binding by 43%. FK metabolites also significantly inhibited (43-57%). Cross-reactivity with FK and FK metabolites further confirms the antibody recognition site is in the C9-C23 region, as the FK and Rapa molecules are structurally similar in that region. CSA, KLH or HSA proteins showed no inhibition.
  • With the R-1-5 MoAb, Rapa and [0210] Rapa metabolite #2 significantly inhibited antibody binding. There was no inhibition with the Rapa metabolite #1, again suggesting that the specific site of this anti-Rapa antibody is located in the C9 to C23 region. The inhibition noted with Rapa metabolites #3-5 is again believed to be due to conformational changes in the antibody binding site caused by demethylation of residues 7, 32 and 41. This monoclonal showed some cross-reactivity with the FK antigen, a cross-reactivity that was also observed with all FK metabolites. Cross-reactivity to FK antigen as measured by direct ELISA was only marginal (Table 9). The R-1-5 MoAb did not bind to CSA, KLH or HSA proteins.
  • Chemical derivatization of specific sites on the rapamycin molecule including the carbon residues, nitrogen residues, oxygen, hydroxy, methoxy or methy groups will produce compounds similarly useful as the above metabolites for mapping the antibody binding region. [0211]
    TABLE 10
    Percent Inhibition of MoAb Tissue Culture Supernatants by Rapa,
    FK, CSA and Rapa and FK Metabolites
    Inhibiting
    Antigen R-1-1 R-1-5 R-2-2 R-3-1
    Rapa 85 77 83 98
    Rapa met 1 15 12 16 38.2
    Rapa met 2 77 91 88 95
    Rapa met 3 32 56 26 92
    Rapa met 4 30 57 71 96
    Rapa met 5 29 44 10 94
    FK 43 33 16 1
    FK met 1 46 24 19 0
    FK met 2 57 36 16 0
    FK met 3 45 26 9 0
    FK met 4 53 38 13 0
    FK met 5 46 26 13 0
    CSA 6 0 0 0
    KLH 3 10 16 0
    HSA 2 10 16 0
  • Rapa and [0212] Rapa metabolite #2 inhibited R-2-2 MoAb binding to Rapa antigen coated ELISA plates. Rapa metabolites #1, #3 and #5 did not significantly inhibit binding, however metabolite #4 showed significant inhibition at 71 %. We believe that this might indicate that the MoAb's binding site is again in the C9 to C23 region, that a modification of this region affects binding (as observed with metabolite #1), and that demethylation at site 41 also affects antibody binding due to conformational changes within the antibody site. The fact that metabolites #3 and #5 have less inhibitory effect than with MoAbs R-1-1 and R-1-5, may be due to a greater affinitys of MoAb R-2-2 for the antibody binding site (specific antibody epitope) or possibly that the R-2-2 MoAb recognizes a slightly different antibody binding epitope in the C9-C23 region than the R-1-1 or R-1-5 MoAbs.
  • Indeed, tissue culture supernatants of R-2-2 showed the highest O.D. reactivity with the Rapa antigen by direct ELISA (Table 9) indicating good antibody affinity/avidity. The fact that R-2-2 MoAb showed very little cross-reactivity with FK or FK metabolites 1-5 again indicates good affinity/avidity with the specific antibody binding site on Rapamycin. Even though the FK and Rapamycin molecules are structurally similar at the nitrogen ring region (chemical structure), studies indicate there are conformational differences between these molecules. Three dimensional structure plays an important role in epitope presentation and recognition by the immune system, therefore a MoAb with high affinity, avidity and specificity for a specific three dimensional epitope site of Rapamycin, would not necessarily cross-react with molecules of similar chemical structure, such as FK. [0213]
  • R-2-2 did not react with CSA, KLH or HSA. [0214]
  • With the R-3-1 MoAb, Rapa and Rapa metabolites #2-5 significantly inhibited antibody binding to sites on the Rapa molecule. [0215] Rapa metabolite #1 marginally inhibited antibody binding (38%) and FK and FK metabolites #1-5, CSA, KLH or HSA showed no inhibition to this MoAb's specific site on Rapa. Again these results could suggest that the specific antibody binding epitope may be in the C9-C23 region, however unlike previous monoclonal antibody epitope mapping results, the demethylation (M3, 4, 5) did not reduce inhibiting capacity (i.e. inhibited similar to the parent Rapa molecule). We believe that R-3-1 may recognize an epitope in the C9-C23 region, or alternately recognize an epitope in the opposite face of the molecule, for example between C24-C36. Identification of the specific site of R-3-1 on the Rapa molecule can be done using various other minor metabolite peaks isolated as described in Example 5.
  • A further clue that R-3-1 may recognize a different binding site than R-1-1, R-1-5 or R-2-2 was elucidated from results of experiments using various dilution buffers in our inhibition assay. We observed that Rapamycin which had been diluted in only aqueous buffer did not inhibit the binding of MoAbs R-1-1, R-1-5 or R-2-2, while Rapamycin diluted in aqueous buffer containing 10% FCS (v/v) did inhibit binding, possibly indicating that a modification to Rapamycin, such as hydrolysis in aqueous buffer, modifies the antibody binding site and no longer binds the MoAbs. Rapamycin maintained in a buffer less likely to cause hydrolysis (i.e. aqueous buffer containing 10% FCS (v/v)), would maintain antibody binding epitope integrity and bind MoAbs R-1-1, R-1-5 or R-2-2. MoAb R-3-1 was inhibited by Rapamycin diluted in either aqueous buffer or aqueous buffer containing 10% FCS (v/v). This finding indicates that MoAb R-3-1 recognizes a specific site of Rapamycin which is not affected by hydrolysis, a site different from the hydrolysis-sensitive binding site of MoAbs R-1-1, R-1-5 and R-2-2. [0216]
