US20040074456A1 - Device for controlling gas exchange valves - Google Patents
Device for controlling gas exchange valves Download PDFInfo
- Publication number
- US20040074456A1 US20040074456A1 US10/399,290 US39929003A US2004074456A1 US 20040074456 A1 US20040074456 A1 US 20040074456A1 US 39929003 A US39929003 A US 39929003A US 2004074456 A1 US2004074456 A1 US 2004074456A1
- Authority
- US
- United States
- Prior art keywords
- valve
- gas exchange
- valves
- actuators
- connections
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 24
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 230000001960 triggered effect Effects 0.000 claims abstract description 3
- 230000001276 controlling effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/10—Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2800/00—Methods of operation using a variable valve timing mechanism
- F01L2800/06—Timing or lift different for valves of same cylinder
Definitions
- the invention is based on an apparatus for controlling gas exchange valves in combustion cylinders of an internal combustion engine as generically defined by the preamble to claim 1.
- each valve actuator whose adjusting piston is connected integrally to the valve tappet of the associated gas exchange valve, communicates constantly by its first work chamber with a high-pressure source and with its second work chamber on the one hand is connected to a first electrical control valve that in alternation closes or opens a supply line to the high-pressure source and on the other to a second control valve that alternately opens or closes a relief line.
- the electrical control valves are embodied as 2/2-way magnet valves with spring restoration.
- the gas exchange valve is closed.
- both control valves are supplied with current.
- the second work chamber of the valve actuator is blocked on the one hand from the relief line by the second control valve and on the other is made to communicate, by the first control valve, with the supply line to the high-pressure source.
- the gas exchange valve opens; the length of the opening stroke and the opening speed depend on the embodiment of the electrical control signal applied to the first electrical control valve.
- the first control valve is then switched to be without current, so that it blocks off the supply line to the second work chamber of the valve actuator. In this way, by means of an electrical control unit for generating control signals, all the valve opening positions of the gas exchange valve can be set.
- two electrical control valves are required, which correspondingly subject the associated valve actuator to hydraulic pressure.
- the apparatus according to the invention for controlling gas exchange valves as defined by claim 1 has the advantage that by means of the linkage of the two second control valves of a pair of valve actuators for common closure of the two gas exchange valves used as inlet or outlet valves in a combustion cylinder of the internal combustion engine, the expense for calculation for generating the control signals for the valve control is reduced, and in the control unit, there is a savings of one control signal output with an associated end stage or amplifier stage. Moreover, by keeping the separately triggered first control valves, the opening stroke of the inlet or outlet valves can be performed with a variable length and at staggered times.
- the two second control valves for one pair of valve actuators are embodied as a structural valve unit with a common electrical control input.
- the valve unit is a 2/2-way magnet valve with two switching positions and two controlled valve connections, of which one valve connection is connected to a relief line and the other valve connection is connected, each via a respective connecting line, to the second work chambers of the pair of valve actuators.
- one check valve with a flow direction toward the 2/2-way magnet valve must be inserted into each of the connecting lines, so that at different strokes of the gas exchange valves, an inflow of fluid from the valve actuator of the more widely opened gas exchange valve to the valve actuator of the less widely opened gas exchange valve will be avoided.
- the valve unit is a 3/2-way magnet valve with two switching positions and three controlled valve connections, of which a first valve connection communicates with a relief line, and the two further valve connections, which can be connected simultaneously to the first valve connection, each communicate with a respective second work chamber of the pair of valve actuators.
- the check valves in the connecting lines between the valve unit and the two valve actuators can be dispensed with, if the valve connection that forms the valve outlet and that communicates with the relief line is dimensioned as large enough in the open state that a reverse flow of fluid from one of the further valve connections to the other of the further valve connections is avoided.
- the valve unit is a 4/2-way magnet valve with two switching positions and four controlled valve connections, of which a first valve connection and a second valve connection each communicate with one relief line, and the third valve connection, which can be connected to the first valve connection, and the fourth valve connection, which can be connected to the second valve connection, can each communicate with a respective second work chamber of the pair of valve actuators.
- the first and second valve connections are connected to relief lines that lead separately to a fluid reservoir.
- the same closing speeds of the gas exchange valves always result, regardless of whether one gas exchange valve is open, or both gas exchange valves are open. This greatly simplifies the calculation of the control signals.
- the valve unit is a 4/3-way magnet valve ( 46 ), with three switching positions and four controlled valve connections, of which two valve connections each communicate with a respective relief line and two valve connections each communicate with a respective second work chamber of the pair of valve actuators.
- the 4/3-way magnet valve is embodied such that in one switching position, both second work chambers of the pair of valve actuators each communicate with a respective relief line, while in a further switching position, both second work chambers of the pair of valve actuators are blocked, and in a further switching position, one of the two second work chambers of the pair of valve actuators is blocked while the other communicates with a relief line.
- the valve unit is a 4/4-way magnet valve with four switching positions and four controlled valve connections, of which two each communicate with a respective relief line and two each communicate with a respective second work chamber of the pair of valve actuators.
- the 4/4-way magnet valve is embodied such that in one switching position, the second work chambers of the pair of valve actuators communicate with the relief lines, in a further switching position the second work chambers are blocked off, and in the two further switching positions, in alternation, one of the two second work chambers of the pair of valve actuators communicates with a respective relief line, and the other one is blocked.
- an expansion of the function can be achieved because in addition to the joint closure of the gas exchange valves, now the two gas exchange valves can also be closed at staggered times.
- FIG. 1 a circuit diagram of an apparatus for controlling two gas exchange valves, disposed in different combustion cylinders of an internal combustion engine
- FIG. 2 a schematic illustration of a gas exchange valve in a combustion cylinder of the engine
- FIGS. 3 - 5 each, a circuit diagram of a modified apparatus for controlling two gas exchange valves, disposed in a combustion cylinder of an internal combustion engine, in three further exemplary embodiments;
- FIGS. 6 and 7, each one alternative exemplary embodiment of the valve unit in the apparatus of FIG. 5.
- the apparatus shown in a circuit diagram in FIG. 1 is used to control two gas exchange valves in one combustion cylinder of an internal combustion engine; typically this cylinder is equipped with two inlet valves and two outlet valves.
- the two gas exchange valves 10 form the inlet valves or the outlet valves of the combustion cylinder.
- the control is shown for only the two inlet valves of the combustion cylinder.
- An identical circuit diagram applies to the two outlet valves of the combustion cylinder.
- one valve actuator 11 For each gas exchange valve 10 in the system, one valve actuator 11 is provided, which has an adjusting piston 13 that is guided axially displaceably in a work cylinder 12 .
- the adjusting piston 13 divides the work cylinder 12 into two hydraulic work chambers 121 and 122 , defined by the work cylinder, and is solidly connected to the valve tappet 14 of the gas exchange valve 10 .
- FIG. 2 in an enlarged illustration, schematically shows a valve actuator 11 in conjunction with the associated gas exchange valve 10 .
- the valve tappet 14 on its end remote from the adjusting piston 13 , has a platelike valve sealing face 15 , which to control an opening cross section cooperates with a valve seat face 17 embodied on the housing 16 of the combustion cylinder of the engine.
- the work cylinder 12 has a total of three hydraulic connections, of which one hydraulic connection 121 a discharges into the first work chamber 121 , and two hydraulic connections 122 a and 122 b discharge into the second work chamber 122 .
- the apparatus also has a pressure supply system 22 , which comprises a fluid reservoir 18 , a high-pressure pump 19 , a check valve 20 , and a reservoir 21 for pulsation damping and energy storage.
- the outlet 221 of the pressure supply system 22 that is tapped between the check valve 20 and the reservoir 21 communicates via a line 23 with the hydraulic connections 121 a of the two valve actuators 11 , so that the first work chambers 121 of the valve actuators 11 are acted upon constantly by the approximately constant hydraulic pressure prevailing at the outlet 221 of the pressure supply system 22 , which can be regulated to various set-point values.
- the second work chambers 122 of the work cylinders 12 can be connected on the one hand, by means of the hydraulic connections 122 a and 122 b of the work cylinder 12 and via first electrical control valves 24 and 26 , to the outlet 221 of the pressure supply system 22 and on the other, via hydraulic connecting lines 35 , 36 and second electrical control valves 25 and 27 , to a relief line 28 and 29 , respectively, which in turn discharge into the fluid reservoir 18 .
- All the control valves 24 - 27 are embodied as switching valves, specifically as 2/2-way magnet valves with spring restoration. However, proportional valves can also be used as the control valves.
- the electrical control inputs are connected to the electronic control unit 30 via electrical signal lines 31 , 32 , 33 , 34 ; the electrical signal lines 31 and 32 lead away to the two first control valves 24 , 26 from separate signal outputs 301 , 303 with separate end stages of the control unit 30 , while the two electrical signal lines 32 and 34 , which lead to the two second control valves 25 , 27 , lead away from a common signal output 302 with an end stage or amplifier stage.
- Each valve actuator 11 is integrated with the associated first control valve 24 and second control valve 25 , or the associated first control valve 26 and second control valve 27 , respectively, in a respective actuator housing 35 and 36 , which is indicated by dashed lines in FIG. 1.
- the end stage of the control unit must be dimensioned accordingly.
- a control signal for reversing the second control valves 25 , 27 is generated by the electronic control unit 30 , and after amplification in the end stage via the signal output 302 , this signal reaches both the electrical control input of the second control valve 25 and the electrical control input of the second control valve 27 .
- the second control valves 25 , 27 are simultaneously transferred to their blocking position, in which they block off the second work chamber 122 from the respective relief line 28 and 29 .
- an amplified control signal is applied to the electrical control input of the first control valve 24 by the electronic control unit 30 , via its signal output 301 .
- This first control valve switches over and connects the second work chamber 122 with the outlet 221 of the pressure supply system 22 , so that now the system pressure prevails in the second work chamber 122 of the valve actuator 11 as well. Since the piston face of the adjusting piston 13 that defines the first work chamber 121 is smaller than the face of the adjusting piston 13 that defines the second work chamber 122 , the result is a displacement force that moves the adjusting piston 13 downward in FIGS. 1 and 2, as a result of which the gas exchange valve 10 is opened. The length of the opening stroke of the gas exchange valve 10 is dependent on the opening duration and opening speed of the first control valve 24 and 26 , respectively.
- the current supply to the first control valve 24 is discontinued, and the first control valve 24 returns to its blocking position.
- the pressure in the second work chamber 122 is maintained, so that the gas exchange valve 10 maintains its assumed opening stroke unchanged.
- the electronic control unit 30 either simultaneously or at staggered times depending on requirements, generates a control signal for the first control valve 26 ; via the signal output 303 , this signal reaches the electrical control input of the first control valve 26 .
- This valve switches over in the same way into its work position, and via the adjusting piston 13 that is being displaced, the other gas exchange valve 10 is opened.
- the length of the opening stroke can be dimensioned to be the same as or different from the opening stroke of the other gas exchange valve 10 .
- FIGS. 3 - 5 The control apparatuses, shown in FIGS. 3 - 5 in modified form, for a pair of identical gas exchange valves, such as inlet or outlet valves, in a combustion cylinder of an internal combustion engine differ from the control apparatus described in conjunction with FIG. 1 in that the two second control valves 25 , 27 for controlling the pair of valve actuators 11 in FIG. 1 are combined into a valve unit 40 , and the pair of valve actuators is integrated with the valve unit 40 and the two first control valves 24 , 26 , each associated with one valve actuator 11 , in a common actuator housing 39 .
- the valve unit 40 there is either—as in FIGS. 3 and 4—now only one common relief line 28 , or—as in FIG. 5—once again two relief lines 28 , 29 are carried separately to the fluid reservoir 18 .
- the control apparatuses of FIGS. 3 - 5 match the apparatus of FIG. 1, and thus identical components are identified by the same reference numerals.
- the valve unit 40 is a 2/2-way magnet valve 41 with spring restoration. It has two switching positions with two controlled valve connections 411 and 412 , of which the valve connection 411 is connected to the relief line 28 .
- the two connecting lines 35 and 36 leading from the two work chambers 122 of the valve actuators 11 of the pair of valve actuators to the valve unit 40 are connected to the other valve connection 412 .
- In each connecting line 35 , 36 there is a respective check valve 42 and 43 , with a flow direction pointing to the 2/2-way magnet valve 41 .
- check valves 42 , 43 prevent a fluid flow from the valve actuator 11 of the more widely open gas exchange valve 10 to the valve actuator 11 of the less widely open gas exchange valve 10 in the event that the strokes of the gas exchange valves 10 are of different lengths. If one gas exchange valve 10 is always opened earlier or more widely, then in the associated valve actuator 11 , the check valve 42 or 43 in the connecting line 35 or 36 leading to the relief line 28 can be dispensed with, although at the cost of a certain limitation in function.
- valve unit 40 is a 3/2-way magnet valve 44 , with two switching positions and three controlled valve connections 441 , 442 and 443 , of which a first valve connection 441 communicates with the relief line 28 , and the two further valve connections 442 and 443 , which can be connected simultaneously to the first valve connection 441 , each communicate via a respective one of the connecting lines 35 and 36 with a second work chamber 122 of the two valve actuators 11 .
- valve connection 441 which forms the valve outlet and communicates with the relief line 28 , is dimensioned as large enough, in the open state of the 3/2-way magnet valve 44 , that a reverse flow of fluid from one valve connection 442 to the other valve connection 443 , or vice versa, is avoided. It is understood that in the closing state of the 3/2-way magnet valve 44 , there is no communication between the valve connections 442 and 443 .
- the check valves required in the connecting lines 35 , 36 in the exemplary embodiment of FIG. 3 can be omitted here.
- the valve unit 40 is a 4/2-way magnet valve 45 , with two switching positions and four controlled valve connections 451 - 454 , of which a first valve connection 451 is connected to the relief line 28 , and a second valve connection 452 is connected to the relief line 29 ; a third valve connection 453 that can be connected to the first valve connection 451 is connected to the connecting line 35 , and a fourth valve connection 454 , which can be connected to the second valve connection 452 , is connected to the connecting line 36 .
- the two connecting lines 35 , 36 in turn lead to the second work chambers 122 of the valve actuators 11 of the pair of valve actuators.
- valve unit 40 is embodied as a 4/3-way magnet valve 46 or as a 4/4-way magnet valve 47 .
- the 4/3-way magnet valve is shown in FIG. 6, and the 4/4-way magnet valve 47 in FIG. 7, both in the form of a circuit diagram.
- the 4/3-way magnet valve 46 has three switching positions and four controlled valve connections 461 - 464
- the 4/4-way magnet valve 47 has four switching positions and four controlled valve connections 471 - 474 .
- the 4/3-way magnet valve 46 in one additional switching position, connects the second work chamber 122 of the one valve actuator 11 to the relief line 28 via the connecting line 35 , and blocks off the second work chamber 122 of the other valve actuator 11 by closing the connecting line 36 . It is accordingly not only possible, as in the other valve units 40 of FIGS. 3 and 4, to close the two gas exchange valves 10 at the same instant jointly, but also to trigger one gas exchange valve 10 at a staggered time relative to the other.
- the invention is not limited to the exemplary embodiment described.
- multi-position magnet valves 25 , 27 , 41 , 44 , 45 , 47 described in the various exemplary embodiments, which are open when without current, such valves that are blocked when without current can also be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
- Magnetically Actuated Valves (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10140528A DE10140528A1 (de) | 2001-08-17 | 2001-08-17 | Vorrichtung zur Steuerung von Gaswechselventilen |
DE10140528.6 | 2001-08-17 | ||
PCT/DE2002/002094 WO2003018968A1 (de) | 2001-08-17 | 2002-06-08 | Vorrichtung zur steuerung von gaswechselventilen |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040074456A1 true US20040074456A1 (en) | 2004-04-22 |
Family
ID=7695850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/399,290 Abandoned US20040074456A1 (en) | 2001-08-17 | 2002-06-08 | Device for controlling gas exchange valves |
Country Status (7)
Country | Link |
---|---|
US (1) | US20040074456A1 (de) |
EP (1) | EP1432891A1 (de) |
JP (1) | JP2005500463A (de) |
KR (1) | KR100928405B1 (de) |
DE (1) | DE10140528A1 (de) |
RU (1) | RU2286468C2 (de) |
WO (1) | WO2003018968A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20051810A1 (it) * | 2005-09-28 | 2007-03-29 | Dellorto Spa | Dispositivo elettroidraulico di comando delle valvole di motori a combustione interna ad azionamento variabile |
DE102007021109A1 (de) * | 2007-05-03 | 2008-11-13 | Jan Mendzigall | Verbrennungsmotor mit Querventilen |
JP4831839B2 (ja) * | 2008-03-27 | 2011-12-07 | 三菱重工業株式会社 | エンジンバルブアクチュエータ及び内燃機関 |
CN102135143A (zh) * | 2011-04-06 | 2011-07-27 | 重庆长安汽车股份有限公司 | 一种纯气动amt离合器操纵系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4009695A (en) * | 1972-11-14 | 1977-03-01 | Ule Louis A | Programmed valve system for internal combustion engine |
US5237968A (en) * | 1992-11-04 | 1993-08-24 | Caterpillar Inc. | Apparatus for adjustably controlling valve movement and fuel injection |
US6173685B1 (en) * | 1995-05-17 | 2001-01-16 | Oded E. Sturman | Air-fuel module adapted for an internal combustion engine |
US6321702B1 (en) * | 1998-06-12 | 2001-11-27 | Robert Bosch Gmbh | Process for controlling a gas exchange valve for internal combustion engines |
US6321703B1 (en) * | 1998-06-12 | 2001-11-27 | Robert Bosch Gmbh | Device for controlling a gas exchange valve for internal combustion engines |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0520633B1 (de) * | 1991-06-24 | 1996-08-14 | Ford Motor Company Limited | Hydraulisches Ventilsteuerung für Brennkraftmaschinen |
US5497736A (en) * | 1995-01-06 | 1996-03-12 | Ford Motor Company | Electric actuator for rotary valve control of electrohydraulic valvetrain |
DK0767295T3 (da) * | 1995-10-03 | 2000-06-05 | Wortsilo Nsd Schweiz Ag | Hydraulisk ventildrev |
-
2001
- 2001-08-17 DE DE10140528A patent/DE10140528A1/de not_active Withdrawn
-
2002
- 2002-06-08 JP JP2003523803A patent/JP2005500463A/ja active Pending
- 2002-06-08 WO PCT/DE2002/002094 patent/WO2003018968A1/de active Application Filing
- 2002-06-08 KR KR1020047002168A patent/KR100928405B1/ko not_active IP Right Cessation
- 2002-06-08 EP EP02747201A patent/EP1432891A1/de not_active Withdrawn
- 2002-06-08 RU RU2002135633/06A patent/RU2286468C2/ru not_active IP Right Cessation
- 2002-06-08 US US10/399,290 patent/US20040074456A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4009695A (en) * | 1972-11-14 | 1977-03-01 | Ule Louis A | Programmed valve system for internal combustion engine |
US5237968A (en) * | 1992-11-04 | 1993-08-24 | Caterpillar Inc. | Apparatus for adjustably controlling valve movement and fuel injection |
US6173685B1 (en) * | 1995-05-17 | 2001-01-16 | Oded E. Sturman | Air-fuel module adapted for an internal combustion engine |
US6321702B1 (en) * | 1998-06-12 | 2001-11-27 | Robert Bosch Gmbh | Process for controlling a gas exchange valve for internal combustion engines |
US6321703B1 (en) * | 1998-06-12 | 2001-11-27 | Robert Bosch Gmbh | Device for controlling a gas exchange valve for internal combustion engines |
Also Published As
Publication number | Publication date |
---|---|
JP2005500463A (ja) | 2005-01-06 |
EP1432891A1 (de) | 2004-06-30 |
WO2003018968A1 (de) | 2003-03-06 |
DE10140528A1 (de) | 2003-02-27 |
KR100928405B1 (ko) | 2009-11-26 |
RU2286468C2 (ru) | 2006-10-27 |
KR20040030072A (ko) | 2004-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0722536B1 (de) | Hydraulisch betätigte ventilanordnung | |
JP3677063B2 (ja) | 内燃機関の燃料噴射装置 | |
US5373817A (en) | Valve deactivation and adjustment system for electrohydraulic camless valvetrain | |
KR20010043493A (ko) | 연료 분사 시스템 | |
JPH04224215A (ja) | 空気圧縮式内燃機関用のエンジンブレーキ | |
US6499448B2 (en) | Apparatus for direct gasoline injection in a piston engine | |
US6422211B1 (en) | Fuel injection device for internal combustion engines | |
US7066147B2 (en) | Fuel injection device with pressure intensifying device, and pressure intensifying device | |
US6701879B2 (en) | Internal combustion engine | |
US20040074456A1 (en) | Device for controlling gas exchange valves | |
US7134408B2 (en) | Device for the control of gas exchange valves | |
US6688289B2 (en) | Fuel injection system for internal combustion engines | |
US6857618B2 (en) | Device for controlling a gas exchange valve | |
US6889639B2 (en) | Device for controlling gas exchange valves | |
US6883498B2 (en) | Pressure booster for a fuel injection system | |
JPH0791969B2 (ja) | 内燃機関の弁駆動装置 | |
US20040144345A1 (en) | Device for controlling charge exchange valves | |
US6736331B2 (en) | Valve for controlling fluids | |
US7089896B2 (en) | Device for controlling gas exchange valves | |
KR100966484B1 (ko) | 가스 교환 밸브 제어 장치 | |
US7025284B2 (en) | Fuel injection system for an internal combustion engine | |
JPH06272521A (ja) | 内燃機関の動弁装置 | |
JPS61229911A (ja) | 流体圧駆動式動弁制御装置 | |
GB2373824A (en) | Hydraulic actuating system for i.c. engine valves | |
JPS61182477A (ja) | ポンプ吐出量制御回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROBERT BOSCH GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAESSLER, HERMANN;SCHWEIGGART, HUBERT;ROSENAU, BERND;AND OTHERS;REEL/FRAME:014775/0900;SIGNING DATES FROM 20030918 TO 20031124 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |