US20040127688A1 - Altered antibodies - Google Patents
Altered antibodies Download PDFInfo
- Publication number
- US20040127688A1 US20040127688A1 US10/351,748 US35174803A US2004127688A1 US 20040127688 A1 US20040127688 A1 US 20040127688A1 US 35174803 A US35174803 A US 35174803A US 2004127688 A1 US2004127688 A1 US 2004127688A1
- Authority
- US
- United States
- Prior art keywords
- antibody
- altered
- variable domain
- ser
- cdrs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/461—Igs containing Ig-regions, -domains or -residues form different species
- C07K16/464—Igs containing CDR-residues from one specie grafted between FR-residues from another
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- the present invention relates to altered antibodies in which at least part of the complementarity determining regions (CDRs) in the light or heavy chain variable domains of the antibody have been replaced by analogous parts of CDRs from an antibody of different specificity.
- CDRs complementarity determining regions
- the present invention also relates to-methods for the production of such altered antibodies.
- altered antibody is used herein to mean an antibody in which at least one residue of the amino acid sequence has been varied as compared with the sequence of a naturally occuring antibody.
- Natural antibodies, or immunoglobulins comprise two heavy chains linked together by disulphide bonds and two light chains, each light chain being linked to a respective heavy chain by disulphide bonds.
- the general structure of an antibody of class IgG ie an immunoglobulin (Ig) of class gamma (G) is shown schematically in FIG. 1 of the accompanying drawings.
- Each heavy chain has at one end a variable domain followed by a number of constant domains.
- Each light chain has a variable domain at one end and a constant domain at its other end, the light chain variable domain being aligned with the variable domain of the heavy chain and the light chain constant domain being aligned with the first constant domain of the heavy chain.
- the constant domains in the light and heavy chains are not involved directly in binding the antibody to the antigen.
- variable domains forms an antigen binding site.
- the variable domains of the light and heavy chains have the same general structure and each domain comprises four framework regions, whose sequences are relatively conserved, connected by three hypervariable or complementarity determining regions (CDRs) (see Kabat, E. A., Wu, T. T., Bilofsky, H., Reid-Miller, M. and Perry, H., in “Sequences of Proteins of Immunological Interest”, US Dept. Health and Human Services, 1983 and 1987).
- the four framework regions largely adopt a beta-sheet conformation and the CDRs form loops connecting, and in some cases forming part of, the beta-sheet structure.
- variable domains For a more detailed account of the structure of variable domains, reference may be made to: Poljak, R. J., Amzel, L. M., Avey, H. P., Chen, B. L., Phizackerly, R. P. and Saul, F., PNAS USA, 70, 3305-3310, 1973; Segal, D. M., Padlan. E. A., Cohen, G. H., Rudikoff, S., Potter, M. and Davies, D. R., PNAS USA, 71, 4298-4302, 1974; and Marquart, M., Deisenhofer, J., Huber, R. and Palm, W., J. Mol. Biol., 141, 369-391, 1980.
- EP-A-0 088 994 proposes the construction of recombinant DNA vectors comprising a ds DNA sequence which codes for a variable domain of a light or a heavy chain of an Ig specific for a predetermined ligand.
- the ds DNA sequence is provided with initiation and termination codons at its 5′- and 3′-termini respectively, but lacks any nucleotides coding for amino acids superfluous to the variable domain.
- the ds DNA sequence is used to transform bacterial cells. The application does not contemplate variations in the sequence of the variable domain.
- EP-A-1 102 634 (Takeda Chemical Industries Limited) describes the cloning and expression in bacterial host organisms of genes coding for the whole or a part of human IgE heavy chain polypeptide, but does not contemplate variations in the sequence of the polypeptide.
- EP-A-0 125 023 proposes the use of recombinant DNA techniques in bacterial cells to produce Igs which are analogous to those normally found in vertebrate systems and to take advantage of the gene modification techniques proposed therein to construct chimeric Igs, having amino acid sequence portions homologous to sequences from different Ig sources, or other modified forms of Ig.
- a replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least the variable domain of a complementary light or heavy chain respectively of an Ig molecule;
- the second part of the DNA sequence may encode:
- EP-A-O 173 494 (The Board of Trustees of the Leland Stanford Junior University) also concerns the production of chimeric antibodies having variable domains from one mammalian source and constant domains from another mammalian source.
- variable domains from one mammalian source and constant domains from another mammalian source.
- hitherto variable domains have been regarded as indivisible units.
- the present invention in a first aspect, provides an altered antibody in which at least part of a CDR in a light or heavy chain variable domain has been replaced by analogous part(s) of a CDR from an antibody of different specificity.
- variable regions of the two parts of an antigen binding site are held in the correct orientation by inter-chain non-covalent interactions. These may involve amino-acid residues within the CDRs.
- variable domains in both the heavy and light chains have been altered by at least partial CDP replacement and, if necessary, by partial framework region replacement and sequence changing.
- the CDRs may be derived from an antibody of the same species class or even subclass as the antibody from which the framework regions are derived, it is envisaged that the CDRs will generally preferably be derived from an antibody of different species and/or from an antibody of different class or subclass.
- the CDRs from a mouse antibody could be grafted onto the framework regions of a human antibody.
- This arrangement will be of particular use in the therapeutic use of monoclonal antibodies.
- the altered antibody has the structure of a natural antibody or a fragment thereof.
- the altered antibody may comprise a complete antibody, an (Fab′) 2 fragment, an Fab fragment, a light chain dimer or an Fv fragment.
- the altered antibody may be a chimeric antibody of the type described in the Neuberger application referred to above. The production of such an altered chimeric antibody can be carried out using the methods described below used in conjunction with the methods described in the Neuberger application.
- the present invention in a second aspect, comprises a method for producing an altered antibody comprising:
- a second replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least the variable domain of a complementary Ig light or heavy chain respectively;
- the cell line which is transformed to produce the altered antibody is an immortalised mammalian cell line, which is advantageously of lymphoid origin, such as a myeloma, hybridoma, trioma or quadroma cell line.
- the cell line may also comrpise a normal lymphoid cell, such as a B-cell, which has been immortalised by transformation with a virus, such as the Epstein-Barr virus.
- the immortalised cell line is a myeloma cell line or a derivative thereof.
- the cell line used to produce the altered antibody is preferably a mammalian cell line
- any other suitable cell line such as a bacterial cell line or a yeast cell line
- E. Coli derived bacterial strains could be used.
- step b In general the immortalised cell line will not secrete a complementary chain, and it will be necessary to carry out step b). This step may be carried out by further manipulating the vector produced in step a) so that this vector encodes not only the variable domain of an altered antibody light or heavy chain, but also the complementary variable domain.
- step b) is carried out by preparing a second vector which is used to transform the immortalised cell line.
- the transformed cell line may be produced for example by transforming a suitable bacterial cell with the vector and then fusing the bacterial cell with the immortalised cell line by spheroplast fusion.
- the DNA may be directly introduced into the immortalised cell line by electroporation.
- the DNA sequence encoding the altered variable domain may be prepared by oligonucleotide synthesis. This requires that at least the framework region sequence of the acceptor antibody and at least the CDRs sequences of the donor antibody are known or can be readily determined.
- a convenient variant of this technique would involve making a symthetic gene lacking the CDRs in which the four framework regions are fused together with suitable restriction sites at the junctions. Double stranded synthetic CDR cassettes with sticky ends could then be ligated at the junctions of the framework regions.
- a protocol for achieving this variant is shown diagrammatically in FIG. 6 of the accompanying drawings.
- the DNA sequence encoding the altered variable domain may be prepared by primer directed oligonucleotide site-directed mutagenesis.
- This technique in essence involves hybridising an oligonucleotide coding for a desired mutation with a single strand of DNA containing the region to be mutated and using the signle strand as a template for extension of the oligonucleotide to produce a strand containing the mutation.
- This technique in various forms, is described by: Zoller, M. J. and Smith, M., Nuc. Acids Res., 10, 6487-6500, 1982; Norris, K., Norris, F., Christainsen, L. and Fiil, N., Nuc.
- this technique in its simplest form does not always produce a high frequency of mutation.
- An improved technique for introducing both single and multiple mutations in an M13 based vector has been described by Carter et al. (Carter, P., Bedouelle H. and Winter, G., Nuc. Acids Res., 13, 4431-4443, 1985).
- the oligonucleotides used for site-directed mutagenesis may be prepared by oligonucleotide synthesis or may be isolated from DNA coding for the variable domain of the second antibody by use of suitable restriction enzymes. Such long oligonucleotides will generally be at least 30 bases long and may be up to or over 80 bases in length.
- the method of the present invention is envisaged as being of particular use in reshaping human monoclonal antibodies by introducing CDRs of desired specificity.
- a mouse monoclonal antibody against a particular human cancer cell may be produced by techniques well known in the art.
- the CDRs from the mouse monoclonal antibody may then be partially or totally grated into the framework regions of a human monoclonal antibody, which is then produced in quantity by a suitable cell line.
- the product is thus a specifically targetted, essentially human antibody which will recognise the cancer cells, but will not itself be recognised to any significant degree, by a human's immune system, until the anti-idiotype response eventually becomes apparent.
- the method and product of the present invention will be of particular use in the clinical environment.
- FIG. 1 is a schematic diagram showing the structure of an IgG molecule
- FIG. 2 shows the amino acid sequence of the V H domain of NEWM in comparison with the V H domain of the BI-8 antibody
- FIG. 3 shows the amino acid and nucleotide sequence of the HuV NP gene.
- FIG. 4 shows a comparison of the results for HuV NP -IgE and MoV NP -lgE in binding inhibition assays
- FIG. 5 shows the structure of three oligonucleotides used for site directed mutagenesis
- FIG. 6 shows a protocol for the construction of CDR replacements by insertion of CDR cassettes into a vector containing four framework regions fused together;
- FIG. 7 shows the sequence of the variable domain of antibody D1.3 and the gene coding therefor
- FIG. 8 shows a protocol for the cloning of the D1.3 variable domain gene
- FIG. 9 illustrates nucleic acid and amino acid sequences of the variable domains of antibodies to Campath-1, with FIG. 9 a representing the heavy chain and FIG. 9 b representing the light chain;
- FIG. 10 illustrates the sequence of the HuVLLYS° gene and derived amino acid sequence
- FIG. 11 illustrates the sequences of the HuVLLYS gene and derived amino acid sequence, with asterisks marking the CDRs;
- FIG. 12 illustrates a strategy for producing a reshaped human antibody having rat CDRs
- FIG. 13 illustrates loop Phe 27 to Tyr 35 in the heavy chain variable domain of the human myeloma protein KOL
- FIG. 14 illustrates the results of complement lysis and ADCC for various antibodies
- FIG. 15 illustrates the results of complement lysis and ADCC of various further antibodies
- FIG. 16A to D are 4 graphs of fluorescence emission spectra of mouse and humanised anti-lysozyme antibody in the presence of two equivalents of lysozyme;
- FIG. 17 is a graph illustrating spectral change at fixed wavelength as a function of lysozyme concentration on titration of antibody samples
- FIG. 18 illustrates the plasmid for expression of the Fv fragment of a reshaped anti-lysozyme antibody
- FIG. 19 illustrates the results of SDS acrylamide (16%) gel analysis of the Fv fragments and other units
- FIG. 20 illustrates the results of native acrylamide (8%) gel analysis at pH 7.5 of the Fv fragments and other units.
- FIG. 21 illustrates the results of native acrylamide (8%) gel analysis at pH4 of the Fv fragments and other units.
- variable domain of the heavy chains comprises the framework regions of a human heavy chain and the CDRs from a mouse heavy chain.
- the framework regions were derived from the human myeloma heavy chain NEWM, the crystallographic structure of which is known (see Poljak et al., loc. cit. and Bruggemann, M., Radbruch, A., and Rajewsky, K., EMBO J., 1, 629-634, 1982.)
- V H domain of NEWM is shown in FIG. 2, wherein it is compared to the amino acid sequence of the V H domain of the B1-8 antibody.
- the sequence is divided into framework regions and CDRs according to Kabat et al. (loc. cit.). conserveed residues are marked with a line.
- the HuV NP gene was derived by replacing sections of the MOV NP gene in the vector pSV-V NP (see Neuberger, M. S., Williams, G. T., Mitchell, E. B., Jouhal, S., Flanagan, J. G. and Rabbitts, T. H., Nature, 314, 268-270, 1985) by a synthetic fragment encoding the HuV NP domain.
- the 5′ and 3′ non-encoding sequences, the leader sequence, the L-V intron, five N-terminal and four C-terminal amino acids are from the MoV NP gene and the rest of the coding sequence is from the synthetic HuV NP fragment.
- oligonucleotides from which the HuV NP fragment was assembled are aligned below the corresponding portion of the HuV NP gene.
- the ends of oligonucleotides 25 and 26b form a Hind II site followed by a Hind III site, and the sequences of the 25/26b oligonucleotides therefore differ from the HuV NP gene.
- the HuV NP synthetic fragment was built as a PstI-Hind III fragment.
- the nucleotide sequence was derived from the protein sequence using the computer programme ANALYSEQ (Staden, R., Nuc. Acids. Res., 12, 521-538, 1984) with optimal codon usage taken from the sequences of mouse constant domain genes.
- the oligonucleotides (1 to 26b, 28 in total) vary in size from 14 to 59 residues and were made on a Biosearch SAM or an Applied Biosystems machine, and purified on 8M-urea polyacrylamide gels (see Sanger, F. and Coulson, A., FEBS Lett., 107-110, 1978).
- oligonucleotides were assembled in eight single stranded blocks (A-D) containing oligonucleotides
- oligonucleotides 1,3,5 and 7 were phosphorylated at the 5′ end with T4 polynucleotide kinase and mixed together with 5 pmole of the terminal oligonucleotide [1] which had been phosphorylated with 5 uCi [gamma- 32 -P] ATP (Amersham 3000 Ci/mmole). These oligonucleotides were annealed by heating to 80° C.
- blocks A to D were annealed and ligated in 30 ul as set out in the previous paragraph using 100 pmole of olignucleotides 10a, 16 and 20 as splints.
- Blocks A′ to D′ were ligated using oligonucleotides 7, 13b and 17 as splints.
- block A-D was annealed with block A′-D′, small amounts were cloned in the vector M13mp18 (Yanish-Perron, C., Vieria, J. and Messing, J., Gene, 33, 103-119, 1985) cut with PstI and Hind III, and the gene sequenced by the dideoxy technique (Sanger, F., Nicklen, S. and Coulson, A. R., PNAS USA, 74, 5463-5467, 1977).
- the MoV NP gene was transferred as a Hind III-BamHI fragment from the vector pSV-V NP (Neuberger et al., loc. cit.) to the vector M13 mp8 (Messing, J. and Vieria, J., Gene, 19, 269-276, 1982).
- the vector pSV-V NP Neurogenes
- M13 mp8 M13 mp8
- three Hind II sites were removed from the 5′ non-coding sequence by site directed mutagenesis, and a new Hind II site was subsequently introduced near the end of the fourth framework region (FR4 in FIG. 2).
- FR4 fourth framework region
- pSV-HuV NP .HE contains the gpt marker
- stably transfected myeloma cells could be selected in medium containing mycophenolic acid.
- Transfectants secreted an antibody (Huv NP -IgE) with heavy chains comprising a HuV NP variable domain (ie a “humanised” mouse variable region) and human epsilon constant domains, and lambda 1 light chains from the J558L myeloma cells.
- the culture supernatants of several gpt + clones were assayed by radioimmunoassay and found to contain NIP-cap binding antibody.
- the antibody secreted by one such clone was purified from culture supernatant by affinity chromatography on NIP-cap Sepharose (Sepharose is a registered trade mark).
- a polyacrylamide-SDS gel indicated that the protein was indistinguishable from the chimeric antibody MoV NP -IgE (Neuberger et al., loc. cit.).
- the HuV NP -IgE antibody competes effectively with the MoV NP -IgE for binding to both anti-human-IgE and to NIP-cap coupled to bovine serum albumin.
- Antibody solutions were diluted to 100 nM in phosphate buffered saline, filtered (0.45 um pore cellulose acetate) and titrated with NP-cap in the range 0.2 to 20 uM.
- mouse DI-3 antibody Mariuzza, R. A., Jankovic, D. L., Bulot, G., Amit, A. G., Saludjian, P., Le Guern, A., Mazie, J. C. and Poljak, R. J., J. Mol. Biol., 170, 1055-1058, 1983
- hapten concentration varied from 10 to 300 nM, and about 50% quenching of fluorescence was observed at saturation. Since the antibody concentrations were comparable to the value of the dissociation constants, data were fitted by least squares to an equation describing tight binding inhibition (Segal, I. H., in “Enzyme Kinetics”, 73-74, Wiley, New York, 1975).
- the HuV IgE antibody has lost the MoV NP idiotypic determinant recognised by the antibody Acl46. Furthermore, HuV NP -IgE also binds the Ac38 antibody less well (FIG. 4( c )), and it is therefore not surprising that HuV NP -IgE has lost many of the determinants recognised by the polyclonal rabbit anti-idiotypic antiserum (FIG. 4( e )).
- FIGS. 4 ( d ) and 4(e) carry a further practical implication.
- the mouse (or human) CDRs could be transferred from one set of human frameworks (antibody 1) to another (antibody 2).
- anti-idiotypic antibodies generated in response to antibody 1 might well bind poorly to antibody 2.
- the anti-idiotyic response starts to neutralise antibody 1 treatment could be continued with antibody 2, and the CDRs of a desired specificity used more than once.
- the oligonucleotides encoding the CDRs may be used again, but with a set of oligonucleotides encoding a different set of framework regions.
- the DNA sequence of the heavy chain variable region was determined by making cDNA from the mRNA of the D1.3 hybridoma cells, and cloning into plasmid and M13 vectors. The sequence is shown in FIG. 7, in which the boxed residues comprise the three CDRs and the asterisks mark residues which contact lysozyme.
- Each oligonucleotide has 12 nucleotides at the 5′ end and 12 nucleotides at the 3′ end which are complementary to the appropriate HuV NP framework regions.
- the central portion of each oligonucleotide encodes either CDR1, CDR3, or CDR3 of the D1.3 antibody, as shown in FIG. 5, to which reference is now made. It can be seen from this Figure that these oligonucleotides are 39, 72 and 48 nucleotides long respectively.
- variable domain containing the D1.3 CDRs was then attached to sequences encoding the heavy chain constant regions of human IgG2 so as to produce a vector encoding a heavy chain Hu*.
- the vector was transfected into J558L cells as above.
- the antibody Hu* 2 L 2 is secreted.
- variable region gene for the D1.3 antibody was inserted into a suitable vector and attached to a gene encoding the constant regions of mouse IgG1 to produce a gene encoding a heavy chain H* with the same sequence as H.
- the protocol for achieving this is shown in FIG. 8.
- the gene encoding the D1.3 heavy chain V and C H 1 domains and part of the hinge region are cloned into the M13 mp9 vector.
- the vector (vector A) is then cut with NcoI, blunted with Klenow polymerase and cut with PstI.
- the PStI-NcoI fragment is purified and cloned into PstI-HindII cut MV NP to replace most of the MV NP coding sequences.
- the M VNP vector comprises the mouse variable domain gene with its promoter, 5′ leader, and 5′ and 3′ introns cloned into M13 mp9. This product is shown as vector B in FIG. 8.
- Vector C is then cut with HindIII and BamHI and the fragment formed thereby is inserted into HindIII/BamHI cut M13 mp9.
- the product is cut with Hind III and SacI and the fragment is inserted into PSV-V NP cut with Hind III/SacI so as to replace the V NP variable domain with the D1.3 variable domain.
- Mouse IgG1 constant domains are cloned into the vector as a SacI fragment to produce vector D of FIG. 8.
- Vector D of FIG. 8 is transfected into J558L cells and the heavy chain H* is secreted in association with the lambda light chain L as an antibody H* 2 L 2 .
- Separated K or L light chains can be produced by treating an appropriate antibody (for instance D1.3 antibody to produce K light chains) with 2-mercaptoethanol in guanidine hydrochloride, blocking the free interchain sulphydryls with iodoacetamide and separating the dissociated heavy and light chains by HPLC in guanidine hydrochloride.
- an appropriate antibody for instance D1.3 antibody to produce K light chains
- 2-mercaptoethanol in guanidine hydrochloride
- the affinity of the antibodies for lysozyme was determined by fluroresecent quenching, with excitation at 290 nm and emission observed at 340 nm.
- Antibody solutions were diluted to 15-30 ug/mg in phosphate buffered saline, filtered (0.45 um-cellulose acetate) and titrated with hen eggwhite lysozyme. There is quenching of fluoresence on adding the lysozyme to the antibody (greater than 100% quench) and data were fitted by least squares to an equation describing tight binding inhibition (I. H. Segal in Enzyme Kinetics, p73-74, Wiley, New York 1975).
- the Campath-1 antigen is strongly expressed on virtually all human lymphocytes and monocytes, but is absent from other blood cells including the hemopoietic stem cells (Hale, G., Bright, S., Chumbley, G., Hoang, T., Metcalf, D., Munro, A. J. & Waldmann, H. Blood 62,873-882 (1983)).
- a series of antibodies to Campath-1 have been produced, including rat monoclonal antibodies of IgM, IgG2a, and IgG2c isotypes (Hale, G., Hoang, T., Prospero, T., Watts, S. M. '& Waldmann, H. Mol. Biol. Med.
- IgG1 and IgG2b isotypes have been isolated as class switch variants from the IgG2a secreting cell line YTH 34.5HL (Hale, G., Cobbold, S. P., Waldmann, H., Easter, G., Matejtschuk, P. '& Coombs, R. R. A. J. Immunol. Meth. 103, 59-67 (1987)). All of these antibodies with the exception of the rat Ig.G2c isotype are able to lyse efficiently human lymphocytes with human complement.
- the IgG2b antibody YTH 34.5HL-G2b is effective in antibody dependent cell mediated cytotoxicity (ADCC) with human effector cells (Hale et al, 1987, loc. cit.).
- ADCC antibody dependent cell mediated cytotoxicity
- rat monoclonal antibodies have found important application in the context of immunosuppression, for control of graft-versus-host disease in bone marrow transplantation (Hale et al, 1983, loc. cit.); the management of organ rejection (Hale, G., Waldmann, H., Friend, P. '& Calne, R.
- the NEW light chain was not used because there is a deletion at the beginning of the third framework region of the NEW light chain.
- the resulting reshaped heavy chain variable domain HuVHCAMP is based on the HuVHNP gene (Kabat et al, loc. cit. and Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. '& Winter, G. Nature 321, 522-525 (1986)) with the framework regions of human NEW alternating with the hypervariable regions of rat YTH 34.5HL.
- the reshaped light chain variable domain HuVLCAMP is a similar construct, except with essentially the framework regions of the human myeloma protein REI, with the C-terminal and the 3′ non-coding sequence taken from a human J k -region sequence (Hieter, P. A., Max, E. E., Seidmann, J. G., Maizel, J. V. Jr '& Leder, P. Cell 22,197-207 (1980)). Sequence information for the variable domain of the reshaped antibody is given in the upper lines in FIG. 9. The sequences of oligonucleotide primers are given and their locations on the genes are also marked in FIG. 9.
- mRNA was purified (Kaartinen, M., Griffiths, G. M., Hamlyn, P. H., Markham, A. F., Karjalainen, K., Pelkonen J. L. T., Makela, O. '& Milstein, C. J. Immunol. 130,320-324 (1983)) from the hybridoma clone YTH 34.5HL (gamma 2a, k b ), and first strand cDNA made by priming with oligonucleotides complementary to the 5′ end of the CH1 (oligonucleotide I) and the Ck exons (oligonucleotide II).
- cDNA was cloned and sequenced as described in Gubler, U. '& Hoffman, B. J. Gene 25, 263-269 (1983) and Sanger, F., Nicklen, S. A. '& Coulson, A. R. Proc. natl. Acad. Sci USA 74, 5463-5467 (1977).
- rat heavy chain variable domain RaVHCAMP For expression of the rat heavy chain variable domain RaVHCAMP, two restriction sites (XbaI and SalI) were introduced at each end of the cDNA clone in M13 using mutagenic oligonucleotides III and V respectively, and the XbaI-SalI fragment excised. Simultaneously, the corresponding sites were introduced into the M13-HuVHNP gene using oligonucleotides IV and VI, and the region between the sites exchanged. The sequence at the junctions was corrected with oligonucleotides VII and VIII, and an internal BamHI site removed using the oligonucleotide IX, to create the M13-RaVHCAMP gene. The encoded sequence of the mature domain is thus identical to that of YTH 34.5HL.
- the reshaped heavy chain variable domain (HuVHCAMP) was constructed in an M13 vector by priming with three long oligonucleotides simultaneously on the single strand containing the M13-HuVHNP gene (see Kabat et al, loc. cit and Jones et al, loc. cit).).
- the mutagenesis techniques used were similar to those described in Carter et al loc. cit, using the host 71-18 mutL and without imposing strand selection.
- Each oligonucleotide (X, XI and XII) was designed to replace each of the hypervariable regions with the corresponding region from the heavy chain of the YTH 34.5HL antibody.
- the reshaped light chain variable domain (HuVLCAMP) was constructed in an M13 vector from a gene with framework regions based on human REI. As above, three long oligonucleotides (XIV, XV, and XVI) were used to introduce the hypervariable regions of the YTH 34.5HL light chain.
- the first stage involved the gene synthesis of a “humanised” light chain variable domain gene (HuVLLYS°).
- the HuVLLYS° gene incorporates human framework regions identical to the most common residue in each position in the Kabat alignment of the human kappa subgroup I, except for residues 97-108, which were identical to those in the human J1 fragment described in Heiter, P., Maizel, J '& Leder, P. J. Biol. Chem. 257, 1516-1522 (1982).
- the sequences of the framework regions are very similar to the crystallographically solved light chain structure REI.
- the CDRs in HuVLLYS° were identical to those in the mouse antilysozyme antibody (D1.3) light chain (unpublished).
- the second stage involved the introduction of the HuVLLYS° gene in place of the heavy chain variable domain in the vector M13-MOVHNP and this is described in paragraphs 6 and 7 below.
- the light chain variable domain utilises the promoter and signal sequence of a heavy chain variable domain: at the 3′ end of the gene the sequence is derived from the human light chain J1 segment as described in paragraph (1a).
- the sequence of the HuVLLYS gene and the derived amino acid sequence is given in FIG. 11.
- Oligonucleotides listed below were produced on an Applied Biosystems 380B synthesizer. Each oligonucleotide was size-purified, 10 nmol being subjected to electrophoresis on a 20 ⁇ 40 cm 12% polyacrylamide, 7M urea gel, eluted from the gel by dialysis against water, and lyophilized.
- oligonucleotide For gene synthesis or mutagenesis, a 50 pmol aliquot of each purified oligonucleotide was phosphorylated in a 20 ul reaction mixture with 50 mM Tris-Cl (pH 8.0), 10 mM MgCl 1 5 mM dithiothreitol, 1 mM ATP, and 5 units of polynucleotide kinase, incubated at 37° for 30 minutes. When used as hybridization probes, gel-purified oligonucleotides were phosphorylated in a similar fashion, except on a 15 pmol scale with an excess of 32 P labeled ATP.
- PK1 GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTG GGT PK2 GACAGAGTGACCATCACCTGTAGAGCCAGCGGTAACATCCACAAC TACCTGGCTTGGTAC PK3 CAAGCCAGGTAGTTGTGGATGTTACCGCTGGCTCTACAGGTGAT PK4 GGTCACTCTGTCACCCACGCTGGCGCTCAGGCT PK5 GCTTGGGCTCTGGGTCATCTGGATGTCTGCA KK1 CAGCAGAAGCCAGGTAAGGCTCCAAAGCTGCTGATCTACTACACC ACCA KK2 CCCTGGCTGACGGTGTGCCAAGCAGATTCAGCGGTAGCGGTAGCG GTAC KK3 CGCTACCGCTACCGCTGAATCTGCT KK4 TGGCACACCGTCAGCCAGGGTGGTGGTGTAGTAGATCAGC KK5 AGCTTTGGAGCCTTACCTGGCTTCTGCTGGTAC KE1 CGACTTCACCT
- the three cloned blocks were excised from 10 ug double-stranded replicative form of the thee M13 vectors, by digestion with PstI/KpnI (block PK1-5), KpnI (block KKI-5) and KpnI/EcoRI (block KE1-8).
- the inserts were separated from the vector by electrophoresis on a 20 ⁇ 20 cm 12% polyacrylamide gel, eluted from the gel slices with 0.5 M NH 4 OAc, 10 mM Mg (OAc) 21 0.1 mM EDTA, 0.1% SDS, and purified by phenol extraction and ethanol precipitation. All three fragments were ligated to PstI/EcoRI cut M13-mp19.
- Campath-1 light chain variable domain was derived from the HuVLLYS domain, and the reshaped human heavy (HuVHCAMP) and light (HuVLCAMP) chain variable domains were then assembled with constant domains in three stages as illustrated in FIG. 12.
- sequences of rat origin are marked in black, and those of human origin in white.
- the recombinant heavy and light chains are also marked using a systematic nomenclature.
- the illustrated procedure permits a step-wise check on the reshaping of the heavy chain variable domain (stage 1), the selection of the human isotype (stage 2), and the reshaping of the light chain variable domain and assembly of human antibody (stage 3).
- stage 1 The vector constructions were genomic, with the variable domains excised from the M13 vectors and cloned as HindIII-BamHI fragments and the constant domains as BamHI-BamHI fragments in either pSVgpt (heavy chain) (Mulligan, R. C. '& Berg, P. Proc. natl. Acad. Sci USA 78,2072-2076 (1981)) or pSVneo (light chain) (Southern, P. J.
- the heavy chain enhancer was included to the 5′ side of the variable domain, and expression of both light and heavy chains was driven from heavy chain promoter and the heavy chain signal sequence.
- gamma 1 The human gamma 1 (Takahashi, N., Ueda, N. S., Obata, M., Nikaido, T. & Honjo, T. Cell 29,671-679 (1982)), gamma 2 (Flanagan, J. G. & Rabbits, T. H. Nature 300,709-713 (1982)), gamma 3 (Huck, S., Fort, P., Crawford, D. H., Lefranc, M.-P. & Lefranc, G. Nucl. Acid Res. 14,1779-1789 (1986), gamma 4 (Clark, M. & Waldmann, H. J. N. C. I.
- stage 1 the pSVgpt vectors HuVHCAMP-RaIgG2B, and also two mutants for reasons to be explained below, HuVHCAMP(Ser27 to Phe)-RaIgG2B, HuVHCAMP(Ser27 to Phe, Ser30 to Thr)-RaIgG2B) were introduced into the heavy chain loss variant of YTH34.5HL.
- stage 2 the pSVgpt vectors RaVHCAMP-RaIgG2B, RaVHCAMP-HuIgG1, RaVHCAMP-HuIgG2, RaVHCAMP-HuIgG3, RaVHCAMP-HuIgG4 were transfected as described above.
- stage 3 the pSV-gpt vector Hu(Ser27-Phe, Ser30-Thr)VHCAMP-HuIgG1 was cotransfected with the pSV-neo vector HuVLCAMP-HuIgK into the rat myeloma cell line Y0 (Y B2/3.0 Ag 20) (Galfre, G. & Milstein, C. Meth. Enzymol. 73,1-46 (1981)).
- clones resistant to mycophenolic acid were selected and screened for antibody production by ELISA assays. Clones secreting antibody were subcloned by limiting dilution (for Y0) or the soft agar method (for the loss variant) and assayed again before 1 litre growth in roller bottles.
- stage 1 the reshaped heavy chain variable domain (HuVHCAMP) was attached to constant domains of the rat isotype IgG2b and transfected into a heavy chain loss variant of the YTH34.5 hybridoma.
- the loss variant carries two light chains, one derived from the Y3 fusion partner (Galfre et al., loc. cit).
- the cloned rat heavy chain variable domain (RaVHCAMP) was also expressed as above.
- Antibodies were harvested at stationary phase and concentrated by precipitation with ammonium sulphate, followed by ion exchange chromatography on a Pharmacia MonoQ column. The yields of antibody were measured by an ELISA assay directed against the rat IgG2b isotype, and each adjusted to the same concentration (Clark and Waldmann loc. cit).
- the HuVHCAMP and RaVHCAMP antibodies were compared in a direct binding assay to the Campath-1 antigen (obtained from a glycolipid extract from human spleen), and also in complement lysis of human lymphocytes.
- the partially purified Campath-1 antigen was coated onto microtitre wells. Bound antibody was detected via a biotin labelled anti-rat IgG2b monoclonal antibody (Clark & Waldmann loc. cit), developed with a streptavidin-peroxidase conjugate (Amersham plc).
- hypervariable loops There are several assumptions underlying the transfer of hypervariable loops from one antibody to another, and in particular that the antigen binds mainly to the hypervariable regions. These are defined as regions of sequence (Kabat et al, loc. cit) or structural (Chothia, C. & Lesk, A. J. Mol. Biol. 196,901-917 (1987)) hypervariability, and the locations of hypervariable regions are similar by either criterion, except for the first hypervariable loop of the heavy chain. By sequence the first hypervariable loop extends from residues 31 to 35 (Kabat et al, loc. cit) and by structure from residues 26 to 32 (Chothia et al, (1987) loc. cit). Residues 29 and 30 form part of the surface loop, and residue 27 which is phenylalanine or tyrosine in most sequences including YTH34.5HL, helps pack against residues 32 and 34.
- FIG. 13 illustrates loop Phe27 to Tyr35 in the heavy chain variable domain of the human myeloma protein KOL which is crystallographically solved (Marquardt, M., Deisenhofer, J., Huber, R. & Palm, W. J. Mol. Biol. 141,368-391 (1980)).
- the backbone of the hypervariable region according to Kabat et al, (loc. cit.) is highlighted, and a 200% van der Waal surface is thrown around Phe27 to show the interactions with Tyr32 and Met34 of the Kabat hypervariable region.
- stage 2 the rat heavy chain variable domain was attached to constant domains of the human isotypes IgG1, 2, 3, and 4, and transfected into the heavy chain loss variant of the YTH34.5 hybridoma.
- Antibody was harvested from cells in stationary phase, concentrated by precipitation with ammonium sulphate and desalted into phosphate buffered saline (PBS). Antibodies bound to the Campath-1 antigen coated on microtitre plates, were assayed in ELISA directed against the rat k light chain (Clark & Waldmann loc cit), and adjusted to the same concentration. The antibodies were assayed in complement lysis (as described above) and ADCC with activated human peripheral blood mononuclear cells (Clark & Waldmann loc. cit and Hale, G. Clark, M. & Waldmann, H. J. Immunol. 134,3056-3061 (1985)).
- PBS phosphate buffered saline
- results are shown in FIG. 14, in which the results for rat heavy chain variable domain attached to different human isotypes are represented as follows: IgG1 empty squares IgG2 empty circles IgG3 solid squares IgG4 empty triangles
- Results of lysis with the antibody YTH34.5HL are represented by solid circles.
- the human IgG1 isotype proved similar to the YTH34.5HL-G2b, with the human IgG3 isotype less effective.
- the human IgG2 isotype was only weakly lytic and the IgG4 isotype non-lytic.
- ADCC FIG. 14 b
- the human IgG1 was more lytic than the YTH34.5HL-G2b antibody.
- the decrease in lysis at higher concentration of the rat IgG2b and the human IgG1 antibody is due to an excess of antibody, which causes the lysis of effector cells.
- the human IgG3 antibody was weakly lytic, and the IgG2 and IgG4 isotypes were non-lytic.
- the human IgG1 isotype was therefore suitable for a reshaped antibody for therapeutic use. Other recent work also suggests the IgG1 isotype as favoured for therapeutic application.
- the effector functions of human isotypes were compared using a set of chimaeric antibodies with an anti-hapten variable domain, the IgG1 isotype appeared superior to the IgG3 in both complement and cell mediated lysis (Bruggemann, M., Williams, G. T., Bindon, C., Clark, M. R., Walker, M. R., Jefferis, R., Waldmann, H. & Neuberger, M. S. J. Exp. Med. (in press).
- stage 3 the reshaped heavy chain was completed, by attaching the reshaped HuVHCAMP (Ser27 to Phe, Ser30 to Thr) domain to the human IgG1 isotype.
- the reshaped light chain domain HuVHCAMP was attached to the human Ck domain.
- the two vectors were cotransfected into the non-secreting rat Y0 myeloma line.
- HuVHCAMP (Ser27 to Phe, Thr30 to Ser)-HuIGG1,) HuVLCAMP-HuIGK was purified from supernatants of cells in stationary phase by affinity chromatography on protein A Sepharose. The antibody was at least 95% (by wt) pure. The yield (about 10 mg/l) was measured spectrophotometrically. Complement and ADCC assays were performed as described in connection with FIG. 14.
- results are shown in FIG. 15, in which the results for reshaped human antibodies are represented by squares and those for rat YTH34.5HL antibodies are represented by solid circles.
- the purified antibody proved almost identical to the YTH34.5HL-G2b antibody in complement lysis (FIG. 15 a ).
- the reshaped human antibody was more reactive than the rat antibody (FIG. 15 b ).
- Similar results to the ones in FIG. 15 b were obtained with three different donors of target and effector cells (data not shown).
- the antibody was as effective as YTH34.5HL-G2b in killing leukaemic cells from three patients with B Cell lymphocytic leukaemia by complement mediated lysis with human serum.
- the rat antibody and fully humanised antibody were compared in a direct binding assay to Campath-1 antigen.
- Antibody concentrations were determined as described in FIGS. 14 and 15.
- the amount of rat antibody bound to partially purified Campath-1 antigen was determined as described in connection with Table 3.
- the amount of human antibody bound was determined by an ELISA assay using a biotinylated sheep anti-human IgG antibody (Amersham). TABLE 4 Reshaping the heavy and light chain variable domains simultaneously Concentration of antibody in ug/ml at 50% binding antigen antibody binding RaVHCAMP RalGG2B RaVHCAMP RaKappa 1.01 HuVHCAMP (Ser 27 to Phe, Ser30 to Thr) HulGGl HuVLCAMP HuKappa 1.11
- the antibody can be reshaped for therapeutic application.
- the strategy illustrated in FIG. 12 is stepwise assembly to allow any problems to be detected at each stage (reshaping of heavy chain variable domain, selection of constant domain and reshaping of light chain variable domain). It is quite possible to build the reshaped antibody in a single step assembly, i.e. constructing the two reshaped variable domains, attaching to appropriate constant domains and cotransfecting into e.g. YO.
- the heavy chain variable region was constructed as described in Example 2 above, and the light chain variable region was constructed as described in Example 3 above.
- Heavy and light chain constructs were prepared from 1 L of bacterial culture by CsCl density gradient ultracentrifugation. 20 ug of each plasmid was digested with Pvul and co-transfected into 10 7 NSO cells by electroporation. Transformants were selected by growth in medium containing mycophenolic acid, in a 24-well tissue culture plate. After two weeks growth, aliquots of cells were removed from each well, incubated overnight with 35 S-methionine, an the supernatant medium affinity adsorbed with Protein A-Sepharose beads (Pharmacia).
- Absorbed proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by autoflurography. Clones were isolated by limiting dilution from the wells which had yielded both heavy and light chain bands on the autofluorogram. The radioincorporation screening method was again employed to identify those clones secreting a complete antibody. Of these, one cell line was chosen and propagated for storage and further analysis.
- a 2L culture of the cell line was grown to saturation in Dulbecco's modifed Eagle medium supplemented with 10% fetal calf serum.
- Antibody was concetrated from the culture medium by ammonium sulfate precipitation.
- the precipitate was redissolved in phosphate-buffered saline, pH 7.4(PBS), dialyzed, and chromatographed on a column of lysozyme-Sepharose (prepared by reaction of 20 mg lysozyme per ml of CNBr-activated Sepharose CL-4B).
- the column was washed with 0.5 M NaCl, 0.1 M Tris chloride, pH 8.5, and subsequently with 50 mM Et 2 NH.
- Immunoglobulin-containing fractions eluting with the latter wash were identified by SDS-PAGE followed by Coomassie Blue staining; these were pooled and dialyzed against PBS.
- the dialyzed material was applied to a column of protein A-Sepharose. The column was washed with PBS, followed by 0.1 M citrate buffers in the order pH 6, 5, 4, 3.
- a peak eluting at pH 4 (the pH expected for elution of a human immunoglobulin of the gamma 2 isotype) was identified as homogeneous immunoglobulin by SDS-PAGE. This was dialyzed vs PBS for storage. Its concentration was determined spectrophotometrically using an extinction coefficient at 280 nm of 1.4 cm ⁇ 1 (mg/ml) ⁇ 1 .
- Spectroscopic conditions employed consisted of an excitation wavelength of 280 nm with a 5 nm bandwidth, and an emission bandwidth of 2.5 nm.
- Data acquisition was with a Perkin-Elmer LS-5B spectrofluorimeter interfaced to a Macintosh microcomputer, which in turn was used for data manipulation and display.
- the spectral change at fixed wavelength was measured as a function of lysozyme concentration.
- Antibody samples were titrated in the spectroflurimeter with small aliquots of a concentrated lysozyme solution, in parallel with a control antibody, which did not interact with lysozyme, at an identical concentration.
- the fluorescence was determined after each addition. Titration data are shown in FIG. 17 (filled squares, humanized; open squares, mouse).
- the spectral change is expressed as a percent of the maximum change observed at saturation, and titrant amounts are put on a ratio scale to facilitate comparison of the two sets of data.
- Reshaped Fv fragments of the anti-lysozyme antibody D1.3 (Verhoeyen et al, loc. cit) were constructed.
- the heavy chain variable region was reshaped by combining human framework (FR) sequences from the myeloma protein NEW (Saul F. A., Amzel, M., Poljak R. J., J. Biol. Chem. 253.585 (1978)) with the mouse D1.3 CDRs which provide the antigen specifically (Verhoeyen et al, loc. cit).
- the reshaped light chain contains human FRs from human kappa consensus sequence (Kabat et al, loc. cit) similar to the sequence of the Bence Jones protein REI (Epp, O., et al, Eur. J. Biochem. 45, 513 (1974)) combined with the D1.3 light chain CDRs.
- FIG. 18 illustrates the plasmid for the expression of the Fv-fragment of the reshaped version of the antilysozyme antibody D1.3.
- the plasmid was transfected by electroporation (Potter, H., Weir, L., Leder, P. Proc. Natl. Acad. Sci. USA 81,7161 (1984)) into the non-producer myeloma cell line NSO (Galfre, G., Milstein, C., Meth. Enzymol 73, 1 (1981)). Transfectants were selected with mycophenolic acid (Mulligan, R. C., Berg, P., Proc. Natl. Acad. Sci. USA 78,2072-2076).
- the genes (HuVHLYS and HuVLLYS) for the VH and VL domains were produced as HindIII-BamHI fragments in M13 for the expression of the whole antibody (see M. Verhoeyen et al. Science loc. cit. for sequence of VH, see Riechmann, I., Clark, M., Waldmann, H., Winter, G., Nature in press for VL-framework sequences and see Verhoeyen, M., Berek, C., Winter, G., Nucleic Acid. Res. submitted for the VL CDRs).
- VL-gene containing Ig-enhancer, HCMV-promoter, VL-coding region and polyadenylation signal
- pBGS18 Frazier, B., et al., Gene 41,337 (1986)
- pBGS-HuVLLYS was cloned into the pSVgpt-HuVHLYS vector as a BamHI fragment as shown in FIG. 18.
- the final plasmid PLRI further contained the resistance genes for the drugs ampicillin (amp R ), kanamycin (kan R ) and mycophenolic acid (Eco gpt) two col EI origins of replication (col EI ori) and the SV40 enhancer (SV40 enh pro).
- amp R ampicillin
- kan R kanamycin
- Eco gpt mycophenolic acid
- col EI ori mycophenolic acid
- SV40 enhancer SV40 enh pro
- BamHI (B), HindIII (H), EcoRI (E) and SacI (S) restriction sites used for cloning steps are indicated. The diagram is not to scale.
- the Fv fragment contains two chains of about 12 KD (calculated values 12,749 for VH and 11,875 for VL) when analysed on SDS gels. See results in FIG. 19, in which lysozyme was run in lane 1, Fv-fragment plus lysozyme in lane 2, affinity purified Fv-fragment in lane 3, isolated VL-domain in lane 4, isolated VH-domain in lane 5) and size markers in lanes 6). The Fv-fragment and the lysozyme/Fv-fragment complex were eluted from the bands in the native gel in FIG. 20 (lanes 2,3). All samples were applied in buffer containing beta mercaptoethanol.
- the Fv-fragment is secreted in a functional form, as it can readily be purified from the culture supernatant with lysozyme Sepharose (Fv-fragments from cell culture supernatants were prepared by filtering through two layers of Whatmann 3 MM paper, adsorption to lysozyme coupled to CnBr-Sepharose (Pharmacia), extensive washing with phosphate buffered saline and elution with 50 mM diethylamine. Eluates were immediately adjusted to pH 7.5)
- the Fv-fragment runs as a single band, that contains both the VH and the VL domain when analysed on SDS gels (compare lane 3 in FIGS. 19 and 20).
- This band can be shifted on the native gel, when the antigen lysozyme is added.
- the shifted band contains lysozyme, VH and VL domain in similar amounts when analysed on SDS-gels (compare lane 2 in FIGS. 19 and 20).
- the isolated VL domain runs as a diffused band with a mobility different to the Fv-fragment on the native gel (lane 4, FIG. 20).
- the isolated VH does not run into the gel because of its net charge at pH 7.5.
- VL and VH-domains were separated on a Mono-S column (Pharmacia) in 50 mM acetic acid, 6 M urea (adjusted to pH 4.8 with NaOH) using 0 to 0.3 M NaCl gradient over 6 minutes.
- the VH was sufficiently pure according to SDS gel analysis.
- the VL was further purified after desalting into phosphate buffered saline on a Biozorbax GF250 (DuPont) sizing column to get rid of residual VH-VL heterodimer)
- VH-VL heterodimers were further established, when Fv fragments were incubated at a concentration of 0.5 mg/ml in phosphate buffered saline with 3.7% formaldehyde overnight.
- Crosslinked VH-VL heterodimers of about 25 kD were formed (Purified, biosynthetically 35 S-methionine labelled VH domain was incubated in 3.7% formaldehyde/PBS overnight in the absence or presence of excessive unlabelled VH-VL heterodimer.
- VH VL heterodimers When analysed on SDS gels crosslinked, labelled VH VL heterodimers (molecular weight of about 25 kD) are formed from isolated labelled VH only in the prescence of unlabelled Fv-fragment. No formation of dimers could be detected in the absence of unlabelled Fv-fragment). Lysozyme-Sepharose purification of the crosslinked material showed that the crosslinked VH-VL heterodimer is still active. Overloading of SDS gels with crosslinked material also made visible a small fraction (less than 5%) of slightly lower molecular weight material suggesting the formation of crosslinked VL homodimers. No higher molecular weight band for possible VH homodimers was observed.
- the Fv-fragment is predominantly associated at neutral pH, it is in a dynamic equilibrimun; the purified biosynthetically labelled VH domain exchanges with the unlabelled VH domain when incubated with an excess of unlabelled VH-VL heterodimer, because labelled VH-VL heterodimers can be trapped by crosslinking with formaldehyde.
- Fv-fragments should not cause problems in diagnostic or therapeutic applications.
- Fv-fragments will certainly be of considerable advantage without further treatment. They should especially simplify the assignment of signals in NMR-spectra, if the same beta-sheet frameworks are used for Fv-fragments with different specificities.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Life Sciences & Earth Sciences (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
An altered antibody is produced by replacing the complementarity determining regions (CDRs) of a variable region of an immunoglobulin (Ig) with the CDRs from an Ig of different specificity, using recombinant DNA techniques. The gene coding sequence for producing the altered antibody may be produced by site-directed mutagenesis using long oligonucleotides or using gene synthesis.
Description
- This is a continuation-in-part of application Ser. No. 903776.
- 1. Field of the Invention
- The present invention relates to altered antibodies in which at least part of the complementarity determining regions (CDRs) in the light or heavy chain variable domains of the antibody have been replaced by analogous parts of CDRs from an antibody of different specificity. The present invention also relates to-methods for the production of such altered antibodies. The term “altered antibody” is used herein to mean an antibody in which at least one residue of the amino acid sequence has been varied as compared with the sequence of a naturally occuring antibody.
- 2. Descripton of the Prior Art
- Natural antibodies, or immunoglobulins, comprise two heavy chains linked together by disulphide bonds and two light chains, each light chain being linked to a respective heavy chain by disulphide bonds. The general structure of an antibody of class IgG (ie an immunoglobulin (Ig) of class gamma (G)) is shown schematically in FIG. 1 of the accompanying drawings.
- Each heavy chain has at one end a variable domain followed by a number of constant domains. Each light chain has a variable domain at one end and a constant domain at its other end, the light chain variable domain being aligned with the variable domain of the heavy chain and the light chain constant domain being aligned with the first constant domain of the heavy chain. The constant domains in the light and heavy chains are not involved directly in binding the antibody to the antigen.
- Each pair of light and heavy chains variable domains forms an antigen binding site. The variable domains of the light and heavy chains have the same general structure and each domain comprises four framework regions, whose sequences are relatively conserved, connected by three hypervariable or complementarity determining regions (CDRs) (see Kabat, E. A., Wu, T. T., Bilofsky, H., Reid-Miller, M. and Perry, H., in “Sequences of Proteins of Immunological Interest”, US Dept. Health and Human Services, 1983 and 1987). The four framework regions largely adopt a beta-sheet conformation and the CDRs form loops connecting, and in some cases forming part of, the beta-sheet structure. The CDRs-are held in close proximity by the framework regions and, with the CDRs from the other variable domain, contribute to the formation of the antigen binding site.
- For a more detailed account of the structure of variable domains, reference may be made to: Poljak, R. J., Amzel, L. M., Avey, H. P., Chen, B. L., Phizackerly, R. P. and Saul, F., PNAS USA, 70, 3305-3310, 1973; Segal, D. M., Padlan. E. A., Cohen, G. H., Rudikoff, S., Potter, M. and Davies, D. R., PNAS USA, 71, 4298-4302, 1974; and Marquart, M., Deisenhofer, J., Huber, R. and Palm, W., J. Mol. Biol., 141, 369-391, 1980.
- In recent years advances in molecular biology based on recombinant DNA techniques have provided processes for the production of a wide range of heterologous polypeptides by transformation of host cells with heterologous DNA sequences which code for the production of the desired products.
- EP-A-0 088 994 (Schering Corporation) proposes the construction of recombinant DNA vectors comprising a ds DNA sequence which codes for a variable domain of a light or a heavy chain of an Ig specific for a predetermined ligand. The ds DNA sequence is provided with initiation and termination codons at its 5′- and 3′-termini respectively, but lacks any nucleotides coding for amino acids superfluous to the variable domain. The ds DNA sequence is used to transform bacterial cells. The application does not contemplate variations in the sequence of the variable domain.
- EP-A-1 102 634 (Takeda Chemical Industries Limited) describes the cloning and expression in bacterial host organisms of genes coding for the whole or a part of human IgE heavy chain polypeptide, but does not contemplate variations in the sequence of the polypeptide.
- EP-A-0 125 023 (Genentech Inc.) proposes the use of recombinant DNA techniques in bacterial cells to produce Igs which are analogous to those normally found in vertebrate systems and to take advantage of the gene modification techniques proposed therein to construct chimeric Igs, having amino acid sequence portions homologous to sequences from different Ig sources, or other modified forms of Ig.
- The proposals set out in the above Genentech application did not lead to secretion of chimeric Igs, but these were produced as inclusion bodies and were assembled in vitro with a low yield of recovery of antigen binding activity.
- The production of monoclonal antibodies was first disclosed by Kohler and Milstein (Kohler, G. and Milstein, C., Nature, 256, 495-497, 1975). Such monoclonal antibodies have found widespread use not only as diagnostic reagents (see, for example, ‘Immunology for the 80s’, Eds. Voller, A., Bartlett, A., and Bidwell, D., MTP Press, Lancaster, 1981) but also in therapy (see, for example, Ritz, J. and Schlossman, S. F., Blood, 59, 1-11, 1982).
- The recent emergence of techniques allowing the stable introduction of Ig gene DNA into myeloma cells (see, for example, Oi, V. T., Morrison, S. L., Herzenberg, L. A. and Berg, P., PNAS USA, 80, 825-829, 1983; Neuberger, M. S., EMBO J., 2, 1373-1378, 1983; and Ochi, T., Hawley, R. G., Hawley, T., Schulman, M. J., Traunecker, A., Kohler, G. and Hozumi, N., PNAS USA, 80, 6351-6355, 1983), has opened up the possibility of using in vitro mutagenesis and DNA transfection to construct recombinant Igs possessing novel properties.
- However, it is known that the function of an Ig molecule is dependent on its three dimensional structure, which in turn is dependent on its primary amino acid sequence. Thus, changing the amino acid sequence of an Ig may adversely affect its activity. Moreover, a change in the DNA sequence coding for the Ig may affect the ability of the cell containing the DNA sequence to express, secrete or assemble the Ig.
- It is therefore not at all clear that it will be possible to produce functional altered antibodies by recombinant DNA techniques.
- However, colleagues of the present Inventor have devised a process whereby chimeric antibodies in which both parts of the protein are functional can be secreted. The process, which is disclosed in International Patent Application No. PCT/GB85/00392 (WO86/01533) (Neuberger et al. and Celltech Limited), comprises:
- a) preparing a replicable expression vector including a suitable promoter operably linked to a DNA sequence comprising a first part which encodes at least the variable domain of the heavy or light chain of an Ig molecule and a second part which encodes at least part of a second protein;
- b) if necessary, preparing a replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least the variable domain of a complementary light or heavy chain respectively of an Ig molecule;
- c) transforming an immortalised mammalian cell line with the or both prepared vectors; and
- d) culturing said transformed cell line to produce a chimeric antibody.
- The second part of the DNA sequence may encode:
- i) at least part, for instance the constant domain of a heavy chain, of an Ig molecule of different species, class or subclass;
- ii) at least the active portion or all of an enzyme;
- iii) a protein having a known binding specificity;
- iv) a protein expressed by a known gene but whose sequence, function or antigenicity is not known; or
- v) a protein toxin, such a ricin.
- The above Neuberger application only shows the production of chimeric antibodies in which complete variable domains are coded for by the first part of the DNA sequence. It does not show any chimeric antibodies-in which the sequence of the variable domain has been altered.
- EP-A-O 173 494 (The Board of Trustees of the Leland Stanford Junior University) also concerns the production of chimeric antibodies having variable domains from one mammalian source and constant domains from another mammalian source. However, there is no disclosure or suggestion of production of a chimeric antibody in which the sequence of a variable domain has been altered: indeed, hitherto variable domains have been regarded as indivisible units.
- The present invention, in a first aspect, provides an altered antibody in which at least part of a CDR in a light or heavy chain variable domain has been replaced by analogous part(s) of a CDR from an antibody of different specificity.
- The determination as to what constitutes a CDR and what constitutes a framework region is made on the basis of the amino-acid sequences of a number of Igs. However, from the three dimensional structure of a number of Igs it is apparent that the antigen binding site of an Ig variable domain comprises three looped regions supported on sheet-like structures. The loop regions do not correspond exactly to the CDRs, although in general there is considerable overlap.
- Moreover, not all of the amino-acid residues in the loop regions are solvent accessible and in at least one case it is known that an amino-acid residue in the framework region is involved in antigen binding. (Amit, A. G., Mariuzza, R. A., Phillips, S. E. V. and Poljak, R. J., Science, 233, 747-753, 1986).
- It is also known that the variable regions of the two parts of an antigen binding site are held in the correct orientation by inter-chain non-covalent interactions. These may involve amino-acid residues within the CDRs.
- Further, the three dimensional structure of CDRs, and therefore the ability to bid antigen, depends on the interaction with the framework regions: thus in some cases transplanting CDRs to a different framework might destroy antigen binding.
- In order to transfer the antigen binding capacity of one variable domain to another, it may not be necessary in all cases to replace all of the CDRs with the complete CDRs from the donor variable region. It may, eg, be necessary to transfer only those residues which are accessible from the antigen binding site. In addition, in some cases it may also be necessary to alter one or more residues in the framework regions to retain antigen binding capacity: this is found to be the case with reshaped antibody to
Campath 1, which is discussed below. - It may also be necessary to ensure that residues essential for inter-chain interactions are preserved in the acceptor variable domain.
- Within a domain, the packing together and orientation of the two disulphide bonded beta-sheets (and therefore the ends of the CDR loops) are relatively conserved. However, small shifts in packing and orientation of these beta-sheets do occur (Lesk, A. M. and Chothia, C., J. Mol. Biol., 160, 325-342, 1982). However, the packing together and orientation of heavy and light chain variable domains is relatively conserved (Chothia, C., Novotny, J., Bruccoleri, R. and Karplus, M., J. Mol. Biol., 186, 651-653, 1985). These points will need to be borne in mind when constructing a new antigen binding site so as to ensure that packing and orientation are not altered to the deteriment of antigen binding capacity.
- It is thus clear that merely by replacing at least part of one or more CDRs with complementary CDRs may not always result in a functional altered antibody. However, given the explanations set out above, it will be well within the competence of the man skilled in the art, either by carrying out routine experimentation or by trial and error testing to obtain a functional altered antibody.
- Preferably, the variable domains in both the heavy and light chains have been altered by at least partial CDP replacement and, if necessary, by partial framework region replacement and sequence changing. Although the CDRs may be derived from an antibody of the same species class or even subclass as the antibody from which the framework regions are derived, it is envisaged that the CDRs will generally preferably be derived from an antibody of different species and/or from an antibody of different class or subclass.
- Thus, it is envisaged, for instance, that the CDRs from a mouse antibody could be grafted onto the framework regions of a human antibody. This arrangement will be of particular use in the therapeutic use of monoclonal antibodies.
- At present, if a mouse monoclonal antibody is injected into a human, the human body's immune system recognises the antibody as foreign and produces an immune response thereto. Thus, on subsequent injections of the mouse antibody into the human, its effectiveness is considerably reduced by the action of the body's immune system against the foreign antibody. In the altered antibody of the present invention, only the CDRs of the antibody will be foreign to the body, and this should minimise side effects if used for human therapy. Although, for example, human and mouse framework regions have characteristic sequences, to a first approximation there seem to be no characteristic features which distinguish human from mouse CDRs. Thus, an antibody comprised of mouse CDRs in a human framework may well be no more foreign to the body than a genuine human antibody.
- Even with the altered antibodies of the present invention, there is likely to be an anti-idiotypic response by the recipient of the altered antibody. This response is directed to the antibody binding region of the altered antibody. It is believed that at least some anti-idiotype antibodies are directed at sites bridging the CDRs and the framework regions. It would therefore be possible to provide a panel of antibodies having the same partial or complete CDR replacements but on a series of different framework regions. Thus, once a first altered antibody became therapeutically ineffective, due to an anti-idiotype response, a second altered antibody from the series could be used, and so on, to overcome the effect of the anti-idiotype response. Thus, the useful life of the antigen-binding capacity of the altered antibodies could be extended.
- Preferably, the altered antibody has the structure of a natural antibody or a fragment thereof. Thus, the altered antibody may comprise a complete antibody, an (Fab′)2 fragment, an Fab fragment, a light chain dimer or an Fv fragment. Alternatively, the altered antibody may be a chimeric antibody of the type described in the Neuberger application referred to above. The production of such an altered chimeric antibody can be carried out using the methods described below used in conjunction with the methods described in the Neuberger application.
- The present invention, in a second aspect, comprises a method for producing an altered antibody comprising:
- a) preparing a first replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least a variable domain of an Ic framework regions consisting at least parts of framework regions from a first antibody and CDRs comprising at least part of the CDRs from a second antibody of different specificity;
- b) if necessary, preparing a second replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least the variable domain of a complementary Ig light or heavy chain respectively;
- c) transforming a cell line with the first or both prepared vectors; and
- d) culturing said transformed cell line to produce said altered antibody.
- Preferably, the cell line which is transformed to produce the altered antibody is an immortalised mammalian cell line, which is advantageously of lymphoid origin, such as a myeloma, hybridoma, trioma or quadroma cell line. The cell line may also comrpise a normal lymphoid cell, such as a B-cell, which has been immortalised by transformation with a virus, such as the Epstein-Barr virus. Most preferably, the immortalised cell line is a myeloma cell line or a derivative thereof.
- Although the cell line used to produce the altered antibody is preferably a mammalian cell line, any other suitable cell line, such as a bacterial cell line or a yeast cell line, may alternatively be used. In particular, it is envisaged thatE. Coli derived bacterial strains could be used.
- It is known that some immortalised lymphoid cell lines, such as myeloma cell lines, in their normal state secrete isolated Ig light or heavy chains. If such a cell line is transformed with the vector prepared in step a) of the process of the invention, it will not be necessary to carry out step b) of the process, provided that the normally secreted chain is complementary to the variable domain of the Ig chain encoded by the vector prepared in step a).
- In general the immortalised cell line will not secrete a complementary chain, and it will be necessary to carry out step b). This step may be carried out by further manipulating the vector produced in step a) so that this vector encodes not only the variable domain of an altered antibody light or heavy chain, but also the complementary variable domain.
- Alternatively, step b) is carried out by preparing a second vector which is used to transform the immortalised cell line.
- The techniques by which such vectors can be produced and used to transform the immortalised cell lines are well known in the art, and do not form any part of the invention.
- In the case where the immortalised cell line secretes a complementary light or heavy chain, the transformed cell line may be produced for example by transforming a suitable bacterial cell with the vector and then fusing the bacterial cell with the immortalised cell line by spheroplast fusion. Alternatively, the DNA may be directly introduced into the immortalised cell line by electroporation. The DNA sequence encoding the altered variable domain may be prepared by oligonucleotide synthesis. This requires that at least the framework region sequence of the acceptor antibody and at least the CDRs sequences of the donor antibody are known or can be readily determined. Although determining these sequences, the synthesis of the DNA from oligonucleotides and the preparation of suitable vectors is to some extent laborious, it involves the use of known techniques which can readily be carried out by a person skilled in the art in light of the teaching given here.
- If it was desired to repeat this strategy to insert a different antigen binding site, it would only require the synthesis of oligonucleotides encoding the CDRs, as the framework oligonucleotides can be re-used.
- A convenient variant of this technique would involve making a symthetic gene lacking the CDRs in which the four framework regions are fused together with suitable restriction sites at the junctions. Double stranded synthetic CDR cassettes with sticky ends could then be ligated at the junctions of the framework regions. A protocol for achieving this variant is shown diagrammatically in FIG. 6 of the accompanying drawings.
- Alternatively, the DNA sequence encoding the altered variable domain may be prepared by primer directed oligonucleotide site-directed mutagenesis. This technique in essence involves hybridising an oligonucleotide coding for a desired mutation with a single strand of DNA containing the region to be mutated and using the signle strand as a template for extension of the oligonucleotide to produce a strand containing the mutation. This technique, in various forms, is described by: Zoller, M. J. and Smith, M., Nuc. Acids Res., 10, 6487-6500, 1982; Norris, K., Norris, F., Christainsen, L. and Fiil, N., Nuc. Acids Res., 11, 5103-5112, 1983; Zoller, M. J. and Smith, M., DNA, 3, 479-488 (1984); Kramer, W., Schughart, K. and Fritz, W.-J., Nuc. Acids Res., 10, 6475-6485, 1982.
- For various reasons, this technique in its simplest form does not always produce a high frequency of mutation. An improved technique for introducing both single and multiple mutations in an M13 based vector, has been described by Carter et al. (Carter, P., Bedouelle H. and Winter, G., Nuc. Acids Res., 13, 4431-4443, 1985).
- Using a long oligonucleotide, it has proved possible to introduce many changes simultaneously (as in Carter et al., loc. cit.) and thus single oligonucleotides, each encoding a CDR, can be used to introduce the three CDRs from a second antibody into the framework regions of a first antibody. Not only is this technique less laborious than total gene synthesis, but is represents a particularly convenient way of expressing a variable domain of required specificity, as it can be simpler than tailoring an entire VH domain for insertion into an expression plasmid.
- The oligonucleotides used for site-directed mutagenesis may be prepared by oligonucleotide synthesis or may be isolated from DNA coding for the variable domain of the second antibody by use of suitable restriction enzymes. Such long oligonucleotides will generally be at least 30 bases long and may be up to or over 80 bases in length.
- The techniques set out above may also be used, where necessary, to produce the vector of part (b) of the process.
- The method of the present invention is envisaged as being of particular use in reshaping human monoclonal antibodies by introducing CDRs of desired specificity. Thus, for instance, a mouse monoclonal antibody against a particular human cancer cell may be produced by techniques well known in the art. The CDRs from the mouse monoclonal antibody may then be partially or totally grated into the framework regions of a human monoclonal antibody, which is then produced in quantity by a suitable cell line. The product is thus a specifically targetted, essentially human antibody which will recognise the cancer cells, but will not itself be recognised to any significant degree, by a human's immune system, until the anti-idiotype response eventually becomes apparent. Thus, the method and product of the present invention will be of particular use in the clinical environment.
- The present invention is now described, by way of example only, with reference to the accompanying drawings.
- In the drawings:
- FIG. 1 is a schematic diagram showing the structure of an IgG molecule,
- FIG. 2 shows the amino acid sequence of the VH domain of NEWM in comparison with the VH domain of the BI-8 antibody;
- FIG. 3 shows the amino acid and nucleotide sequence of the HuVNP gene.
- FIG. 4 shows a comparison of the results for HuVNP-IgE and MoVNP-lgE in binding inhibition assays;
- FIG. 5 shows the structure of three oligonucleotides used for site directed mutagenesis;
- FIG. 6 shows a protocol for the construction of CDR replacements by insertion of CDR cassettes into a vector containing four framework regions fused together;
- FIG. 7 shows the sequence of the variable domain of antibody D1.3 and the gene coding therefor;
- FIG. 8 shows a protocol for the cloning of the D1.3 variable domain gene;
- FIG. 9 illustrates nucleic acid and amino acid sequences of the variable domains of antibodies to Campath-1, with FIG. 9a representing the heavy chain and FIG. 9b representing the light chain;
- FIG. 10 illustrates the sequence of the HuVLLYS° gene and derived amino acid sequence;
- FIG. 11 illustrates the sequences of the HuVLLYS gene and derived amino acid sequence, with asterisks marking the CDRs;
- FIG. 12 illustrates a strategy for producing a reshaped human antibody having rat CDRs;
- FIG. 13 illustrates loop Phe 27 to
Tyr 35 in the heavy chain variable domain of the human myeloma protein KOL; - FIG. 14 illustrates the results of complement lysis and ADCC for various antibodies;
- FIG. 15 illustrates the results of complement lysis and ADCC of various further antibodies;
- FIG. 16A to D are 4 graphs of fluorescence emission spectra of mouse and humanised anti-lysozyme antibody in the presence of two equivalents of lysozyme;
- FIG. 17 is a graph illustrating spectral change at fixed wavelength as a function of lysozyme concentration on titration of antibody samples;
- FIG. 18 illustrates the plasmid for expression of the Fv fragment of a reshaped anti-lysozyme antibody;
- FIG. 19 illustrates the results of SDS acrylamide (16%) gel analysis of the Fv fragments and other units;
- FIG. 20 illustrates the results of native acrylamide (8%) gel analysis at pH 7.5 of the Fv fragments and other units; and
- FIG. 21 illustrates the results of native acrylamide (8%) gel analysis at pH4 of the Fv fragments and other units.
- This example shows the production of an altered antibody in which the variable domain of the heavy chains comprises the framework regions of a human heavy chain and the CDRs from a mouse heavy chain.
- The framework regions were derived from the human myeloma heavy chain NEWM, the crystallographic structure of which is known (see Poljak et al., loc. cit. and Bruggemann, M., Radbruch, A., and Rajewsky, K., EMBO J., 1, 629-634, 1982.)
- The CDRs were derived from the mouse monoclonal antibody B1-0.8 (see Reth et al., loc. cit.), which binds the hapten NP-cap (4-hydroxy-3-nitrophenyl acetyl-caproic acid: KNP-CAP=1.2 uM).
- A gene encoding a variable domain HuVNP′ comprising the B1-8 CDRs and the NEWM framework regions, was constructed by gene synthesis as follows.
- The amino acid sequence of the VH domain of NEWM is shown in FIG. 2, wherein it is compared to the amino acid sequence of the VH domain of the B1-8 antibody. The sequence is divided into framework regions and CDRs according to Kabat et al. (loc. cit.). Conserved residues are marked with a line.
- The amino acid and nucleotide sequence of the HuVNP gene, in which the CDRs from the B1-8 antibody alternate with the framework regions of the NEWM antibody, is shown in FIG. 3. The HuVNP gene was derived by replacing sections of the MOVNP gene in the vector pSV-VNP (see Neuberger, M. S., Williams, G. T., Mitchell, E. B., Jouhal, S., Flanagan, J. G. and Rabbitts, T. H., Nature, 314, 268-270, 1985) by a synthetic fragment encoding the HuVNP domain. Thus the 5′ and 3′ non-encoding sequences, the leader sequence, the L-V intron, five N-terminal and four C-terminal amino acids are from the MoVNP gene and the rest of the coding sequence is from the synthetic HuVNP fragment.
- The oligonucleotides from which the HuVNP fragment was assembled are aligned below the corresponding portion of the HuVNP gene. For convenience in cloning, the ends of
oligonucleotides - The HuVNP synthetic fragment was built as a PstI-Hind III fragment. The nucleotide sequence was derived from the protein sequence using the computer programme ANALYSEQ (Staden, R., Nuc. Acids. Res., 12, 521-538, 1984) with optimal codon usage taken from the sequences of mouse constant domain genes. The oligonucleotides (1 to 26b, 28 in total) vary in size from 14 to 59 residues and were made on a Biosearch SAM or an Applied Biosystems machine, and purified on 8M-urea polyacrylamide gels (see Sanger, F. and Coulson, A., FEBS Lett., 107-110, 1978).
- The oligonucleotides were assembled in eight single stranded blocks (A-D) containing oligonucleotides
- [1,3,5,7] (Block A), [2,4,6,8] (block A′), [9,11,13a,13b] (Block B), [10a, 10b,12/14] (block B′), [15,17] (block C), [16,18] (block C′), [19, 21, 23, 25] (block D) and [20, 22/24, 26a, 26b] (block D′).
- In a typical assembly, for example of block A, 50 pmole of
oligonucleotides unkinased oligonucleotides urea 10% polyacrylamide gel. A band of the expected size was detected by autoradiography and eluted by soaking. - Two full length single strands were assembled from blocks A to D and A′ to D′ using splint oligonucleotides. Thus blocks A to D were annealed and ligated in 30 ul as set out in the previous paragraph using 100 pmole of
olignucleotides oligonucleotides - After phenol/ether extraction, block A-D was annealed with block A′-D′, small amounts were cloned in the vector M13mp18 (Yanish-Perron, C., Vieria, J. and Messing, J., Gene, 33, 103-119, 1985) cut with PstI and Hind III, and the gene sequenced by the dideoxy technique (Sanger, F., Nicklen, S. and Coulson, A. R., PNAS USA, 74, 5463-5467, 1977).
- The MoVNP gene was transferred as a Hind III-BamHI fragment from the vector pSV-VNP (Neuberger et al., loc. cit.) to the vector M13 mp8 (Messing, J. and Vieria, J., Gene, 19, 269-276, 1982). To facilitate the replacement of MoVNP coding sequences by the synthetic HuVNP fragment, three Hind II sites were removed from the 5′ non-coding sequence by site directed mutagenesis, and a new Hind II site was subsequently introduced near the end of the fourth framework region (FR4 in FIG. 2). By cutting the vector with PstI and Hind II, most of the V fragment can be inserted as a PstI-Hind II fragment. The sequence at the Hind II site was corrected to NEWM FR4 by site directed mutagenesis.
- The Hind III-Bam HI fragment, now carrying the HuVNP gene, was excised from M13 and cloned back into pSV-VNP to replace the MoVNP gene and produce a vector pSV-HuVNP. Finally, the genes for the heavy chain constant domains of human Ig E (Flanagan, J. G. and Rabbitts, T. H., EMBO J., 1, 655-660, 1982) were introduced as a Bam HI fragment to give the vector pSV-HuVNP.HE. This was transfected into the mouse myeloma line J558 L by spheroplast fusion.
- The sequence of the HuVNP gene in pSV-HuVNP.HE was checked by recloning the Hind III-Bam HI fragment back into M13 mp8 (Messing et al., loc. cit.). J558L myeloma cells secrete
lambda 1 light chains which have been shown to associate with heavy chains containing the MoVNP variable domain to create a binding site for NP-cap or the related hapten NIP-Cap (3-iodo-4-hydroxy-5-nitrophenylacetyl-caproic acid) (Reth, M., Hammerling, G. J. and Rajewsky, K., Eur. J. Immunol., 8, 393-400, 1978). - As the plasmid pSV-HuVNP.HE contains the gpt marker, stably transfected myeloma cells could be selected in medium containing mycophenolic acid. Transfectants secreted an antibody (HuvNP-IgE) with heavy chains comprising a HuVNP variable domain (ie a “humanised” mouse variable region) and human epsilon constant domains, and
lambda 1 light chains from the J558L myeloma cells. - The culture supernatants of several gpt+ clones were assayed by radioimmunoassay and found to contain NIP-cap binding antibody. The antibody secreted by one such clone was purified from culture supernatant by affinity chromatography on NIP-cap Sepharose (Sepharose is a registered trade mark). A polyacrylamide-SDS gel indicated that the protein was indistinguishable from the chimeric antibody MoVNP-IgE (Neuberger et al., loc. cit.).
- The HuVNP-IgE antibody competes effectively with the MoVNP-IgE for binding to both anti-human-IgE and to NIP-cap coupled to bovine serum albumin.
- Various concentrations of HuVNP-IgE and MoVNP-IgE were used to compete with the binding of radiolabelled MoVNP-IgE to polyvinyl microtitre plates coated with (a) Sheep anti-human-IgE antiserum (Seward Laboratories); (b) NIP-cap-bovine serum albumin; (c) Ac38 anti-idiotypic antibody; (d) Ac 146 anti-idiotypic antibody; and (e) rabbit anti-MoVNP antiserum. Binding was also carried out in the presence of MoVNP-IgM antibody (Neuberger, M. S., Williams, G. T. and Fox, R. O., Nature, 312, 604-608, 1984) or of JW5/1/2 which is an IgM antibody differing from the MoVNP-IgM antibody at 13 residues mainly located in the VH CDR2 region.
- The results of the binding assays are shown in FIG. 4, wherein black circles represent HuVNP′ white circles MoVNP′ black squares MoVNP-IgM and white squares JW5/1/2. Binding is given relative to the binding in the absence of the inhibitor.
- The affinities of HuVNP-IgE for NP-cap and NIP-cap were then measured directly using the fluorescence quench technique and compared to those for MoVNP-IgE, using excitation at 295 nm and observing emission at 340 nm (Eisen, H. N., Methods Med. Res., 10, 115-121,1964).
- Antibody solutions were diluted to 100 nM in phosphate buffered saline, filtered (0.45 um pore cellulose acetate) and titrated with NP-cap in the range 0.2 to 20 uM. As a control, mouse DI-3 antibody (Mariuzza, R. A., Jankovic, D. L., Bulot, G., Amit, A. G., Saludjian, P., Le Guern, A., Mazie, J. C. and Poljak, R. J., J. Mol. Biol., 170, 1055-1058, 1983), which does not bind hapten, was titrated in parallel.
- Decrease in the ratio of the fluorescence of HuVNP-IgE or HuvNP-IgE to the fluorescence of the D1-3 antibody was taken to be proportional to NP-cap occupancy of the antigen binding sites. The maximum quench was about 40% for both antibodies, and hapten dissociation constants were determined from least-squares fits of triplicate data sets to a hyperbola.
- For NIP-cap, hapten concentration varied from 10 to 300 nM, and about 50% quenching of fluorescence was observed at saturation. Since the antibody concentrations were comparable to the value of the dissociation constants, data were fitted by least squares to an equation describing tight binding inhibition (Segal, I. H., in “Enzyme Kinetics”, 73-74, Wiley, New York, 1975).
- The binding constants obtained from these data for these antibodies are shown in Table 1 below.
TABLE 1 KNP-cap KNIP-cap MoVNP-IgE 1.2 uM 0.02 uM HuVNP-IgE 1.9 uM 0.07 uM - These results show that the affinities of these antibodies are similar and that the change in affinity is less than would be expected for the loss of a hydrogen bond or a van der Waals contact point at the active site of an enzyme.
- Thus, it has been shown that it is possible to produce an antibody specific for an artificial small hapten, comprising a variable domain having human framework regions and mouse CDRs, without any significant loss of antigen binding capacity.
- As shown in FIG. 4(d), the HuV IgE antibody has lost the MoVNP idiotypic determinant recognised by the antibody Acl46. Furthermore, HuVNP-IgE also binds the Ac38 antibody less well (FIG. 4(c)), and it is therefore not surprising that HuVNP-IgE has lost many of the determinants recognised by the polyclonal rabbit anti-idiotypic antiserum (FIG. 4(e)).
- It can thus be seen that, although the HuVNP-IgE antibody has acquired substantially all the antigen binding capacity of the mouse CDRs, it has not acquired any substantial proportion of the mouse antibody's antigenicity.
- The results of FIGS.4(d) and 4(e) carry a further practical implication. The mouse (or human) CDRs could be transferred from one set of human frameworks (antibody 1) to another (antibody 2). In therapy, anti-idiotypic antibodies generated in response to
antibody 1 might well bind poorly toantibody 2. Thus, as the anti-idiotyic response starts to neutraliseantibody 1 treatment could be continued withantibody 2, and the CDRs of a desired specificity used more than once. - For instance, the oligonucleotides encoding the CDRs may be used again, but with a set of oligonucleotides encoding a different set of framework regions.
- The above work has shown that antigen binding characteristics can be transferred from one framework to another without loss of activity, so long as the original antibody is specific for a small hapten.
- It is known that small haptens generally fit into an antigen binding cleft. However, this may not be true for natural antigens, for instance antigens comprising an epitopic site on a protein or polysaccharide. For such antigens, the antibody may lack a cleft (it may only have a shallow concavity), and surface amino acid residues may play a significant role in antigen binding. It is therefore not readily apparent that the work on artificial antigens shows conclusively that CDR replacement could be used to transfer natural antigen binding properties.
- Therefore work was carried out to see if CDR replacement could be used for this purpose. This work also involved using primer-directed, oligonucleotide site-directed mutagenesis using three synthetic oligonculeotides coding for each of the mouse CDRs and the flanking parts of framwork regions to produce a variable domain gene similar to the HuVNP gene.
- The three dimensional structure of a complex of lysozyme and the antilysozyme antibody D1.3 (Amit et al., loc. cit.) was solved by X-ray crystallography. There is a large surface of interaction between the antibody and antigen. The antibody has two heavy chains of the mouse IgG1 class (H) and two Kappa light chains (K), and is denoted below as H2K2.
- The DNA sequence of the heavy chain variable region was determined by making cDNA from the mRNA of the D1.3 hybridoma cells, and cloning into plasmid and M13 vectors. The sequence is shown in FIG. 7, in which the boxed residues comprise the three CDRs and the asterisks mark residues which contact lysozyme.
- Three synthetic oligonucleotides were then designed to introduce the D1.3 VHCDRs in place of the VHCDRs of the HUVNP gene. The HuNP gene has been cloned into M13 mp8 as a BamHI-Hind III fragment, as described above. Each oligonucleotide has 12 nucleotides at the 5′ end and 12 nucleotides at the 3′ end which are complementary to the appropriate HuVNP framework regions. The central portion of each oligonucleotide encodes either CDR1, CDR3, or CDR3 of the D1.3 antibody, as shown in FIG. 5, to which reference is now made. It can be seen from this Figure that these oligonucleotides are 39, 72 and 48 nucleotides long respectively.
- 10 pmole of D1.3 CDR1 primer phosphorylated at the 5′ end and annealed to lug of the M13-HuV template and extended with the Klenow fragment of DNA polymerase in the presence of T4 DNA ligase. After an oligonucleotide extension at 15° C., the sample was used to transfectE. Coli strain BHM71/18 mutL and plaques gridded and grown up as infected colonies.
- After transfer to nitrocellulose filters, the colonies were probed at room temperature with 10 pmole of D1.3 CDR1 primer labelled at the 5′ end with 30 μCi32P-ATP. After a 3″ wash at 60° C., autoradiography revealed about 20% of the colonies had hybrdidised well to the probe. All these techniques are fully described in “Oligonucleotide site-directed mutagenesis in M13” an experimental manual by P. Carter, H. Bedouelle, M. M. Y. Waye and G. Winter 1985 and published by Anglian Biotechnology Limited, Hawkins Road, Colchester, Essex CO2 8JX. Several clones were sequenced, and the replacement of HuVNP CDR1 by D 1.3 CDR1 was confirmed. This M13 template was used in a second round of mutagenesis with D1.3 CDR2 primer; finally template with both CDRs 1&2 replaced was used in a third round of mutagenesis with D1.3 CDR3 primer. In this case, three rounds of mutganesis were used.
- The variable domain containing the D1.3 CDRs was then attached to sequences encoding the heavy chain constant regions of human IgG2 so as to produce a vector encoding a heavy chain Hu*. The vector was transfected into J558L cells as above. The antibody Hu*2L2 is secreted.
- For comparative purposes, the variable region gene for the D1.3 antibody was inserted into a suitable vector and attached to a gene encoding the constant regions of mouse IgG1 to produce a gene encoding a heavy chain H* with the same sequence as H. The protocol for achieving this is shown in FIG. 8.
- As shown in FIG. 8, the gene encoding the D1.3 heavy chain V and
C H1 domains and part of the hinge region are cloned into the M13 mp9 vector. - The vector (vector A) is then cut with NcoI, blunted with Klenow polymerase and cut with PstI. The PStI-NcoI fragment is purified and cloned into PstI-HindII cut MVNP to replace most of the MVNP coding sequences. The MVNP vector comprises the mouse variable domain gene with its promoter, 5′ leader, and 5′ and 3′ introns cloned into M13 mp9. This product is shown as vector B in FIG. 8.
- Using site directed mutagenesis on the single stranded template of vector B with two primers, the sequence encoding the N-terminal portion of the
C H1 domain and the PstI site near the N-terminus of the V domain are removed. Thus the V domain of D1.3 now replaces that of VNP to produce vector C of FIG. 8. - Vector C is then cut with HindIII and BamHI and the fragment formed thereby is inserted into HindIII/BamHI cut M13 mp9. The product is cut with Hind III and SacI and the fragment is inserted into PSV-VNP cut with Hind III/SacI so as to replace the VNP variable domain with the D1.3 variable domain. Mouse IgG1 constant domains are cloned into the vector as a SacI fragment to produce vector D of FIG. 8.
- Vector D of FIG. 8 is transfected into J558L cells and the heavy chain H* is secreted in association with the lambda light chain L as an antibody H*2L2.
- Separated K or L light chains can be produced by treating an appropriate antibody (for instance D1.3 antibody to produce K light chains) with 2-mercaptoethanol in guanidine hydrochloride, blocking the free interchain sulphydryls with iodoacetamide and separating the dissociated heavy and light chains by HPLC in guanidine hydrochloride.
- Different heavy and light chains can be reassociated to produce functional antibodies by mixing the separated heavy and light chains, and dialysing into a non-denaturing buffer to promote re-association and refolding. Properly reassociated and folded antibody molecules can be purified on protein A-sepharose columns. Using appropriate combinations of the above procedures, the following antibodies were prepared.
H2K2 (D1.3 antibody) H*2L2 (D1.3 heavy chain, lambda light chain) H*2K2 (recombinant equivalent of D1.3) Hu*2L2 (“humanised” D1.3 heavy chain, lambda light chain) Hu*2K2 (“humanised” D1.3) - The antibodies containing the lambda light chains were not tested for antigen binding capacity. The other antibodies were, and the results are shown in Table 2.
TABLE 2 Dissociation constant Antibody for lysozyme (nM) D1.3 (H2K2) 14.4 D1.3 (H2K2) 15.9, 11.4 (reassociated) recombinant D1.3 (H*2K2) 9.2 (reassociated) “humanised” D1.3 (Hu*2K2) 3.5, 3.7 (reassociated) - The affinity of the antibodies for lysozyme was determined by fluroresecent quenching, with excitation at 290 nm and emission observed at 340 nm. Antibody solutions were diluted to 15-30 ug/mg in phosphate buffered saline, filtered (0.45 um-cellulose acetate) and titrated with hen eggwhite lysozyme. There is quenching of fluoresence on adding the lysozyme to the antibody (greater than 100% quench) and data were fitted by least squares to an equation describing tight binding inhibition (I. H. Segal in Enzyme Kinetics, p73-74, Wiley, New York 1975). This data suggests that the binding of the “humanised” antibody to lysozyme is tighter than in the original D1.3 antibody. Subsequent results suggest that the affinities of the “humanised” and mouse antibodies are both less than 5 nM with 2 mol of lysozyme molecules binding 1 mol of antibody: see Verhoeyen, M., Milstein, C. and Winter, G., Science, 239, 1534-1536 (1988). Although the work described in Verhoeyen et al. suggests that the reshaped antibody may have a weaker affinity for lysozyme than the original mouse antibody it is clear that the “humanised” antibody binds lysozyme effectively and with a comparable affinity to D1.3. (within a factor of 10).
- Further work on fully “humanised” antibody to lysozyme is discussed below, in Example 4.
- Further work has been carried out with an antibody to the antigen Campath-1, which is potentially of great therapeutic use, in which both light and heavy chain variable domains were reshaped. In this case, transfer of the CDRs only resulted in production of a reshaped antibody which bound poorly to the antigen as compared with the original antibody. A single mutation in the framework produced greatly enhanced binding affinity.
- The Campath-1 antigen is strongly expressed on virtually all human lymphocytes and monocytes, but is absent from other blood cells including the hemopoietic stem cells (Hale, G., Bright, S., Chumbley, G., Hoang, T., Metcalf, D., Munro, A. J. & Waldmann, H. Blood 62,873-882 (1983)). A series of antibodies to Campath-1 have been produced, including rat monoclonal antibodies of IgM, IgG2a, and IgG2c isotypes (Hale, G., Hoang, T., Prospero, T., Watts, S. M. '& Waldmann, H. Mol. Biol. Med. 1,305-319 (1983)) and more recently IgG1 and IgG2b isotypes have been isolated as class switch variants from the IgG2a secreting cell line YTH 34.5HL (Hale, G., Cobbold, S. P., Waldmann, H., Easter, G., Matejtschuk, P. '& Coombs, R. R. A. J. Immunol. Meth. 103, 59-67 (1987)). All of these antibodies with the exception of the rat Ig.G2c isotype are able to lyse efficiently human lymphocytes with human complement.
- In addition, the IgG2b antibody YTH 34.5HL-G2b, but not the other isotypes, is effective in antibody dependent cell mediated cytotoxicity (ADCC) with human effector cells (Hale et al, 1987, loc. cit.). These rat monoclonal antibodies have found important application in the context of immunosuppression, for control of graft-versus-host disease in bone marrow transplantation (Hale et al, 1983, loc. cit.); the management of organ rejection (Hale, G., Waldmann, H., Friend, P. '& Calne, R. Transportation 42,308-311 (1986)); the prevention of marrow rejection and in the treatment of various lymphoid malignancies (Hale, G., Swirsky, D. M., Hayhoe, F. G. J. & Waldmann, H. Mol. Biol. Med. 1,321-334 (1983)). For in-vivo use, the IgG2b antibody YTH 34.5HL-G2b seems to be the most effective at depleting lymphocytes, but the use of any of the antibodies in this group is limited by the antiglobulin response which can occur within two weeks of the initiation of treatment (Hale, Swirsky et al, 1983, loc. cit.).
- The sequences of the heavy and light chain variable domains of rat IgG2a Campath-1 antibody YTH 34.5HL were determined by cloning the cDNA (FIG. 9), and the hypervariable regions were identified according to Kabat et al, loc. cit. Sequence information is given in the lower lines of FIG. 9, with the CDRs identified in boxes.
- In the heavy chain variable domain there is an unusual feature in the framework region. In most known heavy chain sequences Pro(41) and Leu(45) are highly conserved: Pro(41) helps turn a loop distant from the antigen binding site and Leu(45) is in the beta bulge which forms part of the conserved packing between heavy and light chain variable domains (Chothia, C., Novotny, J., Bruccoleri, R. '& Karplus, M. J. Mol. Biol. 186, 651-663 (1985)). In YTH 34.5HL these residues are replaced by Ala(41) and Pro(45), and presumably this could have some effect on the packing of the heavy and light chain variable domains.
- Working at the level of the gene and using three large mutagenic oligonucleotides for each variable domain, in a single step the hypervariable regions of YTH 34.5HL were mounted on human heavy or light chain framework regions taken from the crystallographically solved proteins NEW for the heavy chain (Saul, F. A., Amzel, M. '& Poljak, R. J. J. Biol. Chem. 253,585-597 (1978)) and from a protein based closely on the human myeloma protein REI for the light chain (Epp, 0., Colman, P., Fehlhammer, H., Bode, W., Schiffer, M. '& Huber, R. Eur. J. Biochem. 45,513-524 (1974)). The NEW light chain was not used because there is a deletion at the beginning of the third framework region of the NEW light chain. The resulting reshaped heavy chain variable domain HuVHCAMP is based on the HuVHNP gene (Kabat et al, loc. cit. and Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. '& Winter, G. Nature 321, 522-525 (1986)) with the framework regions of human NEW alternating with the hypervariable regions of rat YTH 34.5HL. The reshaped light chain variable domain HuVLCAMP is a similar construct, except with essentially the framework regions of the human myeloma protein REI, with the C-terminal and the 3′ non-coding sequence taken from a human Jk-region sequence (Hieter, P. A., Max, E. E., Seidmann, J. G., Maizel, J. V. Jr '& Leder, P. Cell 22,197-207 (1980)). Sequence information for the variable domain of the reshaped antibody is given in the upper lines in FIG. 9. The sequences of oligonucleotide primers are given and their locations on the genes are also marked in FIG. 9.
- Considering the above in further detail, mRNA was purified (Kaartinen, M., Griffiths, G. M., Hamlyn, P. H., Markham, A. F., Karjalainen, K., Pelkonen J. L. T., Makela, O. '& Milstein, C. J. Immunol. 130,320-324 (1983)) from the hybridoma clone YTH 34.5HL (gamma 2a, kb), and first strand cDNA made by priming with oligonucleotides complementary to the 5′ end of the CH1 (oligonucleotide I) and the Ck exons (oligonucleotide II). cDNA was cloned and sequenced as described in Gubler, U. '& Hoffman, B. J.
Gene 25, 263-269 (1983) and Sanger, F., Nicklen, S. A. '& Coulson, A. R. Proc. natl. Acad. Sci USA 74, 5463-5467 (1977). - For expression of the rat heavy chain variable domain RaVHCAMP, two restriction sites (XbaI and SalI) were introduced at each end of the cDNA clone in M13 using mutagenic oligonucleotides III and V respectively, and the XbaI-SalI fragment excised. Simultaneously, the corresponding sites were introduced into the M13-HuVHNP gene using oligonucleotides IV and VI, and the region between the sites exchanged. The sequence at the junctions was corrected with oligonucleotides VII and VIII, and an internal BamHI site removed using the oligonucleotide IX, to create the M13-RaVHCAMP gene. The encoded sequence of the mature domain is thus identical to that of YTH 34.5HL.
- The reshaped heavy chain variable domain (HuVHCAMP) was constructed in an M13 vector by priming with three long oligonucleotides simultaneously on the single strand containing the M13-HuVHNP gene (see Kabat et al, loc. cit and Jones et al, loc. cit).). The mutagenesis techniques used were similar to those described in Carter et al loc. cit, using the host 71-18 mutL and without imposing strand selection. Each oligonucleotide (X, XI and XII) was designed to replace each of the hypervariable regions with the corresponding region from the heavy chain of the YTH 34.5HL antibody.
- Colony blots were probed initially with the oligonucleotide X and hybridisation positives were sequenced: the overall yield of the triple mutant was 5%. Ser27 to Phe and Ser27 to Phe, Ser30 to Thr mutants (to be described below) of M13 mpB-HuVHCAMP were made with the mixed oligonucleotide XIII.
- The reshaped light chain variable domain (HuVLCAMP) was constructed in an M13 vector from a gene with framework regions based on human REI. As above, three long oligonucleotides (XIV, XV, and XVI) were used to introduce the hypervariable regions of the YTH 34.5HL light chain.
- Construction of the humanised light chain variable domain is described in greater detail in the following seven paragraphs.
- (1) The “humanised” light chain variable domain (HuVLCAMP) was constructed in three stages, utilising a “humanised” light chain variable domain (HuVLLYS) which had been constructed for other purposes.
- (a) The first stage involved the gene synthesis of a “humanised” light chain variable domain gene (HuVLLYS°). The HuVLLYS° gene incorporates human framework regions identical to the most common residue in each position in the Kabat alignment of the human kappa subgroup I, except for residues 97-108, which were identical to those in the human J1 fragment described in Heiter, P., Maizel, J '& Leder, P. J. Biol. Chem. 257, 1516-1522 (1982). The sequences of the framework regions are very similar to the crystallographically solved light chain structure REI. The CDRs in HuVLLYS° were identical to those in the mouse antilysozyme antibody (D1.3) light chain (unpublished). A 30 bp sequence, identical to the sequence following the genomic JI segment, was introduced to the 3′ side of
residue 108. BamH1 and EcoRI restriction sites were introduced at the 3′ end of the synthetic gene, and a PstI site atth 5′ end. The gene synthesis of HuVLLYS° is described in paragraphs (2) to (5) below, and the sequence of the gene and the derived amino acid sequence is given in FIG. 10. - (b) The second stage involved the introduction of the HuVLLYS° gene in place of the heavy chain variable domain in the vector M13-MOVHNP and this is described in
paragraphs - (c) The third stage involved the conversion of HuVLLYS to a “humanised” light chain variable domain with the CDRs of Campath-1 specifity.
- 2. For the synthesis of the HuVLLYS° gene, three blocks of oligonucleotides (PK1-5, KK1-5 and KE1-8 in the table in
paragraph 3 below were cloned separately into M13 vectors, and sequenced. Each cloned block was excised and ligated together into M13 mp19 to create the HuVLLYS° gene. - 3. Oligonucleotides listed below were produced on an Applied Biosystems 380B synthesizer. Each oligonucleotide was size-purified, 10 nmol being subjected to electrophoresis on a 20×40
cm 12% polyacrylamide, 7M urea gel, eluted from the gel by dialysis against water, and lyophilized. For gene synthesis or mutagenesis, a 50 pmol aliquot of each purified oligonucleotide was phosphorylated in a 20 ul reaction mixture with 50 mM Tris-Cl (pH 8.0), 10mM MgCl 1 5 mM dithiothreitol, 1 mM ATP, and 5 units of polynucleotide kinase, incubated at 37° for 30 minutes. When used as hybridization probes, gel-purified oligonucleotides were phosphorylated in a similar fashion, except on a 15 pmol scale with an excess of 32P labeled ATP.name sequence (5′-3′) PK1 GACATCCAGATGACCCAGAGCCCAAGCAGCCTGAGCGCCAGCGTG GGT PK2 GACAGAGTGACCATCACCTGTAGAGCCAGCGGTAACATCCACAAC TACCTGGCTTGGTAC PK3 CAAGCCAGGTAGTTGTGGATGTTACCGCTGGCTCTACAGGTGAT PK4 GGTCACTCTGTCACCCACGCTGGCGCTCAGGCT PK5 GCTTGGGCTCTGGGTCATCTGGATGTCTGCA KK1 CAGCAGAAGCCAGGTAAGGCTCCAAAGCTGCTGATCTACTACACC ACCA KK2 CCCTGGCTGACGGTGTGCCAAGCAGATTCAGCGGTAGCGGTAGCG GTAC KK3 CGCTACCGCTACCGCTGAATCTGCT KK4 TGGCACACCGTCAGCCAGGGTGGTGGTGTAGTAGATCAGC KK5 AGCTTTGGAGCCTTACCTGGCTTCTGCTGGTAC KE1 CGACTTCACCTTCACCATCAGCAGCCTCCAGCCAGAGGACATCGC CACCTACTACTGCC KE2 AGCACTTCTGGAGCACCCCAAGGACGTTCGGCCAAGGGACCAAGG TGGA KE3 AATCAAACGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGGATC CTAG KE4 AATTCTAGGATCCAACTGAGGAAGCAAAGTTTAAA KE5 TTCTACTCACGTTTGATTTCCACCTTGGTCCCTT KE6 GGCCGAACGTCCTTGGGGTGCTCCAGAAGTGCTGGCAGTAGTAG KE7 GTGGCGATGTCCTCTGGCTGGAGGCT KE8 GCTGATGGTGAAGGTGAAGTCGGTAC PK0 TCATCTGGATGTCGGAGTGGACACCT - 4. The construction of individual blocks is described for the PK1-5 block, but KK1-5 and KE1-8 blocks were cloned as KpnI-KpnI and KpnI-EcoRI fragments respectively in a similar way. 4 ul portions of each oligonucleotide PK1, PK2, PK3, PK4 and PK5, kinased as in
paragraph 3, were combined and annealed at 80° C. for 5 minutes, 67° C. for 30 minutes, and allowed to cool to room temperature over the span of 30 minutes, 0.1 ul of this annealing mix was ligated with 20 ng of PstI/KpnI digested M13-mp19, in 10ul 50 mM Tris-Cl (pH7.5), 10 mM MgCl2, 10 mM dithiothreitol, 1 mM ATP, 120 units T4 DNA ligase (Biolabs), and incubated 12 hours at 15° C. The ligation mix was used to transfect competent E. coli strain BMH 71-18, plated with BCIG and IPTG, and a clone containing the complete PstI-KpnI insert was identified. - 5. The three cloned blocks were excised from 10 ug double-stranded replicative form of the thee M13 vectors, by digestion with PstI/KpnI (block PK1-5), KpnI (block KKI-5) and KpnI/EcoRI (block KE1-8). The inserts were separated from the vector by electrophoresis on a 20×20
cm 12% polyacrylamide gel, eluted from the gel slices with 0.5 M NH4OAc, 10 mM Mg (OAc)21 0.1 mM EDTA, 0.1% SDS, and purified by phenol extraction and ethanol precipitation. All three fragments were ligated to PstI/EcoRI cut M13-mp19. 200 white plaques were transferred by toothpick to a fresh 2×TY plate, and grown as a grid of infected colonies. The plate was blotted with nitrocellulose filters, which were then treated with 0.5 M NaOH, followed by 1M Tris-Cl (pH7.5), and baked 1 hr at 80° C. under vacuum. The filters were washed at 67° C. in 3× Denhardt's solution, 2×SSC, 0.07% SDS, followed by 6×SSC at room temperature. Filters were then probed with the radiolabeled oligonucleotides KK3 or kK4 in 3 ml of 6×SSC at 37°. Following hybridization with both olignucleotides, positive colonies were picked for DNA sequencing. A phage clone containing correctly assembled blocks was designated M13-HuVLLYS°. - 6. To introduce the-HuVLLYS° gene in place of the heavy chain variable domain in the vector M13-MOVHNP (described in Jones et al, loc. cit) as MV with HindIII site at the 3′ end of the reading frame), double-stranded replicative form DNA of phages M13-HuVLLYS° and M13-MOVHNP were prepared and digested with PstI and BamHI. The insert of M13-HuVLLYS was isolated on a polyacrylamide gel, and the vector portion of M13-MOVHNP was isolated on an agarose gel. The purified fragments were ligated and transfected intoE. coli strain BMH71-18, and the resulting plaques probed with oligonucleotide KK3 to identify the insert. The clone was designated M13-HuVLLYS*.
- 7. In the M13-HuVLLYS* gene, to join the signal sequence of MOVHNP correctly to the 5′ end of the HuVLLYS° gene (at the PstI site), single stranded DNA was prepared and altered by oligonucleotide directed mutagenesis with the primer PKO—see paragraph (3) for sequence. The mutant clone was designated M13-HuVLLYS.
- As previously mentioned the Campath-1 light chain variable domain was derived from the HuVLLYS domain, and the reshaped human heavy (HuVHCAMP) and light (HuVLCAMP) chain variable domains were then assembled with constant domains in three stages as illustrated in FIG. 12. In FIG. 12 sequences of rat origin are marked in black, and those of human origin in white. The recombinant heavy and light chains are also marked using a systematic nomenclature.
- The illustrated procedure permits a step-wise check on the reshaping of the heavy chain variable domain (stage 1), the selection of the human isotype (stage 2), and the reshaping of the light chain variable domain and assembly of human antibody (stage 3). The vector constructions were genomic, with the variable domains excised from the M13 vectors and cloned as HindIII-BamHI fragments and the constant domains as BamHI-BamHI fragments in either pSVgpt (heavy chain) (Mulligan, R. C. '& Berg, P. Proc. natl. Acad. Sci USA 78,2072-2076 (1981)) or pSVneo (light chain) (Southern, P. J. '& Berg, P. J. Mol. Appl. Genetics 1,327-341 (1981)) vectors. The heavy chain enhancer was included to the 5′ side of the variable domain, and expression of both light and heavy chains was driven from heavy chain promoter and the heavy chain signal sequence.
- The human gamma 1 (Takahashi, N., Ueda, N. S., Obata, M., Nikaido, T. & Honjo, T. Cell 29,671-679 (1982)), gamma 2 (Flanagan, J. G. & Rabbits, T. H. Nature 300,709-713 (1982)), gamma 3 (Huck, S., Fort, P., Crawford, D. H., Lefranc, M.-P. & Lefranc, G. Nucl. Acid Res. 14,1779-1789 (1986), gamma 4 (Clark, M. & Waldmann, H. J. N. C. I. (in press) and K (Heiter et al, loc. cit) constant domains, and the rat gamma 2b (Bruggemann, M., Free, J., Diamond, A., Howard, J., Cobbold, S. & Waldmann, H. Proc. natl.
Acad. Sci. USA 83,6075-6079 (1986)) constant domains were introduced as BamHI-BamHI fragments. The following plasmids were constructed and transfected into lymphoid cell lines by electroporation (Potter, H., Weir, L. & Leder, P. Proc. natl. Acad. Sci. USA 81,7161-7163 (1984)). Instage 1, the pSVgpt vectors HuVHCAMP-RaIgG2B, and also two mutants for reasons to be explained below, HuVHCAMP(Ser27 to Phe)-RaIgG2B, HuVHCAMP(Ser27 to Phe, Ser30 to Thr)-RaIgG2B) were introduced into the heavy chain loss variant of YTH34.5HL. Instage 2, the pSVgpt vectors RaVHCAMP-RaIgG2B, RaVHCAMP-HuIgG1, RaVHCAMP-HuIgG2, RaVHCAMP-HuIgG3, RaVHCAMP-HuIgG4 were transfected as described above. Instage 3, the pSV-gpt vector Hu(Ser27-Phe, Ser30-Thr)VHCAMP-HuIgG1 was cotransfected with the pSV-neo vector HuVLCAMP-HuIgK into the rat myeloma cell line Y0 (Y B2/3.0 Ag 20) (Galfre, G. & Milstein, C. Meth. Enzymol. 73,1-46 (1981)). In each of the three stages, clones resistant to mycophenolic acid were selected and screened for antibody production by ELISA assays. Clones secreting antibody were subcloned by limiting dilution (for Y0) or the soft agar method (for the loss variant) and assayed again before 1 litre growth in roller bottles. - Heavy Chain Variable Domain
- In
stage 1, the reshaped heavy chain variable domain (HuVHCAMP) was attached to constant domains of the rat isotype IgG2b and transfected into a heavy chain loss variant of the YTH34.5 hybridoma. The loss variant carries two light chains, one derived from the Y3 fusion partner (Galfre et al., loc. cit). The cloned rat heavy chain variable domain (RaVHCAMP) was also expressed as above. - Antibodies were harvested at stationary phase and concentrated by precipitation with ammonium sulphate, followed by ion exchange chromatography on a Pharmacia MonoQ column. The yields of antibody were measured by an ELISA assay directed against the rat IgG2b isotype, and each adjusted to the same concentration (Clark and Waldmann loc. cit).
- The HuVHCAMP and RaVHCAMP antibodies—all of the rat IgG2b isotype—were compared in a direct binding assay to the Campath-1 antigen (obtained from a glycolipid extract from human spleen), and also in complement lysis of human lymphocytes. For measuring the binding to antigen, the partially purified Campath-1 antigen was coated onto microtitre wells. Bound antibody was detected via a biotin labelled anti-rat IgG2b monoclonal antibody (Clark & Waldmann loc. cit), developed with a streptavidin-peroxidase conjugate (Amersham plc). Complement lysis of human lymphocytes with human serum as the complement source was as described in Hale, Hoang et al (1983) loc. cit. For both binding and complement assays, the titres for the antibodies were determined by fitting the data to a sigmoid curve by a least squares iterative procedure (Hale, Hoang et al (1983) loc. cit), and the concentration of antibody giving 50% maximal binding or lysis was noted.
- The results are given in Table 3.
TABLE 3 Reshaping the heavy chain variable domain Concentration of antibody in ug/ml at 50% binding or lysis heavy chain variable antigen complement domain binding lysis RaVHCAMP 0.7 2.1 HuVHCAMP 27.3 (*) HuVHCAMP (Ser27 to Phe) 1.8 16.3 HuVHCAMP (Ser27 to Phe, Ser30 to Thr) 2.0 17.6 - Compared with the original rat antibody, or the engineered equivalent, the antibody with the reshaped heavy chain domain HuVHCAMP bound poorly to the Campath-1 antigen and was weakly lytic. This suggested an error in the design of the reshaped domain.
- There are several assumptions underlying the transfer of hypervariable loops from one antibody to another, and in particular that the antigen binds mainly to the hypervariable regions. These are defined as regions of sequence (Kabat et al, loc. cit) or structural (Chothia, C. & Lesk, A. J. Mol. Biol. 196,901-917 (1987)) hypervariability, and the locations of hypervariable regions are similar by either criterion, except for the first hypervariable loop of the heavy chain. By sequence the first hypervariable loop extends from
residues 31 to 35 (Kabat et al, loc. cit) and by structure from residues 26 to 32 (Chothia et al, (1987) loc. cit).Residues 29 and 30 form part of the surface loop, and residue 27 which is phenylalanine or tyrosine in most sequences including YTH34.5HL, helps pack against residues 32 and 34. - By way of illustration, see FIG. 13 which illustrates loop Phe27 to Tyr35 in the heavy chain variable domain of the human myeloma protein KOL which is crystallographically solved (Marquardt, M., Deisenhofer, J., Huber, R. & Palm, W. J. Mol. Biol. 141,368-391 (1980)). The backbone of the hypervariable region according to Kabat et al, (loc. cit.) is highlighted, and a 200% van der Waal surface is thrown around Phe27 to show the interactions with Tyr32 and Met34 of the Kabat hypervariable region. In the rat YTH34.5HL heavy chain, these three side chains are conserved, but in HuVHCAMP, Phe27 is replaced by Ser: this is because, unlike most human heavy chains, in NEW the phenylalanine is replaced by serine, which would be unable to pack in the same way as phenylalanine. To restore the packing of the loop, a Ser(27) to Phe mutation was made in HuVHCAMP, and also a double mutation Ser(27) to Phe, Ser(30) to Thr (as mentioned above).
- The two mutants showed a significant increase in binding to CAMPATH-1 antigen and lysed human lymphocytes with human complement. See the results given in Table 3. Thus the affinity of the reshaped antibody could be restored by altering the packing between the hypervariable regions and the framework by a single Ser(27) to Phe mutation. This suggests that alterations in the “Kabat” framework region can enhance the affinity of the affinity of the antibody, and extends previous work in which an engineered change in the hypervariable region yielded an antibody with increased affinity (Roberts, S., Cheetham, J. C. & Rees, A. R. Nature 328,731-734 (1987)).
- Heavy Chain Constant Domains
- In stage 2 (FIG. 12), the rat heavy chain variable domain was attached to constant domains of the human isotypes IgG1, 2, 3, and 4, and transfected into the heavy chain loss variant of the YTH34.5 hybridoma.
- Antibody was harvested from cells in stationary phase, concentrated by precipitation with ammonium sulphate and desalted into phosphate buffered saline (PBS). Antibodies bound to the Campath-1 antigen coated on microtitre plates, were assayed in ELISA directed against the rat k light chain (Clark & Waldmann loc cit), and adjusted to the same concentration. The antibodies were assayed in complement lysis (as described above) and ADCC with activated human peripheral blood mononuclear cells (Clark & Waldmann loc. cit and Hale, G. Clark, M. & Waldmann, H. J. Immunol. 134,3056-3061 (1985)). Briefly, 5×104 human peripheral blood cells were labelled with 51Cr and incubated for 30 minutes at room temperature with different concentrations of antibody. Excess antibody was removed and a 20 fold excess of activated cells added as effectors. After 4 hours at 37° C. death was estimated by 51Cr release.
- The results are shown in FIG. 14, in which the results for rat heavy chain variable domain attached to different human isotypes are represented as follows:
IgG1 empty squares IgG2 empty circles IgG3 solid squares IgG4 empty triangles - Results of lysis with the antibody YTH34.5HL are represented by solid circles.
- In complement lysis (FIG. 14a), the human IgG1 isotype proved similar to the YTH34.5HL-G2b, with the human IgG3 isotype less effective. The human IgG2 isotype was only weakly lytic and the IgG4 isotype non-lytic. In ADCC (FIG. 14b) the human IgG1 was more lytic than the YTH34.5HL-G2b antibody. The decrease in lysis at higher concentration of the rat IgG2b and the human IgG1 antibody is due to an excess of antibody, which causes the lysis of effector cells. The human IgG3 antibody was weakly lytic, and the IgG2 and IgG4 isotypes were non-lytic.
- The human IgG1 isotype was therefore suitable for a reshaped antibody for therapeutic use. Other recent work also suggests the IgG1 isotype as favoured for therapeutic application. When the effector functions of human isotypes were compared using a set of chimaeric antibodies with an anti-hapten variable domain, the IgG1 isotype appeared superior to the IgG3 in both complement and cell mediated lysis (Bruggemann, M., Williams, G. T., Bindon, C., Clark, M. R., Walker, M. R., Jefferis, R., Waldmann, H. & Neuberger, M. S. J. Exp. Med. (in press). Furthermore, of two mouse chimaeric antibodies directed against cell surface antigens as tumour cell markers, with human IgG1 or IgG3 isotypes, only the IgG1 isotype mediated complement lysis (Liu, A. Y., Robinson, R. R., Hellstrom, K. E., Murray, E. D. Jr., Cheng, C. P. & Hellstrom, I. Proc. natl. Acad. Sci. USA 84,3439-3443 (1987) and Shaw, D. R., Khasaeli, M. B, Sun, L. K., Ghraeyeb, J., Daddona, P. E., McKinney, S. & Lopuglio, A. F. J, Immunol. 138,4534-4538 (1987)).
- Light Chain
- In stage 3 (FIG. 12), the reshaped heavy chain was completed, by attaching the reshaped HuVHCAMP (Ser27 to Phe, Ser30 to Thr) domain to the human IgG1 isotype. The reshaped light chain domain HuVHCAMP was attached to the human Ck domain. The two vectors were cotransfected into the non-secreting rat Y0 myeloma line.
- Antibody HuVHCAMP (Ser27 to Phe, Thr30 to Ser)-HuIGG1,) HuVLCAMP-HuIGK was purified from supernatants of cells in stationary phase by affinity chromatography on protein A Sepharose. The antibody was at least 95% (by wt) pure. The yield (about 10 mg/l) was measured spectrophotometrically. Complement and ADCC assays were performed as described in connection with FIG. 14.
- The results are shown in FIG. 15, in which the results for reshaped human antibodies are represented by squares and those for rat YTH34.5HL antibodies are represented by solid circles.
- The purified antibody proved almost identical to the YTH34.5HL-G2b antibody in complement lysis (FIG. 15a). In cell mediated lysis the reshaped human antibody was more reactive than the rat antibody (FIG. 15b). Similar results to the ones in FIG. 15b were obtained with three different donors of target and effector cells (data not shown). Furthermore the antibody was as effective as YTH34.5HL-G2b in killing leukaemic cells from three patients with B Cell lymphocytic leukaemia by complement mediated lysis with human serum.
- The rat antibody and fully humanised antibody were compared in a direct binding assay to Campath-1 antigen. Antibody concentrations were determined as described in FIGS. 14 and 15. The amount of rat antibody bound to partially purified Campath-1 antigen was determined as described in connection with Table 3. The amount of human antibody bound was determined by an ELISA assay using a biotinylated sheep anti-human IgG antibody (Amersham).
TABLE 4 Reshaping the heavy and light chain variable domains simultaneously Concentration of antibody in ug/ml at 50% binding antigen antibody binding RaVHCAMP RalGG2B RaVHCAMP RaKappa 1.01 HuVHCAMP (Ser 27 to Phe, Ser30 to Thr) HulGGl HuVLCAMP HuKappa 1.11 - Thus by transplanting the hypervariable regions from a rodent to a human antibody of the IgG1 subtype, the antibody can be reshaped for therapeutic application.
- The strategy illustrated in FIG. 12 is stepwise assembly to allow any problems to be detected at each stage (reshaping of heavy chain variable domain, selection of constant domain and reshaping of light chain variable domain). It is quite possible to build the reshaped antibody in a single step assembly, i.e. constructing the two reshaped variable domains, attaching to appropriate constant domains and cotransfecting into e.g. YO.
- Following the work described in Example 2, a fully “humanised” anti-lysozyme antibody with reshaped heavy and light chain variable domains was constructed.
- The heavy chain variable region was constructed as described in Example 2 above, and the light chain variable region was constructed as described in Example 3 above.
- Heavy and light chain constructs were prepared from 1 L of bacterial culture by CsCl density gradient ultracentrifugation. 20 ug of each plasmid was digested with Pvul and co-transfected into 107 NSO cells by electroporation. Transformants were selected by growth in medium containing mycophenolic acid, in a 24-well tissue culture plate. After two weeks growth, aliquots of cells were removed from each well, incubated overnight with 35S-methionine, an the supernatant medium affinity adsorbed with Protein A-Sepharose beads (Pharmacia). Absorbed proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by autoflurography. Clones were isolated by limiting dilution from the wells which had yielded both heavy and light chain bands on the autofluorogram. The radioincorporation screening method was again employed to identify those clones secreting a complete antibody. Of these, one cell line was chosen and propagated for storage and further analysis.
- A 2L culture of the cell line was grown to saturation in Dulbecco's modifed Eagle medium supplemented with 10% fetal calf serum. Antibody was concetrated from the culture medium by ammonium sulfate precipitation. The precipitate was redissolved in phosphate-buffered saline, pH 7.4(PBS), dialyzed, and chromatographed on a column of lysozyme-Sepharose (prepared by reaction of 20 mg lysozyme per ml of CNBr-activated Sepharose CL-4B). The column was washed with 0.5 M NaCl, 0.1 M Tris chloride, pH 8.5, and subsequently with 50 mM Et2NH. Immunoglobulin-containing fractions eluting with the latter wash were identified by SDS-PAGE followed by Coomassie Blue staining; these were pooled and dialyzed against PBS. The dialyzed material was applied to a column of protein A-Sepharose. The column was washed with PBS, followed by 0.1 M citrate buffers in the
order pH gamma 2 isotype) was identified as homogeneous immunoglobulin by SDS-PAGE. This was dialyzed vs PBS for storage. Its concentration was determined spectrophotometrically using an extinction coefficient at 280 nm of 1.4 cm−1 (mg/ml)−1. - The fluorescence emission spectra of mouse and “humanised” antilysozyme in the presence of two equivalents of lysozyme show a loss of intensity and a hypsochromic shift relative to the calculated sum of the spectra of free antibody and free lysozyme. This quenching effect is indicative of an interaction between lysozyme and each antibody. Sets of spectra are shown in FIGS.16A-D. Solution conditions prevailing during the measurement of these spectra were 200 nM immunoglobulin and 400 nM lysozyme (separately or in combination), in PBS at a temperature of 20° C. Spectroscopic conditions employed consisted of an excitation wavelength of 280 nm with a 5 nm bandwidth, and an emission bandwidth of 2.5 nm. Data acquisition was with a Perkin-Elmer LS-5B spectrofluorimeter interfaced to a Macintosh microcomputer, which in turn was used for data manipulation and display.
- The spectral change at fixed wavelength was measured as a function of lysozyme concentration. Antibody samples were titrated in the spectroflurimeter with small aliquots of a concentrated lysozyme solution, in parallel with a control antibody, which did not interact with lysozyme, at an identical concentration. The fluorescence was determined after each addition. Titration data are shown in FIG. 17 (filled squares, humanized; open squares, mouse). The spectral change is expressed as a percent of the maximum change observed at saturation, and titrant amounts are put on a ratio scale to facilitate comparison of the two sets of data. Actual conditions for the measurements were for the humanized antibody: 200 nM, 10°, 290 nm excitation, 390 nm emission; for the mouse antibody: 50 nM, 25° 280 excitation, 340 emission. The titration showed an equivalence point of 1.9 binding sites per mole for the humanized antibody, and 1.8 for the mouse, extremely close to the 2 antigen binding sites expected for an immunoglobulin G. The data do not allow deduction on exact binding constant for the interaction of lysozyme and “humanized” antibody. However it appears to be in the range 5-50 nM.
- Reshaped Fv fragments of the anti-lysozyme antibody D1.3 (Verhoeyen et al, loc. cit) were constructed. The heavy chain variable region was reshaped by combining human framework (FR) sequences from the myeloma protein NEW (Saul F. A., Amzel, M., Poljak R. J., J. Biol. Chem. 253.585 (1978)) with the mouse D1.3 CDRs which provide the antigen specifically (Verhoeyen et al, loc. cit). The reshaped light chain contains human FRs from human kappa consensus sequence (Kabat et al, loc. cit) similar to the sequence of the Bence Jones protein REI (Epp, O., et al, Eur. J. Biochem. 45, 513 (1974)) combined with the D1.3 light chain CDRs.
- FIG. 18 illustrates the plasmid for the expression of the Fv-fragment of the reshaped version of the antilysozyme antibody D1.3. The plasmid was transfected by electroporation (Potter, H., Weir, L., Leder, P. Proc. Natl. Acad. Sci. USA 81,7161 (1984)) into the non-producer myeloma cell line NSO (Galfre, G., Milstein, C., Meth. Enzymol 73, 1 (1981)). Transfectants were selected with mycophenolic acid (Mulligan, R. C., Berg, P., Proc. Natl. Acad. Sci. USA 78,2072-2076).
- The genes (HuVHLYS and HuVLLYS) for the VH and VL domains were produced as HindIII-BamHI fragments in M13 for the expression of the whole antibody (see M. Verhoeyen et al. Science loc. cit. for sequence of VH, see Riechmann, I., Clark, M., Waldmann, H., Winter, G., Nature in press for VL-framework sequences and see Verhoeyen, M., Berek, C., Winter, G., Nucleic Acid. Res. submitted for the VL CDRs). At the 3′end of their coding sequence two stops codons followed by a SacI-site were introduced by priming with oligonucleotides I and II on the corresponding single strands. Between the RNA start site and the translation start of the leader sequence in both genes a HindIII site was introduced using oligonucleotide III. The resulting HindIII-BamHI fragments were cloned into a pSVgpt vector (Riechmann et al, Nature loc cit). The vector contains a EcoR-HindIII fragment of an Ig-heavy chain enhancer (IcH enh) as a linker. The 3′ SacI-BamHI fragment of both genes was then exchanged with a SacI-BamHI fragment of the human kappa constant region (3′end Ck) (Hieter, P. A. et al. Cell 22, 197 (1980)) to provide a polyadenylation signal. Into the HindIII site of both vectors a HindIII-HindIII fragment of the HCMV immediate-early gene Stenberg, R. M. et al.
J. Virol 49, 190(1984), Boshart, M. et al., Cell 41, 521 (1985)) containing its enhancer, promotor and the first non-translated exon (HCMV enh-pro) were cloned. The complete VL-gene (containing Ig-enhancer, HCMV-promoter, VL-coding region and polyadenylation signal) was then subcloned as an EcoRI-fragment into pBGS18 (Spratt, B., et al., Gene 41,337 (1986)) and the resulting vector pBGS-HuVLLYS was cloned into the pSVgpt-HuVHLYS vector as a BamHI fragment as shown in FIG. 18. - The final plasmid PLRI further contained the resistance genes for the drugs ampicillin (ampR), kanamycin (kanR) and mycophenolic acid (Eco gpt) two col EI origins of replication (col EI ori) and the SV40 enhancer (SV40 enh pro). The BamHI (B), HindIII (H), EcoRI (E) and SacI (S) restriction sites used for cloning steps are indicated. The diagram is not to scale. Oligonucleotides I=5′-GAG AGG TTG GAG CTC TTA TTA TGA GGA GAC-3′, II=5′-AAG TTT AAA GAG CTC TAC TAT TTG ATT TC-3′, III=5′-CTC AGT AAG CTT AGA GAG A-3′
- Both heavy and light chain variable domains were combined in a single plasmid to facilitate the selection of transfectants using the gpt selection system (Mulligan, R. C., Berg. P., Proc. Natl. Acad. Sci. USA 78,2072,2076). Pools of transfected cell clones were analysed on SDS-acrylamide gels after35S methionine incorporation and affinity purification of culture supernatants with lysozyme Sepharose. The cloned cell line used for the preparation of Fv-fragments secreted about 8 mg/L when grown in roller bottles. Thus it is possible to produce Fv fragments in myeloma cells with yields similar to recombinant versions of intact antibodies (Neuberger, M. S., Wiliams, G. T., Fox, R. O., Nature 312,604 (1984), Riechmann, I. et al, Nature, loc. cit).
- The Fv fragment contains two chains of about 12 KD (calculated values 12,749 for VH and 11,875 for VL) when analysed on SDS gels. See results in FIG. 19, in which lysozyme was run in
lane 1, Fv-fragment plus lysozyme inlane 2, affinity purified Fv-fragment inlane 3, isolated VL-domain inlane 4, isolated VH-domain in lane 5) and size markers in lanes 6). The Fv-fragment and the lysozyme/Fv-fragment complex were eluted from the bands in the native gel in FIG. 20 (lanes 2,3). All samples were applied in buffer containing beta mercaptoethanol. The Fv-fragment is secreted in a functional form, as it can readily be purified from the culture supernatant with lysozyme Sepharose (Fv-fragments from cell culture supernatants were prepared by filtering through two layers ofWhatmann 3 MM paper, adsorption to lysozyme coupled to CnBr-Sepharose (Pharmacia), extensive washing with phosphate buffered saline and elution with 50 mM diethylamine. Eluates were immediately adjusted to pH 7.5) - When the purified Fv-fragment was investigated on an HPLC sizing column (Biozorbax GF250) in phosphate buffered saline, only a single peak was observed and its retention time did not change between concentrations of 70 and 0.3 mg/L.
- The Fv-fragment was also analysed on native acrylamide (8%) gels. See results in FIG. 20, in which lysozyme was run in
lane 1, lysozyme/Fv fragment complex plus free lysozyme inlane 2, affinity purified Fv-fragment inlane 3, isolated VL-domain inlane 4 and isolated VH-domain inlane 5. Gel and running buffer contained 40 mM Tris, 8.3 mM sodium acetate, 0.4 mM Na2EDTA and was adjusted to pH 7.6 with acetic acid. No stacking gel was used, the gel was run with reversed polarity. Here the Fv-fragment runs as a single band, that contains both the VH and the VL domain when analysed on SDS gels (comparelane 3 in FIGS. 19 and 20). This band can be shifted on the native gel, when the antigen lysozyme is added. The shifted band contains lysozyme, VH and VL domain in similar amounts when analysed on SDS-gels (comparelane 2 in FIGS. 19 and 20). Further, the isolated VL domain runs as a diffused band with a mobility different to the Fv-fragment on the native gel (lane 4, FIG. 20). The isolated VH does not run into the gel because of its net charge at pH 7.5. - (The VL and VH-domains were separated on a Mono-S column (Pharmacia) in 50 mM acetic acid, 6 M urea (adjusted to pH 4.8 with NaOH) using 0 to 0.3 M NaCl gradient over 6 minutes. The VH was sufficiently pure according to SDS gel analysis. The VL was further purified after desalting into phosphate buffered saline on a Biozorbax GF250 (DuPont) sizing column to get rid of residual VH-VL heterodimer) These results strongly suggest that the predominant form of the Fv-fragment at pH 7.5 is an associated VH-VL heterodimer. Also its apparent molecular weight in ultracentrifuge sedimentation analysis was about 23.5 kD. The same was observed with Fv-fragments obtained by proteolytic digestion (Inbar, D., Hochmann, J., Givol, D., Proc. Natl. Acad. Sci USA 69,2659 (1972), Kakimoto, K., Onoue, K., J. Immunol 112,1373 (1974), Sharon, J., Givol, D.,
Biochemistry 15,1591 (1976)). - The formation of VH-VL heterodimers was further established, when Fv fragments were incubated at a concentration of 0.5 mg/ml in phosphate buffered saline with 3.7% formaldehyde overnight. Crosslinked VH-VL heterodimers of about 25 kD were formed (Purified, biosynthetically35S-methionine labelled VH domain was incubated in 3.7% formaldehyde/PBS overnight in the absence or presence of excessive unlabelled VH-VL heterodimer. When analysed on SDS gels crosslinked, labelled VH VL heterodimers (molecular weight of about 25 kD) are formed from isolated labelled VH only in the prescence of unlabelled Fv-fragment. No formation of dimers could be detected in the absence of unlabelled Fv-fragment). Lysozyme-Sepharose purification of the crosslinked material showed that the crosslinked VH-VL heterodimer is still active. Overloading of SDS gels with crosslinked material also made visible a small fraction (less than 5%) of slightly lower molecular weight material suggesting the formation of crosslinked VL homodimers. No higher molecular weight band for possible VH homodimers was observed.
- Nevertheless dissociation was observed when the Fv-fragment was analysed on native acrylamide gels at pH4.5. Under these conditions the VH and the VL formed each a single band see results in FIG. 21, in which lysozyme was run in
lane 1, lysozyme plus Fv-fragment inlane 2, affinity purified Fv-fragment inlane 3, isolated VL-domain inlane 4 and isolated VH-domain inlane 5. Incubation of antibodies at low pH has been used historically to facilitate their proteolytic digestion (Connell, G. E., Porter, R. R, Biochem. J. 124,53P (1971)) probably reflecting the same underlying structural change. - Although the Fv-fragment is predominantly associated at neutral pH, it is in a dynamic equilibrimun; the purified biosynthetically labelled VH domain exchanges with the unlabelled VH domain when incubated with an excess of unlabelled VH-VL heterodimer, because labelled VH-VL heterodimers can be trapped by crosslinking with formaldehyde.
- However, the dissociation of Fv-fragments should not cause problems in diagnostic or therapeutic applications. For structural studies, for which high protein concentrations are used Fv-fragments will certainly be of considerable advantage without further treatment. They should especially simplify the assignment of signals in NMR-spectra, if the same beta-sheet frameworks are used for Fv-fragments with different specificities.
- It will of course be understood that the present invention has been described above purely by way of example, and modifications of detail can be made within the scope of the invention as defined in the appended claims.
-
1 59 1 48 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-PK1 1 gacatccaga tgacccagag cccaagcagc ctgagcgcca gcgtgggt 48 2 60 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-PK2 2 gacagagtga ccatcacctg tagagccagc ggtaacatcc acaactacct ggcttggtac 60 3 44 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-PK3 3 caagccaggt agttgtggat gttaccgctg gctctacagg tgat 44 4 33 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-PK4 4 ggtcactctg tcacccacgc tggcgctcag gct 33 5 31 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-PK5 5 gcttgggctc tgggtcatct ggatgtctgc a 31 6 49 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KK1 6 cagcagaagc caggtaaggc tccaaagctg ctgatctact acaccacca 49 7 49 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KK2 7 ccctggctga cggtgtgcca agcagattca gcggtagcgg tagcggtac 49 8 25 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KK3 8 cgctaccgct accgctgaat ctgct 25 9 40 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KK4 9 tggcacaccg tcagccaggg tggtggtgta gtagatcagc 40 10 33 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KK5 10 agctttggag ccttacctgg cttctgctgg tac 33 11 59 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KE1 11 cgacttcacc ttcaccatca gcagcctcca gccagaggac atcgccacct actactgcc 59 12 49 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KE2 12 agcacttctg gagcacccca aggacgttcg gccaagggac caaggtgga 49 13 49 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KE3 13 aatcaaacgt gagtagaatt taaactttgc ttcctcagtt ggatcctag 49 14 35 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KE4 14 aattctagga tccaactgag gaagcaaagt ttaaa 35 15 34 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KE5 15 ttctactcac gtttgatttc caccttggtc cctt 34 16 44 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KE6 16 ggccgaacgt ccttggggtg ctccagaagt gctggcagta gtag 44 17 26 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KE7 17 gtggcgatgt cctctggctg gaggct 26 18 26 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-KE8 18 gctgatggtg aaggtgaagt cggtac 26 19 26 DNA Artificial Sequence Oligonucleotide used for gene synthesis and mutagenesis-PK0 19 tcatctggat gtcggagtgg acacct 26 20 30 DNA Artificial Sequence Oligonucleotide I for construction of Fv fragment of a reshaped anti-lysozyme antibody in plasmid pLRI 20 gagaggttgg agctcttatt atgaggagac 30 21 29 DNA Artificial Sequence Oligonucleotide II for construction of Fv fragment of a reshaped anti-lysozyme antibody in plasmid pLRI 21 aagtttaaag agctctacta tttgatttc 29 22 19 DNA Artificial Sequence Oligonucleotide III for construction of Fv fragment of a reshaped anti-lysozyme antibody in plasmid pLRI 22 ctcagtaagc ttagagaga 19 23 117 PRT Homo Sapiens VARIANT 1 Xaa = Any Amino Acid 23 Xaa Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Arg Pro Ser Gln 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Ser Thr Phe Ser Asn Asp 20 25 30 Tyr Tyr Thr Trp Val Arg Gln Pro Pro Gly Arg Gly Leu Glu Trp Ile 35 40 45 Gly Tyr Val Phe Tyr His Gly Thr Ser Asp Asp Thr Thr Pro Leu Arg 50 55 60 Ser Arg Val Thr Met Leu Val Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80 Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95 Arg Asn Leu Ile Ala Gly Cys Ile Asp Val Trp Gly Gln Gly Ser Leu 100 105 110 Val Thr Val Ser Ser 115 24 120 PRT mouse Amino acid sequence of VH domain of BI-8 antibody (Fig 2) 24 Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30 Trp Met His Trp Val Lys Gln Arg Pro Gly Arg Gly Leu Glu Trp Ile 35 40 45 Gly Arg Ile Asp Pro Asn Ser Gly Gly Thr Lys Tyr Asn Glu Lys Phe 50 55 60 Lys Ser Lys Ala Thr Leu Thr Val Asp Lys Pro Ser Ser Thr Ala Tyr 65 70 75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Tyr Asp Tyr Tyr Gly Ser Ser Tyr Phe Asp Tyr Trp Gly Gln 100 105 110 Gly Thr Thr Leu Thr Val Ser Ser 115 120 25 611 DNA Homo Sapiens Nucleotide sequence of HUVNP gene (Fig 3) 25 atgcaaatcc tctgaatcta catggtaaat ataggtttgt ctataccaca aacagaaaaa 60 catgagatca cagttctctc tacagttact gagcacacag gacctcacca tgggatggag 120 ctgtatcatc ctcttcttgg tagcaacagc tacaggtaag gggctcacag tagcaggctt 180 aggtctgga catatatatg ggtgacaatg acatccactt tgcctttctc tccacaggtg 240 ccactccca ggtccaactg caggagagcg gtccaggtct tgtgagacct agccagaccc 300 gagcctgac ctgcaccgtg tctggcagca ccttcagcag ctactggatg cactgggtga 360 acagccacc tggacgaggt cttgagtgga ttggaaggat tgatcctaat agtggtggta 420 taagtacaa tgagaagttc aagagcagag tgacaatgct ggtagacacc agcaagaacc 480 gttcagcct gagactcagc agcgtgacag ccgccgacac cgcggtctat tattgtgcaa 540 atacgatta ctacggtagt agctactttg actactgggg tcaaggcagc ctcgtcacag 600 ctcctcagg t 611 26 140 PRT Homo Sapiens Amino acid sequence of HUVNP gene (Fig 3) 26 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Ile 1 5 10 15 Gly Val His Ser Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val 20 25 30 Arg Pro Ser Gln Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Ser Thr 35 40 45 Phe Ser Ser Tyr Trp Met His Trp Val Arg Gln Pro Pro Gly Arg Gly 50 55 60 Leu Glu Trp Ile Gly Arg Ile Asp Pro Asn Ser Gly Gly Thr Lys Tyr 65 70 75 80 Asn Glu Lys Phe Lys Ser Arg Val Thr Met Leu Val Asp Thr Ser Lys 85 90 95 Asn Gln Phe Ser Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala 100 105 110 Val Tyr Tyr Cys Ala Arg Tyr Asp Tyr Tyr Gly Ser Ser Tyr Phe Asp 115 120 125 Tyr Trp Gly Gln Gly Ser Leu Val Thr Val Ser Ser 130 135 140 27 39 DNA Artificial Sequence D1.3 CDR 1 oligonucleotide for cloning of HUVNP gene (Fig 5) 27 ctgtctcacc cagtttacac catagccgct gaaggtgct 39 28 72 DNA Artificial Sequence D1.3 CDR 2 oligonucleotide for cloning of HUVNP gene (Fig 5) 28 cattgtcact ctggatttga gagctgaatt atagtctgtg tttccatcac cccaaatcat 60 tccaatccac tc 72 29 48 DNA Artificial Sequence D1.3 CDR 3 oligonucleotide for cloning of HUVNP gene (Fig 5) 29 gccttgaccc cagtagtcaa gcctataatc tctctctctt gcacaata 48 30 412 DNA Artificial Sequence Nucleotide sequence of the variable domain of antibody D1.3 gene(Fig 7) 30 tcagagcatg gctgtcctgg cattactctt ctgcctggta acattcccaa gctgtatcct 60 ttcccaggtg cagctgaagg agtcaggacc tggcctggtg gcgccctcac agagcctgtc 120 catcacatgc accgtctcag ggttctcatt aaccggctat ggtgtaaact gggttcgcca 180 gcctccagga aagggtctgg agtggctggg aatgatttgg ggtgatggaa acacagacta 240 taattcagct ctcaaatcca gactgagcat cagcaaggac aactccaaga gccaagtttt 300 cttaaaaatg aacagtctgc acactgatga cacagccagg tactactgtg ccagagagag 360 agattatagg cttgactact ggggccaagg caccactctc acagtctcct ca 412 31 135 PRT Artificial Sequence Amino acid sequence of the variable domain gene of antibody D1.3 (Fig 7) 31 Met Ala Val Leu Ala Leu Leu Phe Cys Leu Val Thr Phe Pro Ser Cys 1 5 10 15 Ile Leu Ser Gln Val Gln Leu Lys Glu Ser Gly Pro Gly Leu Val Ala 20 25 30 Pro Ser Gln Ser Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu 35 40 45 Thr Gly Tyr Gly Val Asn Trp Val Arg Gln Pro Pro Gly Lys Gly Leu 50 55 60 Glu Trp Leu Gly Met Ile Trp Gly Asp Gly Asn Thr Asp Tyr Asn Ser 65 70 75 80 Ala Leu Lys Ser Arg Leu Ser Ile Ser Lys Asp Asn Ser Lys Ser Gln 85 90 95 Val Phe Leu Lys Met Asn Ser Leu His Thr Asp Asp Thr Ala Arg Tyr 100 105 110 Tyr Cys Ala Arg Glu Arg Asp Tyr Arg Leu Asp Tyr Trp Gly Gln Gly 115 120 125 Thr Thr Leu Thr Val Ser Ser 130 135 32 614 DNA Artificial Sequence DNA sequence of the reshaped antibody heavy chain of rat IgG2a Campath-1 antidbody YTH34.5HL (Fig 9A) 32 atgcaaatcc tctgaatcta catggtaaat ataggtttgt ctataccaca aacagaaaaa 60 catgagatca cagttctctc tacagttact gagcacacag gacctcacca tgggatggag 120 ctgtatcatc ctcttcttgg tagcaacagc tacaggtaag gggctcacag tagcaggctt 180 gaggtctgga catatatatg ggtgacaatg acatccactt tgcctttctc tccacaggtg 240 tccactccca ggtccaactg caggagagcg gtccaggtct tgtgagacct agccagaccc 300 tgagcctgac ctgcaccgtg tctggcagca ccttcagcga tttctacatg aactgggtga 360 gacagccacc tggacgaggt cttgagtgga ttggatttat tagagacaaa gctaaaggtt 420 acacaacaga gtacaatcca tctgtgaagg ggagagtgac aatgctggta gacaccagca 480 agaaccagtt cagcctgaga ctcagcagcg tgacagccgc cgacaccgcg gtctattatt 540 gtgcaagaga gggccacact gctgctcctt ttgattactg gggtcaaggc agcctcgtca 600 cagtctcctc aggt 614 33 140 PRT Artificial Sequence Amino acid sequence of the reshaped antibody heavy chain of rat IgG2a Campath-1 antidbody YTH34.5HL (Fig 9A) 33 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Arg 20 25 30 Pro Ser Gln Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Ser Thr Phe 35 40 45 Ser Asp Phe Tyr Met Asn Trp Val Arg Gln Pro Pro Gly Arg Gly Leu 50 55 60 Glu Trp Ile Gly Phe Ile Arg Asp Lys Ala Lys Gly Tyr Thr Thr Glu 65 70 75 80 Tyr Asn Pro Ser Val Lys Gly Arg Val Thr Met Leu Val Asp Thr Ser 85 90 95 Lys Asn Gln Phe Ser Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr 100 105 110 Ala Val Tyr Tyr Cys Ala Arg Glu Gly His Thr Ala Ala Pro Phe Asp 115 120 125 Tyr Trp Gly Gln Gly Ser Leu Val Thr Val Ser Ser 130 135 140 34 420 DNA Rattus Nucleotide sequence of the heavy chain variable domain of rat IgG2a Campath-1 antidbody YTH34.5HL (Fig 9A) 34 atgaagttgt ggctgaactg gattttcctt ttaacacttt taaatggtat ccagtgtgag 60 gtgaaactgt tggaatctgg aggaggcttg gtacagccgg ggggttctat gagactctcc 120 tgtgcaggtt ctggattcac cttcactgat ttctacatga actggatccg ccagcctgca 180 gggaaggcac ctgagtggct gggttttatt agagacaaag ctaaaggtta cacaacagag 240 tacaatccat ctgtgaaggg gcggttcacc atctccagag ataataccca aaacatgctc 300 tatcttcaaa tgaacaccct aagagctgag gacactgcca cttactactg tgcaagagag 360 ggccacactg ctgctccttt tgattactgg ggccaaggag tcatggtcac agtctcctca 420 35 140 PRT Rattus Amino acid sequence of the heavy chain variable domain of rat IgG2a Campath-1 antidbody YTH34.5HL (Fig 9A) 35 Met Lys Leu Trp Leu Asn Trp Ile Phe Leu Leu Thr Leu Leu Asn Gly 1 5 10 15 Ile Gln Cys Glu Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Pro Gly Gly Ser Met Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe 35 40 45 Thr Asp Phe Tyr Met Asn Trp Ile Arg Gln Pro Ala Gly Lys Ala Pro 50 55 60 Glu Trp Leu Gly Phe Ile Arg Asp Lys Ala Lys Gly Tyr Thr Thr Glu 65 70 75 80 Tyr Asn Pro Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Thr 85 90 95 Gln Asn Met Leu Tyr Leu Gln Met Asn Thr Leu Arg Ala Glu Asp Thr 100 105 110 Ala Thr Tyr Tyr Cys Ala Arg Glu Gly His Thr Ala Ala Pro Phe Asp 115 120 125 Tyr Trp Gly Gln Gly Val Met Val Thr Val Ser Ser 130 135 140 36 608 DNA Artificial Sequence DNA sequence of the reshaped antibody light chain of rat IgG2a Campath-1 antidbody YTH34.5HL (Fig 9B) 36 atgcaaatcc tctgaatcta catggtaaat ataggtttgt ctataccaca aacagaaaaa 60 catgagatca cagttctctc tacagttact gagcacacag gacctcacca tgggatggag 120 ctgtatcatc ctcttcttgg tagcaacagc tacaggtaag gggctcacag tagcaggctt 180 gaggtctgga catatatatg ggtgacaatg acatccactt tgcctttctc tccacaggtg 240 tccactccga catccagatg acccagagcc caagcagcct gagcgccagc gtgggtgaca 300 gagtgaccat cacctgtaaa gcaagtcaga atattgacaa atacttaaac tggtaccagc 360 agaagccagg taaggctcca aagctgctga tctacaatac aaacaatttg caaacgggtg 420 tgccaagcag attcagaggt agcggtagcg gtaccgactt caccttcacc atcagcagcc 480 tccagccaga ggacatcgcc acctactact gcttgcagca tataagtagg ccgcgcacgt 540 tcggccaagg gaccaaggtg gaaatcaaac gtgagtagaa tttaaacttt gcttcctcag 600 ttggatcc 608 37 127 PRT Artificial Sequence Amino acid sequence of the reshaped antibody light chain of rat IgG2a Campath-1 antidbody YTH34.5HL(Fig 9B) 37 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala 20 25 30 Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Ile 35 40 45 Asp Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys 50 55 60 Leu Leu Ile Tyr Asn Thr Asn Asn Leu Gln Thr Gly Val Pro Ser Arg 65 70 75 80 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser 85 90 95 Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Leu Gln His Ile Ser 100 105 110 Arg Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 115 120 125 38 387 DNA Rattus Nucleotide sequence of the light chain variable domain of rat IgG2a Campath-1 antidbody YTH34.5HL (Fig 9B) 38 atgatggctg cacttcaact cttaggggta gctgctagct ctggctccca ggccatgaga 60 tgtgacatca agatgaccca gtctccctca ttcctgtctg catctgtggg agacagagtc 120 actctcaact gcaaagcaag tcagaatatt gacaaatact taaactggta tcagcaaaag 180 cttggagaat ctcccaactc ctgatatata atacaaaaca atttgcaaac gggcatccca 240 tcaaggttca gtggcagtgg atctggtact gatttcacac tcaccatcag cagcctgcag 300 cctgaagatg ttgccacata tttctgcttg cagcatataa gtaggccgcg cacgtttgga 360 actgggacca agctggagct gaaacgg 387 39 129 PRT Rattus Amino acid sequence of the light chain variable domain of rat IgG2a Campath-1 antidbody YTH34.5HL (Fig 9B) 39 Met Met Ala Ala Leu Gln Leu Leu Gly Val Ala Ala Ser Ser Gly Ser 1 5 10 15 Gln Ala Met Arg Cys Asp Ile Lys Met Thr Gln Ser Pro Ser Phe Leu 20 25 30 Ser Ala Ser Val Gly Asp Arg Val Thr Leu Asn Cys Lys Ala Ser Gln 35 40 45 Asn Ile Asp Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Leu Gly Glu Ser 50 55 60 Pro Lys Leu Leu Ile Tyr Asn Thr Asn Asn Leu Gln Thr Gly Ile Pro 65 70 75 80 Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile 85 90 95 Ser Ser Leu Gln Pro Glu Asp Ile Ala Thr Tyr Phe Cys Leu Gln His 100 105 110 Ile Ser Arg Pro Arg Thr Phe Gly Thr Gly Thr Lys Leu Glu Leu Lys 115 120 125 Arg 40 15 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide I 40 ggccagtgga tagac 15 41 22 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide III 41 cagtttcatc tagaactgga ta 22 42 25 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide IV 42 gcagttgggt ctagaagtgg acacc 25 43 20 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide V 43 tcagctgagt cgactgtgac 20 44 20 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide VI 44 tcacctgagt cgactgtgac 20 45 24 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide VII 45 agtttcacct cggagtggac acct 24 46 20 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide VIII 46 tcacctgagg agactgtgac 20 47 17 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide IX 47 ggctggcgaa tccagtt 17 48 39 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide X 48 ctgtctcacc cagttcatgt agaaatcgct gaaggtgct 39 49 81 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide XI 49 cattgtcact ctccccttca cagatggatt gtactctgtt gtgtaacctt tagctttgtc 60 tctaataaat ccaatccact c 81 50 54 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide XII 50 gccttgaccc cagtaatcaa aaggagcagc agtgtggccc tctcttgaac aata 54 51 28 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat heavy chain variable domain RaVHCAMP - Oligonucleotide XIII 51 agaaatcgst gaaggtgaag ccagacaa 28 52 13 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat light chain variable domain RaVHCAMP - Oligonucleotide II 52 tgcagcatca gcc 13 53 57 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat light chain variable domain RaVHCAMP - Oligonucleotide XIV 53 ctgctggtac cagtttaagt atttgtcaat attctgactt gctttacagg tgatggt 57 54 45 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat light chain variable domain RaVHCAMP - Oligonucleotide XV 54 gcttggcaca cccgtttgca aattgtttgt attgtagatc agcag 45 55 51 DNA Artificial Sequence Oligonucleotide sequence used in cloning and expression of the reshaped rat light chain variable domain RaVHCAMP - Oligonucleotide XVI 55 cccttggccg aacgtgcgcg gcctacttat atgctgcaag cagtagtagg t 51 56 373 DNA Artificial Sequence DNA sequence of the synthetic gene HuVLLYSo (Fig 10) 56 ctgcagacat ccagatgacc cagagcccaa gcagcctgag cgccagcgtg ggtgacagag 60 tgaccatcac ctgtagagcc agcggtaaca tccacaacta cctggcttgg taccagcaga 120 agccaggtaa ggctccaaag ctgctgatct actacaccac caccctggct gacggtgtgc 180 caagcagatt cagcggtagc ggtagcggta ccgacttcac cttcaccatc agcagcctcc 240 agccagagga catcgccacc tactactgcc agcacttctg gagcacccca aggacgttcg 300 gccaagggac caaggtggaa atcaaacgtg agtagaattt aaactttgct tcctcagttg 360 gatcctagaa ttc 373 57 108 PRT Artificial Sequence Derived amino acid sequence of the synthetic gene HuVLLYSo (Fig 10) 57 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gly Asn Ile His Asn Tyr 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Tyr Thr Thr Thr Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Ile Ala Thr Tyr Tyr Cys Gln His Phe Trp Ser Thr Pro Arg 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100 105 58 616 DNA Artificial Sequence DNA sequence of the synthetic gene HuVLLYS (Fig 11) 58 atgcaaatcc tctgaatcta catggtaaat ataggtttgt ctataccaca aacagaaaaa 60 catgagatca cagttctctc tacagttact gagcacacag ggacctcacc atgggatgga 120 gctgtatcat cctcttcttg gtagcaacag ctacaggtaa ggggctcaca gtagcaggct 180 tgaggtctgg acatatatat gggtgacaat gacatccact ttgcctttct ctccacaggt 240 gtccactccg acatccaatg acccagagcc caagcagcct gagcgccagc gtgggtgaca 300 gagtgaccat cacctgtaga gccagcggta acatccacaa ctacctggct tggtaccagc 360 agaagccagg taaggctcca aagctgctga tctactacac caccaccctg gctgacggtg 420 tgccaagcag attcagaggt agcggtagcg gtaccgactt caccttcacc atcagcagcc 480 tccagccaga ggacatcgcc acctactact gccagcactt ctggagcacc ccaaggacgt 540 tcggccaagg gaccaaggtg gaaatcaaac gtgagtagaa tttaaacttt gcttcctcag 600 ttggatccta gaattc 616 59 127 PRT Artificial Sequence Derived amino acid sequence of the synthetic gene HuVLLYS (Fig 11) 59 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala 20 25 30 Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gly Asn Ile 35 40 45 His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys 50 55 60 Leu Leu Ile Tyr Tyr Thr Thr Thr Leu Ala Asp Gly Val Pro Ser Arg 65 70 75 80 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser 85 90 95 Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln His Phe Trp Ser 100 105 110 Thr Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 115 120 125
Claims (15)
1. An altered antibody in which at least part of a complementarity determining regions (CDR) in a light or heavy chain variable domain has been replaced by analogous part(s) of a CDR from an antibody of different specificity.
2. The altered antibody of claim 1 , in which an entire CDR has been replaced.
3. The altered antibody of claim 1 , in which at least parts of all CDRs in the heavy chain variable domain have been altered.
4. The altered antibody of claim 1 , in which at least part of all CDRs in the light chain variable domain have been altered.
5. The altered antibody of claim 1 , in which at least parts of all CDRs in both the heavy and light chain variable domains have been altered.
6. The altered antibody of claim 1 , in which at least one amino acid residue in the framework regions has been altered.
7. The altered antibody of claim 1 , in which at least parts of a CDR from a mouse antibody are grafted onto the framework regions of a human antibody.
8. The altered antibody of claim 7 , comprising at least parts of all CDRs in both the heavy and light chain variable domains of a mouse antibody in association with framework regions of a human antibody.
9. The altered antibody of claim 1 , which has the structure of a natural antibody or a fragment thereof.
10. A method for producing an altered antibody comprising:
a) preparing a first replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least a variable domain of an Ig heavy or light chain, the variable domain comprising framework regions consisting of at least parts of framework regions from a first antibody and CDRs comprising at least part of the CDRs from a second antibody of different specificity;
b) if necessary, preparing a second replicable expression vector including a suitable promoter operably linked to a DNA sequence which encodes at least the variable domain of a complementary Ig light or heavy chain respectively;
c) transforming a cell line with the first or both prepared vectors; and
d) culturing said transformed cell line to produce said altered antibody.
11. The method of claim 10 , in which the cell line which is transformed to produce the altered antibody is an immortalised mammalian cell line.
12. The method of claim 11 , in which the immortalised cell line is a myeloma cell line or a derivative thereof.
13. The method of claim 10 , in which the DNA sequence encoding the altered variable domain is prepared by oligonucleotide synthesis.
14. The method of claim 10 , in which the DNA sequence encoding the altered variable domain is prepared by primer directed oligonucleotide site-directed mutagenesis using a long oligonucleotide.
15. The altered antibody of claim 1 , in which the entire CDRs in both the heavy and light chain variable domains have been replaced.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/351,748 US6982321B2 (en) | 1986-03-27 | 2003-01-24 | Altered antibodies |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB868607679A GB8607679D0 (en) | 1986-03-27 | 1986-03-27 | Recombinant dna product |
GB8607679 | 1986-03-27 | ||
US18981488A | 1988-05-03 | 1988-05-03 | |
US62451590A | 1990-12-07 | 1990-12-07 | |
US94214092A | 1992-09-08 | 1992-09-08 | |
US08/452,462 US6548640B1 (en) | 1986-03-27 | 1995-05-26 | Altered antibodies |
US10/351,748 US6982321B2 (en) | 1986-03-27 | 2003-01-24 | Altered antibodies |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/452,462 Continuation US6548640B1 (en) | 1986-03-27 | 1995-05-26 | Altered antibodies |
Publications (3)
Publication Number | Publication Date |
---|---|
US20040127688A1 true US20040127688A1 (en) | 2004-07-01 |
US20040192897A2 US20040192897A2 (en) | 2004-09-30 |
US6982321B2 US6982321B2 (en) | 2006-01-03 |
Family
ID=27449751
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/452,462 Expired - Lifetime US6548640B1 (en) | 1986-03-27 | 1995-05-26 | Altered antibodies |
US10/351,748 Expired - Fee Related US6982321B2 (en) | 1986-03-27 | 2003-01-24 | Altered antibodies |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/452,462 Expired - Lifetime US6548640B1 (en) | 1986-03-27 | 1995-05-26 | Altered antibodies |
Country Status (1)
Country | Link |
---|---|
US (2) | US6548640B1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040236078A1 (en) * | 1991-06-14 | 2004-11-25 | Genentech, Inc. | Method for making humanized antibodies |
US20100226920A1 (en) * | 2006-03-27 | 2010-09-09 | Ablynx N.V. | Medical delivery device for therapeutic proteins based on single domain antibodies |
US20100297662A1 (en) * | 2007-10-29 | 2010-11-25 | Minako Hoshi | Antibody and use thereof |
WO2012166906A1 (en) | 2011-05-31 | 2012-12-06 | Massachusetts Institute Of Technology | Cell-directed synthesis of multifunctional nanopatterns and nanomaterials |
US9765153B2 (en) | 2012-07-04 | 2017-09-19 | Hoffmann-La Roche Inc. | Anti-biotin antibodies and methods of use |
US9925272B2 (en) | 2012-07-04 | 2018-03-27 | Hoffmann-La Roche Inc. | Anti-theophylline antibodies and methods of use |
US10407511B2 (en) | 2014-01-03 | 2019-09-10 | Hoffmann-La Roche Inc. | Covalently linked helicar-anti-helicar antibody conjugates and uses thereof |
US10517945B2 (en) | 2012-07-04 | 2019-12-31 | Hoffman-La Roche Inc. | Covalently linked antigen-antibody conjugates |
US10519249B2 (en) | 2014-01-03 | 2019-12-31 | Hoffmann-La Roche Inc. | Covalently linked polypeptide toxin-antibody conjugates |
US10561737B2 (en) | 2014-01-03 | 2020-02-18 | Hoffmann-La Roche Inc. | Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles |
US11053308B2 (en) | 2016-08-05 | 2021-07-06 | Chugai Seiyaku Kabushiki Kaisha | Method for treating IL-8-related diseases |
US11180548B2 (en) | 2015-02-05 | 2021-11-23 | Chugai Seiyaku Kabushiki Kaisha | Methods of neutralizing IL-8 biological activity |
US20220025124A1 (en) * | 2018-12-21 | 2022-01-27 | Dow Silicones Corporation | Polyfunctional organosiloxanes, compositions containing same, and methods for the preparation thereof |
US11332533B2 (en) | 2007-09-26 | 2022-05-17 | Chugai Seiyaku Kabushiki Kaisha | Modified antibody constant region |
Families Citing this family (1292)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US6548640B1 (en) * | 1986-03-27 | 2003-04-15 | Btg International Limited | Altered antibodies |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US20030229208A1 (en) * | 1988-12-28 | 2003-12-11 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US20030225254A1 (en) * | 1989-08-07 | 2003-12-04 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
US5959087A (en) * | 1989-08-07 | 1999-09-28 | Peptide Technology, Ltd. | Tumour necrosis factor binding ligands |
DE10399036I1 (en) * | 1989-08-07 | 2004-04-01 | Peptide Technology Ltd | Binding ligand for tumor necrosis factor. |
GB9020282D0 (en) | 1990-09-17 | 1990-10-31 | Gorman Scott D | Altered antibodies and their preparation |
US6761888B1 (en) * | 2000-05-26 | 2004-07-13 | Neuralab Limited | Passive immunization treatment of Alzheimer's disease |
US20080050367A1 (en) * | 1998-04-07 | 2008-02-28 | Guriq Basi | Humanized antibodies that recognize beta amyloid peptide |
US7790856B2 (en) * | 1998-04-07 | 2010-09-07 | Janssen Alzheimer Immunotherapy | Humanized antibodies that recognize beta amyloid peptide |
TWI239847B (en) * | 1997-12-02 | 2005-09-21 | Elan Pharm Inc | N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease |
US7179892B2 (en) * | 2000-12-06 | 2007-02-20 | Neuralab Limited | Humanized antibodies that recognize beta amyloid peptide |
US7964192B1 (en) * | 1997-12-02 | 2011-06-21 | Janssen Alzheimer Immunotherapy | Prevention and treatment of amyloidgenic disease |
US7183387B1 (en) | 1999-01-15 | 2007-02-27 | Genentech, Inc. | Polypeptide variants with altered effector function |
BR0001078A (en) * | 2000-04-06 | 2003-05-13 | Maria Amalia Rotolo De Moraes | Method and apparatus for positive mental stimulation |
PE20020574A1 (en) * | 2000-12-06 | 2002-07-02 | Wyeth Corp | HUMANIZED ANTIBODIES THAT RECOGNIZE THE AMYLOID PEPTIDE BETA |
US7700751B2 (en) | 2000-12-06 | 2010-04-20 | Janssen Alzheimer Immunotherapy | Humanized antibodies that recognize β-amyloid peptide |
US7647184B2 (en) * | 2001-08-27 | 2010-01-12 | Hanall Pharmaceuticals, Co. Ltd | High throughput directed evolution by rational mutagenesis |
US20030157108A1 (en) * | 2001-10-25 | 2003-08-21 | Genentech, Inc. | Glycoprotein compositions |
US20080260731A1 (en) * | 2002-03-01 | 2008-10-23 | Bernett Matthew J | Optimized antibodies that target cd19 |
US20080254027A1 (en) * | 2002-03-01 | 2008-10-16 | Bernett Matthew J | Optimized CD5 antibodies and methods of using the same |
US8188231B2 (en) | 2002-09-27 | 2012-05-29 | Xencor, Inc. | Optimized FC variants |
US20070148171A1 (en) * | 2002-09-27 | 2007-06-28 | Xencor, Inc. | Optimized anti-CD30 antibodies |
US7317091B2 (en) * | 2002-03-01 | 2008-01-08 | Xencor, Inc. | Optimized Fc variants |
US20040132101A1 (en) | 2002-09-27 | 2004-07-08 | Xencor | Optimized Fc variants and methods for their generation |
US8093357B2 (en) | 2002-03-01 | 2012-01-10 | Xencor, Inc. | Optimized Fc variants and methods for their generation |
MY139983A (en) * | 2002-03-12 | 2009-11-30 | Janssen Alzheimer Immunotherap | Humanized antibodies that recognize beta amyloid peptide |
US8044180B2 (en) * | 2002-08-14 | 2011-10-25 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
US8187593B2 (en) * | 2002-08-14 | 2012-05-29 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
US8530627B2 (en) * | 2002-08-14 | 2013-09-10 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
US8968730B2 (en) * | 2002-08-14 | 2015-03-03 | Macrogenics Inc. | FcγRIIB specific antibodies and methods of use thereof |
US8946387B2 (en) * | 2002-08-14 | 2015-02-03 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
US8193318B2 (en) * | 2002-08-14 | 2012-06-05 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
US20050202438A1 (en) * | 2002-09-09 | 2005-09-15 | Rene Gantier | Rational directed protein evolution using two-dimensional rational mutagenesis scanning |
US7611700B2 (en) * | 2002-09-09 | 2009-11-03 | Hanall Pharmaceuticals, Co., Ltd. | Protease resistant modified interferon alpha polypeptides |
US20060020396A1 (en) * | 2002-09-09 | 2006-01-26 | Rene Gantier | Rational directed protein evolution using two-dimensional rational mutagenesis scanning |
US20060235208A1 (en) * | 2002-09-27 | 2006-10-19 | Xencor, Inc. | Fc variants with optimized properties |
UA80447C2 (en) * | 2002-10-08 | 2007-09-25 | Methods for treating pain by administering nerve growth factor antagonist and opioid analgesic | |
JP4584713B2 (en) | 2002-10-08 | 2010-11-24 | ライナット ニューロサイエンス コーポレイション | Methods for treating postoperative pain by administering a nerve growth factor antagonist and compositions containing the nerve growth factor antagonist |
AU2003304238A1 (en) * | 2002-10-08 | 2005-01-13 | Rinat Neuroscience Corp. | Methods for treating post-surgical pain by administering an anti-nerve growth factor antagonist antibody and compositions containing the same |
WO2004032868A2 (en) * | 2002-10-09 | 2004-04-22 | Rinat Neuroscience Corp. | Methods of treating alzheimer's disease using antibodies directed against amyloid beta peptide and compositions thereof |
US7569364B2 (en) * | 2002-12-24 | 2009-08-04 | Pfizer Inc. | Anti-NGF antibodies and methods using same |
CA2511598C (en) * | 2002-12-24 | 2016-09-13 | Rinat Neuroscience Corp. | Anti-ngf antibodies and methods using same |
US9498530B2 (en) | 2002-12-24 | 2016-11-22 | Rinat Neuroscience Corp. | Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same |
US7960512B2 (en) | 2003-01-09 | 2011-06-14 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
ES2897506T3 (en) | 2003-01-09 | 2022-03-01 | Macrogenics Inc | Identification and modification of antibodies with variant Fc regions and methods of using them |
ES2545765T3 (en) * | 2003-02-01 | 2015-09-15 | Janssen Sciences Ireland Uc | Active immunization to generate antibodies to soluble A-beta |
WO2004073653A2 (en) | 2003-02-19 | 2004-09-02 | Rinat Neuroscience Corp. | Methods for treating pain by administering a nerve growth factor antagonist and an nsaid and compositions containing the same |
US20090010920A1 (en) | 2003-03-03 | 2009-01-08 | Xencor, Inc. | Fc Variants Having Decreased Affinity for FcyRIIb |
US20070275460A1 (en) * | 2003-03-03 | 2007-11-29 | Xencor.Inc. | Fc Variants With Optimized Fc Receptor Binding Properties |
US8388955B2 (en) * | 2003-03-03 | 2013-03-05 | Xencor, Inc. | Fc variants |
US8084582B2 (en) | 2003-03-03 | 2011-12-27 | Xencor, Inc. | Optimized anti-CD20 monoclonal antibodies having Fc variants |
WO2004084836A2 (en) * | 2003-03-20 | 2004-10-07 | Rinat Neuroscience Corp. | Methods for treating taxol-induced gut disorder |
US20060121455A1 (en) * | 2003-04-14 | 2006-06-08 | California Institute Of Technology | COP protein design tool |
US9051373B2 (en) | 2003-05-02 | 2015-06-09 | Xencor, Inc. | Optimized Fc variants |
TWI306458B (en) * | 2003-05-30 | 2009-02-21 | Elan Pharma Int Ltd | Humanized antibodies that recognize beta amyloid peptide |
US9714282B2 (en) | 2003-09-26 | 2017-07-25 | Xencor, Inc. | Optimized Fc variants and methods for their generation |
US8101720B2 (en) | 2004-10-21 | 2012-01-24 | Xencor, Inc. | Immunoglobulin insertions, deletions and substitutions |
WO2005042581A2 (en) * | 2003-11-01 | 2005-05-12 | Biovation Ltd. | Modified anti-cd52 antibody |
WO2005077981A2 (en) * | 2003-12-22 | 2005-08-25 | Xencor, Inc. | Fc POLYPEPTIDES WITH NOVEL Fc LIGAND BINDING SITES |
EP2402756A3 (en) | 2003-12-23 | 2012-02-22 | Rinat Neuroscience Corp. | Agonist anti-trkC antibodies and methods using same |
JP4782700B2 (en) * | 2004-01-20 | 2011-09-28 | カロバイオス ファーマシューティカルズ インコーポレイティッド | Transfer of antibody specificity using minimally required binding determinants |
WO2005075647A1 (en) * | 2004-02-06 | 2005-08-18 | Nymox Corporation | Humanized antibody |
WO2005092925A2 (en) * | 2004-03-24 | 2005-10-06 | Xencor, Inc. | Immunoglobulin variants outside the fc region |
US7794713B2 (en) * | 2004-04-07 | 2010-09-14 | Lpath, Inc. | Compositions and methods for the treatment and prevention of hyperproliferative diseases |
MXPA06011463A (en) | 2004-04-07 | 2007-04-25 | Rinat Neuroscience Corp | Methods for treating bone cancer pain by administering a nerve growth factor antagonist. |
US7521542B2 (en) | 2004-05-10 | 2009-04-21 | Macrogenics, Inc. | Humanized FcγRIIB-specific antibodies and methods of use thereof |
US7973134B2 (en) * | 2004-07-07 | 2011-07-05 | Cell Signaling Technology, Inc. | Reagents for the detection of protein phosphorylation in anaplastic large cell lymphoma signaling pathways |
US20150010550A1 (en) | 2004-07-15 | 2015-01-08 | Xencor, Inc. | OPTIMIZED Fc VARIANTS |
TWI355389B (en) * | 2004-07-30 | 2012-01-01 | Rinat Neuroscience Corp | Antibodies directed against amyloid-beta peptide a |
US20060177445A1 (en) * | 2004-08-16 | 2006-08-10 | Boris Skurkovich | Treatment of inflammatory skin diseases |
WO2006031994A2 (en) * | 2004-09-14 | 2006-03-23 | Xencor, Inc. | Monomeric immunoglobulin fc domains |
US7935790B2 (en) * | 2004-10-04 | 2011-05-03 | Cell Singaling Technology, Inc. | Reagents for the detection of protein phosphorylation in T-cell receptor signaling pathways |
CA2587766A1 (en) | 2004-11-10 | 2007-03-01 | Macrogenics, Inc. | Engineering fc antibody regions to confer effector function |
US8802820B2 (en) | 2004-11-12 | 2014-08-12 | Xencor, Inc. | Fc variants with altered binding to FcRn |
US8546543B2 (en) | 2004-11-12 | 2013-10-01 | Xencor, Inc. | Fc variants that extend antibody half-life |
US20070135620A1 (en) * | 2004-11-12 | 2007-06-14 | Xencor, Inc. | Fc variants with altered binding to FcRn |
US8367805B2 (en) | 2004-11-12 | 2013-02-05 | Xencor, Inc. | Fc variants with altered binding to FcRn |
WO2006053301A2 (en) * | 2004-11-12 | 2006-05-18 | Xencor, Inc. | Fc variants with altered binding to fcrn |
ES2744149T3 (en) | 2004-11-16 | 2020-02-21 | Humanigen Inc | Exchange of cassettes of the immunoglobulin variable region |
WO2006066171A1 (en) * | 2004-12-15 | 2006-06-22 | Neuralab Limited | Amyloid βετα antibodies for use in improving cognition |
WO2006066049A2 (en) * | 2004-12-15 | 2006-06-22 | Neuralab Limited | Humanized antibodies that recognize beta amyloid peptide |
TW200635607A (en) * | 2004-12-15 | 2006-10-16 | Elan Pharm Inc | Humanized Aβ antibodies for use in improving cognition |
US20080003617A1 (en) * | 2004-12-20 | 2008-01-03 | Xiaomin Fan | Methods for the identification and the isolation of epitope specific antibodies |
US7807789B2 (en) * | 2004-12-21 | 2010-10-05 | Cell Signaling Technology, Inc. | Reagents for the detection of protein phosphorylation in EGFR-signaling pathways |
EP1834183A1 (en) * | 2004-12-31 | 2007-09-19 | Genentech, Inc. | Detecting human antibodies in non-human serum |
CA2595169A1 (en) * | 2005-01-12 | 2006-07-20 | Xencor, Inc. | Antibodies and fc fusion proteins with altered immunogenicity |
KR101289537B1 (en) | 2005-02-15 | 2013-07-31 | 듀크 유니버시티 | Anti-cd19 antibodies and uses in oncology |
US20090099340A1 (en) * | 2007-10-12 | 2009-04-16 | Cell Signaling Technology, Inc. | Reagents for the detection of protein phosphorylation in carcinoma signaling pathways |
AR054260A1 (en) * | 2005-04-26 | 2007-06-13 | Rinat Neuroscience Corp | METHODS OF TREATMENT OF DISEASES OF THE LOWER MOTOR NEURONE AND COMPOSITIONS USED IN THE SAME |
UY29504A1 (en) * | 2005-04-29 | 2006-10-31 | Rinat Neuroscience Corp | DIRECTED ANTIBODIES AGAINST BETA AMYLOID PEPTIDE AND METHODS USING THE SAME. |
EP1885755A4 (en) | 2005-05-05 | 2009-07-29 | Univ Duke | Anti-cd19 antibody therapy for autoimmune disease |
BRPI0611765B1 (en) | 2005-06-07 | 2022-09-27 | Esbatech Ag | STABLE AND SOLUBLE ANTIBODY OR FRAGMENT THAT SPECIFICALLY BINDS TO TNF-ALFA ITS USES AND DIAGNOSTIC OR THERAPEUTIC COMPOSITION |
CA2614659A1 (en) * | 2005-07-11 | 2007-01-18 | Commonwealth Scientific And Industrial Research Organisation | Wheat pigment |
GB0514779D0 (en) * | 2005-07-19 | 2005-08-24 | Celltech R&D Ltd | Biological products |
PT2573114T (en) | 2005-08-10 | 2016-07-13 | Macrogenics Inc | Identification and engineering of antibodies with variant fc regions and methods of using same |
EP1934867A2 (en) * | 2005-08-31 | 2008-06-25 | Cell Signaling Technology, Inc. | Reagents for the detection of protein phosphorylation in leukemia signaling pathways |
US20100151495A9 (en) * | 2005-08-31 | 2010-06-17 | Cell Signaling Technolgy, Inc. | Reagents for the detection of protein phosphorylation in carcinoma signaling pathways |
CA2624189A1 (en) * | 2005-10-03 | 2007-04-12 | Xencor, Inc. | Fc variants with optimized fc receptor binding properties |
US7973136B2 (en) * | 2005-10-06 | 2011-07-05 | Xencor, Inc. | Optimized anti-CD30 antibodies |
AU2006303820B2 (en) * | 2005-10-20 | 2013-06-20 | Commonwealth Scientific And Industrial Research Organisation | Cereals with altered dormancy |
SI1948798T1 (en) | 2005-11-18 | 2015-09-30 | Glenmark Pharmaceuticals S.A. | Anti-alpha2 integrin antibodies and their uses |
US20120208824A1 (en) | 2006-01-20 | 2012-08-16 | Cell Signaling Technology, Inc. | ROS Kinase in Lung Cancer |
EP2540741A1 (en) | 2006-03-06 | 2013-01-02 | Aeres Biomedical Limited | Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease |
WO2007106707A2 (en) * | 2006-03-10 | 2007-09-20 | Macrogenics, Inc. | Identification and engineering of antibodies with variant heavy chains and methods of using same |
AU2007225044C1 (en) | 2006-03-15 | 2018-03-29 | Alexion Pharmaceuticals, Inc. | Treatment of paroxysmal nocturnal hemoglobinuria patients by an inhibitor of complement |
US8784810B2 (en) * | 2006-04-18 | 2014-07-22 | Janssen Alzheimer Immunotherapy | Treatment of amyloidogenic diseases |
US20090298093A1 (en) * | 2006-04-27 | 2009-12-03 | Roberto Polakiewicz | Reagents for the Detection of Protein Phosphorylation in ATM & ATR Kinase Signaling Pathways |
US7786270B2 (en) * | 2006-05-26 | 2010-08-31 | Macrogenics, Inc. | Humanized FcγRIIB-specific antibodies and methods of use thereof |
US7862812B2 (en) * | 2006-05-31 | 2011-01-04 | Lpath, Inc. | Methods for decreasing immune response and treating immune conditions |
CA2654025C (en) | 2006-06-02 | 2016-08-02 | Xoma Technology Ltd. | Hepatocyte growth factor (hgf) binding proteins |
ATE533787T1 (en) | 2006-06-02 | 2011-12-15 | Aveo Pharmaceuticals Inc | HEPATOCYTE GROWTH FACTOR (HGF)-BINDING PROTEINS |
MX2008015049A (en) | 2006-06-07 | 2009-02-16 | Bioalliance Cv | Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same. |
EP2032159B1 (en) | 2006-06-26 | 2015-01-07 | MacroGenics, Inc. | Combination of fcgammariib antibodies and cd20-specific antibodies and methods of use thereof |
PL2029173T3 (en) | 2006-06-26 | 2017-04-28 | Macrogenics, Inc. | Fc riib-specific antibodies and methods of use thereof |
EP2426150B1 (en) | 2006-06-30 | 2017-10-25 | Novo Nordisk A/S | Anti-nkg2a antibodies and uses thereof |
EP2046807B1 (en) | 2006-07-13 | 2012-03-28 | University of Iowa Research Foundation | Methods and reagents for treatment and diagnosis of vascular disorders and age-related macular degeneration |
WO2008013918A2 (en) * | 2006-07-26 | 2008-01-31 | Myelin Repair Foundation, Inc. | Cell cycle regulation and differentiation |
US7939636B2 (en) * | 2006-08-11 | 2011-05-10 | Cell Signaling Technology, Inc. | Reagents for the detection of protein phosphorylation in c-Src signaling pathways |
DK2383297T5 (en) | 2006-08-14 | 2022-07-04 | Xencor Inc | Optimized antibodies directed against CD19 |
US20090258442A1 (en) * | 2006-08-31 | 2009-10-15 | Cell Signaling Technology, Inc. | Reagents for the detection of protein phosphorylation in carcinoma signaling pathways |
SI2061810T1 (en) | 2006-09-05 | 2015-04-30 | Alexion Pharmaceuticals, Inc. | Methods and compositions for the treatment of antibody mediated neuropathies |
WO2008036688A2 (en) * | 2006-09-18 | 2008-03-27 | Xencor, Inc. | Optimized antibodies that target hm1.24 |
US20080112961A1 (en) * | 2006-10-09 | 2008-05-15 | Macrogenics, Inc. | Identification and Engineering of Antibodies with Variant Fc Regions and Methods of Using Same |
US20080091357A1 (en) * | 2006-10-12 | 2008-04-17 | One Lambda, Inc. | Method to identify epitopes |
RU2460541C2 (en) * | 2006-10-27 | 2012-09-10 | Лпат, Инк. | Compositions and methods of sphingosine-1-phosphate binding |
WO2008055072A2 (en) | 2006-10-27 | 2008-05-08 | Lpath, Inc. | Compositions and methods for treating ocular diseases and conditions |
WO2008140603A2 (en) | 2006-12-08 | 2008-11-20 | Macrogenics, Inc. | METHODS FOR THE TREATMENT OF DISEASE USING IMMUNOGLOBULINS HAVING FC REGIONS WITH ALTERED AFFINITIES FOR FCγR ACTIVATING AND FCγR INHIBITING |
WO2008079849A2 (en) * | 2006-12-22 | 2008-07-03 | Genentech, Inc. | Antibodies to insulin-like growth factor receptor |
PE20090681A1 (en) | 2007-03-02 | 2009-06-10 | Genentech Inc | PREDICTION OF RESPONSE TO A HER INHIBITOR |
US20090081659A1 (en) | 2007-03-07 | 2009-03-26 | Cell Signaling Technology, Inc. | Reagents for the detection of protein phosphorylation in carcinoma signaling pathways |
EP1975184A3 (en) | 2007-03-26 | 2008-11-26 | Cell Signaling Technology, Inc. | Serine or threonine phosphorylation sites |
US20080238709A1 (en) * | 2007-03-28 | 2008-10-02 | Faramarz Vaziri | One-way communication apparatus with dynamic key generation |
US8003097B2 (en) * | 2007-04-18 | 2011-08-23 | Janssen Alzheimer Immunotherapy | Treatment of cerebral amyloid angiopathy |
AU2008242648B2 (en) * | 2007-04-18 | 2013-09-12 | Janssen Alzheimer Immunotherapy | Prevention and treatment of cerebral amyloid angiopathy |
EP1983002A3 (en) | 2007-04-19 | 2009-03-11 | Peter Hornbeck | Tyrosine phosphorylation sites and antibodies specific for them |
EP1983003A3 (en) | 2007-04-19 | 2009-03-11 | Peter Hornbeck | Tyrosine phosphorylation sites and antibodies specific for them |
US7977462B2 (en) | 2007-04-19 | 2011-07-12 | Cell Signaling Technology, Inc. | Tyrosine phosphorylation sites |
US20090053831A1 (en) | 2007-05-01 | 2009-02-26 | Cell Signaling Technology, Inc. | Tyrosine phosphorylation sites |
PT2164514T (en) | 2007-05-21 | 2017-02-16 | Alderbio Holdings Llc | Antibodies to il-6 and use thereof |
ES2585702T3 (en) * | 2007-05-30 | 2016-10-07 | Lpath, Inc | Compositions and methods for lysophosphatidic acid binding |
US20110064744A1 (en) * | 2007-05-30 | 2011-03-17 | Sabbadini Roger A | Prevention and treatment of pain using antibodies to lysophosphatidic acid |
US9163091B2 (en) * | 2007-05-30 | 2015-10-20 | Lpath, Inc. | Compositions and methods for binding lysophosphatidic acid |
US7580304B2 (en) * | 2007-06-15 | 2009-08-25 | United Memories, Inc. | Multiple bus charge sharing |
EP2182983B1 (en) | 2007-07-27 | 2014-05-21 | Janssen Alzheimer Immunotherapy | Treatment of amyloidogenic diseases with humanised anti-abeta antibodies |
PE20140196A1 (en) | 2007-08-09 | 2014-03-19 | Boehringer Ingelheim Int | ANTI-CD37 ANTIBODIES |
EP2022848A1 (en) | 2007-08-10 | 2009-02-11 | Hubrecht Institut | A method for identifying, expanding, and removing adult stem cells and cancer stem cells |
CA2696164C (en) * | 2007-08-13 | 2018-06-12 | Vasgene Therapeutics, Inc. | Cancer treatment using humanized antibodies that bind to ephb4 |
JO3076B1 (en) * | 2007-10-17 | 2017-03-15 | Janssen Alzheimer Immunotherap | Immunotherapy regimes dependent on apoe status |
US9096855B2 (en) | 2007-10-18 | 2015-08-04 | Cell Signaling Technology, Inc. | Translocation and mutant ROS kinase in human non-small cell lung carcinoma |
US8361465B2 (en) * | 2007-10-26 | 2013-01-29 | Lpath, Inc. | Use of anti-sphingosine-1-phosphate antibodies in combination with chemotherapeutic agents |
EP2062920A3 (en) | 2007-11-21 | 2009-06-17 | Peter Hornbeck | Protein phosphorylation by basophilic serine/threonine kinases in insulin signalling pathways |
TWI580694B (en) | 2007-11-30 | 2017-05-01 | 建南德克公司 | Anti-vegf antibodies |
EP2769993A1 (en) | 2007-12-14 | 2014-08-27 | Novo Nordisk A/S | Antibodies against human NKG2D and uses thereof |
DK2245063T3 (en) | 2007-12-18 | 2015-12-07 | Bioalliance Cv | Antibodies that recognize carbohydrate AN EPITOPE ON CD-43 AND CEA expressed CANCER CELLS AND PRACTICES BY WHICH THEY USED |
US9266967B2 (en) | 2007-12-21 | 2016-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
US20090162359A1 (en) | 2007-12-21 | 2009-06-25 | Christian Klein | Bivalent, bispecific antibodies |
CN105418762B (en) | 2007-12-26 | 2019-11-05 | Xencor公司 | With the Fc variant of FcRn Binding change |
US8796427B2 (en) | 2008-01-24 | 2014-08-05 | Novo Nordisk A/S | Humanized anti-human NKG2A monoclonal antibody |
US20090220991A1 (en) * | 2008-02-29 | 2009-09-03 | Cell Signaling Technology, Inc. | Reagents for the detection of protein phosphorylation in leukemia signaling pathways |
MX348362B (en) * | 2008-03-31 | 2017-06-07 | Genentech Inc * | Compositions and methods for treating and diagnosing asthma. |
MX2010010387A (en) | 2008-04-02 | 2010-10-15 | Macrogenics Inc | Bcr-complex-specific antibodies and methods of using same. |
SG189730A1 (en) | 2008-04-02 | 2013-05-31 | Macrogenics Inc | Her2/neu-specific antibodies and methods of using same |
EP2274437B1 (en) | 2008-04-10 | 2015-12-23 | Cell Signaling Technology, Inc. | Compositions and methods for detecting egfr mutations in cancer |
AU2009242038B2 (en) | 2008-05-02 | 2013-05-30 | Novartis Ag | Improved fibronectin-based binding molecules and uses thereof |
US20110081347A1 (en) * | 2008-06-04 | 2011-04-07 | Macrogenics, Inc. | Antibodies with Altered Binding to FcRn and Methods of Using Same |
MX2011000011A (en) | 2008-06-25 | 2011-09-27 | Esbatech Alcon Biomed Res Unit | Stable and soluble antibodies inhibiting vegf. |
PL2307458T3 (en) * | 2008-06-25 | 2018-08-31 | Esbatech, An Alcon Biomedical Research Unit Llc | Humanization of rabbit antibodies using a universal antibody framework |
RU2653753C1 (en) | 2008-06-25 | 2018-05-14 | ИЭсБиЭйТЕК, ЭН АЛЬКОН БАЙОМЕДИКАЛ РИСЕРЧ ЮНИТ ЭлЭлСи | STABLE AND SOLUBLE ANTIBODIES INHIBITING TNFα |
US8148088B2 (en) * | 2008-07-18 | 2012-04-03 | Abgent | Regulation of autophagy pathway phosphorylation and uses thereof |
ES2828721T3 (en) | 2008-10-14 | 2021-05-27 | Genentech Inc | Immunoglobulin variants and their uses |
US8871202B2 (en) | 2008-10-24 | 2014-10-28 | Lpath, Inc. | Prevention and treatment of pain using antibodies to sphingosine-1-phosphate |
US9067981B1 (en) | 2008-10-30 | 2015-06-30 | Janssen Sciences Ireland Uc | Hybrid amyloid-beta antibodies |
EA201190002A1 (en) * | 2008-11-06 | 2012-04-30 | Гленмарк Фармасьютикалс С.А. | TREATMENT BY ANTIBODIES TO THE ALPHA-2 INTEGRINE |
CN103861106B (en) | 2008-11-25 | 2017-03-22 | 奥尔德生物制药公司 | Antagonists of IL-6 to raise albumin and/or lower CRP |
CA2745436A1 (en) * | 2008-12-05 | 2010-06-10 | Lpath, Inc. | Antibody design using anti-lipid antibody crystal structures |
US8401799B2 (en) * | 2008-12-05 | 2013-03-19 | Lpath, Inc. | Antibody design using anti-lipid antibody crystal structures |
HUE034832T2 (en) | 2008-12-09 | 2021-12-28 | Hoffmann La Roche | Anti-pd-l1 antibodies and their use to enhance t-cell function |
WO2010075249A2 (en) | 2008-12-22 | 2010-07-01 | Genentech, Inc. | A method for treating rheumatoid arthritis with b-cell antagonists |
KR101812811B1 (en) | 2008-12-23 | 2017-12-27 | 제넨테크, 인크. | Immunoglobulin variants with altered binding to protein a |
HUE035769T2 (en) | 2009-02-12 | 2018-05-28 | Cell Signaling Technology Inc | Mutant ROS expression in human liver cancer |
US20100292443A1 (en) * | 2009-02-26 | 2010-11-18 | Sabbadini Roger A | Humanized platelet activating factor antibody design using anti-lipid antibody templates |
US20100248265A1 (en) * | 2009-02-27 | 2010-09-30 | The Salk Institute For Biological Studies | Compositions and methods for diagnosis and treatment of cancer |
SG174367A1 (en) | 2009-03-23 | 2011-10-28 | Quark Pharmaceuticals Inc | Compounds compositions and methods of treating cancer and fibrotic diseases |
UA108199C2 (en) | 2009-03-25 | 2015-04-10 | ANTIBODY AGAINST α5β1 AND ITS APPLICATION | |
RU2598248C2 (en) * | 2009-04-02 | 2016-09-20 | Роше Гликарт Аг | Polyspecific antibodies containing antibody of full length and one-chain fragments fab |
SG175077A1 (en) * | 2009-04-07 | 2011-11-28 | Roche Glycart Ag | Trivalent, bispecific antibodies |
WO2010118243A2 (en) | 2009-04-08 | 2010-10-14 | Genentech, Inc. | Use of il-27 antagonists to treat lupus |
WO2010121093A2 (en) * | 2009-04-17 | 2010-10-21 | Lpath, Inc. | Humanized antibody compositions and methods for binding lysophosphatidic acid |
AU2010249470B2 (en) * | 2009-05-20 | 2015-06-25 | Novimmune S.A. | Synthetic Polypeptide Libraries And Methods For Generating Naturally Diversified Polypeptide Variants |
PE20120540A1 (en) * | 2009-05-27 | 2012-05-09 | Hoffmann La Roche | THREE-SPECIFIC OR TETRA-SPECIFIC ANTIBODIES |
US20100316639A1 (en) | 2009-06-16 | 2010-12-16 | Genentech, Inc. | Biomarkers for igf-1r inhibitor therapy |
US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
WO2011000962A2 (en) | 2009-07-03 | 2011-01-06 | Bionor Immuno As | Novel therapeutic and diagnostic means |
WO2011006001A1 (en) | 2009-07-09 | 2011-01-13 | Genentech, Inc. | Animal model for the evaluation of adjuvant therapies of cancer |
CN106148547A (en) | 2009-07-13 | 2016-11-23 | 霍夫曼-拉罗奇有限公司 | Diagnostic method and composition for treatment of cancer |
WO2011014457A1 (en) | 2009-07-27 | 2011-02-03 | Genentech, Inc. | Combination treatments |
ES2513292T3 (en) | 2009-07-31 | 2014-10-24 | Genentech, Inc. | Inhibition of tumor metastases using anti-G-CSF antibodies |
RU2017138926A (en) | 2009-08-11 | 2019-02-11 | Дженентек, Инк. | PRODUCTION OF PROTEINS IN CULTURAL MEDIA WITHOUT GLUTAMINE |
SG178360A1 (en) | 2009-08-14 | 2012-03-29 | Genentech Inc | Biological markers for monitoring patient response to vegf antagonists |
WO2011028952A1 (en) | 2009-09-02 | 2011-03-10 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
WO2011028950A1 (en) | 2009-09-02 | 2011-03-10 | Genentech, Inc. | Mutant smoothened and methods of using the same |
EP2475996A1 (en) | 2009-09-11 | 2012-07-18 | F. Hoffmann-La Roche AG | Method to identify a patient with an increased likelihood of responding to an anti-cancer agent |
EP2478013B1 (en) | 2009-09-16 | 2018-10-24 | F.Hoffmann-La Roche Ag | Coiled coil and/or tether containing protein complexes and uses thereof |
MX2012002909A (en) | 2009-09-17 | 2012-04-19 | Hoffmann La Roche | Methods and compositions for diagnostics use in cancer patients. |
PE20120998A1 (en) | 2009-09-30 | 2012-08-14 | Genentech Inc | METHODS FOR TREATING CANCER USING NOTCH ANTAGONISTS |
PL2486141T3 (en) | 2009-10-07 | 2018-07-31 | Macrogenics, Inc. | Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use |
WO2011051327A2 (en) | 2009-10-30 | 2011-05-05 | Novartis Ag | Small antibody-like single chain proteins |
WO2011060015A1 (en) | 2009-11-11 | 2011-05-19 | Genentech, Inc. | Methods and compositions for detecting target proteins |
US8486397B2 (en) | 2009-12-11 | 2013-07-16 | Genentech, Inc. | Anti-VEGF-C antibodies and methods using same |
KR101989628B1 (en) | 2009-12-21 | 2019-06-14 | 제넨테크, 인크. | Antibody formulation |
AU2010336485B2 (en) | 2009-12-23 | 2015-03-26 | Genentech, Inc. | Anti-Bv8 antibodies and uses thereof |
TW201125583A (en) * | 2009-12-23 | 2011-08-01 | Bioalliance Cv | Anti-EpCAM antibodies that induce apoptosis of cancer cells and methods using same |
US8362210B2 (en) | 2010-01-19 | 2013-01-29 | Xencor, Inc. | Antibody variants with enhanced complement activity |
EP2354159A1 (en) | 2010-02-05 | 2011-08-10 | RWTH Aachen | CCL17 inhibitors for use in T helper cell-driven diseases |
SG183333A1 (en) | 2010-02-18 | 2012-09-27 | Genentech Inc | Neuregulin antagonists and use thereof in treating cancer |
RU2545401C2 (en) | 2010-02-23 | 2015-03-27 | Санофи | Anti-integrin alpha-2 antibodies and using them |
US20110212088A1 (en) * | 2010-02-26 | 2011-09-01 | Sabbadini Roger A | Anti-paf antibodies |
RS59269B1 (en) | 2010-03-04 | 2019-10-31 | Macrogenics Inc | Antibodies reactive with b7-h3, immunologically active fragments thereof and uses thereof |
US8802091B2 (en) | 2010-03-04 | 2014-08-12 | Macrogenics, Inc. | Antibodies reactive with B7-H3 and uses thereof |
GB201003701D0 (en) | 2010-03-05 | 2010-04-21 | Cilian Ag | System for the expression of a protein |
AU2011232514A1 (en) | 2010-03-24 | 2012-08-30 | Genentech, Inc. | Anti-LRP6 antibodies |
AR080793A1 (en) | 2010-03-26 | 2012-05-09 | Roche Glycart Ag | BISPECIFIC ANTIBODIES |
US10745467B2 (en) | 2010-03-26 | 2020-08-18 | The Trustees Of Dartmouth College | VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders |
WO2011120013A2 (en) | 2010-03-26 | 2011-09-29 | Trustees Of Dartmouth College | Vista regulatory t cell mediator protein, vista binding agents and use thereof |
US20150231215A1 (en) | 2012-06-22 | 2015-08-20 | Randolph J. Noelle | VISTA Antagonist and Methods of Use |
CN105968206B (en) | 2010-04-09 | 2020-01-17 | Aveo制药公司 | anti-ERBB 3 antibodies |
WO2011133931A1 (en) | 2010-04-22 | 2011-10-27 | Genentech, Inc. | Use of il-27 antagonists for treating inflammatory bowel disease |
WO2011146568A1 (en) | 2010-05-19 | 2011-11-24 | Genentech, Inc. | Predicting response to a her inhibitor |
WO2011153224A2 (en) | 2010-06-02 | 2011-12-08 | Genentech, Inc. | Diagnostic methods and compositions for treatment of cancer |
WO2011156617A2 (en) | 2010-06-09 | 2011-12-15 | Aveo Pharmaceuticals, Inc. | Anti-egfr antibodies |
KR101885388B1 (en) | 2010-06-18 | 2018-08-03 | 제넨테크, 인크. | Anti-axl antibodies and methods of use |
US20130189268A1 (en) | 2010-06-22 | 2013-07-25 | Precision Biologics, Inc. | Colon and pancreas cancer specific antigens and antibodies |
WO2011161189A1 (en) | 2010-06-24 | 2011-12-29 | F. Hoffmann-La Roche Ag | Anti-hepsin antibodies and methods of use |
WO2012003472A1 (en) | 2010-07-02 | 2012-01-05 | Aveo Pharmaceuticals, Inc. | Anti-notch1 antibodies |
US8603478B2 (en) | 2010-07-06 | 2013-12-10 | Aveo Pharmaceuticals, Inc. | Anti-RON antibodies |
EP2591004A1 (en) | 2010-07-09 | 2013-05-15 | F.Hoffmann-La Roche Ag | Anti-neuropilin antibodies and methods of use |
JP2013538338A (en) | 2010-07-19 | 2013-10-10 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | Methods for identifying patients with increased likelihood of response to anti-cancer therapy |
EP2596361A1 (en) | 2010-07-19 | 2013-05-29 | F.Hoffmann-La Roche Ag | Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy |
WO2012010582A1 (en) | 2010-07-21 | 2012-01-26 | Roche Glycart Ag | Anti-cxcr5 antibodies and methods of use |
JP6092773B2 (en) | 2010-07-30 | 2017-03-08 | ノバルティス アーゲー | Fibronectin cradle molecule and its library |
WO2012018771A1 (en) | 2010-08-03 | 2012-02-09 | Genentech, Inc. | Chronic lymphocytic leukemia (cll) biomarkers |
RU2013106217A (en) | 2010-08-05 | 2014-09-10 | Ф. Хоффманн-Ля Рош Аг | HYBRID PROTEIN FROM ANTIBODIES AGAINST MHC AND ANTIVIRAL CYTOKINE |
WO2012019061A2 (en) | 2010-08-05 | 2012-02-09 | Stem Centrx, Inc. | Novel effectors and methods of use |
WO2012019132A2 (en) | 2010-08-06 | 2012-02-09 | Cell Signaling Technology, Inc. | Anaplastic lymphoma kinase in kidney cancer |
JP2013537539A (en) | 2010-08-13 | 2013-10-03 | ジェネンテック, インコーポレイテッド | Antibodies against IL-1β and IL-18 for the treatment of disease |
MX358859B (en) | 2010-08-13 | 2018-09-05 | Roche Glycart Ag | ANTI-FAP ANTIBODIES and METHODS OF USE. |
WO2012020096A1 (en) | 2010-08-13 | 2012-02-16 | Medimmune Limited | Monomeric polypeptides comprising variant fc regions and methods of use |
KR101653030B1 (en) | 2010-08-13 | 2016-08-31 | 로슈 글리카트 아게 | Anti-tenascin-c a2 antibodies and methods of use |
WO2012022734A2 (en) | 2010-08-16 | 2012-02-23 | Medimmune Limited | Anti-icam-1 antibodies and methods of use |
HRP20220405T1 (en) | 2010-08-19 | 2022-05-27 | Zoetis Belgium S.A. | Anti-ngf antibodies and their use |
MX340558B (en) | 2010-08-24 | 2016-07-14 | F Hoffmann-La Roche Ag * | Bispecific antibodies comprising a disulfide stabilized - fv fragment. |
AU2011293127B2 (en) | 2010-08-27 | 2016-05-12 | Abbvie Stemcentrx Llc | Notum protein modulators and methods of use |
SG10201408229WA (en) | 2010-08-31 | 2015-02-27 | Genentech Inc | Biomarkers and methods of treatment |
NZ608814A (en) | 2010-09-03 | 2015-06-26 | Stem Centrx Inc | Novel modulators and methods of use |
WO2012040617A2 (en) | 2010-09-23 | 2012-03-29 | Neogenix Oncology, Inc. | Colon and pancreas cancer peptidomimetics |
DK2625197T3 (en) | 2010-10-05 | 2016-10-03 | Genentech Inc | Smoothened MUTANT AND METHODS OF USING THE SAME |
AR083495A1 (en) | 2010-10-22 | 2013-02-27 | Esbatech Alcon Biomed Res Unit | STABLE AND SOLUBLE ANTIBODIES |
CA2816763A1 (en) | 2010-11-05 | 2012-05-10 | Transbio Ltd | Markers of endothelial progenitor cells and uses thereof |
SG190682A1 (en) | 2010-11-10 | 2013-07-31 | Genentech Inc | Methods and compositions for neural disease immunotherapy |
EA029419B1 (en) | 2010-11-19 | 2018-03-30 | Эйсай Ар Энд Ди Менеджмент Ко., Лтд. | Neutralizing anti-ccl20 antibodies |
DK2643018T3 (en) | 2010-11-23 | 2021-01-18 | Vitaeris Inc | ANTI-IL-6 ANTIBODIES FOR THE TREATMENT OF ORAL MUCOSITIS |
US9783602B2 (en) | 2010-12-01 | 2017-10-10 | Alderbio Holdings Llc | Anti-NGF compositions and use thereof |
SG191081A1 (en) | 2010-12-08 | 2013-07-31 | Stem Centrx Inc | Novel modulators and methods of use |
TWI708944B (en) | 2010-12-16 | 2020-11-01 | 美商建南德克公司 | Diagnosis and treatments relating to th2 inhibition |
SG10201510518TA (en) | 2010-12-20 | 2016-01-28 | Genentech Inc | Anti-mesothelin antibodies and immunoconjugates |
JP2014511106A (en) | 2010-12-22 | 2014-05-08 | ジェネンテック, インコーポレイテッド | Anti-PCSK9 antibody and method of use |
WO2012085111A1 (en) | 2010-12-23 | 2012-06-28 | F. Hoffmann-La Roche Ag | Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery |
EP2471554A1 (en) | 2010-12-28 | 2012-07-04 | Hexal AG | Pharmaceutical formulation comprising a biopharmaceutical drug |
CA2822481A1 (en) | 2011-01-03 | 2012-07-12 | F. Hoffmann-La Roche Ag | A pharmaceutical composition of a complex of an anti-dig antibody and digoxigenin that is conjugated to a peptide |
MX2013009151A (en) | 2011-02-10 | 2013-08-29 | Roche Glycart Ag | Improved immunotherapy. |
KR101852245B1 (en) | 2011-02-10 | 2018-04-25 | 로슈 글리카트 아게 | Mutant interleukin-2 polypetides |
SA112330278B1 (en) | 2011-02-18 | 2015-10-09 | ستيم سينتركس، انك. | Novel modulators and methods of use |
WO2012116927A1 (en) | 2011-02-28 | 2012-09-07 | F. Hoffmann-La Roche Ag | Monovalent antigen binding proteins |
RU2607038C2 (en) | 2011-02-28 | 2017-01-10 | Ф. Хоффманн-Ля Рош Аг | Antigen-binding proteins |
AU2012225310B2 (en) | 2011-03-09 | 2017-08-03 | Cell Signaling Technology, Inc. | Methods and reagents for creating monoclonal antibodies |
EP2683735A1 (en) | 2011-03-10 | 2014-01-15 | HCO Antibody, Inc. | Bispecific three-chain antibody-like molecules |
PL2683406T3 (en) | 2011-03-11 | 2019-11-29 | Beth Israel Deaconess Medical Ct Inc | Anti-cd40 antibodies and uses thereof |
BR112013024574B1 (en) | 2011-03-29 | 2022-08-09 | Roche Glycart Ag | ANTIBODY AND ANTIBODY USE |
CN103596983B (en) | 2011-04-07 | 2016-10-26 | 霍夫曼-拉罗奇有限公司 | Anti-FGFR4 antibody and using method |
EP2511293A1 (en) | 2011-04-13 | 2012-10-17 | LEK Pharmaceuticals d.d. | A method for controlling the main complex N-glycan structures and the acidic variants and variability in bioprocesses producing recombinant proteins |
EA201892619A1 (en) | 2011-04-29 | 2019-04-30 | Роше Гликарт Аг | IMMUNOCONJUGATES CONTAINING INTERLEUKIN-2 MUTANT POLYPETIPS |
US8679767B2 (en) | 2011-05-12 | 2014-03-25 | Genentech, Inc. | Multiple reaction monitoring LC-MS/MS method to detect therapeutic antibodies in animal samples using framework signature peptides |
JP5836481B2 (en) | 2011-05-16 | 2015-12-24 | ジェネンテック, インコーポレイテッド | FGFR1 agonist and method of use |
EP2710042A2 (en) | 2011-05-16 | 2014-03-26 | Fabion Pharmaceuticals, Inc. | Multi-specific fab fusion proteins and methods of use |
AU2012258976B8 (en) | 2011-05-20 | 2017-07-20 | H. Lundbeck A/S | Use of anti-CGRP or anti-CGRP-R antibodies or antibody fragments to treat or prevent chronic and acute forms of diarrhea |
CA3048709A1 (en) | 2011-05-20 | 2012-11-29 | Alderbio Holdings Llc | Use of anti-cgrp antibodies and antibody fragments to prevent or inhibit photophobia or light aversion in subjects in need thereof, especially migraine sufferers |
LT3495392T (en) | 2011-05-20 | 2021-09-27 | H. Lundbeck A/S | Anti-cgrp compositions and use thereof |
BR112013030017A2 (en) | 2011-05-25 | 2020-10-13 | Innate Pharma Sa | anti-kir antibodies for the treatment of inflammatory disorders |
KR101629073B1 (en) | 2011-06-15 | 2016-06-09 | 에프. 호프만-라 로슈 아게 | Anti-human epo receptor antibodies and methods of use |
BR112013030472A2 (en) | 2011-06-30 | 2019-09-24 | Genentech Inc | pharmaceutical formulation, article of manufacture and method |
JP2013040160A (en) | 2011-07-01 | 2013-02-28 | Genentech Inc | Use of anti-cd83 agonist antibody for treating autoimmune disease |
MX368257B (en) | 2011-08-01 | 2019-09-26 | Genentech Inc | Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors. |
CN103890007A (en) | 2011-08-17 | 2014-06-25 | 霍夫曼-拉罗奇有限公司 | Neuregulin antibodies and uses thereof |
MX2014001736A (en) | 2011-08-17 | 2014-03-31 | Genentech Inc | Inhibition of angiogenesis in refractory tumors. |
RU2014109038A (en) | 2011-08-23 | 2015-09-27 | Рош Гликарт Аг | ANTIBODIES TO CHONDROITINSULFATE PROTEOGLYCAN MELANOMA |
JP6159724B2 (en) | 2011-08-23 | 2017-07-05 | ロシュ グリクアート アーゲー | Bispecific antibodies and tumor antigens specific for T cell activating antigens and methods of use |
HUE039703T2 (en) | 2011-08-23 | 2019-01-28 | Roche Glycart Ag | Bispecific antigen binding molecules |
WO2013026837A1 (en) | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
ES2659764T3 (en) | 2011-08-23 | 2018-03-19 | Roche Glycart Ag | Bispecific T-cell activating antigen binding molecules |
MX2014001799A (en) | 2011-08-23 | 2014-03-31 | Roche Glycart Ag | Fc-free antibodies comprising two fab fragments and methods of use. |
US20130058947A1 (en) | 2011-09-02 | 2013-03-07 | Stem Centrx, Inc | Novel Modulators and Methods of Use |
CN103930781A (en) | 2011-09-15 | 2014-07-16 | 霍夫曼-拉罗奇有限公司 | Methods of promoting differentiation |
MX2014002990A (en) | 2011-09-19 | 2014-05-21 | Genentech Inc | Combination treatments comprising c-met antagonists and b-raf antagonists. |
PL2758433T3 (en) | 2011-09-19 | 2018-06-29 | Axon Neuroscience Se | Protein-based therapy and diagnosis of tau-mediated pathology in alzheimer's disease |
BR112014008212A2 (en) | 2011-10-05 | 2017-06-13 | Genentech Inc | method for treating a liver condition, hepatic differentiation induction method, and abnormal bile duct proliferation reduction method |
KR20140082796A (en) | 2011-10-14 | 2014-07-02 | 제넨테크, 인크. | ANTI-HtrA1 ANTIBODIES AND METHODS OF USE |
RU2014119426A (en) | 2011-10-15 | 2015-11-20 | Дженентек, Инк. | WAYS OF APPLICATION OF SCD1 ANTAGONISTS |
WO2013059531A1 (en) | 2011-10-20 | 2013-04-25 | Genentech, Inc. | Anti-gcgr antibodies and uses thereof |
MX2014004991A (en) | 2011-10-28 | 2014-05-22 | Genentech Inc | Therapeutic combinations and methods of treating melanoma. |
US9272002B2 (en) | 2011-10-28 | 2016-03-01 | The Trustees Of The University Of Pennsylvania | Fully human, anti-mesothelin specific chimeric immune receptor for redirected mesothelin-expressing cell targeting |
WO2013067492A1 (en) | 2011-11-03 | 2013-05-10 | The Trustees Of The University Of Pennsylvania | Isolated b7-h4 specific compositions and methods of use thereof |
US20140322216A1 (en) | 2011-11-08 | 2014-10-30 | The Trustees Of The University Of Pennsylvania | Glypican-3-specific antibody and uses thereof |
SG11201402485UA (en) | 2011-11-21 | 2014-06-27 | Genentech Inc | Purification of anti-c-met antibodies |
KR101981873B1 (en) | 2011-11-28 | 2019-05-23 | 메르크 파텐트 게엠베하 | Anti-pd-l1 antibodies and uses thereof |
US20140335084A1 (en) | 2011-12-06 | 2014-11-13 | Hoffmann-La Roche Inc. | Antibody formulation |
KR102048556B1 (en) | 2011-12-22 | 2019-11-26 | 에프. 호프만-라 로슈 아게 | Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides |
MX355625B (en) | 2011-12-22 | 2018-04-25 | Hoffmann La Roche | Expression vector organization, novel production cell generation methods and their use for the recombinant production of polypeptides. |
CN104011080B (en) | 2011-12-22 | 2017-10-20 | 弗·哈夫曼-拉罗切有限公司 | Full length antibody display systems for eukaryotic and application thereof |
WO2013092998A1 (en) | 2011-12-23 | 2013-06-27 | Innate Pharma | Enzymatic conjugation of antibodies |
WO2013096791A1 (en) | 2011-12-23 | 2013-06-27 | Genentech, Inc. | Process for making high concentration protein formulations |
CN104080480A (en) | 2012-01-01 | 2014-10-01 | 奇比艾企业有限公司 | Endo180-targeted particles for selective delivery of therapeutic and diagnostic agents |
WO2013106485A2 (en) | 2012-01-09 | 2013-07-18 | The Scripps Research Institute | Ultralong complementarity determining regions and uses thereof |
AU2013208007A1 (en) | 2012-01-09 | 2014-07-31 | The Scripps Research Institute | Humanized antibodies with ultralong CDR3 |
MX356802B (en) | 2012-01-13 | 2018-06-13 | Genentech Inc | Biological markers for identifying patients for treatment with vegf antagonists. |
WO2013109856A2 (en) | 2012-01-18 | 2013-07-25 | Genentech, Inc. | Methods of using fgf19 modulators |
EA028202B1 (en) | 2012-01-18 | 2017-10-31 | Дженентек, Инк. | Anti-lrp5 antibodies and methods of use thereof |
AU2013215332A1 (en) | 2012-01-31 | 2014-09-04 | Genentech, Inc. | Anti-Ig-E M1' antibodies and methods using same |
JP6486686B2 (en) | 2012-02-10 | 2019-03-20 | ジェネンテック, インコーポレイテッド | Single chain antibodies and other heteromultimers |
CN104718220A (en) | 2012-02-11 | 2015-06-17 | 霍夫曼-拉罗奇有限公司 | R-spondin translocations and methods using the same |
CN104125852B9 (en) | 2012-02-15 | 2017-05-17 | 弗·哈夫曼-拉罗切有限公司 | Fc-receptor based affinity chromatography |
ME02928B (en) | 2012-02-24 | 2018-04-20 | Abbvie Stemcentrx Llc | Dll3 modulators and methods of use |
KR102082363B1 (en) | 2012-03-13 | 2020-02-27 | 에프. 호프만-라 로슈 아게 | Combination therapy for the treatment of ovarian cancer |
BR112014024017A8 (en) | 2012-03-27 | 2017-07-25 | Genentech Inc | METHODS FOR TREATMENT OF A TYPE OF CANCER, FOR TREATMENT OF CARCINOMA, FOR SELECTING A THERAPY AND FOR QUANTIFICATION AND HER3 INHIBITORS |
AR090549A1 (en) | 2012-03-30 | 2014-11-19 | Genentech Inc | ANTI-LGR5 AND IMMUNOCATE PLAYERS |
CA2867588A1 (en) | 2012-03-30 | 2013-10-03 | Genentech, Inc. | Diagnostic methods and compositions for treatment of cancer |
WO2013158485A1 (en) | 2012-04-18 | 2013-10-24 | Massachusetts Institute Of Technology | Menainv and cancer invasion and metastasis |
DK2838998T3 (en) | 2012-04-18 | 2018-01-15 | Cell Signaling Technology Inc | EGFR AND ROS1 IN CANCER |
CN104470544B (en) | 2012-05-01 | 2018-01-12 | 基因泰克公司 | Anti- PMEL17 antibody and immunoconjugates |
WO2013165590A1 (en) | 2012-05-03 | 2013-11-07 | Fibrogen, Inc. | Methods for treating idiopathic pulmonary fibrosis |
WO2013170191A1 (en) | 2012-05-11 | 2013-11-14 | Genentech, Inc. | Methods of using antagonists of nad biosynthesis from nicotinamide |
US8992915B2 (en) | 2012-05-16 | 2015-03-31 | Boehringer Ingelheim International Gmbh | Combination of CD37 antibodies with ICE |
WO2013177470A1 (en) | 2012-05-23 | 2013-11-28 | Genentech, Inc. | Selection method for therapeutic agents |
SG10201603055WA (en) | 2012-05-31 | 2016-05-30 | Genentech Inc | Methods Of Treating Cancer Using PD-L1 Axis Binding Antagonists And VEGF Antagonists |
ES2894852T3 (en) | 2012-06-06 | 2022-02-16 | Zoetis Services Llc | Caninized anti-NGF antibodies and methods thereof |
CA2874936A1 (en) | 2012-06-06 | 2013-12-12 | Bionor Immuno As | Vaccine |
WO2013188855A1 (en) | 2012-06-15 | 2013-12-19 | Genentech, Inc. | Anti-pcsk9 antibodies, formulations, dosing, and methods of use |
CN104619722B (en) | 2012-06-22 | 2022-10-04 | 达特茅斯大学理事会 | Novel VISTA-IG constructs and use of VISTA-IG for treatment of autoimmune, allergic and inflammatory diseases |
US9890215B2 (en) | 2012-06-22 | 2018-02-13 | King's College London | Vista modulators for diagnosis and treatment of cancer |
JP6309002B2 (en) | 2012-06-27 | 2018-04-11 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Methods and uses for making antibody Fc region conjugates comprising at least one binding entity that specifically binds to a target |
BR112014032193A2 (en) | 2012-06-27 | 2017-06-27 | Hoffmann La Roche | bispecific antibody production and combination determination methods, bispecific antibody, formulation and use of bispecific antibody |
CN104428416B (en) | 2012-07-05 | 2019-01-29 | 弗·哈夫曼-拉罗切有限公司 | Expression and excretory system |
AR091700A1 (en) | 2012-07-09 | 2015-02-25 | Genentech Inc | ANTI-CD79B ANTIBODIES AND IMMUNOCATION |
KR20150030698A (en) | 2012-07-09 | 2015-03-20 | 제넨테크, 인크. | Immunoconjugates comprising anti-cd79b antibodies |
SG11201500087VA (en) | 2012-07-09 | 2015-02-27 | Genentech Inc | Immunoconjugates comprising anti-cd22 antibodies |
CN104428007B (en) | 2012-07-09 | 2018-03-16 | 基因泰克公司 | Immunoconjugates comprising anti-CD22 antibody |
WO2014011988A2 (en) | 2012-07-13 | 2014-01-16 | The Trustees Of The University Of Pennsylvania | Enhancing activity of car t cells by co-introducing a bispecific antibody |
EP3495387B1 (en) | 2012-07-13 | 2021-09-01 | Roche Glycart AG | Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases |
US10132799B2 (en) | 2012-07-13 | 2018-11-20 | Innate Pharma | Screening of conjugated antibodies |
BR112015002681A2 (en) | 2012-08-07 | 2018-08-28 | Genentech Inc | method to treat a patient and kit |
EP3434695B1 (en) | 2012-08-07 | 2020-12-02 | Roche Glycart AG | Improved immunotherapy |
PE20150645A1 (en) | 2012-08-08 | 2015-05-11 | Roche Glycart Ag | INTERLEUQUIN 10 FUSION PROTEINS AND USES OF THEM |
EP2882775B1 (en) | 2012-08-09 | 2018-02-14 | Roche Glycart AG | Asgpr antibodies and uses thereof |
US20140044675A1 (en) | 2012-08-10 | 2014-02-13 | Roche Glycart Ag | Interleukin-2 fusion proteins and uses thereof |
US9645151B2 (en) | 2012-08-17 | 2017-05-09 | California Institute Of Technology | Targeting phosphofructokinase and its glycosylation form for cancer |
EP3552628A1 (en) | 2012-09-07 | 2019-10-16 | The Trustees Of Dartmouth College | Vista modulators for diagnosis and treatment of cancer |
US9365641B2 (en) | 2012-10-01 | 2016-06-14 | The Trustees Of The University Of Pennsylvania | Compositions and methods for targeting stromal cells for the treatment of cancer |
WO2014055771A1 (en) | 2012-10-05 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Human alpha-folate receptor chimeric antigen receptor |
JP6444874B2 (en) | 2012-10-08 | 2018-12-26 | ロシュ グリクアート アーゲー | Fc-free antibody comprising two Fab fragments and methods of use |
US10206911B2 (en) | 2012-10-26 | 2019-02-19 | Memorial Sloan-Kettering Cancer Center | Androgen receptor variants and methods for making and using |
JP6694712B2 (en) | 2012-11-01 | 2020-05-20 | マックス−デルブルック−セントラム フアー モレキュラーレ メデジン | Antibody against CD269 (BCMA) |
EP2914621B1 (en) | 2012-11-05 | 2023-06-07 | Foundation Medicine, Inc. | Novel ntrk1 fusion molecules and uses thereof |
CA2884431A1 (en) | 2012-11-08 | 2014-05-15 | F. Hoffmann-La Roche Ag | Her3 antigen binding proteins binding to the beta-hairpin of her3 |
EP3564259A3 (en) | 2012-11-09 | 2020-02-12 | Innate Pharma | Recognition tags for tgase-mediated conjugation |
EP2919813B1 (en) | 2012-11-13 | 2018-10-24 | F.Hoffmann-La Roche Ag | Anti-hemagglutinin antibodies and methods of use |
DK2935330T3 (en) | 2012-12-19 | 2019-07-22 | Aveo Pharmaceuticals Inc | ANTI-NOTCH3 ANTIBODIES |
ES2791183T3 (en) | 2012-12-21 | 2020-11-03 | Aveo Pharmaceuticals Inc | Anti-GDF15 antibodies |
CA2896331C (en) | 2012-12-26 | 2023-08-01 | Oncosynergy, Inc. | Anti-integrin .beta.1 antibody compositions and methods of use thereof |
US9938344B2 (en) | 2012-12-28 | 2018-04-10 | Precision Biologics, Inc. | Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer |
WO2014107739A1 (en) | 2013-01-07 | 2014-07-10 | Eleven Biotherapeutics, Inc. | Antibodies against pcsk9 |
CA3150658A1 (en) | 2013-01-18 | 2014-07-24 | Foundation Medicine, Inc. | Methods of treating cholangiocarcinoma |
WO2014116749A1 (en) | 2013-01-23 | 2014-07-31 | Genentech, Inc. | Anti-hcv antibodies and methods of using thereof |
EP2951199A4 (en) | 2013-01-31 | 2016-07-20 | Univ Jefferson | Fusion proteins for modulating regulatory and effector t cells |
WO2014130635A1 (en) | 2013-02-20 | 2014-08-28 | Novartis Ag | Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells |
EP3626741A1 (en) | 2013-02-20 | 2020-03-25 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor |
DK2958944T3 (en) | 2013-02-22 | 2019-06-24 | Abbvie Stemcentrx Llc | ANTI-DLL3 ANTISTOF PBD CONJUGATES AND USES THEREOF |
EP2958592A1 (en) | 2013-02-22 | 2015-12-30 | F. Hoffmann-La Roche AG | Methods of treating cancer and preventing drug resistance |
KR102182488B1 (en) | 2013-02-25 | 2020-11-24 | 제넨테크, 인크. | Methods and compositions for detecting and treating drug resistant akt mutant |
KR20150123811A (en) | 2013-02-26 | 2015-11-04 | 로슈 글리카트 아게 | Anti-mcsp antibodies |
US20140242080A1 (en) | 2013-02-26 | 2014-08-28 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
MX2015010350A (en) | 2013-02-26 | 2015-10-29 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules. |
MY192312A (en) | 2013-02-26 | 2022-08-17 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
US9487587B2 (en) | 2013-03-05 | 2016-11-08 | Macrogenics, Inc. | Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof |
BR112015021423A2 (en) | 2013-03-06 | 2017-07-18 | Genentech Inc | cancer treatment methods, egfr antagonist-resistant cancer cells, cancer cells, methods of increasing the sensitivity and effectiveness of cancer treatment, and methods of delaying, treating cancer patients and extending |
ES2688895T3 (en) | 2013-03-13 | 2018-11-07 | F. Hoffmann-La Roche Ag | Formulations with reduced oxidation |
EP3744345B1 (en) | 2013-03-13 | 2022-02-09 | F. Hoffmann-La Roche AG | Antibody formulations |
US20140314778A1 (en) | 2013-03-13 | 2014-10-23 | Genentech, Inc. | Formulations with reduced oxidation |
AR095399A1 (en) | 2013-03-13 | 2015-10-14 | Genentech Inc | FORMULATIONS WITH REDUCED OXIDATION, METHOD |
MX370416B (en) | 2013-03-13 | 2019-12-10 | Genentech Inc | Formulations with reduced oxidation. |
DK2968552T3 (en) | 2013-03-14 | 2020-04-14 | Scripps Research Inst | TARGETING ANTIBODY CONJUGATES AND APPLICATIONS THEREOF |
BR112015022576A2 (en) | 2013-03-14 | 2017-10-24 | Genentech Inc | pharmaceutical product and its use, kit and method for treating hyperproliferative dysfunction |
RU2015139054A (en) | 2013-03-14 | 2017-04-19 | Дженентек, Инк. | METHODS FOR TREATING CANCER AND PREVENTION OF DRUG RESISTANCE OF CANCER |
US9562099B2 (en) | 2013-03-14 | 2017-02-07 | Genentech, Inc. | Anti-B7-H4 antibodies and immunoconjugates |
PE20151893A1 (en) | 2013-03-14 | 2015-12-30 | Parkash Gill | TREATMENT OF CANCER USING ANTIBODIES THAT BIND GRP78 ON THE CELLULAR SURFACE |
AU2014244424A1 (en) | 2013-03-14 | 2015-08-27 | Genentech, Inc. | Anti-B7-H4 antibodies and immunoconjugates |
EP3623380A1 (en) | 2013-03-15 | 2020-03-18 | Michael C. Milone | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
AR095517A1 (en) | 2013-03-15 | 2015-10-21 | Genentech Inc | ANTIBODIES AGAINST THE CHEMIOATRAYENT RECEIVER EXPRESSED IN T HELPER 2 CELLS (ANTI-CRTh2) AND METHODS OF USE |
US9446105B2 (en) | 2013-03-15 | 2016-09-20 | The Trustees Of The University Of Pennsylvania | Chimeric antigen receptor specific for folate receptor β |
MX366112B (en) | 2013-03-15 | 2019-06-26 | Genentech Inc | Cell culture media and methods of antibody production. |
EP2970452A2 (en) | 2013-03-15 | 2016-01-20 | AC Immune S.A. | Anti-tau antibodies and methods of use |
US10611824B2 (en) | 2013-03-15 | 2020-04-07 | Innate Pharma | Solid phase TGase-mediated conjugation of antibodies |
AU2014236815B2 (en) | 2013-03-15 | 2019-04-04 | Genentech, Inc. | Compositions and methods for diagnosis and treatment of hepatic cancers |
NZ751260A (en) | 2013-03-15 | 2021-07-30 | Genentech Inc | Biomarkers and methods of treating pd-1 and pd-l1 related conditions |
CA2905123A1 (en) | 2013-03-15 | 2014-09-18 | Genentech, Inc. | Methods of treating cancer and preventing cancer drug resistance |
UY35468A (en) | 2013-03-16 | 2014-10-31 | Novartis Ag | CANCER TREATMENT USING AN ANTI-CD19 CHEMERIC ANTIGEN RECEIVER |
UA118028C2 (en) | 2013-04-03 | 2018-11-12 | Рош Глікарт Аг | Bispecific antibodies specific for fap and dr5, antibodies specific for dr5 and methods of use |
EP2983710B1 (en) | 2013-04-09 | 2019-07-31 | Annexon, Inc. | Methods of treatment for neuromyelitis optica |
MX2015015060A (en) | 2013-04-29 | 2016-02-25 | Hoffmann La Roche | Fc-receptor binding modified asymmetric antibodies and methods of use. |
BR112015027399A2 (en) | 2013-04-29 | 2017-08-29 | Hoffmann La Roche | ANTI-IGF-1R ANTIBODIES WITH ABOLISHED FcRn BINDING AND THEIR USE IN THE TREATMENT OF OCULAR VASCULAR DISEASES |
MX365787B (en) | 2013-04-29 | 2019-06-14 | Hoffmann La Roche | Human fcrn-binding modified antibodies and methods of use. |
US9708406B2 (en) | 2013-05-20 | 2017-07-18 | Genentech, Inc. | Anti-transferrin receptor antibodies and methods of use |
EP3010547B1 (en) | 2013-06-20 | 2021-04-21 | Innate Pharma | Enzymatic conjugation of polypeptides |
EP3010548A1 (en) | 2013-06-21 | 2016-04-27 | Innate Pharma | Enzymatic conjugation of polypeptides |
CA2916521C (en) | 2013-07-09 | 2023-03-07 | Annexon, Inc. | Anti-complement factor c1q antibodies and uses thereof |
US10208125B2 (en) | 2013-07-15 | 2019-02-19 | University of Pittsburgh—of the Commonwealth System of Higher Education | Anti-mucin 1 binding agents and uses thereof |
DK3021869T3 (en) | 2013-07-16 | 2020-09-21 | Hoffmann La Roche | Methods of treating cancer using PD-1 axis binding antagonists and TIGIT inhibitors |
CN111518199A (en) | 2013-07-18 | 2020-08-11 | 图鲁斯生物科学有限责任公司 | Humanized antibodies with ultralong complementarity determining regions |
WO2015017146A2 (en) | 2013-07-18 | 2015-02-05 | Fabrus, Inc. | Antibodies with ultralong complementarity determining regions |
WO2015007337A1 (en) | 2013-07-19 | 2015-01-22 | Bionor Immuno As | Method for the vaccination against hiv |
PE20160218A1 (en) | 2013-07-23 | 2016-05-09 | Biocon Ltd | METHODS TO CONTROL LEVELS OF FUCOSILATION IN PROTEINS |
KR20230047508A (en) | 2013-08-01 | 2023-04-07 | 파이브 프라임 테라퓨틱스, 인크. | Afucosylated anti-fgfr2iiib antibodies |
US9770461B2 (en) | 2013-08-02 | 2017-09-26 | California Institute Of Technology | Tailored glycopolymers as anticoagulant heparin mimetics |
US10227370B2 (en) | 2013-08-02 | 2019-03-12 | California Institute Of Technology | Heparan sulfate/heparin mimetics with anti-chemokine and anti-inflammatory activity |
KR20160044042A (en) | 2013-08-28 | 2016-04-22 | 스템센트알엑스 인코포레이티드 | Site-specific antibody conjugation methods and compositions |
CN105792836A (en) | 2013-08-28 | 2016-07-20 | 施特姆森特克斯股份有限公司 | Novel SEZ6 modulators and methods of use |
US10456470B2 (en) | 2013-08-30 | 2019-10-29 | Genentech, Inc. | Diagnostic methods and compositions for treatment of glioblastoma |
US10617755B2 (en) | 2013-08-30 | 2020-04-14 | Genentech, Inc. | Combination therapy for the treatment of glioblastoma |
CN105518027A (en) | 2013-09-17 | 2016-04-20 | 豪夫迈·罗氏有限公司 | Methods of using anti-LGR5 antibodies |
EP4285928A3 (en) | 2013-09-27 | 2024-03-13 | F. Hoffmann-La Roche AG | Anti-pdl1 antibody formulations |
WO2015050959A1 (en) | 2013-10-01 | 2015-04-09 | Yale University | Anti-kit antibodies and methods of use thereof |
SG11201602522VA (en) | 2013-10-02 | 2016-04-28 | Medimmune Llc | Neutralizing anti-influenza a antibodies and uses thereof |
RU2016117978A (en) | 2013-10-11 | 2017-11-17 | Дженентек, Инк. | NSP4 INHIBITORS AND WAYS OF THEIR APPLICATION |
EP3055329B1 (en) | 2013-10-11 | 2018-06-13 | F. Hoffmann-La Roche AG | Multispecific domain exchanged common variable light chain antibodies |
US20150147333A1 (en) | 2013-10-18 | 2015-05-28 | Genentech, Inc. | Anti-rspo antibodies and methods of use |
WO2015061441A1 (en) | 2013-10-23 | 2015-04-30 | Genentech, Inc. | Methods of diagnosing and treating eosinophilic disorders |
PE20160870A1 (en) | 2013-11-06 | 2016-09-09 | Abbvie Stemcentrx Llc | NOVEL ANTI-CLAUDIN ANTIBODIES AND METHODS OF USE |
MX2016005631A (en) | 2013-11-21 | 2016-07-14 | Hoffmann La Roche | ANTI-alpha-SYNUCLEIN ANTIBODIES AND METHODS OF USE. |
US9321834B2 (en) | 2013-12-05 | 2016-04-26 | Leidos, Inc. | Anti-malarial compositions |
CN113861293A (en) | 2013-12-09 | 2021-12-31 | 爱乐科斯公司 | anti-Siglec-8 antibodies and methods of use thereof |
EP3079475B1 (en) | 2013-12-11 | 2020-10-07 | Sloan-kettering Institute For Cancer Research | Glucocorticoid inhibitors for treatment of prostate cancer |
WO2015089344A1 (en) | 2013-12-13 | 2015-06-18 | Genentech, Inc. | Anti-cd33 antibodies and immunoconjugates |
BR122021025087B1 (en) | 2013-12-17 | 2023-04-04 | Genentech, Inc | ANTI-CD3 ANTIBODY, PROKARYOTIC HOST CELL, BISPECIFIC ANTIBODY PRODUCTION METHOD, IMMUNOCONJUGATE, COMPOSITION, BISPECIFIC ANTIBODY USE AND KIT |
AU2014364593A1 (en) | 2013-12-17 | 2016-07-07 | Genentech, Inc. | Methods of treating cancer using PD-1 axis binding antagonists and an anti-CD20 antibody |
KR20160089531A (en) | 2013-12-17 | 2016-07-27 | 제넨테크, 인크. | Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies |
CN106102774A (en) | 2013-12-17 | 2016-11-09 | 豪夫迈·罗氏有限公司 | Comprise OX40 and combine agonist and PD 1 axle combines the combination treatment of antagonist |
PT3083680T (en) | 2013-12-20 | 2020-03-17 | Hoffmann La Roche | Humanized anti-tau(ps422) antibodies and methods of use |
US10287354B2 (en) | 2013-12-20 | 2019-05-14 | Novartis Ag | Regulatable chimeric antigen receptor |
TWI670283B (en) | 2013-12-23 | 2019-09-01 | 美商建南德克公司 | Antibodies and methods of use |
MY182431A (en) | 2013-12-24 | 2021-01-25 | Janssen Pharmaceutica Nv | Anti-vista antibodies and fragments |
US11014987B2 (en) | 2013-12-24 | 2021-05-25 | Janssen Pharmaceutics Nv | Anti-vista antibodies and fragments, uses thereof, and methods of identifying same |
MX2016008190A (en) | 2014-01-06 | 2016-10-21 | Hoffmann La Roche | Monovalent blood brain barrier shuttle modules. |
CN110903398B (en) | 2014-01-15 | 2023-08-15 | 豪夫迈·罗氏有限公司 | Fc region variants with modified FCRN and maintained protein A binding properties |
US11028143B2 (en) | 2014-01-21 | 2021-06-08 | Novartis Ag | Enhanced antigen presenting ability of RNA CAR T cells by co-introduction of costimulatory molecules |
CA2935393A1 (en) | 2014-01-24 | 2015-07-30 | Genentech, Inc. | Methods of using anti-steap1 antibodies and immunoconjugates |
JP6736467B2 (en) | 2014-02-04 | 2020-08-05 | ジェネンテック, インコーポレイテッド | Smoothing mutant and method of using the same |
NZ719654A (en) | 2014-02-06 | 2020-06-26 | Hoffmann La Roche | Interleukin-2 fusion proteins and uses thereof |
KR20160111039A (en) | 2014-02-08 | 2016-09-23 | 제넨테크, 인크. | Methods of treating alzheimer's disease |
TW202239429A (en) | 2014-02-08 | 2022-10-16 | 美商建南德克公司 | Methods of treating alzheimer’s disease |
KR20190114046A (en) | 2014-02-12 | 2019-10-08 | 제넨테크, 인크. | Anti-jagged1 antibodies and methods of use |
PE20161209A1 (en) | 2014-02-21 | 2016-11-10 | Abbvie Stemcentrx Llc | CONJUGATES OF ANTI-DROSOPHILA SIMILAR ANTIBODIES TO DELTA 3 (ANTI-DLL3) AND DRUGS FOR USE IN THE TREATMENT OF MELANOMA |
EP3107574A2 (en) | 2014-02-21 | 2016-12-28 | F. Hoffmann-La Roche AG | Anti-il-13/il-17 bispecific antibodies and uses thereof |
AU2015222757B2 (en) | 2014-02-28 | 2020-10-08 | Allakos Inc. | Methods and compositions for treating Siglec-8 associated diseases |
JP6644717B2 (en) | 2014-03-14 | 2020-02-12 | ジェネンテック, インコーポレイテッド | Methods and compositions for secreting heterologous polypeptides |
EP3119423B1 (en) | 2014-03-15 | 2022-12-14 | Novartis AG | Treatment of cancer using chimeric antigen receptor |
WO2015142661A1 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Regulatable chimeric antigen receptor |
US20170107294A1 (en) | 2014-03-21 | 2017-04-20 | Nordlandssykehuset Hf | Anti-cd14 antibodies and uses thereof |
BR112016021383A2 (en) | 2014-03-24 | 2017-10-03 | Genentech Inc | METHOD TO IDENTIFY A PATIENT WITH CANCER WHO IS LIKE OR LESS LIKELY TO RESPOND TO TREATMENT WITH A CMET ANTAGONIST, METHOD TO IDENTIFY A PATIENT WITH PREVIOUSLY TREATED CANCER, METHOD TO DETERMINE THE EXPRESSION OF THE HGF BIOMARKER, ANTI-C-MET ANTAGONIST AND ITS USE, DIAGNOSTIC KIT AND ITS PREPARATION METHOD |
KR20160145624A (en) | 2014-03-31 | 2016-12-20 | 제넨테크, 인크. | Anti-ox40 antibodies and methods of use |
MX2016012779A (en) | 2014-03-31 | 2017-04-27 | Genentech Inc | Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists. |
SG11201608054YA (en) | 2014-04-02 | 2016-10-28 | Hoffmann La Roche | Method for detecting multispecific antibody light chain mispairing |
DK3888674T3 (en) | 2014-04-07 | 2024-07-08 | Novartis Ag | TREATMENT OF CANCER USING ANTI-CD19 CHIMERIC ANTIGEN RECEPTOR |
ES2845650T3 (en) | 2014-04-18 | 2021-07-27 | Acceleron Pharma Inc | Procedures to increase red blood cell levels and treat sickle cell disease |
WO2015164615A1 (en) | 2014-04-24 | 2015-10-29 | University Of Oslo | Anti-gluten antibodies and uses thereof |
US10087259B1 (en) | 2014-04-28 | 2018-10-02 | Memorial Sloan Kettering Cancer Center | Depleting tumor-specific tregs |
ES2869459T3 (en) | 2014-05-16 | 2021-10-25 | Medimmune Llc | Molecules with altered neonate fc receptor binding that have enhanced therapeutic and diagnostic properties |
EP3145952A2 (en) | 2014-05-22 | 2017-03-29 | Genentech, Inc. | Anti-gpc3 antibodies and immunoconjugates |
MX2016015163A (en) | 2014-05-23 | 2017-03-03 | Genentech Inc | Mit biomarkers and methods using the same. |
US11123426B2 (en) | 2014-06-11 | 2021-09-21 | The Trustees Of Dartmouth College | Use of vista agonists and antagonists to suppress or enhance humoral immunity |
KR20170010785A (en) | 2014-06-11 | 2017-02-01 | 제넨테크, 인크. | Anti-lgr5 antibodies and uses thereof |
AP2017009674A0 (en) | 2014-06-13 | 2017-01-31 | Acceleron Pharma Inc | Methods and compositions for treating ulcers |
EP3154589A1 (en) | 2014-06-13 | 2017-04-19 | Genentech, Inc. | Methods of treating and preventing cancer drug resistance |
EP3157952B1 (en) | 2014-06-20 | 2021-12-22 | Aveo Pharmaceuticals, Inc. | Treatment of congestive heart failure and other cardiac dysfunction using a gdf15 modulator |
AU2015276800B2 (en) | 2014-06-20 | 2021-03-04 | Aveo Pharmaceuticals, Inc. | Treatment of chronic kidney disease and other renal dysfunction using a GDF15 modulator |
BR112016029935A2 (en) | 2014-06-26 | 2017-10-31 | Hoffmann La Roche | anti-brdu antibodies, complex, pharmaceutical formulation and antibody use? |
AR100978A1 (en) | 2014-06-26 | 2016-11-16 | Hoffmann La Roche | ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME |
EP3680336A1 (en) | 2014-07-03 | 2020-07-15 | F. Hoffmann-La Roche AG | Polypeptide expression systems |
JP2017526641A (en) | 2014-07-11 | 2017-09-14 | ジェネンテック, インコーポレイテッド | NOTCH pathway inhibition |
ES2916923T3 (en) | 2014-07-11 | 2022-07-06 | Ventana Med Syst Inc | Anti-PD-L1 antibodies and diagnostic uses thereof |
WO2016011052A1 (en) | 2014-07-14 | 2016-01-21 | Genentech, Inc. | Diagnostic methods and compositions for treatment of glioblastoma |
CN116617401A (en) | 2014-07-15 | 2023-08-22 | 豪夫迈·罗氏有限公司 | Compositions for treating cancer using PD-1 axis binding antagonists and MEK inhibitors |
US11542488B2 (en) | 2014-07-21 | 2023-01-03 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
MX2017001011A (en) | 2014-07-21 | 2018-05-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor. |
EP3172234B1 (en) | 2014-07-21 | 2020-04-08 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
EP3193915A1 (en) | 2014-07-21 | 2017-07-26 | Novartis AG | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
EP4205749A1 (en) | 2014-07-31 | 2023-07-05 | Novartis AG | Subset-optimized chimeric antigen receptor-containing cells |
SI3608337T1 (en) | 2014-08-04 | 2024-07-31 | F. Hoffmann - La Roche Ag | Bispecific t cell activating antigen binding molecules |
AU2015300787A1 (en) | 2014-08-08 | 2017-02-02 | Alector Llc | Anti-TREM2 antibodies and methods of use thereof |
WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
TW202140557A (en) | 2014-08-19 | 2021-11-01 | 瑞士商諾華公司 | Treatment of cancer using a cd123 chimeric antigen receptor |
TW201617368A (en) | 2014-09-05 | 2016-05-16 | 史坦森特瑞斯公司 | Novel anti-MFI2 antibodies and methods of use |
MA40579A (en) | 2014-09-12 | 2016-03-17 | Genentech Inc | Anti-cll-1 antibodies and immunoconjugates |
JP7085837B2 (en) | 2014-09-12 | 2022-06-17 | ジェネンテック, インコーポレイテッド | Anti-HER2 antibody and immune complex |
JP6943760B2 (en) | 2014-09-12 | 2021-10-06 | ジェネンテック, インコーポレイテッド | Anti-B7-H4 antibody and immune complex |
KR20170057339A (en) | 2014-09-15 | 2017-05-24 | 제넨테크, 인크. | Antibody formulations |
KR20210149228A (en) | 2014-09-17 | 2021-12-08 | 노파르티스 아게 | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
CN107124870A (en) | 2014-09-17 | 2017-09-01 | 基因泰克公司 | Immunoconjugates comprising Anti-HER 2 and Pyrrolobenzodiazepines * |
BR112017023576A2 (en) | 2014-09-23 | 2023-10-03 | Genentech Inc | METHOD TO TREAT PROLIFERATIVE B CELL DYSFUNCTION |
HUE054670T2 (en) | 2014-09-25 | 2021-09-28 | Aveo Pharmaceuticals Inc | Methods of reversing cachexia and prolonging survival comprising administering a gdf15 modulator and an anti-cancer agent |
CN107074938A (en) | 2014-10-16 | 2017-08-18 | 豪夫迈·罗氏有限公司 | Anti alpha synapse nucleoprotein antibody and application method |
CA2966035A1 (en) | 2014-10-31 | 2016-05-06 | The Trustees Of The University Of Pennsylvania | Compositions and methods of stimulating and expanding t cells |
US10626176B2 (en) | 2014-10-31 | 2020-04-21 | Jounce Therapeutics, Inc. | Methods of treating conditions with antibodies that bind B7-H4 |
PL3215166T3 (en) | 2014-10-31 | 2024-08-26 | The Trustees Of The University Of Pennsylvania | Altering gene expression in car-t cells and uses thereof |
AU2015343337A1 (en) | 2014-11-03 | 2017-06-15 | Genentech, Inc. | Assays for detecting T cell immune subsets and methods of use thereof |
RU2017119231A (en) | 2014-11-03 | 2018-12-06 | Дженентек, Инк. | METHODS AND BIOMARKERS FOR PREDICTING EFFICIENCY AND EVALUATING TREATMENT WITH OX40 AGONIST |
BR112017009297B1 (en) | 2014-11-05 | 2024-02-15 | Annexon, Inc | HUMANIZED C1Q COMPLEMENT ANTIFATOR ANTIBODIES, PHARMACEUTICAL COMPOSITION AND KIT COMPRISING THE SAME, THERAPEUTIC USE THEREOF, ISOLATED POLYNUCLEOTIDE, ISOLATED HOST CELL, AS WELL AS IN VITRO METHODS FOR DETECTING SYNAPSES |
AU2015342964B2 (en) | 2014-11-05 | 2021-06-24 | Genentech, Inc. | Methods of producing two chain proteins in bacteria |
AU2015342961B2 (en) | 2014-11-05 | 2021-08-12 | Genentech, Inc. | Methods of producing two chain proteins in bacteria |
BR112017006591A2 (en) | 2014-11-06 | 2018-01-16 | Hoffmann La Roche | heterodimeric polypeptide, pharmaceutical formulation and use of a heterodimeric polypeptide |
PL3215528T3 (en) | 2014-11-06 | 2020-01-31 | F.Hoffmann-La Roche Ag | Fc-region variants with modified fcrn-binding and methods of use |
WO2016073282A1 (en) | 2014-11-06 | 2016-05-12 | Genentech, Inc. | Combination therapy comprising ox40 binding agonists and tigit inhibitors |
WO2016073157A1 (en) | 2014-11-06 | 2016-05-12 | Genentech, Inc. | Anti-ang2 antibodies and methods of use thereof |
TWI705976B (en) | 2014-11-10 | 2020-10-01 | 美商建南德克公司 | Anti-interleukin-33 antibodies and uses thereof |
WO2016077369A1 (en) | 2014-11-10 | 2016-05-19 | Genentech, Inc. | Animal model for nephropathy and agents for treating the same |
LT3489256T (en) | 2014-11-14 | 2021-06-10 | F. Hoffmann-La Roche Ag | Antigen binding molecules comprising a tnf family ligand trimer |
CA2967368A1 (en) | 2014-11-17 | 2016-05-26 | Genentech, Inc. | Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists |
EP3221364B1 (en) | 2014-11-19 | 2020-12-16 | Genentech, Inc. | Antibodies against bace1 and use thereof for neural disease immunotherapy |
WO2016081643A1 (en) | 2014-11-19 | 2016-05-26 | Genentech, Inc. | Anti-transferrin receptor antibodies and methods of use |
JP6993228B2 (en) | 2014-11-19 | 2022-03-03 | ジェネンテック, インコーポレイテッド | Anti-transferrin receptor / anti-BACE1 multispecific antibody and usage |
EP3221445B1 (en) | 2014-11-20 | 2021-07-14 | The Regents of The University of California | Compositions and methods related to hematologic recovery |
PT3221357T (en) | 2014-11-20 | 2020-07-28 | Hoffmann La Roche | Common light chains and methods of use |
RS61134B1 (en) | 2014-11-20 | 2020-12-31 | Hoffmann La Roche | Combination therapy of t cell activating bispecific antigen binding molecules cd3 and folate receptor 1 (folr1) and pd-1 axis binding antagonists |
WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
CN107001482B (en) | 2014-12-03 | 2021-06-15 | 豪夫迈·罗氏有限公司 | Multispecific antibodies |
MA41119A (en) | 2014-12-03 | 2017-10-10 | Acceleron Pharma Inc | METHODS OF TREATMENT OF MYELODYSPLASIC SYNDROMES AND SIDEROBLASTIC ANEMIA |
BR112017011326A2 (en) | 2014-12-05 | 2018-07-31 | Genentech, Inc. | antibody, nucleic acid, vector, host cell, method for producing antibody, immunoconjugate, pharmaceutical composition, uses of the antibody, methods for treating or slowing the progression of cell proliferative disorder and for enhancing immune function |
US20160158360A1 (en) | 2014-12-05 | 2016-06-09 | Genentech, Inc. | Methods and compositions for treating cancer using pd-1 axis antagonists and hpk1 antagonists |
CN107405398A (en) | 2014-12-05 | 2017-11-28 | 伊穆奈克斯特股份有限公司 | VSIG8 is identified as presumption VISTA acceptors and its to produce the purposes of VISTA/VSIG8 activators and antagonist |
JP2018502840A (en) | 2014-12-10 | 2018-02-01 | ジェネンテック, インコーポレイテッド | Blood brain barrier receptor antibodies and methods of use |
EP3633371A1 (en) | 2014-12-18 | 2020-04-08 | F. Hoffmann-La Roche AG | Assay and method for determining cdc eliciting antibodies |
TWI779010B (en) | 2014-12-19 | 2022-10-01 | 日商中外製藥股份有限公司 | ANTI-MYOSTATIN ANTIBODIES, POLYPEPTIDES CONTAINING VARIANT Fc REGIONs, AND METHODS OF USE |
TW201629098A (en) | 2014-12-19 | 2016-08-16 | 艾爾德生物製藥股份有限公司 | Humanized anti-ACTH antibodies and use thereof |
KR101838645B1 (en) | 2014-12-19 | 2018-03-14 | 추가이 세이야쿠 가부시키가이샤 | Anti-c5 antibodies and methods of use |
CA3175979A1 (en) | 2014-12-22 | 2016-06-30 | Pd-1 Acquisition Group, Llc | Anti-pd-1 antibodies |
US20160200815A1 (en) | 2015-01-05 | 2016-07-14 | Jounce Therapeutics, Inc. | Antibodies that inhibit tim-3:lilrb2 interactions and uses thereof |
US20180016327A1 (en) | 2015-01-22 | 2018-01-18 | Chugai Seiyaku Kabushiki Kaisha | A Combination of Two or More Anti-C5 Antibodies and Methods of Use |
EP3250681B1 (en) | 2015-01-31 | 2023-05-03 | The Trustees of the University of Pennsylvania | Compositions and methods for t cell delivery of therapeutic molecules |
US11161907B2 (en) | 2015-02-02 | 2021-11-02 | Novartis Ag | Car-expressing cells against multiple tumor antigens and uses thereof |
WO2016126972A1 (en) | 2015-02-04 | 2016-08-11 | Genentech, Inc. | Mutant smoothened and methods of using the same |
EP3262073A1 (en) | 2015-02-26 | 2018-01-03 | Merck Patent GmbH | Pd-1 / pd-l1 inhibitors for the treatment of cancer |
AU2016233398A1 (en) | 2015-03-16 | 2017-09-07 | F. Hoffmann-La Roche Ag | Methods of detecting and quantifying IL-13 and uses in diagnosing and treating Th2-associated diseases |
WO2016146833A1 (en) | 2015-03-19 | 2016-09-22 | F. Hoffmann-La Roche Ag | Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance |
SG11201707800QA (en) | 2015-03-23 | 2017-10-30 | Bayer Pharma AG | Anti-ceacam6 antibodies and uses thereof |
WO2016154177A2 (en) | 2015-03-23 | 2016-09-29 | Jounce Therapeutics, Inc. | Antibodies to icos |
CA2981833A1 (en) | 2015-04-06 | 2016-10-13 | Acceleron Pharma Inc. | Alk7:actriib heteromultimers and uses thereof |
MA41919A (en) | 2015-04-06 | 2018-02-13 | Acceleron Pharma Inc | ALK4 HETEROMULTIMERS: ACTRIIB AND THEIR USES |
SI3280441T1 (en) | 2015-04-07 | 2022-01-31 | Alector Llc | Anti-sortilin antibodies and methods of use thereof |
CN107709364A (en) | 2015-04-07 | 2018-02-16 | 豪夫迈·罗氏有限公司 | Antigen binding complex and application method with agonist activity |
TWI746437B (en) | 2015-04-08 | 2021-11-21 | 瑞士商諾華公司 | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car)- expressing cell |
US12128069B2 (en) | 2015-04-23 | 2024-10-29 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
EP3913052A1 (en) | 2015-04-24 | 2021-11-24 | F. Hoffmann-La Roche AG | Methods of identifying bacteria comprising binding polypeptides |
EP3778640A1 (en) | 2015-05-01 | 2021-02-17 | Genentech, Inc. | Masked anti-cd3 antibodies and methods of use |
WO2016177833A1 (en) | 2015-05-04 | 2016-11-10 | Bionor Immuno As | Dosage regimen for hiv vaccine |
WO2016179194A1 (en) | 2015-05-04 | 2016-11-10 | Jounce Therapeutics, Inc. | Lilra3 and method of using the same |
EP3294771A1 (en) | 2015-05-11 | 2018-03-21 | H. Hoffnabb-La Roche Ag | Compositions and methods of treating lupus nephritis |
ES2835866T3 (en) | 2015-05-12 | 2021-06-23 | Hoffmann La Roche | Therapeutic and diagnostic procedures for cancer |
EP3466967A1 (en) | 2015-05-18 | 2019-04-10 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
EP3932428A1 (en) | 2015-05-21 | 2022-01-05 | Harpoon Therapeutics, Inc. | Trispecific binding proteins and methods of use |
CN107921126A (en) | 2015-05-22 | 2018-04-17 | 转化药物开发有限责任公司 | The composition and its application method of benzamide and reactive compound |
WO2016189091A1 (en) | 2015-05-26 | 2016-12-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions (ntsr1 inhibitors) for the treatment of hepatocellular carcinomas |
WO2016189118A1 (en) | 2015-05-28 | 2016-12-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of prognosis and treatment of patients suffering from acute myeloid leukemia |
WO2016196343A1 (en) | 2015-05-29 | 2016-12-08 | Genentech, Inc. | Humanized anti-ebola virus glycoprotein antibodies and methods of use |
CA2984003A1 (en) | 2015-05-29 | 2016-12-08 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
EP3302552A1 (en) | 2015-06-02 | 2018-04-11 | H. Hoffnabb-La Roche Ag | Compositions and methods for using anti-il-34 antibodies to treat neurological diseases |
DK3303386T3 (en) | 2015-06-05 | 2024-10-28 | Genentech Inc | Anti-Tau Antibodies and Methods of Use |
WO2016200835A1 (en) | 2015-06-08 | 2016-12-15 | Genentech, Inc. | Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists |
CA2985483A1 (en) | 2015-06-08 | 2016-12-15 | Genentech, Inc. | Methods of treating cancer using anti-ox40 antibodies |
US11174313B2 (en) | 2015-06-12 | 2021-11-16 | Alector Llc | Anti-CD33 antibodies and methods of use thereof |
CN107922480B (en) | 2015-06-12 | 2022-09-23 | 艾利妥 | anti-CD 33 antibodies and methods of use thereof |
JP2018524295A (en) | 2015-06-15 | 2018-08-30 | ジェネンテック, インコーポレイテッド | Antibodies and immune complexes |
JP6996983B2 (en) | 2015-06-16 | 2022-02-21 | ジェネンテック, インコーポレイテッド | Anti-CLL-1 antibody and how to use |
WO2016205520A1 (en) | 2015-06-16 | 2016-12-22 | Genentech, Inc. | Humanized and affinity matured antibodies to fcrh5 and methods of use |
MY193229A (en) | 2015-06-16 | 2022-09-26 | Merck Patent GmbH | Pd-l1 antagonist combination treatments |
WO2016204966A1 (en) | 2015-06-16 | 2016-12-22 | Genentech, Inc. | Anti-cd3 antibodies and methods of use |
JP6846362B2 (en) | 2015-06-17 | 2021-03-24 | アラコス インコーポレイテッド | Methods and Compositions for Treating Fibrous Diseases |
WO2016205320A1 (en) | 2015-06-17 | 2016-12-22 | Genentech, Inc. | Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes |
EP3310812A2 (en) | 2015-06-17 | 2018-04-25 | H. Hoffnabb-La Roche Ag | Anti-her2 antibodies and methods of use |
JP2018525334A (en) | 2015-06-23 | 2018-09-06 | バイエル ファーマ アクチエンゲゼルシャフト | Antibody drug complex of kinesin spindle protein (KSP) inhibitor with anti-TWEAKR antibody |
EP3313882B1 (en) | 2015-06-24 | 2020-03-11 | Janssen Pharmaceutica NV | Anti-vista antibodies and fragments |
CN113929779A (en) | 2015-06-24 | 2022-01-14 | 豪夫迈·罗氏有限公司 | Humanized anti-Tau (pS422) antibodies and methods of use |
NZ775241A (en) | 2015-06-24 | 2024-08-30 | Hoffmann La Roche | Anti-transferrin receptor antibodies with tailored affinity |
JP2018520153A (en) | 2015-06-29 | 2018-07-26 | ジェネンテック, インコーポレイテッド | Type II anti-CD20 antibody for use in organ transplantation |
EP3514174B1 (en) | 2015-06-29 | 2021-03-31 | Ventana Medical Systems, Inc. | Materials and methods for performing histochemical assays for human pro-epiregulin and amphiregulin |
AU2016301380B2 (en) | 2015-08-04 | 2021-07-01 | Acceleron Pharma Inc. | Methods for treating myeloproliferative disorders |
US11667691B2 (en) | 2015-08-07 | 2023-06-06 | Novartis Ag | Treatment of cancer using chimeric CD3 receptor proteins |
CN105384825B (en) | 2015-08-11 | 2018-06-01 | 南京传奇生物科技有限公司 | A kind of bispecific chimeric antigen receptor and its application based on single domain antibody |
ES2734807T3 (en) | 2015-08-20 | 2019-12-12 | Hoffmann La Roche | Particle based immunoassay using a specific pegylated analyte binding agent |
CA2996059A1 (en) | 2015-08-28 | 2017-03-09 | Alector Llc | Anti-siglec-7 antibodies and methods of use thereof |
AR105634A1 (en) | 2015-09-18 | 2017-10-25 | Chugai Pharmaceutical Co Ltd | ANTIBODIES THAT JOIN IL 8 AND ITS USES |
CA2999369C (en) | 2015-09-22 | 2023-11-07 | Spring Bioscience Corporation | Anti-ox40 antibodies and diagnostic uses thereof |
CN116987187A (en) | 2015-09-23 | 2023-11-03 | 豪夫迈·罗氏有限公司 | Optimized variants of anti-VEGF antibodies |
BR112018005931A2 (en) | 2015-09-24 | 2018-10-09 | Abvitro Llc | hiv antibody compositions and methods of use |
CN113956358A (en) | 2015-09-25 | 2022-01-21 | 豪夫迈·罗氏有限公司 | anti-TIGIT antibodies and methods of use |
ES2839212T3 (en) | 2015-09-29 | 2021-07-05 | Inst Nat Sante Rech Med | Methods to determine the metabolic status of B lymphomas |
EP3355902B1 (en) | 2015-09-30 | 2022-04-13 | Merck Patent GmbH | Combination of a pd-1 axis binding antagonist and an alk inhibitor for treating alk-negative cancer |
AR106188A1 (en) | 2015-10-01 | 2017-12-20 | Hoffmann La Roche | ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE |
US20170247454A1 (en) | 2015-10-02 | 2017-08-31 | Hoffmann-La Roche Inc. | Anti-pd1 antibodies and methods of use |
WO2017055393A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules |
WO2017055392A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules |
MX2018003631A (en) | 2015-10-02 | 2018-08-01 | Hoffmann La Roche | Bispecific anti-ceaxcd3 t cell activating antigen binding molecules. |
WO2017055385A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xgd2 bispecific t cell activating antigen binding molecules |
US20170096495A1 (en) | 2015-10-02 | 2017-04-06 | Hoffmann-La Roche Inc. | Bispecific t cell activating antigen binding molecules |
WO2017055391A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Bispecific t cell activating antigen binding molecules binding mesothelin and cd3 |
RU2753390C1 (en) | 2015-10-02 | 2021-08-13 | Ф. Хоффманн-Ля Рош Аг | Bispecific antibodies to human cd20/human transferrin receptor and methods for their use |
AR106189A1 (en) | 2015-10-02 | 2017-12-20 | Hoffmann La Roche | BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE |
WO2017055395A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xrob04 bispecific t cell activating antigen binding molecules |
MA43345A (en) | 2015-10-02 | 2018-08-08 | Hoffmann La Roche | PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE |
EP3356407B1 (en) | 2015-10-02 | 2021-11-03 | F. Hoffmann-La Roche AG | Bispecific anti-cd19xcd3 t cell activating antigen binding molecules |
EP3359569A2 (en) | 2015-10-06 | 2018-08-15 | Alector LLC | Anti-trem2 antibodies and methods of use thereof |
JP2018536628A (en) | 2015-10-07 | 2018-12-13 | オービーアイ ファーマ インコーポレイテッド | Novel carbohydrate antibody, pharmaceutical composition and use thereof |
EP3362088B1 (en) | 2015-10-12 | 2020-11-25 | Institut National de la Sante et de la Recherche Medicale (INSERM) | An agent capable of depleting cd8 t cells for the treatment of myocardial infarction or acute myocardial infarction |
MA43354A (en) | 2015-10-16 | 2018-08-22 | Genentech Inc | CONJUGATE DRUG CONJUGATES WITH CLOUDY DISULPHIDE |
WO2017067944A1 (en) | 2015-10-19 | 2017-04-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of subjects suffering from triple negative breast cancer |
MA45326A (en) | 2015-10-20 | 2018-08-29 | Genentech Inc | CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE |
WO2017070423A1 (en) | 2015-10-22 | 2017-04-27 | Jounce Therapeutics, Inc. | Gene signatures for determining icos expression |
US10604577B2 (en) | 2015-10-22 | 2020-03-31 | Allakos Inc. | Methods and compositions for treating systemic mastocytosis |
RU2018119317A (en) | 2015-10-28 | 2019-12-04 | Йейл Юниверсити | HUMANIZED ANTIBODY TO DKK2 AND ITS APPLICATION |
CN108431041B (en) | 2015-10-29 | 2022-08-16 | 艾利妥 | anti-SIGLEC-9 antibodies and methods of use thereof |
CN114920846A (en) | 2015-10-29 | 2022-08-19 | 豪夫迈·罗氏有限公司 | Anti-variant Fc region antibodies and methods of use |
EP3184547A1 (en) | 2015-10-29 | 2017-06-28 | F. Hoffmann-La Roche AG | Anti-tpbg antibodies and methods of use |
WO2017075173A2 (en) | 2015-10-30 | 2017-05-04 | Genentech, Inc. | Anti-factor d antibodies and conjugates |
MX2018004509A (en) | 2015-10-30 | 2018-08-01 | Genentech Inc | Anti-htra1 antibodies and methods of use thereof. |
EP3370754A4 (en) | 2015-11-04 | 2019-10-23 | Acceleron Pharma Inc. | Methods for increasing red blood cell levels and treating ineffective erythropoiesis |
EP3371217A1 (en) | 2015-11-08 | 2018-09-12 | H. Hoffnabb-La Roche Ag | Methods of screening for multispecific antibodies |
JP7349787B2 (en) | 2015-11-23 | 2023-09-25 | ファイヴ プライム セラピューティクス インク | FGFR2 inhibitors alone or in combination with immunostimulants in cancer treatment |
AU2016359695A1 (en) | 2015-11-23 | 2018-06-14 | Acceleron Pharma Inc. | Methods for treating eye disorders |
EP3178848A1 (en) | 2015-12-09 | 2017-06-14 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies |
CA2997406C (en) | 2015-12-09 | 2024-05-28 | F. Hoffmann-La Roche Ag | Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies or cytokine release |
MA44081B1 (en) | 2015-12-18 | 2023-11-30 | Chugai Pharmaceutical Co Ltd | ANTI-C5 ANTIBODIES AND METHODS OF USE THEREOF |
WO2017117311A1 (en) | 2015-12-30 | 2017-07-06 | Genentech, Inc. | Formulations with reduced degradation of polysorbate |
MX2018008063A (en) | 2015-12-30 | 2018-11-29 | Genentech Inc | Use of tryptophan derivatives for protein formulations. |
EP3400443B1 (en) | 2016-01-04 | 2020-09-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of pd-1 and tim-3 as a measure for cd8+ cells in predicting and treating renal cell carcinoma |
US20200270365A1 (en) | 2016-01-05 | 2020-08-27 | Jiangsu Hengrui Medicine Co., Ltd. | Pcsk9 antibody, antigen-binding fragment thereof, and medical uses thereof |
JP7078536B2 (en) | 2016-01-08 | 2022-05-31 | アルトゥルバイオ, インコーポレイテッド | Tetravalent anti-PSGL-1 antibody and its use |
US10596257B2 (en) | 2016-01-08 | 2020-03-24 | Hoffmann-La Roche Inc. | Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies |
US11103589B2 (en) | 2016-01-08 | 2021-08-31 | Apg Therapeutics, Inc. | Polyethylenimine (PEI)-polypeptide conjugates and methods of use thereof |
AU2017206656B2 (en) | 2016-01-10 | 2024-02-01 | Neotx Therapeutics Ltd. | Immunopotentiator enhanced superantigen mediated cancer immunotherapy |
CN108602883A (en) | 2016-01-20 | 2018-09-28 | 基因泰克公司 | High-dose therapy for Alzheimer's disease |
MA55746A (en) | 2016-01-21 | 2022-03-02 | Novartis Ag | MULTISPECIFIC MOLECULES TARGETING CLL-1 |
WO2017129558A1 (en) | 2016-01-25 | 2017-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting or treating myelopoiesis-driven cardiometabolic diseases and sepsis |
JP2019509721A (en) | 2016-02-04 | 2019-04-11 | キュリス,インコーポレイテッド | Mutant smoothened and method of using the same |
TW202216201A (en) | 2016-02-12 | 2022-05-01 | 比利時商楊森製藥公司 | Anti-vista antibodies and fragments, uses thereof, and methods of identifying same |
MX2018010361A (en) | 2016-02-29 | 2019-07-08 | Genentech Inc | Therapeutic and diagnostic methods for cancer. |
EP3423493A2 (en) | 2016-03-04 | 2019-01-09 | Alector LLC | Anti-trem1 antibodies and methods of use thereof |
WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
US10443054B2 (en) | 2016-03-06 | 2019-10-15 | Massachusetts Institute Of Technology | Methods for identifying and treating invasive/metastatic breast cancers |
CN109153719B (en) | 2016-03-15 | 2022-12-30 | 中外制药株式会社 | Methods of treating cancer using PD-1 axis binding antagonists and anti-GPC 3 antibodies |
CA3017776A1 (en) | 2016-03-15 | 2017-09-21 | Generon (Shanghai) Corporation Ltd. | Multispecific fab fusion proteins and use thereof |
KR102444614B1 (en) | 2016-03-22 | 2022-09-21 | 에프. 호프만-라 로슈 아게 | Protease-activated T cell bispecific molecule |
EP3432924A1 (en) | 2016-03-23 | 2019-01-30 | Novartis AG | Cell secreted minibodies and uses thereof |
EP4273551A3 (en) | 2016-03-25 | 2024-01-17 | F. Hoffmann-La Roche AG | Multiplexed total antibody and antibody-conjugated drug quantification assay |
EP3231813A1 (en) | 2016-03-29 | 2017-10-18 | F. Hoffmann-La Roche AG | Trimeric costimulatory tnf family ligand-containing antigen binding molecules |
EP3865511A1 (en) | 2016-04-14 | 2021-08-18 | F. Hoffmann-La Roche AG | Anti-rspo3 antibodies and methods of use |
SG11201808979UA (en) | 2016-04-15 | 2018-11-29 | Macrogenics Inc | Novel b7-h3 binding molecules, antibody drug conjugates thereof and methods of use thereof |
CA3019921A1 (en) | 2016-04-15 | 2017-10-19 | Genentech, Inc. | Methods for monitoring and treating cancer |
JP7497955B6 (en) | 2016-04-15 | 2024-07-01 | ノバルティス アーゲー | Compositions and methods for selective protein expression |
AU2017250807A1 (en) | 2016-04-15 | 2018-10-25 | H. Lundbeck A/S. | Anti-PACAP antibodies and uses thereof |
JP7277047B2 (en) | 2016-04-15 | 2023-05-18 | イミュネクスト インコーポレイテッド | ANTI-HUMAN VISTA ANTIBODY AND USES THEREOF |
MX2018012493A (en) | 2016-04-15 | 2019-06-06 | Genentech Inc | Methods for monitoring and treating cancer. |
CA3019524A1 (en) | 2016-05-02 | 2017-11-09 | F. Hoffmann-La Roche Ag | The contorsbody - a single chain target binder |
EP3243836A1 (en) | 2016-05-11 | 2017-11-15 | F. Hoffmann-La Roche AG | C-terminally fused tnf family ligand trimer-containing antigen binding molecules |
TWI794171B (en) | 2016-05-11 | 2023-03-01 | 美商滬亞生物國際有限公司 | Combination therapies of hdac inhibitors and pd-l1 inhibitors |
EP3455252B1 (en) | 2016-05-11 | 2022-02-23 | F. Hoffmann-La Roche AG | Modified anti-tenascin antibodies and methods of use |
WO2017194442A1 (en) | 2016-05-11 | 2017-11-16 | F. Hoffmann-La Roche Ag | Antigen binding molecules comprising a tnf family ligand trimer and a tenascin binding moiety |
TWI808055B (en) | 2016-05-11 | 2023-07-11 | 美商滬亞生物國際有限公司 | Combination therapies of hdac inhibitors and pd-1 inhibitors |
EP3243832A1 (en) | 2016-05-13 | 2017-11-15 | F. Hoffmann-La Roche AG | Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety |
RS63698B1 (en) | 2016-05-13 | 2022-11-30 | Bioatla Inc | Anti-ror2 antibodies, antibody fragments, their immunoconjugates and uses thereof |
ES2858151T3 (en) | 2016-05-20 | 2021-09-29 | Hoffmann La Roche | PROTAC-Antibody Conjugates and Procedures for Use |
CN109641047A (en) | 2016-05-20 | 2019-04-16 | 哈普恩治疗公司 | Single domain seralbumin conjugated protein |
US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
EP3464356A1 (en) | 2016-05-26 | 2019-04-10 | Merck Patent GmbH | Pd-1 / pd-l1 inhibitors for cancer treatment |
WO2017202890A1 (en) | 2016-05-27 | 2017-11-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating myeloma |
CN109313200B (en) | 2016-05-27 | 2022-10-04 | 豪夫迈·罗氏有限公司 | Bioanalytical methods for characterizing site-specific antibody-drug conjugates |
US20210177896A1 (en) | 2016-06-02 | 2021-06-17 | Novartis Ag | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
EP3252078A1 (en) | 2016-06-02 | 2017-12-06 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer |
AU2017276604B2 (en) | 2016-06-06 | 2020-02-27 | F. Hoffmann-La Roche Ag | Fusion proteins for ophthalmology with increased eye retention |
WO2017214024A1 (en) | 2016-06-06 | 2017-12-14 | Genentech, Inc. | Silvestrol antibody-drug conjugates and methods of use |
CN109641012A (en) | 2016-06-07 | 2019-04-16 | 马克思-德布鲁克-分子医学中心亥姆霍兹联合会 | Chimeric antigen receptor and CAR-T cell in conjunction with BCMA |
EP3472210A1 (en) | 2016-06-17 | 2019-04-24 | Life Technologies Corporation | Site-specific crosslinking of antibodies |
CN109563160B (en) | 2016-06-24 | 2023-02-28 | 豪夫迈·罗氏有限公司 | Anti-polyubiquitin multispecific antibodies |
EP3478717B1 (en) | 2016-07-04 | 2022-01-05 | F. Hoffmann-La Roche AG | Novel antibody format |
HUE054228T2 (en) | 2016-07-15 | 2021-08-30 | Acceleron Pharma Inc | Compositions comprising actriia polypeptides for use in treating pulmonary hypertension |
CN110461315A (en) | 2016-07-15 | 2019-11-15 | 诺华股份有限公司 | Cytokines release syndrome is treated and prevented using with the Chimeric antigen receptor of kinase inhibitor combination |
WO2018014260A1 (en) | 2016-07-20 | 2018-01-25 | Nanjing Legend Biotech Co., Ltd. | Multispecific antigen binding proteins and methods of use thereof |
MX2019001043A (en) | 2016-07-27 | 2019-09-26 | Acceleron Pharma Inc | Methods and compositions for treating myelofibrosis. |
CN117903316A (en) | 2016-07-29 | 2024-04-19 | 朱诺治疗学股份有限公司 | Anti-idiotype antibodies and related methods |
RU2019105693A (en) | 2016-08-01 | 2020-09-01 | Новартис Аг | TREATMENT OF CANCER USING ANTIGENIC CHIMERIC RECEPTOR IN COMBINATION WITH A MOLECULE INHIBITOR PROMOTING THE M2 PHENOTYPE OF MACROPHAG |
CN109715668A (en) | 2016-08-02 | 2019-05-03 | T细胞受体治疗公司 | For using fusion protein to carry out the composition and method of TCR reprogramming |
AR109279A1 (en) | 2016-08-03 | 2018-11-14 | Achaogen Inc | ANTI-PLAZOMYCIN ANTIBODIES AND METHODS OF USE OF THE SAME |
US10611842B2 (en) | 2016-08-03 | 2020-04-07 | The Board Of Trustees Of The Leland Stanford Junior University | Disrupting FC receptor engagement on macrophages enhances efficacy of anti-SIRPα antibody therapy |
WO2018027204A1 (en) | 2016-08-05 | 2018-02-08 | Genentech, Inc. | Multivalent and multiepitopic anitibodies having agonistic activity and methods of use |
CN109476748B (en) | 2016-08-08 | 2023-05-23 | 豪夫迈·罗氏有限公司 | Methods for treatment and diagnosis of cancer |
JP7093767B2 (en) | 2016-08-11 | 2022-06-30 | ジェネンテック, インコーポレイテッド | Pyrrolobenzodiazepine prodrug and its antibody conjugate |
WO2018031865A1 (en) | 2016-08-12 | 2018-02-15 | Genentech, Inc. | Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a vegf inhibitor |
EP3510046A4 (en) | 2016-09-07 | 2020-05-06 | The Regents of the University of California | Antibodies to oxidation-specific epitopes |
WO2018049248A1 (en) | 2016-09-09 | 2018-03-15 | Icellhealth Consulting Llc | Oncolytic virus equipped with bispecific engager molecules |
IL290517B1 (en) | 2016-09-14 | 2024-08-01 | Teneobio Inc | Cd3 binding antibodies |
SG10201607778XA (en) | 2016-09-16 | 2018-04-27 | Chugai Pharmaceutical Co Ltd | Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use |
CN116731197A (en) | 2016-09-19 | 2023-09-12 | 豪夫迈·罗氏有限公司 | Complement factor based affinity chromatography |
AU2017330405B2 (en) | 2016-09-23 | 2024-02-01 | Genentech, Inc. | Uses of IL-13 antagonists for treating atopic dermatitis |
CN109862917A (en) | 2016-09-29 | 2019-06-07 | 基因泰克公司 | Mek inhibitor, PD-1 axis inhibitor, and the combination treatment of taxane |
US10882918B2 (en) | 2016-09-30 | 2021-01-05 | Hoffmann-La Roche Inc. | Bispecific T cell activating antigen binding molecules |
JP2019537621A (en) | 2016-10-04 | 2019-12-26 | フェアバンクス ファーマシューティカルズ,インコーポレイテッド | Anti-FSTL3 antibodies and uses thereof |
WO2018067740A1 (en) | 2016-10-05 | 2018-04-12 | Acceleron Pharma, Inc. | Compositions and method for treating kidney disease |
JP7050770B2 (en) | 2016-10-05 | 2022-04-08 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Method for preparing antibody drug conjugate |
MX2019003755A (en) | 2016-10-06 | 2019-08-12 | Pfizer | Dosing regimen of avelumab for the treatment of cancer. |
WO2018068028A1 (en) | 2016-10-06 | 2018-04-12 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
CN112280796A (en) | 2016-10-07 | 2021-01-29 | T细胞受体治疗公司 | Compositions and methods for T cell receptor weight programming using fusion proteins |
TW202340473A (en) | 2016-10-07 | 2023-10-16 | 瑞士商諾華公司 | Treatment of cancer using chimeric antigen receptors |
WO2018068201A1 (en) | 2016-10-11 | 2018-04-19 | Nanjing Legend Biotech Co., Ltd. | Single-domain antibodies and variants thereof against ctla-4 |
WO2018081531A2 (en) | 2016-10-28 | 2018-05-03 | Ariad Pharmaceuticals, Inc. | Methods for human t-cell activation |
CN110366558A (en) | 2016-10-28 | 2019-10-22 | 班扬生物标记公司 | For the antibody and correlation technique of ubiquitin c-terminal hydrolase-l 1 (UCH-L1) and glial fibrillary acid protein (GFAP) |
EP3532091A2 (en) | 2016-10-29 | 2019-09-04 | H. Hoffnabb-La Roche Ag | Anti-mic antibidies and methods of use |
AU2017355401A1 (en) | 2016-11-02 | 2019-05-02 | Jounce Therapeutics, Inc. | Antibodies to PD-1 and uses thereof |
WO2018144097A1 (en) | 2016-11-04 | 2018-08-09 | Akeagen Llc | Genetically modified non-human animals and methods for producing heavy chain-only antibodies |
MX2019005438A (en) | 2016-11-15 | 2019-08-16 | Genentech Inc | Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies. |
TW201829463A (en) | 2016-11-18 | 2018-08-16 | 瑞士商赫孚孟拉羅股份公司 | Anti-hla-g antibodies and use thereof |
US11851491B2 (en) | 2016-11-22 | 2023-12-26 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
AU2017363302A1 (en) | 2016-11-23 | 2019-06-27 | Harpoon Therapeutics, Inc. | PSMA targeting trispecific proteins and methods of use |
US10780080B2 (en) | 2016-11-23 | 2020-09-22 | Translational Drug Development, Llc | Benzamide and active compound compositions and methods of use |
CN110198955A (en) | 2016-11-23 | 2019-09-03 | 哈普恩治疗公司 | Prostate-specific membrane antigen conjugated protein |
WO2018100190A1 (en) | 2016-12-02 | 2018-06-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for diagnosing renal cell carcinoma |
MX2019006334A (en) | 2016-12-07 | 2019-08-01 | Genentech Inc | Anti-tau antibodies and methods of use. |
CA3045294A1 (en) | 2016-12-07 | 2018-06-14 | Genentech, Inc. | Anti-tau antibodies and methods of use |
WO2018109058A1 (en) | 2016-12-16 | 2018-06-21 | H. Lundbeck A/S | Agents, uses and methods |
CA3039430A1 (en) | 2016-12-19 | 2018-06-28 | F. Hoffmann-La Roche Ag | Combination therapy with targeted 4-1bb (cd137) agonists |
CN110088135A (en) | 2016-12-20 | 2019-08-02 | 豪夫迈·罗氏有限公司 | The combination treatment of anti-CD20/ AntiCD3 McAb bispecific antibody and 4-1BB (CD137) agonist |
MX2019006123A (en) | 2016-12-21 | 2019-08-12 | Hoffmann La Roche | Method for in vitro glycoengineering of antibodies. |
MX2019007411A (en) | 2016-12-21 | 2019-08-29 | Hoffmann La Roche | Re-use of enzymes in in vitro glycoengineering of antibodies. |
GB201621806D0 (en) | 2016-12-21 | 2017-02-01 | Philogen Spa | Immunocytokines with progressive activation mechanism |
AU2017384276B9 (en) | 2016-12-21 | 2020-11-26 | F. Hoffmann-La Roche Ag | In vitro glycoengineering of antibodies |
US11535662B2 (en) | 2017-01-26 | 2022-12-27 | Novartis Ag | CD28 compositions and methods for chimeric antigen receptor therapy |
JP2020506700A (en) | 2017-01-31 | 2020-03-05 | ノバルティス アーゲー | Cancer treatment using multispecific chimeric T cell receptor protein |
EP3577460B1 (en) | 2017-02-02 | 2021-01-20 | Roche Diagnostics GmbH | Immunoassay using at least two pegylated analyte-specific binding agents |
RU2771485C2 (en) | 2017-02-10 | 2022-05-04 | Дженентек, Инк. | Antibodies against tryptase, their compositions and applications |
US11535668B2 (en) | 2017-02-28 | 2022-12-27 | Harpoon Therapeutics, Inc. | Inducible monovalent antigen binding protein |
JP7256127B2 (en) | 2017-03-01 | 2023-04-11 | ジェネンテック, インコーポレイテッド | Diagnostic and therapeutic methods for cancer |
BR112019019658A2 (en) | 2017-03-22 | 2020-04-22 | Ascendis Pharma As | conjugates, pharmaceutical compositions, method for treating an eye indication and method for producing a hydrogel drug conjugate |
TWI839327B (en) | 2017-03-22 | 2024-04-21 | 美商建南德克公司 | Optimized antibody compositions for treatment of ocular disorders |
EP3600427A1 (en) | 2017-03-24 | 2020-02-05 | INSERM - Institut National de la Santé et de la Recherche Médicale | Methods and compositions for treating melanoma |
WO2018178030A1 (en) | 2017-03-27 | 2018-10-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating degenerative muscular and/or neurological conditions or diseases |
WO2018178029A1 (en) | 2017-03-27 | 2018-10-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating degenerative muscular and/or neurological conditions or diseases |
CN117205311A (en) | 2017-03-28 | 2023-12-12 | 基因泰克公司 | Methods of treating neurodegenerative diseases |
WO2018178074A1 (en) | 2017-03-29 | 2018-10-04 | F. Hoffmann-La Roche Ag | Trimeric antigen binding molecules specific for a costimulatory tnf receptor |
EP3601345A1 (en) | 2017-03-29 | 2020-02-05 | H. Hoffnabb-La Roche Ag | Bispecific antigen binding molecule for a costimulatory tnf receptor |
JP7205995B2 (en) | 2017-03-29 | 2023-01-17 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Bispecific antigen-binding molecules for co-stimulatory TNF receptors |
JP2020515588A (en) | 2017-03-30 | 2020-05-28 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Methods for treating mitochondrial genetic disorders |
MX2019011657A (en) | 2017-03-30 | 2019-11-18 | Merck Patent Gmbh | Combination of an anti-pd-l1 antibody and a dna-pk inhibitor for the treatment of cancer. |
CR20190430A (en) | 2017-04-03 | 2019-11-01 | Hoffmann La Roche | Antibodies binding to steap-1 |
WO2018187191A1 (en) | 2017-04-03 | 2018-10-11 | Jounce Therapeutics, Inc | Compositions and methods for the treatment of cancer |
EP3606947B1 (en) | 2017-04-03 | 2022-12-21 | F. Hoffmann-La Roche AG | Immunoconjugates of il-2 with an anti-pd-1 and tim-3 bispecific antibody |
CR20190426A (en) | 2017-04-03 | 2019-11-01 | Hoffmann La Roche | IMMUNOCONJUGATES |
SI3606954T1 (en) | 2017-04-05 | 2022-10-28 | F. Hoffmann - La Roche Ag | Anti-lag3 antibodies |
WO2018189220A1 (en) | 2017-04-13 | 2018-10-18 | F. Hoffmann-La Roche Ag | An interleukin-2 immunoconjugate, a cd40 agonist, and optionally a pd-1 axis binding antagonist for use in methods of treating cancer |
CA3059615A1 (en) | 2017-04-21 | 2018-10-25 | Genentech, Inc. | Use of klk5 antagonists for treatment of a disease |
MX2019012793A (en) | 2017-04-27 | 2020-02-13 | Tesaro Inc | Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof. |
WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
CN110831628A (en) | 2017-05-05 | 2020-02-21 | 爱乐科斯公司 | Methods and compositions for treating allergic eye diseases |
EP3401328A1 (en) | 2017-05-10 | 2018-11-14 | Bayer Pharma Aktiengesellschaft | One step antibody humanization by golden gate based germline framework region shuffling |
JP7090347B2 (en) | 2017-05-12 | 2022-06-24 | ハープーン セラピューティクス,インク. | Mesothelin-binding protein |
CN115028727A (en) | 2017-05-12 | 2022-09-09 | 哈普恩治疗公司 | MSLN-targeting trispecific proteins and methods of use |
WO2018213097A1 (en) | 2017-05-15 | 2018-11-22 | University Of Rochester | Broadly neutralizing anti-influenza monoclonal antibody and uses thereof |
EP3403649A1 (en) | 2017-05-16 | 2018-11-21 | Bayer Pharma Aktiengesellschaft | Inhibitors and antagonists of gpr84 for the treatment of endometriosis |
US11359014B2 (en) | 2017-05-16 | 2022-06-14 | Alector Llc | Anti-siglec-5 antibodies and methods of use thereof |
EP3624837A1 (en) | 2017-05-16 | 2020-03-25 | Five Prime Therapeutics, Inc. | Anti-fgfr2 antibodies in combination with chemotherapy agents in cancer treatment |
EP3406253A1 (en) | 2017-05-24 | 2018-11-28 | Bayer Aktiengesellschaft | Inhibitors and antagonists of human pycr1 |
EP3630829A1 (en) | 2017-06-02 | 2020-04-08 | H. Hoffnabb-La Roche Ag | Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer |
EP3638295A1 (en) | 2017-06-13 | 2020-04-22 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
WO2019000223A1 (en) | 2017-06-27 | 2019-01-03 | Nanjing Legend Biotech Co., Ltd. | Chimeric antibody immune effctor cell engagers and methods of use thereof |
WO2019002548A1 (en) | 2017-06-29 | 2019-01-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Treating migraine by agonising trek1, trek2 or heteromers including them |
EP3652209A2 (en) | 2017-07-11 | 2020-05-20 | Compass Therapeutics LLC | Agonist antibodies that bind human cd137 and uses thereof |
WO2019016310A1 (en) | 2017-07-20 | 2019-01-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cancers |
WO2019018757A1 (en) | 2017-07-21 | 2019-01-24 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
JP6889328B2 (en) | 2017-07-31 | 2021-06-18 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Humanization method based on three-dimensional structure |
CR20190485A (en) | 2017-08-03 | 2020-02-10 | Alector Llc | Anti-trem2 antibodies and methods of use thereof |
JP7299160B2 (en) | 2017-08-03 | 2023-06-27 | アレクトル エルエルシー | ANTI-CD33 ANTIBODY AND METHOD OF USE THEREOF |
EP3444275A1 (en) | 2017-08-16 | 2019-02-20 | Exiris S.r.l. | Monoclonal antibody anti-fgfr4 |
JP7395465B2 (en) | 2017-08-23 | 2023-12-11 | マックス-デルブリュック-セントルム フュール モレキュラー メディツィン イン デア ヘルムホルツ-ゲマインシャフト | Chimeric antigen receptor and CAR-T cells that bind to CXCR5 |
CA3074111A1 (en) | 2017-08-28 | 2019-03-07 | Angiex, Inc. | Anti-tm4sf1 antibodies and methods of using same |
EP3684413A1 (en) | 2017-09-20 | 2020-07-29 | Chugai Seiyaku Kabushiki Kaisha | Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent |
MA50667A (en) | 2017-09-29 | 2020-08-05 | Chugai Pharmaceutical Co Ltd | MULTISPECIFIC ANTIGEN-BINDING MOLECULE HAVING SUBSTITUTION ACTIVITY FOR THE FUNCTION OF BLOOD COAGULATION FACTOR VIII COFACTOR (FVIII), AND PHARMACEUTICAL FORMULATION CONTAINING THE SAME MOLECULE AS ACTIVE PRINCIPLE |
CN112020648A (en) | 2017-10-04 | 2020-12-01 | 赫斯佩瑞克斯股份公司 | Articles and methods for cancer-directed personalized therapy |
US11912754B2 (en) | 2017-10-12 | 2024-02-27 | Immunowake Inc. | VEGFR-antibody light chain fusion protein |
JP7066837B2 (en) | 2017-10-13 | 2022-05-13 | ハープーン セラピューティクス,インク. | B cell maturation antigen binding protein |
RS65978B1 (en) | 2017-10-13 | 2024-10-31 | Harpoon Therapeutics Inc | Trispecific proteins and methods of use |
WO2019083904A1 (en) | 2017-10-23 | 2019-05-02 | Chan Zuckerberg Biohub, Inc. | Measurement of afucosylated igg fc glycans and related treatment methods |
WO2019081456A1 (en) | 2017-10-24 | 2019-05-02 | Bayer Aktiengesellschaft | Use of activators and stimulators of sgc comprising a beta2 subunit |
US11718679B2 (en) | 2017-10-31 | 2023-08-08 | Compass Therapeutics Llc | CD137 antibodies and PD-1 antagonists and uses thereof |
BR112020008031A2 (en) | 2017-11-01 | 2020-10-27 | F. Hoffmann-La Roche Ag | multispecific antibody, method for preparing multispecific antibody, set of nucleic acids, expression vector, host cell and pharmaceutical composition |
CN111295392A (en) | 2017-11-01 | 2020-06-16 | 豪夫迈·罗氏有限公司 | Compbody-multivalent target binders |
BR112020007630A2 (en) | 2017-11-01 | 2020-11-17 | F. Hoffmann-La Roche Ag | bispecific ox40 antibody, pharmaceutical product, pharmaceutical composition and bispecific anti-fap / anti-ox40 antibodies |
CA3077664A1 (en) | 2017-11-06 | 2019-05-09 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
CN111511383A (en) | 2017-11-14 | 2020-08-07 | 阿奇利克斯股份有限公司 | Multifunctional immune cell therapy |
US11851497B2 (en) | 2017-11-20 | 2023-12-26 | Compass Therapeutics Llc | CD137 antibodies and tumor antigen-targeting antibodies and uses thereof |
EP3502140A1 (en) | 2017-12-21 | 2019-06-26 | F. Hoffmann-La Roche AG | Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules |
KR102575787B1 (en) | 2017-12-21 | 2023-09-08 | 에프. 호프만-라 로슈 아게 | Antibodies binding to HLA-A2/WT1 |
TW201929907A (en) | 2017-12-22 | 2019-08-01 | 美商建南德克公司 | Use of PILRA binding agents for treatment of a Disease |
AU2018389111A1 (en) | 2017-12-22 | 2020-06-18 | Jounce Therapeutics, Inc. | Antibodies to LILRB2 |
SG11202006042SA (en) | 2017-12-27 | 2020-07-29 | Teneobio Inc | Cd3-delta/epsilon heterodimer specific antibodies |
EP3732202A4 (en) | 2017-12-28 | 2022-06-15 | Nanjing Legend Biotech Co., Ltd. | Single-domain antibodies and variants thereof against tigit |
CA3078849A1 (en) | 2017-12-28 | 2019-07-04 | Nanjing Legend Biotech Co., Ltd. | Antibodies and variants thereof against pd-l1 |
JP7490565B2 (en) | 2017-12-29 | 2024-05-27 | アレクトル エルエルシー | Anti-TMEM106B antibodies and methods of use thereof |
US20210072244A1 (en) | 2018-01-04 | 2021-03-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma resistant |
SG11202004233UA (en) | 2018-01-15 | 2020-06-29 | Nanjing Legend Biotech Co Ltd | Single-domain antibodies and variants thereof against pd-1 |
EP3740505A1 (en) | 2018-01-16 | 2020-11-25 | Lakepharma Inc. | Bispecific antibody that binds cd3 and another target |
US11472874B2 (en) | 2018-01-31 | 2022-10-18 | Alector Llc | Anti-MS4A4A antibodies and methods of use thereof |
WO2019157308A1 (en) | 2018-02-08 | 2019-08-15 | Genentech, Inc. | Bispecific antigen-binding molecules and methods of use |
TWI829667B (en) | 2018-02-09 | 2024-01-21 | 瑞士商赫孚孟拉羅股份公司 | Antibodies binding to gprc5d |
CR20200394A (en) | 2018-02-09 | 2020-11-05 | Genentech Inc | Therapeutic and diagnostic methods for mast cell-mediated inflammatory diseases |
JP7384811B2 (en) | 2018-02-16 | 2023-11-21 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Methods and compositions for treating vitiligo |
JP7391027B2 (en) | 2018-02-26 | 2023-12-04 | ジェネンテック, インコーポレイテッド | Medication for treatment with anti-TIGIT and anti-PD-L1 antagonist antibodies |
EP3759492A1 (en) | 2018-02-27 | 2021-01-06 | ECS-Progastrin SA | Progastrin as a biomarker for immunotherapy |
MX2020009526A (en) | 2018-03-12 | 2020-10-28 | Zoetis Services Llc | Anti-ngf antibodies and methods thereof. |
TWI841551B (en) | 2018-03-13 | 2024-05-11 | 瑞士商赫孚孟拉羅股份公司 | Combination therapy with targeted 4-1bb (cd137) agonists |
EP3765489B1 (en) | 2018-03-13 | 2024-10-16 | F. Hoffmann-La Roche AG | Therapeutic combination of 4-1bb agonists with anti-cd20 antibodies |
US20200040103A1 (en) | 2018-03-14 | 2020-02-06 | Genentech, Inc. | Anti-klk5 antibodies and methods of use |
CN112119090B (en) | 2018-03-15 | 2023-01-13 | 中外制药株式会社 | Anti-dengue virus antibodies cross-reactive to Zika virus and methods of use |
CN111936625A (en) | 2018-03-29 | 2020-11-13 | 豪夫迈·罗氏有限公司 | Modulating lactogenic activity in mammalian cells |
US11958903B2 (en) | 2018-03-30 | 2024-04-16 | Nanjing Legend Biotech Co., Ltd. | Single-domain antibodies against LAG-3 and uses thereof |
WO2019192432A1 (en) | 2018-04-02 | 2019-10-10 | 上海博威生物医药有限公司 | Lymphocyte activation gene-3 (lag-3) binding antibody and use thereof |
TW202011029A (en) | 2018-04-04 | 2020-03-16 | 美商建南德克公司 | Methods for detecting and quantifying FGF21 |
WO2019195561A2 (en) | 2018-04-06 | 2019-10-10 | BioLegend, Inc. | Anti-tetraspanin 33 agents and compositions and methods for making and using the same |
EP3552631A1 (en) | 2018-04-10 | 2019-10-16 | Inatherys | Antibody-drug conjugates and their uses for the treatment of cancer |
MX2020010732A (en) | 2018-04-13 | 2020-11-09 | Hoffmann La Roche | Her2-targeting antigen binding molecules comprising 4-1bbl. |
AR115052A1 (en) | 2018-04-18 | 2020-11-25 | Hoffmann La Roche | MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM |
AR114789A1 (en) | 2018-04-18 | 2020-10-14 | Hoffmann La Roche | ANTI-HLA-G ANTIBODIES AND THE USE OF THEM |
US12054529B2 (en) | 2018-04-20 | 2024-08-06 | Medizinische Hochschule Hannover | Chimeric antigen receptor and CAR-T cells that bind a herpes virus antigen |
EP3784351A1 (en) | 2018-04-27 | 2021-03-03 | Novartis AG | Car t cell therapies with enhanced efficacy |
WO2019213282A1 (en) | 2018-05-01 | 2019-11-07 | Novartis Ag | Biomarkers for evaluating car-t cells to predict clinical outcome |
JP7402541B2 (en) | 2018-05-03 | 2023-12-21 | ユニバーシティ オブ ロチェスター | Anti-influenza neuraminidase monoclonal antibody and its use |
US20210246208A1 (en) | 2018-05-04 | 2021-08-12 | Merck Patent Gmbh | Combined inhibition of pd-1/pd-l1, tgfb and dna-pk for the treatment of cancer |
WO2019227003A1 (en) | 2018-05-25 | 2019-11-28 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
AU2019272885A1 (en) | 2018-05-25 | 2020-11-26 | Alector Llc | Anti-SIRPA antibodies and methods of use thereof |
PE20210320A1 (en) | 2018-06-01 | 2021-02-16 | Novartis Ag | BINDING MOLECULES AGAINST BCMA AND THE USES OF THEM |
KR20210056288A (en) | 2018-06-01 | 2021-05-18 | 타유 후아시아 바이오테크 메디컬 그룹 컴퍼니 리미티드 | Compositions for treating diseases or conditions and uses thereof |
EP3801613A1 (en) | 2018-06-04 | 2021-04-14 | Bayer Aktiengesellschaft | Inhibitors of shp2 |
EP3805400A4 (en) | 2018-06-04 | 2022-06-29 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule showing changed half-life in cytoplasm |
JP7382970B2 (en) | 2018-06-08 | 2023-11-17 | アレクトル エルエルシー | Anti-Siglec-7 antibody and method of use thereof |
BR112020026384A2 (en) | 2018-06-23 | 2021-03-30 | Genentech, Inc. | METHODS FOR TREATING AN INDIVIDUAL WITH LUNG CANCER AND FOR TREATING AN INDIVIDUAL WITH SMALL CELL LUNG CANCER, KITS, ANTIBODY ANTI-PD-L1 AND COMPOSITION |
EA202190138A1 (en) | 2018-06-29 | 2021-05-27 | ЭЛЕКТОР ЭлЭлСи | ANTI-SIRP-BETA1 ANTIBODIES AND METHODS OF THEIR USE |
LT3618928T (en) | 2018-07-13 | 2023-04-11 | Alector Llc | Anti-sortilin antibodies and methods of use thereof |
EP3820888A4 (en) | 2018-07-13 | 2022-04-27 | Nanjing Legend Biotech Co., Ltd. | Co-receptor systems for treating infectious diseases |
IL280107B1 (en) | 2018-07-18 | 2024-08-01 | Genentech Inc | Atezolizumab for use in a method of treating non-squamous non-small cell lung cancer (nsclc) and kits comprising atezolizumab |
WO2020021061A1 (en) | 2018-07-26 | 2020-01-30 | Pieris Pharmaceuticals Gmbh | Humanized anti-pd-1 antibodies and uses thereof |
CN112752768A (en) | 2018-07-27 | 2021-05-04 | 艾利妥 | anti-SIGLEC-5 antibodies and methods of use thereof |
DK3830132T5 (en) | 2018-07-31 | 2024-08-19 | Heidelberg Pharma Res Gmbh | HUMANIZED ANTIBODIES TO PSMA |
AR115925A1 (en) | 2018-08-08 | 2021-03-10 | Genentech Inc | USE OF TRYPTOPHAN AND L-METHIONINE DERIVATIVES FOR PROTEIN FORMULATION |
SG10202106830VA (en) | 2018-08-10 | 2021-08-30 | Chugai Pharmaceutical Co Ltd | Anti-cd137 antigen-binding molecule and utilization thereof |
MX2021001703A (en) | 2018-08-13 | 2021-04-19 | Inhibrx Inc | Ox40-binding polypeptides and uses thereof. |
TW202021618A (en) | 2018-08-17 | 2020-06-16 | 美商23與我有限公司 | Anti-il1rap antibodies and methods of use thereof |
CN112566936B (en) | 2018-08-21 | 2024-07-12 | 阿尔伯特爱因斯坦医学院 | Monoclonal antibodies against human TIM-3 |
US20210317213A1 (en) | 2018-08-28 | 2021-10-14 | Ambrx, Inc. | Anti-CD3 Antibody Folate Bioconjugates and Their Uses |
AU2019327569A1 (en) | 2018-08-30 | 2021-04-29 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
KR20210070986A (en) | 2018-08-31 | 2021-06-15 | 알렉터 엘엘씨 | Anti-CD33 antibodies and methods of use thereof |
GB201814281D0 (en) | 2018-09-03 | 2018-10-17 | Femtogenix Ltd | Cytotoxic agents |
WO2020053125A1 (en) | 2018-09-10 | 2020-03-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the treatment of neurofibromatosis |
AU2019337759A1 (en) | 2018-09-10 | 2021-03-11 | Legend Biotech Ireland Limited | Single-domain antibodies against CD33 and constructs thereof |
JP2022501332A (en) | 2018-09-19 | 2022-01-06 | ジェネンテック, インコーポレイテッド | How to treat and diagnose bladder cancer |
PL3857230T3 (en) | 2018-09-21 | 2023-10-16 | F. Hoffmann-La Roche Ag | Diagnostic methods for triple-negative breast cancer |
CN113286817A (en) | 2018-09-25 | 2021-08-20 | 哈普恩治疗公司 | DLL3 binding proteins and methods of use |
EP3856343A1 (en) | 2018-09-25 | 2021-08-04 | Biolegend, Inc. | Anti-tlr9 agents and compositions and methods for making and using the same |
CA3114024A1 (en) | 2018-09-26 | 2020-04-02 | Merck Patent Gmbh | Combination of a pd-1 antagonist, an atr inhibitor and a platinating agent for the treatment of cancer |
US20220047633A1 (en) | 2018-09-28 | 2022-02-17 | Novartis Ag | Cd22 chimeric antigen receptor (car) therapies |
WO2020069409A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies |
TW202028244A (en) | 2018-10-09 | 2020-08-01 | 美商建南德克公司 | Methods and systems for determining synapse formation |
CA3115285A1 (en) | 2018-10-11 | 2020-04-16 | Inhibrx, Inc. | Pd-1 single domain antibodies and therapeutic compositions thereof |
WO2020076992A1 (en) | 2018-10-11 | 2020-04-16 | Inhibrx, Inc. | 5t4 single domain antibodies and therapeutic compositions thereof |
US20210380679A1 (en) | 2018-10-11 | 2021-12-09 | Inhibrx, Inc. | Dll3 single domain antibodies and therapeutic compositions thereof |
JP2022512684A (en) | 2018-10-11 | 2022-02-07 | インヒブルクス インコーポレイテッド | B7H3 single domain antibody and therapeutic composition thereof |
US20210369705A1 (en) | 2018-10-15 | 2021-12-02 | Merck Patent Gmbh | Combination therapy utilizing dna alkylating agents and atr inhibitors |
KR20210079311A (en) | 2018-10-18 | 2021-06-29 | 제넨테크, 인크. | Diagnosis and treatment methods for sarcoma renal cancer |
TW202037381A (en) | 2018-10-24 | 2020-10-16 | 瑞士商赫孚孟拉羅股份公司 | Conjugated chemical inducers of degradation and methods of use |
CA3100232A1 (en) | 2018-10-26 | 2020-04-30 | Teneobio, Inc. | Heavy chain antibodies binding to cd38 |
US20220170097A1 (en) | 2018-10-29 | 2022-06-02 | The Broad Institute, Inc. | Car t cell transcriptional atlas |
CA3117856A1 (en) | 2018-10-31 | 2020-05-07 | Bayer Aktiengesellschaft | Reversal agents for neutralizing the therapeutic activity of anti-fxia antibodies |
MX2021004819A (en) | 2018-11-02 | 2021-06-08 | Annexon Inc | Compositions and methods for treating brain injury. |
WO2020096959A1 (en) | 2018-11-05 | 2020-05-14 | Genentech, Inc. | Methods of producing two chain proteins in prokaryotic host cells |
CN113166269A (en) | 2018-11-13 | 2021-07-23 | 指南针制药有限责任公司 | Multispecific binding constructs against checkpoint molecules and uses thereof |
WO2020104479A1 (en) | 2018-11-20 | 2020-05-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cancers and resistant cancers with anti transferrin receptor 1 antibodies |
JP2022513708A (en) | 2018-12-05 | 2022-02-09 | モルフォシス・アーゲー | Multispecific antigen-binding molecule |
MX2021006573A (en) | 2018-12-06 | 2021-07-15 | Genentech Inc | Combination therapy of diffuse large b-cell lymphoma comprising an anti-cd79b immunoconjugates, an alkylating agent and an anti-cd20 antibody. |
WO2020115261A1 (en) | 2018-12-07 | 2020-06-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2020123275A1 (en) | 2018-12-10 | 2020-06-18 | Genentech, Inc. | Photocrosslinking peptides for site specific conjugation to fc-containing proteins |
GB201820554D0 (en) | 2018-12-17 | 2019-01-30 | Univ Oxford Innovation Ltd | BTLA antibodies |
GB201820547D0 (en) | 2018-12-17 | 2019-01-30 | Oxford Univ Innovation | Modified antibodies |
AR117453A1 (en) | 2018-12-20 | 2021-08-04 | Genentech Inc | CF OF MODIFIED ANTIBODIES AND METHODS TO USE THEM |
AR117327A1 (en) | 2018-12-20 | 2021-07-28 | 23Andme Inc | ANTI-CD96 ANTIBODIES AND METHODS OF USE OF THEM |
MX2021007589A (en) | 2018-12-21 | 2021-12-10 | 23Andme Inc | Anti-il-36 antibodies and methods of use thereof. |
BR112021012037A2 (en) | 2018-12-21 | 2021-11-03 | Ose Immunotherapeutics | Bifunctional anti-pd-1/il-7 molecule |
TW202428614A (en) | 2018-12-21 | 2024-07-16 | 瑞士商赫孚孟拉羅股份公司 | Antibodies binding to cd3 |
WO2020127885A1 (en) | 2018-12-21 | 2020-06-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Compositions for treating cancers and resistant cancers |
KR20210108981A (en) | 2018-12-21 | 2021-09-03 | 에프. 호프만-라 로슈 아게 | Tumor-targeted agonistic CD28 antigen binding molecule |
SG11202106116QA (en) | 2018-12-21 | 2021-07-29 | Genentech Inc | Methods of producing polypeptides using a cell line resistant to apoptosis |
MX2021007274A (en) | 2018-12-21 | 2021-07-15 | Ose Immunotherapeutics | Bifunctional anti-pd-1/sirpa molecule. |
JP2022515223A (en) | 2018-12-21 | 2022-02-17 | オーエスイー・イミュノセラピューティクス | Bifunctional molecule for human PD-1 |
AR117728A1 (en) | 2018-12-21 | 2021-08-25 | Hoffmann La Roche | CD28 ANTIGEN BINDING SUPERAGONIST MOLECULES WITH TUMOR TARGET |
CA3123050A1 (en) | 2018-12-26 | 2020-07-02 | City Of Hope | Activatable masked anti-ctla4 binding proteins |
JP2022515543A (en) | 2018-12-30 | 2022-02-18 | エフ.ホフマン-ラ ロシュ アーゲー | Anti-rabbit CD19 antibody and how to use |
EP3908596A1 (en) | 2019-01-07 | 2021-11-17 | Inhibrx, Inc. | Polypeptides comprising modified il-2 polypeptides and uses thereof |
CN115120716A (en) | 2019-01-14 | 2022-09-30 | 健泰科生物技术公司 | Methods of treating cancer with PD-1 axis binding antagonists and RNA vaccines |
US20220128561A1 (en) | 2019-01-17 | 2022-04-28 | Bayer Aktiengesellschaft | Methods to determine whether a subject is suitable of being treated with an agonist of soluble gyanylyl cyclase (sgc) |
JP2022522985A (en) | 2019-01-22 | 2022-04-21 | ジェネンテック, インコーポレイテッド | Immunoglobulin A antibody, and method of production and use |
CN113329770A (en) | 2019-01-24 | 2021-08-31 | 中外制药株式会社 | Novel cancer antigen and antibody against said antigen |
GB201901197D0 (en) | 2019-01-29 | 2019-03-20 | Femtogenix Ltd | G-A Crosslinking cytotoxic agents |
WO2020161083A1 (en) | 2019-02-04 | 2020-08-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating blood-brain barrier |
WO2020165374A1 (en) | 2019-02-14 | 2020-08-20 | Ose Immunotherapeutics | Bifunctional molecule comprising il-15ra |
EP3927831A1 (en) | 2019-02-18 | 2021-12-29 | ATB Therapeutics | Method of producing a binder-toxin fusion protein in a plant cell or a whole plant |
WO2020172553A1 (en) | 2019-02-22 | 2020-08-27 | Novartis Ag | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
CA3130695A1 (en) | 2019-02-27 | 2020-09-03 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-cd20 or anti-cd38 antibodies |
CN113543799B (en) | 2019-03-01 | 2024-08-02 | 艾洛基治疗公司 | Chimeric antigen receptor and binding agent targeting DLL3 |
KR20210138588A (en) | 2019-03-08 | 2021-11-19 | 제넨테크, 인크. | Methods for detecting and quantifying membrane-associated proteins on extracellular vesicles |
TW202100556A (en) | 2019-03-14 | 2021-01-01 | 美商建南德克公司 | Treatment with her2 t cell-dependent bispecific antibodies |
AU2020242042A1 (en) | 2019-03-19 | 2021-09-16 | Albert Einstein College Of Medicine | Monoclonal antibodies for prevention and treatment of herpes simplex viral infections |
JP2022524958A (en) | 2019-03-21 | 2022-05-11 | アロジーン セラピューティクス,インコーポレイテッド | How to improve the efficiency of TCRαβ + cell depletion |
ES2967879T3 (en) | 2019-03-25 | 2024-05-06 | Max Delbrueck Centrum Fuer Molekulare Medizin Helmholtz Gemeinschaft | Enhancement of cytolytic T cell activity by inhibiting EBAG9 |
EP3946330A1 (en) | 2019-03-29 | 2022-02-09 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods for the treatment of keloid, hypertrophic scars and/or hyperpigmentation disorders |
WO2020201195A2 (en) | 2019-04-04 | 2020-10-08 | Bayer Aktiengesellschaft | Agonists of adiponectin |
CN113993534A (en) | 2019-04-09 | 2022-01-28 | 特殊外科医院 | Protein conjugates against iRhom2 |
EP3952996A1 (en) | 2019-04-12 | 2022-02-16 | F. Hoffmann-La Roche AG | Bispecific antigen binding molecules comprising lipocalin muteins |
WO2020214995A1 (en) | 2019-04-19 | 2020-10-22 | Genentech, Inc. | Anti-mertk antibodies and their methods of use |
CA3132509A1 (en) | 2019-04-26 | 2020-10-29 | Allogene Therapeutics, Inc. | Methods of manufacturing allogeneic car t cells |
WO2020221796A1 (en) | 2019-04-30 | 2020-11-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
JP2022530674A (en) | 2019-05-03 | 2022-06-30 | ジェネンテック, インコーポレイテッド | Cancer treatment method using anti-PD-L1 antibody |
MX2021013417A (en) | 2019-05-04 | 2021-12-10 | Inhibrx Inc | Clec12a-binding polypeptides and uses thereof. |
BR112021021048A2 (en) | 2019-05-04 | 2021-12-14 | Inhibrx Inc | Polypeptides that bind to cd33 and their uses |
JP2022532868A (en) | 2019-05-04 | 2022-07-20 | インヒブルクス インコーポレイテッド | CD123 binding polypeptide and its use |
CN114206340A (en) | 2019-05-14 | 2022-03-18 | 豪夫迈·罗氏有限公司 | Methods of treating follicular lymphoma using anti-CD 79B immunoconjugates |
CN114025791A (en) | 2019-05-15 | 2022-02-08 | 尼奥克斯医疗有限公司 | Cancer treatment |
US12037378B2 (en) | 2019-05-21 | 2024-07-16 | Novartis Ag | Variant CD58 domains and uses thereof |
CU20210096A7 (en) | 2019-05-21 | 2022-06-06 | Novartis Ag | CD19 BINDING MOLECULES |
US20200369759A1 (en) | 2019-05-23 | 2020-11-26 | Fibrogen, Inc. | Methods of treatment of muscular dystrophies |
BR112021025077A2 (en) | 2019-06-11 | 2022-05-03 | Alector Llc | Anti-sortilin antibodies for use in therapy |
TW202115124A (en) | 2019-06-26 | 2021-04-16 | 瑞士商赫孚孟拉羅股份公司 | Novel antigen binding molecules binding to cea |
JP7354306B2 (en) | 2019-06-27 | 2023-10-02 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Novel ICOS antibodies and tumor-targeting antigen-binding molecules containing them |
AR119293A1 (en) | 2019-06-28 | 2021-12-09 | Genentech Inc | COMPOSITION AND METHODS TO STABILIZE LIQUID PROTEIN FORMULATIONS |
JP2022538139A (en) | 2019-07-02 | 2022-08-31 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Immune complex comprising mutant interleukin-2 and anti-CD8 antibody |
AR119393A1 (en) | 2019-07-15 | 2021-12-15 | Hoffmann La Roche | ANTIBODIES THAT BIND NKG2D |
JP2022543551A (en) | 2019-07-31 | 2022-10-13 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Antibody that binds to GPRC5D |
WO2021022083A2 (en) | 2019-07-31 | 2021-02-04 | Alector Llc | Anti-ms4a4a antibodies and methods of use thereof |
KR20220028035A (en) | 2019-07-31 | 2022-03-08 | 에프. 호프만-라 로슈 아게 | Antibodies that bind to GPRC5D |
CA3148740A1 (en) | 2019-08-06 | 2021-02-11 | Aprinoia Therapeutics Limited | Antibodies that bind to pathological tau species and uses thereof |
TW202120551A (en) | 2019-08-12 | 2021-06-01 | 美商普瑞諾生物科技公司 | Methods and compositions for promoting and potentiating t‐cell mediated immune responses through adcc targeting of cd39 expressing cells |
WO2021035170A1 (en) | 2019-08-21 | 2021-02-25 | Precision Biosciences, Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
JP2022546768A (en) | 2019-09-04 | 2022-11-08 | ワイ-バイオロジクス・インコーポレイテッド | ANTI-VSIG4 ANTIBODY OR ANTIGEN-BINDING FRAGMENT AND USES THEREOF |
WO2021048292A1 (en) | 2019-09-11 | 2021-03-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
MX2022002963A (en) | 2019-09-12 | 2022-04-06 | Genentech Inc | Compositions and methods of treating lupus nephritis. |
CA3150999A1 (en) | 2019-09-18 | 2021-03-25 | James Thomas Koerber | Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use |
WO2021055694A1 (en) | 2019-09-20 | 2021-03-25 | Genentech, Inc. | Dosing for anti-tryptase antibodies |
AU2020351734A1 (en) | 2019-09-27 | 2022-04-14 | Genentech, Inc. | Dosing for treatment with anti-TIGIT and anti-PD-L1 antagonist antibodies |
EP4034160A1 (en) | 2019-09-27 | 2022-08-03 | Janssen Biotech, Inc. | Anti-ceacam antibodies and uses thereof |
CN114829401A (en) | 2019-09-27 | 2022-07-29 | 南京金斯瑞生物科技有限公司 | anti-VHH domain antibodies and uses thereof |
CA3151450A1 (en) | 2019-09-30 | 2021-04-08 | Matthias Schneider | Protein binders to irhom2 epitopes |
WO2021063968A1 (en) | 2019-09-30 | 2021-04-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method and composition for diagnosing chronic obstructive pulmonary disease |
EP4037714A1 (en) | 2019-10-03 | 2022-08-10 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating macrophages polarization |
MX2022004443A (en) | 2019-10-18 | 2022-05-02 | Genentech Inc | Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma. |
WO2021084124A1 (en) | 2019-11-01 | 2021-05-06 | Ares Trading S.A. | COMBINED INHIBITION OF PD-1, TGFβ AND ATM TOGETHER WITH RADIOTHERAPY FOR THE TREATMENT OF CANCER |
JP2022554374A (en) | 2019-11-05 | 2022-12-28 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Anti-TIGIT antibody and use thereof |
EP4054633A1 (en) | 2019-11-05 | 2022-09-14 | Merck Patent GmbH | Combined inhibition of pd-1, tgfb and tigit for the treatment of cancer |
KR20220092580A (en) | 2019-11-06 | 2022-07-01 | 제넨테크, 인크. | Diagnosis and treatment methods for the treatment of blood cancer |
WO2021094508A1 (en) | 2019-11-15 | 2021-05-20 | F. Hoffmann-La Roche Ag | Prevention of visible particle formation in aqueous protein solutions |
EP4069301A1 (en) | 2019-12-04 | 2022-10-12 | Bayer Aktiengesellschaft | Inhibitors of shp2 |
CA3158565A1 (en) | 2019-12-05 | 2021-06-10 | Tina SCHWABE | Methods of use of anti-trem2 antibodies |
JP2023504740A (en) | 2019-12-06 | 2023-02-06 | ジュノー セラピューティクス インコーポレイテッド | Anti-idiotypic antibodies against BCMA target binding domains and related compositions and methods |
US20230192869A1 (en) | 2019-12-06 | 2023-06-22 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies to gprc5d-targeted binding domains and related compositions and methods |
WO2021111636A1 (en) | 2019-12-06 | 2021-06-10 | 大塚製薬株式会社 | Anti-gdf15 antibody |
CA3158987A1 (en) | 2019-12-09 | 2021-06-17 | Genentech, Inc. | Anti-pd-l1 antibody formulations |
AU2020403021A1 (en) | 2019-12-12 | 2022-06-23 | Alector Llc | Methods of use of anti-CD33 antibodies |
CR20230210A (en) | 2019-12-13 | 2023-06-14 | Genentech Inc | Anti-ly6g6d antibodies and methods of use |
AU2020401319A1 (en) | 2019-12-13 | 2022-06-30 | Alector Llc | Anti-MerTK antibodies and methods of use thereof |
MX2022007613A (en) | 2019-12-18 | 2022-07-19 | Teneofour Inc | Heavy chain antibodies binding to cd38. |
WO2021122875A1 (en) | 2019-12-18 | 2021-06-24 | F. Hoffmann-La Roche Ag | Antibodies binding to hla-a2/mage-a4 |
CR20220334A (en) | 2019-12-23 | 2022-08-26 | Genentech Inc | Apolipoprotein l1-specific antibodies and methods of use |
WO2021131021A1 (en) | 2019-12-27 | 2021-07-01 | 中外製薬株式会社 | Anti-ctla-4 antibody and use thereof |
AU2021206523A1 (en) | 2020-01-09 | 2022-05-26 | F. Hoffmann-La Roche Ag | New 4-1BBL trimer-containing antigen binding molecules |
CN110818795B (en) | 2020-01-10 | 2020-04-24 | 上海复宏汉霖生物技术股份有限公司 | anti-TIGIT antibodies and methods of use |
EP4090770A1 (en) | 2020-01-17 | 2022-11-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
CN115427447A (en) | 2020-01-17 | 2022-12-02 | 百进生物科技公司 | anti-TLR 7 agents and compositions and methods of making and using the same |
WO2021194481A1 (en) | 2020-03-24 | 2021-09-30 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
IL294800A (en) | 2020-01-27 | 2022-09-01 | Genentech Inc | Methods for treatment of cancer with an anti-tigit antagonist antibody |
WO2022050954A1 (en) | 2020-09-04 | 2022-03-10 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
EP4097129A1 (en) | 2020-01-29 | 2022-12-07 | Inhibrx, Inc. | Cd28 single domain antibodies and multivalent and multispecific constructs thereof |
EP4097143A1 (en) | 2020-01-31 | 2022-12-07 | The Cleveland Clinic Foundation | Anti-müllerian hormone receptor 2 antibodies and methods of use |
MX2022009391A (en) | 2020-01-31 | 2022-09-26 | Genentech Inc | Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine. |
CN115427453B (en) | 2020-02-10 | 2024-07-12 | 上海诗健生物科技有限公司 | CLDN18.2 antibodies and uses thereof |
AU2021218927A1 (en) | 2020-02-10 | 2022-09-22 | Shanghai Escugen Biotechnology Co., Ltd. | Claudin 18.2 antibody and use thereof |
TW202144395A (en) | 2020-02-12 | 2021-12-01 | 日商中外製藥股份有限公司 | Anti-CD137 antigen-binding molecule for use in cancer treatment |
CN117964757A (en) | 2020-02-14 | 2024-05-03 | 吉利德科学公司 | Antibodies and fusion proteins that bind CCR8 and uses thereof |
AU2021224851A1 (en) | 2020-02-21 | 2022-09-15 | Harpoon Therapeutics, Inc. | FLT3 binding proteins and methods of use |
JP2023515478A (en) | 2020-02-24 | 2023-04-13 | アレクトル エルエルシー | Method of using anti-TREM2 antibody |
WO2021173889A1 (en) | 2020-02-26 | 2021-09-02 | Ambrx, Inc. | Uses of anti-cd3 antibody folate bioconjugates |
WO2021170067A1 (en) | 2020-02-28 | 2021-09-02 | 上海复宏汉霖生物技术股份有限公司 | Anti-cd137 construct and use thereof |
CN115151573A (en) | 2020-02-28 | 2022-10-04 | 上海复宏汉霖生物技术股份有限公司 | anti-CD 137 constructs, multispecific antibodies, and uses thereof |
WO2021177980A1 (en) | 2020-03-06 | 2021-09-10 | Genentech, Inc. | Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist |
WO2021183849A1 (en) | 2020-03-13 | 2021-09-16 | Genentech, Inc. | Anti-interleukin-33 antibodies and uses thereof |
CR20220524A (en) | 2020-03-19 | 2022-12-02 | Genentech Inc | Isoform-selective anti-tgf-beta antibodies and methods of use |
MX2022011752A (en) | 2020-03-24 | 2022-10-18 | Genentech Inc | Tie2-binding agents and methods of use. |
TW202202620A (en) | 2020-03-26 | 2022-01-16 | 美商建南德克公司 | Modified mammalian cells |
JP2023519962A (en) | 2020-03-31 | 2023-05-15 | アレクトル エルエルシー | ANTI-MERTK ANTIBODY AND METHOD OF USE THEREOF |
EP4126934A1 (en) | 2020-04-01 | 2023-02-08 | University of Rochester | Monoclonal antibodies against the hemagglutinin (ha) and neuraminidase (na) of influenza h3n2 viruses |
WO2021198511A1 (en) | 2020-04-03 | 2021-10-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treatment of sars-cov-2 infection |
WO2021202959A1 (en) | 2020-04-03 | 2021-10-07 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
KR20230005848A (en) | 2020-04-03 | 2023-01-10 | 알렉터 엘엘씨 | Methods of Using Anti-TREM2 Antibodies |
CA3077973A1 (en) | 2020-04-06 | 2021-10-06 | H. Lundbeck A/S | Treatment of most bothersome symptom (mbs) associated with migraine using anti-cgrp antibodies |
CA3179416A1 (en) | 2020-04-07 | 2021-10-14 | Albert Einstein College Of Medicine | Method of treating and preventing ocular disease with hsv-2 delta gd |
WO2021209458A1 (en) | 2020-04-14 | 2021-10-21 | Ares Trading S.A. | Combination treatment of cancer |
EP4135848A2 (en) | 2020-04-15 | 2023-02-22 | F. Hoffmann-La Roche AG | Immunoconjugates |
CN115916822A (en) | 2020-04-24 | 2023-04-04 | 基因泰克公司 | Methods of using anti-CD 79b immunoconjugates |
AU2021262744A1 (en) | 2020-04-27 | 2022-10-06 | The Regents Of The University Of California | Isoform-independent antibodies to lipoprotein(a) |
EP4143345A1 (en) | 2020-04-28 | 2023-03-08 | Genentech, Inc. | Methods and compositions for non-small cell lung cancer immunotherapy |
MX2021015024A (en) | 2020-04-28 | 2022-01-18 | Univ Rockefeller | Neutralizing anti-sars-cov-2 antibodies and methods of use thereof. |
WO2021225892A1 (en) | 2020-05-03 | 2021-11-11 | Levena (Suzhou) Biopharma Co., Ltd. | Antibody-drug conjugates (adcs) comprising an anti-trop-2 antibody, compositions comprising such adcs, as well as methods of making and using the same |
WO2021224401A1 (en) | 2020-05-07 | 2021-11-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for determining a reference range of β-galactose exposure platelet |
WO2021228917A1 (en) | 2020-05-15 | 2021-11-18 | F. Hoffmann-La Roche Ag | Prevention of visible particle formation in parenteral protein solutions |
CN115605185A (en) | 2020-05-19 | 2023-01-13 | 豪夫迈·罗氏有限公司(Ch) | Use of a chelating agent to prevent the formation of visible particles in parenteral protein solutions |
AU2021281417A1 (en) | 2020-05-29 | 2022-12-08 | 23Andme, Inc. | Anti-CD200R1 antibodies and methods of use thereof |
CN116529260A (en) | 2020-06-02 | 2023-08-01 | 当康生物技术有限责任公司 | anti-CD 93 constructs and uses thereof |
CA3185858A1 (en) | 2020-06-02 | 2021-12-09 | Dynamicure Biotechnology Llc | Anti-cd93 constructs and uses thereof |
CN115803062A (en) | 2020-06-03 | 2023-03-14 | 博泰康医药公司 | Antibodies to trophoblast cell surface antigen 2 (TROP-2) |
JP2023527578A (en) | 2020-06-05 | 2023-06-29 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Methods and pharmaceutical compositions for treating eye diseases |
CR20220659A (en) | 2020-06-08 | 2023-08-21 | Hoffmann La Roche | Anti-hbv antibodies and methods of use |
WO2021249969A1 (en) | 2020-06-10 | 2021-12-16 | Merck Patent Gmbh | Combination product for the treatment of cancer diseases |
GB202008860D0 (en) | 2020-06-11 | 2020-07-29 | Univ Oxford Innovation Ltd | BTLA antibodies |
KR20230024967A (en) | 2020-06-11 | 2023-02-21 | 노파르티스 아게 | ZBTB32 Inhibitors and Uses Thereof |
JP2023529206A (en) | 2020-06-12 | 2023-07-07 | ジェネンテック, インコーポレイテッド | Methods and compositions for cancer immunotherapy |
AU2021293038A1 (en) | 2020-06-16 | 2023-02-02 | F. Hoffmann-La Roche Ag | Methods and compositions for treating triple-negative breast cancer |
MX2022015881A (en) | 2020-06-18 | 2023-01-24 | Genentech Inc | Treatment with anti-tigit antibodies and pd-1 axis binding antagonists. |
PE20230835A1 (en) | 2020-06-19 | 2023-05-19 | Hoffmann La Roche | ANTIBODIES THAT BIND CD3 |
CA3185513A1 (en) | 2020-06-19 | 2021-12-23 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 and folr1 |
AR122657A1 (en) | 2020-06-19 | 2022-09-28 | Hoffmann La Roche | IMMUNE-ACTIVATED FC DOMAIN-BINDING MOLECULES |
CN115916825A (en) | 2020-06-19 | 2023-04-04 | 豪夫迈·罗氏有限公司 | Antibodies that bind to CD3 and CD19 |
WO2021255146A1 (en) | 2020-06-19 | 2021-12-23 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 and cea |
WO2021255217A1 (en) | 2020-06-19 | 2021-12-23 | Heidelberg Pharma Research Gmbh | Amatoxin and amatoxin conjugates for use in inhibition of rna virus replication |
CR20220604A (en) | 2020-06-19 | 2023-01-23 | Hoffmann La Roche | Protease-activated t cell bispecific antibodies |
US20230235040A1 (en) | 2020-06-22 | 2023-07-27 | Almirall, S.A. | Anti-il-36 antibodies and methods of use thereof |
MX2022015795A (en) | 2020-06-23 | 2023-01-24 | Hoffmann La Roche | Agonistic cd28 antigen binding molecules targeting her2. |
US20220041672A1 (en) | 2020-06-24 | 2022-02-10 | Genentech, Inc. | Apoptosis resistant cell lines |
EP4172203A1 (en) | 2020-06-25 | 2023-05-03 | F. Hoffmann-La Roche AG | Anti-cd3/anti-cd28 bispecific antigen binding molecules |
CN116615440A (en) | 2020-07-02 | 2023-08-18 | 印希比股份有限公司 | Polypeptides comprising modified IL-2 polypeptides and uses thereof |
US20230256114A1 (en) | 2020-07-07 | 2023-08-17 | Bionecure Therapeutics, Inc. | Novel maytansinoids as adc payloads and their use for the treatment of cancer |
EP4178529A1 (en) | 2020-07-07 | 2023-05-17 | F. Hoffmann-La Roche AG | Alternative surfactants as stabilizers for therapeutic protein formulations |
WO2022008597A1 (en) | 2020-07-08 | 2022-01-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of infectious diseases |
WO2022016037A1 (en) | 2020-07-17 | 2022-01-20 | Genentech, Inc. | Anti-notch2 antibodies and methods of use |
CR20230017A (en) | 2020-07-21 | 2023-02-17 | Genentech Inc | Antibody-conjugated chemical inducers of degradation of brm and methods thereof |
WO2022023379A1 (en) | 2020-07-28 | 2022-02-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for preventing and treating a cancer |
GB2597532A (en) | 2020-07-28 | 2022-02-02 | Femtogenix Ltd | Cytotoxic compounds |
TW202221029A (en) | 2020-07-29 | 2022-06-01 | 美商當康生物科技有限公司 | Anti-cd93 constructs and uses thereof |
CN116568824A (en) | 2020-08-03 | 2023-08-08 | 基因泰克公司 | Method for diagnosing and treating lymphoma |
JP2023536326A (en) | 2020-08-05 | 2023-08-24 | ジュノー セラピューティクス インコーポレイテッド | Anti-idiotypic antibodies against ROR1 target binding domains and related compositions and methods |
JP2023538563A (en) | 2020-08-17 | 2023-09-08 | エーティービー セラピューティクス | Recombinant immunotoxin containing ribotoxin or RNAse |
EP4199959A1 (en) | 2020-08-24 | 2023-06-28 | Charité - Universitätsmedizin Berlin | A chimeric antigen receptor construct encoding a checkpoint inhibitory molecule and an immune stimulatory cytokine and car-expressing cells recognizing cd44v6 |
WO2022043312A1 (en) | 2020-08-24 | 2022-03-03 | Charité - Universitätsmedizin Berlin | Chimeric antigen receptor (car)-expressing cells recognizing cea |
JP2023539201A (en) | 2020-08-28 | 2023-09-13 | ジェネンテック, インコーポレイテッド | CRISPR/Cas9 multiplex knockout of host cell proteins |
US20230331867A1 (en) | 2020-09-04 | 2023-10-19 | Novarock Biotherapeutics, Ltd. | Nectin-4 antibodies and uses thereof |
US11970539B2 (en) | 2020-09-14 | 2024-04-30 | Ichnos Sciences SA | Antibodies that bind to IL1RAP and uses thereof |
PE20240214A1 (en) | 2020-09-15 | 2024-02-16 | Bayer Ag | NEW ANTI-A2AP ANTIBODIES AND USES THEREOF |
EP3970752A1 (en) | 2020-09-17 | 2022-03-23 | Merck Patent GmbH | Molecules with solubility tag and related methods |
WO2022064049A1 (en) | 2020-09-28 | 2022-03-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for diagnosing brucella infection |
EP4225443A1 (en) | 2020-10-05 | 2023-08-16 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
AU2021363536A1 (en) | 2020-10-20 | 2023-02-23 | F. Hoffmann-La Roche Ag | Combination therapy of PD-1 axis binding antagonists and LRRK2 inhitibors |
TW202233671A (en) | 2020-10-20 | 2022-09-01 | 美商建南德克公司 | Peg-conjugated anti-mertk antibodies and methods of use |
WO2022084300A1 (en) | 2020-10-20 | 2022-04-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosis and monitoring form of coronavirus infection |
WO2022084531A1 (en) | 2020-10-23 | 2022-04-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating glioma |
WO2022093981A1 (en) | 2020-10-28 | 2022-05-05 | Genentech, Inc. | Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists |
DE102020128677A1 (en) | 2020-10-30 | 2022-05-05 | Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Körperschaft des öffentlichen Rechts | A new target for the treatment of renal fibrosis |
WO2022093641A1 (en) | 2020-10-30 | 2022-05-05 | BioLegend, Inc. | Anti-nkg2a agents and compositions and methods for making and using the same |
WO2022093640A1 (en) | 2020-10-30 | 2022-05-05 | BioLegend, Inc. | Anti-nkg2c agents and compositions and methods for making and using the same |
US20230372319A1 (en) | 2020-11-02 | 2023-11-23 | Ares Trading S.A. | Combination Treatment of Cancer |
JP2023553257A (en) | 2020-11-02 | 2023-12-21 | アレス トレーディング ソシエテ アノニム | combination therapy for cancer |
AU2021374590A1 (en) | 2020-11-04 | 2023-06-01 | Genentech, Inc. | Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies |
MX2023005192A (en) | 2020-11-04 | 2023-05-15 | Heidelberg Pharma Res Gmbh | Composition comprising a combination of immune checkpoint inhibitor and antibody-amatoxin conjugate for use in cancer therapy. |
WO2022098648A2 (en) | 2020-11-04 | 2022-05-12 | Genentech, Inc. | Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates |
TW202227481A (en) | 2020-11-04 | 2022-07-16 | 美國洛克菲勒大學 | Neutralizing anti-sars-cov-2 antibodies |
IL302396A (en) | 2020-11-04 | 2023-06-01 | Genentech Inc | Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies |
JP2023547506A (en) | 2020-11-06 | 2023-11-10 | ノバルティス アーゲー | Combination therapy of anti-CD19 agents and B-cell targeting agents to treat B-cell malignancies |
KR20230104651A (en) | 2020-11-06 | 2023-07-10 | 노파르티스 아게 | CD19 Binding Molecules and Uses Thereof |
AU2021378316A1 (en) | 2020-11-13 | 2023-06-01 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
CR20230253A (en) | 2020-11-16 | 2023-07-26 | Hoffmann La Roche | Fab high mannose glycoforms |
WO2022101481A1 (en) | 2020-11-16 | 2022-05-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating uveal melanoma |
US20240101681A1 (en) | 2020-12-02 | 2024-03-28 | Alector Llc | Methods of use of anti-sortilin antibodies |
CN116635403A (en) | 2020-12-04 | 2023-08-22 | 豪夫迈·罗氏有限公司 | PH-dependent mutant interleukin-2 polypeptides |
AU2021401934A1 (en) | 2020-12-14 | 2023-06-22 | Allogene Therapeutics, Inc. | Methods and reagents for characterizing car t cells for therapies |
IL303656A (en) | 2020-12-17 | 2023-08-01 | Hoffmann La Roche | Anti-hla-g antibodies and use thereof |
WO2022140797A1 (en) | 2020-12-23 | 2022-06-30 | Immunowake Inc. | Immunocytokines and uses thereof |
WO2022148853A1 (en) | 2021-01-11 | 2022-07-14 | F. Hoffmann-La Roche Ag | Immunoconjugates |
WO2022153212A1 (en) | 2021-01-13 | 2022-07-21 | Axon Neuroscience Se | Antibodies neutralizing sars-cov-2 |
US12060411B2 (en) | 2021-01-15 | 2024-08-13 | The Rockefeller University | Neutralizing anti-SARS-CoV-2 antibodies |
KR20230147092A (en) | 2021-01-22 | 2023-10-20 | 바이원큐어 테라퓨틱스, 인크. | Anti-HER-2/TROP-2 constructs and uses thereof |
TW202245811A (en) | 2021-02-03 | 2022-12-01 | 美商異基因治療有限公司 | Formulations and processes for car t cell drug products |
EP4294842A1 (en) | 2021-02-19 | 2023-12-27 | Inhibrx, Inc. | Formulations of dr5 binding polypeptides |
CN117157317A (en) | 2021-02-26 | 2023-12-01 | 拜耳公司 | Inhibitors of IL-11 or IL-11Ra for the treatment of abnormal uterine bleeding |
JP2024508488A (en) | 2021-03-01 | 2024-02-27 | エクシリオ デベロップメント, インコーポレイテッド | Combination of masked CTLA4 and PD1/PD-L1 antibodies to treat cancer |
WO2022184594A1 (en) | 2021-03-01 | 2022-09-09 | Scirhom Gmbh | Humanized antibodies against irhom2 |
WO2022187270A1 (en) | 2021-03-01 | 2022-09-09 | Xilio Development, Inc. | Combination of ctla4 and pd1/pdl1 antibodies for treating cancer |
US20240181073A1 (en) | 2021-03-03 | 2024-06-06 | Sorrento Therapeutics, Inc. | Antibody-Drug Conjugates Comprising an Anti-BCMA Antibody |
KR20230156727A (en) | 2021-03-03 | 2023-11-14 | 피에르 파브르 메디카먼트 | Anti-VSIG4 antibody or antigen-binding fragment thereof and uses |
US20240141048A1 (en) | 2021-03-05 | 2024-05-02 | Dynamicure Biotechnology Llc | Anti-vista constructs and uses thereof |
CN117015555A (en) | 2021-03-09 | 2023-11-07 | 豪夫迈·罗氏有限公司 | Combination therapy of PD-1 targeted IL-2 variant immunoconjugates and anti-TYRP 1/anti-CD 3 bispecific antibodies |
KR20230156051A (en) | 2021-03-09 | 2023-11-13 | 에프. 호프만-라 로슈 아게 | Combination therapy of PD-1-targeted IL-2 variant immunoconjugate and FAP/4-1BB binding molecule |
AU2022232951A1 (en) | 2021-03-10 | 2023-10-19 | Immunowake Inc. | Immunomodulatory molecules and uses thereof |
JP2024512377A (en) | 2021-03-12 | 2024-03-19 | ジェネンテック, インコーポレイテッド | Anti-KLK7 antibodies, anti-KLK5 antibodies, multispecific anti-KLK5/KLK7 antibodies, and methods of use |
BR112023018621A2 (en) | 2021-03-15 | 2023-10-24 | Hoffmann La Roche | METHODS TO TREAT LUPUS NEPHRITIS, DEPLETION OF PERIPHERAL B CELLS, KITS TO TREAT LUPUS NEPHRITIS AND ANTI-CD20 TYPE II ANTIBODIES |
EP4308118A1 (en) | 2021-03-17 | 2024-01-24 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods and compositions for treating melanoma |
US20240174746A1 (en) | 2021-03-18 | 2024-05-30 | Alector Llc | Anti-tmem106b antibodies and methods of use thereof |
WO2022197877A1 (en) | 2021-03-19 | 2022-09-22 | Genentech, Inc. | Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents |
EP4308169A2 (en) | 2021-03-19 | 2024-01-24 | Heidelberg Pharma Research GmbH | B-lymphocyte specific amatoxin antibody conjugates |
CN117321417A (en) | 2021-03-22 | 2023-12-29 | 朱诺治疗学股份有限公司 | Method for determining the efficacy of therapeutic cell compositions |
EP4314280A1 (en) | 2021-03-22 | 2024-02-07 | Juno Therapeutics, Inc. | Method to assess potency of viral vector particles |
US20240166738A1 (en) | 2021-03-23 | 2024-05-23 | Alector Llc | Anti-tmem106b antibodies for treating and preventing coronavirus infections |
EP4314049A1 (en) | 2021-03-25 | 2024-02-07 | Dynamicure Biotechnology LLC | Anti-igfbp7 constructs and uses thereof |
KR20230162793A (en) | 2021-03-26 | 2023-11-28 | 얀센 바이오테크 인코포레이티드 | Humanized antibodies against paired helical filament tau and uses thereof |
CA3213771A1 (en) | 2021-03-29 | 2022-10-06 | Scirhom Gmbh | Methods of treatment using protein binders to irhom2 epitopes |
US20220389096A1 (en) | 2021-03-30 | 2022-12-08 | Bayer Aktiengesellschaft | Novel anti-sema3a antibodies and uses thereof |
EP4314032A1 (en) | 2021-03-30 | 2024-02-07 | F. Hoffmann-La Roche AG | Protease-activated polypeptides |
EP4319728A1 (en) | 2021-04-09 | 2024-02-14 | Genentech, Inc. | Combination therapy with a raf inhibitor and a pd-1 axis inhibitor |
AR125344A1 (en) | 2021-04-15 | 2023-07-05 | Chugai Pharmaceutical Co Ltd | ANTI-C1S ANTIBODY |
JP2024514222A (en) | 2021-04-19 | 2024-03-28 | ジェネンテック, インコーポレイテッド | Modified Mammalian Cells |
EP4326903A1 (en) | 2021-04-23 | 2024-02-28 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods and compositions for treating cell senescence accumulation related disease |
CA3217803A1 (en) | 2021-04-30 | 2022-11-03 | F. Hoffmann-La Roche Ag | Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody |
CN117321078A (en) | 2021-04-30 | 2023-12-29 | 豪夫迈·罗氏有限公司 | Administration for combination therapy with anti-CD 20/anti-CD 3 bispecific antibody and anti-CD 79B antibody drug conjugates |
KR20240037188A (en) | 2021-04-30 | 2024-03-21 | 피에르 파브르 메디카먼트 | Novel stable anti-VISTA antibody |
AU2022270880A1 (en) | 2021-05-03 | 2023-09-28 | Merck Patent Gmbh | Her2 targeting fc antigen binding fragment-drug conjugates |
US20240218057A1 (en) | 2021-05-06 | 2024-07-04 | The Rockefeller University | Neutralizing anti- sars-cov-2 antibodies and methods of use thereof |
EP4337266A1 (en) | 2021-05-12 | 2024-03-20 | Genentech, Inc. | Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma |
CA3219425A1 (en) | 2021-05-14 | 2022-11-17 | Genentech, Inc. | Agonists of trem2 |
JP2024521107A (en) | 2021-05-21 | 2024-05-28 | ジェネンテック, インコーポレイテッド | Modified cells for producing recombinant products of interest |
CA3221411A1 (en) | 2021-05-25 | 2022-12-01 | Merck Patent Gmbh | Egfr targeting fc antigen binding fragment-drug conjugates |
AR126009A1 (en) | 2021-06-02 | 2023-08-30 | Hoffmann La Roche | CD28 ANTIGEN-BINDING AGONIST MOLECULES THAT TARGET EPCAM |
WO2022255440A1 (en) | 2021-06-04 | 2022-12-08 | Chugai Seiyaku Kabushiki Kaisha | Anti-ddr2 antibodies and uses thereof |
WO2022258622A1 (en) | 2021-06-07 | 2022-12-15 | Ares Trading S.A. | Combination treatment of cancer |
KR20240019109A (en) | 2021-06-09 | 2024-02-14 | 에프. 호프만-라 로슈 아게 | Combination of a specific BRAF inhibitor (Paradox Break) and a PD-1 axis binding antagonist for use in the treatment of cancer |
WO2022265912A1 (en) | 2021-06-16 | 2022-12-22 | Gundersen Lutheran Medical Foundation, Inc. | Antibodies targeting an amphiregulin-derived cell surface neo-epitope |
JP2024527493A (en) | 2021-06-16 | 2024-07-25 | アレクトル エルエルシー | Monovalent anti-MerTK antibodies and methods of use thereof |
WO2022266223A1 (en) | 2021-06-16 | 2022-12-22 | Alector Llc | Bispecific anti-mertk and anti-pdl1 antibodies and methods of use thereof |
EP4355785A1 (en) | 2021-06-17 | 2024-04-24 | Amberstone Biosciences, Inc. | Anti-cd3 constructs and uses thereof |
WO2022271987A1 (en) | 2021-06-23 | 2022-12-29 | TeneoFour, Inc. | Anti-cd38 antibodies and epitopes of same |
AU2022299846B2 (en) | 2021-06-25 | 2024-08-15 | Chugai Seiyaku Kabushiki Kaisha | Anti–ctla-4 antibody |
WO2022270612A1 (en) | 2021-06-25 | 2022-12-29 | 中外製薬株式会社 | Use of anti-ctla-4 antibody |
CA3225636A1 (en) | 2021-07-02 | 2023-01-05 | Merck Patent Gmbh | Anti-protac antibodies and complexes |
US20230049152A1 (en) | 2021-07-14 | 2023-02-16 | Genentech, Inc. | Anti-c-c motif chemokine receptor 8 (ccr8) antibodies and methods of use |
WO2023004305A1 (en) | 2021-07-20 | 2023-01-26 | Inhibrx, Inc. | Cd8-targeted modified il-2 polypeptides and uses thereof |
CA3225092A1 (en) | 2021-07-20 | 2023-01-26 | John C. Timmer | Cd8-binding polypeptides and uses thereof |
JP2024526880A (en) | 2021-07-22 | 2024-07-19 | ジェネンテック, インコーポレイテッド | Brain targeting compositions and methods of use thereof |
KR20240036570A (en) | 2021-07-22 | 2024-03-20 | 에프. 호프만-라 로슈 아게 | Heterodimeric Fc domain antibodies |
AU2022318255A1 (en) | 2021-07-27 | 2024-01-18 | Morphosys Ag | Combinations of antigen binding molecules |
JP2024529484A (en) | 2021-07-30 | 2024-08-06 | インサーム(インスティテュ ナシオナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシェ メディカル) | Chimeric proteins and methods of immunotherapy |
JP2024528217A (en) | 2021-08-03 | 2024-07-26 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Bispecific antibodies and methods of use |
CN117897409A (en) | 2021-08-13 | 2024-04-16 | 基因泰克公司 | Administration of anti-tryptase antibodies |
JP2024534067A (en) | 2021-08-19 | 2024-09-18 | エフ. ホフマン-ラ ロシュ アーゲー | Multivalent anti-variant fc region antibodies and methods of use |
WO2023028501A1 (en) | 2021-08-23 | 2023-03-02 | Immunitas Therapeutics, Inc. | Anti-cd161 antibodies and uses thereof |
KR20240049296A (en) | 2021-08-27 | 2024-04-16 | 제넨테크, 인크. | How to Treat Tauopathy |
KR20240049275A (en) | 2021-08-27 | 2024-04-16 | 하. 룬드벡 아크티에셀스카브 | Treatment of cluster headaches with anti-CGRP antibodies |
EP4396223A1 (en) | 2021-08-30 | 2024-07-10 | Genentech, Inc. | Anti-polyubiquitin multispecific antibodies |
EP4396229A1 (en) | 2021-09-02 | 2024-07-10 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Anti-cecam6 antibodies with reduced side-effects |
TW202321308A (en) | 2021-09-30 | 2023-06-01 | 美商建南德克公司 | Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists |
WO2023056069A1 (en) | 2021-09-30 | 2023-04-06 | Angiex, Inc. | Degrader-antibody conjugates and methods of using same |
US20230190805A1 (en) | 2021-10-06 | 2023-06-22 | Immatics Biotechnologies Gmbh | Methods of identifying metastatic lesions in a patient and treating thereof |
TW202333781A (en) | 2021-10-08 | 2023-09-01 | 日商中外製藥股份有限公司 | Anti-hla-dq2.5 antibody formulation |
CN118139648A (en) | 2021-10-14 | 2024-06-04 | 豪夫迈·罗氏有限公司 | Substituted PD1-IL7v immunoconjugates for the treatment of cancer |
CR20240155A (en) | 2021-10-14 | 2024-05-10 | Hoffmann La Roche | New interleukin-7 immunoconjugates |
WO2023069919A1 (en) | 2021-10-19 | 2023-04-27 | Alector Llc | Anti-cd300lb antibodies and methods of use thereof |
WO2023078900A1 (en) | 2021-11-03 | 2023-05-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating triple negative breast cancer (tnbc) |
EP4448108A1 (en) | 2021-11-08 | 2024-10-23 | Immatics Biotechnologies GmbH | Adoptive cell therapy combination treatment and compositions thereof |
WO2023081898A1 (en) | 2021-11-08 | 2023-05-11 | Alector Llc | Soluble cd33 as a biomarker for anti-cd33 efficacy |
WO2023086807A1 (en) | 2021-11-10 | 2023-05-19 | Genentech, Inc. | Anti-interleukin-33 antibodies and uses thereof |
MX2024005680A (en) | 2021-11-16 | 2024-05-30 | Genentech Inc | Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab. |
WO2023094569A1 (en) | 2021-11-26 | 2023-06-01 | F. Hoffmann-La Roche Ag | Combination therapy of anti-tyrp1/anti-cd3 bispecific antibodies and tyrp1-specific antibodies |
WO2023100975A1 (en) | 2021-12-01 | 2023-06-08 | 中外製薬株式会社 | Method for preparing antibody-containing formulation |
AR127887A1 (en) | 2021-12-10 | 2024-03-06 | Hoffmann La Roche | ANTIBODIES THAT BIND CD3 AND PLAP |
WO2023109900A1 (en) | 2021-12-17 | 2023-06-22 | Shanghai Henlius Biotech, Inc. | Anti-ox40 antibodies, multispecific antibodies and methods of use |
EP4448579A1 (en) | 2021-12-17 | 2024-10-23 | Shanghai Henlius Biotech, Inc. | Anti-ox40 antibodies and methods of use |
WO2023118165A1 (en) | 2021-12-21 | 2023-06-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
TW202346346A (en) | 2021-12-23 | 2023-12-01 | 大陸商江蘇恆瑞醫藥股份有限公司 | Anti-dll3 antibodies, the antibody-drug conjugates and the pharmaceutical use thereof |
KR20240130130A (en) | 2022-01-05 | 2024-08-28 | 인히브릭스 바이오사이언스, 인크. | Gamma delta T cell binding polypeptides and uses thereof |
WO2023133393A1 (en) | 2022-01-05 | 2023-07-13 | Inhibrx, Inc. | Gamma delta t-cell-targeted modified il-2 polypeptides and uses thereof |
US20230322958A1 (en) | 2022-01-19 | 2023-10-12 | Genentech, Inc. | Anti-Notch2 Antibodies and Conjugates and Methods of Use |
AR128330A1 (en) | 2022-01-26 | 2024-04-17 | Genentech Inc | CHEMICAL DEGRADATION INDUCERS CONJUGATED WITH ANTIBODY AND METHODS OF THESE |
AR128331A1 (en) | 2022-01-26 | 2024-04-17 | Genentech Inc | CHEMICAL DEGRADATION INDUCTORS CONJUGATED WITH ANTIBODIES AND METHODS OF THESE |
WO2023144235A1 (en) | 2022-01-27 | 2023-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for monitoring and treating warburg effect in patients with pi3k-related disorders |
WO2023147399A1 (en) | 2022-01-27 | 2023-08-03 | The Rockefeller University | Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof |
JPWO2023144973A1 (en) | 2022-01-27 | 2023-08-03 | ||
WO2023156634A1 (en) | 2022-02-17 | 2023-08-24 | Atb Therapeutics | Recombinant immunotoxin comprising a ribosome inactivating protein |
CN118765204A (en) | 2022-02-23 | 2024-10-11 | 艾利妥 | Methods of using anti-TREM 2 antibodies |
WO2023173026A1 (en) | 2022-03-10 | 2023-09-14 | Sorrento Therapeutics, Inc. | Antibody-drug conjugates and uses thereof |
IL315544A (en) | 2022-03-11 | 2024-11-01 | Janssen Pharmaceutica Nv | Multispecific antibodies and uses thereof |
AU2023231442A1 (en) | 2022-03-11 | 2024-09-26 | Mablink Bioscience | Antibody-drug conjugates and their uses |
WO2023170291A1 (en) | 2022-03-11 | 2023-09-14 | Janssen Pharmaceutica Nv | Multispecific antibodies and uses thereof |
IL315540A (en) | 2022-03-11 | 2024-11-01 | Janssen Pharmaceutica Nv | Multispecific antibodies and uses thereof |
WO2023175171A1 (en) | 2022-03-18 | 2023-09-21 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Bk polyomavirus antibodies and uses thereof |
IL314211A (en) | 2022-03-23 | 2024-09-01 | Genentech Inc | Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy |
WO2023179740A1 (en) | 2022-03-25 | 2023-09-28 | Shanghai Henlius Biotech , Inc. | Anti-msln antibodies and methods of use |
AR128876A1 (en) | 2022-03-28 | 2024-06-19 | Hoffmann La Roche | ENHANCED FOLR1 PROTEASE ACTIVATABLE T LYMPHOCYTE BISPECIFIC ANTIBODIES |
AU2022450448A1 (en) | 2022-04-01 | 2024-10-10 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
TW202404636A (en) | 2022-04-08 | 2024-02-01 | 美商英伊布里克斯公司 | Dr5 agonist and plk1 inhibitor or cdk inhibitor combination therapy |
IL315887A (en) | 2022-04-13 | 2024-11-01 | F Hoffmann La Roche Ag | Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use |
US20230406930A1 (en) | 2022-04-13 | 2023-12-21 | Genentech, Inc. | Pharmaceutical compositions of therapeutic proteins and methods of use |
WO2023212675A1 (en) | 2022-04-28 | 2023-11-02 | Allogene Therapeutics Inc. | Methods for donor cell analysis |
WO2023212294A1 (en) | 2022-04-29 | 2023-11-02 | Broadwing Bio Llc | Angiopoietin-related protein 7-specific antibodies and uses thereof |
WO2023212298A1 (en) | 2022-04-29 | 2023-11-02 | Broadwing Bio Llc | Bispecific antibodies and methods of treating ocular disease |
WO2023212293A1 (en) | 2022-04-29 | 2023-11-02 | Broadwing Bio Llc | Complement factor h related 4-specific antibodies and uses thereof |
WO2023213814A1 (en) | 2022-05-02 | 2023-11-09 | Pierre Fabre Medicament | New formulation of anti vista antibody |
AU2023264069A1 (en) | 2022-05-03 | 2024-10-24 | Genentech, Inc. | Anti-ly6e antibodies, immunoconjugates, and uses thereof |
WO2023215810A1 (en) | 2022-05-05 | 2023-11-09 | Inhibrx, Inc. | Albumin-binding polypeptides and uses thereof |
WO2023219613A1 (en) | 2022-05-11 | 2023-11-16 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
TW202410919A (en) | 2022-05-23 | 2024-03-16 | 美商英伊布里克斯公司 | Dr5 agonist and iap antagonist combination therapy |
WO2023235699A1 (en) | 2022-05-31 | 2023-12-07 | Jounce Therapeutics, Inc. | Antibodies to lilrb4 and uses thereof |
WO2023235415A1 (en) | 2022-06-01 | 2023-12-07 | Genentech, Inc. | Method to identify a patient with an increased likelihood of chemotherapy-induced peripheral neuropathy |
WO2023240058A2 (en) | 2022-06-07 | 2023-12-14 | Genentech, Inc. | Prognostic and therapeutic methods for cancer |
WO2023239803A1 (en) | 2022-06-08 | 2023-12-14 | Angiex, Inc. | Anti-tm4sf1 antibody-drug conjugates comprising cleavable linkers and methods of using same |
WO2023237661A1 (en) | 2022-06-09 | 2023-12-14 | Institut National de la Santé et de la Recherche Médicale | Use of endothelin receptor type b agonists for the treatment of aortic valve stenosis |
WO2023240218A1 (en) | 2022-06-09 | 2023-12-14 | Allogene Therapeutics Inc. | Methods for detecting genomic abnormalities in cells |
WO2023240216A1 (en) | 2022-06-11 | 2023-12-14 | Inhibrx, Inc. | Fcrn-binding polypeptides and uses thereof |
WO2023245008A1 (en) | 2022-06-13 | 2023-12-21 | Genentech, Inc. | Methods of delaying or preventing the onset of alzheimer's disease using crenezumab |
DE102022115364A1 (en) | 2022-06-21 | 2023-12-21 | Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Körperschaft des öffentlichen Rechts | FATP2 in T cells as a target molecule for the treatment of autoimmune diseases |
WO2024008799A1 (en) | 2022-07-06 | 2024-01-11 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of proliferative glomerulonephritis |
WO2024013234A1 (en) | 2022-07-13 | 2024-01-18 | Institut National de la Santé et de la Recherche Médicale | Methods for diagnosis, prognosis, stratification and treating of myocarditis |
TW202417042A (en) | 2022-07-13 | 2024-05-01 | 美商建南德克公司 | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2024020051A1 (en) | 2022-07-19 | 2024-01-25 | BioLegend, Inc. | Anti-cd157 antibodies, antigen-binding fragments thereof and compositions and methods for making and using the same |
WO2024020432A1 (en) | 2022-07-19 | 2024-01-25 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
TW202417504A (en) | 2022-07-22 | 2024-05-01 | 美商建南德克公司 | Anti-steap1 antigen-binding molecules and uses thereof |
TW202423992A (en) | 2022-07-22 | 2024-06-16 | 美商必治妥美雅史谷比公司 | Antibodies binding to human pad4 and uses thereof |
WO2024023246A1 (en) | 2022-07-28 | 2024-02-01 | Philogen S.P.A. | Antibody binding to pd1 |
WO2024026471A1 (en) | 2022-07-29 | 2024-02-01 | Alector Llc | Cd98hc antigen-binding domains and uses therefor |
WO2024026447A1 (en) | 2022-07-29 | 2024-02-01 | Alector Llc | Anti-gpnmb antibodies and methods of use thereof |
TW202405020A (en) | 2022-07-29 | 2024-02-01 | 美商阿列克特有限責任公司 | Transferrin receptor antigen-binding domains and uses therefor |
WO2024028433A1 (en) | 2022-08-04 | 2024-02-08 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of lymphoproliferative disorders |
WO2024033362A1 (en) | 2022-08-08 | 2024-02-15 | Atb Therapeutics | Humanized antibodies against cd79b |
WO2024033400A1 (en) | 2022-08-10 | 2024-02-15 | Institut National de la Santé et de la Recherche Médicale | Sk2 inhibitor for the treatment of pancreatic cancer |
WO2024033399A1 (en) | 2022-08-10 | 2024-02-15 | Institut National de la Santé et de la Recherche Médicale | Sigmar1 ligand for the treatment of pancreatic cancer |
US20240085403A1 (en) | 2022-08-16 | 2024-03-14 | Allogene Therapeutics, Inc. | Method for inhibiting adventitious viral infection |
TW202417476A (en) | 2022-08-18 | 2024-05-01 | 英商英美偌科有限公司 | T cell receptors and fusion proteins thereof |
WO2024040114A2 (en) | 2022-08-18 | 2024-02-22 | BioLegend, Inc. | Anti-axl antibodies, antigen-binding fragments thereof and methods for making and using the same |
WO2024049949A1 (en) | 2022-09-01 | 2024-03-07 | Genentech, Inc. | Therapeutic and diagnostic methods for bladder cancer |
WO2024054929A1 (en) | 2022-09-07 | 2024-03-14 | Dynamicure Biotechnology Llc | Anti-vista constructs and uses thereof |
WO2024068572A1 (en) | 2022-09-28 | 2024-04-04 | F. Hoffmann-La Roche Ag | Improved protease-activatable t cell bispecific antibodies |
WO2024068705A1 (en) | 2022-09-29 | 2024-04-04 | F. Hoffmann-La Roche Ag | Protease-activated polypeptides |
WO2024077239A1 (en) | 2022-10-07 | 2024-04-11 | Genentech, Inc. | Methods of treating cancer with anti-c-c motif chemokine receptor 8 (ccr8) antibodies |
WO2024086796A1 (en) | 2022-10-20 | 2024-04-25 | Alector Llc | Anti-ms4a4a antibodies with amyloid-beta therapies |
WO2024084034A1 (en) | 2022-10-21 | 2024-04-25 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical compositions for the treatment of osteoarthritis |
WO2024091991A1 (en) | 2022-10-25 | 2024-05-02 | Genentech, Inc. | Therapeutic and diagnostic methods for multiple myeloma |
US20240165227A1 (en) | 2022-11-04 | 2024-05-23 | Gilead Sciences, Inc. | Anticancer therapies using anti-ccr8 antibody, chemo and immunotherapy combinations |
WO2024102734A1 (en) | 2022-11-08 | 2024-05-16 | Genentech, Inc. | Compositions and methods of treating childhood onset idiopathic nephrotic syndrome |
WO2024100170A1 (en) | 2022-11-11 | 2024-05-16 | F. Hoffmann-La Roche Ag | Antibodies binding to hla-a*02/foxp3 |
WO2024108053A1 (en) | 2022-11-17 | 2024-05-23 | Sanofi | Ceacam5 antibody-drug conjugates and methods of use thereof |
WO2024118593A1 (en) | 2022-11-28 | 2024-06-06 | Allogene Therapeutics Inc. | Claudin 18.2 targeting chimeric antigen receptors and binding agents and uses thereof |
DE102022132156A1 (en) | 2022-12-05 | 2024-06-06 | Rheinisch-Westfälische Technische Hochschule Aachen, Körperschaft des öffentlichen Rechts | ADAMTS12 as a target molecule for the treatment of chronic renal failure and renal fibrosis |
WO2024121380A1 (en) | 2022-12-08 | 2024-06-13 | Pierre Fabre Medicament | Vaccinal composition and adjuvant |
WO2024129594A1 (en) | 2022-12-12 | 2024-06-20 | Genentech, Inc. | Optimizing polypeptide sialic acid content |
WO2024137589A2 (en) | 2022-12-20 | 2024-06-27 | Genentech, Inc. | Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine |
WO2024133723A1 (en) | 2022-12-22 | 2024-06-27 | Institut National de la Santé et de la Recherche Médicale | Methods for decreasing therapeutic acquired resistance to chemotherapy and/or radiotherapy |
WO2024141496A1 (en) | 2022-12-27 | 2024-07-04 | Merck Patent Gmbh | Vhh anti-protac antibodies and complexes |
WO2024145398A1 (en) | 2022-12-27 | 2024-07-04 | Yale University | Antibody drug conjugates |
WO2024148232A2 (en) | 2023-01-06 | 2024-07-11 | Alector Llc | Anti-il18 binding protein antibodies and methods of use thereof |
US20240360229A1 (en) | 2023-01-18 | 2024-10-31 | Genentech, Inc. | Multispecific antibodies and uses thereof |
WO2024153725A1 (en) | 2023-01-20 | 2024-07-25 | F. Hoffmann-La Roche Ag | Recombinant fc domain - il2 variant polypeptides and combination therapy with membrane-anchored antigen binding polypeptides |
WO2024158824A1 (en) | 2023-01-23 | 2024-08-02 | Yale University | Antibody oligonucleotide conjugates |
WO2024156672A1 (en) | 2023-01-25 | 2024-08-02 | F. Hoffmann-La Roche Ag | Antibodies binding to csf1r and cd3 |
WO2024161038A1 (en) | 2023-02-03 | 2024-08-08 | Immusmol Sas | Method of predicting success of a cancer therapy |
WO2024191785A1 (en) | 2023-03-10 | 2024-09-19 | Genentech, Inc. | Fusions with proteases and uses thereof |
WO2024189048A1 (en) | 2023-03-13 | 2024-09-19 | Heidelberg Pharma Research Gmbh | Subcutaneously administered antibody-drug conjugates for use in cancer treatment |
WO2024188356A1 (en) | 2023-03-16 | 2024-09-19 | Inmagene Biopharmaceuticals (Hangzhou) Co., Ltd. | Ilt7-targeting antibodies and uses thereof |
WO2024188355A1 (en) | 2023-03-16 | 2024-09-19 | Itabmed Biopharmaceutical (Shanghai) Co., Ltd. | Multispecific antigen binding proteins and uses thereof |
WO2024197302A1 (en) | 2023-03-23 | 2024-09-26 | Yale University | Compositions and methods for delivering antibody oligonucleotide conjugates for exon skipping |
WO2024206788A1 (en) | 2023-03-31 | 2024-10-03 | Genentech, Inc. | Anti-alpha v beta 8 integrin antibodies and methods of use |
WO2024206738A1 (en) | 2023-03-31 | 2024-10-03 | Immunai Inc. | Humanized anti-trem2 antibodies |
WO2024211236A2 (en) | 2023-04-05 | 2024-10-10 | Sorrento Therapeutics, Inc. | Antibody-drug conjugates and uses thereof |
WO2024211234A1 (en) | 2023-04-05 | 2024-10-10 | Sorrento Therapeutics, Inc. | Antibody-drug conjugates and uses thereof |
WO2024211235A1 (en) | 2023-04-05 | 2024-10-10 | Sorrento Therapeutics, Inc. | Antibody-drug conjugates and uses thereof |
WO2024216064A1 (en) | 2023-04-14 | 2024-10-17 | Twist Bioscience Corporation | Compositions and methods related to dkk1 binders |
WO2024220546A2 (en) | 2023-04-17 | 2024-10-24 | Peak Bio, Inc. | Antibodies and antibody-drug conjugates and methods of use and synthetic processes and intermediates |
WO2024220588A1 (en) | 2023-04-18 | 2024-10-24 | Juno Therapeutics, Inc. | Cytotoxicity assay for assessing potency of therapeutic cell compositions |
WO2024227154A1 (en) | 2023-04-28 | 2024-10-31 | Broadwing Bio Llc | Complement component 3 (c3)-specific antibodies and uses thereof |
US12122842B1 (en) | 2023-09-27 | 2024-10-22 | R&D Systems, Inc. | Human CD30-specific binding proteins and uses thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5078999A (en) * | 1991-02-22 | 1992-01-07 | American Home Products Corporation | Method of treating systemic lupus erythematosus |
US5091513A (en) * | 1987-05-21 | 1992-02-25 | Creative Biomolecules, Inc. | Biosynthetic antibody binding sites |
US5225539A (en) * | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5585089A (en) * | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5846534A (en) * | 1988-02-12 | 1998-12-08 | British Technology Group Limited | Antibodies to the antigen campath-1 |
US6548640B1 (en) * | 1986-03-27 | 2003-04-15 | Btg International Limited | Altered antibodies |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0173494A3 (en) | 1984-08-27 | 1987-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric receptors by dna splicing and expression |
GB8422238D0 (en) | 1984-09-03 | 1984-10-10 | Neuberger M S | Chimeric proteins |
JPS61104788A (en) | 1984-10-26 | 1986-05-23 | Teijin Ltd | Nucleic acid base sequence |
JPS61134325A (en) | 1984-12-04 | 1986-06-21 | Teijin Ltd | Expression of hybrid antibody gene |
US5078998A (en) | 1985-08-02 | 1992-01-07 | Bevan Michael J | Hybrid ligand directed to activation of cytotoxic effector T lymphocytes and target associated antigen |
GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
GB8928874D0 (en) | 1989-12-21 | 1990-02-28 | Celltech Ltd | Humanised antibodies |
-
1995
- 1995-05-26 US US08/452,462 patent/US6548640B1/en not_active Expired - Lifetime
-
2003
- 2003-01-24 US US10/351,748 patent/US6982321B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5225539A (en) * | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US6548640B1 (en) * | 1986-03-27 | 2003-04-15 | Btg International Limited | Altered antibodies |
US5091513A (en) * | 1987-05-21 | 1992-02-25 | Creative Biomolecules, Inc. | Biosynthetic antibody binding sites |
US5846534A (en) * | 1988-02-12 | 1998-12-08 | British Technology Group Limited | Antibodies to the antigen campath-1 |
US6569430B1 (en) * | 1988-02-12 | 2003-05-27 | Btg International Limited | Antibodies to the antigen Campath-1 |
US5585089A (en) * | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5693761A (en) * | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Polynucleotides encoding improved humanized immunoglobulins |
US5693762A (en) * | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US6180370B1 (en) * | 1988-12-28 | 2001-01-30 | Protein Design Labs, Inc. | Humanized immunoglobulins and methods of making the same |
US5078999A (en) * | 1991-02-22 | 1992-01-07 | American Home Products Corporation | Method of treating systemic lupus erythematosus |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040236078A1 (en) * | 1991-06-14 | 2004-11-25 | Genentech, Inc. | Method for making humanized antibodies |
US20070077243A1 (en) * | 1991-06-14 | 2007-04-05 | Genentech, Inc. | Method for making humanized antibodies |
US8075890B2 (en) | 1991-06-14 | 2011-12-13 | Genentech, Inc. | Method for making humanized antibodies |
US20100226920A1 (en) * | 2006-03-27 | 2010-09-09 | Ablynx N.V. | Medical delivery device for therapeutic proteins based on single domain antibodies |
US11332533B2 (en) | 2007-09-26 | 2022-05-17 | Chugai Seiyaku Kabushiki Kaisha | Modified antibody constant region |
US20100297662A1 (en) * | 2007-10-29 | 2010-11-25 | Minako Hoshi | Antibody and use thereof |
US8445649B2 (en) | 2007-10-29 | 2013-05-21 | Tao Health Life Pharma Co., Ltd. | Antibody and use thereof |
WO2012166906A1 (en) | 2011-05-31 | 2012-12-06 | Massachusetts Institute Of Technology | Cell-directed synthesis of multifunctional nanopatterns and nanomaterials |
US10517945B2 (en) | 2012-07-04 | 2019-12-31 | Hoffman-La Roche Inc. | Covalently linked antigen-antibody conjugates |
US9925272B2 (en) | 2012-07-04 | 2018-03-27 | Hoffmann-La Roche Inc. | Anti-theophylline antibodies and methods of use |
US9765153B2 (en) | 2012-07-04 | 2017-09-19 | Hoffmann-La Roche Inc. | Anti-biotin antibodies and methods of use |
US12023378B2 (en) | 2012-07-04 | 2024-07-02 | Hoffmann-La Roche Inc. | Covalently linked antigen-antibody conjugates |
US10407511B2 (en) | 2014-01-03 | 2019-09-10 | Hoffmann-La Roche Inc. | Covalently linked helicar-anti-helicar antibody conjugates and uses thereof |
US10519249B2 (en) | 2014-01-03 | 2019-12-31 | Hoffmann-La Roche Inc. | Covalently linked polypeptide toxin-antibody conjugates |
US10561737B2 (en) | 2014-01-03 | 2020-02-18 | Hoffmann-La Roche Inc. | Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles |
US11180548B2 (en) | 2015-02-05 | 2021-11-23 | Chugai Seiyaku Kabushiki Kaisha | Methods of neutralizing IL-8 biological activity |
US11053308B2 (en) | 2016-08-05 | 2021-07-06 | Chugai Seiyaku Kabushiki Kaisha | Method for treating IL-8-related diseases |
US11780912B2 (en) | 2016-08-05 | 2023-10-10 | Chugai Seiyaku Kabushiki Kaisha | Composition for prophylaxis or treatment of IL-8 related diseases |
US20220025124A1 (en) * | 2018-12-21 | 2022-01-27 | Dow Silicones Corporation | Polyfunctional organosiloxanes, compositions containing same, and methods for the preparation thereof |
US11905375B2 (en) * | 2018-12-21 | 2024-02-20 | Dow Silicones Corporation | Polyfunctional organosiloxanes, compositions containing same, and methods for the preparation thereof |
Also Published As
Publication number | Publication date |
---|---|
US6982321B2 (en) | 2006-01-03 |
US6548640B1 (en) | 2003-04-15 |
US20040192897A2 (en) | 2004-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6548640B1 (en) | Altered antibodies | |
EP0239400B1 (en) | Recombinant antibodies and methods for their production | |
US5225539A (en) | Recombinant altered antibodies and methods of making altered antibodies | |
EP0328404B1 (en) | Modified antibodies | |
US5846534A (en) | Antibodies to the antigen campath-1 | |
EP0504350B1 (en) | Antibodies directed against cd3 | |
US6239259B1 (en) | Multivalent and multispecific antigen-binding protein | |
EP0794966B1 (en) | Humanized antibodies to cd38 | |
AU653167B2 (en) | Specific binding agents | |
EP0623679A1 (en) | Targeted multifunctional proteins | |
JPH08507680A (en) | Recombinant anti-VLA4 antibody molecule | |
JP2000116391A (en) | Chimera antibody against human-interleukin-6 receptor | |
ZA200100478B (en) | Hybrid human/rodent igg antibody to cd3, and methods of its construction. | |
CA2106719C (en) | Reshaped monoclonal antibodies against an immunoglobulin isotype | |
AU652923B2 (en) | Specific binding agents | |
BOND | NEH |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BTG INTERNATIONAL LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDICAL RESEARCH COUNCIL;REEL/FRAME:016508/0742 Effective date: 20050428 |
|
CC | Certificate of correction | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100103 |