  • EXAMPLE 12 Isolation of Monoclonal Antibodies to Rapamycin (Rapa-42-DVS-KLH Immunogen) Derived from Spleen Cells of Hyperimmunized Mice
  • To increase affinity/avidity of monoclonal antibodies, mice were immunized (1°, 2°, and 3°) as described in Example 6, and then administered several monthly boosters. Numerous additional clones were derived using this immunization procedure. [0217]
  • The reactivity of MoAbs from representative clones to an antigen panel is shown in Table 11. These clones react strongly with the Rapa-42-HSA and Rapa-27-HSA antigens and show no cross-reactivity with FK, CSA or HSA. These MoAbs do not recognize epitopes on the FK molecule (as tested by antigen panel ELISA) and appear to show good specificity for rapamycin. ELISA titration of R-4-1, R-4-7 and R-5-3 purified MoAbs to the Rapa42 and Rapa-27-HSA conjugates is shown in FIGS. [0218] 2A-2C. The R-4-1 and R-5-3 MoAbs have high titers and reactivity to epitopes of the Rapa-42 and Rapa-27-HSA conjugates, while the MoAb R-4-7 shows less reactivity to the Rapa-27-HSA than Rapa42-HSA conjugate. A similar reduction in reactivity to Rapa-27-HSA was observed with R4-7 tissue culture supernatant (Table 11). These MoAbs are inhibited by rapamycin and by RAD, a 42-0-(2-hydroxy-ethyl) derivative of Rapa7. FIGS. 3A and 3B show the inhibition ELISA results of purified R-4-1 and R-5-3 MoAbs with increasing concentrations of Rapa or RAD. These MoAb clones appear to have marginally greater reactivity and affinity for Rapa than RAD. FIG. 4 shows inhibition ELISA results of MoAb R-5-3 inhibited by a 0-15 ng range of rapamycin.
    TABLE 11
    Reactivity of MoAbs R-4-1, R-4-7 and R-5-3 (Rapa-42-KLH
    immunogen) to Rapa, FK, CSA and HSA ELISA Antigen Panel
    IgG
    Producing
    Clone#/ Rapa-42- Rapa-27- FK-32-
    Ref. Name HSA HSA HSA CSA-HSA HSA
    R-4-1/3E10 3.364 3.464 0.088 0.094 0.085
    R-4-7/6C7 3.245 1.099 0.097 0.090 0.082
    R-5-3/8BP 3.507 3.286 0.111 0.093 0.085
  • Inhibition ELISA's were performed using MoAb tissue culture supernatants from R-4-1, R-4-7 and R-5-3 to map the antibody region (Table 12). [0219]
    TABLE 12
    Percent Inhibition of MoAb Tissue Culture Supernatants by Rapa,
    Rapa Metabolites, FK and CSA
    Inhibiting Antigen R-4-1 R-4-7 R-5-3
    Rapa 88 71 69
    Rapa M1 83 41 72
    Rapa M2 32 17 10
    Rapa M3 85 67 37
    Rapa M4 82 54 47
    Rapa M5 88 87 46
    FK 8 4 4
    CSA 8 0 10
    HSA 2 6 13
  • The monoclonal antibodies from R-4-1, R-4-7 and R-5-3 clones are significantly inhibited by Rapa and do not cross-react with FK or CSA epitopes. These MoAbs have varied binding activity to the hydroxy Rapa metabolite Ml and the M3, M4 and M5 demethylated Rapa Metabolites but exhibit a significant reduction in binding activity to the M2 hydroxy metabolite. This indicates that the antibody binding site of these MoAbs may be in the M2 modified region, C1-C8 or C32-C36. [0220]
  • These MoAbs can be used to develop TDMs to determine rapamycin or RAD levels in patient samples. MoAb dilutions can be optimized to measure patient peak or trough drug levels or for monitoring drug levels in the therapeutic range (0-60 μg/L). The MoAbs of this invention can be used for therapeutic drug monitoring of patient samples in immunoassays or automated assay systems. [0221]
  • The poly- and monoclonal antibodies elicited to the Rapa-42-DVS-KLH immunogen of this invention can be used for development of immunoassays or TDM tests to measure parent drug (Raga or RAD) levels. Such assays could include, but not limited to, direct, inhibition, competitive or sandwich immunoassays (ELISA or other assay systems), RIA, solid or liquid phase assays or automated assay systems. [0222]
  • EXAMPLE 13 Mouse Polyclonal Antibody Responses to the Rapa-27-ox-DVS Immunogen
  • Serum from Balb/c mice post-tertiary immunization with the Rapa-27-ox-DVS-KLH immunogen (as in Example 3) was tested for ELISA reactivity to Rapa42-HSA, Rapa-27-HSA and FK-HSA (Table 13). These results indicate that serum from mice immunized with the Rapa-ox conjugate may recognize a different epitope on the parent rapamycin molecule than serum from mice immunized with the Rapa-42 conjugate. Anti-Rapa-27 serum reacts strongly with Rapa-27-HSA, but generally shows decreased and variable cross-reactivity with Rapa-42-HSA (12-63%), Table 13. [0223]
  • Inhibition ELISA data (Table 14) demonstrated that the parent Rapa molecule blocked anti-Rapa-27 antibody binding to Rapa-27-HSA (93%); CSA, KLH and HSA showed no inhibition. [0224] Rapa metabolite #1 showed significant inhibition at 69%, indicating that the G9-C23 region of the molecule was not involved with antibody recognition. Hydroxylation in the region between C1-C8 or C32-C36 (metabolite #2) caused significant loss of inhibiting activity (inhibition only 36%), indicating that this region may play a role in antibody recognition. The inhibition observed with the parent molecule was decreased with demethylation at residues 7 and 41 (metabolites #3 and #4) from 93 % to 42% and 37 % respectively. Rapa metabolite #5 (demethylated at residues 32 and 41) completely abrogated antibody binding to the parent molecule. This demonstrates that demethylation of the 32, 41 sites completely inhibit antibody binding to the epitope recognition site. However, as demethylation at the 41 site (metabolite #4) or hydroxylation between the C1-C8 or C32-C36 did not completely inhibit antibody binding, we postulate that the methyl group at the 32 site may play a significant role in maintaining the three dimensional structure of the antibody binding epitope recognition site. The reduction in inhibiting capacity seen with metabolites #3 and #4 may be due to three-dimensional conformational changes with the antibody binding site.
    TABLE 13
    Mouse Polyclonal Antibody Reactivity (Rapa-27-ox-DVS-KLH
    immunogen) to Rapa and FK (O.D. at 405 nm)
    Rapa- Rapa- Rapa- Rapa- Rapa- Rapa- Rapa- Rapa-
    ELISA 27 27 27 27 27 27 27 27
    antigen # 11 # 12 # 13 # 14 # 15 # 16 # 17 # 18
    Rapa-27-HSA 2.512 2.733 1.592 2.002 1.891 1.769 1.287 0.813
    Rapa-42-HSA 1.594 0.490 0.605 0.968 0.235 0.817 1.538 0.398
    FK-HSA 0.332 0.091 0.092 0.094 0.011 0.092 0.070 0.045
    HSA 0.257 0.071 0.066 0.061 0.03 0.029 0.002 0.004
  • [0225]
    TABLE 14
    Percent Inhibition of Mouse Polyclonal Antibody
    (Rapa-27-ox-DVS-KLH immunogen) by Rapa, FK, CSA and Rapa
    Metabolites
    Inhibiting Rapa-27
    antigens #12
    Rapa 93
    Met 1 69
    Met 2 38
    Met 3 43
    Met 4 37
    Met 5 0
    FK 11
    CSA 0
    KLH 0
    HSA 0
  • EXAMPLE 14 Monoclonal Antibodies to the Rapa-27-ox-DVS-KLH Immunogen
  • Several monoclonal antibody clones derived from spleen cells of hyperimmunized mice with the Rapa-27-ox-DVS-KLH immunogen have been isolated. The ELISA reactivity of representative clones to a Rapa, FK, CSA and HSA antigen panel is shown in Table 15. [0226]
    TABLE 15
    Reactivity of MoAbs R-6-1, 2, 3 and 4 (Rapa-27-KLH
    immunogen) to Rapa, FK, CSA and HSA ELISA Antigen Panel
    IgG
    Producing Clone#/ Rapa-27- Rapa-42- FK-32-
    Ref. name HSA HSA HSA CSA-HSA HSA
    R-6-1/4G2 2.178 0.127 0.151 0.103 0.095
    R-6-2/8B4 3.426 0.657 3.234 0.159 0.103
    R-6-3/11A4 2.407 0.123 3.267 0.121 0.090
    R-6-4/14H10 3.454 0.461 3.306 0.139 0.116
  • Clones R-6-1,2,3 and 4 all showed strong binding to the Rapa-27-HSA with negligible binding to the Rapa-42-HSA conjugates. The R-6-1 clone did not cross-react with FK, the R-6-2,3 and 4 clones showed strong cross-reactivity with the FK-32-HSA conjugate. No clones cross-reacted with CSA or HSA. Table 16 shows the ELISA titration of R-6-2 and R-6-4 MoAb to the Rapa-27-HSA conjugate. [0227]
    TABLE 16
    ELISA Titration of R-6-2 and R-6-4 MoAbs to Rapa-27-HSA Conjugate
    O.D. at 405 nm
    TCS Dilution MoAb R-6-2 MoAb R-6-4
    neat 3.246 3.247
    1:2 3.372 2.931
    1:4 3.083 2.775
    1:8 3.598 3.180
    1:16 3.523 3.011
    1:32 3.376 2.857
    1:64 3.375 2.561
    1:128 3.026 2.654
    1:256 2.930 2.460
    1:512 2.460 1.520
    1:1024 2.339 0.968
    1:2048 1.757 0.982
    1:4096 1.447 0.683
    1:8192 1.091 0.532
    1:16384 0.638 0.389
    1:32768 0.394 0.277
  • The inhibition ELISA results in Table 17 further demonstrates MoAb cross-reactivity to the FK moiety. These MoAbs also bind the RAD moiety. [0228]
    TABLE 17
    Percent Inhibition of R-6-2 and R-6-3 MoAbs
    Inhibiting Antigens R-6-2 R-6-3
    Rapa 71 66
    RAD 70 58
    CSA 0 0
    FK 64 53
    HSA 0 0
  • The data in this example indicates that the R-6-1 MoAb is specific for the Rapa-27 epitope and does not cross-react with Rapa-42, FK-32 or CSA epitopes. The R-6-2, 3 and 4 MoAbs are specific for Rapa and cross-react with the RAD and FK moieties. They do not cross-react with the CSA molecule. [0229]
  • In one aspect of the invention, the Rapa-42-DVS conjugate (Example 1) may be utilized to elicit poly- or monoclonal antibodies to one region of rapamycin, and the Rapa-27-oxime-DVS conjugate (Example 3) or Rapa-3 1 -DVS conjugate (Example 4) to elicit poly- or monoclonal antibodies to other regions of the rapamycin parent molecule. With such antibodies an immunoassay to measure rapamycin, RAD, and/or metabolites may be developed. Most preferred would be a TDM assay to specifically measure biologically active rapamycin molecules. Poly- and monoclonal antibodies with reactivity to various specific sites of rapamycin can be elicited with the conjugates of the invention. [0230]
  • EXAMPLE 15 Measuring the Biological Activity of Rapamycin and Rapamvcin Metabolites by in vitro Mixed Lymphocyte Reaction (MLR) Assay
  • The MLR assay is useful for identifying rapamycin metabolites with biological (immunosupressive) activity and to quantify this activity relative to the immunosuppressive activity of the parent rapamycin molecule. [0231]
  • An example of a two-way lymphocyte proliferation assay procedure useful for this purpose is as follows: [0232]
  • 1. Collect blood from two individuals (20 mls each) and isolate lymphocytes using Ficoll-Paque™ (polysucrose and sodium diatrizoate) (Pharmacia Biotech). [0233]
  • 2. Count lymphocytes at 1:10 dilution in 2% acetic acid (v/v). [0234]
  • 3. Prepare 10 mls of each lymphocyte populations (A+B) at 1×10[0235] 6 cells/ml in DMEM/20% FCS (v/v).
  • 4. Set up a 96 well sterile tissue culture plate, flat bottom (Sarstedt, cat #83.1835). To each well add: [0236]
  • 5. [0237] Aliquot 100 μl per well lymphocyte population A
  • 6. [0238] Aliquot 100 μl per well lymphocyte population B
  • 7. [0239] Aliquot 20 μl per well of drug (rapamycin and rapamycin metabolites M1-5) serially diluted 0 to 1000 μg/L in triplicate in DMEM with no supplements.
  • 8. To measure the effect of drug on proliferation, incubate the plate for 5 days at 37° C. in 5% CO[0240] 2 atmosphere.
  • 9. On [0241] day 6, prepare 3.2 mls of 1:50 dilution of Methyl-3H-Thymidine (Amersham Life Science, cat #TRK 120) in DMEM with no supplements. Add 30 μl per well incubate for 18 hours at 37° C. in 5% CO2 atmosphere.
  • 10. On [0242] day 7 cells are harvested onto glass microfiber filters GF/A (Whatman, cat #1820024) using a Cell-Harvestor (Millipore, cat #XX2702550). Wash cells 3× with 1.0-ml sterile distilled water. Note: All procedures are done using sterile techniques in a biological flow hood.
  • 11. Place filters in Scintilation vials and add 1.5 mls of [0243] ScintiSafe Plus™ 50% scintillation fluid (Fisher, cat #SX-25-5).
  • 12. Measure the amount of radioactivity incorporated in the lymphocytes using a beta counter (Micromedic System Inc., TAURUS™ Automatic Liquid Scintillation Counter) for 1.0 minute. [0244]
  • 13. Calculate averages and standard deviations for each drug and express results as: [0245] % Inhibition = [ 1 - Ave CPM of test drug Ave CPM of zero drug ] × 100
    Figure US20040198953A1-20041007-M00001
  • % Proliferation=100-% Inhibition
  • The IC[0246] 50 values of Rapa and M1-M5 is shown in Table 18. The parent drug has a mean IC50 value of 0.48 μg/L. The demethylated metabolites (M3-5) had IC50 values of 5 to 10 times greater, indicating relatively low immunosuppressive activity. The hydroxy metabolites (M1, M2) have insignificant immunosuppressive activity. Table 19 shows the relative concentrations of these metabolites in pooled whole blood patient samples (determined by LC/MS). No individual metabolite is found at a concentration greater than 20% of the Rapa parent level.
    TABLE 18
    Mixed Lymphocyte Reaction IC50 Values
    Mean Range
    Compound (μg/L) (μg/L)
    M-1 (C9-C23) 467 180-800
    M-2 (C1-C8 OR C32-C36) 252 140-380
    M-3 (7-O-Demethyl) 2.85 2.0-4.5
    M-4 (41-O-Demethyl) 5.9 3.2-7.7
    M-5 (32, 41-O-Demethyl) 4.67 1.8-7.1
    rapamycin 0.48 0.18-0.7 
  • [0247]
    TABLE 19
    Relative Concentrations of Rapa Metabolites in Whole Blood
    Relative
    Compound Concentration
    Rapa 1
    M-1 (C9-C23) 0.2
    M-2 (C1-C8 OR C32-C36) 0.2
    M-3 (7-O-Demethyl) 0.10
    M-4 (41-O-Demethyl) 0.10
    M-5 (32, 41-O-Didemethyl 0.02
  • The MLR assay can be utilized to select antibodies of the invention which bind biologically active Rapa metabolites and the parent Rapa molecule. Antibodies could to also be selected for reactivity to biologically inactive metabolites. [0248]
  • EXAMPLE 16 Immunoassay Kits Using Polyclonal and Monoclonal Antibodies to Specific Sites of Rapamycin
  • The polyclonal and monoclonal antibodies to specific sites of rapamycin of the invention may be used for development of immunoassays or TDM kits. Such assays could include, but are not limited to, direct, inhibition, competitive or sandwich immunoassays (ELISA or other assay systems), RIA, solid or liquid phase assays or automated assay systems. [0249]
  • As will be seen from the foregoing examples, procedures not described in detail are conventional. Variations and modifications will be apparent to those skilled in the art and are intended to be encompassed by the above descriptions and the claims appended hereto. [0250]
  • References The following references are referred to in this application by the use of superscript numbers.
  • 1. Sehgal S. N., H. Baker C. Vezina. Rapamycin (AY-22, 989), A New Antifungal Antibiotic: II. Fermentation, Isolation and Characterization. J. Antibiot. (Tokyo) 28:727-732. [0251]
  • 2. Streit F., Christians U., Schiebel H. M., Meyer A., Sewing K. F. Structural Identification of Three Metabolites and a Degradation Product of the Macrolide Immunosuppressant Sirolimus (Rapamycin) by Electrospray-MS/MS after Incubation with Human Liver Microsomes. Drug Metab Dispos. 24:1272, 1996. [0252]
  • 3. Wang P. C., Lim H. K., Chan K. W. Isolation of Ten Metabolites from the Bile of Rats Receiving Rapamycin (Sirolimus) Intravenously. ISSX Proc. 8:1995. [0253]
  • 4. Nickmilder M. J. M., Latinne D., Verbeeck R. K., Janssens W., Svoboda D., Lhoest G. J. J. Isolation and Identification of New Rapamycin Dihydrodiol Metabolites from Dexamethasone Induced Rat Liver Microsomes. Xenobiotica 27:869, 1997. [0254]
  • 5. Streit F., Christians U., Schiebel H. M., Napoli K. L., Ernst L., Linck A., Kahan B. D., Sewing K. F. Sensitive and Specific Quantitation of Sirolimus (Rapamycin) and its Metabolites in Blood of Kidney Graft Recipients by HPLC/Electrospray-Mass Spectrometry. Clin Chem. 42:1417, 1996. [0255]
  • 6. Leung L. Y., Zimmerman J., Lim H. K., DiCioccio T. A., Warner L., Hicks D., Chan K., Kantrowitz J., Scatina J., Sisenwine S F, Tonelli A P. Metabolic Disposition of [14C]-Rapamycin (Sirolimus) in Healthy Male Subjects After Single Oral Dose. ISSX Proc. 12: 26, 1997. [0256]
  • 7. Schuler W., Sedrani R., Cottens S., Haberlin B., Schulz M., Schuurman H-J., Zenke G., Zerwes H-G., Schreier M. H. SDZ RAD, A New Rapamycin Derivative. Transplant. 64:36, 1997. [0257]
  • The disclosure of each of the above publications, patents, and patent applications is incorporated herein by reference in its entirety. [0258]

Claims (28)

1. A method for producing an antibody to a rapamycin related compound selected from the group consisting of rapamycin, rapamycin metabolites, and rapamycin derivatives, said antibody raised against an immunogen comprising said rapamycin related compound conjugated to a protein carrier by a divinyl sulfone linker arm molecule, said method comprising:
a.) administering said immunogen to an animal so as to affect a specific antibody response to said rapamycin related compound;
b.) recovering an antibody to said rapamycin related compound from said animal; and
c.) determining that said antibody specifically recognizes a region of said rapamycin related compound, said region selected from the group consisting of the region from C1 to C8 and the region from C23 to C36.
2. The method of claim 1 wherein said protein carrier is selected from the group consisting of human serum albumin and keyhole limpet hemocyanin.
3. The method of claim 1 wherein said rapamycin related compound is conjugated at the C27 or at the C31 position to said protein carrier.
4. The method of claim 1 wherein said rapamycin metabolite is selected from the group consisting of M1, M3, M4, and M5.
5. The method of claim 1 wherein said rapamycin derivative is a 42-0-(2-hydroxy-ethyl) derivative of rapamycin.
6. The method of claim 5 wherein said 42-O-(2-hydroxy-ethyl) derivative is RAD.
7. The method of claim 1 wherein said rapamycin related compound is rapamycin.
8. The method of claim 1 wherein said immunogen is selected from the group consisting of Rapa-27-ox-DVS-KLH, Rapa-27-ox-DVS-HSA, Rapa-31-DVS-KLH, and Rapa-31-DVS-HSA.
9. The method of claim 1 wherein the step of recovering said antibody includes isolating at least one antibody-producing cell from said animal; immortalizing said antibody-producing cell to produce a hybridoma; and isolating said antibody from said hybridoma.
10. The method of claim 9 wherein said protein carrier is selected from the group consisting of human serum albumin and keyhole limpet hemocyanin.
11. The method of claim 9 wherein said rapamycin related compound is conjugated at the C27 or the C31 position to said protein carrier.
12. The method of claim 9 wherein said rapamycin metabolite is selected from the group consisting of M1, M3, M4, and M5.
13. The method of claim 9 wherein said rapamycin derivative is a 42-O-(2-hydroxy-ethyl) derivative of rapamycin.
14. The method of claim 13 wherein said 42-O-(2-hydroxy-ethyl) derivative is RAD.
15. The method of claim 9 wherein said rapamycin related compound is rapamycin.
16. The method of claim 11 wherein said immunogen is selected from the group consisting of Rapa-27-ox-DVS-KLH, Rapa-27-ox-DVS-HSA, Rapa-31-DVS-KLH, and Rapa-31-DVS-HSA.
17. A method for producing at least one antibody to a rapamycin related compound selected from the group consisting of rapamycin and rapamycin metabolites, said at least one antibody raised against an immunogen comprising said rapamycin related compound conjugated to a protein carrier by a divinyl sulfone linker arm molecule, said method comprising:
a.) administering said immunogen to an animal so as to affect a specific antibody response to said rapamycin related compound;
b.) recovering an antibody to said rapamycin related compound from said animal;
c.) determining that said antibody specifically recognizes a region of said rapamycin related compound, said region selected from the group consisting of the region from C9 to C23, the region from C24 to C36, demethylated C7, demethylated C32, and demethylated C41.
18. The method of claim 17 wherein said protein carrier is selected from the group consisting of human serum albumin and keyhole limpet hemocyanin.
19. The method of claim 17 wherein said rapamycin related compound is conjugated at the C41 or at the C42 position to said protein carrier.
20. The method of claim 17 wherein said rapamycin metabolite is selected from the group consisting of M1, M2, M3, M4, and M5.
21. The method of claim 17 wherein said rapamycin related compound is rapamycin.
22. The method of claim 17 wherein said immunogen is selected from the group consisting of Rapa-42-DVS-KLH and Rapa-42-DVS-HSA.
23. The method of claim 17 wherein the step of recovering said antibody includes isolating at least one antibody-producing cell from said animal and immortalizing said antibody-producing cell to produce a hybridoma; and isolating said antibody from said hybridoma.
24. The method of claim 23 wherein said immunogen is selected from the group consisting of Rapa-42-DVS-KLH and Rapa-42-DVS-HSA.
25. The method of claim 23 wherein said protein carrier is selected from the group consisting of human serum albumin and keyhole limpet hemocyanin.
26. The method of claim 23 wherein said rapamycin related compound is conjugated at the C41 or at the C42 position to said protein carrier.
27. The method of claim 23 wherein said rapamycin metabolite is selected from the group consisting of M1, M2, M3, M4, and M5.
28. The method of claim 23 wherein said rapamycin related compound is rapamycin.
US10/757,555 1997-04-09 2004-01-13 Method for producing rapamycin-specific antibodies Abandoned US20040198953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/757,555 US20040198953A1 (en) 1997-04-09 2004-01-13 Method for producing rapamycin-specific antibodies

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US4321597P 1997-04-09 1997-04-09
US10130998A 1998-07-07 1998-07-07
US32599499A 1999-06-04 1999-06-04
US41987799A 1999-10-15 1999-10-15
US09/638,900 US6709873B1 (en) 1997-04-09 2000-08-15 Method for production of antibodies to specific sites of rapamycin
US10/757,555 US20040198953A1 (en) 1997-04-09 2004-01-13 Method for producing rapamycin-specific antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/638,900 Continuation US6709873B1 (en) 1997-04-09 2000-08-15 Method for production of antibodies to specific sites of rapamycin

Publications (1)

Publication Number Publication Date
US20040198953A1 true US20040198953A1 (en) 2004-10-07

Family

ID=31982204

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/638,900 Expired - Fee Related US6709873B1 (en) 1997-04-09 2000-08-15 Method for production of antibodies to specific sites of rapamycin
US10/757,555 Abandoned US20040198953A1 (en) 1997-04-09 2004-01-13 Method for producing rapamycin-specific antibodies

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/638,900 Expired - Fee Related US6709873B1 (en) 1997-04-09 2000-08-15 Method for production of antibodies to specific sites of rapamycin

Country Status (1)

Country Link
US (2) US6709873B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016100116A1 (en) 2014-12-17 2016-06-23 Siemens Healthcare Diagnostics Inc. Sandwich assay design for small molecules
WO2017074703A1 (en) * 2015-10-29 2017-05-04 Siemens Healthcare Diagnostics Inc. Sandwich assay for small molecules

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US7794716B2 (en) 2002-07-25 2010-09-14 Glenveigh Pharmaceuticals, Llc Antibody composition and passive immunization against pregnancy-induced hypertension
US20050112786A1 (en) * 2003-11-25 2005-05-26 Qing Wang Method of immobilizing a substance of interest to a solid phase
EP1699415A4 (en) * 2003-12-29 2008-01-09 Univ Ramot An assay for the detection of rapamycin and rapamycin analogs
US8021849B2 (en) * 2004-11-05 2011-09-20 Siemens Healthcare Diagnostics Inc. Methods and kits for the determination of sirolimus in a sample
US7189582B2 (en) * 2005-04-27 2007-03-13 Dade Behring Inc. Compositions and methods for detection of sirolimus
WO2008005429A2 (en) 2006-07-03 2008-01-10 Charles David Adair Composition for modulating the expression of cell adhesion molecules
US20080081379A1 (en) * 2006-07-13 2008-04-03 Sigler Gerald F Homogeneous double receptor agglutination assay for immunosuppressant drugs
WO2010065437A1 (en) 2008-12-03 2010-06-10 Research Development Foundation Modulation of olfml-3 mediated angiogenesis
DE102008060549A1 (en) 2008-12-04 2010-06-10 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Drug-peptide construct for extracellular accumulation
HUE039009T2 (en) 2011-08-05 2018-12-28 Res Found Dev Improved methods and compositions for modulation of olfml3 mediated angiogenesis
AU2013334583B2 (en) 2012-10-24 2018-09-13 Research Development Foundation JAM-C antibodies and methods for treatment of cancer
CA2921652A1 (en) 2013-08-21 2015-02-26 Manuel A. Riquelme Compositions and methods for targeting connexin hemichannels
CN109415437B (en) 2015-12-02 2022-02-01 斯特库伯株式会社 Antibodies and molecules that immunospecifically bind to BTN1A1 and therapeutic uses thereof
EP3383908A1 (en) 2015-12-02 2018-10-10 Stsciences, Inc. Antibodies specific to glycosylated btla (b- and t- lymphocyte attenuator)
AU2017224122B2 (en) 2016-02-26 2024-04-11 The Board Of Regents Of The University Of Texas System Connexin (Cx) 43 hemichannel-binding antibodies and uses thereof
ES2883297T3 (en) 2016-03-29 2021-12-07 Stcube Inc Specific Dual Function Antibodies for Glycosylated PD-L1 and Methods of Using The Same
EP3436480A4 (en) 2016-03-30 2019-11-27 Musc Foundation for Research Development Methods for treatment and diagnosis of cancer by targeting glycoprotein a repetitions predominant (garp) and for providing effective immunotherapy alone or in combination
WO2018017673A1 (en) 2016-07-20 2018-01-25 Stcube, Inc. Methods of cancer treatment and therapy using a combination of antibodies that bind glycosylated pd-l1
CA3065300A1 (en) 2017-05-31 2018-12-06 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1
KR20200015602A (en) 2017-05-31 2020-02-12 주식회사 에스티큐브앤컴퍼니 Antibodies and molecules immunospecifically binding to BTN1A1 and therapeutic uses thereof
US11542331B2 (en) 2017-06-06 2023-01-03 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that bind to BTN1A1 or BTN1A1-ligands
WO2019055825A1 (en) 2017-09-15 2019-03-21 The Regents Of The University Of California Inhibition of aminoacylase 3 (aa3) in the treatment of cancer
CN114729045A (en) 2019-09-26 2022-07-08 斯特库比公司 Antibodies specific for glycosylated CTLA-4 and methods of use thereof
JP2022552282A (en) 2019-10-09 2022-12-15 エスティーキューブ アンド カンパニー Antibodies specific for glycosylated LAG3 and methods of use thereof
US20230106973A1 (en) 2020-02-17 2023-04-06 Board Of Regents, The University Of Texas System Methods for expansion of tumor infiltrating lymphocytes and use thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981792A (en) * 1988-06-29 1991-01-01 Merck & Co., Inc. Immunosuppressant compound
US5202258A (en) * 1988-08-05 1993-04-13 Merck & Co., Inc. Immunosuppressant-producing culture
US5268370A (en) * 1989-01-13 1993-12-07 Merck & Co., Inc. Microbial transformation product of L-679,934
US5270187A (en) * 1989-05-05 1993-12-14 Merck & Co., Inc. Microbial transformation product
US5322772A (en) * 1991-04-09 1994-06-21 Children's Research Institute Rapamycin assay
US5441977A (en) * 1992-09-24 1995-08-15 American Home Products Corporation 21-norrapamycin
US5504091A (en) * 1993-04-23 1996-04-02 American Home Products Corporation Biotin esters of rapamycin
US5604092A (en) * 1988-12-05 1997-02-18 The Trustees Of Columbia University In The City Of New York Method for the detection of HIV-1 using a cyclosporine-specific monoclonal antibody that reacts with the P24 Gag protein
US5635406A (en) * 1995-06-07 1997-06-03 Abbott Laboratories Stabilized standards and calibrators containing rapamycin and tacrolimus bound to anti-rapamycin and anti-tacrolimus antibodies

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1979000160A1 (en) * 1977-09-28 1979-04-05 Nat Res Dev Improvements in or relating to immunological preparations
US4400376A (en) * 1979-03-27 1983-08-23 National Research Development Corporation Immunological preparations
US4582865A (en) * 1984-12-06 1986-04-15 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
US5128326A (en) * 1984-12-06 1992-07-07 Biomatrix, Inc. Drug delivery systems based on hyaluronans derivatives thereof and their salts and methods of producing same
CA1300499C (en) * 1987-08-03 1992-05-12 Susan J. Danielson Water-insoluble reagent, elements containing same and methods of use
US5130307A (en) 1990-09-28 1992-07-14 American Home Products Corporation Aminoesters of rapamycin
US5118678A (en) 1991-04-17 1992-06-02 American Home Products Corporation Carbamates of rapamycin
AU667051B2 (en) * 1991-07-04 1996-03-07 Dako Denmark A/S Water-soluble, polymer-based reagents and conjugates comprising moieties derived from divinyl sulfone
DK130991D0 (en) * 1991-07-04 1991-07-04 Immunodex K S POLYMER CONJUGATES
US5414135A (en) * 1991-12-30 1995-05-09 Sterling Winthrop Inc. Vinyl sulfone coupling of polyoxyalkylenes to proteins
US5177203A (en) 1992-03-05 1993-01-05 American Home Products Corporation Rapamycin 42-sulfonates and 42-(N-carboalkoxy) sulfamates useful as immunosuppressive agents
AU4400593A (en) 1992-06-05 1994-01-04 Abbott Laboratories Methods and reagents for the determination of immunosuppressive agents
GB9307491D0 (en) 1993-04-08 1993-06-02 Sandoz Ltd Organic compounds
EP0710110B1 (en) 1993-04-23 2002-03-06 Abbott Laboratories Antibodies of ring opened rapamycins
AU6711994A (en) 1993-04-23 1994-11-21 American Home Products Corporation Rapamycin conjugates and antibodies
AU3993695A (en) 1994-12-07 1996-06-26 Fujisawa Pharmaceutical Co., Ltd. Method of measuring the concentration of fk506-binding protein
US6106828A (en) 1996-02-15 2000-08-22 Novo Nordisk A/S Conjugation of polypeptides
US6309646B1 (en) * 1996-05-09 2001-10-30 The Henry M. Jackson Foundation For The Advancement Of Military Medicine Protein-polysaccharide conjugate vaccines and other immunological reagents prepared using homobifunctional and heterobifunctional vinylsulfones, and processes for preparing the conjugates
CA2268517A1 (en) * 1996-10-21 1998-04-30 Steven R. Shackford Therapeutic use of hemoglobin to treat head injury
GB9624165D0 (en) * 1996-11-19 1997-01-08 Amdex A S Use of nucleic acids bound to carrier macromolecules

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981792A (en) * 1988-06-29 1991-01-01 Merck & Co., Inc. Immunosuppressant compound
US5202258A (en) * 1988-08-05 1993-04-13 Merck & Co., Inc. Immunosuppressant-producing culture
US5604092A (en) * 1988-12-05 1997-02-18 The Trustees Of Columbia University In The City Of New York Method for the detection of HIV-1 using a cyclosporine-specific monoclonal antibody that reacts with the P24 Gag protein
US5268370A (en) * 1989-01-13 1993-12-07 Merck & Co., Inc. Microbial transformation product of L-679,934
US5270187A (en) * 1989-05-05 1993-12-14 Merck & Co., Inc. Microbial transformation product
US5322772A (en) * 1991-04-09 1994-06-21 Children's Research Institute Rapamycin assay
US5441977A (en) * 1992-09-24 1995-08-15 American Home Products Corporation 21-norrapamycin
US5504091A (en) * 1993-04-23 1996-04-02 American Home Products Corporation Biotin esters of rapamycin
US5635406A (en) * 1995-06-07 1997-06-03 Abbott Laboratories Stabilized standards and calibrators containing rapamycin and tacrolimus bound to anti-rapamycin and anti-tacrolimus antibodies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016100116A1 (en) 2014-12-17 2016-06-23 Siemens Healthcare Diagnostics Inc. Sandwich assay design for small molecules
EP3234607A4 (en) * 2014-12-17 2018-03-14 Siemens Healthcare Diagnostics Inc. Sandwich assay design for small molecules
US11377483B2 (en) 2014-12-17 2022-07-05 Siemens Healthcare Diagnostics Inc. Sandwich assay design for small molecules
WO2017074703A1 (en) * 2015-10-29 2017-05-04 Siemens Healthcare Diagnostics Inc. Sandwich assay for small molecules
US11913965B2 (en) 2015-10-29 2024-02-27 Siemens Healthcare Diagnostics Inc. Sandwich assay for small molecules

Also Published As

Publication number Publication date
US6709873B1 (en) 2004-03-23

Similar Documents

Publication Publication Date Title
US6709873B1 (en) Method for production of antibodies to specific sites of rapamycin
US6686454B1 (en) Antibodies to specific regions of cyclosporine related compounds
US5532137A (en) Anti-FR-900506 substance antibodies and highly-sensitive enzyme immunoassay method
AU740304B2 (en) Method for production of antibodies to specific sites of rapamycin
US6274334B1 (en) Monoclonal antibody, cell line and immunoassay for ractopamine
US5620890A (en) Monoclonal antibodies to hygromycin B and the method of making the same
JPH04126094A (en) Monoclonal antibody to human ige
JP3595506B2 (en) Method for producing antibody against specific region of cyclosporin and cyclosporin metabolite
EP0163141A2 (en) Monoclonal anti-human IgG antibody and process for preparing the same
Shestowsky et al. An anti-okadaic acid-anti-idiotypic antibody bearing an internal image of okadaic acid inhibits protein phosphatase PP1 and PP2A catalytic activity
NO173556B (en) MONOCLONAL ANTIBODY THAT RECOGNIZES ALFA-2-3 BINDINGS, AND HYBRIDOM CELL LINE THAT PRODUCES ANTIBODY
Ball et al. Isolation and characterization of human monoclonal antibodies to digoxin
US5264556A (en) Monoclonal antibodies for measuring okadaic acid
US7348412B1 (en) Ouabain-specific monoclonal antibodies
CN109575124B (en) Aldosterone derivative and preparation method thereof
JP2743015B2 (en) Monoclonal antibody specific to O-acetylated ganglioside GM <3>, hybridoma producing the antibody, and method for producing the same
HU206772B (en) Method and reagent set for immunological detecting atrazine and atrazine-derivatives and method for obtaining monoclonic antibiotics suitable to said detection
EP0211368A2 (en) Monoclonal anti-asialo GM1 antibody
KR910002851B1 (en) Process making of anti t-2 toxin monoclonal antibody and method analysis a t-2 toxin
US7105643B2 (en) Monoclonal antibodies specific for crack cocaine metabolites, a cell line producing the same, and crack cocaine conjugates
US20220049018A1 (en) Anti-naloxone and anti-naltrexone monoclonal antibodies and methods of production and use thereof
JPH0543358B2 (en)
JPS62299766A (en) Monoclonal antibody and method for measuring 1-methyl adenosine using said antibody
RU2049818C1 (en) Strain of hybrid cultured murine cells mus musculus l used for preparing monoclonal antibodies to digoxin
JPH0227994A (en) Monoclonal antibody to recognize ganglioside gq1b and gt1a

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION